
Fast Fault Emulation for Synchronous Sequential Circuits

Jaan Raik, Peeter Ellervee, Valentin Tihhomirov, Raimund Ubar

Department of Computer Engineering, Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia,
e-mail: jaan@pld.ttu.ee, phone: +372 620 2252, fax: +372 620 2253

ABSTRACT: Current paper presents an approach to emulate
fault simulation of sequential circuits on FPGA. Fault
simulation is an important subtask in test pattern generation
and it is frequently used throughout the test generation process.
In the paper, we explain the problems associated to fault
emulation for sequential circuits. Two alternative approaches
are described, which can be considered as trade-offs in terms of
required FPGA resources and fault grading accuracy. In
addition, an environment for reconfigurable hardware
emulation of fault simulation is proposed. Experiments show
that it is beneficial to use emulation for circuits/methods that
require large numbers of test vectors, e.g. simulation-based test
pattern generation or validation.

Keywords: Fault emulation, sequential circuits, FPGAs

1 Introduction
The increasing complexity of modern VLSI circuits has
made test generation one of the most complicated and
time-consuming problems in the domain of digital design.
As the sizes of circuits grow, so do the test costs [1]. Test
costs include not only the time and resources spent for
testing a circuit but also time and resources spent to
generate suitable test vectors. The most important sub-
task of any test generation approach is the suitability
analysis of a given set of test vectors. There exist many
techniques to perform such an analysis. Circuit structure
analysis gives good results but it is rather time
consuming.
 Fault simulation is the most often used way of
analysis and there exist many techniques exist to speed up
simulation (see, e.g., [2]). Efficient fault simulation
algorithms for combinational circuits are known already
for decades. However, it is the large sequential designs
whose fault grading run times could be measued in years
that drive the need faster implementation, e.g. by
hardware emulation. At the same time, reconfigurable
hardware, e.g., FPGAs, has been found useful as system-
modeling environments [3]. This has been made possible
by the availability of multi-million-gate FPGAs. For
academic purposes, cheaper devices with rather large
capacity, e.g., new Spartan devices, can be used.

The availability of large devices allows implementing
not only the circuit under test with fault models but also
test vector generator and result analysis circuits on a

single reconfigurable device. In addition to merely
increasing the speed of fault simulation, the idea proposed
in this paper can be used for selecting optimal Built-In
Self-Test (BIST) structures. To study the possibility of
replacing fault simulation with emulation, we first had to
solve some essential issues - how to represent logic faults
in a synthesizable circuit, how to feed the test vectors into
the circuit, and how to read and/or analyze the results of
emulation?

Then we created the experimental environment, and
finally performed experiments with some benchmark
circuits. The experiments showed that for circuits and/or
applications that require large numbers of test vectors, it
is beneficial to replace simulation with emulation. More
work is needed to integrate the hardware part with the
software part of the test generation environment.

The paper is organized as follows. Section 2 provides
an overview of previous related works. Section 3 presents
two alternative approaches to sequential fault emulation,
which can be considered as trade-offs in terms of required
FPGA resources and fault grading accuracy. The
emulation approach implemented in current paper is
planned to be used in cooperation with diagnostic
software Turbo Tester, described in Section 4. The
emulation environment is introduced in Section 5. In
Section 6, the results of experiments are presented and
Section 7 is dedicated for conclusions.

2 Overview of Related Works
A number of works on fault emulation for combinational
circuits has been published in the past. They rely either on
fault injection (see, e.g., [4, 5]) or on implementing
specific fault simulation algorithms in hardware [6].
Recently, acceleration of combinational circuit fault
diagnosis using FPGAs has been proposed in [7].
However, the need for hardware fault emulation has been
driven mainly by large sequential designs whose fault
grading run-times could extend to several years.
 In many of the papers for sequential circuits, faults are
injected either by modifying the configuration bitstream
while the latter is being loaded into the device [8] or by
using partial reconfiguration [9, 10, 11]. This kind of
approach is slow due to the run-time overhead required

