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Abstract. We investigate the optimum reachability problem for Multi-
Priced Timed Automata (MPTA) that admit both positive and negative
costs on edges and locations, thus bridging the gap between the results
of Bouyer et al. (2007) and of Larsen and Rasmussen (2008). Our con-
tributions are the following: (1) We show that even the location reach-
ability problem is undecidable for MPTA equipped with both positive
and negative costs, provided the costs are subject to a bounded budget,
in the sense that paths of the underlying Multi-Priced Transition Sys-
tem (MPTS) that operationally exceed the budget are considered as not
being viable. This undecidability result follows from an encoding of Stop-
Watch Automata using such MPTA, and applies to MPTA with as few
as two cost variables, and even when no costs are incurred upon taking
edges. (2) We then restrict the MPTA such that each viable quasi-cyclic
path of the underlying MPTS incurs a minimum absolute cost. Under
such a condition, the location reachability problem is shown to be decid-
able and the optimum cost is shown to be computable for MPTA with
positive and negative costs and a bounded budget. These results follow
from a reduction of the optimum reachability problem to the solution of
a linear constraint system representing the path conditions over a finite
number of viable paths of bounded length.

1 Introduction and Related Work

Formal models for hard real-time systems, paired with automatic analysis proce-
dures determining their dynamic properties, are being considered as a means for
rigorously ensuring that such systems function as desired. The classical Timed
Automaton (TA) [1] has emerged as a well-studied model in this context. The
(un-)decidability frontier between TA, for which location reachability and related
properties are decidable, and Linear Hybrid Automata (LHA) [2], for which these
properties happen to be undecidable, has been investigated through analysis of
various moderate extensions of the original TA framework. Some of these exten-
sions are interesting in their own right, as they provide valuable enhancements
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to the expressiveness of the TA framework, thus enabling the analysis and opti-
mization of phenomena such as scheduling, which are beyond the scope of TA.

One such extension is that of Linear Priced Timed Automata ((L)PTA) or,
synonymously, Weighted Timed Automata [3,4,5] for modelling real-time sys-
tems subject to some budgetary constraints on resource consumption. LPTA
have -in addition to the real-valued clocks of classical TA - a cost-function map-
ping locations and edges to non-negative integers, whereupon a certain cost is
incurred by staying in a location, or by taking an edge. The minimum (infi-
mum) cost reachability problem for LPTA computes the minimum (infimum)
cost of reaching a given goal-location. The minimum / infimum cost reachability
problem for LPTA has been shown to be decidable and computable [3,4,5], lead-
ing to efficient tool-support through UPPAAL CORA along with applications
to real-time scheduling [6]. A key factor for the decidability of location reacha-
bility in LPTA is that the cost variable is a monotonically increasing observer
in the following sense: the cost variable cannot be reset, and testing the cost is
forbidden in both guards of edges and invariants of locations, thereby restricting
the expressive power of the model wrt. LHA, or equivalently, wrt. Stop-Watch
Automata (SWA) [7]. This preservation of decidability has attracted an immense
amount of research on (L)PTA in recent years (see [8] and Chapter 5 of [9] for
surveys), among which we take a closer look at the following enhancements to
the original LPTA model:

– The optimum reachability problem is considered in [10] for LPTA having
a single cost variable, with both positive and negative integer costs being
allowed on edges and locations. The optimality here refers to the computa-
tion of both infimum and supremum cost, which is shown to be PSPACE-
COMPLETE, with optimum paths of the underlying transition system con-
sisting of time-transitions occurring at time instants arbitrarily close to
integers.

– The optimum (conditional) reachability problem for Multi-Priced Timed Au-
tomata (MPTA) with multiple cost variables is considered in [11], with only
non-negative costs being allowed on edges and locations. The decidability of
the minimum- and maximum- cost reachability problems is shown through
exact symbolic (zone-based) algorithms that are guaranteed to terminate.
Termination of the symbolic algorithm for computing the maximum cost
reachability is subject to a divergence condition on costs, where the accumu-
lation of each of the costs diverges along all infinite paths of the underlying
Multi-Priced Transition System (MPTS).

– MPTA with both positive and negative costs are considered in [12]. More
specifically, [12] investigates Dual-Priced Timed Automata (DPTA) with
two observers (one observer termed as cost and the other as reward) in
the context of optimum infinite scheduling, where the reward takes on only
non-negative rates and is “strongly diverging” in the following sense: the
accumulated reward diverges along every infinite path in the underlying
transition system of the equivalent closed DPTA (obtained as usual by
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making all inequalities in guards and invariants non-strict). There are no
such restrictions on the cost observer, which can take on both positive and
negative values. Optimum infinite schedules (that minimize or maximize the
cost/reward ratio) are shown to be computable for such DPTA via corner-
point abstractions.

