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ABSTRACT

Over the last 20-30 years, tlextended Kalman filte(EKF) has
become the algorithm of choice in numerous nonlinear esiima
and machine learning applications. These include estimadtie
state of a nonlinear dynamic system as well estimating petens
for nonlinear system identificatiore(g, learning the weights of
a neural network). The EKF applies the standard linear Kalma
filter methodology to a linearization of the true nonlinegstem.
This approach is sub-optimal, and can easily lead to diverge
Julier et al. [1] proposed thanscented Kalman filtefUKF) as

a derivative-free alternative to the extended Kalman filtethe
framework of state-estimation. This was extended to par@ame
estimation by Wan and van der Merwe [2, 3]. The UKF consis-
tently outperforms the EKF in terms of prediction and estiora
error, at an equal computational complexity ©{L*)* for gen-
eral state-space problems. When the EKF is applied to paeame
estimation, the special form of the state-space equatibowsa
for an O(L?) implementation. This paper introduces tguare-
root unscented Kalman filtgfSR-UKF) which is alsaO(L?) for
general state-estimation ad¥{ L?) for parameter estimation (note
the original formulation of the UKF for parameter-estinaativas

G (xx, w), wherex,, is the input,y;. is the output, and the nonlin-
earmapG(-), is parameterized by the vecter. Typically, a train-
ing set is provided with sample pairs consisting of knowruirend
desired outputs{x, ds }. The error of the machine is defined as
e, = dp — G(xx,w), and the goal of learning involves solving
for the parametersv in order to minimize the expectation of some
given function of the error. While a number of optimizatiop-a
proaches existg(g, gradient descent and Quasi-Newton methods),
parameters can be efficiently estimated on-line by writinges
state-space representation
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where the parametess;. correspond to a stationary process with
identity state transition matrix, driven by process noige(the
choice of variance determines convergence and trackinfprper
mance). The outpud; corresponds to a nonlinear observation on
wy. The EKF can then be applied directly as an efficient “second-
order” technique for learning the parameters [4].
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2. THE UNSCENTED KALMAN FILTER

O(L?*)). In addition, the square-root forms have the added benefit The inherent flaws of the EKF are due to its linearization apph

of numerical stability and guaranteed positive semi-defiréss of
the state covariances.

1. INTRODUCTION

The EKF has been applied extensively to the field of nonliesar
timation for bothstate-estimatiomnd parameter-estimatianThe
basic framework for the EKF (and the UKF) involves estimaii®
the state of a discrete-time nonlinear dynamic system,

F(xp,ug) + vy
H(Xk) + nyg,

1)
@)

where x;, represent the unobserved state of the systemis a
known exogenous input, ang, is the observed measurement sig-
nal. Theprocessnoisev;, drives the dynamic system, and tbie-
servationnoise is given byn;. The EKF involves the recursive
estimation of the mean and covariance of the state under a-Gau
sian assumption.

In contrast, parameter-estimation, sometimes referrad gys-
tem identification, involves determining a nonlinear maypi, =

Xk4+1
Y&
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17, is the dimension of the state variable.

for calculating the mean and covariance of a random variahleh
undergoes a nonlinear transformation. As shown in showrd,n [
2, 3], the UKF addresses these flaws by utilizing a determiinis
“sampling” approach to calculate mean and covariance teEas
sentially,2L + 1, sigmapoints ( is the state dimension), are cho-
sen based on a square-root decomposition of the prior anaei
These sigma points are propagated through the true noritipea
without approximation, and then a weighted mean and cavegia
is taken. A simple illustration of the approach is shown ig-Fi
ure 1 for a 2-dimensional system: the left plot shows the tnean
and covariance propagation using Monte-Carlo samplirgcén-
ter plots show the results using a linearization approaetoatd be
done in the EKF; the right plots show the performance of the ne
“sampling” approach (note only 5 sigma points are requird&thjs
approach results in approximations that are accurate tahing
order (Taylor series expansion) for Gaussian inputs fonatilin-
earities. For non-Gaussian inputs, approximations ararate to
at least the second-order [1]. In contrast, the lineadresipproach
of the EKF results only in first order accuracy.