by multiple reconfigurations. Other options for fault
injection are shift-registers and/or decoders (used in this
paper). A paper relying on the shift-register based method
was presented in [12]. Shift-registers are known to
require slightly less hardware overhead than the decoders
do. However, in [12] injection codes and test patterns are
read remotely from a host PC.
 In addition to merely increasing the speed of fault
simulation, the idea proposed in current paper can be used
for selecting optimal Built-In Self-Test (BIST) structures.
In an earlier paper [13] a fault emulation method to be
used for evaluating the Circular Self-Test Path (CSTP)
type BIST architectures has been presented. Different
from the current approach, no fault collapsing was carried
out and fault-injecting hardware was inserted to each
logic gate of the circuit to be emulated.
 In current paper, we propose an efficient FPGA-based
fault emulation environment for sequential circuits. The
environment has interfaces to the digital test package
Turbo Tester [14, 15] developed at Tallinn University of
Technology and described in Section 3. The main novelty
of the emulation approach lies in implementing MUXes
and a decoder for fault injection which, unlike the shift
register based injection, allows to insert faults in arbitrary
order. This feature is highly useful when applying the
presented environment in emulating the test generation
process. In addition, we use an on-chip input pattern
generator as opposed to loading the simulation stimuli
from the host computer. It is also important to note that
the time spent for emulator synthesis is included to the
experimental results presented in Section 5.

3 Sequential Fault Emulation Approaches
Fault emulation approaches for sequential circuits
encounter two major problems that are not present in
combinational fault emulation:
 1) The sequential fault emulation process takes place
as follows. First, faultfree emulation of the circuit is
performed. Then, faults are injected one-by-one and for
each of them the test stimuli set is emulated. This
repetitive emulation requires the circuit to be in an initial
state at the beginning of every subsequent emulation of
the test set.
 2) The environment presented in Section 5 of this
paper could be planned to be used with signature analysis
(e.g. a MISR) for speeding up the fault response analysis.
In that case, all the issues that are related to signature
analysis in sequential BIST apply to fault emulation too.
In other words, we have to solve the problem of
compressing don’t care responses to a meaningful
signature.
 In the following we present two alternative
approaches to sequential fault emulation, which contend
the above two issues. The alternatives can be considered
as trade-offs in terms of required FPGA resources and
fault grading accuracy.

3.1 Fault emulation with all registers resettable

It is possible to get rid of both of the problems mentioned
above if all the registers in the design are made resettable
and the global reset signal is applied at the beginning of
the test set. In the general case, not all the registers in
sequential designs could be reset. There are two
possibilities to solve this issue. First, (and this is the
approach used in current paper), it is possible to alter the
initial design to contain resettable registers only. This can
be considered as a kind of design-for-testability
modification. However, this might not be desireable as
the circuit’s silicon area would increase.

Another option is to modify the circuit only when
emulated on the FPGA without modifying the final
design itself. The drawback here is that using this
approach we cannot compare the results directly to the
ones of software fault simulation. However, it is a
reasonable approach if fast fault grading is needed with
limited FPGA resources available.

3.2 Encoded don’t care value approach

An alternative solution for the problem is to rely on the
encoded don’t care value approach. It is based on coding
the three-valued logic: 0, 1, X. To code these values we
need two bits and thus, two instances of the emulating
circuit. 0 is coded as (1,0), 1 as (0,1) and X as (0,0).
(Additionally, it is possible to code the third-state high
impedance value Z as (1,1)). Table 1 shows the logic used
for evaluating the basic gates AND, OR and inverter.
T?he gates have inputs A, B and an output Y. The lower
indexes are for indexing the coding bits.

Table 1. Four-valued gate evaluation

 Y0 Y1
AND A0 | B0 A1&B1
OR A0&B0 A1 | B1
INV A1 A0

Similar approach has been used in many applications,
including in the parallel fault simulation method
PROOFS [17]. An obvious shortcoming is the duplication
of hardware necessary for emulation. The main advantage
lies in the fact that the fault emulation results directly
match the software simulation.

4 Test Package Turbo Tester
Turbo Tester (TT) is a test software package developed at
the Department of Computer Engineering of Tallinn
University of Technology [14, 15]. The TT software
consists of the following test tools: test generation by
different algorithms (deterministic, random and genetic),
test set optimization, fault simulation for
combinational

and sequential circuits, testability analysis and fault
diagnosis. It includes test generators, logic and fault
simulators, a test optimizer, a module for hazard analysis,
BIST architecture simulators, design verification and
design error diagnosis tools (see Fig. 1). TT can read the
schematic entries of various contemporary VLSI CAD
tools that makes it independent of the existing design
environment. Turbo Tester versions are available for MS
Windows, Linux, and Solaris operating systems.
 The main advantage of TT is that different methods
and algorithms for various test problems have been
implemented and can be investigated separately of each
other or working together in different work flows.

Model synthesis. All the tools of TT use Structurally
Synthesized BDD (SSBDD) models as an internal model
representation. TT includes a design interface generating
SSBDD-s in AGM format from EDIF netlists. The set of
supported technology libraries can be easily extended.

