
Middleware Services for Web Service Compositions

Anis Charfi, Mira Mezini
Software Technology Group

Darmstadt University of Technology

{charfi,mezini}@informatik.tu-darmstadt.de

ABSTRACT
WS-* specifications cover a variety of issues ranging from
security and reliability to transaction support in web ser-
vices. However, these specifications do not address web ser-
vice compositions. On the other hand, BPEL as the future
standard web service composition language allows the spec-
ification of the functional part of the composition as a busi-
ness process but it fails short in expressing non-functional
properties such as security, reliability and persistence. In
this paper, we propose an approach for the transparent in-
tegration of technical concerns in web service compositions.
Our approach is driven by the analogy between web services
and software components and is inspired from server-side
component models such as Enterprise Java Beans. The main
components of our framework are the process container, the
middleware services and the deployment descriptor.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and
Retrieval- Online Information Services: Web-based Services

General Terms
Design, Languages

Keywords
Middleware, Web Service Composition, BPEL

1. INTRODUCTION
The Web Services protocol stack has evolved from the

basic specifications (WSDL, SOAP, UDDI) into a compre-
hensive stack with specifications addressing security, reli-
ability, transaction, orchestration, etc. For orchestration,
process-based composition languages like BPEL define the
web service composition as a workflow of partner interac-
tions. Whilst focusing on the functional side (control and
data flow) of the composition, BPEL does not support the
expression of non-functional properties. E.g., a require-
ment could be that an interaction with a partner (via the
messaging activities invoke, reply, or receive) has to be
reliable (exactly-once semantics), secure (authentication),
transacted (part of an enclosing transaction).

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

While there exist specifications for at least some of these
technical services, the link that make these services available
to composition specifications is still missing. One could say
that we just have to extend BPEL with new constructs to
support non-functional concerns but this would result in a
very complex language. We argue that the problem of tech-
nical concerns in BPEL is rather due to lack of an advanced
deployment concept in web service compositions equivalent
to deployment concepts as they are found in the world of en-
terprise component models, such as Enterprise Java Beans
(EJB) [1] or CORBA Component Model (CCM) [2]. In these
models, the components are freed from technical code and
middleware services are provided to the component trans-
parently by the container they live in, based on some meta-
data provided by the developer and deployer of the com-
ponent. We propose a similar approach for composite web
services motivated by the observation that web services are
distributed components over the Web. We envision BPEL
orchestration engines to evolve into web application servers.

The following sections talk about requirements and design
of a framework for the integration of technical concerns in
BPEL compositions. Then, we present some implementa-
tion ideas toward light-weight process containers.

2. REQUIREMENTS
For illustration, we consider an online banking scenario

where a bank transfer is implemented as a web service com-
position involving two banks. Each bank web service pro-
vides two operations credit and debit. The corresponding
process main activity is a sequence with two invoke activ-
ities (one calls the credit and the other calls the debit).
We go through the requirements of this composition:

• Transaction: the sequence of the two invokes in the
bank transfer process must run as a transaction i.e., ei-
ther both invoke activities succeed or the transaction
must rollback. The transaction coordinators of both
partner web services must agree on the outcome of the
transaction.

• Security : interactions with partners (e.g., bank)via
messaging activities require authentication and autho-
rization. The respective messages should not be tam-
pered on their way to the partner (integrity) and as
sensitive data is being exchanged encryption is neces-
sary (confidentiality).

• Reliability : we want to ensure that each of the invoke

messages is received by the partner reliably (although

1132



the Internet is not a reliable medium) and with a guar-
anteed call semantics (e.g., exactly-once).

• Persistence: BPEL introduces variables as containers
for process data. However, after the termination of
the process instance all data is lost. In many B2B
scenarios it is required that data is stored persistently.