Nevertheless, an exact characterization of the conditions for (un-)decidability
and computation of the optimum reachability problems for MPTA having both
positive and negative costs remains - to the best of our knowledge - unclear. We
therefore attempt here to bridge the gap between the results of [10] and [11] by
formulating conditions for (un-)decidability and computatibility wrt. the opti-
mum reachability problems for such MPTA, through the following contributions:

1. We first show that Stopwatch Automata (SWA) [13,14] can be encoded using
MPTA with two cost variables per stopwatch, allowing both positive and
negative costs on edges and locations, with each of the costs being subject
to individual upper and lower bounds that are to be respected along all
viable paths of the underlying transition system. Since location reachability
is undecidable in SWA with just one stop-watch, an immediate consequence
of such an encoding is that even location reachability becomes undecidable
for DPTA with two cost variables, admitting both postive and negative costs
in locations and edges. Moreover, this undecidability result holds even when
no costs are charged upon taking edges.

2. We then consider MPTA with both positive and negative costs on locations
and edges, with individual bounds on each cost variable, and restrict the
underlying MPTS such that a minimum absolute cost is incurred along all
quasi-cyclic viable paths. Under such a restriction, we show that the reacha-
bility problem is decidable and that the optimum cost is computable for such
MPTA. These results are derived from a reduction of the optimum reacha-
bility problem to the solution of a linear constraint system representing the
path conditions over a finite number of viable paths, with the finiteness here
being obtained from the boundedness and the (quasi-)cycle conditions on
the costs.

Our contributions may thus be viewed as an additional step towards the pre-
cise characterization of the (un-)decidability frontiers between various semantic
models for richer classes of real-time systems.

The remainder of this paper is organized as follows: Section 2 introduces MPTA
and MPTS. Section 3 illustrates the encoding of SWA through MPTA admitting
both positive and negative (bounded) costs in locations / edges, thereby demon-
strating that even location reachability is undecidable for such MPTA with as few
as two cost variables. Section 4 describes the computation of optimum cost for
MPTA with both positive and negative costs in locations and edges, but subject
to the cost boundedness and (quasi-)cycle conditions mentioned above. Section 5
concludes the paper along with directions for future research.
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2 Multi- Priced Timed Automata (MPTA)

The notation and definitions used in this section partly mirror those in [11,12].
Given a finite set C of clocks, a clock valuation over C is a map v : C → R≥0

that assigns a non-negative real value to each clock in C. If n is the number of
clocks, a clock valuation is basically a point in R

n
≥0, which we henceforth denote

by u, v etc.

Definition 1. A zone over a set of clocks C is a system of constraints defined
by the grammar g ::= x � d | x − y � d | g ∧ g, where x, y ∈ C, d ∈ N, and
� ∈ {<,≤, >,≥}. The set of zones over C is denoted Z(C).

A closed zone is one in which � ∈ {≤,≥}, and we denote the set of closed zones
over C by Zc(C). A zone with no bounds on clock differences (i.e., with no
constraint of the form x − y � d) is said to be diagonal-free, and we denote the
corresponding set of zones by Zd(C). The set Zcd(C) denotes zones that are both
closed and diagonal-free. The set ZcdU (C) denotes the set of closed, diagonal-free
zones having only upper bounds on the clocks.

Definition 2. An MPTA is a tuple A = (L, C, (l0,0), E, I, P ), with

– a finite set L of locations and a finite set C of clocks, with |C| = n.
– An initial location l0 ∈ L together with the initial clock-valuation 0 where

all clocks are set to 0.
– a set E ⊆ L×Zcd(C)× 2C ×L of possible edges between locations. An edge

e = (l, g, Y, l′) between two locations l and l′ is denoted l
e−→ l′, and involves

a guard g = G(e) ∈ Zcd(C), a reset set Y = Rese ⊆ C.
– I : L→ ZcdU(C) assigns invariants to locations
– P is an indexed set of prices {p1, . . . , pn′} where each pi : (L ∪ E) → Z

assigns price-rates to locations and prices (or costs) to edges

In the sequel, we will denote by m the clock ceiling of the MPTA A under
investigation, which is the largest constant among the clock constraints of A. For
ease of presentation, we assume that the guards and invariants of the automaton
are closed and diagonal-free zones. We further assume that the clock-values are
upper-bounded by m through the invariants at each location. These are not
real restrictions, as every (P)TA can be transformed into an equivalent bounded
and diagonal-free one (as in Section 5.3 of [10]). Boundedness likewise does not
confine the expressiveness of Stop-Watch Automata discussed in the next section.

