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LOCAL TOMOGRAPHY* 

ADEL FARIDANIt, ERIK L. RITMANt, AND KENNAN T. SMITHt 

Abstract. Tomography produces the reconstruction of a function f from a large number of line integrals 
off Conventional tomography is a global procedure in that the standard convolution formulas for reconstruc- 
tion at a single point require the integrals over all lines within some plane containing the point. Local 
tomography, as introduced initially, produced the reconstruction of the related function Af, where A is the 
square root of -A, the positive Laplace operator. The reconstruction of Af is local in that reconstruction 
at a point requires integrals only over lines passing infinitesimally close to the point, and Af has the same 
smooth regions and boundaries as f However, Af is cupped in regions where f is constant. A-1f, also 
amenable to local reconstruction, is smooth everywhere and contains a counter-cup. This article provides 
a detailed study of the actions of A and A-1, and shows several examples of what can be achieved with a 
linear combination. It includes the results of x-ray experiments in which the line integrals are obtained from 
attenuation measurements on two-dimensional image intensifiers and fluorescent screens, instead of the 
usual linear detector arrays. 
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Introduction. Tomography produces the reconstruction of a generalized density 
function f from a large number of line integrals of f In x-ray tomography, the density 
function is the x-ray attenuation coefficient, and the line integrals are obtained by 
measuring the attenuation of photons transmitted through the object. Photons are 
emitted from several hundred x-ray sources, and the attenuation is measured along 
several hundred lines through each source. 

Formulas for reconstructing f from such data involve the convolution of the data 
from each source with a fixed kernel k that is rarely 0. The standard formulas for 
reconstruction at a single point require attenuation measurements along all lines within 
some plane containing the point. 

Local tomography produces the reconstruction of the related function Af +,uA-'f, 
where A is the square root of -A, the positive Laplace operator. The reconstruction 
of Af+uA-'f is local: for reconstruction at a point, attenuation measurements are 
needed only along lines very close to that point. Since A is an invertible elliptic operator, 
f and Af have precisely the same singularities, e.g., boundaries between regions of 
constant density, and these boundaries are sharper in Af However, Af is cupped, not 
constant, within regions of constant density. The cup is largely neutralized by the 
addition of uA-'f Local tomography was introduced in [9] and [12] without the cup 
correction. 

In practice, the typical density function is constant (or almost constant) in each 
of a finite number of sets, i.e., is a linear combination of characteristic (indicator) 
functions of sets. Insight into the nature of local tomography is obtained by studying 
its application to the characteristic function Xx of a set X c R'. 

It turns out that Axx dies rapidly away from X, and, near X, is roughly proportional 
to d (x, aX)-' (+ inside X, - outside), where d (x, aX) denotes the distance from x 
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to the boundary of X. On the other hand, A-1xx behaves like c + d (x, dX) inside, and 
like (c+d(x, aX))1-n outside. (c is a constant depending mainly on the curvature of 
the boundary of X.) Somewhat surprisingly, the cup in d (x, aX)-' is neutralized by 
the counter-cup in c+ d(x, aX). While Af + A-'f is not an approximation to f it 
provides a remarkably similar qualitative representation. Several examples are shown 
in ? 2. 

It also turns out that, inside X, the minimum of Axx is roughly proportional to 
8(X)-1, where 8(X) is the diameter of X. 

In practice, the jump in Axx at the boundary of X is, of course, smoothed, but 
it is still large, providing very sharp and visible boundaries between regions of different 
density. The dependence of Axx on the diameter of X increases the apparent density 
contrast of small sets, thereby making small sets with low density contrast more visible. 
Neither characteristic of A is changed by adding a multiple of A-1. 

During the past year, local tomography has become the standard procedure at 
the Biodynamics Research Unit of the Mayo Clinic for defining the anatomic outline 
of the lungs and for the study of the coronary arterial tree. With regular tomography, 
the lung edge is sufficiently blurred that no consistent edge is detected, while consistent 
edges are detected with the sharp boundaries of local tomography. With a noninvasive 
minimal intravenous dye injection, the coronary tree presents small sets of low density 
contrast, the study of which is facilitated by the enhancement of local tomography. 

The computational advantage of local tomography stems from the fact that the 
local convolution kernel K is nonzero at very few points, usually 3-8 (depending on 
the noise), as opposed to several hundred in standard kernels. This reduces the number 
of multiplications per convolution value to 3-8. When only a part of the object must 
be reconstructed, it reduces proportionately the amount of data collected and processed, 
and the x-ray dose. 

Local tomography has other features that become particularly useful if the attenu- 
ation data are collected two-dimensionally. For example, in current three-dimensional 
heart studies, two-dimensional attenuation data are measured on a 30 cm. x 30 cm. 
fluorescent screen spanning the full chest, then demagnified optically to a - 1 cm2 CCD 
chip. Reducing the span to the heart itself dramatically reduces the required dynamic 
range of the detection system, the geometric distortions, and the optical inefficiencies 
entailed in demagnification. An example of the improvement effected by coning the 
x-ray beam to the heart is described in [11]. 

Another feature of local tomography with two-dimensional attenuation measure- 
ments is that other, and more efficient, measurement devices than the fluorescent- 
screen-demagnifying-lens combination can be used when the part reconstructed is not 
too large. Specifically, it is expected that commercially available fluoroscopic systems 
will provide useful images. An example is shown in ? 2. 

Sections 1 and 2 describe notation, definitions, and basic results of the paper in 
terms accessible to nonmathematical tomographers. Section 2 shows examples, as well. 
Sections 3-8 contain the proofs of the results described in ? 2, along with some 
refinements. Section 9 describes the algorithm used for most of the examples. The 
Appendix contains the basic mathematical formulas of tomography. To tomographers 
who do not want quantitative information, this introduction and the examples in ? 2 
should indicate the possibilities in local tomography. To those who do want quantitative 
results but not proofs, the theorems in ? 2 should provide them. 

1. Standard notation and definitions. Rn consists of n-tuples of real numbers, 
usually designated by single letters, x = (x, ... * Xn) Y = (Yn ... * Yn), etc. The inner 
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product and absolute value are defined by 

(1.1) (x, Y) =E x3y3 and |x| = (x, X)"2. 

The unit sphere S'-1 consists of the points of absolute value 1. A point on Sni- usually 
is designated by 0. 

If X is a subset of R', X', XO, X, and AX denote the complement, interior, closure, 
and boundary. Xx is the characteristic function of X, equal to 1 on X, and 0 on X'. 
The diameter of X, 8(X), is the upper bound of the distances |x - y between points 
x and y of X. If Y is another subset, the distance from X to Y, d (X, Y), is the lower 
bound of |x-y| for xcX and yc Y 

IXI denotes the n-dimensional Lebesgue measure of X. However, when it is clear 
that X should be treated as a set of dimension k < n, IXI is the k-dimensional area 
measure. Thus Isn-lI and Isn-2| are the (n -1)- and (n -2)-dimensional area measures 
of the (n - 1) - and (n - 2) -dimensional spheres. Explicitly, 

(1.2) lSI11 = 2 1T 2/r(n/2). 

(ISn-lI and Isn-2I appear as constants in several theorems.) In integrals over R , the 
measure is denoted by dx; in integrals over Sn-1, the measure is denoted by do. For 
n = 2, the latter is arc length on the unit circle. 

When functions or distributions f and g lie in dual spaces, the scalar product is 
denoted by (f g). If both are functions, the scalar product is usually given by an integral: 

(1.3) (f g) = { f(x)g(x) dx. 

The Fourier transform is defined by 

(1.4) f(e) = (2i i 2 { e-i(xlf(x) dx 

for integrable functions f, and is extended to larger classes of functions or distributions 
by continuity or duality. 

For s ?0 HS denotes the Sobolev space of functions fc L2 with 

(1.5) l 12 = (I + jej2yj A(e)12 de < o, 

and H-s is the dual space. H-s is identified with the space of tempered distributions 
g for which g is a function satisfying 

(1.6) g = 1(1 ? 2) sg(2 de<oo. 

The scalar product between fc Hs and g c H-s is given by (1.3) on the Fourier 
transform side. 

The operator A, which became well known through the pioneering work of 
Calderon in partial differential equations, and which now pervades tomography, is 
defined in terms of Fourier transforms by 

(1.7) fA) (e)=jejf(e) 
for functions in the Sobolev space H'. Af is defined for more general functions and 
distributions by duality as 

(1.8) (Af, ) = (f, Ap) for q E CO, 
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the space of infinitely differentiable functions with compact support. The existence of 
Af as a distribution requires a condition on f at oo. A convenient condition that admits 
all characteristic functions of measurable sets is 

(1.9) f(1 + lxl)-K-' c Ll. 

