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ABSTRACT

Over the last 20-30 years, theextended Kalman filter(EKF) has
become the algorithm of choice in numerous nonlinear estimation
and machine learning applications. These include estimating the
state of a nonlinear dynamic system as well estimating parameters
for nonlinear system identification (e.g., learning the weights of
a neural network). The EKF applies the standard linear Kalman
filter methodology to a linearization of the true nonlinear system.
This approach is sub-optimal, and can easily lead to divergence.
Julier et al. [1] proposed theunscented Kalman filter(UKF) as
a derivative-free alternative to the extended Kalman filterin the
framework of state-estimation. This was extended to parameter-
estimation by Wan and van der Merwe [2, 3]. The UKF consis-
tently outperforms the EKF in terms of prediction and estimation
error, at an equal computational complexity ofO(L3)1 for gen-
eral state-space problems. When the EKF is applied to parameter-
estimation, the special form of the state-space equations allows
for anO(L2) implementation. This paper introduces thesquare-
root unscented Kalman filter(SR-UKF) which is alsoO(L3) for
general state-estimation andO(L2) for parameter estimation (note
the original formulation of the UKF for parameter-estimation wasO(L3)). In addition, the square-root forms have the added benefit
of numerical stability and guaranteed positive semi-definiteness of
the state covariances.

1. INTRODUCTION

The EKF has been applied extensively to the field of nonlineares-
timation for bothstate-estimationandparameter-estimation. The
basic framework for the EKF (and the UKF) involves estimation of
the state of a discrete-time nonlinear dynamic system,xk+1 = F(xk;uk) + vk (1)yk = H(xk) + nk; (2)

wherexk represent the unobserved state of the system,uk is a
known exogenous input, andyk is the observed measurement sig-
nal. Theprocessnoisevk drives the dynamic system, and theob-
servationnoise is given bynk. The EKF involves the recursive
estimation of the mean and covariance of the state under a Gaus-
sian assumption.

In contrast, parameter-estimation, sometimes referred toas sys-
tem identification, involves determining a nonlinear mappingyk =
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1L is the dimension of the state variable.

G(xk;w), wherexk is the input,yk is the output, and the nonlin-
ear map,G(�), is parameterized by the vectorw. Typically, a train-
ing set is provided with sample pairs consisting of known input and
desired outputs,fxk;dkg. The error of the machine is defined asek = dk �G(xk;w), and the goal of learning involves solving
for the parametersw in order to minimize the expectation of some
given function of the error. While a number of optimization ap-
proaches exist (e.g., gradient descent and Quasi-Newton methods),
parameters can be efficiently estimated on-line by writing anew
state-space representationwk+1 = wk + rk (3)dk = G(xk;wk) + ek; (4)

where the parameterswk correspond to a stationary process with
identity state transition matrix, driven by process noiserk (the
choice of variance determines convergence and tracking perfor-
mance). The outputdk corresponds to a nonlinear observation onwk. The EKF can then be applied directly as an efficient “second-
order” technique for learning the parameters [4].

2. THE UNSCENTED KALMAN FILTER

The inherent flaws of the EKF are due to its linearization approach
for calculating the mean and covariance of a random variablewhich
undergoes a nonlinear transformation. As shown in shown in [1,
2, 3], the UKF addresses these flaws by utilizing a deterministic
“sampling” approach to calculate mean and covariance terms. Es-
sentially,2L+ 1, sigmapoints (L is the state dimension), are cho-
sen based on a square-root decomposition of the prior covariance.
These sigma points are propagated through the true nonlinearity,
without approximation, and then a weighted mean and covariance
is taken. A simple illustration of the approach is shown in Fig-
ure 1 for a 2-dimensional system: the left plot shows the truemean
and covariance propagation using Monte-Carlo sampling; the cen-
ter plots show the results using a linearization approach aswould be
done in the EKF; the right plots show the performance of the new
“sampling” approach (note only 5 sigma points are required). This
approach results in approximations that are accurate to thethird
order (Taylor series expansion) for Gaussian inputs for allnonlin-
earities. For non-Gaussian inputs, approximations are accurate to
at least the second-order [1]. In contrast, the linearization approach
of the EKF results only in first order accuracy.

