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Abstract

We present a Monte-Carlo optimization technique for findsggtem behaviors that falsify a Metric Temporal
Logic (MTL) property. Our approach performs a random walkrothe space of system inputs guided by a robust-
ness metric defined by the MTL property. Robustness is ggittie search for a falsifying behavior by exploring
trajectories with smaller robustness values. The regutesting framework can be applied to a wide class of Cyber-
Physical Systems (CPS). We show through experiments onlegrspstem models that using our framework can
help automatically falsify properties with more consistenas compared to other means such as uniform sampling.

1 Introduction

Model Based Design (MBD) and automatic code generation ecerning the development methodologies of choice
for safety critical applications. Most prominently, suabsthn methodologies have been adopted by the automotive,
medical and aerospace industries [45, 23] where correzbfele end product is of paramountimportance. The types
of systems in these industrial domains are particularlyiehging because software is controlling the safe opematio
of a physical system. Such systems are also known as Cylysie@hSystems (CPS). One of the pressing challenges
in the MBD of CPS is how to verify the correctness of the depetbmodel of the system as early as possible in the
design cycle.

In answering such a problem, one must first specify what ispragriate mathematical model that captures
the behavior of the system and, second, what is an apprespaification framework that has a nice mathematical
structure that can help in analyzing the mathematical mofttble system. One such popular mathematical framework
for CPS modeling is hybrid automata [33]. Unfortunatelygameral, the verification problem for hybrid automata is
undecidable even for simple safety requirements [34],there is no terminating algorithm that can answer whether
a CPS ever enters a set of bad states. Thus, a lot of researfiichiaed on discovering the classes of hybrid automata
where the safety verification problem is decidable [5] andezathability analysis and testing based techniques [61].

However, in many cases, the system requirements extendeytind simple safety properties. For example, we
might be interested in conditional requirements such thidhé temperature increases above 10 degrees and remains
above 10 degrees for 1 min, then it should be drop below 10edsgrithin 2 min and remain below 10 degrees for
30min.” Such specifications can be captured using Metricplaal Logic (MTL) [38].
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In this paper, we propose a testing-based technique fonfyadiunterexamples to MTL properties for CPS through
global minimization of aobustness metricThe global optimization is carried out using a Monte-Céelchnique that
performs a random walk over the space of inputs consistingjtidl states and control inputs. The robustness metric
defines the satisfaction of an MTL property over a given ti@ey as a real number, as opposed to the Boolean notion
used in Logic. The sign of the metric for a given trajectgrand formulay indicates whethey satisfiesy (written
asy | ). Furthermore, “nearby” trajectories, defined using a roeiver trajectories, whose distances frgnare
smaller than its robustness also have the same outcomeefprdipertyy asy.

Given a robustness metric, finding a counterexample to angivepertyp reduces to finding a trajectosy that
minimizes the robustness score wg.t This can be viewed as an optimization problem over the sphaguts of
the system. However, in practice, this optimization prable not necessarily guaranteed to be tractable. In almost
all cases, the optimization problem (objective functiod annstraints) cannot be written down in a closed functional
form. Nevertheless, such optimization problems can oftersdived satisfactorily using Monte-Carlo techniques
that perform a random walk in order to sample from a probghdistribution defined implicitly by the robustness
metric [54]. Over the long run, the random walk converges staionary distribution over the input space such that
inputs with smaller values of robustness are sampled meuéntly than inputs with larger values. Furthermore,
Monte-Carlo techniques do not require the distributioalit’d be known in a closed form. Instead, these techniques
simply require the ability to compare the values (ratio)taf probability density function at two given points in the
search space. In practice, this reduces to simulating stersyusing the sampled inputs.

The contributions of this work can be summarized as follows:

1. We show that metrics used for robust testing naturallynéefibjective functions that enable us to cast the
problem of falsifying MTL properties into a global optimtizan problem.

2. We demonstrate the use of hit-and-run Monte-Carlo sampdecarry out this optimization in the presence of
(possibly non-convex) constraints over the inputs.

3. We extend our notions to CPS using quasi-metrics to pecaidotion of robustness for hybrid trajectories w.r.t
properties that can involve discrete as well as continutais sariables.

Our approach is applicable even if the property has been gmowsing a verification technique. In such cases,
our technique obtains system trajectories that have lowstiess values w.r.t the requirements practice, finding
non-robust trajectories may imply designs with smalleesafargins. Traditional testing or verification technigue
do not consider such trajectories using Boolean notionsropbral satisfaction. Our approach is readily applicable t
Simulink/StateflolM (S/S) models, since simulating the system is the only primiteeded. We have implemented
our approach in the Matlab (TM) toolbox SAT 1RO [8] and use it to discover counterexamples to MTL properties
We establish that random walks guided by robustness megit®ften falsify MTL properties that cannot be easily
falsified using blind (uniform random) search.

Preliminary results of this work have appeared in [47], whie architecture of our toolbox SaT IR0 has ap-
peared in [8]. In this paper, we reformulate the problem amdadlution into a more general framework, we present
the proofs that were omitted from [47], we provide new hybmidtrics in Section 4 and we perform more thorough
experimental analysis using our toolbox 34T RoO.

2 Preliminaries

In this section, we provide a formal and concise definitiothefproblem that this work addresses. Then, we introduce
metrics and we utilize them to provide continuous semairiticdletric Temporal Logic (MTL) specifications over
continuous time trajectories. We will be using the follogimotation:R is the set of real numberg; is the closure of

the reals, i.e.j—oo, +oc]; R* is the set of positive real numbers aRd its closure, i.e.R; = [0, +oo]; N is the set

of natural numbers (including) andN., = N U {+occ}; Z is the set of integers arftl, = Z U {+o00}. Given setsd
andB, B4 defines the set of all functions frorhto B and?(A) denotes the powerset df



2.1 Problem Definition

In this work, we take a very general approach in modeling-ties embedded systems that interact with physical
systems that have non-trivial dynamics. Such systems soeefierred to as hybrid systems or Cyber-Physical Systems
(CPS). In the following, we will be using the term hybrid s#sts since it is more concise. However, we would like
to caution the reader against associating hybrid systetishybrid automata [3] since the scope of our work is more
general.

We view a systenX. as a mapping from a compact set of initial conditidghsand input signal¥J C U to output
signalsY %. Here,R is a bounded time domain equipped with a meffic U is a compact set of possible input values
at each point in time (input space) akds the set of output values (output space). This view of aesyss standard
in signals and systems [40]. We impose four assumptionsriasns on the systems that we consider:

1. The input signals (if any) must be parameterizable usifigi@ number of parameters. That is, there exists a
function such that for any, € U, there exist two parameter vectoxrs= [\; ... \,,]T € A, whereA is a
compact set, and = [ ... 7,,]7 € R™ such that for alt € R, u(t) = U(\, 7)(¢).