This is discussed in ? 3. 
For n- 2, A-', the inverse of A, is the convolution operator R1 * f 

(1.10) RI *f(x) R (x -y)f( y) dy, 

where R1 is the inverse Fourier transform of (2 -)- '2|j', i.e., is the Riesz kernel 

RI(x) = (11(1TISn-2I))|X|l-n 

Wherever R1 appears in the sequel, it is assumed, sometimes tacitly, that n ? 2. 

2. Results and examples. The typical objects studied in tomography are made up 
of regions of nearly constant density, so the density function f is essentially a linear 
combination of characteristic functions of sets. Insight into the nature of local tomog- 
raphy can be obtained by studying Axx, where X is a measurable set in Rn n '?2. 

THEOREM 2.1. Let X and Y be measurable sets. 
(a) If fr(x) =f(x/r), then Afr(x) = r-'Af(x/r). 
(b) Axx is an analytic function on (aX)' = R n _ AX. 
(c) Axx(x) > 0 on X?, and < 0 on X'?; Ayxx = -Axx. 
(d) If Xc Y, then 

Axx(x)l i AXy(x)l on X?, Axx(x)l - IAy(x)l on Y'?. 

(e) If x is not on aX, then 

Td (x, aX)IAxx(x)l ? (n -)ISn-I WSn-2 . 

(f) If X has finite measure, then on X'? 

ird(x, aX)IAXx(x)I _ ((n-1)/IS2|)lXld(x, aX)-. 

THEOREM 2.2. Axx is subharmonic (Laplacian O0) on X?, and superharmonic on 
X'?. This implies that 

(a) Axx cannot have a local maximum in X0, nor a local minimum in X'?. 
(b) For a c X?, the average of Axx over the sphere with center a and radius r is an 

increasing function of r on r < d (a, aX). 
(c) Fix a (anywhere). If X is contained in the ball with center a and radius ro, rn-2 

times the average of -Axx over the sphere with center a and radius r is a decreasing 
function of r on r > rO. 

When the boundary of X has some smoothness, the inequality in part (e) of 
Theorem 2.1 can be sharpened and reversed, the sharpness depending on the 
smoothness. 

THEOREM 2.3. If X is a half-space, lTd(x, aX)|Axx(x)l = 1. If X is convex, 
rd (x, aX)IAxx(x) -? 1 on X?, and '-1 on X'?. 

A less sharp inequality holds when X' contains not an entire half-space tangent 
to the boundary, but only part of an open cone with vertex on the boundary. 

DEFINITION 2.4. C(O, a, 8), the open cone with vertex 0, axis 0, opening angle 
2a, and radius 8 is defined by 

C(O, a, 8)={x: (x, 0)>lxlcos (a), lxl <}. 
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THEOREM 2.5. Let x c X0, and let x be the closest point in aX to x. Ifi ? C( 0, a, 8) c 
X', then lTd (x, aX)Axx(x) - c(I/(8 + d (x, aX)))', where c depends only on a and n. In 
particular, if there are constants a and 8 so that for each x c AX there exist 0 and 0' with 
x+? C(0, a, 8) c X and x + C(0', a, 8) c X', then there is a constant c depending only on 
a and n so that, for x not on aX, 

c(6/(8 + d(x, aX)))- ?iTIAXx(x)I d(x, aX) ? (n-I)IS I/Is 1. 

When X is bounded and convex and X? is not empty, these latter conditions are satisfied. 
The cone condition in Theorem 2.5 is a weak version of the cone condition 

encountered frequently in partial differential equations, which requires a locally fixed 
cone axis. It permits any polyhedron X whose boundary is an n -1 manifold, which 
the usual cone condition does not permit. The essential is a "nonthinness" of X' at 
boundary points. The best conditions have not been investigated, since the weak cone 
condition is easy to visualize and to use, and it appears to be satisfactory for practice. 

When the boundary of X is smooth, iid (x, aX)IAx (x)I is not just bounded above 
and below as x -> aX; it approaches 1, and does so rapidly enough that |AXx(x) - 
(1/(lTd(x, aX))l is locally integrable. The smoothness required, which is described in 
the next definition, is essentially that aX is a C' surface with normals satisfying a 
Lipschitz condition. In particular, it holds when aX is a C2 surface. As shown in the 
theorems of ? 7, the result holds locally when aX satisfies the local smoothness 
condition. 

DEFINITION 2.6. X has curvature -1/ r (or radius of curvature _ r) along its 
boundary if for each point x c aX there are open balls B c X and C c X' of radius r 
with - c xBf C. 

THEOREM 2.7. There is a continuous function El of one variable satisfying |1- 

Ei(|xH? C|1 - xH"2 such that if X has curvature -1/r along its boundary, then, for 
d (x, aX) < r, 

EI(I + (d(x, aX)/r)) ? ird(x, aX)IAxX(x)- ?-El(1 - (d (x, aX)/r)), 

IIAX(x) I- (I/(lTd (x, ax)) -< Cr-1/2 d (x, aX)"12. 

The above theorems show that Axx dies rapidly away from X; near X, behaves 
like d(x, aX)-'; and inside X, has a minimum roughly proportional to 8(X)-'. The 
following show that A-1Xx behaves like c + d (x, aX) inside X, and like (c + d (x, aX))'-n 

outside. It is shown in the Appendix that A' is a convolution operator with kernel 
RI, the Riesz kernel of order 1. The definitions and basic properties are explained in 
the next section. X and Y denote bounded measurable sets. The main results are as 
follows. 

THEOREM 2.8. 
(a) Iffr(x) =f(x/r), then RI *fr(x) = rRI *f(x/r). 
(b) RI * Xx is continuous on Rn, analytic on Rn -aX, and subharmonic on X'?. 
(c) If X c Y, then RI * xx(x) ' RI * Xy(x) for all x. 
(d) RI * Xx(x) ?(X)ISn-I /( sn-2 ) 
(e) For x E X', RI * Xx(x) - (X/(iIS n-2|))d(x, aX)'-n. 
Reverse inequalities come from rather explicit information about balls. According 

to (a), it is sufficient to treat the unit ball with characteristic function X. 
THEOREM 2.9. RI * X is a positive decreasing function of lxl. It is a concave function 

of |x| on IX < 1, and a convex function of |x| on X x> 1. 
THEOREM 2.10. Let x E Rn -axn let ' be a point on aX at minimum distance from 

x, and let r be the radius of the largest ball B contained in X, with center on the line 
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joining x and x and with x E B. If C = (n - 1)JSn-'I/ISn-2IJ then 

(n - l)rR, * Xx(x)? '(C-2)d(x, aX)+2r for xE X?, 

(n-1)TrR1 * xx(x)- ?Cn-'r(l + (d(x, aX)/r))l-n for x E X'?. 

The examples below (resolution phantom, head, abdomen, dog chest, and three- 
dimensional heart) provide comparisons of standard and local tomography in diverse 
problems, and also comparisons of local tomography with and without the cup 
correction. 

Standard Local, p = 45 

ker. sum 0, A 0 ker. sum < O, q =0 

FIG. 1. Resolution Phantom. The phantom has a diameter of about 25 cm. The densities (x-ray attenuation 
coefficients) are: exterior: 0, rim: .218, main interior: .195, dense block at left: .372, two upper blocks: .221, 
two lower blocks: .184, eight small holes in the two central blocks: .195. On the high resolution television monitor, 
all eight holes are clearly visible. 

Standard Local, p = 45 

Staindard Local, , =25 

FIG 2. Typical medical examples. (a) head; (b) abdomen. 
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The x-ray data for the phantom, head, and abdomen come from an older-generation 
Siemens hospital scanner with 720 x-ray sources and 512 detectors. The reconstructions 
are displayed on 320 x 320 matrices. (These data were used in [2], where cup corrections 
were not made, and the algorithms were different.) 

The dog chest reconstructions come from the DSR, the fast three-dimensional 
reconstructor in the Biodynamics Research Unit at the Mayo Clinic, with approximately 
3000 x-ray sources and 256 readings per line on the fluorescent screen used for 
two-dimensional x-ray detection. 

.. ...... ... 