3. DESIGN
The web services framework (with BPEL) can be seen as

a component model for assembling complex web services us-
ing other web services. There is a high similarity between
web service compositions and enterprise component models
e.g., support for hierarchical composition, specification of re-
quired and provided interfaces, separation of interface and
implementation. Enterprise component models introduce
the concepts of a container as the runtime environment of
components providing infrastructural services, annotations
as the specification of component requirements for techni-
cal services, and the application server as the provider of
middleware services. In EJB or CCM the client never in-
teracts directly with the native component implementation,
but rather via the container, which intercepts calls and plugs
infrastructural services into the application.

3.1 Overview of the Framework
In analogy to the enterprise component world, we define

a framework for the integration of middleware services in
BPEL compositions. Its main components are the process
container, the middleware services and the deployment de-
scriptor. The process container plays the role of intermedi-
ary between the process and the infrastructural services so
that it plugs in support for non-functional concerns. This
support is provided by dedicated middleware services, which
are in turn exposed as web services. The configuration of the
non-functional requirements of BPEL activities is defined in
an XML-based deployment descriptor, which specifies e.g.,
which invoke activities require security checks or must be
encrypted, which variables are persistent, etc. The overall
architecture is sketched in Figure 1.

Figure 1: overview of the framework

3.2 Middleware Services for BPEL
Some technical concerns require the process and its part-

ners to have certain capabilities e.g., support for distributed
transaction or certain encryption algorithm. Capabilities,

requirements, and preferences are described in WS-Policy,
which is a declarative general model and syntax for policy
expressions and policy assertions. Policies are managed by
a special component, which checks whether the policies of
the composition and its partner services are compatible. We
propose an extensible set of middleware services:

• BPEL Transaction Service It is a transaction process-
ing middleware that allows the specification of transac-
tion boundaries, coordination types (WS-AtomicTransaction,
WS-BusinessActivity), and protocols. It is used to cre-
ate shared transaction contexts, register activities in a
context, coordinate distributed web services, etc.

• BPEL Security Service enforces the security require-
ments of BPEL interactions. Internally, it reuses im-
plementations of WS-Security, a specification that de-
scribes enhancements to SOAP to provide message in-
tegrity, message confidentiality, and single message au-
thentication.

• BPEL Reliability Service enforces the reliability re-
quirements of BPEL interactions. Internally, it uses
mechanisms such as message identifiers, acknowledg-
ment, sequencing, etc and can be based on implemen-
tations of WS-Reliability.

• BPEL Persistence Service enables the persistent stor-
age of process variables as specified in the deployment
descriptor (mapping from variables or parts of them
to a database or file system).

4. IMPLEMENTATION
The drawback of the EJB or CORBA component models

is that the set of supported middleware services is prede-
fined and cannot be extended easily. Most EJB applica-
tion servers lack openness i.e., the implementation of cer-
tain services cannot be replaced and the user cannot define
new services. To solve this problem, several research works
[3, 4] propose light-weight containers where the container is
substituted by a set of aspects. We also follow an aspect-
oriented [5] approach to implement BPEL process contain-
ers. The composition and the middleware services are in-
tegrated by means of AO4BPEL [6] aspects. AO4BPEL
is an aspect-oriented extension to BPEL allowing for more
flexibility and modularity. At deployment time, the pro-
cess container is generated i.e., a set of aspects is created
and activated according to the configuration found in the
deployment descriptor. The aspects intercept points in the
process execution and plug in calls to middleware services.

5. REFERENCES
[1] Linda G. DeMichiel. Enterprise JavaBeans

Specification, Version 3.0. Technical report, 2004.

[2] Object Management Group. Corba components 3.0.
Specification formal/02-06-65, OMG, June 2002.

[3] Roman Pichler, Klaus Ostermann, and Mira Mezini.
On aspectualizing component models. March 2003.

[4] JBoss Inc. JBoss aop. http://www.jboss.org, 2004.

[5] Aspect-oriented sofware development.
http://www.aosd.net.

[6] A. Charfi and M. Mezini. Aspect-Oriented Web service
Composition with AO4BPEL. In Proc. ECOWS 2004,
volume 3250 of LNCS, 2004.

1133


