
eTaSL/eTC: A constraint-based Task Specification Language and Robot
Controller using Expression Graphs

Erwin Aertbeliën and Joris De Schutter

Abstract— This paper presents a new framework for
constraint-based task specification of robot controllers. A task
specification language (eTaSL) is defined as well as a corre-
sponding implementation of a controller (eTC). This new frame-
work is based on feature variables and a new concept referred
to as expression graphs. It avoids some of the common pitfalls
in previous frameworks, and provides a flexible and composable
way to define robot control tasks. An architecture for a robot
controller is proposed, as well as an implementation that
can execute tasks described in the new specification language.
Typical usage patterns for the new framework are explained on
an example consisting of a kinematically redundant, bi-manual
task on a PR2 robot. A comparison with existing frameworks
shows the advantages of the new approach.

I. INTRODUCTION

This paper presents a new framework for constraint-
based task specification of robot controllers. A task speci-
fication language (expressiongraph-based Task Specification
Language, eTaSL) is defined as well as a corresponding
implementation of a controller (expressiongraph-based Task
Controller, eTC).

Distinction is made between discrete control tasks, where
the focus lies on sequencing and scheduling different discrete
actions (e.g. rFSM [1], SMACH [2], RosCo [3]), and contin-
uous control tasks, where a set of objectives is continuously
achieved. These two types of tasks are considered two
independent problems in task specification. Care is taken
to obtain a clear separation with a well-defined interface
between the corresponding control tasks. The focus of this
paper lies on continuous task specification.

Of course, execution of a real-life robot application in-
cludes other aspects such as planning. However, the proposed
framework focuses on continuous reactive control that also
can deal with on-line sensor measurements.

One of the recurring themes in this paper is the sepa-
ration of concerns. On the implementation side, the sep-
aration of concerns focuses on the 5C’s [4], i.e. the sep-
aration of computation, configuration, coordination, and
communication, while taking into account composability. On
the specification side, it focuses on separating robot-related,
task-related and environment-related aspects of a robot appli-
cation. Using traditional, trajectory-based task specification
such a separation is difficult to achieve, especially when
dealing with robots with a larger number of joints, such

All authors are with the KU Leuven, Department of Mechanical
Engineering, Belgium. All authors gratefully acknowledge the financial
support by the European Community’s Seventh Framework Programme
projects RoboHow(FP7-ICT-288533) and Factory-in-a-day(FP7-609206).
Corresponding author: erwin.aertbelien@kuleuven.be

as the PR2 robot. A common approach to this problem is
to start from a constraint-based approach, where the task
is specified in terms of constraints [5][6][7]. This approach
originates from the research on redundant robots. When it
only concerns positioning tasks, it is sometimes referred to
as Generalized Inverted Kinematics [8].

The contribution of this paper is to describe a new task
specification language eTaSL and a corresponding imple-
mentation of a controller eTC, to explain a series of usage
patterns, and to compare eTaSL with existing frameworks.
A key component in this language is an expression graph,
a data representation for geometric operations. A dual arm
task is explained and demonstrated, but this example serves
only as an illustration of the usage patterns.

Section II starts with defining the terminology and detail-
ing the architecture. Section III describes the basic elements
and principles of the task specification language. Section IV
explains how this task specification is translated into a
running task controller. In section V, a (non-exhaustive) list
of usage patterns explains the effective use of the framework.
These usage patterns are demonstrated on a dual arm ma-
nipulation task of a PR2 robot. Section VI compares eTaSL
with the instantaneous Task Specification using Constraints
(iTaSC) framework [6] and Stack of Tasks (SoT) framework
[8].