Test generation. For automatic test pattern generation
(ATPG), random, deterministic and genetic test pattern
generators (TPG) have been implemented. Mixed TPG
strategies based on different methods can also be
investigated. Tests can be generated both for
combinational and sequential circuits.

Test pattern analysis. There are concurrent and
parallel fault simulation methods implemented in the
system. In current paper, we have experimented only with
"Fault Simulation" part (black in Fig. 1). In the future,
also the other simulation-related parts might be
considered (gray in Fig. 1).

Test set optimization. The tool is based on static
compaction approach, i.e. it minimizes the number of test
patterns in the test set without compromising the fault
coverage.

Multivalued simulation. In Turbo Tester, multi-
valued simulation is applied to model possible hazards

that can occur in logic circuits. The dynamic behavior of
a logic network during one single transition period can be
described by a representative waveform on the output or
simply by a corresponding logic value.
 Design error diagnosis. After a digital system has
been designed according to its specification, it might go
through a refinement process in order to be consistent
with certain design requirements, e.g., timing
specifications. The changes introduced by this step may
lead to undesired functional inconsistencies compared to
the original design. Such design errors should be
identified via verification.
 Evaluation of Built-In Self-Test (BIST) quality.
The BIST approach is represented by applications for
simulating logic BIST and Circular Self-Test Path
(CSTP) architectures.

5 Emulation environment
The emulation environment was created keeping in mind
that the main purpose was to evaluate the feasibility of
replacing fault simulation with emulation. Based on that,
the main focus was put on how to implement circuits to
be tested on FPGAs. Less attention was paid how to
organize data exchange between hardware and TT. For
the first series of experiments, we looked at
combinational circuits only. Results of experiments with
combinational circuits were presented in [5].

For sequential circuits, most of the solutions used for
combinational circuits could be exploited. The main
modification was an extra loop in the controller because
sequential circuits require not a single input combination
but a sequence consisting of tens or even hundreds of
input combinations. Also, instead of hard-coded test
sequence generators and output analyzers, loadable
modules were introduced. Before building the

Design Error
Diagnosis

Test
Generation

BIST
Emulation

Design Test
Set

Levels:
Gate
SSBDD

Fault
Table

Test Set
Optimization

Methods:
Logic BIST
CSTP

Fault
Simulation

Faulty
Area

Circuits:
Combinational
Sequential

Logic
Simulation

Formats:
EDIF
AGM

Defect
Library

Hazard
Analysis

Data

Specifi-
cation

Algorithms:
Deterministic
Random
Genetic Multivalued

Simulation

Fault models:
Stuck-at faults
Physical defects

Fig.1. Turbo Tester environment

experimental environment, we had first to solve how to
insert faults, how to generate test vectors, how to analyze
output data, and how to automate design flow. The
solutions and discussions are presented below.

Fault insertion: The main problem here was how to
represent non-logic features - faults - in such a way that
they can be synthesized using standard logic synthesis
tools. Since most of the analysis is done using stuck-at-
one and stuck-at-zero fault models, the solution was
obvious - use multiplexers at fault points to introduce
logic one or zero, or pass through intact logic value. Also,
since a single fault is analyzed at a time typically,
decoders were introduced to activate faults (see Fig.2).

The extra multiplexers will increase gate count and
will make the circuit slower (typically 5 to 10 times). It is
not a problem for smaller circuits but may be too
prohibitive for larger designs - the circuit may not fit into
target FPGA. A solution is to insert faults selectively.
Selection algorithm, essentially fault set partitioning, is a
subject of future research.

Compared against shift-register based fault injection
approaches (see, e.g., [12] and Fig. 3), the use of
multiplexers has both advantages and disadvantages. The
main disadvantage is small increase in both area and
delay of the circuit. Although the delay increase is only
few percents, execution time may increase significantly

for long test cycles. The main advantage is that any fault
can be selected in a single clock cycle, i.e., there is no
need to shift the code of a fault into the proper register.
Combining both approaches may be the best solution and
one direction of future work will go in that direction.

Test vector generation and output data analysis:
Here we relied on a well-known solution for BIST -
Linear Feedback Shift Register (LFSR) is used both for
input vector generation and output correctness analysis
(see, e.g., [16]). LFSRs structures are thoroughly studied
and their implementation in hardware is very simple. This
simplifies data exchange with the software part - only
seed and feedback polynomial vectors are needed to get a
desired behavior. Output correctness analysis hardware
needs first to store the expected output signature and then
to report to the software part whether the modeled fault
was detected or not. Fig. 4 illustrates a stage of used
LFSRs. The input 'coefficient' is used for feedback
polynomial. The input 'result' is used only for result
analysis and is connected to zero for input vector
generation.