The concrete semantics of such an MPTA is given by a corresponding Multi-
Priced Transition System (MPTS) with states (l, u) ∈ (L, Rn

≥0) where u |= I(l),
with initial state (l0,0), and a transition relation → defined as follows:

– Time-transitions : (l, u)
δ,c−→ (l, v) if c = P (l) ·δ and ∀0 ≤ t ≤ δ : u+ t |= I(l)

where u + t denotes the addition of t to each component of u.
– Switch-Transitions : (l, u)

e,c−→ (l′, v) if ∃e = (l, g, Y, l′) ∈ E : u |= g, v =
[Y ← 0]u , v |= I(l′), c = P (e)
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Definition 3. A canonical initialized path [10] π of an MPTS is a (possibly
infinite) sequence of states si (each state si being a location-plus-clock-valuation
pair of the form (l, u)), which hich starts from the initial state and alternates

between time- and switch-transitions π = s0
δ,c0

−→ s1
e1,c1

−→ s2 . . .. The set of all
possible canonical initialized paths is denoted Π. For a finite path πinΠ of length
|π| = k, its accumulated cost-vector is defined as: Cost(π) =

∑k−1
i=0 ci, with

the summation here being performed component-wise for each cost-vector ci, with
Costj(π) =

∑k−1
i=0 ci

j for each cost-component.
For π ∈ Π, let πk denote its finite prefix of length k. Then the corresponding

accumulated cost along π is given by Cost(π) = limk→∞Cost(πk), if the latter
exists.

The accumulated cost of π ∈ Π wrt. a (set of) goal state(s) G is defined as:

CostG(π) =

{
∞ if ∀i ≥ 0 : si /∈ G ,∑k

i=0 ci if ∃k ≥ 0 : (sk ∈ G ∧ ∀i < k : si /∈ G) .

CostG(π) for π ∈ Π therefore yields the accumulated cost-vector along the
shortest prefix of π ending in a goal state.

Cost-Boundedness Constraint. We assume in this paper that the permissible
cost charging is bounded by budgetary constraints, in the sense that paths of
the MPTS exceeding this budget (e.g., exhausting the battery capacity) are
considered unviable and thus irrelevant to the optimization problem, even if the
budget is exceeded only temporarily. The budgetary constraint is given formally
as follows: For each cost variable, there is a lower bound Lj ∈ Z≤0 and an upper
bound Uj ∈ Z≥0 which all viable paths have to obey throughout. Thus, a path
π is called viable iff

∀π′ non-empty canonical prefix of π : ∀j ∈ {1, . . . , n′} : Lj ≤ Costj(π′) ≤ Uj

holds.
We further designate Ω as the linear objective function that we wish to opti-

mize wrt. reaching a set of goal locations under such budgetary constraints. Ω
can be an arbitrary linear combination of prices drawn from P . The objective
of this paper is to formulate the conditions for (un-)decidability of reaching G
under the budgetary constraints and for computatibility of the minimum value
of Ω when viably reaching G. We call the latter the optimum-cost reachability
problem, formally given below.

Problem 1. Given an MPTA A = (L, C, (l0,0), E, I, P ) having a set Π of canon-
ical initialized paths in its corresponding MPTS, and given a set G ⊆ L of goal
locations plus a linear objective function Ω, as well as budgetary constraints
(Lj , Uj) for the accumulation of each cost function pj along all viable paths in
Π , the optimum-cost reachability problem is to compute

min{Ω(CostG(π)) | π ∈ Π, π viable} .
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Note that as Ω is an arbitrary linear combination of the prices accumulated
in A, this problem — despite being formulated as a minimization problem —
incorporates maximum-cost reachability also.

MPTA having two cost variables only are termed Dual-Priced Timed Au-
tomata (DPTA) in the remainder. We now proceed to show in Section 3 that
DPTA with a boundedness condition on costs as above can be used to encode
Stop-Watch Automata (SWA) with one stopwatch, for which even location reach-
ability is undecidable [14]. It therefore follows that Problem 1 is undecidable for
such cases. We however show in Section 4 that Problem 1 is decidable and
computable even for MPTA when one imposes suitable conditions on viable
quasi-cyclic paths of the corresponding MPTS.

