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SUMMARY In [1] it was proved that 20 of 64 PGV hash functions [2]
based on block cipher are collision-resistant and one-way in the black-box
model of the underlying block cipher. Here, we generalize the definition of
PGV-hash function into a hash family and we will prove that, aside from the
previously reported 20 hash functions, we have 22 more collision-resistant
and one-way hash families. As all these 42 families are keyed hash family,
these are also target-collision-resistant. All these 42 hash families have
tight upper and lower bounds on (target) collision-resistant and one-way-
ness.
key words: hash function, block cipher, black-box model, provable security

1. Introduction

Brief History. Preneel, Govaerts, and Vandewalle [2]
considered the 64 basic ways of constructing a (collision-
resistant) hash function H : ({0, 1}n)∗ → {0, 1}n from a block
cipher E : {0, 1}n × {0, 1}n → {0, 1}n. They regarded 12
of these 64 schemes as secure, though no proofs or formal
claims were given. After that Black, Rogaway, and Shrimp-
ton [1] presented a more proof-centric look at the schemes
from PGV, providing both upper and lower bounds for each.
They proved that, in the black box model of a block ci-
pher, 12 of 64 compression functions are CRHFs (Collision-
Resistant Hash Functions) and 20 of 64 extended hash func-
tions are CRHFs.

Motivation for Our Study. Examples of the most com-
monly used collision-resistant hash functions are MD5 and
SHA-1. For such hash functions, one cannot exactly ana-
lyze security. However, the security of collision-resistant or
one-way PGV hash functions can be analyzed under the as-
sumption that the underlying block cipher is a black box,
i.e., random permutation. However, the security of other
notions like target collision resistance cannot be analyzed
because it needs a family of hash functions instead of a sin-
gle hash function. Moreover, it seemed that more PGV hash
functions will be secure if we change the original definition
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of the PGV hash function. Thus, we generalize the defini-
tion of the PGV hash function to mean a PGV hash family
and prove some security notions like target collision resis-
tance, collision resistance and one-way-ness.

General Definition of PGV hash family. Let 0 ≤ l < n
and E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher. If
l = 0, let {0, 1}0 = {ε}, where ε is the empty string. Using
the block cipher E, we want to construct the compression
function family F = { f k}k∈{0,1}l , f k : {0, 1}n × {0, 1}n−l →
{0, 1}n.

Let h0, v ∈ {0, 1}n be fixed values. We define the
64 ways to construct a (block-cipher-based) compression
f unction f amily F = { f k}k∈{0,1}l in the following manner:
for each k ∈ {0, 1}l,

f k(h,m) = Ea(b) ⊕ c,

where a, b, c ∈ {h, (m||k), h ⊕ (m||k), v}. Note that |h| = n and
|m| = n − l. Then we can define the extended hash f amily
H = {Hk}k∈{0,1}l from the compression function family F =
{ f k}k∈{0,1}l as follows: for each k ∈ {0, 1}l, Hk : ({0, 1}n−l)∗ →
{0, 1}n is defined by

function Hk(m1 · · · mt)
for i← 1 to t do hi ← f k(hi−1,mi)
return ht.

Note that the key k of the extended hash family is equal to
the key of the compression function family.

Note that if l = 0, then F = { f k}k∈{0,1}0 = { f ε} is a sin-
gleton set corresponding to the original definition of PGV
[2]. In this case, we denote F as just f without the super-
script ε. We call this f a (block-cipher-based) compression
f unction. Similarly, we denote H as H without the super-
script ε. We call this H an extended hash function.

Results. For 0 < l < n, the security of the 64 schemes
is summarized in Table 1, which also serve to define the
different extended hash functions Hı and their compres-
sion functions fı. In this paper, we fix E1 = {1, ..., 20},
E2 = {21, 22, 26, 28}, E3= {23, 24, 25, 31, 34, 35}, E4=
{27, 29, 30, 32, 33, 36}, and E5 = {37, ..., 42}. Here, the num-
bers correspond to the numbers in the first column of Ta-
ble 1. E6 is a set of the remaining extended hash families
that are not represented in the first column of Table 1. Thus,
|E6| = 22. This classification is based on some property of
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Table 1 Summary of results of 64 extended hash families. Column 1 shows our number ı for the
function family (We write Fı for the compression function family andHı for its induced extended hash
family). Column 2 shows the number from [2]. Column 3 defines fk(hi−1,mi) for some k ∈ {0, 1}l. We
write xi for (mi ||k) and wi for xi ⊕ hi−1. Columns 4 and 5 show our (target) collision resistance bounds.
Columns 6 and 7 show our inversion resistance bounds. Note that there is a restriction on q for some
cases (See Theorem 2).