2. The output spack must be equipped with a generalized mettiwhich contains a subspaceequipped with
a metricd.

3. For a specific initial conditiom, and input signal:, there must exist a unique output siggadefined over the
time domainR. That is, the systert is deterministic and we implicitly assume that the systemsdwt exhibit
Zeno behaviors [44].

4. For considering the convergence of our sampling scheraegssume that the space of inputs is bounded and
discretized to a large but finite set. In practice, any regmttion of the input through a vector of floating point
numbers inside the computer must be finite and, therefoi@iditly discretizes the space of inputs. Thus, this
assumption does not pose a restriction.

Under Assumption 3, a systeFican be viewed as a functiahy, : X, x U — Y ® which takes as an input an
initial conditionzy € X, and an input signal € U and it produces as output a signal R — Y (also referred
to astrajectory). When the output signals are only a function of the initiahdition, i.e.,Ax : X, — Y%, then the
systemX is calledautonomous n either case, the set of all output signal>biill be denoted byL(X). That is,
L(E)={y|3zo € Xo.Fu € U.y = Ax(zo,u)} orin case of autonomous systelde) = {y | Jzp € Xo.y =
Ag(xo)}.

Assumption (1) is necessary in order to define a feasiblebgapblem over a potentially infinite function space.
Assumption (2) is not a restrictive condition since any oeable hybrid system must have some output space that can
be equipped with a non-trivial metric. However, Assumpt{8jis a fundamental restriction in our current approach.
In Section 3.1, we provide some brief remarks on how thisragsion may be lifted.

Our high level goal is to infer the correctness of the sysidloy observing its response (output signals) to particular
input signals and initial conditions. In particular, we @méerested in finding witnesses, i.e., output signals, tvhic
prove that a requirement or specification is not satisfiechbysyystem. The process of discovering such witnesses is
usually referred to afalsification

Example 2.1 As a motivating example, we will consider the Automatic $maission example which was also con-
sidered in [64]. This is a slightly modified version of the @mfatic Transmission model provided by Mathworks as a
Simulink demd It is a model of an automatic transmission controller (ség A) with the following modifications.
The only input to the system is the throttle schedule, whéebteak schedule is set simply to 0 for the duration of the
simulation which i30 sec, i.e., R = [0, 30]. Finally, the system has two outputs the speed of the eng{R®M) and
the speed of the vehiclei.e.,Y = R? andy(t) = [w(t) v(¢)]* forall ¢ € [0, 30].

Internally, the system has two 2 continuous-time stateatdes: the vehicle speadand engine speed. That
is, for this example, the output of the system is the sameeasathtinuous state of the system. Initially, the vehicle
is at rest at time 0, i.e.Xo = {[0 0]} andxo = y(0) = [0 0]7. Therefore, the output trajectories depend only on

1Available at:http://www.mathworks.com/products/simulink/demos.ht ml



ImprellerTorque
In1 > Ti =
Ti ? EngineRPM =

\_> Ne P Ne
Throttle Ti
o
ngin
gine RPM
Floer Vehicle
[ i
Touij—b (s
Nout OutputTorque P YT
ShiftLogic \ 4 S
down_th N0 gear Transmission
Brake
up_th throttle 4—‘
ThresholdCalculati
resholdareaton TransmissionRPM
VehicleSpeed
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Figure 2: Example 2.1Left: The switching logic for the automatic drivetraiRjght: A input signal and the corre-
sponding output signals that falsify the specification.

the input signak: which models the throttle, i.ey, = Ax(u). The throttle at each point in time can take any value
between 0 (fully closed) to 100 (fully open). Namely,) € U = [0,100] for eacht € [0,30]. We remark that the
system is deterministic, i.e., under the same inpute will always observe the same outgut

We will assume that a system specification requires thatehehe speed is always under 120km/h or that the
engine speed is always below 4500RPM. Our goal is to falsify the above gjgation. In other words, we would
like to generate tests such that the vehicle speadd the engine speedexceed the values 120km/h and 4500RPM,
respectively. Such a falsifying system trajectory appeaFig. 2.

The model contains 69 blocks out of which there are 2 integsati.e., 2 continuous state variables), 3 look-up
tables, 3 look-up 2D tables and a Stateflow chart. The Stateflrart (see Fig. 2 for a schematic) contains two
concurrently executing Finite State Machines (FSM) witind 8 states, respectively. Even though this is a small size
model and the specification is a simple bounded time reatihatsiquirement, it already exhibits all the complexities
i.e., look-up tables, switching conditions which depenéhpuats, that prevent formal modeling and analysis using the
state of the art tools, e.g., SpaceEx [29]. o

Reachability requirements as described in Example 2.1 dsulffice to specify all system behaviors in prac-
tice. This is especially true for real-time embedded systarerein richer properties such as timing requirements,
sequencing of events, conditional requirements, staldlitd so on are equally important. Metric Temporal Logic
(MTL) introduced by Koymans [38] is a popular formalism tltain express such properties. Our objective in this
work is to provide efficient tools for the falsification of boded time MTL properties for CPS.

Problem 2.1 (MTL Falsification) For an MTL specificatiorp, the MTL falsification problem consists of finding an
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Figure 3: Overview of the solution to the MTL Falsification@PS.

output signaly of the systenx: starting from some valid initial state, € X, under an input signal € U such that
y does not satisfy specificatign

An overview of our proposed solution to Problem 2.1 appeaiSig. 3. The sampler produces a paiftfrom
the set of initial conditions and a vector of parametethat characterize the control input signalThese are passed
to the system simulator which returns an execution tracgp(durajectory). The trace is then analyzed by the MTL
robustness analyzer which returns a robustness valuerdnthe robustness score computed is used by the stochastic
sampler to decide on a next input to analyze. If in this precadalsifying trace is found, it is returned to the user,
who can then proceed to examine it inside the system modetimigonment.

In this paper, not only we provide an efficient solution tolteon 2.1, but we are also able to provide a measure of
how robustly the system satisfies or not an MTL property. Thaiur falsification framework does not have to return
the first falsifying trajectory it detects, but it can contensearching for the least possible robust system behavior.
Similarly, even if the system is not falsifiable, our toolnets the least robust correct behavior that was detectezh Su
information can be valuable to the system designer.

2.2 Metrics and Distances

When given a collection of objects, it is frequently neceg$a reason about how “close” these objects are to each
other. In other words, we need a way to measure or computedtzade between any two objects in the collection. In
mathematics, the distance between two objects that betoagety” can be quantified by a metrit The pair(Y, d)

is called a metric space.