3 Encoding of Stop-Watch Automata Using Bounded
MPTA

Stopwatch automata (SWA) are an extension of timed automata where advance
of individual clocks can be stopped in selected locations. It has been shown
in [13,14] that location reachability is undecidable even for simple SWA (in the
sense of all clock constraints being diagonal-free), and even when both the clocks
and the stopwatches are confined to bounded range. The result, which is based
on encoding two-counter machines, applies to SWA as small as a single stopwatch
and four clocks. In the sequel, we will provide an encoding of stopwatch automata
with n bounded clocks and n′′ bounded stopwatches by MPTA with n+1 clocks
and 2n′′ cost variables. This shows that location reachability is undecidable for
bounded dually priced 5-clock MPTA.

As it suffices for our undecidability result, and as the generalization is straight-
forward, we demonstrate our reduction on 1-stopwatch SWA only. Let m ∈ N be
a common upper bound on all clocks C = {x1, . . . , xn} and the single stopwatch
sw occurring in the SWA A, i.e. m dominates the individual range bounds on
clocks and sw . We construct an MPTA with two cost variables s and S, both
with bounded range [0, 2m], and n + 1 (bounded) clocks C ∪ {h}, where h is a
fresh helper clock. W.l.o.g, we assume that the SWA A to be encoded does not
contain guard conditions on its stopwatch, as these can always be replaced by
invariants imposed in urgent transient states.

The central idea of the encoding is that s watches the lower bounds while S
watches the upper bounds imposed on sw . Therefore,

1. the prices s and S do generally evolve with the same rate as the stopwatch
sw they simulate,

2. s ≤ S holds throughout,
3. when sw is subject to an invariant imposing a lower bound of l ≥ 0 then

s = sw − l,1

1 Note that whenever there is no explicit invariant enforcing a stronger lower bound,
sw still is subject to the invariant sw ≥ 0. Moreover, sw is always subject to an
upper bound as it is generally confined to the range [0, m]. The invariants s ≥ 0
(uniform over all locations) and sw ≥ l mutually reinforce each other.
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(s, S, x1, . . . , xn) = 0

true/∅
ps = −l,

pS = 2m − u

S = 2m − u
(x1, . . . , xn) = 0

s = −l,

(sw , x1, . . . , xn) = 0

invc∧
sw ∈ [l, u]

dsw
dt

= a

invc

ps = a

pS = a

h = 0

l0 l0

Fig. 1. Initializing the cost variables s and S simulating the stopwatch such that they
enforce the invariant on the stopwatch sw . Here and in the remainder, invc (as well as
inv ′

c) refers to the parts of the invariant not dealing with the stopwatch. a is the slope
of the stopwatch in l0, which can be 0 or 1. Here and in all subsequent figures, formulae
in shaded boxes are not part of the automaton, but collect invariant properties of the
MPTS guaranteed along simulating runs.

g/R,
with sw �∈ R

invc∧
sw ∈ [l, u]

dsw
dt

= a

li

lj

inv ′
c∧

sw ∈ [l′, u′]
dsw
dt

= a′

g/R,

invc

ps = l − l′, pS = u − u′

li

ps = a

pS = a

inv ′
c

lj

ps = a′

pS = a′

(sw , x1, . . . , xn) = (t0, . . . , tn)

↼
sw= sw = t0 + aδ ≤ u
(x1, . . . , xn) = Rδ(t1, . . . , tn)

(x1, . . . , xn) = (t1, . . . , tn)
S = t0 + 2m − u
s = t0 − l

↼
s = t0 − l + aδ

S = t0 + 2m − u′ + aδ

↼

S= t0 + 2m − u + aδ
s = t0 − l′ + aδ

(x1, . . . , xn) = Rδ(t1, . . . , tn)

Fig. 2. Implementing change of invariant on the stopwatch in case the stopwatch is not
reset by the switch transition. W.l.o.g., we assume that the guard g does not mention

the stopwatch, as the pertinent conditions can be moved to invariants.
↼
x denotes the

value of x before the transition while x denotes its value thereafter. δ represents the
time spent in li and Rδ(t1, . . . , tn) abbreviates the result of applying the reset R to
(x1, . . . , , xn) = (t1 + δ, . . . , tn + δ).
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4. when sw is subject to an invariant imposing an upper bound of u ≤ m then
S = sw + 2m− u.