ı  hi = (T)CR LB (T)CR UB IR LB IR UB
1 Exi (xi) ⊕ v 1 1 – –

22 2 Ehi−1 (xi) ⊕ v q/2l+1 2q/(2l+1 − 1) q/2l+1 q/2l−1

13 3 Ewi (xi) ⊕ v .3q(q − 1)/2n q2/2n−1 q/2l q/2l−1

4 Ev(xi) ⊕ v 1 1 – –
5 Exi (xi) ⊕ xi 1 1 – –

1 6 Ehi−1 (xi) ⊕ xi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

9 7 Ewi (xi) ⊕ xi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

8 Ev(xi) ⊕ xi 1 1 – –
9 Exi (xi) ⊕ hi−1 1 1 – –

21 10 Ehi−1 (xi) ⊕ hi−1 q/2l+1 2q/(2l+1 − 1) q/2l+1 q/2l−1

11 11 Ewi (xi) ⊕ hi−1 .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

12 Ev(xi) ⊕ hi−1 1 1 – –
13 Exi (xi) ⊕ wi 1 1 – –

3 14 Ehi−1 (xi) ⊕ wi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

14 15 Ewi (xi) ⊕ wi .3q(q − 1)/2n q2/2n−1 q/2l q/2l−1

16 Ev(xi) ⊕ wi 1 1 – –
15 17 Exi (hi−1) ⊕ v .3q(q − 1)/2n q2/2n−1 .15q2/2n 9(q + 3)2/2n

18 Ehi−1 (hi−1) ⊕ v 1 1 – –
16 19 Ewi (hi−1) ⊕ v .3q(q − 1)/2n q2/2n−1 q/2l q/2l−1

20 Ev(hi−1) ⊕ v 1 1 – –
17 21 Exi (hi−1) ⊕ xi .3q(q − 1)/2n q2/2n−1 .15q2/2n 9(q + 3)2/2n

23 22 Ehi−1 (hi−1) ⊕ xi .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

12 23 Ewi (hi−1) ⊕ xi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

35 24 Ev(hi−1) ⊕ xi .3q(q − 1)/2l−1 q2/2l−1 .15q2/2l q2/2l−1

5 25 Emi (hi−1) ⊕ hi−1 .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

26 Ehi−1 (hi−1) ⊕ hi−1 1 1 – –
10 27 Ewi (hi−1) ⊕ hi−1 .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

28 Ev(hi−1) ⊕ hi−1 1 1 – –
7 29 Exi (hi−1) ⊕ wi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

24 30 Ehi−1 (hi−1) ⊕ wi .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

18 31 Ewi (hi−1) ⊕ wi .3q(q − 1)/2n q2/2n−1 q/2l q/2l−1

25 32 Ev(hi−1) ⊕ wi .3q(q − 1)/2l−1 q2/2l−1 q/2l q/2l−1

19 33 Exi (wi) ⊕ v .3q(q − 1)/2n q2/2n−1 .15q2/2n 9(q + 3)2/2n

26 34 Ehi−1 (wi) ⊕ v q/2l+1 2q/(2l+1 − 1) q/2l+1 q/2l−1

38 35 Ewi (wi) ⊕ v .3q(q − 1)/2l q2/2l−1 q/2n q/2n−1

37 36 Ev(wi) ⊕ v .3q(q − 1)/2l−1 q2/2l−1 .15q2/2l q2/2l−1

20 37 Exi (wi) ⊕ xi .3q(q − 1)/2n q2/2n−1 .15q2/2n 9(q + 3)2/2n

4 38 Ehi−1 (wi) ⊕ xi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

27 39 Ewi (wi) ⊕ xi .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

36 40 Ev(wi) ⊕ xi .3q(q − 1)/2l−1 q2/2l−1 .15q2/2l q2/2l−1

8 41 Exi (wi) ⊕ hi−1 .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

28 42 Ehi−1 (wi) ⊕ hi−1 q/2l+1 2q/(2l+1 − 1) q/2l+1 q/2l−1

29 43 Ewi (wi) ⊕ hi−1 .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

30 44 Ev(wi) ⊕ hi−1 .3q(q − 1)/2l−1 q2/2l−1 q/2l q/2l−1

6 45 Exi (wi) ⊕ wi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

2 46 Ehi−1 (wi) ⊕ wi .3q(q − 1)/2n q(q + 1)/2n .4q/2n 2q/2n

39 47 Ewi (wi) ⊕ wi .3q(q − 1)/2l q2/2l−1 q/2n q/2n−1

40 48 Ev(wi) ⊕ wi .3q(q − 1)/2l−1 q2/2l−1 q/2n q/2n−1

49 Exi (v) ⊕ v 1 1 – –
50 Ehi−1 (v) ⊕ v 1 1 – –

41 51 Ewi (v) ⊕ v .3q(q − 1)/2l q2/2l−1 q/2n q/2n−1

52 Ev(v) ⊕ v 1 1 – –
53 Exi (v) ⊕ xi 1 1 – –

31 54 Ehi−1 (v) ⊕ xi .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

32 55 Ewi (v) ⊕ xi .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

56 Ev(v) ⊕ xi 1 1 – –
57 Exi (v) ⊕ hi−1 1 1 – –
58 Ehi−1 (v) ⊕ hi−1 1 1 – –

33 59 Ewi (v) ⊕ hi−1 .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

60 Ev(v) ⊕ hi−1 1 1 – –
61 Exi (v) ⊕ wi 1 1 – –

34 62 Ehi−1 (v) ⊕ wi .3q(q − 1)/2l q2/2l−1 q/2l q/2l−1

42 63 Ewi (v) ⊕ wi .3q(q − 1)/2l q2/2l−1 q/2n q/2n−1

64 Ev(v) ⊕ wi 1 1 – –

the hash family that is used to prove the security. A high-
level summary is given in Tables 2 and 3. The adversarial
model (and the definition of q) will be described below. It

should be noted that there exists a trade-off between the size
of l and efficiency. If l is large, then we can obtain better
security but we lose efficiency.



LEE et al.: PGV-STYLE BLOCK-CIPHER-BASED HASH FAMILIES AND BLACK-BOX ANALYSIS
41

Table 2 l = 0. This is analyzed in [1]. EHF = extended hash family,
(T)CB= (target) collision bound, and IB= inversion bound.

EHF (T)CB IB

E1 Θ(q2/2n) Θ(q/2n) or Θ(q2/2n)
E2 Θ(1) –
E3/E4/E5 Θ(1) –
E6 Θ(1) –

Table 3 0 < l < n. This is analyzed in this paper. Abbreviations are the
same as those in Table 2.

EHF (T)CB IB

E1 Θ(q2/2n) Θ(q/2l) or Θ(q/2n) or Θ(q2/2n)
E2 Θ(q/2l) Θ(q/2l)
E3/E4/E5 Θ(q2/2l) Θ(q/2l) or Θ(q2/2l) or Θ(q/2n)
E6 Θ(1) –

Black-Box Model. Our security model is the one dating to
Shannon [6] and used for works like [3]–[5]. The adversary
A is given access to oracles E and E−1 where E is a random
block cipher E : {0, 1}n × {0, 1}n → {0, 1}n and E−1 is its
inverse. That is, each key a ∈ {0, 1}n names a randomly se-
lected permutation Ea = E(a, ·) on {0, 1}n, and the adversary
is given oracles E and E−1. The latter, on input (a, y), re-
turns a point x such that Ea(x) = y. See [1] for more details
and discussions about the black-box model.

In the above PGV hash function families, we do not use
any mask keys unlike in [7], [10], [12], and [13]. We prove
the target collision resistance of these hash families under
the black-box model and it will be more efficient in terms
of key size compared with the results in [7], [10], [12], and
[13] wherein mask keys are used.

2. Preliminary

Notation. We use the following standard notations in this
paper.

1. [a, b] = {a, · · · , b} where a ≤ b and a, b are integers.
2. If x ∈ {0, 1}n and 0 ≤ l < n, x = x[L]||x[R], where
|x[L]| = n − l and |x[R]| = l.

3. If S ⊆ {0, 1}n and a ∈ {0, 1}n, S ⊕a = a⊕S = {a⊕ s|s ∈
S }. Note that |S ⊕ a| = |a ⊕ S | = |S |.

4. A block cipher is a map E : {0, 1}n × {0, 1}n → {0, 1}n
where, for each key a ∈ {0, 1}n, the function Ea(·) =
E(a, ·) is a permutation on {0, 1}n. If E is a block cipher
then E−1 is its inverse, where E−1

a (y) is the string x such
that Ea(x) = y.

