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Abstract

This study develops the h-version of the Extended Finite Element Method (XFEM)
applied to the simulation of two-fluid incompressible flow in two and three dimensions.
A multilevel adaptive mesh refinement realized via hanging nodes on 1-irregular meshes
is employed in the vicinity of the two-fluid interface. The sign-enrichment is used for the
XFEM approximation which accurately accounts for the jump in the pressure field. The
level-set method is used for the implicit representation of the interface. The Laplace-
Beltrami technique is employed for the modelling of the surface tension, which avoids the
explicit computation of the curvature. An emphasis of this work is on how the interplay
between the interface movement (in terms of a time-dependent level-set function), the
adaptive refinement and the enriched XFEM approximations, is realized. This study also
demonstrates that the approximation of the normal vector to the interface, required for
the computation of the surface tension, can have a significant impact on the accuracy of
the solver. Several two- and three-dimensional test cases are investigated.

Keywords: XFEM, hanging nodes, two-phase flow, level-set, surface tension

1. INTRODUCTION

Fluid flows with moving interfaces encompass a myriad of physical phenomena and
industrial processes such as ocean waves and liquid films in coating and drying processes.
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These phenomena are collectively known as two-fluid flow. In modelling two-fluid flow,
several challenges are encountered. First, jumps in the fluid density and viscosity across
the interface need to be accounted for in the numerical scheme. Second, as surface tension
effects play an integral part in two-fluid flow phenomena, this necessitates an accurate
modelling and discretization of the surface tension. Third, as topological changes of the
interface can occur as it evolves with time, the numerical method employed must have
the capability of capturing such changes as the breaking apart or merging of bubbles.
Finally, a well-known problem in two-fluid flow simulations is the occurrence of unphysical
spurious velocities in the vicinity of the interface. Various sources have been cited as being
responsible for the existence of such parasitic currents (see e.g. [1, 2]). For example, the
approximation of the jump in the pressure field, the approximation of the curvature,
the approximation of the normal vectors to the interface required for the computation
of the surface tension and the approximation of the geometry of the interface. It is
conceivable that unphysical movements of the interface can be generated by such spurious
velocities. Therefore, the development of a numerical scheme which suppresses (or at least
minimizes) such parasitic currents is highly desirable.

Among the different numerical methods available for two-fluid flow simulation, the
finite element (FE) method based on the weak formulation offers several intrinsic ad-
vantages over the traditional finite difference (FD) approach based on the strong for-
mulation. First, the singular surface tension term is naturally included as a boundary
condition in the weak form via a well-defined boundary integral. This is in contrast to
the FD approach where the surface tension term is introduced into the right-hand side of
the momentum equation as an interface-concentrated source term via a Dirac delta func-
tion. As such, numerical smoothing of the delta function is needed and this inevitably
results in interface smearing and loss of accuracy [3]. Second, the strong formulation
requires the computation of the derivative of the viscosity which is discontinuous across
the interface. This again leads to the necessity of evaluating some kind of regularized
delta function. In the finite element context, this derivative is shifted to the test function,
thus precluding the need to evaluate a singular viscosity term. Other advantages of the
FEM are (i) minimal regularity requirements on the dependent variables to ensure the
existence of the unique solution (spatial derivatives of the dependent variables can often
be shifted to the test function via integration by parts) and (ii) local mesh adaptivity
which allows one to use a refined mesh only in regions where it is needed (i.e. in the
vicinity of the moving interface), thus achieving computational efficiency. Studies where
the FEM has been applied with success to simulate two-phase incompressible flow include
Smolianski [3], Tornberg [4, 5], Hysing [6] and Ganesan [1].

In incompressible two-fluid flow, the velocity and pressure fields and/or their gradients
are discontinuous across the interface between the fluids. As the interface evolves with
time and cuts through the elements, the standard finite element approximation performs
poorly unless constant remeshing is carried out such that the element edges are aligned
with the moving interface throughout the simulation. The Extended Finite Element
Method (XFEM) [7, 8], on the other hand, ensures high accuracy even if the discontinu-
ities lie within the elements, due to the enriched approximation space which is able to
reproduce the discontinuous solution properties within the elements. This allows for the
convenient use of a fixed mesh throughout the simulation. Studies where the XFEM has
been employed in two-fluid flow simulations include Chessa and Belytschko [9, 10, 11],
Groß and Reusken [12], Fries [13] and Zlotnik and Dı́ez [14]. In this study, in addition
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to the enrichment of the pressure space using the sign-enrichment, a multi-level adap-
tive mesh refinement using a hierarchy of hexahedral elements with hanging nodes on
1-irregular meshes, is realized in the vicinity of the moving interface. The use of XFEM
with hanging nodes has previously been applied to 2D problems in solid and fluid me-
chanics by the authors in [15]. There, the focus is on the treatment of hanging nodes
in the context of the XFEM. The fluid simulations have the character of a feasibility
study without going into detail on the governing equations and their discretization. In
this study, however, the method is explained in detail and the focus is on the interplay
of the refinement algorithm with the interface movement that affects the level-set func-
tion and the enriched XFEM approximations. Furthermore, the h-XFEM is extended to
three-dimensional two-fluid simulations in this work.

An important feature of two-fluid flow simulation is the description of the moving
interface. The level-set (LS) method [16] is employed in this study, which defines the
interface as the zero-level of a signed-distance function. The function is then advected
with the velocity of the fluid via a pure advection equation. It is remarkable to point
out that the LS method has been the method of choice for describing moving interfaces
when used in conjunction with the XFEM (see e.g. Chessa and Belytschko [9, 17] and
Fries [13]). This is because both methods require only a fixed mesh to be used throughout
the simulation and the LS function can also be used to construct enrichment functions
within the XFEM framework.

This study employs the Laplace-Beltrami technique [18, 19] for the modelling of
the surface tension term so as to avoid the explicit computation of the curvature. An
important finding of this study is that the computation of the normal vector to the
interface has a significant bearing on the accuracy of the solver. This is verified by
tracking the mass conservation of the two immiscible fluids as the simulation evolves. It
is discovered that normal vectors computed using the level-set function yield better mass
conservation properties compared to those computed based on the discretized interface.

Summarizing, the following numerical strategies are employed: (i) the Eulerian for-
mulation for the kinematical description of the flow field, (ii) the primitive variable
formulation which seeks the velocity and pressure unknowns simultaneously, (iii) the
Streamline Upwind Petrov-Galerkin (SUPG) stabilization [20] to suppress any oscilla-
tions due to the existence of the nonlinear convective term, (iv) the Pressure-Stabilizing
Petrov-Galerkin (PSPG) stabilization [21, 22] to circumvent the LBB condition, thus al-
lowing for equal-order interpolations (bilinear in 2D and trilinear in 3D) for both pressure
and velocity, (v) the Crank-Nicolson method for time-stepping, (vi) the discretization of
time before space due to the time-dependence of the enrichment function in the XFEM
[23], (vii) the level-set (LS) method for the description of the moving two-fluid inter-
face, (viii) a strong coupling between the Navier-Stokes and level-set equations akin to
the recursive predictor-corrector method, (ix) the method of solving a partial differential
equation to steady state to regain the signed-distance property of the level-set function
(Sussman et al. [24]), (x) a multi-level adaptive mesh refinement (realized via hanging
nodes on 1-irregular meshes) applied in the vicinity of the moving interface to improve
the resolution of the interface and also to capture any high gradients in the solution,
(xi) the enrichment of the pressure space using the sign-enrichment to capture the dis-
continuous jump in the pressure field across the interface due to the existence of surface
tension and (xii) the Laplace-Beltrami technique [18, 19] for the modelling of the surface
tension term so as to avoid the explicit computation of the curvature.

3
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The paper is organized as follows. Section 2 presents the governing Navier-Stokes and
level-set transport and reinitialization equations used in this study with accompanying
boundary/interfacial conditions. Section 3 considers the topic of spatial discretization
where the XFEM is employed for the enrichment of the pressure space. The topic of
subcell quadrature is then considered in detail for both 2D and 3D. Section 4 is devoted
to a discussion of the multilevel mesh refinement procedure used in this study. Section
5 describes the flow solver which includes the temporal discretization, the remeshing
procedure and the strong coupling between the level-set and Navier-Stokes equations.
For clarity, flowcharts are provided to illustrate the procedures. The modelling of the
surface tension using the Laplace-Beltrami technique is discussed in Section 6. Finally,
the numerical results for several 2D and 3D test cases are presented in Section 7. This
paper ends with a summary and conclusions in Section 8.

2. GOVERNING EQUATIONS

The governing incompressible Navier-Stokes and the level-set transport equations
are presented in this section. The equations are accompanied by appropriate boundary
conditions including the interfacial conditions for the two-fluid interface.

2.1. The incompressible Navier-Stokes equations

We consider a n-dimensional domain Ω ⊂ Rn with the boundary Γ = ∂Ω. The
geometrical situation is depicted in Figure 1. The boundary Γ is decomposed into the
Dirichlet and Neumann boundary, Γu and Γh, respectively, such that Γu ∪ Γh = Γ and
Γu ∩ Γh = ∅. The normal vector on Γ is denoted by n. The domain Ω contains two
different, immiscible and incompressible Newtonian fluids in Ω1 and Ω2, respectively, so
that Ω = Ω1 ∪ Ω2. We consider Ω to be a time-independent, closed container whereas
Ω1 (t) and Ω2 (t) change in time. The (moving) interface between the two fluids is denoted
by Γd. n̂ is the normal vector on Γd and points from Ω1 to Ω2.

n̂

t̂

Ω2

Ω1

Ω1

Γd

n̂

^t

n

Γ

Figure 1: The two fluids in Ω1 and Ω2, separated by the interface Γd.
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The governing equations are now given in strong form. Let ui (x, t) be the velocities
and p (x, t) the pressure; "k and µk with k = (1, 2) are the density and dynamic viscosity
of the two fluids, respectively. The fluids inside Ωk × (0, tend), k = (1, 2), are modeled by
the instationary, incompressible Navier-Stokes equations in velocity-pressure formulation

"k

(∂ui

∂t
+ uj

∂ui

∂xj

)

− ∂σij

∂xj
= fk,i, (1)

∂uj

∂xj
= 0, (2)

where (1) denotes the momentum equations and (2) denotes the continuity equation
(incompressibility constraint). The stress tensor σij of the Newtonian fluids is given as

σij (ui, p) = −pδij + 2µkεij , with εij =
1

2

( ∂ui

∂xj
+

∂uj

∂xi

)

, (3)

where δij is the identity tensor and εij is the strain rate tensor (symmetric part of the
velocity gradient tensor). The term fk,i = "kai where ai is the acceleration, represents the
externally applied force per unit volume. Dirichlet and Neumann boundary conditions
on the outer boundary of Ω are

ui = ûi on Γu × (0, tend) , (4)

σijnj = ĥi on Γh × (0, tend) , (5)

where ûi and ĥi are prescribed velocities and stresses. As an initial condition, a divergence-
free velocity field û0i is specified over Ω,

ui (x, 0) = û0i (x) in Ω at t = 0. (6)

Furthermore, if only Dirichlet boundary conditions are prescribed (i.e. Γh = ∅), the
pressure p is present only as a gradient in the Navier Stokes momentum equations (1)
and is therefore determined up to only a constant. In such cases, there is a need to
impose the value of p at an arbitrary point in the computational domain to uniquely
determine the pressure field [25].