Note that maintaining properties 3 and 4 leads to the bound [0, 2m] on s and S
enforcing the original invariant on sw , as s = sw − l ∧ s ≥ 0 implies sw ≥ l and
S = sw + 2m− u∧S ≤ 2m implies sw ≤ u. Thus, the general bounds on s and S
enforce the invariants on sw without any need for explicit invariants on s and S.
All that has to be done is to, first, initialize s and S such that 3 and 4 hold, which
is achieved by replacing the initial state by two states as in Fig. 1 and, second,
update them accordingly upon a change of the invariant mediated by a location
change in the SWA, which is shown in Fig. 2. Note that in both cases in accordance
with property 1, the cost rates ps and pS coincide to the slope a of sw .

Resetting the stopwatch requires a slightly more complex construction, as we
need to force s to value 0 (assuming that the invariant of the location following the
reset does not enforce a lower bound on the just reset stopwatch, which would ren-
der the switch transition infeasible) and S to value 2m−u′, where u′ is the upper
bound on sw in the target location of the resetting switch transition. To achieve
this, we simulate the (instantaneous) switch transition by a run of duration 2m.
Within this run, we let s and S run to value m, which we test by substracting−2m
in a subsequent switch transition. We then adjust the values as desired. Further-
more, we employ the wrapping automaton construction of [13,14] to preserve the
clock values. The complete automaton fragment is depicted in Fig. 3.

Glueing together the above MPTA fragments at the like-named locations,
one obtains an MPTA which is equivalent to the encoded SWA wrt. location
reachability. Due to the undecidability of location reachability for SWA [13,14],
this reduction yields the following result:

Theorem 1. Location reachability is undecidable for MPTA with n ≥ 1 clocks
and max(2, 14 − 2n) bounded cost variables. In particular, it is undecidable for
MPTA with 6 clocks and 2 bounded cost variables, as well as for 1 clock and 12
bounded cost variables.

Proof. The invariance properties mentioned in the shaded boxes in Figures 1 to
3, which are straightforward to establish based on the semantics of stopwatch
automata and MPTA, show that the stopwatch automaton A has a path reaching
location li with clock readings (x1, . . . , xn) = (t1, . . . , tn) and stopwatch reading
t0 iff the encoding MPTA M has a viable path reaching location li with the
same clock readings (x1, . . . , xn) = (t1, . . . , tn) and costs s = t0 − l and S =
t0 + 2m− u. Hence, A can reach a given target location ltarget iff M can reach
the corresponding location.

According to [13,14], location reachability is undecidable for simple SWA with
bounded clocks and stopwatches. The reduction to two-counter machines used
in their proof yields SWA with five clocks and one stopwatch. As clocks are
special cases of stopwatches, location reachability is thus undecidable for SWA
with n ≥ 0 clocks and max(1, 6 − n) stopwatches. Our reduction encodes such
SWA by a bounded MPTA with n ≥ 1 clocks and max(2, 14 − 2n) bounded
prices. �
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x1 = m/{x1}

xn = m/{xn}

.

.

.

x1 = m/{x1}

xn = m/{xn}

.

.

.

x1 = m/{x1}

xn = m/{xn}

.

.

.h = 2m/∅,

pS = a

ps = a
ps = 0,
pS = 0

. . . xn ≤ m
x1 ≤ m∧

ps = 0
pS = 1

. . . xn ≤ m
x1 ≤ m∧

ps = 1
pS = 0

. . . xn ≤ m
x1 ≤ m∧

ps = −l′,
pS = 2m − u′

pS = a′

ps = a′

↼
s = s = t0 + aδ − l ≥ 0
(x1, . . . , xn) = Rδ(t1, . . . , tn)

↼

S= S = t0 + aδ + 2m − u ≤ 2m

h = 0

↼
s −2m = s ≥ 0,

↼
s ≤ 2m (†)

(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h)

↼

S= S = 0

↼
s = s = t0 + aδ − l
(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h)

↼

S −2m = S ≥ 0,
↼

S≤ 2m (∗)

dsw

dt
= a

sw ∈ [l, u]

(sw , x1, . . . , xn) = (t0, . . . , tn)

(x1, . . . , xn) = (t1, . . . , tn)
s = t0 − l, S = t0 + 2m − u

invc g/R ∪ {h},

li

ps = 0, pS = 0

true/∅,

ps = 0, pS = −2m

ps = 0, pS = 0

true/∅,

ps = −2m, pS = 0

pS = 0
ps = 0

inv
′

c

lj

(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h)

↼

S= S = t0 + aδ + 2m − u + h ≤ 2m

↼
s = s = t0 + aδ − l

invc∧

inv
′

c∧

sw ∈ [l′, u′]

(
↼
x 1, . . . ,

↼
x n) = (t0 + δ, . . . , tn + δ)

sw = 0
(x1, . . . , xn) = Rδ(t1, . . . , tn)

↼
sw= t0 + aδ ≤ u

li

dsw

dt
= a′

lj

g/R ∪ {sw}

s = −l′, S = 2m − u′

h = 2m
(x1, . . . , xn) = wrap(Rδ(t1, . . . , tn) + h) = (t1, . . . , tn)

ps = 0, pS = 0

Fig. 3. Resetting the stopwatch, i.e. setting s = −l and S = 2m − u′ while preserving
the clocks. Here, wrap(x) := x−m� x

m
	. Note that (∗) and (†) imply S = 0 and s = 0.