Metrics arise very naturally in control and analysis of gbgksystems [60]. Interesting metrics can also be defined
in computation theory with a number of diverse applicatifsi. In either case, the interest in defining metrics is
usually to show that a function is contractive (and, thugrtove some notion of stability [60] or utilize a fixed-point
computation [57]) or that we can define an interesting togpl87]. Here, our interest in metrics is different. We
are interested in quantifying set membership questioas,liow deep is the object within the set it belongs or how
far away is from the set it should belong. At a high level, gifmation of set membership questions is the subject of
study in fuzzy mathematics [9]. The fundamental differebetveen fuzzy set theory and our work is that fuzzy set
theory abstracts away any topological information regaydie degree of membership. Such topological information
is vital in our case as we will demonstrate in Section 2.3. tNe® briefly review the notion of generalized metrics
and we refer the reader to [57] and the references theremriuore detailed exposition.

Def. 2.1 (Positively Ordered Commutative Monoid) e A semigroup(V,+) is a setV together with a binary
operation+ such that (i) the set is closed undéerand (ii) + is associative.

e A monoid is a semigroup which has an identity elen@ene., foranyv € V,v+0=0+v = 0.

e A commutative monoid is a monoid whose binary operationnisnoatative.



e An ordered monoidV, +, <) is a monoid with an (partial) order relatiors which is compatible witht, i.e.,
v1 X Vg implieSv1 +v3 X vy 4+ vs and’Ug +v1 v+ v for all U1, U2,V3 € V.

e A positively ordered monoid is an ordered monoid such thaallov € V', 0 < v.

Def. 2.2 (Generalized Metric) Let (V, +, <) be a positively ordered commutative monoid &htle an arbitrary set.
A generalized metrid is a functiond : Y x Y — V which satisfies the following properties fgr, y2, y3 € Y:

Identity d(y1,y2) = 0iff y1 = yo,
Symmetry d(y1,y2) = d(y2,%1), and

Triangle Inequality d(y1,v3) =< d(y1,y2) + d(y2,y3)-

If V also has an absorbing elemest, i.e., foranyv € V, v + oo = 0o + v = o0, thend is called an extended
generalized metric. If th&ymmetrycondition is dropped from the definition, thenis termed ageneralized quasi-
metric. If (V,+, <) is (R4, +, <) with the usual additior- and total order<, then we drop the term “generalized”
from the terminology and denote the metricdy

Using a generalized metri¢, we can define the distance of a poine Y from a setS C Y. Intuitively, this
distance is the shortest distance frgno all the points inS. In a similar way, the depth of a poiptin a setS is
defined to be the shortest distance,dfom the boundary of.

Def. 2.3 (Distance, Depth, Signed Distance [138) Lety € Y be a point,5 C Y be a set andl be a generalized
metric onY. Then, we define the

e Distance fromy to S to bedistq(y, S) := inf{d(y,v’) | v’ € S}

¢ Signed Distance fromto S to be

. | —dista(y,S) ify¢gs
DlStd(y7 S) T { diStd(?], Y\S) |f Yy (S S

We should point out that we use the extended definition ofesapm and infimum. In other words, the supremum
of the empty set is defined to be bottom element of the domdiiteuthe infimum of the empty set is defined to be the
top element of the domain. For example, when we reason®yviirensup () := —oo andinf §) := +oo.

Also of importance is the notion of an open ball of radiusentered at a point € Y. Given a generalized metric
d, aradius € V and a pointy € Y, the opere-ball (or neighborhood) centeredgts defined a#34(y,c) = {y’ €
Y | d(y,y’) < €}. The previous definition of a neighborhood includes all p®ify which have distance from less
thane. Since in this work we also use quasi-metrics, we also nezddtion ofneighborhood-toThe neighborhood-to
includes all pointg’ which have distance tgless thare. Similar to B4, we defineNV4(y,¢) = {y' € Y | d(¢/,y) <
e}

Finally, in order to reason in time about the system behawerneed to define metrics over signal spaces:. If
andy’ are two system output signafsy’ : R — Y that take values in a generalized metric spdcel), we will use

pa to denote the metrigq (y, y’) = sup,e g {d(y(¢),¥’(t))}.

2.3 Robustness of Trajectories

With the help of metrics we can now provide a robust inteigiren (semantics) to MTL formulas. Details are available
in our previous work [26]. In this section, we refer to outpiginals simply asignals

Def. 2.4 (MTL Syntax) Let AP be the set of atomic propositions aidoe any non-empty interval &, . The set
MTL of all well-formed MTL formulas is inductively defined@as::= T | p | —¢ | ¢ V ¢ | oUzp, Wherep € AP
andT istrue



For (real-time) hybrid systems, the atomic propositiofelasubsets of the output spake An observation map
O : AP — P(Y) maps each proposition € AP to a setO(p) to a subset ot". We require that for alp € AP,
0 c O(p) C Y. We emphasize here that the results in [26] require that thpud space’” is equipped with an
extended metriel. In Section 4, we relax this requirement and we demonstratethese results are extended to
output spaces which are equipped with a generalized quetsiem

We provide semantics that maps an MTL formyland a signay(¢) to a value drawn from the linearly ordered
setR. The semantics for the atomic propositions evaluateg-foy consists of the distance betweg(t) and the set
O(p) labeling atomic propositiop. Intuitively, this distance represents how robustly thenpg(¢) lies within (or is
outside) the se®(p). If this distance is zero, then the smallest perturbatiothefpointy can affect the outcome of
y € O(p). We denote the robust valuation of the formylaver the signay at timet by [¢, O]a(y,t). Formally,
[,]a: (MTL x P(Y)AP) = (YR x R — R).

Def. 2.5 (Robust Semantics)Consider a metric spacg’, d), whered is an extended metric. Lgte Y7, c € R and
O € P(Y)AF, then the robust semantics of any formyla M T L with respect tgy is recursively defined as follows

[T.0la(y.t) ==+ 00
[p, Ola(y,t) :==Dista(y(t), O(p))
[¢1, Ola(y, t) == — [¢1, Ola(y, t)
[p1 V @2, Ola(y,t) :=max([e1, Olaly, 1), [v2, Olaly, t)
Ola(yt) :=

IISOI UZSO27 aly, sup mln(l[@?a O]]d(y7 ) 19f llkola O]]d(y7 ))
t'€(t+rT) t<t'’'<t

wheret € Randt +rZ={r |37 €Z.7=t+7}NR.