The situation at the interface Γd is now considered in more detail. The density and
viscosity fields

" (xi, t) =

{

"1 ∀xi ∈ Ω1 (t) ,
"2 ∀xi ∈ Ω2 (t) .

µ (xi, t) =

{

µ1 ∀xi ∈ Ω1 (t) ,
µ2 ∀xi ∈ Ω2 (t) .

(7)

change discontinuously at Γd. As a consequence, also the state variables such as the
velocities and pressure fields involve discontinuities at the interface. Discontinuities may
be classified into strong or weak. In the case of strong discontinuities, a jump and a
change in the gradient is present in the field. For weak discontinuities there is only a
kink in the field, i.e. the field is continuous with a discontinuous gradient.

The interfacial conditions express the continuity of mass and balance of momentum
across the interface. From momentum balance, the stress boundary condition at the
interface between the two fluids in Ω1 and Ω2 can be expressed as [26]

(

σ1
ij − σ2

ij

)

n̂j = γκn̂i +
∂γ

∂xi
, (8)
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where γ is the surface tension coefficient (material parameter) and κ is the curvature of
Γd. If we do not consider the variation of the surface tension coefficient γ, we obtain

(

p1 − p2
)

n̂i +
(

σ̄1
ij − σ̄2

ij

)

n̂j = γκn̂i, (9)

where σ̄ij = 2µkεij is the viscous stress tensor. On the other hand, application of mass
conservation leads to the following interfacial condition for the velocity [3]

(u1
i − u2

i )n̂i = 0 (10)

which depicts the continuity of the normal velocity across the interface. Further, from
physical considerations alone, owing to the effects of viscosity, continuity of the tangential
velocity is also assumed [3]. Summarizing, the following conditions apply at the interface

[ui]Γd
= 0 on Γd × (0, tend) , (11)

[σij ]Γd
n̂j = γκn̂i on Γd × (0, tend) , (12)

where the jump notation [·]Γd
for a quantity f(xi) is defined as

[f(xi)]Γd
= lim

xi∈Ω1→xi∈Γd

f(xi)− lim
xi∈Ω2→xi∈Γd

f(xi). (13)

The interfacial condition (11) states that the velocities are continuous across Γd, or, in
other words, that the jump in the velocity field is zero. The second interface condition
(12) states that the surface tension balances the jump of the normal stress at the inter-
face. As a consequence of (1)-(2) and (11)-(12), the velocity fields ui (x, t) are weakly
discontinuous across Γd, whereas the pressure field p (x, t) has a strong discontinuity at
the interface. In the case where no surface tension is considered, γ = 0 and the jump in
the pressure field vanishes which implies that p (x, t) has a kink across Γd.

2.2. The level-set transport equation

In this study, we employ the level-set method (LSM) for the implicit representation
of the two-fluid interface [27]. An implicit interface representation defines the interface
as the isocontour of some implicit function (called the level-set function). An important
advantage of the LSM is that it can readily handle dynamic interfaces which exhibit
topological changes (pinching apart of the interface or merging of several pieces of the
interface) in a straightforward manner without the need for any special ad-hoc procedure
(as is often employed in an explicit interface-tracking approach).

The level-set function used in this study is the signed-distance function defined as

φsd (x, t) =







−φd ∀x ∈ Ω1(t)
0 ∀x ∈ Γd(t)
+φd ∀x ∈ Ω2(t)

(14)

where
φd (x, t) = min

x
∗
∈Γd

‖x− x∗‖, x ∈ Ω (15)

is, for every point x, the shortest distance to the interface. For ease of notation, we will
refer to φsd (x, t) simply as φ (x, t) from here onward. Suppose that the interface, Γd(t)
is moving with velocity u(x, t). Since the interface is defined by

φ (x(t), t) = 0, (16)
6
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we can take the time derivative and obtain

∂φ

∂t
+ uj

∂φ

∂xj
= 0. (17)

The last relation (17), which represents an advection equation for the moving interface, is
also known as the level-set transport equation. Since (17) is a pure advection (hyperbolic)
equation, if inflow/outflow boundaries exist in the computational domain, only Dirichlet
boundary conditions may be specified at the inflow boundary [28]. However, in all test
cases considered in this work, no inflow/outflow boundaries exist and hence, no boundary
conditions for (17) are prescribed.

An important property of the interface is the mean curvature κ of the interface,
defined as the divergence of the normal n̂ to the interface as

κ (x(t), t) = ∇ · n̂ , x ∈ Γd. (18)

We can also express κ in terms of the level-set function φ as

κ (x(t), t) = ∇ ·
(

∇φ

|∇φ|

)

, (19)

which, due to the property |∇φ| = 1 possessed by the signed-distance function, can be
further simplified as

κ (x(t), t) = ∆φ, (20)

where ∆ = ∇ ·∇ is the Laplacian operator.

2.3. The level-set reinitialization equation

At the beginning of the simulation, the level-set function φ is initialized to be the
signed-distance function φsd to the interface Γd. However, as the interface evolves with
time, the level-set function will inevitably get distorted due to the advection, especially
in the vicinity of the interface, thus losing the desirable property |∇φ| = 1.0. This
makes the determination of the interface position via interpolation less accurate (see e.g.
[3, 29]). We note that the closer the level-set function is to the signed-distance function,
the more accurate is the approximation. This provides the motivation for reinitializing
the level-set function periodically, in addition to obtaining simpler expressions for the
mean curvature (20). It is to be noted that if the level-set function gets too steep in the
vicinity of the interface, the interface propagation problem amounts to the transport of
a nearly discontinuous function, which requires a very fine mesh to suppress numerical
oscillations near the interface [30]. Such oscillations affect not only the interface shape
but also the quality of the computed normal and curvature.

Reinitialization of the level-set function has been an active area of research in the level-
set method, see e.g. [31, 32, 33, 34]. Reinitialization is simply the process of replacing
φ by the signed-distance φsd which has the same zero contour as φ but is well-behaved
(i.e. possessing the desirable property |∇φ| = 1.0), and then using this new function
for the advection until the next reinitialization. A straightforward way to reinitialize the
level-set function is to locate the position of the interface by some interpolation technique
and then construct the signed-distance function to this interpolated front, see e.g. [3, 13].
The accuracy of the approximated interface location depends on the accuracy of the

7
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interpolation method used. If a piecewise linear (or piecewise planar in 3D) interface
representation is used, kinks will exist in the reinitialized level-set function. Therefore,
this procedure has the disadvantage that it may introduce unwanted oscillations in the
curvature (20) which is represented as the Laplacian of the level-set function [13]. This
is highly undesirable in situations where such geometric quantities play a crucial role (as
for two-fluid flow where the curvature is needed to compute the surface tension).

In Sussman et al. [31], the reinitialization is formulated as solving a partial differential
equation together with initial condition given by

∂φ

∂τ
+ sign(φ)(|∇φ| − 1) = 0 , ∀(x, τ) ∈ Ω × (0, Tsteady) , (21)

φ(x, 0) = φ0 , (22)

where

sign(φ) =







−1 if φ < 0
0 if φ = 0
1 if φ > 0,

(23)

φ0 is the initial level-set function at the beginning of the reinitialization and τ is the
pseudo time. The boundary conditions are the same as for the level-set transport equa-
tion. The above equation is to be solved to steady state when |∇φ| = 1.0 with Tsteady

being the time taken to reach steady state. In principle, φ remains unchanged at the
interface (where sign(φ) = 0), therefore, the zero isocontour of φ and φ0 are the same.
Away from the interface, |∇φ| will converge to 1.0. This algorithm avoids explicitly
locating the position of the interface by interpolation.

The reinitialization equation (21) can be recast into a more illuminating form [35]

∂φ

∂τ
+w ·∇φ = sign(φ), (24)

where

w = sign(φ)
∇φ

|∇φ|
(25)

is the characteristic velocity of the hyperbolic equation (24). We observe that w is
pointing outward from the interface in the direction of the normal. This implies that
φ(x, τ) will be reinitialized to |∇φ| = 1 near the interface first. The implication is that
we typically need much fewer pseudo time-steps in order that the property |∇φ| = 1 is
satisfied for grid points close to the interface which is what is needed in practice. That
is, grid points far away from the interface are inconsequential for the description of the
interface. In this study, both the interpolation-reinitialization and PDE-reinitialization
(24) schemes will be investigated and compared.

3. SPATIAL DISCRETIZATION AND QUADRATURE

This section presents the FEM/XFEM approximations for the dependent variables
(i.e. velocity, pressure and level-set function) in the governing equations. This is then
followed by a description of the quadrature procedure used in this study.

8
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3.1. Spatial discretization

As mentioned in the Section 2.1, the velocity field and pressure field possess a kink
and a jump across the moving interface, respectively when surface tension is considered.
The classical FEM relies on the approximation properties of mapped polynomials. Op-
timal accuracy is achieved for smooth solutions and inner-element jumps and kinks lead
to a drastic decrease in accuracy. It is therefore crucial in the classical FEM to align the
element edges of the mesh with the interfaces where discontinuities exist. Furthermore,
for strong discontinuities, a complete decoupling of the elements adjacent to the interface
is important. In applications where the interfaces are moving, the mesh has to be up-
dated so that the elements always align with the moving interface (i.e. interface tracking).
The Extended Finite Element Method (XFEM) [8] is a numerical method for modelling
arbitrary discontinuities in finite elements by extending the piecewise polynomial ap-
proximation space of the standard FEM to include discontinuous function spaces in local
regions of the computational domain which exhibit discontinuities. This is achieved via
a partition-of-unity concept [36].