FIG. 3(a). Standard (Picker 1200 scanner). Apart from the noise, the standard reconstruction and the 
local cup corrected reconstruction are similar. In both cases the generic cross section is superior to that cross 
section in the uncorrected reconstruction. However, despite the noise, the arteries are clearer in the uncorrected 
reconstruction than in either of the others in the three-dimensional projection. Three-dimensional heart, two- 
dimensional image intensifier detection. The object scanned was a realistic chest phantom, described in detail 
in [11]. The objective was visualization of the coronary arteries. The arteries and chambers contain contrast 
dye consistent with a minimal intravenous dye injection of about 40 mg iodine per ml blood. In the local 
reconstruction the attenuation was measured on a two-dimensional 9" bottle image intensifier. The phantom 
was rotated by hand, so as to provide 314 x-ray sources and 256 readings per source across each horizontal 
line of the image intensifier. Thie standard reconstruction was done on a Picker 1200 scanner with 1200 sources 
and 1024 readings per source across each horizontal line. (With very accurate positioning and about fifteen 
times the data., the standard reconstruction is much less noisy, but with separate scans of each cross section and 
a total scan time of several minutes, the standard reconstruction is impractical for beating hearts.) Thie photos 
(Figs. 3(a)-(3c)) show two kinds of display: a normal cross section and a three-dimensional projection. The 
cross section again shows the value of the cup correction, while the projection shows the value of doing without 
it in some special cases. The projection is made from 120 cross sections assembled in a three-dimensional array. 
Thie value of a pixel in the projection plane is the value of the largest voxel along the line through the pixel and 
perpendicular to the projection plane. After the intravenous dye injection, the coronary arteries and chambers 
provide the largest voxels. With standard tomography, or with cup-corrected local tomography, the arteries and 
chambers can be separated in the projection only by manually erasing the chambers in each cross section prior 
to projection. In local tomography without the cup correction, the cup effect largely removes the chambers 
Combined with the enhancement of the contrast of sets with small diameter, this produces arteries brighter than 
the chambers, therefore arteries visible in the projection. (The projections are useful in localizing and evaluating 
stenoses, which can then be studied more closely in cross sections if necessary.) In the local reconstructions, the 
x-ray data are the same for the cup-corrected and uncorrected reconstructions, and the photos show identical 
views. In the standard reconstruction, the data come from a different scanning device. The cross section and 
orientations are as close as possible to those in the local reconstructions, but not identical. In these reconstructions, 
the constants in the formnulas were ignored, so the value of A, which was determined empirically, is not known. 
As in the other cases, -it is a refinement of us = 40. 
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The standard heart reconstructions come from a Picker 1200 scanner with 1200 
sources and 1024 detectors. The data for the local reconstructions come from an 
experimental procedure with a 9" two-dimensional bottle image intensifier for x-ray 
detection. There were 314 sources, and each line of the image intensifier was sampled 
at 256 points. The standard and local reconstructions were done on 150 x 150 matrices, 
which were doubled for the display by repeating each row and column. 

The standard reconstructions were made with a standard fan-beam algorithm. The 
local reconstructions were made with the local fan-beam formulas in ? 9. The parallel 
beam kernel occurring in these formulas is the one in formula (A.18) with m = 11.4174, 
a value that leads to a very small kernel sum when the kernel minimum is at detector 
1, 2, or 3. For the abdomen and dog chest the kernel minimum was put at detector 2; 
for the heart, which was quite noisy, it was put at detector 3; for the others (less noisy), 
it was put at detector 1. Placement of the kernel minimum is discussed in [2]. The 
reason for a very small kernel sum is discussed in ? 9. One of the examples below, 

.:f .. 
: ... ...... 

.... 

X<C: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.... .. ... 

FIG. 3(b). Local (image intensifier, cup corrected). 

FIG 3(c) Local(image... ........ine cu 

.... .;. 

FIG. 3(c). Local (image intensifier, cup ucorrected). 
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FIG. 4(a) Standard (fluorescent screen). Lung volume, two-dimensional fluorescent screen detection. 
Three-dimensional local tomography is being used [15] to compute lung volume and changes in lung volume. 
The scanner, the Mayo Clinic DSR, uses x-ray sources on a circle and two-dimensional fluorescent detection 
screens to acquire three-dimensional data in about 0.1 seconds. Usually, several gated scans are combined to 
increase the number of x-ray sources and reduce the noise. The pictures (Figs. 4(a) and 4(b)) show standard 
and local reconstructions of one cross section (out of the 120 used for the three-dimensional reconstruction) of 
the chest of a living dog. The gated scans provided the equivalent of 3300 x-ray sources, so noise was not a 
problem, as it was in the previous example with only 314. In the local reconstructions, lung boundaries are sharp 
enough to yield volume calculations consistent with other measurements. The picture show two gray level 
windowings of the same standard reconstruction, and two local reconstructions, one with a cup correction, the 
other without. 7he white dots exterior to the skin are electrodes. The reason for showing two windowings of the 
standard reconstruction is to show that the electrodes and the exterior circle, which are real, and the familiar 
exterior boundary artifacts, which are not, are present in the standard reconstruction, too. Their presence, which 
is clear in the right-hand windowing on the television monitor, but not in the left-hand windowing, is so faint 
in the photos that it willprobably disappear in the reproductions. As in the previous example, the local reconstruction 
without the cup correction is more useful in the problem at hand (determining sharp lung boundaries), while 
the reconstruction with the cup correction is more accurate overalL 

Left: i>0.Right: p 0 

FIG 4(b). Local (fluorescent screen). 
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produced by using m =6, shows the effect of a negative kernel sum _10-2 times the 
kernel maximum. In all other examples, m = 11.4174, and the kernel sum is _ 10-6 
times the maximum. 

At present there is no theoretical basis for determining the cup correction parameter 
/u. In the examples studied, a value around 40 gives good pictures, and refinements 
are easy to achieve empirically. The current results suggest that the primary factor 
affecting ,t is the size of the full object. 

In the examples below (Figs. 1 and 2), each reconstruction, standard and local, 
is windowed separately for an optimal picture. 

3. Some facts about A and A-1. In terms of Fourier transforms, the operator A 
is defined by 

(3.1) (fA( ) = I If 
for functions f E L2 with first partial derivatives in L2, i.e., for functions f in the Sobolev 
space H'. Af is defined for more general functions and distributions by duality: 

(3.2) (Af, )= ( f Ap) for c Cow. 
Unless stated otherwise, it is assumed that 'p c C?. For (3.2) to define Af as a 
distribution, it is necessary to impose a condition on f at oo. For the purposes of this 
article, a convenient condition is 

(3.3) f(1 + IxI)-I-n c L'. 
For n _ 2, the Riesz kernel R, is defined by 

(3.4) RI(x) = (1/(1ISn-2J))IXJI-n with 

(9R,Iaxj -(n - 1)(1/1(nIS |2I))xI-I-n. 

The convolution 

(3.5) R, *f(x)= RI(x -y)f(y) dy 

exists (as an absolutely convergent integral) for at least one x if and only iff(1 + IxI)'-n c 
LI; if this is the case, then RI *f exists almost everywhere and is locally integrable. 
The Cauchy principal value convolution is defined by 

(3.6) v.p.aR1/axj *f(x)=lim f aRI/&xj(y)f(x-y) dy. 

By the Calderon-Zygmund theory of singular integrals, if f c LP, 1< p < oo, the limit 
in (3.6) exists almost everywhere and in LP, and the resulting function is in LP. 

The Fourier transform of RI is 

(3.7) R1(e) = (2 

From (3.1) and (3.7) it follows that 

(3.8) A1p(x) = R* p(x)= f Rl(x-y)'p(y) dy. 

Hence 

(3.9) AP(x) = -R * A'P(x)=- RI(x-y)A9P(y) dy. 

By the Calderon-Zygmund theory, for 'p E H1, 

(3.10) A'P(x) = -1 v.p.aR1/axj *&p1(9xj. 
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THEOREM 3.11. Iff(l + |xK)-1-n c L1, the formula (Af, (p) = (f, A p) defines Af as a 
tempered distribution. Iff(l + lxl)-s c L2, s < (n +2)/2, then (Af ) = lf|J 

Proof. The Schwartz space S consists of the functions p c C' such that for each 
m and N 

kkllm,N=max {(1+Ix) E D Dk(X))} < 00, 

the sum being taken over all derivatives of orders -m, the maximum over all x. The 

'k llm,N are the seminorms defining the topology. The tempered distributions are the 
elements of the dual space S', so the assertion of the first part of the theorem is that 
there exist C, m, and N so that 

J(f, Ap) = f(x)A p(x) dx |?' C IIIIm, N for all p c S. 