5. A hash f unction f amily is a H = {Hk}k∈{0,1}l , where
Hk : D→ {0, 1}n, D ⊆ {0, 1}∗.

6. Hash function family F = { f k}k∈{0,1}l , f k : D → {0, 1}n
is a compression f unction f amily if D = {0, 1}n ×
{0, 1}n−l for some fixed l.

7. Fix h0 ∈ {0, 1}n. The extended hash f amily of com-
pression function family F = { f k}k∈{0,1}l , f k : {0, 1}n ×
{0, 1}n−l → {0, 1}n, is the hash function family H =
{Hk}k∈{0,1}l such that Hk : ({0, 1}n−l)∗ → {0, 1}n defined
by Hk(m1 · · · mt) = ht, where hi = f k(hi−1,mi).

8. For the function H, (M,M′) is called a collision pair

of H if M � M′ and H(M) = H(M′).
9. We write x

R← S for the experiment on choosing a ran-
dom element from the finite set S and calling it x.

Assumption. From now on, we will always assume E :
{0, 1}n × {0, 1}n → {0, 1}n is a random block cipher, i.e., for
each a ∈ {0, 1}n, Ea(·) is a random permutation. Adversaries
are probabilistic algorithms. Thus, every probability in this
paper is based on the randomness of the block cipher and
random coins. We fix h0, v ∈ {0, 1}n.

Collision resistance and Inversion resistance of hash
function (l = 0). To quantify the collision resistance of
the (block-cipher-based) hash function H, we consider the
random block cipher E. An adversary A is given oracles
for E(·, ·) and E−1(·, ·) and wants to find a collision for H,
i.e., M,M′ where M � M′ but H(M) = H(M′). We also
define the difficulty in inverting hash functions. We use the
following measure for the difficulty ofA in inverting a hash
function at a random point.

Definition 1: (Collision resistance and inversion resistance
of the compression function ‘ f ’) Let f be a block-cipher-
based compression function, f : {0, 1}n × {0, 1}n → {0, 1}n.
Then the advantages of A in finding collisions and inverse
elements in f are

AdvColl
f (A) = Pr[((h,m), (h′,m′))← AE,E−1

:

((h,m) � (h′,m′)& f (h,m) = f (h′,m′))
or f (h,m) = h0]

AdvInv
f (A) = Pr[h∗

R← {0, 1}n; (h,m)←AE,E−1
(h∗) :

f (h,m) = h∗].

Definition 2: (Collision resistance and inversion resistance
of the extended hash function ‘H’) Let H be a block-cipher-
based extended hash function, H : ({0, 1}n)∗ → {0, 1}n. Then
the advantages of A in finding collisions and inverse ele-
ments in H are

AdvColl
H (A) = Pr[(M,M′)← AE,E−1

:

M � M′ & H(M) = H(M′)]

AdvInv
H (A) = Pr[h∗

R← {0, 1}n; M ←AE,E−1
(h∗) :

H(M) = h∗].

Collision resistance, Target collision resistance and In-
version resistance of hash function family (0 < l < n).
To quantify the collision resistance and target collision re-
sistance of the (block-cipher-based) hash function family
{Hk}k∈{0,1}l , we consider the random block cipher E. The ad-
versaryA is given oracles for E(·, ·) and E−1(·, ·). Then, the
adversaryAE,E−1

for collision resistance plays the following
game called Coll.

1. AE,E−1
is given the key k which is chosen uniformly at

random from {0, 1}l.
2. AE,E−1

has to find M,M′ such that M � M′ but
Hk(M) = Hk(M′).

The adversary AE,E−1
= (Aguess,A f ind(·, ·)) for target
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collision resistance plays the following game called TColl.

1. Aguess commits to M.
2. The key k is chosen uniformly at random from {0, 1}l.
3. A f ind(M, k) has to find M′ such that M � M′ but

Hk(M) = Hk(M′).

The adversaryAE,E−1
for inversion resistance plays the

following game called Inv.

1. The key k is chosen uniformly at random from {0, 1}l.
2. h∗ is chosen uniformly at random from the range
{0, 1}n.

3. AE,E−1
try to find M such that Hk(M) = h∗.

Definition 3: (Collision resistance, target collision resis-
tance, and inversion resistance of the compression function
family ‘F ’) Let F = { f k}k∈{0,1}l be a block-cipher-based
compression function family, where f k : {0, 1}n×{0, 1}n−l →
{0, 1}n. Then the advantages of A with respect to (target)
collision resistance and inversion resistance are the follow-
ing real numbers.

AdvColl
F (A) = Pr[k

R← {0, 1}l; ((h,m), (h′,m′))←
AE,E−1

(k) : ((h,m) � (h′,m′) & f k(h,m)

= f k(h′,m′)) or f k(h,m) = h0]

AdvTColl
F (A) = Pr[(h,m)← AE,E−1

guess ; k
R← {0, 1}l;

(h′,m′)← AE,E−1

f ind ((h||m), k) : (h,m)

� (h′,m′) & f k(h,m) = f k(h′,m′)]

AdvInv
F (A) = Pr[k

R← {0, 1}l; h∗
R← {0, 1}n;

(h,m)← AE,E−1
(h∗, k) : f k(h,m) = h∗].

Definition 4: (Collision resistance, target collision resis-
tance, and inversion resistance of the extended hash family
‘H’) Let H = {Hk}k∈{0,1}l be a block-cipher-based extended
hash family, where Hk : ({0, 1}n−l)∗ → {0, 1}n. Then the ad-
vantage ofAwith respect to (target) collision resistance and
inversion resistance are the following real numbers.

AdvColl
H (A) = Pr[k

R← {0, 1}l; M,M′ ← AE,E−1
(k) :

M � M′ & Hk(M) = Hk(M′)]

AdvTColl
H (A) = Pr[M ← AE,E−1

guess ; k
R← {0, 1}l;

M′ ← AE,E−1

f ind (M, k) : M � M′

& Hk(M) = Hk(M′)]

AdvInv
H (A) = Pr[k

R← {0, 1}l; h∗
R← {0, 1}n;

M ← AE,E−1
(h∗, k) : Hk(M) = h∗].