In this study, the pressure space is enriched with the (shifted) sign-enrichment leading
to the following approximation for pressure

ph (x, t) =
∑

i∈I

Ni (x) pi +
∑

i∈I∗

N∗

i (x) [ψsign (x, t)− ψsign (xi, t)]ai, (26)

where ψsign (x, t) is defined as

ψsign (x, t) = sign (φ(x, t)) =







−1 if φ(x, t) < 0
0 if φ(x, t) = 0
1 if φ(x, t) > 0.

(27)

The approximation for the velocity is given as

uh (x, t) =
∑

i∈I

Ni (x)ui, (28)

and the approximation for the level-set function is given as

φh (x, t) =
∑

i∈I

Ni (x)φi. (29)

The notations used in the above equations follow standard convention, see Figure 2.
We employ standard bilinear shape functions (2D) and trilinear shape functions (3D)
for both Ni (x) and N∗

i (x) in the pressure approximation (26) and also for Ni (x) in
the velocity approximation (28) and level-set approximation (29). The use of equal-
order interpolations for both pressure and velocity is possible due to the adopted PSPG
stabilization which circumvents the LBB condition.

3.2. Quadrature

An important consequence of extending the pressure FE approximation by the en-
richment function ψsign(x, t) is that the jump in the enrichment function is now inherited
by the resulting shape functions of the enrichment part N∗

i (x) ·ψsign(x, t). This has im-
portant implications in the quadrature of the weak form. Standard Gaussian quadrature

9
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nodal set I!

nodal set I

discontinuity

reproducing elements

blending elements

Figure 2: Illustration of reproducing elements, blending elements and nodal set I! for a
computational domain crossed by a discontinuity.

for the weak form requires smoothness of the integrands. In the presence of jumps or
kinks, the accuracy of the Gaussian quadrature is drastically reduced. Therefore, for
discontinuous enrichments, a subcell integration is typically employed for the quadrature
of the weak form (see e.g. [8, 7, 37, 38]).

In this study, the interface is described implicitly by the discretized level-set function
which is interpolated by standard Lagrange FE shape functions so that the zero-level is
given by

φh (x, t) =
∑

i∈I

Ni (x)φi(t) = 0. (30)

A linear interpolation is employed (i.e. shape functions Ni (x) are associated with 3-node
triangular or 4-node tetrahedral elements) which results in piecewise linear and planar
interfaces in 2D and 3D, respectively. Such piecewise linear/planar interfaces facilitate
the subcell integration process by enabling a decomposition of the cut elements into
polygons in 2D and polyhedra in 3D. It is to be noted, however, that such piecewise
linear/planar interfaces are in general curved when projected to the real domain. The
subcell integration procedure in 2D is illustrated in Figure 3. The first figure on the left
(a) shows the original interface crossing the element. This cut element is then subdivided
into two triangular subcells in (b) so that linear interpolation can be employed in each,
resulting in a piecewise linear representation of the interface (shown by the blue seg-
ments). Finally, the quadrilateral subcells are further subdivided so that only triangular
subcells result for the integration.

For 3D, in order to have only piecewise planar interfaces, the hexahedral element is
decomposed into six tetrahedral subcells (Figure 4) so that the interpolated interface is
planar within each subcell where linear interpolation is employed (Figure 5).

4. MULTI-LEVEL MESH REFINEMENT WITH HANGING NODES

In two-fluid flow simulations, the most important phenomena occur at the interface
(e.g. surface tension, topological changes, jump in the pressure field and steep gradients
in the velocity field). It is thus important that such phenomena get resolved adequately

10
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(a) Original interface
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(b) Piecewise linear interface

0.44 0.46 0.48 0.5 0.52
0.32

0.33
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0.38

0.39

0.4

0.41

0.42

(c) Gauss points

Figure 3: (a) shows the original interface. In order to consider only polygons to facilitate
integration, the bilinear element is subdivided into two triangles where linear interpola-
tion is applied in each, resulting in a piecewise linear representation of the interface in
(b). For the quadrature, further subdivisions are made so that only triangular subcells
result.

(a) (b)

Figure 4: (a) Decomposition of a hexahedral element into 6 tetrahedra, (b) piecewise
planar embedded interface.

(a) (b)

Figure 5: An embedded planar interface in a tetrahedral subcell divides the subcell into
(a) two pentahedra and (b) a tetrahedron and a pentahedron.
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Figure 6: Mesh refinement with hanging nodes in the vicinity of the interface (shown
as a thick blue line). The finest resolution is realized in a band around the interface
(bounded by the two red lines) Note that elements with hanging nodes are not cut (and
therefore not enriched).

by the underlying mesh. This provides the motivation for employing an adaptive mesh
refinement in the vicinity of the moving interface. This section is an extension of a recent
2D study by the same authors [15] to cover the 3D situation applied to two-fluid flow
simulations.

4.1. Definition of 1-irregular mesh

Local mesh refinements with hanging nodes are particularly easy to realize compared
to conforming refinements. Hanging nodes are those which exist not only in element
corners but also on element edges/faces of their neighboring elements. In this study,
we accept hanging nodes only in the center of element edges (in 2D) and center of
element faces and edges (in 3D) (2-to-1 property, 1-irregular mesh [39]). The refinement
criteria employed herein are based on physical considerations: we refine a priori near
interfaces where steep gradients are expected or where the resolution is to be increased.
In particular, we only discuss the situation where the enrichment is realized in standard
finite elements without hanging nodes, which is in contrast to Fries et al. [15] where
hanging nodes may also be enriched due to the consideration of specific applications
(e.g. crack problems where the crack path can cross elements with hanging nodes). This
is justified since for two-phase flow simulations, elements with hanging nodes are never
enriched. The only enriched elements are those cut by the moving interface where the
underlying mesh has the highest resolution (and therefore no hanging nodes), see Figure
6.

In this study, we consider the case where DOFs are present at hanging nodes and
valid shape functions for all regular and hanging nodes have to be found so that (i)
conformity of the shape functions and (ii) the partition of unity property are achieved.
We employ the shape functions of Gupta [40] in 2D and Morton et al. [41] in 3D. It
is then found that the XFEM may be applied in a straightforward manner: the same
enrichment functions and the same set of enriched nodes are used as in the standard case
of the XFEM on conforming meshes. Special care is needed for the quadrature in this
approach as—already without the enrichment—these special element shape functions
have kinks in the reference element.

12
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We now describe the refinement procedure in three dimensions (refer to [15] for the 2D
situation). Let Ω be a bounded volume of R3. We start with a conforming (coarse) mesh
that discretizes the domain by n0

el shape regular hexahedral elements. The collection
of these elements is called P0 = {1, ..., n0

el}. The element domain (volume) of element
k ∈ P0 is denoted by w0

k ⊆ Ω. Assume that based on this mesh, nref refinement steps
are desired. The result of each refinement step is the collection of shape regular elements
Pl, 1 ≤ l ≤ nref , with related element domains wl

k ⊆ Ω, k ∈ Pl.
Algorithmically, each collection Pl is obtained by applying the following procedure:

1. a set of elements W l−1
ref ⊆ Pl−1 is constructed which marks elements for (another)

refinement.
2. each (parent) element in W l−1

ref is refined by sub-dividing it into eight (children)
elements with nodes at the centroid, at the centers of the four faces and at the
centers of the eight edges.

3. further elements may have to be refined until the 2-to-1 property is fulfilled, i.e. all
element vertices are shared by other element vertices or are in the center of element
edges or element faces. It is noted that combinations of these may also exist.

We note that the eight sub-elements resulting from an element refinement replace
their parent element. One may associate the term “refinement level” with each element
indicating the number of refinements that have been realized. Clearly, different refine-
ment levels are present in each collection of elements Pl. It is a direct consequence
of (3) that all neighboring elements of each element have a maximum difference in the
refinement level of 1.

For the final collection of elements, Pnref
, let us now define nodes which will be

associated with shape functions later on. For trilinear elements as considered here,
nodes i with coordinates xi are placed right at the vertices. The nodal set I involves
all the nodes in the domain. Furthermore, the hanging nodes are given in the subset

Ih ≡
(

I faceh

⋃

Iedgeh

)

⊂ I. All other nodes are called regular nodes and are in the set

IΓ = I \ Ih. Hanging nodes in the subset I faceh ⊂ Ih reside in the center of element faces
and are each associated with a quadruple (4−tuple) which defines the other four regular
nodes that share the face with the hanging node.

Qface
k = {(i, j,m, n) : nodes i, j,m, n ∈ IΓ which share

the face with hanging node k}, k ∈ I faceh . (31)

Hanging nodes in the subset Iedgeh ⊂ Ih reside in the center of element edges and are each
associated with a pair (2−tuple) which defines the other two regular nodes that share
the edge with the hanging node.

Qedge
k = {(i, j) : nodes i, j ∈ IΓ which share

the edge with hanging node k}, k ∈ Iedgeh . (32)

Altogether, an element can have a maximum of 18 hanging nodes of which 12 reside in
the centers of the edges (Figure 7(c)) and 6 reside in the centers of the faces (Figure
7(d)). The remaining 8 nodes are the regular nodes (Figure 7(b)), making the total
number of possible nodes to be 26 (Figure 7(a)).
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(a) Hanging nodes (blue) with regular nodes
(black).

(b) Regular nodes only.

(c) Hanging nodes k ∈ I
edge
h

(d) Hanging nodes k ∈ Ifaceh

Figure 7: Regular and hanging nodes for an element.
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(a) 2D (b) 3D

Figure 8: Integration points in a reference element with (at least one) hanging node. (a)
shows the 2D situation with 4 subcells and (b) shows the 3D situation with 8 subcells
where, for clarity, integration points are shown in only one subcell.