This (together with the existence of the integral) is proved by showing the existence 
of C, m, and N so that 

(3.12) JAp (x)I?-< C |k|1 ,mN(1 + |xj) for all p c S. 

On lxl-< 2 such an evaluation is clear, so it will be assumed that lxl > 2. By (3.10) 
Ap(x) is a constant times a sum of terms 

lim j [(Xj-y)x ylXl -|xx l ]Xp/y j(y) dy, 
? 0 |X-y|>_? 

the subtraction of xlj-l-n being allowed because the integral of &9p/&yj is 0. The 
integral is evaluated in several pieces. (The subtraction of xjxII-1-n is useful in one of 
the pieces, and immaterial in the others.) 

Consider first the range E < x -YI < 1. Since lxl > 2, x -y < jxj/2, and jxj/2 < IyI < 

31xl/2. Therefore, 

laf/aYj(Y)l IIkPIII,1(1'+ Iy)1 ` h1,1(1 + Ix/21)-1, 

and the integral involving xjIXI-1-n has the required evaluation with 11f . The other 
part is equal to 

(I (X -y1)x y ~(j)/X jy (y) - j/&y (x)) dy, 
1x-yj<1 

the subtraction of 9p/&yj(x) being allowed because the integral of yjlyl1--n over Sn- 

is 0. By the mean value theorem, 

&9/&yj(y) - a9/&yj(x) = (VM p/&yj(c), y - x), 

where c lies on the segment from x to y, so that 

JVa>pyaYjWj 'P Ik 112,n+l(1 + Ix/21). 

The last integral has the required evaluation with p11 2,n+l. 
This takes care of integration over the range x -y| < 1. The range x -yI> 1 is 

split into the two parts, jyj<IxI/2 and jyj>jxI/2. If Ix-yl>1, the integrand is 

=21p/pyj(y)l='211lll N(1+IyI)-N, so the integral over ly|'|xl/2 is at most 

C'Pll ,N(1+Ix/21)'n-N. The required evaluation holds for 11k11,N with N=2n+1. 
Finally, let |x - y I> 1 and I yI < |x|/2 (where the subtraction of xj-l-n becomes useful). 
In this case, write 

(X_-y 
)lx-Y1n _xxl?1 = Xj(|X -1-n x-1-n) _y IYlf1-nl 
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The integral involving yj has the required evaluation for 1 ii 1,Nwith N>n+1. To 
evaluate the integral involving xj, note that by the mean value theorem 

lix-Y 1- I-|X 1 
-C(n + 1)ix/21-2-nlyi. 

Thus, the integral has the required evaluation for l 'p ii 1,N with N > n + 1. (In all regions 
but this one, the evaluations above give iAqp(x)i = O(ixK-N), for arbitrary N, but this 
one gives only O(ixi-1-n), which, in fact, is all that is true.) 

The Fourier transform is an isomorphism of S onto S. Therefore, if g is a tempered 
distribution, the formula (g, ') = (g, p) defines a tempered distribution g, called the 
Fourier transform of g. The Fourier transform is also at isomorphism of S' onto S'. 

Letf(1 + ixi)-s c L2, i.e., fE H-S, s< (n +2)/2. Since (1 + ixi)1n+s E L2, it follows 
that f(1 + ixi)-I-n c LI, therefore Af and (Af) are tempered distributions. From (3.12) 
it follows that if 'p c S, then (A'p) c Hs, and 

iii(|i is = ii(Api Cl f iim,N. 

Therefore, (f, i{i')i Cf ll1-siDPim,N, and the formula (I|If ) =(f, |i0) defines i|lf 
as a tempered distribution. The assertion of the second part of the theorem is that the 
Fourier transform of the tempered distribution (Af) is the tempered distribution if|, 
i.e., that ((Af) A) A=(f,i1$) for p c S. 

Let fN(x) =f(x) if if(x) I? N 0 otherwise. By definition, (3.12), and L2 theory, 

((Af), A) = (Af, Sp) = (f, Ap) = lim (fN, A() = lim (fl, A). 

It is clear that (fN)-f in HS, so the limit is (f, i(1i). 
LEMMA 3.13. Letf(l + ixi)-I-n c L1. On any open set where f is locally in the Sobolev 

space Hs [10], Af is locally in Hs-1. On any open set wheref is C', Af is C?. On any 
open set where f is analytic, Af is analytic. If x is outside the support off, then 

(3.14) Af(x) = - ((n - 1)/(TISn-21)) {ix _yl-lnf(y) dy. 

Iff has bounded support, Af(x) = O(iXK-'-n) as Ix I- oo. 
Proof. All but formula (3.14), and the final statement which is clear from (3.14), 

come from the fact that A is an analytic elliptic operator of order 1. If the support of 
'p is disjoint from the support of f, then, by (3.9), 

(Af; cp) = (f, A'p) = - f ff(x)ARI(x -y)'p(y) dy dx. 

This is the scalar product of the right side of (3.14) with 'p. 
LEMMA 3.15. Let f( + ixi)1-n c L1. R1 *f is defined almost everywhere as an 

absolutely convergent integral and is locally integrable. On any open set wheref is locally 
in Hs, R1 * f is locally in Hs+l. On any open set where f is C?, R1 * f is C?. On any 
open set where f is analytic, R1 *f is analytic. Iff c LP, p> n, R1 * f is continuous. Iff 
has bounded support, R1 *f(x) = O(iXi-n ) as Ixi I -o. 

Proof. The only statement requiring proof is the one about LP. Fix r, with the aim 
of proving continuity on lxl < r. Letf'=f for ixi < r,f'= O for lxi > r. Since RI * (f-f') 
is analytic on ixi<r, it is enough to treat R1 *f'. Let R'=R1 for ixi<2r, R'=0 for 
ixi>2r. Then R1*f'=R'*f' on ixi<r. If p>n and (1/p)+(1/p')=1, then p'< 
n/(n - 1), and R' c LP'. It is well known (and not hard to verify) that the convolution 
of a function in LP with a function in LP' is continuous. 

4. General sets and sets with a cone condition. As usual, X is a measurable set in 
Rn. n-' 2. When X is the ball with center 0 and radius r, i.e., X = B(0, r), Xx is usually 
written as Xr. 
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The following formulas result from (3.14) and the observation that A(1 -f)= 
Al -Af = -Af. 

(4.1) AXx(x) = (n - 1)(IT Sn-21)1 IJ x y| nlI dy for x c X?; 

(4.2) Ayx(x) = - (n - 1)( 7SI2S 
1 

|x-Y|I 
nI dy for xc X'?. 

x 

THEOREM 4.3. Let X and Y be measurable sets. 
(a) If fr(x) = f(x/ r), then Afr(x) = r- 1Af(x/ r). 
(b) Axx is an analytic function on (8X)' = R n _-X. 
(c) AXx(x)> 0 on X?, and <0 on X'?; Ayxx = -Axx. 
(d) IfXc Y, then 

IAXx(x$I- -AXy(x)l on X?, 

Ayx (x) AXy(x) on Y'?. 

(e) If x is not on AX, then 

'nd(x, &X)IAyx(x)I ? (n - )ISn-I/Isn-2I. 

(f) If X has finite measure, then, on X'?, 

Trd(x, aX)IAyx(x)I ? ((n - 1)/IS n-2 )IXd(x, aX)-n 

Proof: (a) is obvious from the definition. Statements (b), (c), (d), and (f) are 
immediate from (4.1) and (4.2). To see (e), let x c X?, and let r = d(x, aX). The ball 
B with center x and radius r is contained in X, so, by (d), AXr(0) = AXB(x) - AXx(x). 
AXr(0) is evaluated by (4.1). When x c X'0, the proof is the same, with X and X' 
interchanged. 

THEOREM 4.4. Axx is subharmonic on X?, and superharmonic on X'?. This implies 
that 

(a) Axx cannot have a local maximum in X?, nor a local minimum in X'?. 
(b) Fix a c X?. The average of A/xx over the sphere with center a and radius r is 

an increasing function of r on 0 < r < d(a, aX). 
(c) Fix a (anywhere). If X is contained in the ball with center a and radius ro, rn-2 

times the average of -Ayx over the sphere with center a and radius r is a decreasing 
function of r on r > rO. 

