
A New Class of Smith Predictors for Network

Congestion Control1

Peter Bauer, Mihail Sichitiu, Russel Ernst Kamal Premaratne

Dept. of Electrical Engineering Dept. of Electrical and Computer Engineering

University of Notre Dame University of Miami

Notre Dame, IN 46556 Coral Gables, Fl. 33124

pbauer@mars.ee.nd.edu kamal@miami.edu

Abstract

A new class of time-variant Smith predictors for
bu�er set point control over communication net-
works is proposed. The new Smith predictor uses
two di�erent types of time-variant network delay
models, i.e. the forward delay (modeling delay ef-
fects on the data stream) and the return delay (mod-
eling delay e�ects on the bu�er occupancy infor-
mation.) The proposed control scheme tracks the
desired bu�er level, even under large delay uncer-
tainties, abrupt delay changes and additional distur-
bances such as unknown bu�er depletion rates. The
question of stability of the resulting system will also
be analyzed. Applications of the proposed scheme
range from load balancing in distributed computing
to congestion control in WAN networks.

1 INTRODUCTION

Classical Smith predictors are used to eliminate
known, constant delays from feedback control loops
[1], thus allowing an increased loop gain before insta-
bilities occur. However, if the delays are uncertain
or even time-variant, classical Smith predictor per-
formance deteriorates and the control system can
easily become unstable. A particularly important
case arises, if the plant to be controlled is an inte-
grator. This is due to the fact that the relationship
between the net input rate into a bu�er and the oc-
cupancy level of the bu�er is given by integration.
It is therefore not surprising that the problem of
controlling an integrator plant (bu�er) that is con-
nected through time - delays to a controller (variable
bit rate source) has recently attracted quite some
attention in the networking and the control com-
munity [2, 3]. In all but a handful of papers [4{6],
constant network delays were assumed. The validity
of such a constant delay assumption is limited and
breaks down for dynamic networks or when network
traÆc is bursty. Of course, any Smith predictor
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that is to work well under all traÆc conditions must
model the network connections as time-variant de-
lays. Based on this idea, this paper presents a queue
control mechanism that is based on time-variant
Smith predictors. The design insures tracking of the
desired bu�er set point under a number of non-ideal
situations such as delay mismatches in the forward
and return path as well as unknown bu�er depletion
rates.

2 PRELIMINARIES
2.1 The classical Smith predictor

Classical Smith predictors [1] are used to remove
potentially destabilizing delays from the feedback
loop by employing a \loop cancellation" technique:
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Figure 1: Classical Smith predictor

In Figure 1a) the classical Smith predictor is shown.
The idea is to design the controller such that the
outside loop (that includes the delay �1) is canceled
through the use of an internal loop. Once the loops
cancel, the system in Figure 1a) is equivalent to the
systems in Figure 1b) and c). The net result is that
in the equivalent system in Figure 1c) the delay �1
is not longer in the loop. This allows to design a
high performance controller C(z) using the classical
control tools. The fundamental assumptions for this



technique are a constant, and exactly know delay �1.

2.2 The forward and backward delays

The system under investigation is shown in Figure 2.
The controller SP (z) is transmitting data to a queue
(modeled here as an ideal bu�er). The data under-
goes a time variant delay that needs to be modeled
using a Variable Bit Rate (VBR) interface (see [7]).
The length of the queue at the switch y(n) is fed
back to the controller and also encounters a time-
variant delay. We assume that the controller always
uses the most recently available sample and thus
an Hold Freshest Sample (HFS) [7] interface is ap-
propriate. The input u(n) represents the desired
bu�er occupancy level. At equilibrium, we have
y(n) = u(n).
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Figure 2: Network Embedded Control System

2.3 Problem formulation

In the light of the previous results discussed in sec-
tions 2.1 and 2.2, this paper will analyze the bene�ts
of a time-variant Smith predictor for network con-
trol systems similar to the one shown in Figure 3. In
particular, the case with delay uncertainty in �1(n)
and �2(n) is a key focus of this work. This problem
is of great importance in congestion control mecha-
nism for Wide Area Networks (WANs).
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Figure 3: The studied system when a proportional
gain is considered

3 MAIN RESULT
3.1 The time-variant Smith predictor

Figure 4 depicts the proposed time-variant Smith
predictor for the congestion control of wide area net-
works.

The quantity yout represents the amount of data
that is depleted from the bu�er at each time step.
The same amount of data is, ideally, known and ac-
counted for at the controller y�

out
.

If the controller and the plant have synchronized
clocks it is possible for the controller to measure the
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Figure 4: Time-variant Smith predictor for conges-
tion control

delays in the return path �2(n) and to match them
exactly in the controller model. However, the for-
ward delays cannot be measured or predicted; at
the best the forward delays can be measured at the
plant (again assuming synchronization) and trans-
mitted at the controller together with the feedback
information.