4.2. Refinement criterion

As noted above, each refinement step l + 1 starts with the marking of elements for
(further) refinement, i.e. the construction of an element setW l

ref , 0 ≤ l ≤ nref−1. For two-
fluid flow where steep gradients are expected near an interface or where the resolution
of the interface is crucial for the overall solution, the mesh refinement is realized in
the vicinity of the interface. In this study, the signed-distance function φ(x, t) (14) is
employed to define the refinement criterion. Assume that a refinement of all elements
which lie completely within the distance d ∈ R+ from the interface is desired, then

W l
ref =

{

k ∈ Pl : max
x∈wl

k

|φ(x, t)| < d

}

. (33)

4.3. Conforming shape functions

Shape functions for three-dimensional 1-irregular meshes are proposed by Morton et
al. [41]. Shape functions on two-dimensional 1-irregular meshes as proposed by Gupta
[40] are described in detail in [15]. The definition is based on the reference element
Ω∗ = (−1, 1)×(−1, 1)×(−1, 1) with (i) 8 corner nodes, (ii) 12 (potential) hanging nodes in
the centers of element edges and (iii) 6 (potential) hanging nodes in the centers of element
faces, see Figure 7. The corresponding element shape functions in the physical domain
Ω are obtained by a bilinear mapping (2D) or trilinear mapping (3D) from the reference
domain. The shape functions Ni(x) for each node at xi result from the usual assembly
of the element shape functions. It is trivial to show that these shape functions build
a partition-of-unity over an element. Since certain shape functions possess kinks across
the planes spanned by the ξ, η, ζ-axes of the coordinate system, a special quadrature
is required in elements with hanging nodes: Gauss points are placed in each of the 8
subcells of the reference element. Figure 8 shows the integration points for both the 2D
and 3D situations.
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5. THE FLOW SOLVER

The temporal discretizations for the Navier-Stokes, level-set and reinitialization equa-
tions are first discussed in Section 5.1. The appropriate function spaces for the dependent
variables together with the weak formulations are also presented. Section 5.2 discusses
the remeshing strategy and Section 5.3 describes the strong coupling procedure between
the Navier-Stokes and the level-set transport equations.

5.1. Temporal discretization

In general, two choices are available when considering time-stepping in the context of
the FEM according to whether time or space is discretized first. When time-dependent
problems (involving first-order derivatives in time) are first discretized with respect to
space, this leads to a system of coupled first order ODEs in time. Also called the semi-
discrete method, this approach requires that the shape functions do not depend on time,
i.e. the approximation is expressed as

uh(x, t) =
∑

i

Ni(x)ui(t), (34)

where it can be seen that time-dependence is accounted for by the nodal values of the
dependent variable. However, such a formulation is not possible in the context of the
XFEM with moving discontinuities due to the inherent time-dependence of the enrich-
ment functions [23]. Therefore, in this study, time is discretized before space.

In this work, the trapezoidal rule will be employed for time-stepping. The trape-
zoidal rule is one of the θ-family of one-step time-stepping methods with θ set to 1/2.
It is a second-order accurate semi-implicit scheme and is unconditionally stable. The
trapezoidal rule (sometimes also referred to as the Crank-Nicolson method) is expressed
as

un+1
i − un

i

∆t
= θGn+1

i + (1− θ)Gn
i , θ =

1

2
, (35)

Applying the trapezoidal rule to (1), it is immediately clear that

Gi = −
1

"k

[

"kuj
∂ui

∂xj
−

∂σij

∂xj
− fk,i

]

, (36)

from which the time-discretized momentum equations can then be expressed as

"ku
n+1
i + θ∆t

[

"kuj
∂ui

∂xj
− ∂σij

∂xj
− fk,i

]n+1

= "ku
n
i + (1 − θ)∆t"kG

n
i . (37)

To ease notation, we denote the RHS by hn
i which leads to the following expression for

the time-discretized momentum equations

1

θ∆t
"ku

n+1
i +

[

"kuj
∂ui

∂xj
−

∂σij

∂xj
− fk,i

]n+1

=
1

θ∆t
hn
i , (38)

together with the continuity equation

∂un+1
j

∂xj
= 0, (39)

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

which implies that the incompressibility constraint is enforced in the current time-step.
We define the trial and test spaces, Sh and Vh for the velocities ui and pressure p as

Sh
ui

=
{

uh
i

∣

∣uh
i ∈

(

H1h
)d

, uh
i = ûh

i on Γu

}

, (40)

Vh
ui

=
{

wh
i

∣

∣wh
i ∈

(

H1h
)d

, wh
i = 0 on Γu

}

, (41)

Sh
p = Vh

p =
{

qh
∣

∣ qh ∈ L2h
}

, (42)

where H1h ⊆ H1 is the finite dimensional Sobolev space with the space H1 being the
set of functions which are, together with their first derivatives, square-integrable in Ω.
Further, L2h ⊆ L2 is the finite dimensional Hilbert space where the space L2 is the
set of functions which are square-integrable in Ω. Since there are no explicit Dirichlet
boundary conditions on the pressure, the trial and test function spaces for pressure (42)
are identical. The test functions wh

i and qh for the velocity and pressure can be expressed
as

wh
i ∈ Vh

ui
:= spanj∈I{Nj(x)}, (43)

qh ∈ Vh
p := spani∈I{Ni(x)} ∪ spani∈I∗{Mi (x, t)}, (44)

respectively, where Mi (x, t) = N∗
i (x) · ψsign(x, t) are the local enrichment functions

defined on the enriched nodal set I∗.
To further ease notation, the superscript n+1 is dropped from this point onward. Un-

less otherwise stated, all field variables are assumed to be associated with time-level n+1.
Combining (38) and (39), the weak formulation taking into account the SUPG/PSPG
stabilizations is expressed as: Find uh

i ∈ Sh
ui

and ph ∈ Sh
p such that ∀wh

i ∈ Vh
ui

and

∀qh ∈ Vh
p ,

1

θ∆t

∫

Ω
wh

i "ku
h
i dΩ +

∫

Ω
wh

i "ku
h
j

∂uh
i

∂xj
dΩ −

∫

Γh

wh
i hi dΓ +

∫

Ω
qh

∂uh
j

∂xj
dΩ

+
nel
∑

e=1

∫

Ωel
e

τe

(

uh
j

∂wh
i

∂xj
+

1

"k

∂qh

∂xi

)

·
[

1

θ∆t
"ku

h
i + "ku

h
j

∂uh
i

∂xj
−

∂σh
ij

∂xj
− fh

k,i −
1

θ∆t
hn
i

]

dΩ

+

∫

Ω
σh
ij

∂wh
i

∂xj
dΩ −

∫

Ω
wh

i f
h
k,i dΩ =

1

θ∆t

∫

Ω
wh

i h
n
i dΩ, (45)

with uh
i (x, 0) = 0 as the initial condition. We note that the additional stabilization

terms are found within the summation
∑nel

e=1 with the expression within the square
brackets denoting the residual of the time-discretized equation (38). These terms stabilize
oscillations in advection dominated regions and enable equal-order interpolations of the
velocity and pressure by circumventing the LBB condition [42, 43]. The stabilization
parameter τe is element-specific and is defined as [44]

τe =





(

2

∆t

)2

+

(

2|uh
avg|2
he

)2

+

(

4ν

h2
e

)2




−1/2

, (46)
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where |uh
avg|2 is the L2-norm of the average velocity computed element-wise, ν is the

kinematic viscosity which takes on the weighted average of the two fluids’ viscosities
when the element is cut by the interface and he is computed element-wise as

he =
√
2 · Ael

e /hdiag, (47)

with Ael
e being the element area and hdiag being the largest diagonal distance between

the nodes of the element [45].
Two important remarks are in place at this point. First, we note that the surface

tension term, which is embedded in the term hn
i , is evaluated as a boundary integral at

the previous time-level n as
∫

Γn

d

γκwin̂i dΓ. (48)

That is, a fully explicit treatment of the surface tension is employed in this study (θ =
0 for the surface tension term). This is because of the partitioned treatment of the
interface position (level-set function) and the flow variables (i.e. velocity and pressure)
which implies that only the interface position at the previous time-level is available when
solving the Navier-Stokes equations for the flow variables at the current time-level. This
inevitably introduces a capillary time-step size limit on ∆t defined as [46]

∆t(ca)num =

√

"h3

γ
, (49)

where " represents the average fluid density at the interface and h represents the mesh
size. As can be seen, this condition is rather restrictive for a small mesh size and/or
a large surface tension coefficient. Efforts to lift such a restriction have been realized,
for example, in the work of Hysing [6] which proposes a semi-implicit treatment of the
surface tension. However, we adopt the simpler explicit treatment of surface tension
while observing the numerical capillary time-step size limit (49).

The second remark is that an examination of (45) reveals that terms which include
test and trial functions from both time-levels may coexist within the same integral. This
implies that one may need to consider the situation of having two interfaces crossing a
single element in the subcell quadrature. However, in this study, we avoid this delicate
situation by adopting a fully implicit treatment of the pressure (i.e. θ = 1 for the pressure
term). This strategy, coupled with the fact that the velocity space is not enriched, leads
to the much simpler situation of having to deal with only one interface in the subcell
quadrature.

The level-set transport equation (17) and the reinitialization equation (24) are treated
in a similar vein. That is, the trapezoidal rule is used for time-stepping together with
SUPG stabilization. The stabilization parameter τe is still defined as in (46) but with
ν = 0. The trial Sh

φ and test Vh
φ function spaces are defined as:

Sh
φ = Vh

φ =
{

ψh
∣

∣ψh ∈ H1h
}

. (50)

Note that the trial and test function spaces coincide since no Dirichlet boundary condi-
tions are prescribed in all the test cases considered in this study. The test function ψh
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can be expressed as

ψh ∈ Vh
φ := spani∈I{Ni(x)}, (51)

where standard bilinear shape functions (2D) and trilinear shape functions (3D) are
employed for Ni (x).

5.2. Remeshing for moving interfaces

This section discusses the remeshing procedure in the context of moving interfaces
adopted in this study. Recall from (33) that the mesh refinement is realized in a finite
band around the interface, see Figure 6. This is necessary since it is possible that,
within a single time-step, the new interface position (for the current time-step n + 1)
may venture outside the region of the finest mesh on the refined mesh, thus leading to a
loss in accuracy. For optimal accuracy, the interface position should always lie within the
band where the highest refinement level is realized. The width of the band to be used
depends on factors such as the velocity of propagation of the interface and the time-step
size.

The remeshing procedure is now described. We first define the three kinds of meshes
used in this study: a coarse mesh Πc, a fine mesh Πf and a refined mesh Πr, see Figure 9.
A coarse mesh is the original uniform mesh on which mesh refinement is to be applied.
A refined mesh is an adaptive mesh where mesh refinement is realized in the vicinity
of the interface. A fine mesh is a uniform mesh whose resolution is equivalent to the
finest resolution on the refined mesh. Further, we denote the level-set function defined
on a coarse mesh as φc and those defined on a fine mesh and refined mesh as φf and φr,
respectively.