The full UKF involves the recursive application of this “sam-
pling” approach to the state-space equations. The standardUKF
implementation is given in Algorithm 2.1 for state-estimation, and
uses the following variable definitions:fWig is a set of scalar
weights (W (m)0 = �=(L+�) ,W (
)0 = �=(L+�)+(1��2+�),
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Figure 1:Example of mean and covariance propagation. a) actual,
b) first-order linearization (EKF), c) new “sampling” approach (UKF).W (m)i = W (
)i = 1=f2(L + �)g i = 1; : : : ; 2L). � = �2(L+�)�L and
 =p(L+ �) are scaling parameters. The constant�
determines the spread of the sigma points aroundx̂ and is usually
set to1e � 4 � � � 1. � is a secondary scaling parameter2. �
is used to incorporate prior knowledge of the distribution of x (for
Gaussian distributions,� = 2 is optimal). Also note that we define
the linear algebra operation of adding a column vector to a matrix,
i.e. A� u as the addition of the vector to each column of the ma-
trix. The superior performance of the UKF over the EKF has been
demonstrated in a number of applications [1, 2, 3]. Furthermore,
unlike the EKF, no explicit derivatives (i.e., Jacobians or Hessians)
need to be calculated.

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION

The most computationally expensive operation in the UKF cor-
responds to calculating the new set of sigma points at each time
update. This requires taking a matrix square-root of the state co-
variance matrix3, P 2 RL�L , given bySST = P. An efficient
implementation using a Cholesky factorization requires ingeneralO(L3=6) computations [5]. While the square-root ofP is an in-
tegral part of the UKF, it is still the full covarianceP which is re-
cursively updated. In the SR-UKF implementation,Swill be prop-
agated directly, avoiding the need to refactorize at each time step.
The algorithm will in general still beO(L3), but with improved nu-
merical properties similar to those of standard square-root Kalman
filters [6]. Furthermore, for the special state-space formulation of
parameter-estimation, anO(L2) implementation becomes possi-
ble.

The square-root form of the UKF makes use of three linear
algebra techniques4, QR decomposition, Cholesky factor updating
andefficient least squares, which we briefly review below:� QR decomposition.The QR decomposition or factorization

of a matrixA 2 RL�N is given by,AT = QR, whereQ 2 RN�N is orthogonal,R 2 RN�L is upper triangu-

2We usually set� to 0 for state-estimation and to3 � L for parameter
estimation [1].

3For notational clarity, the time indexk has been omitted.
4See [5] for theoretical and implementation details.

Initialize with:x̂0 = E[x0 ℄ P0 = E[(x0 � x̂0)(x0 � x̂0)T ℄ (5)

Fork 2 f1; : : : ;1g,
Calculate sigma points:X k�1 = hx̂k�1 x̂k�1 + 
pPk�1 x̂k�1 � 
pPk�1i (6)

Time update:X kjk�1 = F[X k�1;uk�1℄ (7)x̂�k = 2LXi=0 W (m)i Xi;kjk�1 (8)P�k = 2LXi=0 W (
)i [Xi;kjk�1 � x̂�k ℄[Xi;kjk�1 � x̂�k ℄T +RvYkjk�1 = H[X kjk�1℄ŷ�k = 2LXi=0 W (m)i Yi;kjk�1 (9)

Measurement update equations:P~yk ~yk = 2LXi=0 W (
)i [Yi;kjk�1 � ŷ�k ℄[Yi;kjk�1 � ŷ�k ℄T +RnPxkyk = 2LXi=0 W (
)i [Xi;kjk�1 � x̂�k ℄[Yi;kjk�1 � ŷ�k ℄T (10)Kk = PxkykP�1~yk ~yk (11)x̂k = x̂�k +Kk(yk � ŷ�k ) (12)Pk = P�k �KkP~yk ~ykKTk (13)

whereRv=process noise cov.,Rn=measurement noise cov.

Algorithm 2.1: Standard UKF algorithm.

lar andN � L. The upper triangular part ofR, ~R, is
the transpose of the Cholesky factor ofP = AAT , i.e.,~R = ST , such that~RT ~R = AAT . We use the shorthand
notation qrf�g to donate a QR decomposition of a matrix
where only ~R is returned. The computational complexity
of a QR decomposition isO(NL2). Note that performing a
Cholesky factorization directly onP = AAT isO(L3=6)
plusO(NL2) to formAAT .� Cholesky factor updating.If S is the original Cholesky fac-
tor of P = AAT , then the Cholesky factor of the rank-
1 update (or downdate)P � p�uuT is denoted asS =
cholupdatefS;u;��g. If u is a matrix and not a vector,
then the result isM consecutive updates of the Cholesky
factor using theM columns ofu. This algorithm (available
in Matlab ascholupdate) is onlyO(L2) per update.� Efficient least squares.The solution to the equation(AAT )x = ATb also corresponds to the solution of the
overdetermined least squares problemAx = b. This can be
solved efficiently using a QR decomposition with pivoting
(implemented in Matlab’s ’/’ operator).