An immediate consequence is

Corollary 1. Optimum cost is not effectively computable for bounded MPTA.

Proof. As the optimum cost is infinite iff the target location is unreachable,
computing the optimum cost entails solving the reachability problem, which is
undecidable for bounded PTA with more than one price according to Theorem 1.

�

Note that these results can easily be strengthened wrt. the operations permitted
on costs:

Corollary 2. Location reachability remains undecidable and optimum cost un-
computable even if no costs can be charged on edges.
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Proof. It is straightforward to simulate an instantaneous price update by a du-
rational update of fixed duration and slope using the wrapping construction to
retain the clock values. �

When interpreting the above negative results concerning effectiveness, it should
be noted, however, that the encoding relies crucially on closedness as well as on
the universally binding character of the budgetary constraints. It is currently
unclear whether similar undecidability results hold under an open (in the sense
of strict bounds on the cost) budget or the permission to temporarily overdraw
the budget by small amounts.

4 Optimum Cost Reachability for MPTA under
Cost-Charging Quasi-Cycles

In this section, we investigate the optimum cost problem for bounded MPTA
subject to the additional assumption that non-trivial cost is charged upon each
quasi-cyclic viable path, where a quasi-cycle is a sequence of states returning
close to its origin. This property is captured by the following definition:

Definition 4. We call an MPTA cost-charging on quasi-cycles if there exists

ε > 0 such that for each canonical viable path π = s0
δ0,c0

−→ s1
e1,c1

−→ s2 . . .
δi,c

i

−→ si

with d(s0, si) ≤ ε and path-length i ≥ 2, i.e. the path contains at least one jump,
it holds that |Costk(π)| ≥ ε for some cost-component. I.e., the MPTA is cost-
charging on quasi-cycles iff there is no infinitesimally cheap return to a close
vicinity of a state once this vicinity has been left.

Hereby, we define the distance d((l, u), (l′, u′)) between two states (l, u) and
(l′, u) to be

d((l, u), (l′, u′)) =

{
∞ if l �= l′,
||u− u′|| if l = l′,

where || · || is the maximum norm.

Note that we neither demand a constant sign for the cost incurred nor fix the
cost variable that incurs non-trivial cost upon quasi-return. Hence, some cost
variable may well incur cost ε on some path from (l, u) to some (l, u′) in its
ε-vicinity and cost −ε on the same or another cost variable when proceeding
from (l, u′) to another (l, u′′) in the ε-vicinity of (l, u′).

Nevertheless, together with compactness of the state space as implied by
boundedness, cost-charging on quasi-cycles is strong enough a condition of finite-
ness on all viable, i.e. bound-respecting, paths. 2

Lemma 1. Let A be a bounded MPTA which is cost-charging on quasi-cycles.
Then the length of canonical viable paths in A is finitely bounded.
2 Note that any constant bound δ(ε) > 0 suffices as a minimum lower bound on

the absolute cost incurred along quasi-cyclic paths in order to obtain the finiteness
condition. We have however chosen a single parameter ε for ease of presentation.



Revisiting Decidability and Optimum Reachability 159

Proof. Let ε > 0 be the constant from Def. 4. Let L be the set of locations
and {x1, . . . , xn} be the set of clocks in A and let Di for i = 1, . . . , n be their
respective bounded domains. Let {p1, . . . , pn′} be the set of cost variables in A
and let Pi for i = 1, . . . , n′ be their respective bounded domains. As the domains
are bounded, the topological closure V of the combined clock-and-cost space
V =

∏n
i=1 Di ×

∏n′

j=1 Pj is compact. Hence, V can only contain finitely many
ε-separated points.