The remeshing procedure is described in Algorithm 1 and also shown as a flowchart in
Figure 10. It is to be emphasized that the level-set defined on a fine mesh φf is employed
to realize the mesh refinement. In other words, the criterion (33) should be applied on
φf . This is to ensure that the reconstructed interface based on the refined mesh Πr will
be just as accurate as the one reconstructed from a uniform fine mesh Πf . However,
both the Navier-Stokes and level-set transport equations are never solved on this fine
mesh Πf . It is merely used for the purpose of constructing the refined mesh Πr on which
both equations are solved. For moving interfaces, projection of the nodal field values
(i.e. velocity, pressure and level-set) from one refined mesh to another will inevitably
introduce projection errors. However, such errors can be avoided in the vicinity of the
interface by refining in a finite band around the interface so that projection of these field
values is not required for nodes close to the interface.

5.3. Strong coupling

A segregated (partitioned) approach is adopted in this study for the flow-interface
coupling. This means that the flow is first computed with a fixed interface and then the
computed velocity field is used to advect the interface to a new position. The procedure
is repeated until a certain convergence in the interface position is achieved before moving
on to the next time step. Two different iteration loops are employed: an outer loop
for the strong coupling and an inner Picard iteration for the nonlinear Navier-stokes
solver. The outer loop is iterated until the level-set position converges as indicated by
the relative L2 norm of the difference between successive positions falling below a certain
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(a) Coarse mesh Πc (b) Fine mesh Πf (c) Refined mesh Πr

Figure 9: The coarse mesh (a) and the fine mesh (b) are used to construct the refined
mesh (c). The blue line depicts the actual interface.

Algorithm 1 Procedure for remeshing.

1. If n = 0, construct φr,n on Πr,n based on φf,0 on Πf , Otherwise, φr,n on Πr,n for n > 0
available from previous time-level n (Step 7).

2. Strong coupling procedure (refer to Section 5.3) yields deformed level-set φr,n+1
def on Πr,n.

3. Project φr,n+1
def from Πr,n to Πf to obtain φf,n+1

def .
4. Reinitialize φf,n+1

def on Πf to obtain φf,n+1.
5. Construct Πr,n+1 based on φf,n+1 on Πf .
6. Project φf,n+1 from Πf to Πr,n+1 to obtain φr,n+1.
7. Set φr,n = φr,n+1 and Πr,n = Πr,n+1 and return to Step 1.
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Start

Construct φr,n on Πr,n based on φf,0 on Πf

Strong coupling (Section 5.3)

φr,n+1
def on Πr,n

Project φr,n+1
def from Πr,n to Πf

φf,n+1
def on Πf

Reinitialize φf,n+1
def on Πf

φf,n+1 on Πf

Construct Πr,n+1 based on φf,n+1 on Πf

Project φf,n+1 from Πf to Πr,n+1

φr,n+1 on Πr,n+1

Is n = nend ?

Set
φr,n = φr,n+1

Πr,n = Πr,n+1

Exit time loop

n = 0

No

n = n+ 1

Time loop

Yes

Figure 10: Flowchart for the remeshing procedure.
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user-defined tolerance. This can also be seen as an iterative predictor-corrector method.
The inner loop for the N-S solver is iterated until the L2 norm of the difference between
successive velocity fields falls below a certain user-defined tolerance.

6. MODELLING OF SURFACE TENSION

This section gives a description of the modelling of the surface tension term. The
Laplace-Beltrami technique for reformulating the surface tension term is first described.
This is then followed by a description of the computation of the normal vectors to the
discretized interface Γh

d .

6.1. Laplace-Beltrami discretization

We recall that the surface tension term in the weak form of the Navier-Stokes equa-
tions is expressed in terms of a boundary integral given in (48). It is to be noted that
n̂i is the unit normal vector to the interface Γd between the two fluids in Ω1 and Ω2

(pointing from Ω1 into Ω2) and that f st = γκn̂i is the surface tension force (per unit
area in 3D and per unit length in 2D) always pointing toward the center of curvature
of the interface [3]. The surface tension term expressed in (48) demands a reasonably
smooth level-set function φ(x) since it requires the evaluation of the curvature κ which
is given as the Laplacian of the level-set function (20). Therefore, in this study, the
Laplace-Beltrami technique [18, 19] will be employed to reformulate the surface tension
term in order to avoid the need to compute the curvature κ. However, we note that the
computation of the normal vector n̂ to the interface still cannot be avoided.

A brief description of the Laplace-Beltrami technique is now given. To express the
surface tension term (48) in terms of the Laplace-Beltrami operator, we first define
the tangential gradient of a vector function f(x), which is differentiable in an open
neighbourhood of the interface Γd, as

∇f =
δfi
δxj

=
∂fi
∂xj

−
(

n̂k
∂fi
∂xk

)

n̂j, xi ∈ Γd. (52)

The Laplace-Beltrami operator on f(x) is then given as

∆f = ∇ · (∇f) =
δ

δxk

(

δfi
δxk

)

, xi ∈ Γd. (53)

We now invoke a theorem of differential geometry [47] which states

∆id =
δ

δxk

(

δidi
δxk

)

= κn̂i, xi ∈ Γd, (54)

where id is the identity mapping on Γd. Substituting (54) into (48) and after some
manipulation, the surface tension term can be expressed as

∫

Γd

γκwh
i n̂i dΓ = γ

∫

Γs

(

wh
i

δidi
δxk

)

n̂′

k dΓ − γ

∫

Γd

(

δwh
i

δxk

δidi
δxk

)

dΓ, (55)
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Figure 11: 3D representation of the computational domain. Γ is the boundary of the
computation domain and Γd represents the two-fluid interface separating the domains
Ω1 and Ω2. Γs = Γd∩Γ is the boundary of the interface Γd. n̂

′ is the unit normal vector
to Γs and n̂ is the unit normal vector to Γd.

where Γs = Γd ∩Γ is the boundary given by the intersection of the two-fluid interface Γd

with the boundary of the computational domain Γ and n̂′

k is the unit normal vector to
Γs, see Figure 11.

A few remarks are in place at this stage. First, for closed interfaces where Γd ∩ Γ =
∅, the first term on the RHS of (55) vanishes. Second, although the application of
the Laplace-Beltrami technique has rid the original surface tension expression of the
curvature κ, there is still the need to compute the normal vector n̂ to the two-fluid
interface Γd as is apparent from (55). Finally, the normal vector n̂′ to the boundary Γs

can also be interpreted as the tangential vector to the two-fluid interface Γd along the
boundary Γs, see Figure 11.

6.2. Construction of normal vectors to Γh
d

This study considers two different methods of computing the normal vectors to the
discretized interface Γh

d . Recall that the discretized interface (in the reference domain)
is either piecewise linear in 2D or piecewise planar in 3D. In the first method, the tan-
gential vectors to the piecewise linear/planar interface in the reference domain are first
constructed and then mapped to the (in general) piecewise curved interface in the real
domain. The normal vectors in the real domain are then computed by exploiting their
orthogonality to the mapped tangential vectors. The normal vectors computed in this
manner will always be orthogonal to the interface Γh

d . A detailed description can be
found in [29].

In the second method, the normal vector is computed using its definition as the
gradient of the level-set function. We recall from Section 2.2 that the normal vector to
the interface can also be computed as

n̂real =
∇φ

|∇φ|
. (56)

Since the discrete level-set φh function values are only available at the nodes, some form
of interpolation will be required to determine the value of n̂real along the interface. If
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a Cartesian mesh is used, the finite central difference can be employed to determine the
first spatial derivatives of the discrete level-set function φh at the nodes. Using standard
FD notation, the components of ∇φh at the nodes can be computed as

(φx)i,j,k =

(

∂φ

∂x

)

i,j,k

=
φi+1,j,k − φi−1,j,k

2∆x
, (57)

(φy)i,j,k =

(

∂φ

∂y

)

i,j,k

=
φi,j+1,k − φi,j−1,k

2∆y
, (58)

(φz)i,j,k =

(

∂φ

∂z

)

i,j,k

=
φi,j,k+1 − φi,j,k−1

2∆z
. (59)

The magnitude of the gradient at each node can then be computed as

|∇φ|i,j,k =
√

(φx)
2
i,j,k + (φy)

2
i,j,k + (φz)

2
i,j,k . (60)

Thereafter, the i-component of the unit normal vector n̂real
i (x) to the interface at a point

x can be computed using a trilinear interpolation

n̂real
i (x) =

8
∑

j=1

Nj(x)

(

1

|∇φ|
∂φ

∂xi

)

j

. (61)

It is to be noted that the above computation is performed only for elements which are
cut by the interface. For general unstructured meshes, the normal vector to the interface
can be computed using

nreal
i (x) =

8
∑

j=1

∂Nj(x)

∂xi
φj . (62)

Thereafter, the unit normal vector can be computed as

n̂real
i (x) =

nreal
i

|nreal|
. (63)

The latter method of computing the normal vectors for general unstructured meshes
can also be applied for Cartesian meshes. However, for Cartesian meshes, the use of
the FD method to first compute the spatial derivatives at the nodes eliminates the
need to differentiate the trilinear shape functions. This reduces the differentiability
requirement on the shape functions employed for the interpolation. To improve accuracy,
one can also resort to higher-order shape functions. This has been realized, for example,
in Groß and Reusken [12] where quadratic shape functions are employed in (62) for
tetrahedral elements. A final remark is that the normal vectors computed using the
level-set function as discussed in this section are not necessarily perpendicular to the
piecewise linear/planar interface. However, this inconsistency does not necessarily imply
a lower accuracy, as will be demonstrated in the numerical results.
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7. NUMERICAL RESULTS

This section presents the numerical results. Both 2D and 3D test cases are considered.
The 2D test cases include: (i) a static bubble without externally applied forces where
convergence studies are performed, (ii) a rising bubble with topological changes and (iii)
a rising bubble which maintains its shape due to a high surface tension. The 3D test
cases include: (iv) the 3D version of the static bubble test case and (v) a rising n-butanol
drop where terminal (constant) velocities are extracted and compared with theoretical
predictions. The test cases (ii) and (iii) have previously been studied by Fries [13] who
employed the intrinsic XFEM [48]. The test case (i) has been studied by Smolianski [3]
and Hysing [6], both of whom employed the standard finite element method (FEM). Its
3D version (iv) has been considered by Groß and Reusken [12] using the XFEM. Finally,
test case (v) has been considered by Groß [49]. As far as possible, we select test cases
where theoretical predictions are available so that useful comparisons with the numerical
results can be made. This is, for example, the case for (i), (iv) and (v).

