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Hierarchical modeling of agreement
Sophie Vanbelle,a*† Timothy Mutsvari,b Dominique Declerckc

and Emmanuel Lesaffreb,d

Kappa-like agreement indexes are often used to assess the agreement among examiners on a categorical scale.
They have the particularity of correcting the level of agreement for the effect of chance. In the present paper, we
first define two agreement indexes belonging to this family in a hierarchical context. In particular, we consider
the cases of a random and fixed set of examiners. Then, we develop a method to evaluate the influence of factors
on these indexes. Agreement indexes are directly related to a set of covariates through a hierarchical model.
We obtain the posterior distribution of the model parameters in a Bayesian framework. We apply the proposed
approach on dental data and compare it with the generalized estimating equations approach. Copyright © 2012
John Wiley & Sons, Ltd.
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1. Introduction

Kappa-like agreement indexes are commonly used to quantify agreement between two examiners on
a categorical scale. They correct the observed proportion of agreement between the examiners for the
effect of chance. The kappa-like family includes Cohen’s kappa coefficient [1], the weighted kappa
coefficient [2], and the intraclass kappa coefficient [3]. These agreement indexes were extended over the
years to the case of several examiners [4–7], of a single examiner against a group of examiners [8, 9],
and to the case of two groups of examiners [8, 10]. Authors also proposed extensions to account for a
regression structure when examiners classify independent or dependent items (subjects or objects) on a
categorical scale. In particular, developments were made on the basis of log-linear models [11,12], latent
class models [13–16], and logistic regression analysis [17–21] when agreement is assessed on a sample
of independent items while generalized estimating equations (GEE) [22–27] and weighted least-squares
[28] were used when agreement is assessed on a sample of dependent items.

Two major criticisms on kappa coefficients were formulated in the literature. Firstly, several authors
[29–32] pointed out that Cohen’s kappa coefficient is dependent on the prevalence of the trait under
study, which indicates a serious limitation when comparing Cohen’s kappa coefficient values among
studies with varying prevalence. The dependence studied by Thompson and Walter [29] was relative
to the prevalence of the true latent binary variable under study, keeping sensitivity and specificity
fixed, whereas Feinstein and Cicchetti [30] studied the dependence of Cohen’s kappa coefficient on
observed marginal prevalences, keeping the proportion of observed agreement fixed. However, Bloch and
Kraemer [33] and Vach [34] criticized the results of Thompson and Walter [29] by noting that the depen-
dence occurs only if one can change the prevalence without changing sensitivity and specificity, which
is generally not the case. Moreover, Vach [34] pointed out that the dependence studied by Feinstein
and Cicchetti [30] is simply a consequence of the purpose of Cohen’s kappa coefficient. This was also
noted by Hoehler [35], who remarked that examiner bias, by definition, indicates disagreement. The sec-
ond major criticism against the kappa-like family of coefficients is that, like correlation coefficients, the
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interpretation of kappa statistics is not clear except for 0 and 1 values. Landis and Koch [36] therefore
constructed a classification scheme to appreciate the strength of agreement. This classification is widely
used but should be avoided because its construction is totally arbitrary. It is preferable to consider a
confidence interval to appreciate the value of a kappa estimate, the lower bound being often the only
of interest. In that perspective, authors derived several methods to estimate the sampling variability of
agreement coefficients belonging in the kappa-like family (e.g., [37–39]). Blackmann and Koval [40]
provided a guidance in selecting among some of these methods in small samples, according to the value
of the prevalence, the level of agreement, and the sample size. Despite these disadvantages and limita-
tions, kappa-like agreement indexes are popular due to their simplicity and wide applicability to assess
agreement when no gold standard is available. It should however be kept in mind that a kappa coefficient
mixes two sources of disagreement among examiners, that is, disagreement due to bias among examiners
(i.e., different base rate of categories between the examiners) and disagreement that occurs because the
examiners evaluate the items differently (i.e., rank order the items differently) [41, 42].