II. IMPLEMENTATION AND ARCHITECTURE

The implementation of the controller (eTC) is a library
that is split up into three layers, as is shown in fig. 1. In the
specification layer, a specification is built up using a task
specification language (eTaSL) that defines constraints that
have to be satisfied while executing the task at hand. In the
solver layer, this specification is translated into a numerical
optimization problem, typically a quadratic programming
(QP) problem. The numerical solver layer solves the op-
timization problem. The framework handles the continuous
part of the control task. The discrete part of the control task
is handled by defining monitors that can generate events,
and by allowing activating/deactivating groups of constraints
while the controller is running. In this way, the discrete part
of the task specification can be handled outside eTaSL, e.g.
using a state space specification such as rFSM [1], SMACH
[2], or [3]. The framework is implemented as a library, and
is independent of the execution environment (e.g. Orocos
[9] or ROS [10]). An example ROS component is provided
to demonstrate integration within ROS. This architectural
approach fits nicely to the separation of concerns principle

Numerical solver

Solver

Specification

qpOases

Instantaneous

velocity resolved

solver

Instantaneous

acceleration

resolved solver

Generator of

a KF

estimator

...

numerical QP-optimisation problem

Context data structure

(uses expression graphs)

SVD or QR

pseudo-inverse
...

C++ task specification API for the Context

LUA task specification language

Geometric

relations

iTasc DSL

specification

Task frame

DSL

Scene graph

specification

(URDF)

higher level task specification

Fig. 1. The task specification language and implementation fits into a
3-layered architecture. The light-colored boxes are currently implemented.

of the 5C’s [4] separating computation, coordination, config-
uration, composition and communication.

Fig. 1 shows how this architecture is used by the current
implementation. The numerical problem is solved using the
qpOASES toolbox [11]. A solver is implemented that trans-
lates the specification into a velocity-resolved constraint-
based task controller. The context is a data structure that
contains the complete definition of the task. The specification
layer provides facilities that build up this context. A C++
API is provided to build up the context. Desired tasks can
be completely specified using this API, but typically, the
task specification language eTaSL is used. This language is
based on Lua [12], an extendable and embeddable scripting
language, and provides an easy way to specify the task.
Constraint programming languages from the domain of ar-
tificial intelligence are not applicable, since we are dealing
with a non-linear control problem, and not a pure constraint
satisfaction problem. The choice for Lua is pragmatic and
is based on its suitability for embedded systems and its
common usage in the Orocos environment [1] and in the
iTaSC DSL language[7]. On top of this task specification
language, facilities are provided to handle common geomet-
ric relations (such as distances and angles between different
types of entities). An extension to the language is provided
to generate the appropriate expressions and constraints for
scene graphs and robot models from an URDF-specification.

The task specification language allows for easy separation
between the robot related aspects, task related aspects and
the environmental aspects (see section V).

III. SPECIFICATION LANGUAGE

The task specification language is based on Lua and
provides easy-to-use primitives that refer to the underlying
C++ API. This section explains the concepts and syntax of
these primitives.

The context is the data structure to be sent to the solver
containing all information of the user-level specification of
the task. It is also an entity in the task specification language.
A task specification is always added to a given context.
Multiple contexts can be used, e.g. in the case of multiple
independently controlled robots.

Variables are explicitly defined and named (name) in the
specification and are always specific for a given context
(context). They are managed by the framework and are
always accessed by name. This is a key factor providing
composability and abstraction. There are different types of
variables (vartype): Robot joint variables are actuated and
the task controller needs to provide setpoint velocities or
accelerations for these variables. There is an explicit time
variable. This has as a consequence that trajectories can be
(but does not need to be) defined inside the task specification.
Feature variables are auxiliary variables used to specify free
movement. They do not correspond to an actuated joint and
do not need to correspond to a physical entity. Section V
explains the use of feature variables. Variables can have a
weight (weight) that is interpreted by the specific solver
that is used (see section IV). The following gives an example
of a variable definition:

Variable {
context = ctx,
name = ’along_path’,
vartype = ’feature’,
weight = 1.0

}

Expressions can be stored in an expression variable. These
expressions are internally represented as Expression graphs.
They consist of a tree-like data structure that represents
a function. The expression graphs used in this framework
consist of multiple value types to support expression of ge-
ometric relations between rigid bodies: scalar values, three-
dimensional vector values, twists, rotation matrices and trans-
formation matrices. This symbolic data structure supports
different operations such as: serialization (i.e. translation into
a storable format; for storage and transmission), evaluation
of the value of the expression; evaluation of (possibly higher-
order) partial derivatives and Jacobians using automatic
differentiation [13]; and inspection to determine the variable
dependencies. Evaluation is performed efficiently and on
demand: parts of the expressions that did not change are
not recalculated. The solver can eliminate unused variables
by keeping track of variable dependencies. Consequently,
the specification can freely define variables and expressions;
only when they are effectively used, they contribute to the
computation time of the controller.