Example 2.2 The requirement expressed in natural language in Examglec@n be formally written asigg’ =
Opt? v Op4'T, where each atomic propositiglf is mapped to:O(p£7) = [120, +o0) x R andO(p4T) = R x
[4500, +00), respectively. From the designer perspective, it mightdses to conceptualize the falsification problem
as a test generation problem and, therefore, pose the foretalirement as the negation of the behavior that she/he
would like to observe, i.egi?T = =(Opf? A OpgT). Under the semantics of Def. 2.5, the two formulas are
equivalent. o

For the purposes of the following discussion, (gt¢, O) E ¢ denote the standard Boolean MTL satisfiability.
For clarity in the presentation, we define the satisfiabiléglation for the base case, i.e., for atomic propositions:
p € AP, (y,t,0) E ¢ if y(t) € O(p). Note that Boolean MTL satisfiability reduces to an applaabf Def. 2.5
wherein the negation is defined to be the Boolean negationtenthetricd is the discrete metric: fog;,y2 € Y,
d(y1,y2) = 0if y1 = y2 andd(y1, y2) = 1if y1 # y=. Itis easy to show that if the signal satisfies the propengntits
robustness is non-negative and, similarly, it the signakdwot satisfy the property, then its robustness is nortipesi
The following result holds [26].

Theorem 2.1 Given an output spadg’, d), whered is an extended metric, a formufac MT L, an observation map
O € P(Y)AF and an output signay € Y, the following hold:

1. If(y,t,0) E ¢, then[p, O)a(y,t) > 0. In other words, ify satisfies the formula at time instant > 0, then
its distance valuation is non-negative. ConverselfpifO],(y,t) > 0, then(y, ¢, O) E ¢.

2. If (y,t,0) £ ¢, then[ep, Ola(y,t) < 0. In other words, ify does not satisfy the formula at time instant
t > 0, then its distance valuation is non-positive. Converselyy, O]q(y,t) < 0, then(y, t, O) [~ ¢.

3. Ifforsomet € Rt, e = o, Ola(y,t) # 0, thenforally’ € B,,(y,||), we have(y,t,O) = ¢ if and only if
(¥',t,0) E ¢. l.e,e defines aobustness tubaround the trajectory such that other “nearby” trajectosdying
inside this tube also satisfy.



Theorem 2.1 establishes the robust semantics of MTL as aahateasure of signal robustness. Namely, a signal
is € robust with respect to an MTL specificatiqn if it can tolerate perturbations up to sizeand still maintain its
current Boolean truth value. Alternatively, a signal witie topposite outcome fap, if it exists, has a distance of at
leasts away.

This is the main differentiating property from other workat also consider quantitative semantics for temporal
logics such as [18, 39]. Namely, our semantics maintaindpelbgical information which can be used to define neigh-
borhoods for signals, while in quantitative or fuzzy sennsuch information is lost. A more thorough comparison
with other quantitative logics is provided in [26].

3 Falsifying Systems with Metric Output Spaces

In this section, we provide the basic formulation of MTL féitsation as a global minimization of the robustness
metric defined in Section 2 when the output spéicel) is a metric space, i.e., whél’,d) = (Z, d), and describe a
Monte-Carlo technique to solve this global optimizationkdem.

Let X be a system as defined in Section 2.1. kéte a given MTL property that we wish to falsify. Given a signal
y, we have defined a robustness mefiicO] , (y,t) that denotes how robustly satisfies (or falsifiesp from timet
onwards. For the following discussion, we assume a fixed labp O and always interpret the truth (and robustness)
of MTL formulas evaluated at the starting time= 0. LetD,(y) = [¢, O], (y,0) denote the robustness metric jor
under these assumptions.

The robustness metri, maps each output signglto a real number. The sign ofr indicates whethey = ¢
and its magnitudé-| measures its robustness. Ideally, for the MTL verificatiosbfem, we would like to prove that
infycr(s) Dy(y) > € > 0 wheree is a desired robustness threshold. For the MTL falsificagimblem (Problem
2.1), we attempt to solve the problem:

Findy € £(X) s.t.D,(y) <0 (1)

More generally, given a robustness threshotd 0, we would like to solve the problem:
Findy € L(X)st.D,(y) < ¢ (2
In this work, we provide a solution to either problem throulgé optimization problem:

. _ n D 3
y' =arg min o (¥) ®)
If D,(y*) < e, then we have produced a counterexample that can be useelfogging.
In the following, we provide parameterizations of the shapace and a Monte-Carlo sampling method that will
help us solve (3).

3.1 Autonomous Systems

The space of output signals is not the true search space ddiat$ification problem. For instance, it is hard to
explore the space of trajectories directly while guarantg¢hat each trajectory considered is valid. Fortunately,
for deterministic systems, we may associate each input X, with a unique trajectory and vice-versa. Let
Fo(zo) = Dy (Ax(z0)) denote the robustness of the trajectory obtained correfipgmo the initial statery € Xo.
Therefore, the optimization can be expressed over the sfanputs as follows:

Iﬁr&l}r}(} Fol(zo) 4)
The components of the vectog are the search variables of the problem and the optimizegicarried out subject
to the constraints itX.
Continuous trajectories are hard to compute precisely) eden the analytical form of the solution of the system
is known. Thus, trajectories have to bBpproximatednumerically. An approximatsimulation functionAy that



supportgobust evaluatiorof the given property should guarantee that for some finite samplidgf the bounded
time domainR, for y = As(z) and fory = As(zo), |[¢, Oa(y,t) — [6,0la(¥,t)| < ¢ forallt € R, for a
sufficiently small positive. Such a robust simulation function suffices, in practicegsolve properties that may be
of interest to the system designers. An appropriate simonl&tinction can be obtained for a large class of ODEs using
numerical simulation techniques of an appropriate ordeh sRunge-Kuttaor Taylor-series methods with adaptive
step sizes [50]. Numerical integration schemes can alsodbpted to provide reliable boundson the distance
between the actual and the numerical solution. Thus, thestobss valu®,,(y) can be approximated by a value
25¢ (¥) using the set of sample poingsobtained by a numerical integrator. Details on iﬁw(y) can be computed
can be found in [26].

Unfortunately, for a trajectory obtained as the output of a humerical integrator with knoworebounds, the
trace distance function may no longer satiﬁy(y) > 0 whenevely = ¢. Instead, we may conclude the existence
of some interval—es, €1] for someey, e2 > 0, such that ifﬁw(y) < —e, theny (£ ¢ and if b@(y) > ¢ then
¥y = ¢. In general, we may not draw any conclusions-#f; < D, (y) < €. Furthermore, the bounds, ¢, are often
unknown for a given system. Nevertheless, the presencecbfabound implies that it still makes sense to perform
the optimization using a numerically simulated trajectgryr hus, our optimization problem becomes:

in F, = min D,(A . 5
min Fy(xo) = min Dy(Ax(o)) (5)
In practice, even minimally “robust” simulated trajecesiwill often be of great interest to system designers even if
mathematically speaking they do not violate the propergenmconsideration.