7.1. 2D Static bubble

A stationary circular bubble at equilibrium is considered. The setup of the test case
follows the description in [3, 6]. The radius of the bubble is r = 0.25 m and is positioned
at the center of the computational domain Ω which is a square container with side 4r
as shown in Figure 12. The densities and viscosities of the two fluids in Ω1 and Ω2 are
identical with "1 = "2 = 1 kg/m3 and µ1 = µ2 = 1 kg/s/m. No externally applied forces
are considered and no-slip conditions are assumed along the walls of the container. The
pressure p = 0 N/m2 is fixed at the top left corner of the domain. The surface tension
coefficient is set as γ = 0.01 kg/s2.

Figure 12: Problem statement for the static bubble test case.

This test case is characterized by 3 non-dimensional numbers [3]: the density ratio
"2/"1, the viscosity ratio µ2/µ1 and the Laplace number defined as

La =
"2γd

µ2
2

, (64)
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where d is the diameter of the bubble. For this test case, "2/"1 = 1, µ2/µ1 = 1 and
La = 0.005. Due to surface tension effects, the numerical capillarity time-step size limit

(49) is applicable, where ∆t(ca)num = 0.005 s. The time step in the Crank-Nicholson scheme
is then chosen as ∆t = 0.002 s and the simulation is performed until t = 4 s with 2000
time steps.

Since the bubble is stationary, the velocity is zero and the interfacial condition (9)
reduces to

p1 − p2 =
γ

r
, (65)

which is known as the Laplace-Young law. This implies that a pressure jump of p1−p2 =
0.04 N/m2 across the two-fluid interface is to be expected. The zero velocity field and the
theoretical pressure jump computed above will be used as the reference solutions upon
which the errors are computed.

For the spatial discretization, mesh sizes of 5 × 5, 10× 10, 20× 20 and 40 × 40 with
a constant refinement level nref = 2 are employed. This translates to resolutions of
1
20 ,

1
40 ,

1
80 ,

1
160 in the vicinity of the interface, see Figure 13. Three different methods of

computing the normal vector n̂ in the surface tension term are considered:

Method A
The normal vector n̂ is computed according to procedure described in Section 6.2.
The normal vector results from a systematic mapping of the tangential vectors
from the reference to the real domains. As such, n̂ is always perpendicular to the
piecewise linear interface.

Method B
The normal vector n̂ is computed according to the procedure described in equations
(62) − (63). The normal vector on the interface is interpolated from the nodal
level-set values using the first derivatives of the 2D bilinear shape functions.

Method C
The normal vector n̂ is computed according to the procedure described in equations
(57) − (61). The level-set function is first differentiated using a standard FD central
differencing. Thereafter, the normal vector on the interface is interpolated from
the nodal values of the FD-differentiated level-set function using the 2D bilinear
shape functions. This method is only applicable for Cartesian meshes.

The pressure approximation is sign-enriched according to (26). The criterion (33) is
employed where all elements within a certain distance d = 0.016 m from the interface are
refined. The level-set is kept fixed throughout the simulation and no reinitialization is
required. The errors in the pressure and velocity fields for this test case come from three
possible sources: (i) approximation error for the discontinuous pressure, (ii) geometrical
error of the interpolated interface and (iii) discretization error of the surface tension force.
Due to these error sources, the computed velocity field is not exactly zero. Figure 14
displays the (non-zero) velocity field for a 10×10 mesh computed using the three methods
at the final time t = 4 s. Visual inspection reveals that the spurious velocities are much
smaller in magnitude for method C. This observation will be further augmented by the
computed convergence rates in the sequel. The pressure field computed using Method
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Figure 13: Meshes used for the static bubble test case. A constant refinement level
nref = 2 is maintained.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity Field

Time:     4.0000  sec

(a) Method A

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity Field

Time:     4.0000  sec

(b) Method B

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity Field

Time:     4.0000  sec

(c) Method C

Figure 14: Velocity field for the static bubble test case at t = 4 s computed using three
different methods of computing the normal vectors.

C is shown in Figure 15 for all four mesh sizes. The jump in the pressure field across
the interface is apparent. Figure 16 shows the variation of the pressure field along the
cross-section y = 0.5 m.

We first compute the L∞-norm of the non-dimensional velocity error defined as

||uhµ

γ
||L∞ = max

∣

∣

∣

∣

uhµ

γ

∣

∣

∣

∣

. (66)

The results from the three methods A, B and C described above are compared with
the results of Smolianski [3] (abbreviated SMO) and Hysing [6] (abbreviated HS), see
Figure 17. The study ‘HS’ employs a bilinear approximation for the velocity and a
constant approximation for the pressure. The study ‘SMO’ employs equal-order linear
approximations for both velocity and pressure. Both studies ‘SMO’ and ‘HS’ employ a
standard FEM without any enrichment of the approximation. As can be observed from
the figure, all methods yield convergence rates close to 1.0 (only the study ‘SMO’ yields a
suboptimal rate of 0.7). The enrichment of the pressure space used in this study does not
lead to an improvement in the convergence rate of the velocity error, though accuracy is
drastically improved.
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Figure 15: Pressure field for the static bubble test case at t = 4 s computed using Method
C for different mesh sizes.
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Figure 16: Pressure field for the static bubble test case at t = 4 s along the cross-section
y = 0.5m computed using Method C for different mesh sizes.
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Among the three methods A, B and C, method C yields the best accuracy overall and
method A the least accurate. Recall that the normal vectors computed using method A
are consistently perpendicular to the piecewise linear interface. On the other hand, the
normal vectors computed using methods B and C are not necessarily perpendicular to
the piecewise linear interface. However, the results above show that methods B and C
nevertheless lead to a higher accuracy. We surmise that this is because the piecewise lin-
ear interface is only a crude approximation to the real interface position and the normal
vectors computed using method A are not necessarily a more accurate representation of
the true normal vectors (even though they are consistently perpendicular to the interpo-
lated interface). Finally, we observe that method C yields a higher accuracy than method
B. Recall that method B relies on the interpolation properties of the differentiated bi-
linear shape functions (62) which are necessarily less accurate than the original bilinear
shape functions used in method C. Therefore, using a FD central differencing to first
compute the derivative of the level-set function shifts the burden of differentiation from
the bilinear shape functions in method C. However, it is to be noted that such a strategy
(i.e. finite difference of the level-set) is possible only for a Cartesian mesh considered
in this test case. This simple test case demonstrates the importance of an appropriate
discretization of the surface tension term.
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Figure 17: Comparison of L∞-norm for the non-dimensional velocity for the static bubble
test case.

We now compute the L2-norm of the velocity error defined as

‖ uex − uh ‖L2
=

√

√

√

√

∑

all Ωe

∫

Ωe

nsd

∑

i=1

(

uex
i − uh

i

)2
dΩe, (67)

where uex
i = 0 and uh

i are the exact and approximated velocity in the xi-direction,
respectively. Ωe refers to the element domain and nsd is the number of spatial dimensions.
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Figure 18: Convergence plots for L2-norm for (a) pressure and (b) velocity.

The L2-norm of the pressure error is defined as

‖ pex − ph ‖L2
=

√

∑

all Ωe

∫

Ωe

(

pex − ph
)2

dΩe, (68)

where pex and ph are the exact and approximated pressure fields, respectively. Figure
18(a) and (b) display the convergence plots in the L2-norm for the pressure and velocity
errors, respectively. Similar to the convergence of the L∞-norm for the velocity error,
the convergence plots for the L2-norm exhibit the same trends, i.e. method C yields the
best accuracy, followed by method B and method A. Once again, for the convergence plot
of the L2-norm of the velocity error, the convergence rates of all three methods do not
differ significantly, though accuracy is very much improved for method C. However, for
the L2-norm of the pressure error, method C not only yields a higher accuracy but also
a higher convergence rate compared to the other two methods. The best convergence
rate achieved is around 1.5 for the pressure error and around 1.75 for the velocity error.
However, both are suboptimal compared to the supposedly optimal rate of 2.0 using a
bilinear approximation used in this study.

7.2. 2D Rising bubble with large Eötvös number

A rising bubble with a large Eötvös number is considered next. The setup of the test
case follows the description in [13] and is shown in Figure 19. The diameter of the bubble
is d = 10−0.5 m. The densities of the two fluids in Ω1 and Ω2 are "1 = 1 kg/m3 and
"2 = 1000 kg/m3 and the viscosities are µ1 = 10−3.5 kg/s/m and µ2 = 10−1.5 kg/s/m. A
gravitational acceleration of gy = −0.01 m/s2 is considered. Slip-conditions are assumed

along the walls of the tank, and p = 0 N/m2 is fixed at the top left corner of the domain.
The surface tension coefficient is set as γ = 0.001 kg/s2 and the situation is observed for
t = (0s, 25s).
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Figure 19: Problem statement for the rising bubble test case.

This test case is characterized by 4 non-dimensional numbers [4, 3]: the density ratio
"2/"1, the viscosity ratio µ2/µ1, the Morton number defined as

M =
gµ4

2

"2γ3
, (69)

and the Eötvös number

Eo =
"2gd2

γ
, (70)

where d is the diameter of the bubble and g is the magnitude of the gravitational accel-
eration. The Morton number is used to characterize the shape of the evolving bubble
and the Eötvös number (or Bond number) is the ratio of body forces to surface tension
forces. For this test case, "2/"1 = 1000, µ2/µ1 = 100, M = 0.01 and Eo = 1000. The
relatively large Eo number implies that body forces dominate the capillary forces.

In addition to comparing the three methods of computing the normal vectors de-
scribed in the previous test case (Section 7.1), two methods of reinitialization are also
considered: (i) the method as described in Section 2.3 where the PDE (24) is solved to
steady state and (ii) the standard reinitialization where a new signed-distance function
is constructed based on the interpolated front. In the sequel, method (i) is abbreviated
“PDE-reinitialized” and method (ii) is abbreviated “Interpolation-reinitialized”.