A constraint can be at the position-level or at the ve-
locity level. A constraint can be an equality constraint
(target), or an inequality constraint (target lower
/ target upper). A position-level constraint expresses
the desire that a given expression (expr) evolves towards
and follows a given target. The dynamics by which this
expression evolves is specified by a value K whose seman-
tics are defined by the solver (see section IV). A set of

constraints can be conflicting, i.e. they cannot be satisfied
simultaneously. Constraints with a higher priority are
always satisfied before lower priority constraints. To ensure
safety, the highest priority constraints cannot be conflicting.
Conflicting constraints of the same priority can be given
a weight to indicate their importance with respect to
each other. Semantically, the constraints specify a Lagrange
condition (i.e. enforced along the whole time interval the task
controller is active); they do not specify a Mayer condition
(that only needs to be achieved at the end of the task). The
following gives an example of a constraint definition:

Constraint{
context = ctx,
name = ’point_to_point_distance’,
expr = origin(arm)-origin(trajectory),
target = {0.0, 0.0, 0.0},
K = 4,
weight = 1.0,
priority = 2
}

The right hand side of expr gives an example of an
expression graph that expresses the vector difference between
the origin of a frame at the arm end effector (arm) and a
trajectory point (trajectory).

Monitors specify the conditions under which actions
(actionname) are invoked. A typical action is an event that
is sent towards a state machine. The monitors are decoupled
from the underlying execution system. Monitors observe the
value of an expression and are edge triggered: when the
value of the expression exceeds the bounds, an event is fired
only once. There can be an upper bound (upper) and/or a
lower bound (lower). An event is also fired when the value
is outside the interval when the monitoring starts up. The
following gives an example of a monitoring definition:arm
is an expression variable containing an expression dependent
on a series of robot joint variables. trajectory is an
expression variable dependent on the time variable.

Monitor {
context = ctx,
name = "goal_reached"
expr = norm(origin(arm)-origin(goal)),
lower = 1E-4,
actionname = "event",
argument = "e_goal_reached"

}

In the example above an event with label e goal reached
is sent out when the condition is triggered (i.e. distance
between).

Besides the previously defined concepts, the specification
also contains mechanisms to define inputs and outputs of
the constraint controller. This allows us to take in sensor
data from e.g. a force sensor or a camera. There is also a
mechanism to group the constraints in a specification, such
that they can be selectively activated or deactivated.

IV. SOLVER
The solver translates a given specification (see section III)

into a numerical optimization problem representing the con-
trol strategy (see fig. 1), in this case, a velocity-resolved
constraint controller.

At each time step a quadratic optimization problem of
the following form is solved in order to compute the joint
velocity input towards the robot actuators:

minimize
x

xTHx

subject to LA ≤ Ax ≤ UA

L ≤ x ≤ U

(1a)

(1b)
(1c)

H corresponds to the Hessian of the optimization problem,
LA and UA corresponds to the lower and upper bounds
of the (linear) constraints described by the matrix A. The
box optimization constraints (1c), with bounds L and U
are commonly occurring as velocity limit task constraints.
Additionally, they are more efficiently solved than the more
general optimization constraints (1b) (as e.g. in the imple-
mentation of qpOASES [11]). The optimization variable x
corresponds to [q̇T χ̇T

f εT]T . q̇ corresponds to the nr
robot joint velocities, χ̇f corresponds to the nf feature
variable velocities and ε corresponds to the ns slack variables
that will be used to introduce task constraints with a lower
priority.