The full UKF involves the recursive application of this “sam
pling” approach to the state-space equations. The standiifd
implementation is given in Algorithm 2.1 for state-estiiat and
uses the following variable definitions{W;} is a set of scalar

weights (V™ = A/(L+X), W = A/(L+ M)+ (1—a’+ ),
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Figure 1:Example of mean and covariance propagation. a) actual,

UKF covariance
b) first-order linearization (EKF), ¢) new “sampling” approach (UKF).
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W™ =W =1/{2(L+A)} i=1,...,20). A=a>*(L+

k) —Landy = /(L + A) are scaling parameters. The constant
determines the spread of the sigma points arckiehd is usually
settole — 4 < a < 1. & is a secondary scaling paramétep

is used to incorporate prior knowledge of the distributiérxqfor
Gaussian distributiong} = 2 is optimal). Also note that we define
the linear algebra operation of adding a column vector to &irja
i.e. A =+ u as the addition of the vector to each column of the ma-
trix. The superior performance of the UKF over the EKF hagibee
demonstrated in a number of applications [1, 2, 3]. Furtloeem
unlike the EKF, no explicit derivatives.€., Jacobians or Hessians)
need to be calculated.

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION

The most computationally expensive operation in the UKF cor
responds to calculating the new set of sigma points at eaoh ti
update. This requires taking a matrix square-root of theesta-
variance matri%, P € REXE | given bySST = P. An efficient
implementation using a Cholesky factorization requiregeneral
O(L?/6) computations [5]. While the square-root Bfis an in-
tegral part of the UKF, it is still the full covariand® which is re-
cursively updated. In the SR-UKF implementatiSnyill be prop-
agated directly, avoiding the need to refactorize at eaunk 8tep.
The algorithm will in general still bé (L*), but with improved nu-
merical properties similar to those of standard squaré-f@dman
filters [6]. Furthermore, for the special state-space fdation of
parameter-estimation, aff(L?) implementation becomes possi-
ble.

The square-root form of the UKF makes use of three linear
algebra techniquésQR decompositigrCholesky factor updating
andefficient least squaresvhich we briefly review below:

¢ QR decompositionThe QR decomposition or factorization
of a matrix A € R**" is given by, A" = QR, where
Q € RY*Y s orthogonal R € R¥*L is upper triangu-

2We usually sek to 0 for state-estimation and t— L for parameter
estimation [1].

SFor notational clarity, the time indei has been omitted.

4See [5] for theoretical and implementation details.

Initialize with:

%o =E[xo] Po = E[(xo — %o)(x0 — %o)"] (5)
Fork e {1,...,00},

Calculate sigma points:

Xy = [5(1#1 Xp1+YVPro1 Xpo1—7 Pk71:| (6)

Time update:

Xipjp—1 = F[X g1, up 1] @)
2L

%, =2 WXk 8
i=0

2L
Py =Y WX g — % [ Xoper — %517+ RY
i=0
V-1 = H[X ;1]
2L
Ve =Y W Vi ©
i=0

Measurement update equations:

2L
Z Wi(C)[yi,k\k—l = Ve lVikk—1 — 1" +R"

Py,y, =
=0
2L
Priy, = ZWi(C)[Xi,k\kq =% Wik — 351" (10)
=0
Ki =Py, y, Py ls. (11)
Xe =%, +Kr(ye —¥5) (12)
P, =P, — KiPy, 5. K¢ (13)

whereRY =process noise coMR."=measurement noise cov.

Algorithm 2.1: Standard UKF algorithm.

lar and N > L. The upper triangular part aR, R, is
the transpose of the Cholesky factorBf = AA”, i.e,

R = S7, such thaR"R = AAT. We use the shorthand
notation gf-} to donate a QR decomposition of a matrix
where onlyR is returned. The computational complexity
of a QR decomposition i© (N L?). Note that performing a
Cholesky factorization directly o = AA7T is O(L*/6)
plusO(NIL?*)toform AAT,

e Cholesky factor updatindf S is the original Cholesky fac-
tor of P = AAT”, then the Cholesky factor of the rank-
1 update (or downdatel + \/vuu’ is denoted a$§ =
cholupdat¢S, u, £v}. If u is a matrix and not a vector,
then the result isV/ consecutive updates of the Cholesky
factor using the\/ columns ofu. This algorithm (available
in Matlab aschol updat e) is only O(L?) per update.