Maximal Advantage. IfA is an adversary and AdvXXX
Y (A)

is a measure of the adversarial advantage already defined,
then we write AdvXXX

Y (q) to mean the maximal value of
AdvXXX

Y (A) over all adversariesA that use queries bounded
by the number q.

Conventions. We follow conventions similar to those in

[1]. Note that these conventions are important for facilitat-
ing discussion and proving the following theorems. In the
rest of this paper, we assume the following significant con-
ventions.

1. First, an adversary does not ask any oracle query in
which the response is already known; namely, ifA asks
a query Ea(x) and oracle returns y, then A does not
ask a subsequent query of Ea(x) or E−1

a (y); and if A
asks E−1

a (y) and oracle returns x, thenA does not ask a
subsequent query of E−1

a (y) or Ea(x).
2. Second, if M is one of the outputs produced by an

adversary, then the adversary should make necessary
E/E−1 queries to compute Hk(M) during the whole
query process.

3. Similarly, we use the same assumption regarding the
oracle query process of an adversary A for the com-
pression function family F .

These assumptions are all without loss of generality in that
the adversaryA not obeying these conventions can easily be
modified to the adversaryA′ having a similar computational
complexity that obeys these conventions and has the same
advantage asA.

3. (Target) Collision Resistance of Extended Hash
Family

In this section, we will analyze the security of Hı for each
ı ∈ [1, 42] defined in Section 1 in the notion of (target)
collision resistance. We consider any adversary A with re-
spect to Coll, i.e., after obtaining random key k, he will try
to find a collision pair (M1,M2) for Hk

ı , i.e., M1 � M2,
Hk
ı (M1) = Hk

ı (M2). For that, he will make some E/E−1

queries. The transcript of A is defined by the sequence
of query-response quadruples {(si, xi, yi, σi)}1≤i≤q where q
is the maximum number of queries made by the adversary,
si, xi, yi ∈ {0, 1}n and σi = +1 (in case of E-query) or −1
(in case of E−1-query) and Esi (xi) = yi. (si, xi, yi, σi) will
be called the ith query-response quadruple (or q-r quadru-
ple). In this section, we fix some keys k and v. Note that,
if σi = +1 (or −1) then y (or x respectively) is a random
string as we assume that the block cipher Es(·) is a random
permutation.

Proposition 1: For fixed x, y ∈ {0, 1}n and A ⊆ {0, 1}n,
Pr[yi = y] ≤ 1

2n−i+1 and Pr[yi ∈ A] ≤ |A|
2n−i+1 whenever

σi = +1. Similarly, if σi = −1 then Pr[xi = x] ≤ 1
2n−i+1

and Pr[xi ∈ A] ≤ |A|
2n−i+1

Proof. Before the ith query, at most (i−1) outputs (or inputs)
of a block cipher with same key are known. Thus, output (or
input) of the next E will be uniformly distributed to at least
2n − (i − 1) elements. �

Here, we fix any arbitrary hash family Hı for ı ∈
[1, 42]. In this section, V := {0, 1}n is called the vertex set
and L := {0, 1}n−l the label set. A triple (h1, h2,m) ∈ V×V×L
(or a pair (h1, h2) ∈ V × V) is called the labeled arc (or an
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arc only). We also say that (h1, h2,m) is an arc (h1, h2) with
the label m, or m is a label of the arc (h1, h2) and we use the
notation h1 →m h2. Now, given a triple τ = (s, x, y), where,
s, x, y ∈ V , we define a set of labeled arcs A(τ) by

A(τ) = {(h1, h2,m) ∈ V × V × L : f k(h1,m)

= h2 ⇔ Es(x) = y}.
For example, in the case ofH21, f k

21(h1,m) := Eh1 (m||k)⊕h1.
So, ( f k(h1,m) = h2 ⇔ Es(x) = y) ⇐⇒ (Eh1 (m||k) ⊕ h1 =

h2 ⇔ Es(x) = y)⇐⇒ (h1 = s, h2 = y⊕h1 = y⊕ s,m||k = x).
Hence, A(τ) = {(s, s ⊕ y, x[L])} if x[R] = k, otherwise it is
an empty set.

Given a set of labeled arcs A, we define induced arc
set A′ = {(h1, h2) : ∃m ∈ L, (h1, h2,m) ∈ A}. For a set of
triple(s) τ = {τ1 = (s1, x1, y1), . . . , τa = (sa, xa, ya)}, we can
define the labeled arc set A(τ) =

⋃a
i=1 A(τi). It can be easily

checked that A′(τ) =
⋃a

i=1 A′(τi). Every member of A(τ) (or
A′(τ)) will be called the labeled arc (or arc) corresponding
to the set of triple(s) τ. Given a transcript {(si, xi, yi, σi)}1≤i≤q

of an adversary A, let τ[i] denote the sets of triples {τ1 =

(s1, x1, y1), . . . , τi = (si, xi, yi)}. For each i, we have a labeled
directed graph Ti = T (τ[i]) = (V, A(τ[i])) and a directed
graph T ′i = (V, A′(τ[i])). Define T0 = (V, ∅). Given a path
P = (h1, h2, . . . , hp) from h1 to hp in Ti, M = m1|| . . . ||mp−1

is called a label of P if mi is a label of (hi, hi−1) for each i.
So we have a picture like (h1 →m1 h2 →m2 . . . →mp−1 hp) in
Ti.
Observation 1 : By our conventions, the adversary can
compute f k

ı (h1,m) = h2 after the ith query iff for some
j ≤ i, Esj (x j) = y j ⇒ f k

ı (h1,m) = h2, and hence
(h1, h2,m) ∈ A(τ[i]). Similarly, the adversary can compute
Hk
ı (m1|| · · · ||ma) after the ith query iff h0 →m1 h1 →m2 ..→ma

ha is a path in A(τ[i]) and Hk
ı (m1|| · · · ||ma) = ha.

Definition 5: When ı ∈ E1, E2 or E4, h in Ti is old if
deg(h) ≥ 1 in Ti or h = h0. When ı ∈ E2 or E4, h in Ti is
old if h = h0 or there exists an h1 such that deg(h1) ≥ 1 in Ti

and h[R] = h1[R]. Here, deg(h) = indeg(h)+outdeg(h). The
other remaining vertices are known as new vertices. Here,
we call the set of all old vertices in Ti, Oi.

The next proposition will be used for security analysis.
It gives an upper bound of |Oi| and indicates the structure of
the set of labeled arcs A(τi) and A′(τi).

Proposition 2: If A(τi) is not empty then we have the fol-
lowing.