The remainder of this section explains how each task
constraint of section III is translated into a part of the
above optimization problem using a methodology inspired on
Samson’s task functions [5], extended with an explicit time
dependency, and with task functions that have the rotation
group SO(3) as range. These task functions are constraints
at the position level that have to be obeyed according to a
specified dynamic behavior.

For a scalar task constraint i, a task function ei (q, t) is
defined. This task constraint, and hence the corresponding
task function, can have explicit time dependencies. The
following equation imposes an evolution of this task function
as a first order system with time constant K−1:

d

dt
ei (q,χf , t) = −Kei (q,χf , t) . (2)

By expanding the total derivative in the above equation into
partial derivatives using:

dei
dt

=
∂ei
∂t

+

nr∑
j=1

∂ei
∂qj

q̇j +

nf∑
k=1

∂ei
∂χf,k

χ̇f,k, (3)

rewriting the partial derivatives as a Jacobian row Ji and
introducing an additional slack variable εi, the equation
becomes:

Ji

[
q̇
χ̇f

]
= −Kei −

∂

∂t
ei + εi. (4)

This equation defines a row in constraint (1b) of the above
optimization problem, making sure that the robot moves in
such a way that the desired evolution of the task function is
achieved. In the case of hard constraints (i.e. high priority
constraints) the term εi is left out, in the case of soft con-
straints (i.e. lower priority constraints), the term εi is added
and an additional term of wiε

2
i is added to the optimization

criterion (1a). The introduction of the slack variables allows
for conflicting constraints and the resulting controller will

optimally approximate the desired specifications, given the
specified weights.

For a scalar inequality constraint, (2) becomes:

d

dt
ei (q,χf , t) ≤ −Kei (q,χf , t) , (5)

in other words, the task function should not move faster
towards its limits than a first order linear system with a given
time constant K−1. This way, there is no sudden application
of the inequality, and undesirable dynamic effects can be
avoided.

Joint velocity constraints can be easily translated into rows
of the optimization constraint (1c). In addition, the joint
position constraints can be translated into the form of (1c)
in a similar way as the previous more general constraints.

The Hessian H in (1a) has the following form:

H =

µWr 0 0
0 µWf 0
0 0 µI +Ws

 (6)

Wr corresponds to the robot joint space weights, Wf

correspond the feature space weights, and Ws consists of
the previously introduced constraint weights wi for the soft
constraints. µ is a small numerical value. On the one hand,
µ should be large enough to ensure that the optimization
problem (1) remains positive definite and sufficiently reg-
ularizes the QP problem. On the other hand, µ should be
small enough to ensure that the joint space and feature
space velocities have a negligible influence on the soft
constraints. µ can be considered mostly independent from
the specific task specification at hand. The effects of µ are
comparable to the effects of the damped least squares method
for solving kinematic redundancies and task constraints [14].
The weightsWr andWf only have a significant influence on
the resulting control when the task specification is redundant.
In such a case, these weights influence the null space motion
of the robot system.

The current implementation uses the qpOASES solver [11]
to solve the resulting numerical optimization problem. At
each time sample, the constraint controller measures the
robot joint positions, composes and solves a QP problem cor-
responding to the task specification, and applies the obtained
robot joint velocities q̇ to the low-level robot controller.
The computed feature variable velocities χ̇f are integrated
numerically.

When the constraint controller starts to execute a given
task specification, q is initialized from the measured robot
joint positions. In order to initialize the feature variables χf ,
a QP problem needs to be solved similar to (1). However,
in this QP problem, the robot joint velocities q̇ become a
parameter and are equal to 0 and the optimization variable
x′ corresponds to [χ̇T

f εT]T .

V. USAGE PATTERNS AND DEMONSTRATOR
This section explains a series of typical usage patterns

within the proposed framework. These usage patterns are
illustrated on a demonstrator example given in fig. 2. Both
the left and right manipulator arms of the robot follow a

X
Y

Z

Fig. 2. A task on a PR2 robot to demonstrate a few of the capabilities of
the task specification language.

circular trajectory. The trajectories overlap with each other.
The right manipulator follows its trajectory with a constant
velocity; the left manipulator adapts its velocity in order to
avoid collision between the manipulators. All joint position
and velocity limits should be respected. At the same time,
the head of the PR2 robot follows the tip of the right hand
manipulator. The specification is translated into a reactive
control strategy. In contrast to planning approaches, this
control strategy could also immediately incorporate sensor
feedback.