Let k be an upper bound on the maximum number of ε-separated points in

V . Let π = s0
δ0,c0

−→ s1
e1,c1

−→ s2 . . .
δK ,cK

−→ sK be a viable canonical path and let
Ci =

∑i
j=0 ci be the accumulated costs until step i. As A is cost-charging on

quasi-cycles, ||ui−uj || ≥ ε∨ ||Ci−Cj || ≥ ε, which is equivalent to ||(ui, Ci)−
(uj , Cj)|| ≥ ε, for each i, j ≤ K with li = lj. As (ui, Ci) ∈ V for each i ≤ K, it
follows that ∀l ∈ L : |{(li, ui, Ci) | i ≤ K∧ li = l}| ≤ k. Consequently, K ≤ k · |L|
holds for the length K of the canonical viable path π. �

Given the fact expressed in Lemma 1 that all canonical viable paths have a uni-
form finite bound on their lengths, a consequence is that the optimum reachabil-
ity problem for MPTA becomes an instance of bounded model-checking (BMC)
[15] that is solvable for a rich class of hybrid systems. In particular, we en-
code the optimum bounded reachability problem up to depth k for MPTA as
a Mixed Integer Linear Program (MILP). In the remainder of this section, we
provide a corresponding algorithm, which is based upon reducing Problem 1 for
cost-charging MPTA to a Mixed Integer Linear Program, along the lines of [16]
illustrating BMC for acyclic LPTA.

This MILP will then be used twofold: First, as it expresses feasibility of a
path of length k, versions with increasingly larger k will be used to determine
the upper bound K on path length. Once this has been found, a version of
depth K equipped with the cost term as an objective function will be used for
determining the optimum cost.

Given an MPTA A = (L, C, (l0,0), E, I, P ), a set G ⊆ L of goal-locations,
and an arbitrary linear combination Ω of prices, we generate the following MILP
for the BMC problem of depth k:

– For each discrete location l ∈ L we take k + 1 zero-one variables li, where
each li takes on either of the values 0 or 1, with 0 ≤ i ≤ k. The value of
li encodes whether A is in location l in step i as follows: li = 1 iff A is in
location l in step i. Thus, for any i ≤ k, there should be exactly one l ∈ L
such that li = 1, which can be enforced by requiring

∑
l∈L li = 1 in the

MILP for each i ∈ {0, . . . , k}.
– For each edge e ∈ E we take k zero-one variables ei, with 1 ≤ i ≤ k. The

value of ei encodes whether A’s ith move in the run was transition e. Again,
one enforces that exactly one transition is taken in each step by adding the
constraint

∑
e∈E li = 1 in the MILP for each i ∈ {1, . . . , k}.

– For each clock c ∈ C we take k real-valued variables ci, with 0 ≤ i ≤ k − 1.
The value of ci encodes c’s value immediately after the ith transition in the
run.
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– For each i ≤ k we take one real-valued variable δi representing the time
spent in the ith location along the run.

– We add constraints describing the initial state, i.e. enforcing l00 = 1 and
c0 = 0 for each c ∈ C.

– We add constraints describing the relationship between discrete locations
and transitions, i.e. guaranteeing that ei = 1 implies li−1 = 1 and l̃i = 1 for
(l, l̃) ∈ e. This can be encoded as a linear constraint via

li−1 ≥ ei ∧ li ≥ ei .

– We add constraints enforcing the location invariants, i.e. checking for each
i ≤ k that li = 1 =⇒ I(li)[ci

1, . . . , c
i
n/c1, . . . , cn] and that li = 1 =⇒

I(li)[ci
1 + δi, . . . , ci

n + δi/c1, . . . , cn], where c1, . . . , cn are the clocks (i.e.,
{c1, . . . , cn} = C) and φ[y/x] denotes substitution of y for x in φ.

As all clocks are bounded by m, the implications can be realized using
the switch variable encoding. E.g., for an upper bound x ≤ u in the invariant,
m · li + xi + δi ≤ m + u implements the implication li = 1 =⇒ xi + δi ≤ u.

– Using the same encoding, we add constraints enforcing guards, i.e. guaran-
teeing for each 0 ≤ i ≤ k − 1 that

ei+1 = active =⇒ g(e)[ci
1 + δi, . . . , ci

n + δi/c1, . . . , cn] ,

where g(e) denotes the guard of edge e.
– We add constraints dealing with resets, i.e. enforcing for each 0 ≤ i ≤ k − 1

that

ei+1 = active =⇒
{

ci+1 = ci + δi iff c /∈ Y (e) ,
ci+1 = 0 iff c ∈ Y (e) ,

where Y (e) is the reset map associated to edge e.
– For each price variable p ∈ P , we define k+1 auxiliary variables pi

t recording
the step price incurred by p in step i ≤ k and k + 1 auxiliary variables pi

d

recording the price incurred by staying in the location during step i ≤ k.
Using the switch variable encoding, we enforce