We pay particular attention in the present paper to the general case of agreement between two examin-
ers in the presence of a hierarchical structure in the data. For example, a two-level hierarchical structure
arises when graders assess the presence (yes/no) of geographic atrophy in the eyes of patients. The agree-
ment between the two graders can be studied at the eye level (level 1) or at the patient level (level 2).
Ignoring the correlation between the two strata constituting the first level of hierarchy (left and right eye,
respectively) might lead to an incorrect estimation of agreement and incorrect inference [43]. It is not
rare to encounter data with higher hierarchical levels. For example, when dentists assess the presence of
caries experience (CE) on a dichotomous basis (yes/no) in the mouth of children, we have a three-level
hierarchy. Indeed, agreement can be assessed at the tooth surface level (level 1), the tooth level (level 2),
and the mouth level (level 3). More specifically, we may be interested in studying the effect of factors
defined at different levels of the hierarchy on the agreement obtained between a pair of graders. For
example, we may want to estimate the effect of the type of tooth (deciduous or permanent) on the agree-
ment between the dentists when assessing the presence of CE. When a gold standard (benchmark scorer)
is available, agreement is measured by the specificity and sensitivity. It is expected [44,45] that sensitiv-
ity becomes more favorable as we go up in the hierarchy from surface to tooth and subject level. This is
because of the logical argument that if an examiner scored at least one surface of a tooth as affected by
caries, the attributed score will also be positive at the tooth and subject levels. On the other hand, when
an examiner scored negatively at the surface level, it is still possible that the scoring is correct at the tooth
and subject levels. For example, when the examiner scored the presence of CE on the wrong surface of
a tooth, the tooth is still correctly scored as CE. Mutsvari et al. [46], who used a full hierarchical model
to estimate sensitivity and specificity of CE assessment at the different levels of the hierarchy, observed
this phenomenon. On the other hand, there is no strict order of the results for specificity (see [44] for a
detailed explanation). Because kappa-like indexes can be expressed in terms of specificity and sensitivity
[3], it is not possible to determine the behavior of kappa-like indexes according to the level of the hier-
archy. In particular, we have to distinguish between two situations. On one hand, consider that CE was
only detected by one of two examiners in a subject. We expect a decreasing level of agreement between
these two examiners when rising in the hierarchy. Indeed, the disagreement between the two examiners
will remain at all levels of the hierarchy, whereas the number of units of analysis and therefore the num-
ber of agreements will decrease. On the other hand, consider that both examiners detect the presence of
CE but on different surfaces of a same tooth. The disagreements between the two examiners will disap-
pear at the tooth level. The level of agreement computed at the tooth level will consequently be higher
than at the surface level. Because we expect the occurrence of a combination of the two disagreement
situations, it is difficult to predict a general relationship between the level of agreement and the level of
the hierarchy.

In the present paper, we propose two agreement indexes belonging to the kappa-like family to quan-
tify the agreement between a pair of examiners in the context of multilevel data. One measure considers
examiners randomly chosen from a population and the other considers that they are the only of interest.
Then, a method to study the effect of factors on the level of agreement between a pair of examiners is
introduced. Rather than simply estimate agreement indexes for various levels of the covariates, empha-
sis is given in quantifying the impact of the covariates on the level of agreement. This aims helping
researchers to identify factors lowering the agreement level between pairs of examiners and find ways
to improve it. We give an overview of previous research on the subject in Section 2 and describe the
motivating data set in Section 3. We provide a short review of Cohen’s and intraclass kappa coefficients
and their relationship in Section 4, followed by the presentation of the proposed method in the case of
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random and fixed examiners. We introduce the practical implementation of the method in Section 5 and
apply it to the motivating data set in Section 6. Finally, we discuss the method in Section 7.

2. Previous research

Relatively few papers paid attention to the problem of agreement in the presence of hierarchical struc-
tures and are restricted to the simplest case of a two-level hierarchy. A possible reason for this sparse
literature on the subject could be that it is common practice to summarize the data at the higher level
of the hierarchy and then compute a classical agreement index. In the geographic atrophy example, we
could decide to study agreement at the patient level rather than at the eye level. To summarize the eye’s
data at the patient level, two different rules can be envisaged: a patient is said to be positive when geo-
graphic atrophy is (1) detected in at least one eye or (2) present in both eyes. The two rules might lead
to different conclusions [47]. Moreover, rules become more difficult to set up when there are more than
two strata (i.e., S ). Indeed, every value between 1 and S could be envisaged as cut off when summa-
rizing the data at a higher hierarchical level. Finally, the loss of information (i.e., the number and the
position of positive items at the deepest level of the hierarchy) occurring when summarizing data should
not be neglected. To circumvent these problems when determining the agreement at the higher level of
the hierarchy, Oden [43] proposed to take a weighted average of the agreement coefficients obtained in
each strata of the deepest level, whereas Schouten [48] used a weighted agreement index with weights
reflecting the strength of agreement between the two examiners. In the geographical atrophy example, a
weight of 1.0 was given if the graders agreed on both eyes, a weight of 0.0 if the graders disagreed on
both eyes, and a weight of 0.5 if the graders disagree on only one eye. Unfortunately, these agreement
indexes do not permit to study the effect of continuous covariates on the level of agreement.

With the advances of the generalized linear mixed models, Klar et al. [25], Williamson et al. [26],
and Gonin et al. [27] proposed GEE approaches to model coefficients of agreement of the kappa-like
family according to a set of covariates in the presence of repeated measurements. In the mean time,
Lipsitz et al. [21, 22] developed a method on an heuristic basis and showed that it is in fact equivalent
to the GEE approach. Nevertheless, hierarchical and repeated measurements differ in the sense that, for
multilevel data, the measurements are not repeated on the same statistical units but clustered. Finally,
Ren et al. [49] proposed to estimate the intraclass kappa coefficient between several examiners using a
multilevel generalized linear model and proposed using a bootstrap method to estimate its standard error.