Remark 3.1 If the user is willing to tolerate additional computationadst, then it is possible to bound the inaccu-
racies of the numerical simulation even under the presefeating-point errors [27]. Then, these bounds can be
used to provide bounds on the robustness of the actual aanisitime trajectory [26].

The resulting optimization problem (5) can be quite completikely to be convex for all but the simplest of cases.
Furthermore, the objective functiofithough computable for any given input through simulatismat expressible in
a closed form. Directly obtaining gradients, Hessians analrsis infeasible for all but the simplest of cases. We now
present Monte-Carlo techniques that can solve such glgitahzation problems through a randomized technique
that mimics gradient descent in many cases.

Remark 3.2 (Non-deterministic Systems)For non-deterministic and stochastic systems, a singlaticpn be as-
sociated with multiple (possibly infinitely many) behasioFor stochastic systems, we may evaluBigx) as an
expectation obtained by sampling a large but finite set gett®ries. Non-deterministic systems can ofterdbe
terminizedby adding new input variables to represent the non-detestiinchoice. For the most part, we consider
deterministic systems in this paper. For instance, systangeled in formalisms such as Simulink/Stateflow diagrams
(TM) are deterministic, at least in theory.

3.2 Monte-Carlo Sampling

The Monte-Carlo techniques presented here are basedaaptanceejectionsampling [13, 7]. These techniques
were first introduced in statistical physics, wherein, thesre employed to simulate the behavior of particles in
various potentials [30]. Variations of Monte-Carlo teaiunés are also widely used for solving global optimization
problems [54]. In this paper, we focus on a class of MontdeCsampling techniques known as Markov-Chain
Monte-Carlo (MCMC) techniques. These techniques are bas@edndom walks over a Markov chain that is defined
over the space of inputs.
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ALGORITHM 1. Monte-Carlo sampling algorithm.

Input: Xo: Input Spacef(-): Robustness Function; Robustness thresholBS(-): Proposal Scheme
Output: z € X
begin

Choose some initial input € Xo;

while (f(z) > ¢) do

/* Select =z’ using Prop. Scheme */

z' «+ PS(z);

o+ exp(~B(f (@) — f(2)));

r < UniformRandomReal(0, 1) ;

if (r <a)then / * Accept proposal? */
Tz

end
end

We first present the basic sampling algorithm for drawing @asmfrom a probability distribution and then the
technique ofhit-and-runsampling that respects the (convex) constraints on the space due td(,. Let f(z) =
F,(z) be a computable robustness function, given a properijte seek to minimiz¢ over the inputs in the seXy.
We wish to sampleX, such that any two points, 2’ € X, with robustness valuef(z) and f(z') are sampled with

probability proportional to2le ) whereg > 0 is a “temperature” parameter explained in the following.

Algorithm 1 shows the sﬁcfﬁén%atic implementation of the athor. Each iteration of the sampler generates a new
proposalz’ € X, from the current sample using someproposal schemdefined by the user (Line 3). The objective
f(«') is computed for this proposal. Subsequently, we computestiea = ¢~#(/(@)=f(*)) (Line 4) and accept the
proposal randomly, with probability (Line 5). Note that ifa > 1 (i.e, f(z’) < f(x) ), then the proposal is accepted
with certainty. Eveniff (2’) > f(z) the proposal may still be accepted with some non-zero pilityalf the proposal
is accepted them’ becomes a new sample. Failing thisiemains the current sample. In general, MCMC techniques
require the design of proposal schemér choosing a proposal’ given the current sample. The convergence of

the sampling to the underlying distribution defined fydepends critically on the choice of this proposal distitu

Proposal Scheme:A proposal scheme is generally defined by a probability ihistion P(2'|z) that specifies the
probability of proposing a new sample inptitgiven the current sample. In general, there are three requirements
that a proposal scheme needs to satisfy so that its use imithigol converges to the distribution defined pi).

Detailed Balance f(2')P(2'|z) = f(x)P(z|z") (see [13]).

Irreducibility Given any two inputs;, 2’ € X), it should be possible with nonzero probability to geneeaseries
of proposalse, x1, z2, . . ., 2’ that takes us from input to z’. This is necessary in order to guarantee that the
entire input state space can be covered.

Aperiodicity The greatest common divisor of the lengths of all non-zeobability cycles starting from a stateof
the chain must bé.

Convergence:Convergence of the sampling scheme guarantees that ellgafter drawing a large but finite number
of samples, the distribution of the samples approachesistigbdtion defined by the robustness functipnWe will
discuss convergence under the simplifying but practicallgvant assumption of discreteness.

We assume that the space of inpitigis bounded and discreteonsisting of a large but finite number of points.
This assumption is always relevant in practice, since thatsin X, that we consider are finitely represented floating
point numbers inside a computer. As a result, the propobsainse P defines a discrete Markov chain on the space of
inputs. Convergence of MCMC sampling follows directly froine convergence of random walks on ergodic Markov
Chains [51, 13, 54].

The robustness functiof(x) over X, induces a probability distribution:

1
pla) = 571,
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Figure 4: Hit-and-run proposal scheme.

whereM is an unknown normalizing factor added to ensure that theaiitities add up to one. Suppose Algorithm 1
were run to generate a large number of sampled et v denote the frequency function mapping subsets of the input
space to the number of times a sample was drawn from the setP(8 = s p(z) denote the volume of the
probability function for a sef' C X.

Theorem 3.1 In the limit, the acceptance rejection sampling technicalmpst surely) generates samples according

to the distributiorp, P(S) = |imN_>oo%

As a direct consequence, one may conclude, for instandeantiaputz, with f(z;) = —100 is more likelyto be
sampled as compared to some other inguvith f(xz2) = 100 in thelong run

Itis possible, in theory, to prove assertions about the rerivoof samples required for the sampled distribution to
converge within some distance to the desired distributmregned bye—#/+(#) This rate of convergence is governed
by themixing timeof the Markov chainon the inputs defined by the proposal scheme. This time igiabg large
(polynomial in the number of input points), and depends emttoposal scheme used [51].

Importance ofs: The overall algorithm itself can be seen asmadomizedgradient descent, wherein at each step
a new pointz’ in the search space is compared against the current sampdeprdbability of moving the search to
the new point follows an exponential distribution on thefafiénce in their robustness valugs~ ¢~ (@) =f()),

In particular, if f(2’) < f(x), the new sample is accepted with certainty. Otherwise,attepted with probability
e~ PUE)=F()) Informally, larger values of ensure that only reductions fg) are accepted whereas smaller values
correspondingly increase the probability of acceptingremdase inf(z). As a result, points with lower values ¢f
are sampled with an exponentially higher probability as parad to points with a higher value of the functifn

Adaptings8. One of the main drawbacks of Algorithm 1 is that, based onreatfithe distribution, the sampling may
get “trapped” inlocal minima This typically results in numerous proposals gettingatgd and few being accepted.
Even though we are guaranteed eventual convergence, teenges of local minima slows down this process, in
practice. We therefore periodically adjust the valuesgidfand also the proposal scheme) to ensure that the ratio
of accepted samples vs. rejected samples remains closexedaviilue { in our experiments). This is achieved
by monitoring the acceptance ratio during the sampling ggs@nd adjusting based on the acceptance ratio. A
high acceptance ratio indicates titaheeds to be increased, while a low acceptance rate inditetes needs to be
reduced.