Due to surface tension effects, the numerical capillarity time-step size limit (49) is

applicable, where ∆t(ca)num = 1 s. This large capillarity time-step limit is due to the small
surface tension coefficient and the relatively large diameter of the bubble. Nevertheless,
the time step in the Crank-Nicholson scheme is chosen as ∆t = 0.025 s in order to capture
the evolution of the interface. For the spatial discretization, a coarse mesh size of 6× 12
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(a) t = 0 s (b) t = 5 s (c) t = 10 s (d) t = 15 s (e) t = 20 s (f) t = 25 s

Figure 20: Evolution of the mesh for the rising bubble test case. The two-fluid interface
is shown as a black solid line.

(a) t = 0 s (b) t = 5 s (c) t = 10 s (d) t = 15 s (e) t = 20 s (f) t = 25 s

Figure 21: Evolution of the pressure field for the rising bubble test case. The two-fluid
interface is shown as a black solid line.

elements is chosen. Refinement levels nref = 2, 3 and 4 are considered. This translates
to resolutions of 2d/24, 2d/48, 2d/64 in the vicinity of the interface.

The pressure approximation is sign-enriched according to (26). The criterion (33) is
employed where all elements within a certain distance d = 0.015 m from the interface
are refined. The evolutions of the mesh, pressure and velocity fields for nref = 3 using
Method C for computing the normal vectors with a PDE-reinitialized methodology are
shown in Figure 20, Figure 21 and Figure 22, respectively.

Since both fluids are immiscible and incompressible, the masses (or areas) of the
two fluids should be conserved over time. Figure 23(a) compares the mass conservation
of the bubble in Ω1 over time for the three methods of computing the normal vector
using an interpolation-reinitialized level-set and a refinement level nref = 3. Figure 23(b)
makes the same comparison but using a PDE-reinitialized level-set. Two important
observations can be made here. First, a PDE-reinitialized level-set leads to a much
better mass conservation compared to an interpolation-reinitialized level-set. Second,
all three methods of computing the normal vector lead to only small differences in the
mass conservation. It seems that the different ways of computing the normal vector do
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(a) t = 0 s (b) t = 5 s (c) t = 10 s (d) t = 15 s (e) t = 20 s (f) t = 25 s

Figure 22: Evolution of the velocity field for the rising bubble test case. The two-fluid
interface is shown as a black solid line.

not have a significant bearing when surface tension effects are relatively unimportant
compared to the body forces (as manifested by a large Eötvös number).

Finally, Figure 24(a) compares the mass conservation for three different levels of
refinement nref = 1, 2, 3 with corresponding DOFs shown in Figure 24(b). A PDE-
reinitialized level-set together with method C for computing the normal vector are em-
ployed. As can be seen, the finer the mesh resolution, the better is the mass conservation,
as expected.

7.3. Rising bubble with small Eötvös number

A rising bubble with a small Eötvös number is considered next. The setup of the
test case follows the description in [13] and is shown in Figure 19. The diameter of the
bubble is now d = 0.01 m. The fluid properties are identical to those of the previous test
case and will therefore not be repeated. Slip-conditions are assumed along the walls of
the tank, and p = 0 N/m2 is fixed at the top left corner of the domain. The situation is
observed for t = (0 s, 15 s).

This test case is also characterized by the same 4 non-dimensional numbers as de-
scribed in the previous test case. Since only the size of the bubble changes, the dimen-
sionless numbers "2/"1 = 1000, µ2/µ1 = 100 and M = 0.01 are identical to those for the
previous test case. Only the Eötvös number Eo = 1 is reduced. The relatively small Eo
number implies that the capillary forces now dominate the body forces.

Similar to the previous test case, we compare the three different methods of com-
puting the normal vectors and also the two different reinitialization strategies: “PDE-
reinitialized” and “Interpolation-reinitialized”. Due to surface tension effects, the numer-

ical capillarity time-step size limit (49) is applicable, where ∆t(ca)num = 0.006 s. This rather
restrictive capillarity time-step limit results from the small diameter of the bubble and is
typical for cases where capillary forces dominate. The time step in the Crank-Nicholson
scheme is therefore chosen as ∆t = 0.006 s. For the spatial discretization, a coarse mesh
size of 6 × 12 elements is chosen. A refinement level of nref = 3 is considered. This
translates to a resolution of 2d/48 in the vicinity of the interface.

The pressure approximation is sign-enriched according to (26). The criterion (33)
is employed where all elements within the distance d = 0.001 m from the interface are
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Figure 23: Comparison of mass conservation for the rising bubble test case using (a) an
interpolation-reinitialized level-set and (b) a PDE-reinitialized level-set.
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Figure 24: Comparison of (a) mass conservation and (b) number of DOFs for the rising
bubble test case between three different levels of refinement nref = 2, 3, 4. A PDE-
reinitialized level-set together with method C for computing the normal vector are em-
ployed.
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(a) t = 0 s (b) t = 5 s (c) t = 10 s (d) t = 15 s (e) t = 20 s (f) t = 25 s

Figure 25: Evolution of the mesh for the rising bubble test case. The two-fluid interface
is shown as a black solid line.

(a) t = 0 s (b) t = 5 s (c) t = 10 s (d) t = 15 s (e) t = 20 s (f) t = 25 s

Figure 26: Evolution of the pressure field for the rising bubble test case. The two-fluid
interface is shown as a black solid line.

refined. The evolutions of the mesh, pressure and velocity fields for nref = 3 using Method
C for computing the normal vectors with a PDE-reinitialized methodology are shown in
Figure 25, Figure 26 and Figure 27, respectively. As can be observed from Figure 26,
the pressure within the rising bubble is much higher than that of the surrounding fluid.
Further, the circular shape of the bubble seems to be maintained as it rises up the
container. Both phenomena can be explained by the large surface tension forces for this
test case.

Figure 28(a) compares the mass conservation of the bubble in Ω1 over time for the
three methods of computing the normal vector using an interpolation-reinitialized level-
set and a refinement level nref = 3. Figure 28(b) makes the same comparison but using
a PDE-reinitialized level-set. Two important observations can be made here. First, a
PDE-reinitialized level-set leads to a much better mass conservation compared to an
interpolation-reinitialized level-set (except for the case where normal vectors are com-
puted by method A). Second, contrary to the previous test case, the three different
methods of computing the normal vector lead to significant differences in the mass con-
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(a) t = 0 s (b) t = 5 s (c) t = 10 s (d) t = 15 s (e) t = 20 s (f) t = 25 s

Figure 27: Evolution of the velocity field for the rising bubble test case. The two-fluid
interface is shown as a black solid line.

servation, with method C yielding the best results. We deduce that the way in which the
normal vector is computed is important when surface tension effects dominate the body
forces (as manifested by a small Eötvös number).

7.4. 3D Static bubble

A stationary 3D spherical bubble at equilibrium is considered. The setup of the
test case follows the description in [49]. The radius of the bubble is r = 2/3 m and is
positioned at the center of the computational domain Ω which is a cubic container with
side 2.0 m as shown in Figure 29. The densities and viscosities of the two fluids in Ω1 and
Ω2 are identical with "1 = "2 = 1 kg/m3 and µ1 = µ2 = 1 kg/s/m. No externally applied
forces are considered and no-slip conditions are assumed along the walls of the container.
The pressure p = 0 N/m2 is fixed at the corner (x = 0 m, y = 2.0 m, z = 2.0 m) of the
domain. The surface tension coefficient is set as γ = 1 kg/s2.

Similar to the 2D version, this test case is characterized by the non-dimensional
numbers: the density ratio "2/"1 = 1, the viscosity ratio µ2/µ1 = 1 and the Laplace
number La = 4/3. The much larger Laplace number (compared to the 2D version) means
that surface tension forces dominate the viscous forces. Due to surface tension effects,

the numerical capillarity time-step size limit (49) is applicable, where ∆t(ca)num = 0.04 s.
Nevertheless, a much smaller time step size in the Crank-Nicholson scheme is chosen,
i.e. ∆t = 0.002 s. The simulation is performed until t = 0.4 s with 200 time steps.

Since the bubble is stationary and the velocity is zero, the interfacial condition (9)
reduces to

p1 − p2 = 2
γ

r
, (71)

which is the 3D version of the Laplace-Young law. This implies that a pressure jump of
p1 − p2 = 3 N/m2 across the two-fluid interface is to be expected. The zero velocity field
and the theoretical pressure jump computed above will be used as the reference solutions
upon which the errors are computed. For the spatial discretization, a fixed coarse mesh
size of 4 × 4 × 4 elements with refinement levels nref = 1, 2, 3, 4 are employed. This
translates to resolutions of 1/4, 1/8, 1/16, 1/32 in the vicinity of the interface.
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Figure 28: Comparison of mass conservation for the rising bubble test case using (a) an
interpolation-reinitialized level-set and (b) a PDE-reinitialized level-set.

Figure 29: Problem statement for the 3D static bubble test case.
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(a) nref = 1. (b) nref = 2. (c) nref = 3. (d) nref = 4.

Figure 30: Spurious velocities for the 3D static bubble at t = 0.4 s computed for 4
different mesh resolutions.
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(d) nref = 4.

Figure 31: Pressure field on the cross-section z = 0 m of the 3D static bubble at t = 4 s
computed for different mesh resolutions.

The pressure approximation is sign-enriched according to (26). The criterion (33) is
employed where all elements within a certain distance d = 0.05 from the interface are
refined. The level-set is kept fixed throughout the simulation and no reinitialization is
required. The errors in the pressure and velocity fields for this test case come from three
sources: (i) approximation error for the discontinuous pressure, (ii) geometrical error
of the interpolated interface and (iii) discretization error of the surface tension force.
Due to these error sources, the computed velocity field is not exactly zero. Figure 30
displays the (non-zero) velocity field for the four different mesh resolutions at the final
time t = 4 s. Visual inspection reveals that the spurious velocities decrease in magnitude
as mesh resolution is increased. Figure 31 shows the variation of the pressure field on
the cross-section z = 0 m. The jump in the pressure field across the two-fluid interface
is apparent.

The results of this study are compared with the results of Groß [49] (abbreviated
‘Gross (2008)’) which employs a linear approximation of the pressure field and a quadratic
approximation for the velocity field and level-set. Further, similar to this study, the
pressure field is sign-enriched. The normal vectors are computed using a procedure
similar to method B (Section 7.1) which the author dubbed the ‘improved Laplace-
Beltrami discretization’. A detailed comparison between the methodologies employed in
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‘Gross (2008)’ and in this study appears in Table 1.