The complete specification of the new square-root filters is
given in Algorithm 3.1 for state-estimation and 3.2 for paramater-
estimation. Below we describe the key parts of the square-root
algorithms, and how they contrast with the stardard implementa-
tions.

Square-Root State-Estimation: As in the original UKF, the
filter is initialized by calculating the matrix square-rootof the state
covariance once via a Cholesky factorization (Eqn. 15). However,
the propagted and updated Cholesky factor is then used in sub-
sequent iterations to directly form the sigma points. In Eqn. 19
the time-updateof the Cholesky factor,S�, is calculated using a
QR decompostion of the compound matrix containing the weighted
propagated sigma points and the matrix square-root of the addi-
tive process noise covariance. The subsequent Cholesky update (or
downdate) in Eqn. 20 is necessary since the the zero’th weight,W (
)0 , may be negative. These two steps replace thetime-update
of P� in Eqn. 8, and is alsoO(L3).

The same two-step approach is applied to the calculation of
the Cholesky factor,S~y, of the observation-error covariance in
Eqns. 23 and 24. This step isO(LM2), whereM is the obser-
vation dimension. In contrast to the way the Kalman gain is cal-
culated in the standard UKF (see Eqn. 11), we now use two nested
inverse (orleast squares) solutions to the following expansion of
Eqn. 11,Kk(S~ykST~yk ) = Pxkyk . SinceS~y is square and trian-
gular, efficient “back-substitutions” can be used to solve for Kk
directly without the need for a matrix inversion.

Finally, the posterior measurement update of the Cholesky fac-
tor of the state covariance is calculated in Eqn. 28 by applyingM
sequential Cholesky downdates toS�k . The downdate vectors are
the columns ofU = KkS~yk . This replaces the posterior update ofPk in Eqn. 13, and is alsoO(LM2).

Square-Root Parameter-Estimation: The parameter-estimation
algorithm follows a similar framework as that of the state-estimation
square-root UKF. However, anO(ML2) algorithm, as opposed toO(L3), is possible by taking advantage of thelinear state transi-
tion function. Specifically, the time-update of the state covariance
is given simply byP�wk = Pwk�1 +Rrk�1. Now, if we apply an
exponential weighting on past data5, the process noise covariance
is given byRrk = (��1RLS � 1)Pwk , and the time update of the
state covariance becomes,P�wk = Pwk�1 + (��1RLS � 1)Pwk�1 = ��1RLSPwk�1 : (14)

This translates readily into the factored form,S�wk = ��1=2RLS Swk�1
(see Eqn. 31), and avoids the costlyO(L3) QR and Cholesky based
updates necessary in the state-estimation filter. ThisO(ML2) time
update step has recently been expanded by the authors to dealwith
arbitrary diagonal noise covariance structures [7].

4. EXPERIMENTAL RESULTS

The improvement in error performance of the UKF over that of the
EKF for both state and parameter-estimation is well documented
[1, 2, 3]. The focus of this section will be to simply verify the
equivalent error performance of the UKF and SR-UKF, and show
the reduction in computational cost achieved by the SR-UKF for
parameter-estimation. Figure 2 shows the superior performance of
UKF and SR-UKF compared to that of the EKF on estimating the

5This is identical to the approach used in weighted recursiveleast
squares (W-RLS).�RLS is a scalar weighting factor chosen to be slightly
less than 1,i.e. �RLS = 0:9995.