¢ Efficient least squareshe solution to the equation
(AAT)x = A"b also corresponds to the solution of the
overdetermined least squares problAm = b. This can be
solved efficiently using a QR decomposition with pivoting
(implemented in Matlab’s '/’ operator).



The complete specification of the new square-root filters is| Initialize with:
given in Algorithm 3.1 for state-estimation and 3.2 for paeder- %0 = F S, = chol {E S o\T 15
estimation. Below we describe the key parts of the squasée-ro X0 [xo] 0 { [(x0 = %0)(x0 — %o) ]} (15)
algorithms, and how they contrast with the stardard implaime
tions.

Square-Root State-Estimation: As in the original UKF, the | sjgma point calculation and time update:
filter is initialized by calculating the matrix square-ragftthe state
covariance once via a Cholesky factorization (Eqn. 15). &lew, X1 =[Xe_1 Xp_1 +7Sk Xp_1 — YSk] (16)
the propggted_ and updated Cholesky chtor is t_hen used i sul Xipor = FlX, 1, u ] 17)
sequent iterations to directly form the sigma points. In Et@
the time-updateof the Cholesky factorS ™, is calculated using a

Fork e {1,...,00},

2L

T — (m)
QR decompostion of the compound matrix containing the weigh Xp = Z Wi Xike—1 (18)
propagated sigma points and the matrix square-root of tldé ad =0
tive process noise covariance. The subsequent Choleslayaifumt S” —qr /W(c) x o R+ 19
downdate) in Eqn. 20 is necessary since the the zero'th weigh k 7q 1 ( 32[”’“““*1 )i’“) " (19)
w{?, may be negative. These two steps replacetithe-update Sy = Ch0|Update{sk ; Xow —%p , Wy } (20)
s ) 3
of P~ in Egn. 8, and is als®(L"). Vi = HX 1] 1)

The same two-step approach is applied to the calculation o
the Cholesky factorSy, of the observation-error covariance in L (m)
Eqgns. 23 and 24. This step @(LM?), where M is the obser- i = ZWi Yiklk-1
vation dimension. In contrast to the way the Kalman gain Is ca i=0
culated in the standard UKF (see Eqn. 11), we now use twodhestel Measurement update equations:
inverse (orleast quuare)ssqutions to the following expansion of
Eqgn. 11,K4(Sy,S;,) = Px,.y.. SinceSy is square and trian- _ F . —
gular, efficie(ntyhbgélg-substitﬁzi%ns" can ge used to solee Sy, = qr{ { Wl( ) RAETNES (IR Rk} } @3)
directly without the need for a matrix inversion.

2L

(22)

_ 5 (c)

Finally, the posterior measurement update of the Cholestey f Sy = Ch0|Update{Syk » You =¥k, Wy } (24)
tor of the state covariance is calculated in Eqn. 28 by apglyi/ 2L
sequential Cholesky downdatesSg . The downdate vectors are P, ., = WX wer — %5 [Virno1 — 9217 (25)
the columns olU = K, Sy, . This replaces the posterior update of ke ; o Kok el g
P, in Eqn. 13, and is als®(LM?). _ T Q.

Square-Root Parameter-Estimation: The parameter-estimation K = Priyic/85,)/Ss. (26)
algorithm follows a similar framework as that of the stagthmation xp =%, +Ki(yr —¥5)
square-root UKF. However, af(ML?) algorithm, as opposed.to U = K4Sy, (27)
O(L?), is possible by taking advantage of theear state transi- _
tion function. Specifically, the time-update of the stateaz@nce Sk = cholupdate{S;” . U , -1} (28)

is given simply byP,,, = Pw,_, + R} _,. Now, if we apply an
exponential weighting on past datahe process noise covariance
is given byR}, = ()\};}‘S — 1)Pw,, and the time update of the
state covariance becomes,

Py, =Pw,_, + ()‘;225 - l)Pkal = }‘Ii?iSPkal' (14)

whereRY =process noise coOMR."=measurement noise cov.
Algorithm 3.1: Square-Root UKF for state-estimation.