Proposal Schemedt s relatively simple to arrive at viable schemes for gatiaig new proposals. However, designing
a scheme that works well for the underlying problem requargsocess of experimentation. For instance, it suffices
to simply choose an input’ uniformly at random from the inputs, regardless of the aursample. However, such a
scheme does not provide many advantages over uniform raedompling. In principle, given a current samplethe
choice of the next samplg must depend upon.

A typical proposal scheme samples from a normal distrilbutientered at: with a suitably adjusted standard
deviation (using some covariance mat#i¥). The covariance can be adjusted periodically based, ogam,aon
the observed samples as well as the acceptance ratio. Aesrathdard deviation aroundyields samples whose
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Figure 5: (a) Time trajectory violating the propefly, »—a, whereO(a) = [-1.6,—1.4] x [-.9, —1.1] along with

the scatter plot of sampled inputs and (b) robustness valadanction of the simulation step number.

robustness values differ very little froyf{x), thus increasing the acceptance ratio. However, it is tarddpect the
constraintz’ € X, using such a proposal scheme.

Hit-and-run proposal schemeHit-and-run schemes are useful in the presence of input densach asXy, C R".
For simplicity, we assume thaf, is convex. Therefore, any line segment in some directigtarting fromz has a
maximum offsety;; such that the entire segment betweeandx + Jv lies insideX,. At each step, we propose a
new sampler’ based on the current sampleThis is done in three steps:

1. Choose a random unit vectomuniformly (or using a Gaussian distribution) (Cf. Fig. 4 practice, one may
choose a random vecthrand generate a unit vector using= ﬁ

2. Discover the intervdbh,,, 05|, such that
Vi € [6m,§]\4], T+ dov e Xg.

In other wordsyp yields a line segment containing the poinalong the directions-v and|[d,,,, 0xs] represent
the minimum and maximum offsets possible along the diractistarting fromz. If X, is a polyhedron,
bounds)s,,, d,s] may be obtained efficiently by using a variant of thenimum ratio testFor a more complex
convex setX, value ofé,, (resp.d,;) may be obtained by solving the one dimensional optimizgpimblem

min(max) ¢ s.t. z + v € X, by using abisectionprocedure given an initial guess @¥y,, das].

3. Finally, we choose a valug € [4,,, )] based on some probability distribution with a mean arotindhe
variance of this distribution is an important parametet ttemn be used to control the acceptance ratio (along

with 3) to accelerate convergence.

Hit-and-run samplers can also be used for non-convex inpotaghs such as unions of polytopes and so on. A
detailed description of the theory behind such samplingrtepies is available elsewhere [59, 54].

However, care must be taken to ensure that the input siaée notskewedalong some direction’. In the worst
case, we may imagin&, as a straight line segment. In such cases, the hit-and-opopal scheme fails to generate
new samples. This is remedied by adjusting the scheme fect#g unit directions to take the skew &f), embedding
of X, inside a subspace spanned by the independent variablegraally, applying a suitable transformation &,
that aids in sampling.

In practice, hit and run samplers can work over non-conviscomhnected domains. Theoretical results on these
samplers are very promising. Smith [58] proves the asynptonvergence of hit and run sampling over arbitrary
open subsets dk". Lovasz [42, 43] has further demonstrated convergenceria @ (n?) for hit and run sampling
of uniform distribution over a convex body im dimensions. Algorithms for global optimization suchtdde-and-
seek[53] andimproving hit-and-ruf63] have combined hit-and-run sampling with Monte-Cadayenerate global

optimization techniques.
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Example 3.1 Lety(t) = [y1(t) y2(t)]T. Consider the time varying system

dy(t) _ dy1(t) _ yi(t) —ya(t) + 0.1t
dt dyd#t(t) va(t) cos(2mya(t)) — y1(t) sin(2wy1(¢)) + 0.1¢
with initial conditiony(0) = z9 € Xo = [~1,1] x [~1,1]. In this case,Y = R? and, thus, we choose to use
the Euclidean metric. We wish to falsify the propemty, 5j—a, whereinO(a) = [-1.6, —1.4] x [-.9,—1.1]. Our

simulation uses a numerical ODE solver with a fixed time stegr the time intervat € R = [0,2]. Figure 5(a)
shows the trajectory the falsifies our safety property ughmghit-and-run sampler and the scatter plot consisting
of the samples generated by the Monte-Carlo sampler. Fig(ig plots the robustness of the trajectory at each
simulation step. We observe that the sampling is concexttrat the more promising regions in the set of initial
conditions. o

3.3 Non-autonomous Systems

We now consider extensions to hon-autonomous CPS. Agaiprégmatic reasons, we focus on the approximation
y = Ag(xo, @) of the actual trajectory = Asx(zo,u). Here, the input signal is a discrete-time approximation of
the actual continuous-time input signal Therefore, in a naive search for a falsifying input sigmad, may consider
each sampling instance as a search variable. However, sugppsoach is infeasible for long simulation times with
fast sampling rates.

Our goal is to recast the search for control input sigrals terms of a search in the set of parameters A
andr € R™, wherem << |R|, i.e.,m is substantially smaller than the number of samples ffanSince we have
assumed that the input signal space can be parameterizedimar, we can produce a discrete-time approximation
U= ﬂ(/\ 7)tou = $U(A, 7) and, thus, we are able to represent realistic input sightle;, our optimization problem
becomes: o }

(zo,)\n—)Ien)é?xAme f(IO’ /\7 T) N (zo,)\,ﬂIen)é?xAme DW(AE (x()’u(/\’ T))) (6)

In practical terms, there exist numerous ways to paranzetéhie space of control inputs. We discuss a few such

parameterizations below:

Piece-wise Constant InputWe partition the overall time intervat = [0, 7] into a set of interval$§ )" | [;—1, 7;),
whereinty = 0 andr,, = T. For each intervalr;_1,7;), @ > 1, the controlu(t) is restricted to be a constant value
)\i—l-

Piece-wise Linear Input:Piece-wise constant control may be extended to piecewisaricontrols. Once again, we
partition R = [0, T'] into m disjoint intervals. For each intervil;,_;, 7;], we restrict the form of each control input to
be piece-wise linear, i.e., forc [t;_1,t;), we haveu(t) = (1—a(t))Ai—1 +a(t)\; wherea(t) = (—7_1)/(Ti—Ti—1).