Proof: AIxI -n= (a n)(a -2)IXIa-n-2>0 for a<2. The statements about sub- 
and superharmonicity follow from (4.1) and (4.2). Statements (a) and (b) are standard 
properties of sub- and superharmonic functions. In proving (c), it can be assumed that 
a = 0 and ro = 1. If g is defined on Ix I> 1, the Kelvin reflection h (x) = IX12-ng(X/ X12) 
is defined on lxl < 1 and satisfies Ah(x) = IxI-2-nAg(x/IxX2). Therefore, if g is subhar- 
monic and O(|xKI-n), then h is subharmonic on xl < 1. The standard mean value 
property applied to h gives the one stated for g. 

When the boundary of X has some smoothness, the inequality in Part (e) of 
Theorem 4.3 can be sharpened and reversed, with the sharpness depending on the 
smoothness. 

THEOREM 4.5. If X is a halfspace and x is not on AX, then ird(x, aX)IAxx(x)l = 1. 
If X is convex, rd(x, &X)|Ayx(x)l ' 1 on X, and --1 on X'?. 

Proof: If X is a halfspace, the integrals in (4.1) and (4.2) are evaluated easily by 
using polar coordinates with center x. If X is convex and x c X, let x be a point on 
aX at minimum distance from x. There is a half-space Y' c X' with x on the boundary. 
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This half-space is at distance d(x, AX) from x, since it cannot intersect the ball with 
center x and radius d(x, AX), the latter being contained in X. 

A less sharp inequality holds when X' contains not a halfspace with x on the 
boundary, but only a part of an open cone with vertex x. Recall (Definition 2.4) that 
C(0, a, 8) is the open cone with axis 0, opening angle 2a, and radius 8. 

THEOREM 4.6. Let x c X', and let x be a closest point in AX to x. If x + C( 0, a, 8) c 

X', then 

'rnd(x, aX)Axx(x) ' ((n - 1)/(nlS12|))(8/(8 + d(x, aX)))r|S)-1 r C(0, ao, 1). 

Proof. Ayx(x) _ the integral in (4.1) with X' replaced by the cone x + C(0, a, 8). 
This integral is 

(n - 1)(I TSn-2K-1 I x - x-x-Y ln dy 
JC(O,a,,8) 

_(n - 1)(iT I2Sfn-2C- ) (d(x, aX) + IYI)nI dy, 
c (0 a,a,8 ) 

which has the value indicated. 
COROLLARY 4.7. Suppose that there are constants a and 8 so that for each x c AX 

there exist 0 and 0' with 

i+C(0,a,8)cX and i+C(0',a,86)cX'. 

There is a constant c depending only on a and n such that if x is not on aX, then 

c(8/(8 + d(x, aX))" ? ird(x, aX)IAXx(x)j ? (n-1)jSn W/|Sn21. 

Remark 4.8. If X is bounded and convex with nonempty interior, the conditions 
of Corollary 4.7 are satisfied. The exterior cone C(0', a, 8) exists with 0' the direction 
from x to x, a = 17r/2, and 8 = oo. If X contains a ball of radius R and has diameter 
D, then, for each 8 c &X, there is an interior cone C(0, a, 8) with a = arcsin (RID) 
and 8 = R cos (a). 

5. Radial functions. If L is a space of functions, Lo denotes the subspace of 
functions with bounded support. If g is a radial function, g is the corresponding even 
function of one variable. If X is the ball |x| < r, x=Xx. The dimension n is -2, P 
(in Theorem 5.2) is defined in formula (A.2), and Eox = x -(x, 0)0. 

LEMMA 5.1. If the radial k c LP(Rn-1) p > 2, then k(Eox) is integrable on Sn1, and 

| k(Eox) dO 2=Sn21 In-2I k(lxl sin (a)) sinn-2(a) da 
Sn-I 0 

= 
2|Sn-21 IX12-n. k( t)tn-2(Ix12 - t2)-1/2 dt. 

Proof. Since k(Eox) = k(( x|2-(x, 0)2)1/2) the above equalities hold, provided that 
the last integral is finite when k is replaced by its absolute value. The condition k c LP 
translates to k c LP, relative to the measure tn2dt. Since p > 2, (Ix| - t2 c 2 LPc 
i/p + l/p' = 1, relative to this measure. 
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THEOREM 5.2. If kcHo(R-1), s'O, is radial with integral 0, k=APe, where 
ecH H+1/2 is radial and O(|xI| ). If k cLP, p >2, 

,r/2 

(5.3) e(x) = (1/X7) f k(IxI sin (a)) sinn-2 (a) da 
0 

Ixi 

(5.4) = (1/r)lXl2-n k(t) tn-2(lXl2 - t2)-1/2 dt. 
0 

If k =0 for IyI> r, then 
r 

(5.5) e(x) = (1/ T)jXj2-n k(t)tn-2. [(1X12 - t2)-1/2 _ (jX12 - r2)-1/2] dt for |x> r. 

Proof. k(cr) = h(joj), where h is holomorphic of exponential type. The power 
series for h contains only even powers, and h(O) = 0. Define f on Rn by f(e)= 
(2v1)2h(lfl)/I1l2. f is holomorphic of exponential type, so f has bounded support. 
Since 

.(Ir2s+31 '(e)12df=2 )-(ln-1 l/ln-2) 
2s 
'A|2|(O..)12 da,' 

fc HS+3/2. e = Af is therefore in Hs+l/2 and, by Lemma 3.13, is O(lxl-n-1). By formulas 
(3.5) and (9.6) of [7], APe = k. 

In Theorem A.7, let f = er, as in (A.14), where el is given by (A.17) with m at 
least -1/2. As r -- 0, e * er(x) -* e(x) almost everywhere, and P0er * k(y) -> k(y) almost 
everywhere, so it suffices to show that the limit can be placed under the integral. If 
H(y) is the upper bound of the average of Ikl over balls containing y, then I POer * k(y)I-' 
cH(y). By the Hardy-Littlewood maximal theorem, H c LP, so H(Eox) is integrable 
over Sn-1. (There is a relatively simple proof of the Hardy-Littlewood theorem in [6].) 

Formula (5.5), which is useful later, comes from (5.4) and the fact that 

o=j k(x) dx= k(t)t 2dt. 

6. Balls. This section contains explicit formulas and precise evaluations of AXB, 
where B is a ball. These have some interest of their own, and they lead to good 
evaluations of Axx for sets X of bounded curvature. Because of the translation 
invariance and homogeneity, it is enough to discuss the ball with center 0 and radius 
1, the characteristic function of which is denoted simply by X. The dimension n is '2. 

By Lemma 3.13, Ax is an analytic function on lxi ? 1, and it is O(IxL-'-n) as x -- co. 
By Lemma 3.11, Ax is a tempered distribution on Rn, but, by Theorem 4.5, it is not 
a (locally integrable) function on any neighborhood of any point on lxi = 1. It is shown 
that on a neighborhood of lxi = 1, Ax is given by a Cauchy principal value. 

In what follows, em = elm is the point-spread function defined in (A.17), and 
K m = K m is the corresponding local kernel defined in (A.18). Aem denotes the distribu- 
tion defined by (Aem, p) = (em, Ap). Note that X = Ce-112. 

THEOREM 6.1. Let Fm be the function defined by the right sides of (5.4) and (5.5) 
on Ixl I 1, with k = Km. If Re (m) >-1/2, Aem = Fm on Rn.If Re (m) >-1,Aem=Fm 
on Ixi 1. 

Proof If Re (m) > 1/2, k c LP, p > 2, and Theorem 5.2 shows that -APem = APFm, 
from which it follows by the projection-slice theorem ([7], (3.5)]) that Aem = Fm on 
Rn. For p c CO, (Aem, p) is an analytic function on Re (mn)> -3/2, while (Fm, 9) is 
analytic on Re (m) > -1/2. Since the two are equal on Re (m) > 1/2, they are equal 
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on Re (m) > -1/2. If p has support in Ix| # 1, (Fm, p) is analytic on Re (m) > -1, so 
it is equal to (Aem, p) on Re (mi)> -1. 

THEOREM 6.2. Let k(t) = 2(1 - t2)-32(n - 1 - (n -2)t2). On Ix| # 1 the distribution 
AX is the function F defined by 

'lxl 

(6.3) F(x) = (I/J)Ixl 2- J k(t)tn-2(|x12_ t2)-1/2 dt for lxl < 1; 
0 

1 

(6.4) F(x) = (1/17T)IX12-n k(t)tn-2[(IX12- t2)-1/2-(_X12_ 1)-1/2] dt for lxl > 1. 
0 

F has the form 

(6.5) F(x) = (2/ T)IX12 EE(X)(1 -_X2) 

where E (given by (6.8) below) is continuous and satisfies 

(6.6) 11 -E (x) ? C - _Ix1211/2. 