A. Separation of robot, environment and task

To achieve reusable task specifications, it is important
to separate the specification of the robot, the environment
and task. The proposed task specification framework is a
relatively low-level specification that is very suited to com-
bine constraints from different sources. At the level of the
task specification language, there is no essential distinction
between robot, task or environmental constraints. All are
made up of variables, expression graphs and constraints. By
using the standard programming language facilities of LUA,
such as Lua subroutine definitions and Lua tables, it is easy to
write subroutines that define the variables, expression graphs
and constraints belonging to a robot, environment or task.
For example, collision avoidance is implemented as a library
inside the task specification language.

The higher-level robot model can be imported into the
library. The user can specify a URDF-model of a robot
and a series of links of interest. Expression graphs are
generated for the transformations between these links, as
well as constraints that enforce the joint position and velocity
limits.

For example, in the demonstrator application, an ex-
pression variable rightarm is created that contains an
expression graph for the pose of the right end effector to
the world frame (the same for head and leftarm).

B. Background constraints

Many tasks impose fewer constraints than there are de-
grees of freedom. To avoid that these degrees of freedom

camera

POI

Fig. 3. The use of a feature variable χf to simplify the definition of the
head following constraint.

will take on arbitrary, unpredictable, values, one typically
defines background constraints: constraints with a very low
weight that will only dominate in a certain direction when
there is no constraint working in that direction.

The background constraints in the demonstrator example
enforce each joint to a nominal value within its range with a
very low weight. Often, these background constraints depend
on the environment, e.g. for tasks on a kitchen countertop
(or on a conveyor belt) specific background constraints are
chosen.

C. The use of feature variables

The use of feature variables facilitates the formulation
of complex constraints. An illustration of this is the iTaSC
formalism [6] where, using a strict methodological proce-
dure, the task is defined as a six-degrees-of-freedom virtual
kinematic chain (VKC).

The head following constraint in the demonstrator is also
an example of the use of feature variables. The point of
interest (POI) is defined in a local frame at the head, using
one additional feature variable (χf), and transformed to
world coordinates. A soft constraint is set such that this POI
coincides with the origin of the frame at the end effector of
the right arm (see fig. 3):

chi_f=Variable {
context=ctx, name=’distance’, vartype=’feature’

}
poi = head*vector(constant(0),constant(0),chi_f)
Constraint{
context = ctx, name = ’head_following’,
expr = origin(rightarm)-poi,
target = 0.0,
K = 4, weight = 1.0, priority = 2
}

The feature variable in the above example indicates that the
corresponding distance can freely vary.

Another example of a feature constraint in the demon-
strator is the following. To ensure that the velocity of the
left arm trajectory can be adapted, the trajectory is defined
in function of a feature variable (path variable) pv, and a
soft constraint is set such that this feature variable follows
0.2*time (a velocity of 0.2m/s):

pv = Variable {
context=ctx, name=’along_circle’,
vartype=’feature’

}
Constraint{

contex = ctx, name = ’follow’,
expr = pv-constant(0.2)*time,
target = 0.0,

TABLE I
IMPLEMENTED DISTANCE AND ANGULAR RELATIONSHIPS

Point Line Segment Plane

Point D/†
Line D/† D/A
Segment D/† D/A D/A
Plane D/† †/A D/A †/A

D:distance relationship is implemented, A:angular
relationship is implemented †:not relevant. Redun-
dant relationships are not indicated.

K = 0, weight = 0.05, priority = 2
}

The control constant K is zero, such that the path variable
does not catch up with lost time. The weight is low, such
that the system prefers to vary the velocity along the path
rather than deviating from the path.

The previous demonstrates that feature variables facilitate
the formulation of task constraints. They can be used to
specify additional freedom, in contrast to constraints alone
that can only specify restrictions.