∧
l∈L

k∧
i=0

li = 1 =⇒ pi
d = p(l) · δi

and

p0
t = 0 ∧

∧
e∈E

k∧
i=1

ei = 1 =⇒ pi
t = p(e) ,

where p : E ∪ L→ Z is the cost assignment of A.
– Adding k further variables pi for each price p ∈ P , we can record the price

Costp accumulated so far by defining

p0 = 0 ,

pj+1 = pj + pj
d + pj

t
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for each j < k. Viability of the paths is enforced by additionally demanding

Lp ≤ pj ≤ Up ,

Lp ≤ pj + pj
d ≤ Up

for each j ≤ k.

This encoding, which is a standard MILP encoding suitable for bounded
model-checking, can now be used in two ways:

1. For checking whether viable paths of length k exist, the above system is
simply build for the desired depth k and checked for feasibility using an
MILP solver. The resulting MILP is feasible iff paths of length ≥ k exist.

2. For determining the minimum cost for reaching the goal states within k
steps, we, first, modify the goal states to become sinks by decorating them
with cost-free and always enabled loops, second, build the above constraint
system to depth k, third, add constraints enforcing the goal-locations to be
visited by constraint

k∑
i=0

∑
l∈G

li ≥ 1

and, finally, use the linear expression

Ω[P k/P ]

as an objective function to be minimized by the MILP solver. The MILP
solver will either report the system to be infeasible, in which case the mini-
mum cost of reaching G along canonical initialized paths of length at most k
is infinite, or it will report the minimum cost of reaching G along canonical
initialized paths of length at most k as the optimum value of its objective
function. An optimum path can then be retrieved from the variables in the
MILP that represent the MPTA state at the various steps.

Combining these two steps, we can solve Problem 1, i.e. the optimum-cost reach-
ability problem, effectively by iteratively performing step 1 for increasing k until
no viable path of length k∗ exists and then performing step 2 for k∗− 1. Based on
this procedure, we obtain the following positive result concerning effectiveness of
cost optimal reachability in MPTA:

Theorem 2. For bounded MPTA A which are cost-charging on quasi-cycles, the
following two properties hold:

1. It is decidable whether A has a viable (i.e. obedient to the budgetary con-
straints) initialized path to some goal state.

2. The optimum cost for A reaching a goal state via a viable initialized path is
computable for any linear cost function. �
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5 Conclusion and Future Research

We have investigated conditions for (un-)decidability and computability of the
optimum reachability problem for MPTA admitting both positive and negative
costs on locations and edges. Our encoding of SWA using cost-bounded MPTA
however critically depends on the fact that the bounds on the cost variables
are closed (i.e., non-strict), and that these bounds are to be respected for each
cost variable along all viable paths of the underlying transition system. The
question of whether this undecidability result holds even when cost bounds are
strict, or when some path is allowed to temporarily overshoot the budget wrt.
a cost variable, or when subject to other forms of budgetary constraints (as
motivated, for instance, in [17]) remains currently open. Moreover, given that
the undecidability result for cost-bounded MPTA holds for n ≥ 1 clocks and
max(2, 14−2n) bounded cost variables (cf. Theorem 1), another natural question
would be the validity of this result when one correspondingly restricts the number
of clocks and bounded cost variables.

The cost-charging (quasi-)cycle assumption used to validate the BMC proce-
dure of Section 4 is related to the divergence assumptions made in [11,12]. Due
to the limited ability of TA to discriminate between states, as apparent from
the region graph construction, it however seems that a few other cycle condi-
tions may be equivalent to the above-mentioned condition on quasi-cycles, thus
providing a potentially fruitful line of attack.

The presently proposed procedure of iteratively increasing the depth (for
which BMC is performed) is not efficient, particularly for a small bound ε on the
minimum cost incurred along quasi-cyclic viable paths. We therefore also plan
to investigate efficient (symbolic) algorithms that exploit other realistic path
conditions, and apply them to decision problems for the Duration Calculus [18],
thereby fully implementing the decision procedure for a rich fragment of DC
from [19] and extending it to an even richer subset, accommodating arbitrary
linear combinations of durations. The latter requires algorithms for deciding
budget-constrained reachability in MPTA with positive and negative cost rates,
as negatively weighted durations map to prices with negative rates when extend-
ing the construction of [19].

Acknowledgements. We wish to thank Ernst-Rüdiger Olderog and the reviewers
for useful comments that helped in improving the presentation of this paper.
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