1. For ı ∈ E1 or E2, A(τi) is a singleton and |Oi| ≤ 2i + 1.

2. For ı ∈ E3, A′(τi) = {(h1, h2) : h2[R] = u}, where h1

and u are fixed depending only on j and τi. Thus, the
graph of A′(τi) resembles an outward directed star and
|A′(τi)| = 2n−l = |A(τi)| and hence |Oi| ≤ (2i + 1)2n−l.

3. For ı ∈ E4, A′(τi) = {(h, h ⊕ a) : h[R] = u}, where
a and u are fixed depending only on j and τi. Thus,

the graph of A′(τi) consists of 2n−l parallel arcs and
|A′(τi)| = 2n−l = |A(τi)|, and hence |Oi| ≤ (2i + 1)2n−l.

4. For ı ∈ E5, A′(τi) = {(h1, h2) : h1[R] = u}, where h2

and u are fixed depending only on j and τi. Thus, the
graph of the A′(τi) resembles an inward directed star
and |A′(τi)| = 2n−l = |A(τi)| and hence |Oi| ≤ (2i +
1)2n−l.

Moreover, for each (h1, h2) ∈ A′(τi), there exists a unique m
such that h1 →m h2. For the hash families E3, E4 and E5, if
h1[R] = h2[R], then h1 ∈ Oi ⇒ h2 ∈ Oi for all i.

Proof. Bounds for |Oi|’s and the last part of the proposition
are straightforward from the structure of A′(τi). We will
prove this for one hash function from each class. Other cases
will be very similar and one can check analogously. Let
τi = (si, xi, yi).

1. In the case of H1, f k
1 (h1,m) := Eh1 (m||k) ⊕ (m||k). So,

( f k(h1,m) = h2 ⇔ Esi (xi) = yi) ⇐⇒ (Eh1 (m||k) ⊕
(m||k) = h2 ⇔ Esi (xi) = yi) ⇐⇒ (h1 = si, h2 = yi ⊕
(m||k), xi = m||k). Hence, A(τ) = {(si, yi ⊕ xi, xi[L])} if
xi[R] = k, otherwise it is an empty set.

In the case of H21, after defining A(τ) in this section,
we have shown that A(τ) = {(si, si⊕yi, xi[L])} if xi[R] =
k, otherwise it is an empty set.

2. In the case of H23, f k
23(h1,m) := Eh1 (h1) ⊕ (m||k). So,

( f k(h1,m) = h2 ⇔ Esi (xi) = yi)⇐⇒ (Eh1 (h1)⊕(m||k) =
h2 ⇔ Esi (xi) = yi)⇐⇒ (h1 = si = xi, h2 = yi ⊕ (m||k)).
Hence, A(τ) = {(si, h2,m) : h2[R] = yi[R] ⊕ k,m =
h2[L] ⊕ yi[L]} if xi = si, otherwise it is an empty set.

3. In the case ofH27, f k
27(h1,m) := Ew1 (w1)⊕ (m||k) where

w1 = h1 ⊕ (m||k). So, ( f k(h1,m) = h2 ⇔ Esi (xi) =
yi) ⇐⇒ (Ew1 (w1) ⊕ (m||k) = h2 ⇔ Esi (xi) = yi) ⇐⇒
(h1 = si⊕(m||k), h2 = yi⊕(m||k) = h1⊕(yi⊕ si), si = xi).
Hence, A(τ) = {(h1, h1 ⊕ (si ⊕ yi), xi[L] ⊕ h1[R])} if
xi = si, otherwise it is an empty set.

4. In the case ofH37, we can similarly prove that A(τi) =
{(h1, yi ⊕ v,m) : h1[R] = si[R] ⊕ k,m = h1[L] ⊕ si} if
xi = si, otherwise it is an empty set. �

Definition 6: For each 1 ≤ i ≤ q, we define some events.

1. Ci : the adversary gets a collision after ith query.
2. PathColli : there exist two paths P1 and P2 (not nec-

essarily distinct) from h0 to some h∗ in Ti such that P1

and P2 have two different labels.
3. Succi : there exists an arc (h, h′) ∈ A′(τi), where both

h and h′ are old vertices in Ti−1.

Proposition 3: The event PathColli is equivalent to Ci.

Proof. Ci ⇔ PathColli can be proved using the last part of
Observation 1.
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Proposition 4: For E1, E2, E3, and E4 hash families, the
conditional event (Ci | ¬Ci−1) necessarily implies Succi. For
E5, Ci necessarily implies Succi′ for some i′ ≤ i.

Proof. Let P1 and P2 be two distinct paths from h0 to h∗ in
T ′i with different labels for some h∗. As PathColli−1 is not
true, there exists at least one arc in P1 ∪ P2 which corre-
sponds to τi. If Succi is not true, then one of the vertices
of an arc corresponding to τi should be new in Ti−1 which
implies that there exist two arcs either (h1, h2), (h2, h3) or
(h1, h3), (h2, h3) corresponding to τi. However, this is not
possible by the structure of A′(τi) (see Proposition 2) in the
cases of E1, E2, E3 and E4 hash families. Similarly we can
prove it when P1 = P2.

In the case of the E5 hash function for P1 = P2, the
proof is similar as (h1, h3), (h2, h3) case will not arise. Thus,
assume that P1 and P2 are different and there exist (h1, h3)
and (h2, h3) corresponding to τi in the path P1 ∪ P2. By
Proposition 2, h1[R] = h2[R]. If Succi is not true but
(PathColli|¬PathColli−1) is true, then we have two paths
P′1 and P′2 in Ti−1 from h0 to ha = h1 and h′b = h2, re-
spectively. Let P′1 = (h0 → h1 → . . . → ha) and
P′2 = (h0 → h′1 → . . . → h′b). Thus, if Succi′ is not true
for all i′ such that 1 ≤ i′ ≤ i, then at least one new vertex
from P′1 ∪ P′2 is added to Oj for each j whenever it is added.
As there are new a+ b vertices for T0 in P′1 ∪P′2 and at most
one arc can be added to Aj(τi′) every time (because of the
structure of Aj(τi′)) we have to add exactly one new vertex
in each i′, because h1[R] = h2[R]. Thus, we will add two
new vertices in P′1 ∪ P′2 to a set of old vertices when we add
h1 or h2 first time and hence contradiction. �

Observation 2: In E5, Cq ⇒ ∨q
i=1 Succi by the above

Proposition 4. Thus, we have Pr[A gets a collision] ≤
∑q

i=1 Pr[Succi]. In other hash families, by the above Propo-
sition 4, Pr[A gets a collision] ≤ ∑q

i=1 Pr[Ci|¬Ci−1] ≤
∑q

i=1 Pr[Succi]. Thus, it is sufficient to have an upper bound
of Pr[Succi] in all hash functions.