More recently, agreement in the presence of a hierarchical structure was envisaged in a Bayesian sta-
tistical framework. Gajewski et al. [50] proposed a Bayesian hierarchical model with latent variables to
estimate the inter-examiners reliability of ordinal observations with random examiner responses. Zhang
and Cutter [51] used multivariate probit models for unbalanced data sets and then estimated the kappa
coefficient on the basis of the posterior samples of the probit regression parameters and the covariance
matrix. Finally, Hsiao et al. [52] derived an intraclass correlation coefficient among random exam-
iner effects. Although these Bayesian methods take the hierarchical structure of the data into account,
none of them permit to directly relate the obtained agreement coefficients to a set of continuous or
categorical covariates.

3. Motivating data set

3.1. Epidemiological data set

The Signal Tandmobiel® project is a longitudinal (1996–2001) oral health project in Flanders (North of
Belgium). At the first examination, the average age of the children was 7.1 years (SD D 0:4) and varied
from 6.1 to 8.1 years. Sixteen trained dentists (examiners) conducted annual examinations on 4468 chil-
dren (2315 boys and 2153 girls) from 179 primary schools, after they obtained parental consent. Data on
oral hygiene and dietary habits were obtained through structured questionnaires, completed by the par-
ents. The children received a clinical examination using the standardized and widely accepted criteria as
recommended by the WHO [53] and based on the diagnostic criteria for caries prevalence surveys pub-
lished by the British Association for the Study of Community Dentistry [54]. The clinical examinations
took place in a mobile dental clinic, with a standard dental chair and dental artificial light. Detection
was performed by the visual–tactile method, using a disposable mouth mirror and a WHO/CPITN type
E probe. No radiographs were taken. For a more detailed description of the Signal Tandmobiel® study,
we refer to [55].
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3.2. Calibration data set

Training sessions for scoring CE were organized and the scoring behavior of each of 16 dental examiners
was compared with that of the benchmark scorer (third author). During the study period (1996–2001),
three calibration exercises for scoring CE (1996, 1998, and 2000), involving 92, 35, and 24 children
respectively were organized. A large number of children was involved in 1996 compared with the other
years. Four sessions were organized in 1996 with each session comprising approximately 25 children.
Because of practical reasons, a more efficient organization was needed with only a single session for the
years 1998 and 2000. Note that the age of the children for the calibration exercises of 1998 and 2000
was not recorded in the database. However, the ages of children examined in 1996, 1998, and 2000 were
age matched with the school children in the first, third, and fifth classes, respectively. During the cali-
bration exercises, children were not sampled at random from the main study. Rather, a school where a
relatively high prevalence of CE could be expected was selected. At the end of each of the three calibra-
tion exercises, the sensitivity and specificity of each dental examiner vis-a-vis the benchmark scorer was
determined. In the present work, we combine data of the three calibration exercises. We fit a hierarchical
model of agreement, as specified in Section 4.2, to this calibration data set. The purpose of this research
is to understand the factors that lower or decrease the agreement between a randomly chosen pair of
examiners. In this study, we do not use data from the benchmark scorer to imitate the studies where
such a scorer is not available. Because the left quadrant of the children was examined only in 1996, we
restricted the analysis to the right quadrant. We excluded a total of 43 children from the analysis, because
they were examined by only one dental examiner. The study population finally consisted of 108 (71.5%)
children (1261 tooth and 5677 surfaces). There were 60 (55.6%) girls and 48 (44.4%) boys, 49 (45.4%)
children were examined in 1996, 35 (32.4%) in 1998, and 24 (22.2%) in 2000.

4. Two-level agreement model

4.1. Cohen’s kappa coefficient and intraclass kappa coefficient in the binary case

Cohen’s kappa coefficient was initially defined as a descriptive statistic on an ad hoc basis and not in
terms of population parameters [1]. However, Bloch and Kraemer [33] derived a population model in the
case of a binary scale yielding Cohen’s kappa coefficient as maximum likelihood estimator.

Consider a population of items (subjects or objects) I. Let Yi;r be the random variable such that
Yi;r D 1 if examiner r (r D 1; 2) classifies a randomly selected item i of population I in category 1 and
Yi;r D 0 otherwise. Across the items in the population, E.Yi;r /D �r and var.Yi;r /D �2r D �r.1� �r/.
If � denotes the correlation between Yi;1 and Yi;2, Table I corresponds to the population model.

Cohen’s kappa coefficient is then defined as

� D
�o � �e

1� �e
D

2��1�2

1� �1�2 � .1� �1/.1� �2/
; (1)

where the probability of agreement �o is the sum of the diagonal elements in Table I (�o D �1�2+
.1��1/.1��2/C2��1�2) and the expected probability of agreement �e is the product of the marginals
(�e D �1�2C .1� �1/.1� �2/).

Suppose that two examiners classify a random sample ofN items from population I on a binary scale.
Let nij be the number of items classified in category i by the first examiner and category j by the second

Table I. Theoretical model in the case of two independent examiners and a binary scale.