Initialize with:x̂0 = E[x0 ℄ S0 = chol
nE[(x0 � x̂0)(x0 � x̂0)T ℄o (15)

Fork 2 f1; : : : ;1g,
Sigma point calculation and time update:X k�1 = [x̂k�1 x̂k�1 + 
Sk x̂k�1 � 
Sk℄ (16)X kjk�1 = F[X k�1;uk�1℄ (17)x̂�k = 2LXi=0W (m)i Xi;kjk�1 (18)S�k = qr

��qW (
)1 �X 1:2L;kjk�1 � x̂�k � pRv�� (19)S�k = cholupdate
nS�k ; X0;k � x̂�k ; W (
)0 o

(20)Ykjk�1 = H[X kjk�1℄ (21)ŷ�k = 2LXi=0W (m)i Yi;kjk�1 (22)

Measurement update equations:S~yk = qr

��qW (
)1 [Y1:2L;k � ŷk℄ pRnk�� (23)S~yk = cholupdate
nS~yk ; Y0;k � ŷk ; W (
)0 o

(24)Pxkyk = 2LXi=0 W (
)i [Xi;kjk�1 � x̂�k ℄[Yi;kjk�1 � ŷ�k ℄T (25)Kk = (Pxkyk=ST~yk )=S~yk (26)x̂k = x̂�k +Kk(yk � ŷ�k )U = KkS~yk (27)Sk = cholupdate
�S�k ; U ; -1

	
(28)

whereRv=process noise cov.,Rn=measurement noise cov.

Algorithm 3.1: Square-Root UKF for state-estimation.

Mackey-Glass-30 chaotic time series corrupted by additivewhite
noise (3dB SNR). The error performance of the SR-UKF and UKF
are indistinguishable and are both superior to the EKF. The compu-
tational complexity of all three filters are of the same orderbut the
SR-UKF is about 20% faster than the UKF and about 10% faster
than the EKF.

The next experiment shows the reduction in computational cost
achieved by the square-root unscented Kalman filters and howthat
compares to the computational complexity of the EKF for parameter-
estimation. For this experiment, we use an EKF, UKF and SR-UKF
to train a 2-12-2 MLP neural network on the well knownMackay-
Robot-Arm6 benchmark problem of mapping the joint angles of a
robot arm to the Cartesian coordinates of the hand. The learning
curves (mean square error (MSE) vs. learning epoch) of the dif-
ferent filters are shown in Figure 3. Figure 4 shows how the com-
putational complexity of the different filters scale as a function of
the number of parameters (weights in neural network). Whilethe
standard UKF isO(L3), both the EKF and SR-UKF areO(L2).

6http://wol.ra.phy.cam.ac.uk/mackay



Initialize with:ŵ0 = E[w℄ Sw0 = chol
nE[(w� ŵ0)(w� ŵ0)T ℄o (29)

Fork 2 f1; : : : ;1g,
Time update and sigma point calculation:ŵ�k = ŵk�1 (30)S�wk = ��1=2RLS Swk�1 (31)Wkjk�1 = �ŵ�k ŵ�k + 
S�wk ŵ�k � 
S�wk � (32)Dkjk�1 = G[xk;Wkjk�1℄ (33)d̂k = 2LXi=0 W (m)i Di;kjk�1 (34)

Measurement update equations:Sdk = qr

��qW (
)1 hD1:2L;k � d̂ki pRe�� (35)Sdk = cholupdate
nSdk ; D0;k � d̂k ; W (
)0 o

(36)Pwkdk = 2LXi=0 W (
)i [Wi;kjk�1 � ŵ�k ℄[Di;kjk�1 � d̂k℄T (37)Kk = (Pwkdk=STdk )=Sdk (38)ŵk = ŵ�k +Kk(dk � d̂k) (39)U = KkSdk (40)Swk = cholupdate
�S�wk ; U ; -1

	
(41)

whereRe=measurement noise cov (this can be set to an arbitrary
value,e.g., :5I.)

Algorithm 3.2: Square-Root UKF for parameter-estimation.
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Figure 2:Estimation of the Mackey-Glass chaotic time-series (mod-
eled by a neural network) with the EKF, UKF and SR-UKF.

5. CONCLUSIONS

The UKF consistently performs better than or equal to the well
known EKF, with the added benefit of ease of implementation in
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Figure 3: Learning curves for Mackay-Robot-Arm neural network
parameter-estimation problem.
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Figure 4:Computational complexity (flops/epoch) of EKF, UKF and
SR-UKF for parameter-estimation (Mackay-Robot-Arm problem).

that no analytical derivatives (Jacobians or Hessians) need to be
calculated. For state-estimation, the UKF and EKF have equal
complexity and are in generalO(L3) . In this paper, we intro-
duced square-root forms of the UKF. The square-root UKF has bet-
ter numerical properties and guarantees positive semi-definiteness
of the underlying state covariance. In addition, for parameter-
estimation an efficientO(L2) implementation is possible for the
square-root form, which is again of the same complexity as effi-
cient EKF parameter-estimation implementations.
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