Mackey-Glass-30 chaotic time series corrupted by additibée
This translates readily into the factored fory,, = Az} Swy noise (3dB SNR). The error performance of the SR-UKF and UKF

(see Eqn. 31), and avoids the cosflyL?) QR and Cholesky based ~ are indistinguishable and are both superior to the EKF. Binepw-

updates necessary in the state-estimation filter. Dt/ L? ) time tational complexity of all three filters are of the same ordietrthe
update step has recently been expanded by the authors taitteal SR-UKF is about 20% faster than the UKF and about 10% faster
arbitrary diagonal noise covariance structures [7]. than the EKF.
The next experiment shows the reduction in computationstl co
4. EXPERIMENTAL RESULTS achieved by the square-root unscented Kalman filters and it

compares to the computational complexity of the EKF for paater-
The improvement in error performance of the UKF over thateft  estimation. For this experiment, we use an EKF, UKF and SAFRUK
EKF for both state and parameter-estimation is well docuaten  to train a 2-12-2 MLP neural network on the well knoiackay-
[1, 2, 3]. The focus of this section will be to simply verifyeh ~ Robot-Arni benchmark problem of mapping the joint angles of a
equivalent error performance of the UKF and SR-UKF, and show robot arm to the Cartesian coordinates of the hand. Theilgarn
the reduction in computational cost achieved by the SR-UttF f  curves (mean square error (MSE) vs. learning epoch) of the di
parameter-estimation. Figure 2 shows the superior pedoo®a of ferent filters are shown in Figure 3. Figure 4 shows how the-com
UKF and SR-UKF compared to that of the EKF on estimating the putational complexity of the different filters scale as adiimn of
the number of parameters (weights in neural network). Wiiée

5This is identical to the approach used in weighted recurszst standard UKF ig)(L?), both the EKF and SR-UKF a@(L?).
squares (W-RLS)A g, s is a scalar weighting factor chosen to be slightly
less than li.e. Agrs = 0.9995. Bhttp://wol.ra.phy.cam.ac.uk/mackay




Initialize with:
Wo = E[w]  Su, = chol{ E[(w — wo)(w — Wo)"]} (29)

Fork € {1,...,00},

Time update and sigma point calculation:

Wy = Wgo1 (30)
Sw = Anrls Swi_, (31)
Wik = [W, W, +9S., Wi — 1S4, ] (32)
Dyji—1 = G[xp, Wijp—1] (33)
2L
dpy =) W™ D; s (34)
=0
Measurement update equations:
Sa, = qr{ [\/Wf” [DML,,C - ak] \/RE]} (35)
Sa, = cholupd e{ —d °)
d;, = p at Sdk s DO,k dk s WO (36)
2L N
Py.a, = Z WO IWikpe—1 = Wi I[Digeer — di]” (37)
i=0
Kk = (Pw,da,/S4,)/Sa, (38)
Wi = Wy, + Ki(dp —dy) (39)
U = KxSa, (40)
Sw, = cholupdate{S,,, , U, -1} (41)

whereR®=measurement noise cov (this can be set to an arbit

value,e.g, .51.)

Algorithm 3.2: Square-Root UKF for parameter-estimation.
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Figure 2:Estimation of the Mackey-Glass chaotic time-series (mod-
eled by a neural network) with the EKF, UKF and SR-UKF.

5. CONCLUSIONS

rary

The UKF consistently performs better than or equal to thed wel
known EKF, with the added benefit of ease of implementation in

n
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Figure 3: Learning curves for Mackay-Robot-Arm neural network
parameter-estimation problem.

Computational Complexity Comparison
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Figure 4: Computational complexity (flops/epoch) of EKF, UKF and
SR-UKF for parameter-estimation (Mackay-Robot-Arm problem).

that no analytical derivatives (Jacobians or Hessians)l nede
calculated. For state-estimation, the UKF and EKF have lequa
complexity and are in gener&(L?) . In this paper, we intro-
duced square-root forms of the UKF. The square-root UKF kBas b
ter numerical properties and guarantees positive semitiaiess
of the underlying state covariance. In addition, for paramne
estimation an efficien®(L?) implementation is possible for the
square-root form, which is again of the same complexity &is ef
cient EKF parameter-estimation implementations.
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