Examiner 2

Examiner 1 1 2

1 EŒYi;1Yi;2� EŒYi;1.1� Yi;2/� �1
�1�2C ��1�2 �1.1� �2/� ��1�2

2 EŒ.1� Yi;1/Yi;2� EŒ.1� Yi;1/.1� Yi;2/� 1� �1
.1� �1/�2 � ��1�2 .1� �1/.1� �2/C ��1�2

�2 1� �2 1
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one (i; j D 1; 2). Let ni: (resp. n:j / be the total number of items classified in category i (resp. j ) by the
first (resp. second) examiner. The maximum likelihood estimator of � is then expressed as

O� D
po � pe

1� pe
; (2)

where po D .n11C n22/=N and pe D .n1:n:1C n2:n:2/=N 2.
The intraclass kappa coefficient can be viewed as a special case of Cohen’s kappa coefficient where it

is assumed that the ratings are interchangeable. In other words, the two examiners are assumed to have
the same marginal probability distribution (�1 D �2). The resulting index is algebraically equivalent to
Scott’s index of agreement [56].

Let �1 D �2 D � , the probability of agreement becomes �oI D �2C .1��/2C2��2 and agreement
expected by chance �e D �2C .1� �/2, leading to the intraclass kappa coefficient

�I D
�oI � �eI

1� �eI
D �: (3)

The maximum likelihood estimator of �I is

O�I D
poI � peI

1� peI
; (4)

where poI D .n11C n22/=N and peI D Œ.n1:C n:1/=2N �2C Œ.n2:C n:2/=2N �2 [3].
Cohen’s kappa and the intraclass kappa coefficients are equal when there is no examiner bias, that is,

when n12 D n21. Therefore, it is recommended to use Cohen’s kappa coefficient when the two examiners
are fixed and cannot be considered as interchangeable, whereas the intraclass kappa coefficient is pre-
ferred when the absence of examiner bias can be assumed. This could be the case when two examiners
come from a common population.

4.2. Random examiners in the two-level case

Consider a population R of examiners. We are interested in the agreement between a randomly chosen
pair of examiners from that population on the classification of items on a binary scale. Let there be a ran-
dom sample of R examiners, then we have P D R.R � 1/=2 distinct pairs of examiners. Items are also
supposed to belong to a population of items I with a two-level hierarchical structure in the sense that nj
items in the j th cluster (j D 1; : : : ; N ) were classified in two categories by theR examiners. Each exam-
iner thus classified a total of

PN
jD1 nj items. For example, the presence of CE (yes/no) may be assessed

on each of the 28 teeth of 108 children by 16 examiners (RD 16; nj D nD 28; j D 1; : : : ; 108).
Suppose that we randomly choose a pair p D .r1; r2/ of examiners in the population R. We omit sub-

sequently the dependence notation of p on r1; r2 for notation simplicity. Let Yij;r be the random variable
equal to 1 if examiner r from pair p classifies item i from cluster j in category 1 and equal to 0 otherwise.
We suppose that Yij;r � Bern.�ij;r /, where �ij;r is the probability of classifying item i from cluster j
in category 1 for examiner r of pair p (i D 1; : : : ; nj ; j D 1; : : : ; N; r D r1; r2; p D 1; : : : ; P ).
We further assume that the examiners of pair p share common properties and are interchangeable
(�ij;r1 D �ij;r2 D �

p
ij ). This implies the existence of a common underlying probability of classifying

items in the two categories of the scale for all examiners of population R (ER.�
p
ij /D �ij ).

Let Y pij be the random variable such that Y pij D 1 if the two examiners of the randomly cho-
sen pair p agree on the classification of item i from cluster j . Suppose that Y pij � Bern.�po;ij /
(i D 1; : : : ; nj ; j D 1; : : : ; N; p D 1; : : : ; P ). We have

Y
p
ij D Yij;r1Yij;r2 C .1� Yij;r1/.1� Yij;r2/: (5)

With the use of these notations, the agreement between the two examiners from pair p on item i from
cluster j is defined by

�
p
ij D

�
p
o;ij � �

p
e;ij

1� �
p
e;ij

; (6)

where �pe;ij D
�
�
p
ij

�2
C
�
1� �

p
ij

�2
is the probability of agreement expected by chance between the

two examiners of pair p. The agreement is thus of intraclass form because the examiners are assumed

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3667–3680
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to be interchangeable
�
i:e:; �

p
ij is common to examiners r1 and r2

�
and extends the classical definition

given by Equation (3).
We next introduce covariates and show how they are related to the hierarchical agreement coefficient.

We will propose a relationship between the hierarchical agreement index �pij and the covariates. How-
ever, because �pij is a ratio and the probability distribution of kappa-like agreement indexes is difficult
to establish, we will rephrase the relationship to an equivalent set of two separate models. The first one
directly models �po;ij , whereas the second indirectly models �pe;ij , both according to a set of covariates.