Table 1: Comparison between Gross (2008) and this study.

Study

Gross (2008) This study

1. Mesh unstructured tetrahedral mesh structured hexahedral mesh
2. Refinement hierarchy of tetrahedral hierarchy of hexahedral elements

elements, conforming mesh via hanging nodes, 1-irregular mesh
3. Approximation linear for pressure, trilinear for pressure,

quadratic for velocity, level-set velocity and level-set
4. Enrichment sign-enriched for pressure signed-enriched for pressure
5. Interface level-set method level-set method

description
6. Reinitialization fast-marching method PDE-reinitialized
7. Surface tension Laplace-Beltrami Laplace-Beltrami

discretization
8. Normal vector quadratic interpolation trilinear interpolation

(method B)† (method C)†

† Refer to Section 7.1.

We compute the L2-norm of the velocity and pressure errors defined as in (67) and
(68), respectively. A side-by-side comparison of the convergence plots between the two
studies is not meaningful since the definition of an element size is not available for Gross
(2008) due to the use of an unstructured mesh. Therefore, only convergence rates are
compared. The study of Gross (2008) uses a uniform initial triangulation where the
vertices form a 5 × 5 × 5 lattice. Four levels of refinement are subsequently applied
nref = 1, 2, 3, 4 to extract the successive convergence rates.

The pressure and velocity errors for Gross (2008) and this study are displayed in Table
2 and Table 3, respectively. We reiterate that one should not compare the error norms
corresponding to the different refinement levels since the corresponding mesh resolutions
are not equivalent in the two separate studies. The only meaningful comparison is in the
convergence order. For the pressure errors, it is observed that the two studies yield very
close convergence orders averaging around 1.5. This number is also consistent with the
result of the 2D version (Figure 18(a)). Results for velocity errors show that Gross (2008)
yields an average convergence rate of 2.0 compared to the lower rate of 1.5 for this study.
This is not unexpected since Gross (2008) employs a quadratic approximation for both
the velocity field and the level-set (which also leads to a more accurate discretization of
the surface tension) compared to a trilinear approximation used in this study.

7.5. Rising n-butanol droplet

Finally, a rising n-butanol droplet is considered. The setup of the test case follows
the description in [49] and is shown in Figure 32. A single n-butanol droplet is located
in a tank Ω of dimensions [0.02 m × 0.02 m × 0.03 m]. The densities of the two fluids
in Ω1 and Ω2 are "1 = 845.4 kg/m3 and "2 = 986.5 kg/m3 and the viscosities are

39



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 2: Errors and convergence rates for pressure and velocity for Gross (2008).

Gross (2008)

nref ‖ pex − ph ‖L2
Order ‖ u

ex − u
h ‖L2

Order

0 1.64e−1 - 7.16e−3 -
1 4.97e−2 1.73 1.57e−3 2.19
2 1.66e−2 1.58 3.25e−4 2.28
3 7.16e−3 1.22 8.57e−5 1.92
4 2.83e−3 1.34 1.75e−5 2.29

Table 3: Errors and convergence rates for pressure and velocity for this study.

This study

nref ‖ pex − ph ‖L2
Order ‖ u

ex − u
h ‖L2

Order

1 7.90e−1 - 3.73e−3 -
2 2.54e−1 1.64 1.58e−3 1.24
3 1.05e−1 1.27 5.47e−4 1.53
4 3.89e−2 1.48 1.75e−4 1.65

µ1 = 1.388 · 10−3 kg/s/m and µ2 = 3.281 · 10−3 kg/s/m. A gravitational acceleration of
gz = −9.81 m/s2 is considered. Slip-conditions are assumed along the walls of the tank,
and p = 0 N/m2 is fixed at one corner of the domain. The initial position of the droplet’s
center is located at (0.01 m, 0.01 m, 0.003 m). The surface tension coefficient is set as
γ = 1.63 · 10−3 kg/s2 and the situation is observed for t = (0 s, 0.5 s).

Different radii of the bubble are considered: r = 0.75 mm, 1.0 mm, 1.25 mm, 1.50 mm,
1.75 mm, and 2.0 mm. This test case is characterized by the 4 non-dimensional numbers:
the density ratio "2/"1 = 1.167, the viscosity ratio µ2/µ1 = 0.423, the Morton number
M = 8.53 · 10−6 and the Eötvös number which varies from Eo = 13.4 to Eo = 95.0, see
Table 4.

For the spatial discretization, a coarse mesh size of 6×6×9 elements with refinement
level nref = 3 is chosen for the bubble radii r = 1.50 mm, 1.75 mm, and 2.0 mm. On
the other hand, a coarse mesh size of 4× 4× 6 elements with a refinement level nref = 4
is chosen for the bubble radii r = 0.75 mm, 1.0 mm and 1.25 mm. This translates
to resolutions of 0.02/48 m and 0.02/64 m in the vicinity of the interface for the two
groups of radii, respectively. The use of a finer resolution for the latter group is due
to the smaller size of the bubble which requires a finer mesh to capture the interfacial
position accurately. Due to surface tension effects, the numerical capillarity time-step

size limit (49) is applicable, where ∆t(ca)num = 0.004s. Therefore, the time step in the
Crank-Nicholson scheme is chosen as ∆t = 0.001 s.

The pressure approximation is sign-enriched according to (26). The criterion (33) is
employed where all elements within a certain distance d = 0.0008 m from the interface
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Figure 32: Problem statement for the 3D rising n-butanol droplet test case.

Table 4: Different sizes of the droplet with corresponding Eötvös numbers considered in
this study.

Radius (mm) Eötvös number

0.75 13.4
1.00 23.7
1.25 37.1
1.50 53.4
1.75 72.7
2.00 95.0
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Figure 33: Variation of (a) the barycenter r̄d(t) and (b) the average velocity v̄d(t) of the
r = 1.0 mm droplet with time.

are refined. Following Groß [49], we define the droplet’s barycenter r̄d as

r̄d(t) =
1

V (Ω1)

∫

Ω1

xdΩ, (72)

where V (Ω1) is the volume of the droplet. Similarly, the average velocity of the droplet
v̄d is defined as

v̄d(t) =
1

V (Ω1)

∫

Ω1

v(x, t) dΩ. (73)

The variations of r̄d(t) and v̄d(t) for the r = 1.0 mm droplet with time are shown
in Figure 33(a) and (b), respectively. As can be seen from Figure 33(b), the average
velocity v̄d(t) reaches a certain steady value after some time. We refer to this as the
terminal velocity of the droplet. The evolution of the z-component of the velocity field
for the same r = 1.0 mm droplet on the cross-section y = 0.01 m is shown in Figure 34.

The terminal velocities of the n-butanol droplet for the various radii are computed
and shown in Table 5. The numerical predictions are compared to the theoretical model
predictions of Henschke [50] and the numerical predictions of Groß [49]. The same
results are plotted and compared in Figure 35. It is observed that both Gross (2008)
and this study yield results very close to those predicted by the model. Further, it can
be seen that this study predicts terminal rise velocities which are consistently slightly
higher than those predicted by Gross (2008). Figure 35(b) shows a close-up view with
straight segments drawn between the data points in order to reveal the very similar
trends in both numerical studies. That is, both studies exhibit a convex shape beyond
rd = 1.5 mm instead of a concave shape predicted by the theoretical model. Nevertheless,
the theoretical prediction is sandwiched between the two numerical predictions which are
very close.

8. SUMMARY AND CONCLUSIONS

The current two-fluid flow solver employs the XFEM for the enrichment of the pres-
sure space so that the jump across the two-fluid interface (in the presence of surface
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(a) t = 0.01 s (b) t = 0.1 s (c) t = 0.2 s

(e) t = 0.3 s (f) t = 0.4 s (g) t = 0.5 s

Figure 34: Evolution of the z-component of the velocity field with time for the r = 1.0 mm
droplet on the cross-section y = 0.01 m.

Table 5: Comparison of terminal rise velocities.

Radius Terminal rise velocity ur(mm/s)

rd (mm) Model Gross (2008) This study

0.75 40.3 40.8 41.0
1.00 53.7 53.0 52.0
1.25 60.0 57.1 57.8
1.50 57.5 56.7 58.3
1.75 55.6 55.2 57.6
2.00 55.8 53.9 56.5
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Figure 35: Comparison of terminal rise velocities for different droplet radii between
results from (i) model prediction, (ii) Gross (2008) and (iii) this study. (b) shows a
close-up view which reveals the very similar trends between (ii) and (iii).

tension) can be reproduced accurately. An important feature of the flow solver is the use
of a multi-level mesh refinement realized via hanging nodes, resulting in 1-irregular non-
conforming meshes. Such a refinement procedure is considerably more straightforward
compared to refinements on conforming meshes. The h-adaptivity feature of the flow
solver is essential to ensuring affordable computational costs especially when applied to
three-dimensional simulations.

In this study, the reinitialization of the level-set is realized by solving a PDE to
steady state where reinitialized level-set once again possesses the sign-distance property.
This method has proven to be superior to an interpolation reinitialization as far as
mass conservation is concerned. For the computation of the surface tension, different
methods of computing the normal vectors are proposed. The method which leads to
the best results utilizes the level-set definition of the normal vector and employs a finite
difference method to first compute the gradient of the level-set at the nodes. A standard
FE interpolation is then used to interpolate the gradients at points on the interface within
the cut element. A drawback of this method is the assumption of a Cartesian mesh (at
least in the vicinity of the interface). For general unstructured meshes, it is suggested
that a higher-order representation of the level-set can be used to improve the results.

The numerical results demonstrate the ability of the flow solver to handle situations
where large surface tensions (and therefore large jumps in the pressure field) exist across
the two-fluid moving interface. The accuracy of the solver is demonstrated by the con-
vergence studies in the L2 error norms of the pressure and velocity fields in both two and
three dimensions for the case of a static bubble. The accuracy of the solver is further
testified by the case of the rising n-butanol droplet with good agreement between the
numerical and model predictions of the terminal velocities. Overall, we have achieved
the objective of developing a robust two-fluid flow solver for the simulation of two-phase
incompressible flow capable of handling a variety of physical flow scenarios in both two
and three dimensions.
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