On Rn, Ay is the principal value v.p.F defined by 

(6.7) (v.p.F, (p) = lim f F(x) p(x) dx. 

Proof. Theorem 6.1 shows that on I# 1, AX is the function F given by (6.3) and 
(6.4). 

To see that F is as described in (6.5) and (6.6), set r = 11 - IX121-1/2 and define 

Eq(lxl) = { s-2(- 
_ r2 )(q-1)/2(s2 - 1)-1/2 ds, xI < 1, 

Eq(1X)= for (1 _S2/ r2)(ql)/2(s2 + Il)1/2((S2 + 1)1/2 + )-l ds, IxI > 1 

r0 

Eq(1)= J's-2(s2 1)-1/2 ds 

r00 

(s2+ 1)-1/2((s2+ 1)1/2+ 1)-i ds = 1, 
0 

where q is a nonnegative integer. 
With the change of variable t = (1 - s2/r2)1/2 in (6.3) and (6.4), F assumes the 

form (6.5) with 

(6.8) E(x) = (n-I)En-2(x)-(n-2)En(X). 

An elementary calculation gives 

E1(IxI) = lxl, for lxl < 1, 

E1(IxI) = (IxI + (Ix12 - 1)1/2)-l for x > 1. 

Consider the case lx| < 1 and q = 0. Since 1 = Eq(1), 

E0(lxl) - 1 = fs2(1 _ s2/r2) -12(s2 - 1)-1/2 dS 

r noo 
- { -2(S2 - 1)-/2 ds - Jr -2(S2 - 1)-/2 ds 

(S2 _ 1)2(r+ (Ir2 _ s2)1/2)-l(r2 _ 2)-1/2 ds + E1((IX) 
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Let r> 2. If 1?- s - r/2 the integrand is r-2(s2- 1)-1/2, so the integral over this range 
is r2 log (r). If r/2- s?' r the integrand is ?2r-1(r2 -4)-1/2(r2 _ s2)-12, so the 
integral over this range is ?(2ir/3)r-1(r2-4)-1/2. Therefore, 

(6.9) EO -1 C C(1- x|2) log (2/(1- x2)) for all |x| < 1. 

If q is an integer '2 (still |x| < 1), 

q-2 r 
1- E (|xl) = (1/r) E (S2 _1-/(r+ (r2 I212-( 2r2)/ ds + I1- El(x 

0 1 

Since 01 - s2/ r2I 1, evaluations like the ones above give 

(6.10) Eq(x Eq log (2/ x <1 

for all nonnegative integers q, |x| < 1. 
For lxl > 1, similar but simpler evaluations give 

(6.11) Eq(|Xl)-11 '-C|1- xl21/2 

Consequently, (6.6) holds for all x. 
This shows that F is as described in (6.3)-(6.6). The next step is to show that the 

limit in (6.7) exists. 
Since f is radial, it can be assumed that 'p is radial. By (6.5) and (6.6), 

F(x) = (2/1T)|X12-n(1 - Ix12)1 + G(x), with G locally integrable. 

Therefore 

(v.p.F, 'p) = (1/T)ISn-II lim f |s(1 _ S2)-1 (s) ds 

(6.12) +(1/2)ISnl G IG(s) (s) ds 

= (111T)|S 
nI 

I(V-O p S(1 _5) f+ (g -) 

where v.p.(1 -s)-1 is the Cauchy principal value of (1- s)-1, and g is an even locally 
integrable function. This shows that the principal value defined in (6.7) exists. 

Since v.p.F = F on lxl ? 1, it follows that 

(6.13) AX = v.p.F + D, 

where D is a radial distribution with support on lxl = 1. It remains to show that D =0. 
Standard formulas for Bessel functions give 

()(e) = jejje /j-n12j ( = ((n-1)/2 (AX )(A) = O(Jn2j(j 

Therefore, Ax c H-- for s > 1/2, and 

(6.14) (AX, 'p)j-? C |p _ for s> 1/2. 

It is easy to see that if 'p is radial and 0 for lxl > R, then 

11'p llo CR(n-1)/2 ll and 1 n-1)/2 

Interpolation gives 

(6.15) |p 1 -- CR(n-1)/2 for 0 ' s ' 1, 
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then (6.14) gives 

(6.16) I(AX, 'PA ICR(n-1)'2IkI -1 for 1/2< s '1. 

This implies that the even distribution (Ax) defined by 

(6.17) ((AX) , = (AX, ) 

lies in HS locally for s > 1/2. 
Let < be even and equal to 1 on a neighborhood of 1. From (6.13) and (6.12), it 

follows that 

(6.18) AX = (1/7r)ISn-1Iv.p.(1 _S)-1 +g + 1 

where g is integrable and D has support at 1, so it is a linear combination of derivatives 
of 8. All terms but D lie in HS for s > 1/2, so D does, too. Therefore, D cannot 
involve derivatives of 8, but only 8 itself. The fact that D = 0 is a consequence of the 
following lemmas, in which e E C? is radial, e = 0 for lxi ' 1, and the integral of e is 
1; and H = F - G with G(x) = (2/7r)X12-n (I - x12)-1. 

LEMMA 6.19. If c > 0, c $ 1, and er(x) = r-n e(x/r), 

(6.20) lim (v.p.G, er * Xc) = (-1/2)1Sn-11 log |1 - c21. 
r->O 

Proof Let G6(x)-G(x) for l1-lxllE, =0 otherwise, so that (v.p.G,er*Xc) is 
the limit as E -- 0 of (G6, er * Xc)* 

Consider first c<1. If r<l-c, then on IyI>c+r and IxI<r, Ix-yI>c, and 
er * Xc(y) =0. If E < 1 -r-c, then 

(6.21) (Ge, er * X.)= F G(y)er * Xc(Y) dy. 
lyl<c+r 

The right side is independent of E, and as r -- 0 it approaches 
c 

(6.22) G(y) dy = IS n-I s(1 _ S2)-l ds = (-1/2)ISn-11 log |1 - c21. 

Consider now c>1. If r<c-L, then on IyI<c-r and IxI<r, Ix-yI<c, and 
er *Xc(y)=1. If E<c-r-1, then 

(G.,er *Xc)={ G.(y) dy+ G(y) er*Xc(y) dy. 
|y|cc-r jyj>c-r 

As e -> 0, the first integral has the limit 

(-1/2)S n-II log 11 - (c - r)21. 

The second, which is independent of e has limit 0 as r -> 0. 
LEMMA 6.23. The limit as r -> 0 of (AX, er * Xc) iS 

F(y)dy if c<1, { F(y)dy if c>1. 
lylcc 1y1cl/C 

Proof If c<1 and r<1-c, the support of er*XC does not meet |x|-1, so 

(AX, er * Xc) = (F, er * Xc), which approaches the integral indicated. 
For each x, 

A(er * Xj)(x) = (A er * XC)(x) = (A er((X-), Xc) = (er(x-.), AXc) 
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If c> 1 and r < c-i, on lxl 1 the support of er(x-.) does not meet yI = c, so, by-part 
(a) of Theorem 2.1, 

(x, A(er * x.) = (1/c) x(x) er(x -y)F(y/c) dy dx, 

which approaches the integral indicated. 
The proof that D =0 is finished as follows. Let 

(6.24) f8 =X? 
X+ Xi-8, 

(AX5 er *f8) = (v.p.G, er *f8)+(H, er *f8)+(D, er *f8) 

and take the limit, first as r -> 0, then as 8 -> 0. By Lemma 6.23 and formula (6.22), the 
limit on the left as r- O is (-1/2)|Sn-II log (2+86)/((2 - )(1 +86)2) plus the integral of 
H over 1 - 8 < lyI < 1/(1 + 8). Both terms go to 0 as 8 -> 0. Thus, the left side of (6.24) -> 0 
as 8 O 0. By Lemma 6.19, as r - O, (v.p.G, er * f8) goes to (-1/2)|S n-I - log ((2 +86)/ 
(2- 8)), which goes to 0 as 8- 0. (H, er *f8) goes to (H, f8) as r goes to 0, then to 0 
as 8 -> 0. On the other hand, 

(D, (p) = c { p (0) dO; 
Sn-I 

so, for r <8, (D, er *f8) = cn-I|, and c must be 0. 