Suppose that each item has an item/cluster specific .f �1/�1 covariate vector x�ij and let xij denote

the f � 1 vector
�
1;x�

0

ij

�0
. We propose to link the agreement index to the covariates with

g
�
�
p
ij jxij ; ˛j

�
D x

0

ijˇC ˛j ; (7)

where g.:/ is a link function, ˇ a f � 1 vector of parameters, and ˛j � N
�
0; �2C

�
a random intercept

varying for each cluster.
Because agreement coefficients belonging to the kappa-like family vary between �1 and 1 [1], we

have that
�
1C �

p
ij

�
=2 vary between 0 and 1. A natural choice for the link function to avoid constraints

on the parameters ˇ is then the complementary log–log function, that is,

g.:/D lnŒ� ln.1� :/�: (8)

Because

ln

"
� ln

 
1�

1C �
p
ij

2

!#
D ln

"
� ln

 
1� �

p
ij

2

!#
D ln

2
4� ln

0
@ 1� �

p
o;ij

2
�
1� �

p
e;ij

�
1
A
3
5 ; (9)

Equation (7) is equivalent to

� ln
�
1� �

p
o;ij jxij ; ˛j

�
D� ln

h
2
�
1� �

p
e;ij

�i
C exp

�
x0ijˇC ˛j

�
: (10)

For known �pe;ij , this corresponds to a hierarchical generalized linear model with a known offset but
the probability �pe;ij is rarely known in practice. One possibility is to estimate �pe;ij and use this estimate
in the model of �po;ij , similar to that in [21, 22]. This implies

� ln
�
1� �

p
o;ij jxij ; ˛j

�
D� ln

h
2
�
1� O�

p
e;ij

�i
C exp

�
x
0

ijˇC ˛j

�
: (11)

To obtain O�pe;ij , we first estimate the marginal probabilities �ij;r with the two-level hierarchical model

logit.�ij;r jxij ; ıj ; �r/D x
0
ij�C ıj C �r ; (12)

where � is a vector of parameters, �r � N
�
0; �2R

�
the random effect relative to the examiners, and

ıj � N
�
0; �2

d

�
the random intercept pertaining to the clusters (r D r1; r2). Then, the marginal

probability �pij is estimated by

O�
p
ij D

O�ij;r1 C O�ij;r2
2

: (13)

Finally, we obtain

O�
p
e;ij D

�
O�
p
ij

�2
C
�
1� O�

p
ij

�2
: (14)

The agreement index �pij is thus directly related to the covariates through the model parameters ˇ�
common to the model of �pij and �po;ij

�
and indirectly through the model parameters �. If the sign of a

parameter estimate Ǒm is positive (negative), the level of agreement increases (decreases) as the value of
the mth covariate increases.

To estimate the model parameters given in Equations (11) and (12), the maximum likelihood esti-
mates will be replaced by sampled values of a posterior probability distribution obtained in a Bayesian
framework, as described in Section 5.
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4.3. Fixed examiners in the two-level case

In the previous section, we developed a method to study the effect of covariates on the hierarchical
agreement index on a pairwise basis when interest was to generalize the finding to any pair of examiners
in the population. If examiners do not share common properties and are the only examiners of interest,
they can be considered as fixed. Therefore, suppose now that instead of a sample of R > 2 examiners,
we only dispose of the data of two particular examiners, namely examiners 1 and 2, and consider them
as fixed.

Let Yij;r be defined as in the previous paragraph (i D 1; : : : ; nj ; j D 1; : : : ; N; r D 1; 2). The
agreement between the two examiners on item i from cluster j is defined by

�ij D
�o;ij � �e;ij

1� �e;ij
; (15)

where �o;ij D Yij;1Yij;2 C .1 � Yij;1/.1 � Yij;2/ and �e;ij D �ij;1�ij;2 C .1 � �ij;1/.1 � �ij;2/ are the
probability of agreement and the probability of agreement expected by chance between the two exam-
iners, respectively. This extends the classical definition of Cohen’s kappa given in Equation (1) to the
two-level case.

The relationship given by Equation (7) thus becomes

ln

�
� ln

�
1� �ij

2
jxij ; ˛j

�	
D x

0

ijˇC ˛j ; (16)

where ˇ is the vector of parameters and ˛j � N
�
0; �2C

�
a random intercept varying for each cluster.

This model simplifies to

� ln.1� �o;ij jxij ; ˛j /D� lnŒ2.1� O�e;ij /�C exp
�
x
0

ijˇC ˛j

�
; (17)

where O�e;ij is obtained by

O�e;ij D O�ij;1 O�ij;2C .1� O�ij;1/.1� O�ij;2/: (18)

The estimates of the marginal probabilities O�ij;1 and O�ij;2 are obtained by a two-level hierarchical
logistic model

logit.�ij;r jxij ; ıj /D x
0
ij�r C ıj ; (19)

where �r is the vector of parameters and ıj � N
�
0; �2

d

�
the random effect relative to the clusters

(r D 1; 2). We assume different vectors of parameters �r in contrast to the approach in Section 4.2.