D. Explicit functions of time

Trajectories can be defined inside the task specification
due to the availability of an explicit time variable, as is shown
in the demonstrator example. Using the solver of section IV,
this will not lead to tracking errors, because of the ∂ei/∂t
term in (4).

Alternatively, the task controller can take trajectory infor-
mation from a separate trajectory generator outside the con-
troller. To avoid tracking errors in such a case, this external
trajectory generator should also provide time derivatives for
its signals (see also the velocity feedforward in [6]).

E. Distances and collision constraints

Geometric relations are implemented in a higher-level
library (see fig. 1) using the task specification language
itself. This library can return expressions for the distance
and angular relationships between the following entities:
points, lines, line segments, and planes (see table I). In
the demonstrator example that will follow, the links of the
robot are modeled as line segments. Collisions between the
manipulator links are avoided by imposing a constraint on
the distance between these line segments: The (complicated)
expression for this distance is directly formulated in the
task specification language and used in a constraint. A more
detailed model of the robot geometry could be implemented
using spherically extended convex hulls [15], in such a case,
the computation of the distances would be implemented
(in e.g. C++ using an external library) as a new type of
expression graph node to be used in the expression graphs.

F. Simulation results for the demonstrator

The eTaSL specification for the demonstrator is 104 lines
long, and leads to a controller with 18 robot variables and
2 feature variables. There are 68 constraints. The examples
of section V cover parts of the task specification of this

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.8

−0.7

−0.6

−0.5

−0.4
−

X
 [

m
]

Y [m]

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

p
at

h
 v

el
o
ci

ty
 [

m
/s

]

time [s]

a)

b)

Fig. 4. (a) motion of the two robot end effectors in the horizontal plane,
together with the nominal path. (b) The path velocity along the nominal
trajectory of the left end effector is plotted in function of time.

demonstrator. Execution time for one sample period is around
5 ms on a standard laptop. The included video shows
simulation results for the demonstrator. Fig. 4a shows both
the nominal trajectory and the trajectory of the robot end
effectors, for both the left and the right manipulator. The
X- and Y -axes correspond to fig. 2. The left and right
end effectors start form outside the trajectories. There is a
negligible tracking error after the end effectors have reached
the trajectories. Fig. 4b shows the path velocity for the
trajectory of the left end effector. The path velocity is 0.2
m/s, except when there is a danger for collision, at which
time the path velocity decreases. Around time 6s, the left
end effector is even pushed back along its trajectory in order
to avoid the right end effector.

VI. DISCUSSION

Table II summarizes the main differences between the
specification language and implementation eTaSL/eTC, and
the existing frameworks iTaSC [6] and SoT[8].

Both eTaSL and iTaSC provide a separation of specifica-
tion and execution. On the other hand, SoT uses a graph of
entities to specify tasks, but this model is intermixed with
execution aspects. SoT has its own execution environment
that defines a way to define blocks and their interaction. The
controller implementation of iTaSC is thoroughly intermixed
with the Orocos environment [9] eTaSL carefully separates
its functionality from the underlying execution environment.
All frameworks can be used inside a ROS environment.

The iTaSC DSL [7] provides a formal model of a task
(using UML 2.0/Ecore). This DSL can be translated into
a corresponding implementation. Both the iTaSC DSL and
the iTaSC implementation follow a strict methodology that
describes a constraint using a six-degree-of-freedom VKC.
iTaSC’s DSL explicitly models robots, VKCs and objects
in the environment. eTaSL starts from a lower level: the
language itself does not know about robots, objects and other

TABLE II
COMPARISON BETWEEN FRAMEWORKS

eTaSL/eTC iTaSC SoT

Separation of specification and
execution

yes yes +/-

Formal model of the specifica-
tion available

no1 yes no

Implementation separated
from the underlying execution
environment

yes no no

Named variables yes no no
Dependency computations yes no no
On demand evaluations yes no yes
Provides a strict methodology
for task specification

no2 yes no

Feature variables yes yes no
Explicit loop closure yes no no
Explicit time variable yes no yes
Maturity new high high
Built-in inequalities yes +/- yes
Priority levels ≤ 2 ↗ ↗