Design flow automation was rather easy because of
the modular structure of the hardware part. All modules
are written in VHDL that allows to parameterize design
units (see also Fig. 5):
• CUT - circuit under test, generated by the fault

insertion program;
• CUT-pkg and CUT-top - parameters of CUT and

wrapper for CUT to interface with the generic test
environment, generated by wrapper program;

• Two LFSRs - one for test vector generator and one for
output signature calculation (generic VHDL module);

• Three counters - one to count test vectors, one to
count test sequences (not used for combinational
units), and one to count modeled faults (generic
VHDL module);

• Test bench with controller (FSM) to connect all sub-
modules, to initialize LFSRs and counters, and to
organize data exchange with the external interface; a
generic VHDL module; and

Fig. 4. Single stage of LFSRs

coefficient

from
previous

stage

reset
enable

clock

D
E
C

to next
stage

result

seed

Fig. 2. Fault point insertion with multiplexer

fault
point

stuck-at-1 /
stuck-at-0

select
fault

1

0

select fault
or to next
level
decoders fault

codes

Fig. 3. Fault point insertion with shift-register

fault
point

stuck-at-1

to next fault
points ff ff

stuck-at-0

from previous
fault points

• Interface to organize data exchange between the test
bench (FPGA) and the software part (PC).
The interface is currently implemented only in part as

further studies are needed to define data exchange
protocols between hardware and software parts. In future,
any suitable FPGA board can be used assuming that
supporting interfaces have been developed.

6 Experimental Results
For experiments, two FPGA boards were used - a
relatively cheap XSA-100 board with Spartan2 chip (600
CLBs) and a powerful RC1000-PPE board with VirtexE
chip (9600 CLBs). The first one is good for small
experiments and to test principles of the environment.

Test circuits were selected from ISCAS'89 and
HLSynt'92 benchmark sets to evaluate the speedup when
replacing fault simulation with emulation on FPGA.
Results of some benchmarks are presented in the paper to
illustrate gains and losses of our approach (see Table 2).
Columns "# of gates" and "delay" illustrate the parameters
of circuits without inserted faults. The "FPGA" columns
illustrate the of the whole test bench. Columns "#I", "#O",

"#ff", and "#F" represent the number of, outputs, flip-
flops, and fault points, respectively. The columns "# of
vectors" illustrate the complexity of test. The column
"SW" gives the fault simulation time based on a parallel
algorithm and " emul" emulation time for the same set of
test vectors. Synthesis times have been added for
comparison ("synt").

For different benchmarks, the hardware emulation
was in average 17.8 (ranging from 6.7 to 53.4) times
faster than the software fault simulation. It should be
noted that when considering also synthesis times, it might
not be useful to replace simulation with emulation,
especially for smaller designs. Nevertheless, taking into
account that sequential circuits, as opposed to
combinational ones, have much longer test sequences, the
use of emulation will pay off. Future research will mainly
focus on test generation for sequential circuits using
genetic algorithms.

7 Conclusions
Current paper proposes two alternative approaches to
fault emulation for synchronous sequential circuits: a
fully resettable design approach and an encoded don’t
care approach. An FPGA-based emulation environment
implementing the former has been realized with an on-
chip test pattern generator (LFSR) and output response
compression (MISR). Experiments with HLSynth92 and
ISCAS89 benchmarks have been carried out.
 The experiments showed that for circuits that require
large numbers of test vectors, e.g., sequential circuits, it is
beneficial to replace simulation with emulation. Although
even for combinational circuits the simulation speedup is
significant, there exist rather large penalty caused by
synthesis time. Based on that, it can be concluded that the
most useful application would be to explore test
generation and analysis architectures based on easily
reprogrammed structures, e.g., LFSRs. This makes fault
emulation very useful to select the best generator/analyzer
structures for BIST. Another useful application of fault
emulation would be genetic algorithms of test pattern
generation where also large numbers of test vectors are
analyzed. Future work includes development of more
advanced on chip test vector generators and analyzers.