5. MCMC approach

To estimate the parameters in the models mentioned previously, we used a Bayesian approach. In a
Bayesian approach, the prior knowledge about the parameters is combined with the observed data
(likelihood) to yield the posterior distribution. We obtained the posterior summary measures of the
parameters by using the MCMC sampling approach (e.g., [57]). We performed the MCMC calculations
in OpenBUGS [58]. We used non-informative priors expressing that we do not have prior information on
the parameters. For the regression coefficients, we assumed vague independent priors to follow a normal
distribution with mean 0 and large variance, that is, ˇ � N.0; 106/. The prior distribution for all the
standard deviations of the random effects, that is, mouth, tooth, and examiner was taken as uniform, for
example, � � UniformŒ0; 100�. We ran three parallel MCMC chains, each for 30,000 iterations for all
the models with a burn-in period of 2500 iterations. We checked the convergence of these MCMC by
using the CODA package in R [59]. In particular, we used the Gelman and Rubin’s diagnostics measure
R [59], and this value was close to 1 for all the parameters, which means there was no evidence against
convergence.

6. Application

The following data are part of the Signal Tandmobiel® study described in Section 3. The presence of
CE (yes/no) was assessed in the right quadrant of 108 children by 16 dental examiners on each surface
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of the tooth. The resulting data thus have three levels of hierarchy; namely, the surface, the tooth, and
the mouth. Characteristics related to the children [gender (boy, girl), year of examination (1996, 1998,
2000)], to the tooth [dentition type (permanent, deciduous), jaw (upper, lower), type (canine, molar, pre-
molar, incisor)], and to the surface [location (distal, mesial, lingual, occlusal, buccal)] were recorded.
The aim is to study the influence of these factors on the agreement obtained between any pair of examin-
ers and more particularly to detect factors lowering the level of agreement. Because the 16 examiners did
not assess all the children, we dispose of data from 74 of the 120 possible pairs of examiners. Because
deciduous molars are replaced by permanent premolars, molars and premolars were grouped in a single
category, namely ‘(pre)molar’.

The intraclass kappa coefficient, as described in Section 4.1, was computed for each pair of examiners
assessing at least two children at the mouth, tooth, and surface levels (Table II). The prevalence of CE
decreased when going deeper in the level of the hierarchy. It was approximately 52.9%, 11.3%, and 5.1%
at the mouth, tooth, and surface levels, respectively. However, the dependence of the data needs to be
taken into account when computing intraclass kappa coefficients at the surface and tooth levels because
the definition of chance agreement no longer applies. Similar agreement levels were found on the surface
and tooth levels. On the other hand, the results slightly differed between the surface and mouth levels.
This could be explained by the fact that a tooth is composed of four or five surfaces, whereas a half
mouth included between 40 and 54 surfaces in our data. When summarizing the information on CE at
the mouth level, the number of agreements on caries-free surfaces is thus reduced to a greater extent than
at the tooth level.

6.1. Modeling agreement

We then applied the method described in Section 4.2 to take the hierarchical structure into account. If
the subscript s denotes the surface, t the tooth, and m the mouth level, the hierarchical agreement index
can be related to the covariates by

ln

�
� ln

�
1� �

p
stm

2
jxstm; ˛t ; �m

�	
D x

0

stmˇC ˛t C �m; (20)

where ˛t � N.0; �2T / is the random effect relative to the tooth level and �m � N.0; �2M / to the mouth
level. Because the dentition type (deciduous, permanent), subsequently denoted by Dstm, is a covari-
ate varying within clusters (i.e., mouths), the covariate was decomposed in between-cluster (Dm) and
within-cluster component (Dstm �Dm) to obtain a proper interpretation of the regression coefficients
[60,61]. The regression coefficient relative to the between-cluster covariate refers to the effect of increas-
ing the proportion of permanent teeth in a mouth by one unit, whereas the within-cluster regression
coefficient refers to the effect of the actual teeth type within a given mouth. Note that the between-
cluster component is highly related to the age of the child. The proportion of permanent teeth in the
mouth of one child was 40:1˙ 12:6 %, 64:0˙ 16:3%, and 90:9˙ 13:9% for children in the first, third,
and fifth classes, respectively. Therefore, only the type of tooth was used as covariate in the models. We
provide the posterior mean of the model parameters in Table III with 95% credibility interval and the

Table II. Signal Tandmobiel® study: classical intraclass kappa distribution obtained for the 74 pairs of dental
examiners assessing caries experience in the mouths of 108 children.

Level Mean SD Median Range

Intraclass kappa coefficient ( O�I ) Surface 0.78 0.098 0.78 0.55–0.93
Tooth 0.79 0.093 0.79 0.45–0.94
Mouth 0.73 0.20 0.75 �0.33–1.00

Observed proportion of agreement (poI ) Surface 0.98 0.0081 0.98 0.94–0.99
Tooth 0.96 0.018 0.96 0.92–0.99
Mouth 0.87 0.086 0.89 0.50–1.00

Expected proportion of agreement (peI ) Surface 0.92 0.022 0.93 0.83–0.95
Tooth 0.82 0.036 0.83 0.68–0.88
Mouth 0.52 0.037 0.52 0.50–0.72

Summary is presented at the surface, mouth, and tooth levels.
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Table III. Signal Tandmobiel® study: parameter estimates of the hierarchical complementary log-log model
for kappa and through the method of Lipsitz et al.