1: no model is available but it is feasible to provide a formal model.
2: the iTaSC procedure can still be followed in eTaSL, it is however
not enforced.

elements in the task. However, as is also shown in the demon-
strator, models such as URDF [16] and COLLADA [17], can
easily be imported into the task specification language and
translated into lower-level expression graphs and constraints.
In combination with Lua language constructs such as sub-
routines and tables, libraries with higher-level constructs are
defined inside eTaSL (see also fig. 1). In contrast to iTaSC
DSL, these descriptions also contain constraints on the joint
limits and information for collision avoidance. More flexible
and more composable descriptions of tasks and robots are
achieved: tasks, robots, and other concepts can be abstracted
and parameterized in values and expression graphs. There
can also be libraries that only provide expressions for use in
constraints (cf. table I). Other data structures can be passed
around, such as a list of robot links to be used as parameters
for a collision avoidance constraint.

In eTaSL, monitors, constraints and variables are always
accessed by name. At execution time, variable dependencies
will be tracked and only the necessary variables will be
involved in the optimization problem. Consequently, a task
programmer does not need to be bothered with the internal
details of a robot or task description. In eTaSL, it is easy
to define new types of variables. This will make it easier to
develop extensions such as defining specifications for the
automatic generation of estimators. Both eTaSL and SoT
use on-demand evaluation to avoid unnecessary computation
when certain parts in the evaluation are not changed.

As is shown in the demonstrator example, feature variables
can make the formulation of complex constraints easier.
They allow specifying additional freedom, in contrast to
constraints that by themself only specify limitations. Both
eTaSL and iTaSC offer feature variables. It is possible to
follow the iTaSC methodology in eTaSL: a VKC can be
defined in function of feature variables and an explicit loop
closure equation can be defined. Multiple VKCs can be used

to describe a complete task.
However, iTaSC always uses a VKC with (exactly) six

feature variables and one loop closure constraint to for-
mulate tasks. Such a VKC will always show singularities
for certain values of the feature variables. Furthermore, in
a non-singular position, there are up to 16 different solu-
tions (configurations) for the VKCs[18]. Because of these
artificially introduced singularities and configurations, it can
become more difficult to obtain a robust and encapsulated
task specification. eTaSL simplifies these problems because
there are no implicitly defined loop closure equations and no
need to use always six feature variables. For example, the
use case in fig. 3 also has a singular configuration (χf = 0),
and two different solutions to its “inverse kinematics”. This
can however be easily avoided by imposing an additional
constraint χf > 0. In this case, such an additional constraint
will not limit the usability of the task. iTaSC can impose
similar additional constraints. However, in iTaSC, one is
forced to use six feature variables. For robust tasks, addi-
tional constraints are always necessary and sometimes these
additional constraints will limit the usability of the task.

The current numerical solver of eTaSL is based on a
mature solver for QP-optimization problems [11]. It can
only handle two levels of priority. Both iTaSC and SoT
are not limited in the number of priority levels. SoT has
a mature solver that is specifically designed to deal with a
higher number of priority levels in a numerical accurate way.
All frameworks can handle inequalities; however, inequality
constraints are only approximately handled in iTaSC by
activating equality constraints gradually in the neighborhood
of the limits.

The expression graphs in eTaSL allow a decomposition
with a finer granularity than is possible in iTaSC and SoT,
without imposing an additional burden on the task program-
mer. In SoT, it is necessary to implement the computation
of Jacobians for each new type of task; in eTaSL, this is
handled using automatic differentiation.

VII. CONCLUSION AND FUTURE RESEARCH

This paper discussed a new framework for the specification
of robot task controllers. This framework is built according
to an architecture that carefully separates the specification
of a task (eTaSL), the translations of this specification into
an optimization problem (solver), the computation of the
solution for this optimization problem (numerical solver),
and the underlying execution environment.

A powerful task specification language is defined based
on Lua. This language contains a series of concepts that
facilitate the definition of complex tasks in a flexible and
composable way, such as expression graphs, feature vari-
ables, monitors, constraints, explicit naming of variables and
an explicit time variable.