Table 2. Results of experiments

FPGA #I #O #ff #F # of vectors SW HW circuit # of
gates

delay
[ns] CLBs MHz # of

seq.
seq.
len.

simul synt emul

s5378 4933 21.8 2583 10 35 49 179 2517 80 100 26.8” 22’ 4.0”
s15850 17.1k 66.8 6125 5 77 150 534 6076 200 200 15.6’ 55’ 97”
prefetch (32-bit) 1698 20.0 941 25 66 96 128 923 40 400 9.46” 5.1’ 1.19”
diff-eq (16-bit) 4562 25.7 4672 5 80 48 115 4789 20 200 87.9” 45’ 7.7”
TLC 290 9.5 215 50 3 6 17 196 40 100 2.69” 1.2’ 0.05”

Fig. 5. Emulation environment structure

CUT

CUT-top

LFSR

LFSR

counters

FSM

Test bench

FPGA

CUT-pkg

parameters

modified
netlist

generated

output
analysis

input
vectors

interface

PC

Acknowledgments:
This work was supported partly by Estonian Science
Foundation grants No 5601 and 5637 and by European
projects IST-2001-37592 "E-VIKINGS II" and IST-2000-
30193 "REASON".

References

[1] ITRS 2001 roadmap
[2] P. McGeer, K. McMillan, A. Saldanha, A. Sangiovanni-

Vincetelli, P. Scaglia, "Fast Discrete Function Evaluation
Using Decision Diagrams." In Proc. of ICCAD''95,
pp.402-407, Nov. 1995.

[3] "Axis Systems Uses World's Largest FPGAs from Xilinx
to Deliver Most Efficient Verification System in the
Industry." Xilinx Press Release #0273 -
http://www.xilinx.com/

[4] R. Sedaghat-Maman, E. Barke, "A New Approach to Fault
Emulation." In Proc. of Rapid System Prototyping,
pp.173-179, June 1997.

[5] P. Ellervee, J. Raik, V. Tihhomirov, "Fault Emulation on
FPGA: A Feasibility Study." In Proc. of Norchip''03,
Riga, Latvia, Nov. 11-12, 2003.

[6] M. Abramovici, P. Menon, "Fault Simulation on
Reconfigurable Hardware." In Proc. of FPGAs for Custom
Computing Machines, pp.182-190, April 1997.

[7] S.-K. Lu, J.-L. Chen, C.-W. Wu, W.-F. Chang, S.-Y.
Huang, "Combinational Circuit Fault Diagnosis Using
Logic Emulation.” 2003.

[8] M. Alderighi, S. D'Angelo, M. Mancini, G.R. Sechi, "A
Fault Injection Tool for SRAM-based FPGAs." In Proc. of
9th IEEE International On-Line Testing Symposium
(IOLTS'03), pp.129-133, July 2003.

[9] R. Wieler, Z. Zhang, R. D. McLeod, "Simulating Static
and Dynamic Faults in BIST Structures with a FPGA
Based Emulator." In Proc. of FPL’94, Springer-Verlag,
pp.240-250, Sept. 1994.

[10] K.-T. Cheng, S.-Y. Huang, W.-J. Dai, "Fault emulation: a
new approach to fault grading." In Proc. of ICCAD’95,
pp.681-686, Nov. 1995.

[11] L. Burgun, F. Reblewski, G. Fenelon, J. Barbier, O.
Lepape, "Serial fault emulation." In Proc. DAC’96,
pp.801-806, Las Vegas, USA, June 1996.

[12] S.-A. Hwang, J.-H. Hong, C.-W. Wu, "Sequential Circuit
Fault Simulation Using Logic Emulation." In IEEE Trans.
on CAD of Int. Circuits and Systems, Vol.17, No.8,
pp.724-736, Aug. 1998.

[13] R. Wieler, Z. Zhang, R. D. McLeod, "Emulating Static
Faults Using a Xilinx Based Emulator." In Proc. of IEEE
Symposium on FPGAs for Custom Computing Machines,
pp.110-115, April 1995.

[14] G. Jervan, A. Markus, P. Paomets, J. Raik, R. Ubar,
"Turbo Tester: A CAD System for Teaching Digital Test."
In Microelectronics Education, Kluwer Academic
Publishers, pp.287-290, 1998.

[15] "Turbo Tester" home page - URL: http://www.pld.ttu.ee/tt

[16] D.K. Pradhan, C. Liu, K. Chakraborty, "EBIST: A Novel
Test Generator with Built in Fault Detection Capability."
In Proc. of DATE'03, pp. 224-229, Munich, Germany,
March 2003.

[17] T. M. Niermann, W.-T. Cheng, J. H. Patel, "PROOFS: a
Fast, Memory Efficient Sequential Circuit Fault
Simulator". Proc. DAC, pp. 535-540, 1990.