3.2 A modi�ed design for minimizing rise

times

Figure 5 shows a modi�ed Smith predictor. In the
case of perfect delay matching both the forward and
the return path the transfer function of the system
is equal to one (plus a delay). Key di�erence to the
design in Figure 5 is the elimination of the top feed-
back loop, containing the bu�er plant. This results
in overall system, that perfectly cancels the plant
dynamics and the rise time is a�ected only by the
forward delay. Since in this case we rely on perfect
plant/disturbance information this feedback system
will behave less robustly then the one in Figure 4.
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Figure 5: Modi�ed Time-variant Smith predictor
for congestion control

3.3 Properties of the designs

In this subsection analyze the properties of the de-
signs, such as stability, tracking of the input, rise
time, maximum allowable proportional controller
gain, etc.

We will analyze side by side the proportional con-
troller, the classical Smith predictor with �xed de-
lays, the time-variant Smith predictor presented in
section 3.1 and the modi�ed Smith predictor pre-
sented in section 3.2

For all the systems we assume bounded delays both
in the forward and in the return paths:
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Figure 6: a) The result of the simulations for the four systems. b) Detailed view of the simulation results at
the second step

0 � �1(n) � �� = 5 (1)
0 � �2(n) � �� = 5 (2)

For the time-variant Smith predictor and for the
modi�ed Smith predictor we assumed that that the
integrator plant and the controller are synchronized
and that the feedback packets sent by the plant have
time-stamps such that it is possible to measure the
delays �2(n) and compensate them in the Smith pre-
dictor: ��

2
(n) = �2(n).

The time-variant stability analysis of either of the
considered systems is either NP hard to perform
or conservative. Moreover it was shown in [5, 8]
that the presence of time-variant delays in the for-
ward path causes the system not to have an equilib-
rium point. In [9] the simulations indicated that,
for this kind of systems (i.e. proportional con-
troller, time-variant delays, integrator plant), the
time-variant stability range is almost identical to the
time-invariant stability range. It was shown that for
a �rst order system with delays in the feedback path
the time-variant and time-invariant stability regions
match closely.

Therefore, in the simulations to follow we will con-
sider the controller gains k that will result in the
largest loop-gain while keeping the arising time-
invariant systems stable.

For the system depicted in Figure 3 with the two
delays bounded as in the equations (1),(2) a time
invariant analysis results in a stability range for the
gain k:

0 < k < 0:1494601:

A classical Smith predictor with �xed delays ��
1
=

��
2
= 2 has a time-invariant stable gain range given

by:
0 < k < 0:4561981111:

The system in Figure 4, if we �x ��
1
= 2 and assume

that we can match the delays in the return path
��
2
= �2 has a time-invariant stability range given

by:
0 < k < 0:383617:

The system in Figure 5, if we �x ��
1
= 2 and assume

that we can match the delays in the return path
��
2
= �2 has a time-invariant stability range given

by:
0 < k < 0:5:

We simulated the four systems for a total of 1000
time steps. In all simulations we used time-variant
delays in the forward and return paths. For each
system we used the same delay trace. Since the typ-
ical input for such systems is a superposition of step
inputs, we used two step inputs (as it can be seen
in Figure 6.

Table 1 shows some characteristics of the two step
responses presented in Figure 6.

As it can be seen from table 1 the time-variant Smith
predictor and the modi�ed version typically perform
better than the proportional controller and the clas-
sical Smith predictor. One drawback of the modi-
�ed time-variant Smith predictor is the inability to
adapt if there is a disturbance in the depletion rate
of the bu�er.

Consider the case of a mismatch in the depletion
rate at the bu�er yout and the depletion rate known
by the controller y�

out
(i.e. yout 6= y�

out
). It is known

that the Smith predictor used for an integrator plant
is unable to completely eliminate a constant distur-
bance [10]. In Figure 7 the depletion rate at the
bu�er is doubled (yout = 2y�

out
). With the exception

of the modi�ed Smith predictor, the other three con-
trollers still track (with a small steady state error)
the input.



Proportional Classical Time-variant Modi�ed
Controller Smith predictor Smith predictor Smith predictor

input-output MSE 5.1589 4.5592 4.1787 3.6562
Rise Time 10 10 10 6
at �rst step
Rise Time 14 12 14 2

at second step
95% Settling Time 24 30 26 24

at �rst step
95% Settling Time 23 19 18 7
at second step
% Overshoot 49% 78% 51% 51%
at �rst step
% Overshoot 11% 17% 6% 1%
at second step

Table 1: Step response characteristics for the simulation in Figure 6
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Figure 7: The result of the simulations for the four
systems in the case of mismatch in the depletion
rates (yout 6= y�

out
)

4 CONCLUSION

This paper provides a simulation based compari-
son of the performance of various Smith predic-
tor based network control systems. The simulation
shows that the proposed control schemes (the time-
variant Smith predictor and the modi�ed Smith pre-
dictor) feature better tracking and faster rise and
settling time. This performance improvement is
accomplished using a time-variant Smith predictor
that actually models the time-variant forward and
return delays.
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