7. Sets of bounded curvature. 
DEFINITION 7.1. X has curvature _ l/r along a subset X0 of AX if for each point 

x EX0 there are open balls B c X and B'c X' of radius r with xEB B'. 
Let 

(7.2) El(x) = 2|x 2n(1 + lx)'E(x) 

with E as in Theorem 6.2. For |x| $ 1, 

(7.3) Ay(x) = (1/(XT(1 - Jx)))E1(x) and 1- EI(x)l _ C|1 - JX12. 

THEOREM 7.4. Let X have curvature ' 1/ r along XO. If x c R n -aX, and d (x, X0) = 
d (x, aX) < r, then 

(7.5) El(1 + (d (x, aX)/ r)) - iTIAyx(x)I d (x, aX) _ 1(1 - (d (x, aX)/ r)), 

(7.6) |IAxX(x)I - (1/(7Td (x, aX))l _ Cr-1/2 d (x, aX)-1"2. 

Proof. Let xcX0, and let xc be a point in X0 with Ix-&|=d(x, aX). Let B" be 
the ball with center x and radius |x -4 x| B' B" is not empty, since both contain x. If 
x is not on the line joining xc to the center c' of B', then B' r B" is not empty, which 
is impossible, since B''c X' and B" c X. Similarly, the center c of B is on this same 
line. Therefore, 

(7.7) |x - cl = r- d(x, aX), 

and x c B. By Theorem 4.3, 

AxB'(X) ?I Ax (x)I |AXB((X) = (1/r)IAy((x - c)/r). 

The right-hand inequality in (7.5) comes from putting (7.7) into the left formula in 
(7.3). AXB' is treated similarly, the only difference being that |X - C'l = r + d (x, AX). 

When x c X', the evaluations are the same with the roles of B and B' reversed. 
The inequality (7.6) comes from the right inequality in (7.3). 
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8. A-': convolution with Rl. Since R, *f is defined only when f(1 + JxJ)- CL1 
the interplay between a set X and its complement X' is no longer available. Throughout 
the section, X and Y are bounded measurable sets in R', n _ 2. 

THEOREM 8.1. 
(a) RI * Xx is continuous on R , analytic on Rn-83X, and subharmonic on X'?. 
(b) If X c Y, then RI * xx(x)-' RI * Xy(x) for all x. 
(c) If X has diameter 8, RI * xx(x) ?JSn-IJ1(7lSn-1J). 
(d) For x c X', RI * Xx(x) - (IXI/(7Sn-2)) d (x, aX)'-n. 
Proof. Statements (a), (b), and (d) are obvious. In proving (c), first let x c X?. 

Then the ball B with center x and radius 8 contains X, so by (b), RI * xx(x)-E 
R * XB(X), which is easily seen to have the value shown. Since RI * Xx is continuous, 
the inequality holds on X. Since RI * Xx is subharmonic on X'", and the inequality 
holds on the boundary, it holds throughout X'". 

As before, reverse inequalities come from rather explicit information about balls. 
If g(x) =f(x/r), then RI * g(x) = rRI *f(x/r), so it is sufficient to treat the unit ball 
with characteristic function X. 

THEOREM 8.2. 

RI * x(x) = (2/XT) (1 -IX12t2)1/2tn-2(1 - t2)-1/2 dt for lxl < 1, 
0 

RI * X(x) = (2/7T)IX12-n (1- t2)1/2tn-2(IX12- t2)-1/2 dt for lxl > 1. 

RI * X is a positive decreasing function of lxl. It is a concave function of lxl on lxl < 1, 
and a convex function of lxl on lxl > 1. 

Proof. By formula (A.6), 

R1 * f(x) = (1/(2TS n-21)) {| P0f(E0x) dO. 

The two formulas follow from this and Lemma 5.1, and the fact that Pox(y)= 
2(1 - IY2)1/2, IyI < 1. The last statements are obtained by differentiating these formulas. 

THEOREM 8.3. Let x c Rn _aX, let xc be a point on aX at minimum distance from 
x, and let r be the radius of the largest ball B contained in X, with center on the line 
joining x and xi- and with x E B. If C = (n _ 

1)JSn-IJ/Isn-2 then 

(n-1)ii-R1 * xx(x) ' (C-2)d(x, aX)+2r for xcX , 

(n - 1)n-RI * Xx(x) - C(r/n)(1 + (d (x, aX)/r))1-n for x c X'?. 

Proof. If c is the center of B, then by Theorem 8.1, 

RI * Xx(X) _ RI * XB(X) = rR1 * X((x - c)/r). 

If x c X0, then |x - c| = r - d (x, aX), the last quantity is 

r(RI * X) (1 -(d (x, aX)/r)), 

and the proof of the first inequality is finished by evaluating (RI * X) at 0 and 1, and 
using the concavity. Now, RI * XB(X) is ISn-IJrn/n times the average of RI(x-y) over 



LOCAL TOMOGRAPHY 479 

B. If xcX'0, then RI(x-y) is subharmonic on B, so the average is ?R1(x-c), the 
value at the center of B. In this case, |x - c = r + d (x, aX). 

9. Dimension 2. In dimension 2 the reconstruction integrals in formulas (A.9) and 
(A.12) are usually carried out in terms of the variables a, p, and r (the latter depending 
on a) defined by 

a = R (cos (a), sin (a)), 0 =-(cos (a - p), sin (a - p)), 

x -xa = - x-a|(cos (a - r), sin (a - r)). 

With these variables (A.9) and (A.12) become 

C2IT IT/2 

(9.2) e *f(x) = (1/4T) Daf((p) cos (p)k(Ix - al sin (r- p)) dep da, 
O -7r/2 

(9.3) Ae *f(x) = (R/44IT) Daff(qp) cos (q)K(Ix - al sin (7- -p)) dep da. 
O -,rr /2 

These formulas require evaluation of the inner integral at each point x of the 
two-dimensional reconstruction matrix. In order to avoid excessive computation, 
Lakshminarayanan devised the ingenious "homogeneous approximation." With K= 

Kr, as defined in (A.16), 

K(Jx - al sin (r - p)) = Ix - a1-3K,(sin (r-(p)), s = r/|x-aJ. 

The approximation consists in replacing s = r/|x - al by a constant s independent of 
x and a. With this approximation (9.3) becomes 

(9.4) Aer *f(x) - (R/4iT) |x-al-3 Daf(p) cos (p)Ks(sin (r - p)) dep da. 

The inner integral can now be computed for a set of equidistant values of r, and 
extended to others by interpolation, the point being to remove the dependence on x 
and a. The reconstructions of the resolution phantom, head, and abdomen shown in 
? 2 come from an implementation of (9.4), with a global Shepp-Logan kernel for the 
standard reconstructions. 

The exact consequences of the Lakshminarayanan approximation are not known. 
It has proved remarkably effective when the x-ray sources are not too close to the 
object, e.g., on a circle of radius -2.5 for an object contained in a circle of radius 1. 
In the case of local tomography, some insight can be obtained by evaluating the limit 
of the inner integral in (9.3) as the point spread radius goes to 0. 

For fixed x and a, hence fixed a and r, let I(x, a) denote the inner integral in 
(9.3), with K = Kr= -(Per)". If g(p) = Da((p), and t = -x - al sin (r- p), 

I(x, a)=-{ g(P) cos(p)P'(Per)"dt, c=Ix-al cos (r). 

Since g(p) vanishes near +?i/2, integration by parts gives 

I(x, a) =- (g(p) cos (p)P')"Per dt. 
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As r -O, Per-, 50so 

lim I(x, a) = - (g(p) cos (p)p')"(O) 

= -O|x - a|-3(cos (r)g"(r) - 2 sin (r)g'(r)). 

Formula (9.3) gives 

2,7 

Af(x) = -(R/41T) { x -a 1-3(cos (,r)(Daf )"(zT) -2 sin (T)(Daf )'(T)) da 

(9.6) 
0 

- -(R/41T) x-a 1-3(l1+ d2/dr2)(cos (r)DafQ7r)) da. 
0 

In this setting, the approximate reconstruction formula (9.4) appears as a natural basis 
for discretizing the exact formula (9.6): the operator -(1 + d2/dr2) is approximated 
by convolution with K (sin (r)). 