Proposed approach Lipsitz et al. method

Parameter Posterior mean (SD) 2.5% 97.5% GEE Estimate (SD) 2.5% 97.5%

Fixed effects Intercept 0.77 (0.61) �0.46 2.02 0.70 (0.20) 0.30 1.10
Gender Girl �0.0040 (0.20) �0.38 0.37 0.12 (0.12) �0.11 0.35

Boy

Dentition type Permanent �0.28 (0.51) �1.29 0.72 �0.085 (0.24) �0.55 0.38
(between) Deciduous
Dentition type Permanent �0.28 (0.21) �0.71 0.14 �0.25 (0.17) �0.58 0.077
(within) Deciduous

Jaw Upper �0.14 (0.17) �0.48 0.19 �0.11 (0.091) �0.29 0.073
Lower

Type Canine �0.38 (0.65) �1.72 0.88 –a

(Pre)molar 0.15 (0.41) �0.94 0.65 –a

Incisor

Random effects �2mouth 0.27 (0.14) 0.081 0.61

�2tooth 0.72 (0.20) 0.42 1.18

aThe algorithm did not converge with type of tooth in the model.

results provided by the GEE approach. For the sake of comparability, we adapted the GEE method of
Lipsitz et al. [22] to make use of the complementary log–log as link function.

As seen in Table III, the results of the Bayesian approach and the GEE approach lead to the same
conclusion. The level of agreement between a pair of dental examiners assessing the presence of CE was
not related to any of the available covariates. Note that in the multilevel approach, the magnitude of the
random effects is not negligible compared with that of the fixed effect. This reflects the existence of an
heterogeneity in the agreement levels for the children and the teeth, remaining unexplained after adjust-
ment for the available covariates. We computed the agreement level between pairs of examiners for
the (pre)molars in the lower jaw of an median boy (i.e., all random effects equal to 0), aged 8 years
(i.e., with 64% of permanent teeth in our data set) with respect to the type of tooth (deciduous or
permanent) (Figure 1). The posterior median is 0.70 for deciduous teeth and 0.49 for permanent teeth.

Figure 1. Signal Tandmobiel® study: posterior density of the agreement coefficient for a (pre)molar in the lower
jaw of a median 8-year-old boy (i.e., with 64% of permanent teeth) according to the type of teeth (permanent

or deciduous).
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Table IV. Signal Tandmobiel® study: parameter estimates obtained using the hierarchical logistic regression
and Lipsitz et al. method for the marginal probabilities of CE assessment.

Proposed approach Lipsitz et al. method

Posterior GEE estimate GEE estimate
Parameter mean (SD) 2.5% 97.5% (examiner 1) 2.5% 97.5% (examiner 2) 2.5% 97.5%

Fixed effects Intercept �13.5 (1.44) �16.4 �10.7 �5.40 (0.95) �7.26 �3.54 �5.08 (0.94) �6.92 �3.24

Gender Girl �1.16 (0.71) �2.51 0.24 0.085 (0.36) �0.63 0.79 0.012 (0.39) �0.76 0.78
Boy

Dentition type Permanent 0.060 (1.60) �2.96 3.33 1.01 (0.83) �0.61 2.64 0.97 (0.89) �0.77 2.70
(between) Deciduous
Dentition type Permanent �3.27 (0.57) �4.41 �2.17 �1.78 (0.55) �2.85 �0.70 �1.91 (0.54) �2.96 �0.85
(within) Deciduous

Jaw Upper �0.96 (0.41) �1.74 �0.16 �0.38 (0.16) �0.70 �0.067 �0.39 (0.16) �0.71 �0.076
Lower

Type Canine 0.19 (1.11) �2.00 2.39 �0.36 (0.65) �1.64 0.92 �0.44 (0.59) �1.59 0.71
(Pre)molar 6.89 (0.88) 5.27 8.72 2.01 (0.24) 1.53 2.49 1.74 (0.24) 1.27 2.21
Incisor

Random effects �2mouth 10.8 (2.77) 6.3 17.1

�2tooth 17.7 (2.33) 13.5 22.6

�2examiner 0.19 (0.098) 0.071 0.43

6.2. Modeling the probability of positive caries experience assessment

Table IV shows the posterior distribution of the probability of detecting CE, namely �stm;r , as given by
the hierarchical logistic model

logit.�stm;r jxstm; ıt ; 	m; �r/D x
0

stm�C ıt C 	mC �r : (21)

In the GEE approach, the probability of assessing the presence of CE is different for the two examiners
of a pair, whereas it is assumed to be common to all examiners in the proposed approach.