Typical usage patterns of the framework are explained,
such as the separation of robot, task and environment,
background constraints, and dealing with geometric relations.
This is demonstrated on an example of task for a kinemati-
cally redundant, bi-manual, task on a PR2 robot.

A comparison with the existing frameworks iTaSC and
SoT reveals the benefits of the new framework concerning
the separation of specification and execution, abstraction,
composability, efficiency, and the ability to specify complex
tasks.

Future research will focus on extending the framework
with a specification language for the automatic generation
of estimators. Inspired by [6], this combination of task spec-
ification and estimation leads to self-calibrating tasks and
learnable skills that combine model-based task specification
with learning from examples.

The software implementation will be available at [19].

REFERENCES

[1] M. Klotzbuc̈her and H. Bruyninckx, “Coordinating robotic tasks and
systems with rfsm statecharts,” JOSER: Journal of Software Engineer-
ing for Robotics, vol. 3, pp. 28–56, 2010.

[2] J. Bohren and S. Cousins, “The smach high-level executive,” IEEE
Robot. Automat. Mag., vol. 17, pp. 18–20, 2010.

[3] H. Nguyen, M. Ciocarlie, J. Hsiao, and C. C. Kemp, “Ros commander
(rosco): Behavior creation for home robots,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013.

[4] M. Radestock and S. Eisenbach, “Coordination in evolving systems,”
in Trends in Distributed Systems. CORBA and Beyond. Springer-
Verlag, 1996, pp. 162–176.

[5] C. Samson, M. Le Borgne, and B. Espiau, Robot Control, the Task
Function Approach, ser. Combinatorial Scientific Computing. Claren-
don Press, 1991.

[6] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty,” The International Journal of
Robotics Research, vol. 26, no. 5, pp. 433–455, 2007.

[7] D. Vanthienen, M. Klotzbuucher, J. De Schutter, T. De Laet, and
H. Bruyninckx, “Rapid application development of constrained-based
task modelling and execution using domain specific languages,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2013, pp. 1860–1866.

[8] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in Proceedings of the 2009
International Conference on Advanced Robotics, Munich, Germany,
2009.

[9] H. Bruyninckx and P. Soetens. (2001) Open RObot COntrol
Software (Orocos). Last visited February 2014. [Online]. Available:
http://www.orocos.org/

[10] ROS. Last visited February 2014. [Online]. Available: http://ros.org
[11] H. Ferreau, “qpoases - an open source implementation of the online

active set strategy for fast model predictive control.” in Proceedings
of the Workshop on Nonlinear Model Based Control Software and
Applications, Loughborough, 2007.

[12] Lua. Last visited February 2014. [Online]. Available: http://lua.org
[13] L. B. Rall, Automatic Differentiation: Techniques and Applications,

ser. Lecture Notes in Computer Science. Springer, 1981, no. 120.
[14] C. Wampler, “Manipulator inverse kinematic solutions based on vector

formulations and damped least squares methods,” IEEE Trans. Syst.,
Man, Cybern., pp. 93–101, 1986.

[15] A. Dietrich, T. Wimbock, H. Taubig, A. Albu-Schaffer, and
G. Hirzinger, “Extensions to reactive self-collision avoidance for
torque and position controlled humanoids,” in IEEE International
Conference on Robotics and Automation (ICRA), 2011, pp. 3455–
3462.

[16] Willow Garage, “Universal Robot Description Format (URDF),”
http://www.ros.org/wiki/urdf, 2009.

[17] M. Barnes and E. L. Finch, “COLLADA—Digital Asset Schema
Release 1.5.0,” http://www.collada.org, 2008, last visited August 2013.

[18] H.-Y. Lee and C.-G. Liang, “A new vector theory for the analysis of
spatial mechanisms,” Mechanism and Machine Theory, vol. 23, no. 3,
pp. 209–217, 1988.

[19] eTaSL. Last visited June 2014. [Online]. Available:
http://people.mech.kuleuven.be/ eaertbel/etasl/