It has been observed empirically that cup artifacts beyond the intrinsic ones occur 
unless the sum of the discrete kernel values is very small relative to the kernel maximum. 
Viewing the convolution as an approximation to -(1 + d2/dr2) provides an intuitive 
explanation. A kernel discretizing d2/ dr2 should have mean value -0 relative to a 
kernel maximum of size h-2, where h is the step size. Thus a discrete kernel for 
-(l+d2/dr2) should have a mean value of size 1 relative to a kernel maximum of 
size h2. With equidistant sampling, the exponent m = 11.4174 provides such a discrete 
kernel when r is chosen so that the kernel minimum falls on any of the first three 
detectors. The importance of kernel sum 0 in parallel beam sampling is discussed 
in [1]. 

Appendix. Reconstruction formulas. The divergent and parallel beam x-ray trans- 
forms of a function f on R' are defined by 

00 

(A.1) Df(a, 0) = Daf(O) = f(a + tO) dt, 0 c Sn-l 
0 

(A.2) Pf(O. x)= Pf(x) = { f(x + tO) dt, x c 0'. 

A useful auxiliary operator is 

(A.3) Laf(y) = Daf(y/ ly ) + Daf(-y/ ly I). 

The x-ray attenuation coefficient f is assumed to be square integrable with support 
in lxl < 1. Daf(0) is the attenuation along the ray with origin a (the x-ray source) and 
direction 0. It is assumed that the x-ray sources lie on a sphere A of radius R > 1. 
P0f(x) is the attenuation along the line through x with direction 0. Laf(X - a) is the 
attenuation along the line joining x and a. 

Inversion formulas are obtained easily. Indeed, 

(A.4) _JX D dfK { f(a +t0) dtdO={f(a+x)|x ndx, 
Sn-I Sn-I O 

so (with A applied to the integral as a function of a) 

(A.5) f(a) = (1/(TSn-21))Aj Daf(0) do. 
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Since Daf(0) + Daf(-0) = P0f(E0a), where E0 is the orthogonal projection on O', 
formula (A.5) gives 

(A.6) f(a) = (1/(2liSn-21))Aj P0f(E0a) dO. 
Sn-I 

Because of the singularities in A (differentiation and singular integration), numeri- 
cal evaluations require the use of approximate formulas. In practice, these usually are 
formulas for e * f; where e is an approximate 8-function. 

The general approximate inversion formulas, proved in [9], are as follows (with 
Hs, the Sobolev space of order s): 

THEOREM A.7. If e c H1/2, (1+ x|)'-n e E LI, and el/| IEl Ll c then, with k = APe 

(A.8) e *f(x) = (1/(2STI2S)) {X2 P,,f * k(E,x) do, 
Sn-I 

(A.9) e *f(x) = (1/(47TRIS ,2, { LJf(0)(a, 0)Ik(E (x - a)) dO da. 

Formula (A.9) comes from formula (A.8) and the following [8]: 

(A.10) P0f * g (E0x) = (1/2R) Laf(0) |(a, 0) |g(E, (x - a)) da. 
A 

In ordinary tomography the "point-spread function" e is an approximate delta 
function, and e * f is an approximation to f Such formulas were introduced by 
Lakshminarayanan [3] with the point-spread function e(x) = (1/2)Jl(lxl)/lxl in 
dimension n = 2. 

In local tomography, introduced in [9] and [12], e is replaced by Ae, in which 
case, since A2 = -A, Theorem A.7 becomes 

THEOREM A.11. If e c H3/2 and (1 + |x|)'l-n Ae cL, then, with K =- APe, 

(A.12) Ae * f(x) = 1/(4 7RIS n-2) j JI L,f(O) I (a, O)|K (E0(x - a)) dO da. 
A Sn-I 

Formally, Ae *f = e * Af If e is an approximate 6-function, Ae * f becomes an 
approximation to Af, which is very different from f, but has the same singularities, 
since A is an elliptic pseudodifferential operator. (The local tomography in [12] is 
based on a different approximation to A.) 

Ordinary tomography is global because the kernel k in Theorem A.7 cannot 
have bounded support. k(e) = (27T) eW(f), with e(O) $0, so k cannot be analytic. 
If the point-spread function e has bounded support, it normally has very small support, 
and the kernel K in Theorem A. 11 has equally small support. Therefore, the tomography 
of Theorem A.11 is local. The value of Ae * f(x) is obtained from attenuation measure- 
ments along rays passing very close to x (within a millimeter or so, on a medical scale). 
Moreover, the inner integral in (A.12) requires only some 3-8 multiplications (depend- 
ing on the noise.) 

To compute the countercups described in ?? 2 and 8, it is necessary to have a 
formula for RI *f where the integration takes place over the source sphere A, rather 
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than the detector sphere S"1. This can be obtained from the symmetry relation 
L.f(a -x) = Laf(x - a). By (A.5), with Cn = 1/(I Sn-2I) 

R1 * f(x) = Cn { Dxf(O) dO = ( 1/2) cn Lxf(O) do. 
Sn-I Sn-I 

For fixed x either inside or outside (but not on) the source sphere A, let 0= 
(a -x)/Ia -xl. The symmetry relation gives 

R, * f(x) = (1/2) cfS Laf(X - a) dO. 

With the change of variable 0 = (a - x)/Ia - xI, 

dO = R-11(x - a, a)I lx - aI-n da, 

so the result is 

(A.13) RI *f(x) = (1/2R)Cn { Laf(x - a)l(x - a, a)|Ix - a1-n da. 

Remark. When the point x is outside the source sphere A, the map a -> 0 is neither 
1-1 nor onto. 

The usual way to get point-spread functions and kernels is to fix an initial function 
el with e' bounded and continuous at 0, and with e'(0) = (2T)-n/2 (or integral el = 1 
if el is integrable). If 

(A.14) er(x) = r-n e1(x/r), 

then, as r -> O, er * f -f in various senses, depending on additional properties of el 
and f For small r, er is an approximate 8-function. If k, is the global tomography 
kernel corresponding to el(k1 = APel), then 

(A.15) kr(y) = r-n k(y/ r) 

is the kernel corresponding to er. If K1 is the local tomography kernel corresponding 
to el(KI = -PAel), then 

(A.16) Kr(y) = r-'K1(y/ r) 

is the local kernel corresponding to er. The choice of r depends primarily on the nature 
of el, the resolution required, and the noise. See [2]. 

The original point-spread function is the one of Ram-Lak [4]. One in widespread 
current use is that of Shepp-Logan [5]. Point-spread functions useful for both global 
and local tomography [2], [8], [9] are the functions 

el(x) = C(1-IxI2)m+l/2 for IxI<1, =0 for lxi> 1, 
(A.17)I 

(C = r((2m + 3 + n)/2)/ nTn2r((2m + 3)/2)). 

The corresponding global kernel has a complicated analytic expression, but a very 
quickly convergent series expansion [8]. The corresponding local kernel (K1 = -APel) 
iS 

K m(y) = C(1 y12)m-l(n -1 -(2m + n -1)y12) for lYI < 1, 
(A.18) C/ 

C = 2F((2 m + 3 + n)l 2)1/gln-l)/2 r(m +1) 
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In practice, we use this local kernel with m = 11.4174. em and Km', with m complex, 
are also useful in the computation of AXr, where Xr is the characteristic function of 
the ball B(O, r) because Xr is a multiple of er112. 

Remark. The proofs in [9] of Theorems A.7 and A. 11 made use of the fact that 
if <p is in the Schwartz space S of rapidly decreasing C' functions and q(0) = 0, then 

n 

(A.19) qp(x)=xj<pj with pj cS. 

The proof in [9] is incomplete. 
Proof. For fixed x, integration of the derivative of (p(tx) gives 

n 00a: n I 

( (x) = -E xj { a8/axj(tx) dt = i Xj J1 a/axj(tx) dt. 

If <(x) = 0 for Ix|-' 2, let a E CC be 0 for lx|-' 1, and 1 for lxl-' 2, and take qj to be 
a times the integral in the first sum. If p(x) = 0 for lx| ' 3, let a c C" be 1 for lxl _ 3, 
and take pj to be a times the integral in the second sum. Any <0 in S is the sum of 
one that is 0 for lxl _2 and one that is 0 for lx| '-3. 

Note added in proof. Only recently, the authors were made aware of references 
[12]-[14], and some others, by E. I. Vainberg et al. The articles of Vainberg deal with 
parallel beam tomography; References [2], [9], and this article deal with both parallel 
and divergent (fan) beam tomography. 
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