According to the multilevel logistic regression, the probability of detecting CE was higher for a decid-
uous than a permanent tooth, on the lower jaw than the upper jaw, and on premolars than on incisors.
When calculating the proportion of variance attributable to each level of the hierarchy in the multi-
level logistic model following the latent variable approach [62], we found that 55% of the variance was
attributable to the variation between teeth within individuals, 34% was attributable to variation at mouth
level, and only 0.58% was attributable to the examiners. The degree of similarity in the assessment of
CE scoring, as assessed by the intraclass correlation coefficient, was equal to 0.89 for surfaces of the
same tooth as compared with 0.34 for surfaces of different teeth within a given mouth assessed by a par-
ticular examiner. The results of the multilevel and the GEE approach are similar, although they have a
different interpretation.

Figure 2 shows the posterior distribution of the examiner random effects corresponding to model (21)
for each examiner. Almost all posterior intervals included the value 0, indicating that these random
effects do not deviate from 0. That overall exchangeability is however perhaps not satisfied because
examiner 9 clearly deviates from the other examiners.

We computed the posterior probability of being classified as experiencing caries for (pre)molars in the
lower jaw of a median boy, aged 8 years (i.e., with 64% of permanent teeth in our data set) with respect
to the type of tooth (deciduous or permanent) (Figure 3). The posterior median was 0.98% for deciduous
teeth and 0.037% for permanent teeth.

7. Discussion

Hierarchical data are frequently encountered in research and need specific analysis methods. In this
paper, we defined two hierarchical agreement indexes when interest lies in the pairwise agreement
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Figure 2. Signal Tandmobiel® study: posterior distribution of the examiner random effects obtained in the
hierarchical logistic model of the marginal for each of the 16 examiners (posterior mean (�) and 95%

credibility interval).

Figure 3. Signal Tandmobiel® study: posterior probability distribution for being classified as experiencing caries
on (pre)molars in the lower jaw of a median 8-year-old boy (i.e., with 64% of permanent teeth) according to the

type of tooth.

between examiners on a binary scale. The first index quantifies the underlying common agreement exist-
ing between any pair of examiners belonging to a common population of examiners. The examiners are
assumed to be interchangeable, providing an agreement index of the intraclass form. The second one
was derived in the context of fixed examiners and is of Cohen’s form. It is designed to quantify pairwise
agreement when the examiners in the study are the only of interest. This method easily extends to the
case of R > 2 fixed examiners, as using the 2-wise definition of agreement introduced by Conger and
David and Fleiss [4, 6]. We then proposed a method to directly evaluate the impact of categorical and
continuous covariates, defined at different levels of the hierarchy, on the obtained agreement indexes.
In practice, the probability of agreement expected by chance �e;ij is estimated using two hierarchical
logistic models and used as a known offset in a hierarchical complementary log–log model relating the
observed probabilities of agreement �o;ij to a set of covariates. The regression part of these three models
are obtained simultaneously using a Bayesian approach. The posterior mean of the parameters obtained
when modeling the probabilities �o;ij corresponds to the posterior mean of parameters obtained by
modeling directly the hierarchical agreement index to the same set of covariates. This method permits to
identify factors lowering the level of agreement between examiners on a pairwise basis. In our example,
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there is no evidence of an effect of the recorded covariates on the agreement between a pair of examiners
assessing the presence of CE. The method has the advantage, by making a direct relationship between a
set of categorical and continuous covariates and the agreement index, to permit an immediate evaluation
of the influence of these covariates on the level of agreement. Nevertheless, the use of the complemen-
tary log–log link function presents one drawback. It does not allow for an obvious interpretation of the
model parameters. Because agreement coefficients corrected for chance vary between�1 andC1, Fisher
Z-transform was also envisaged. However, besides no simple interpretation of the parameters, it was not
possible to isolate the probability of agreement �o;ij in a simple way.

According to the number of iterations, the convergence was relatively fast (30,000 iterations) but
the computation time per iteration was rather slow. This could be explained by the complexity of the
model and the size of the data set. Indeed, we estimated two hierarchical logistic models and a com-
plementary log–log hierarchical model simultaneously using information of 5677 surfaces assessed by
several examiners, leading to 45,372 observations. The estimation process will be faster with smaller
data sets and less hierarchical levels. The implementation of the method of Lipsitz et al., on the other
hand, presented another drawback. The standard errors of the model parameters had to be computed
using the sandwich estimator. Because the probability of detecting CE was very low at the surface level,
the jackknife procedure necessary to compute the sandwich estimators led to quasi-complete separation
problems and resulted in the non-convergence of the procedure when modeling the agreement level.
One other major limitation of the GEE approach is that the examiners are always considered as fixed
[27], preventing generalization to other raters. The Bayesian and the GEE approach led to similar con-
clusions in our example, but this could not always be the case. Moreover, results should be interpreted
conditionally on the random effects in the multilevel approach and have a marginal interpretation in the
GEE model.

In conclusion, we proposed a method to directly evaluate the effect of covariates on the level of agree-
ment in the hierarchical framework. This could help researchers to identify factors influencing negatively
the agreement between pairs of examiners. Further research is needed to evaluate the minimum number
of examiners needed to provide a representative sample of the population of examiners.
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