Theorem 1: For each 1 ≤ i ≤ q, we have the following.

1. For the E1 hash family, Pr[Succi] ≤ (2i − 1)/2n−1.
2. For the E2 hash family, Pr[Succi] ≤ 2/(2l+1 − 1) if

q ≤ 2n−l−1.
3. For the E3,E4 or E5 hash families, Pr[Succi] ≤ (2i −

1)/2l−1 .

Proof. LetA be an adversary attackingHı. Assume thatA
asks its oracles at most q queries. Assume that the random
key k is given. Let (si, xi, yi, σi) be the ith q-r quadruple.

Consider Hk
1 in the case of the E1 hash family. For the

other hash families in E1, the proof is analogous to the proof
of Hk

1.

1. Case 1: σi = +1. Succi ⇒ yi ⊕ xi ∈ Oi−1 (See
Proposition 2). Thus, Pr[Succi] ≤ Pr[yi ∈ Oi−1 ⊕ xi]
≤ (2i − 1)/(2n − i + 1) (by Propositions 1 and 2).

2. Case 2: σi = −1. Succi ⇒ yi ⊕ xi ∈ Oi−1 (See Propo-
sitions 2). Hence, Pr[Succi] ≤ Pr[xi ∈ Oi−1 ⊕ yi] ≤
(2i − 1)/(2n − i + 1) (by Proposition 1 and 2).

Therefore, Pr[Succi] ≤ (2i− 1)/(2n − i + 1) ≤ (2i− 1)/2n−1.
Consider Hk

21 in the case of the E2 hash family. For the other
hash families in E2, the proof is analogous to the proof of
21.

1. Case 1: σi = +1. Succi ⇒ yi ⊕ si ∈ Oi−1 (See Propo-
sition 2). Hence, Pr[Succi] ≤ Pr[yi ∈ Oi−1 ⊕ si] ≤
(2i − 1)/(2n − i + 1) (by Propositions 1 and 2).

2. Case 2: σi = −1. Succi ⇒ xi[R] = k. Let Q =
{x|x[R] = k} then |Q| = |2n−l|. Hence, Pr[Succi] ≤
Pr[xi ∈ Q] ≤ 2n−l/(2n − i + 1) (by Proposition 1).

Therefore, Pr[Succi] ≤ max{(2i−1)/(2n − i + 1), 2n−l/ (2n−
i + 1)}. Since q ≤ 2n−l−1, Pr[Succi] ≤ 2n−l/(2n − i + 1) ≤
2/(2l+1 − 1). Consider Hk

23 in the case of the E3 hash family.
For the other hash families in E3, the proof is analogous
to the proof of 21. For E4/E5 hash functions, the proof is
analogous to the proof of 23.

1. If σi = +1, then Succi implies that there exists an arc
(h, h′) ∈ A(τi) such that h′ ∈ Oi−1. This implies that
there exists an m such that (yi ⊕ (m||k)) ∈ Oi−1. By
Proposition 2, (yi ⊕ (m||k)) ∈ Oi−1 ⇔ (yi ⊕ (0||k)) ∈
Oi−1 ⇔ yi ∈ Oi−1 ⊕ (0||k). Therefore, by Propositions 1
and 2, Pr[Succi] ≤ 2n−l(2i − 1)/(2n − i + 1).

2. If σi = −1, then Succi implies that xi = si. Hence,
Pr[Succi] ≤ Pr[xi = si]. Hence, by Proposition 1,
Pr[Succi] ≤ Pr[xi = si] ≤ 1/(2n − i + 1).

Therefore, Pr[Succi] ≤ max{2n−l(2i − 1)/(2n − i + 1),
1/(2n − i + 1)} = 2n−l(2i − 1)/(2n − i + 1) ≤ (2i − 1)/2l−1. �

Thus, we have the following theorem using Observa-
tion 2. Note that we can first prove 1 and 3 of the following
theorem with the restriction q ≤ 2n−1. However, in this case
the upper bound is vacuous when q > 2n−1. Thus, we do not
need to restrict q ≤ 2n−1 in cases 1 and 3.

Theorem 2: 1. AdvColl
Hı (q) ≤ q2/2n−1 for ı ∈ E1

2. AdvColl
Hı (q) ≤ 2q/(2l+1 − 1) for all q ≤ 2n−l−1 and ı ∈

E2.
3. AdvColl

Hı (q) ≤ q2/2l−1 for ı ∈ E3, E4 or E5.

By the following theorem, the upper bound of advan-
tage for the E1 hash family can also be obtained from that
of the corresponding hash function presented in [1].

Theorem 3: ∀ı ∈ [1, 42], AdvColl
Hı (q) ≤ AdvColl

Hı
(q)

Proof. Suppose A is an adversary with respect to Coll for
the hash family Hı. We can easily construct the adversary
B with respect to Coll for Hı. Choose k at random from
{0, 1}l. Run A to get M1 and M2 where, M1 = m1

1|| · · · ||m1
a,

M1 = m2
1|| · · · ||m2

b, |mj
i | = n − l and j = 1 or 2. B out-

puts (M′1,M
′
2) where M′1 = (m1

1||k)|| · · · ||(m1
a||k), and M′2 =

(m2
1||k)|| · · · ||(m2

b||k). It is very easy to check that if (M1,M2)
is a collision pair for Hk

ı , then (M′1,M
′
2) is a collision pair for

Hı. Note that whenever A asks for an E-query/E−1-query,
B asks the same query and the output of the query is given
toA in response to the query made by B. �
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In [1], the followings are known.

1. For ı ∈ [1, 12], AdvColl
Hı

(q) ≤ q(q + 1)/2n.

2. For ı ∈ [13, 20], AdvColl
Hı

(q) ≤ 3q(q + 1)/2n.

Thus, we can conclude from Theorems 2 and 3 the follow-
ing.

Corollary 1: For ı ∈ [1, 12], AdvTColl
Hı (q) ≤AdvColl

Hı (q) ≤
q(q+ 1)/2n. For ı = [13, 20], AdvTColl

Hı (q) ≤ AdvColl
Hı (q) ≤

q2/2n−1.