Spline Functions. We can choose a family of spline functiofis (A, 7). Details on utilizing splines to represent
control input signals can be found in [20].

Example 3.2 In order to parameterize the input signal space of Example ®e used a piece-wise constant signal
with 7 control points uniformly distributed over the timendain [0, 30]. That is, our search for a minima is performed
over a bounded 7 dimensional space. Furthermore, sinceutmibspacd” is R?, we are using the Euclidean metric
for the distance computations in the formula defined in EXar®j2. The outcome @-TALIRoO appears in Fig. 2. As
evident from the figure, the vehicle speed and the engingaatandeed reach the specified thresholds. The Simulink
model was simulated 41 times for this particular test. o

4 Falsifying Systems with Generalized Quasi-Metric OutputSpaces

In the previous sections, we demonstrated that MTL faldificaof systems is possible as long as we can define
a non-trivial metric on the output space. However, spediioa on CPS usually have requirements on both the
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discrete output space of the system and the continuoustsgpae. Unfortunately, it is not straightforward to define
metrics over such hybrid (discrete & continuous) outpuicega Therefore, in order to formulate and analyze such
specifications, we need to relax our constraint on the syb#rimng metric output spaces.

Example 4.1 Let us revisit Example 2.1. We are looking to generate tasth shat the system visits each state

in the state chartselection_state (see Fig. 2), i.e.steady_state, upshifting and downshifting, when

the vehicle speed excee@d. In this case, the output trajectory of the system model must not only contain

information about the physical system quantities, i.egims rotation and vehicle speed, but also about the cur-
rent state in the Stateflow chart. Therefore, the tempomicl@analysis must be performed over the output space
Y = {steady_state,upshifting, downshifting} x R2. o

In this section, we first generalize Theorem 2.5 to signaés generalized quasi-metric output spaces. Then, we
introduce a modeling formalism for hybrid systems and tweriesting generalized quasi-metrics on output trajegsori
of such hybrid systems.

4.1 Robustness of Signals over Generalized Quasi-Metricp&ces

The only requirement in the definition of the robust semarafdM TL formulas (Section 2.3) is that both the trajectory
under study and the specifications take values from the spases We can prove (see Appendix) by induction on
the structure of formulg that Theorem 2.1 also holds in the case where the métiscreplaced by a generalized
guasi-metriad.

Theorem 4.1 Given an output spacg’, d), whered is an extended generalized quasi-metric, a formpla MTL,
an observation ma@ € P(Y)4" and an output signay € Y%, then:

1. If(y,t,0) = ¢, then[y, Ola(y, t) = 0. Conversely, ife, Ola(y, t) > 0, then(y,t,O) = ¢.

2. If (y,t, 0) = ¢, then[p, Ola(y,t) < 0. Conversely, ify, Ola(y,t) < 0, then(y, ¢, O) F .

3. Ifforsometime € R, ¢ = [p, Ola(y,t) # 0, then forally’ € B,,(y, |¢|), we havely, t, O) |= ¢ if and only
if (y/,t,0) | .

Note that now the definition of the robustness valuation fiencfor a formulay over a signaly at timet is
a function[-,-Ja : (MTL x P(Y)4F) — (Y® x R — V). The setV must include the se¥” of the positively
ordered monoidV, +, <) in the definition of the generalized quasi-metli@nd, also, it must be ordered under the
same ordering relatiof. Furthermore, appropriate definitions of negation and labsealue are required as well as
careful treatment of the absorbing elements (if any). B&slbn we needV, +, <) to be an Abelian group with two
absorbing elementsco .
4.2 Generalized Quasi-Metrics for Hybrid Signals

In order to define quasi-metrics for hybrid signals, we neséke into account some information about the structure
of the system that generates the output signals. Here, wédevilsing a generalization of hybrid automata [3] as a
basic modeling language for CPS. We remark that our formalesembles hierarchical hybrid systems [4].

Def. 4.1 (Hybrid System) A hybrid systen?{ consists of component&l, Hy, Y, U, O, G, R, D, —), wherein,
e H =L x X is the state space of the system dni$ a finite set of locations (modes or control locations),
e Hy C H represents the set of initial conditions,
e Y = L x Z is the output space, whe(e, d) is a metric space

e U C U is the set of possible input signals,
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O : X — Zis an output map,
e G:LxLxXxU— P(Z)is the guard set for the transitions between control loaagio
R: (L x L) — (X — X) is the reset function for the transitions between controhkinns,

e D: L — (X xRxU— X)isamapping of each control locatighe L to a deterministic subsystem, which
given an initial conditionzq, an initial timet, and an input signal:, returns the unique state trajectory of the
subsystenx, = Dy(xg, to, ), and, finally,

e —C L x Lis aset of (discrete) transitions such that for edéh ¢2) €—, i.e.,{; — {5, the system moves from
¢, € Ltol, € Lifthe output state = O(x) of the system before the transition is in the@gt, {5, z, u) and
after the transition is at the point = O(z') wherez’ = Ry, 4,)(x).

We remark that our definition of a hybrid system allows eaattrablocation to be any arbitrary subsystem as long
as it is deterministic and its state can be fully describethbyunctionD,. For example, each control location can be
a hybrid system as well. The reason behind utilizing suchreeigd model is that we are not necessarily interested in
the whole structure of the hybrid system, but only on its gaat is directly related to the functional specificationttha
we are trying to falsify.

Example 4.2 The Simulink/Stateflow model in Example 2.1 has state-space
{first,second, third, fourth} x {steady_state, upshifting, downshifting} x R

In Example 4.1, the specification requirements focus ontestate charselection_state. Therefore, our hybrid
system will have the following components of interest:

e [ = {steady_state,upshifting downshifting} and— as defined in Fig. 2.
e X = {first,second, third, fourth} x R?, Z = R? andO is the projection of{ onR2.