4. Some Attacks in Target Collision Resistant Game

Idea of Attack : Here we will give a generic attack for
all H j’s for the game TColl (See Section 2). Commit
M1 = (m1|| . . . ||mq). We will later describe how these
mi’s will be chosen. Then given the random key k, com-
pute Hk

j (M1) using q queries. We will obtain h1, . . . hq and

Hk
j (M1) = hq, where h0 →m1 h1 →m2 . . . hq−1 →mq hq.

If we get one such i < i′ such that hi = hi′ , then define
M2 = m1|| . . . ||mi||mi′+1|| . . .mq. Thus, M1 and M2 will be
a collision pair. Roughly hi’s are random strings and the
probability of success will be the probability for the birth-
day collision of hi’s which is O(q2/2n). We will choose mi’s
so that the key for each query (i.e. si) is different. We as-
sume that all hi’s are different, otherwise we get a collision.

Choice of mi’s :

1. If the key of the block cipher E is w in the definition of
compression function, then choose mi = 0. Thus, each
wi will be different as hi’s are different.

2. If the key is h or m, then choose mi = i; hence, the keys
are different.

3. If the key is v then choose mi’s so that the inputs of
compression functions are different. In this case, we
will study the lower bound separately.

Theorem 4: AdvColl
Hı (q) ≥ AdvTColl

Hı (q) ≥ 0.3q(q−1)
2n for

each ı ∈ [1, 42] whenever the key of E is not v in the defini-
tion of the compression function.

Proof. Define Di by the event that no collision occurs af-
ter the ith query and D the event that the above attack fails
after all queries, i.e., D is the same as Dq. Define D0 by
a sure event. Now, Pr[D] =

∏q
i=1 Pr[Di|Di−1]. If Di−1 is

true, then all hi′ ’s are different for i′ < i. Now, hi = yi ⊕ α j

(here, α j depends on hi−1,mi and v). Now, Di is true⇔ yi �
{h0, h1, . . . , hi−1} ⊕ α j. Thus, Pr[Di|Di−1] = (1 − i

2n ). So

AdvTColl
Hı (q) ≥ 1−∏q

i=1(1− i
2n ) ≥ ·3q(q−1)

2n (the last inequal-
ity is in accordance with Proposition 5). �

For the hash family E3/E4/E5, we can have a better
lower bound such as Ω( q2

2l ) if we just check whether hi[R] =
hi′ [R] for i < i′ and construct M2 depending on the type of

the hash function. Choose mi’s as described earlier. The
construction of M2 is given below, where hi[R] = hi′ [R] for
i < i′.

1. E3 : In the E3 family, if h →m h′ then h ⊕ (a||0) →m⊕a

h′ ⊕ (a||0). Thus, define M2 = m1|| . . . ||mi′ ||(mi+1 ⊕
a)|| . . . ||(mi′ ⊕ a)||mi+1|| . . . ||mq. Here, a = hi[R] ⊕
hi′ [R]. This will result in a collision because
H j(m1|| . . . ||mi′ ||(mi+1 ⊕ a)|| . . . ||(mi′ ⊕ a)) = hi.

2. E4 : By Proposition 2, we obtain some m′i′ such that
hi′−1 →m′

i′ hi′ . Thus, define M2 = m1||..||mi−1||m′i′ ||..||mq.
This will result in a collision.

3. E5 : This case is very similar to E4, so we skip this.

Theorem 5: Let ı ∈ E3 or E4 or E5. If v is not the key
of E in the definition for the compression function, then

AdvColl
Hı (q) ≥ AdvTColl

Hı (q) ≥ 0.3q(q−1)
2l . In other cases,

AdvColl
Hı (q) ≥ AdvTColl

Hı (q) ≥ 0.3q(q−1)
2l−1 .

Proof. We use the same notations as above. If Di−1 is true,
then all hi′ [R]’s are different for i′ < i. Now, hi = yi ⊕
α j (here α j depends on hi−1,mi and v). Now, Di is true ⇔
(yi[R] ⊕ α j[R] =) hi[R] � {h0[R], h1[R], . . . , hi−1[R]}. Thus,
yi � A − {y1, . . . , yi−1} where A = {x; x[R] ⊕ a = hi′ [R], 0 ≤
i′ ≤ i − 1} and |A| = i.2n−l. Hence, Pr[Di|Di−1] = (1 − i

2l ).

Thus, AdvTColl
Hı (q) ≥ 1 −∏q

i=1(1 − i
2l ) ≤ ·3q(q−1)

2l (the last
inequality is in accordance with Proposition 5).

When the key is the same as v, then everything is the
same as above except Pr[Di|Di−1] = (1 − i2n−l−i+1

2n−(i−1) ) as yi

cannot take previous i − 1 outputs. Thus, if q ≤ 2n−1,

Pr[Di|Di−1] ≥ (1 − i
2l−1 ); hence, AdvTColl

Hı (q) ≥ ·3q(q−1)
2l−1 .
�

Attack for E2 Hash Family : We will consider the H21

hash family from E2. Other cases are similar to this family.
Fix some a > 0 integer such that (a+1)(a+2)/2+a+1 ≥ q.
Let m1, · · · ,ma be randomly chosen from {0, 1}n−l. Commit
M1 = m1|| . . . ||ma. Then, given random key k, computes
H21(M1) using a queries (we have to perform this by our
convention). We will obtain h0, h1 . . . , ha = H21(M1). If
hi = hi′ for some i < i′ then M2 = m1|| · · · ||mi||mi′+1|| · · · ||ma.
The output is M2. Otherwise run the loop below for q − a
many times.

For i, j = 0 to a ( j � i + 1, i ≤ j)
Compute E−1

hi
(hi ⊕ hj) = x

If x[R] = k output M2 = m1|| · · · ||mi||mj+1|| · · · ||ma.

Theorem 6: For each ı ∈ E2, AdvColl
Hı (q) ≥ AdvTColl

Hı (q)
≥ .3a(a + 1)/2n + (q − a)/2l

Proof. Here, we have two possibilities to obtain a collision.
In the first case, the success probability is at least .3a(a +
1)/2n by an argument similar to that mentioned above. In the
second case, Pr[x[R] = k] ≥ 1/2l for each loop. Altogether,
the success probability is at least (q − a)/2l. One can write
the proof in more detail. �

Proposition 5: 1 −∏q
i=1(1 − i

2a ) ≥ ·3q(q−1)
2a for any integer
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a.

Proof. The proof is given in [1], so we skip it. �

5. Inversion Resistance of Extended Hash Family

5.1 Upper Bound

In the Inv game, a random key k and a random h∗ are given,
where h∗ ∈ {0, 1}n. Then the adversary A will try to com-
pute M in the case of the extended hash function or h,m in
the case of compression function such that Hk

ı (M) = h∗ or
f k
ı (h,m) = h∗. If he finds that, then we will say that adver-

sary wins. As we have studied in the black-box model, the
adversary can query E/E−1 similar to other games like Coll
or TColl. Thus, the adversary has a transcript or sequence of
query-response quadruples {(si, xi, yi, σi)}1≤i≤q. In this sec-
tion, we modify the definition of old vertices. In addition
to the previous old vertices, we also include h∗ as an old
vertex in each Ti (See Section 3). By the new definition of
the old vertex, the size of Oi is one more than that of the
previous Oi. The definition of Succi is the same as the pre-
vious definition. Note that the definition of Succi involves
old vertices. In that sense, this definition is changed slightly.
Similarly to Ci, we define Invi which means that the adver-
sary gets an inverse of h∗ (i.e., the adversary wins) after the
ith query. It is very easy to check that (Invi|¬Invi−1) implies
Succi. Thus, for an extended hash family, we have one up-
per bound for the probability of winning in the Inv game
which is the same as that in the Coll game (See Section 2
for the upper bound). However, we can have a better bound
for the extended hash family using the theorem below.

Theorem 7: AdvInv
Hı (q) ≤ AdvInv

Fı (q) for each ı ∈ [1, 42].

Proof. The proof for the single hash function and single
compression function is given in [1]. The same proof will
carry forward for the hash family and compression family.
Intuitively, finding an inverse for an extended hash family is
stronger than finding that for a compression function. �

Now, we will study the security analysis of the inver-
sion resistance of compression functions. It can be easily
observed that, for ı ∈ {15, 17, 19, 20, 35, 36, 37}, compres-
sion functions are not inversion-resistant. All other com-
pression functions are inversion-resistant.

Theorem 8: AdvInv
Fı (q) ≤ q/2l−1 for ı ∈ [21, 34] or ı ∈

{13, 14, 16, 18}.
Proof. Here we consider the hash family H23. Other cases
will be very similar. A random key k and h∗ are given to
the adversary. The conditional event (Invi|¬Invi−1) implies
that the arc (h, h∗) corresponds to τi for some h (See Sec-
tion 3). Thus, Esi (xi) = yi ⇔ h →m h∗ for some h and
m. Thus, h∗ = yi ⊕ (m||k) and si = xi. If σi = +1, then
Pr[Invi|¬Invi−1] ≤ Pr[yi[R] = h∗[R]⊕ k] ≤ 2n−l/(2n− i+1) ≤
1/2l−1 (assume q ≤ 2n−l, otherwise the bound is trivial). If
σi = −1, Pr[Invi|¬Invi−1] ≤ 1/(2n − i + 1) ≤ 1/2n−1. Thus,
AdvInv

Fı (q) ≤ ∑q
i=1 Pr[Invi|¬Invi−1] ≤ q/2l−1. �

Theorem 9: AdvInv
Fı (q) ≤ q/2n−1 for ı ∈ [38, 42] or [1, 12].

Proof. Consider ı = 38. Other cases will be similar. In
fact, the idea of the proof is the same as the previous proof.
Invi|¬Invi−1 implies yi = h∗ ⊕ v and xi = si. Thus, whenever
i ≤ 2n−1, Pr[Invi|¬Invi−1] ≤ 1/2n−1 (check for σi = +1 and
−1). �

For other cases ı ∈ {35, 36, 37}, we can use the same
technique used in proving the upper bound for the Coll
game. By the discussion made in the beginning of this sec-
tion, we can have the following theorem.

Theorem 10: AdvInv
Hı (q) ≤ q2/2l−1 for ı ∈ [35, 37]

and AdvInv
Hı (q) ≤ AdvInv

Hı
(q) ≤ 9(q + 3)2/2n for ı ∈

{15, 17, 19, 20}.
Proof. The last part of the theorem is similar to Theorem 3
and from [1] we know AdvInv

Hı
(q) ≤ 9(q + 3)2/2n for ı ∈

{15, 17, 19, 20}. �

5.2 Some Attacks in Inv Game for Lower Bound

Attack 1: When ı ∈ {15, 17, 19, 20, 35, 36, 37}, i.e., when
the corresponding compression is not inversion-resistant, we
can perform meet-in-the-middle-attack. The idea of the at-
tack is presented in [1]. Given h0 and h∗, we compute two
sets F and B such that h0 → h1 for every h1 ∈ F and h2 → h∗
for every h2 ∈ B. Note that we can construct B as the com-
pression functions are not inversion-resistant. If we get an
element in F ∩ B, e.g., say h, then we have an inverse ele-
ment of h∗. More precisely, if h0 →m1 h→m2 h∗ for some m1

and m2 then m1||m2 will be an inverse element of h∗. Thus,
we have the following lower bound which is similar to the
bound given in [1]; hence, we skip the proof.

Theorem 11: AdvInv
Hı (q) ≥ (0.15)q2/2n for ı ∈

{15, 17, 19, 20} and AdvInv
Hı (q) ≥ (0.15)q2/2l for ı ∈

[35, 37].

Attack 2: The attacking algorithm is the same as the generic
attack for the target collision resistance described in Sec-
tion 4. We choose m1, ..,mq and then compute h1, .., hq. Fi-
nally we look for some hi such that hi = h∗ (for ı ∈ [38, 42]
or [1, 12]) or hi[R] =h∗[R] (for ı ∈ [21,34]). One can prove
this accurately but this will be the same as the proof of the
collision attack; hence, we skip the details.

Theorem 12: AdvInv
Hı (q) ≥ q/2l+1 for ı ∈ [21, 34] and

AdvInv
Hı (q) ≥ q/2n for ı ∈ [38, 42] or [1, 12].

6. Conclusion

In this paper, we first generalized the definition of PGV-
hash functions into PGV-hash families. In the new defini-
tion, we have more secure hash families (42 hash families)
with respect to collision resistance and one-way-ness. Un-
like previous definitions, it is a keyed family so that we can
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study other security notions such as the target collision re-
sistance. In fact, all these 42 hash families become target-
collision-resistant. As AES is treated as a good candidate for
a block cipher, we can implement these hash families using
AES. From our results, only the attack for these hash fam-
ilies should explore some internal weakness of AES. That
is, these hash families can be practically constructed us-
ing AES until we obtain some weakness of AES. The proof
techniques used here are natural and direct for security no-
tions. Thus, one can also study these proof techniques to
obtain good ideas about using the black-box model.
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