The reset functioR changes the state of the state chggbir_state and the guards is computed by thEhresholdCalculation
block in the Simulink model in Fig. 1. Note tHatdepends o andw. However, we are not interested in the compo-
nentsR and G in this example. o

A timed traceof a hybrid system is &inite’ sequence of statds, /,z) € R x L x Xof the form (o, £o, z0),
(t1,01,21), (to, 2, x2), ..., such thainitially, at timet,, we have(¢y, xo) € Hy, and for each consecutive state pair
(ti, li,zi), we

o either make discrete transition frofpnto /; 1 and sete; 1 = Ry, 4, ) (2i)
e or we evolve under the subsystdm, fromz; to 41, i.€.,x;,41 = Dy, (x4, ti, u) (Lig1)-

A hybrid systent4 is deterministiciff starting from some initial state€to, ¢y, o) there exists a unique timed trace.
Given a timed trace, we can construct a hybrid system t@jggt : R — Y by settingy(¢) = (1(¢), z(t)) for
t € [t;,tit1), Wherel(t) = ¢; andz(t) = O(x(t)) with x(t) = Dy, (x;,t;, u)(t). Therefore, again, we may view a
hybrid system as a functiafi, from the set of initial conditiongl, and the input signalbJ to output signaly”=.
Let Ay (ho, ) represent the approximate simulation function for a deiristic hybrid systent{. We assume that
Ay (ho, ) approximates the time trajectories with some given toleeasound: by adjusting the integration method.
In practice, this may be harder to achieve for hybrid systdras for purely continuous systems due to the problem
of robust event detection [22]. However, assuming that susimulator is available (see [55] for conditions), we may
translate the trace fitness function defined for continuaunslations to hybrid simulations with discrete transison
Specifications for hybrid automata involve a sequence daidtlons of the discrete subsystem. The simplest such
property being the (un)reachability of a given “error” Itioa. As a result, continuous state distance based on a norm

2Again, we implicitly assume that the system does not exHibito behaviors [44].
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(or a metric distance) does not, in general, provide a trimnaf distance between the specification and the trace.
This is especially true in the presence of discrete tramsitiwith reset maps. For the case of hybrid systems with
reset maps, the robustness metrics used in Section 3 camoised to compare the hybrid stafész) and(¢', z’) in
terms of some norm distance betweeandz’. Therefore, structural considerations based on the gragittbnnects
the different modes of the hybrid automata have to be coreid@hile designing fitness functions. We now consider
(generalized quasi-) metrics for hybrid automata.

First, we have to define what is the distance between two motléfse hybrid automaton. We claim that a
reasonable metric is th&hortest path distancketween two locations. A similar metric was used for guiding
exploration in a model checker for hybrid systems in [6].ultitely, the shortest path distance provides us with a
measure of how close we are to a desirable or undesirablatiggemode of the automaton. Such information is
especially useful in the class of falsification algorithimattwe consider in this paper.

In the following, given hybrid automatoi, we letI'(#%) = (L, —) represent the directed graph formed by its
discrete modes and transitions. The shortest path disfesrenode? to node?’ in the graphl*(#) will be denoted
by m(¢,¢"). Note thatr (¢, ¢') = oo iff there is no path front to ¢’ in the graph (7). It is well known (and it is easy
to verify) that the shortest path distance satisfies all ther@ for a quasi-metric.

The shortest path metric can be computed on-the-fly by rgramBreadth First Search (BFS) [15] algorithm on the
graph. Itis well known that BFS runs in linear time on the sif¢éhe input graph. However, it is preferable to use an
all-pairs shortest path algorithm [15] to precompute thatagices between all pairs of control locations of the hybrid
automaton. In our implementation, we are using the FloydsWall algorithm which has running tinte(|L|3).

In order to reason over output trajectoriem the hybrid state spadé, we need to introduce a generalized distance
function [57]. In the following, we will denote the hybridapeL x Z by H to indicate that a metric is defined over
a particular space. Lety : H x H — V°, whereVy = V. U (400, +00) andV, = N x R4, with definition for
h={z)eHandh' = (¢',2) € H,

dn(h, ') = 0,d(z,2")) if ¢ =1¢
% o <7T(€, 2/), ming. CON(£,07) diStd(Z, Gt (f, E”))> otherwise

wherer is the shortest path metrid,is a metric onZ andoN, (¢, ¢') = Nxt(£) "N (¢, 7 (¢, ¢")). Here, Nxt(¢) =

{¢/ € L |t — ¢} andG! denotes that the guard set may be changing with respect ¢o timformally, ON (¢, )

is the “boundary” of all locations which are closer #othan ¢ and may be visited frond within one transition.
Therefore, when the two points i’ are in the same control location, then the distance compateeduces to the
distance computation between the points in the continutais space. When the two poirtish’ are in different
control locations, then the distance is the path distantedsn the two control locations “weighted” by the distance
to the closest guard that will enable the transition to the ocentrol location that reduces the path distance. Essbnti
the last condition is a heuristic that gives preference totslst paths.

Next, we need to define an appropriate additiorand a partial ordex such that the triplefV,,+, <) is a
positively ordered commutative monoid. First, the additi® defined component-wise, that is, far, r) , (k',') €
V., we define

(k,ry + (K, r"y = (k+ K ,r+7")

The commutativity property is immediately satisfied. Setare order the set using the dictionary order. Givier),
(K',r'") € Zoo x R, we define the order relatior as

s [(k<k ifEAR
Gy < i { FS KRR

It is easy to verify that the dictionary order is compatiblghwthe addition as defined fov.. Hence,V, has a
smallest element, namety = (0,0), andV$® has an absorbing element, namelyo = (+oc, +oc0), which is also
the least upper bound. Finlay, Proposition A.1 in the Apfreddmonstrates that the generalized distabgsatisfies
the identity and triangle inequality properties. In otherds,dy, is a generalized quasi-metric &h

The generalized distance functidf requires computations of a point to each guard set in a ddotation. This
may potentially increase the computational load or it cchddthe case that the computation of the distance to the
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ALGORITHM 2: Parallel Monte-Carlo sampling algorithm.

Input: Ho x A x R™: Input Spacef(-): Robustness Function; Robustness Threshold,
PS(-): Proposal Scheme
Output: (h,\,7) € Hy x A x R™
begin
Choose some initial inputr, A\, 7) € Ho x A x R™;
while (f(h, A\, 7) > ¢) do
I+ Select (h',\',7') using the Proposal Scheme */

(W N 7'y« PS({(h, A\, 7)) ;

Q1 < eXp(—Bl (fl(hl7 )‘lv T/) - fl (h7 )‘7 T)))’

oz exp(—LB2(f2(R', N, 7") = fa(R, A\, T)));

r < UniformRandomReal(0, 1) ;

f (RN 7) = fu(h N 7)) A (r < a2)) V(F (B, N 7)) # fi(h, A, 7)) A (r < aq))) then
<h7 )‘7T> «— <h/7)‘l77-,> ,

end
end

guard might not be possible (for example, in certain Sinkitateflow models). Therefore, we also introduce the
generalized distance functiatf, : H x H — V<° with definition

0,d(z,2")) ife=2¢
d2(h, ') =< (m(€,0),0) if £#£ ¢ andm (L, ") < +oo
(+00,+00) otherwise

In this case, the distance function ignores the guard setsiamply checks whether the 2 points are in the same control
location or not. The distance functielf, is a generalized quasi-metric as well.

Therefore, we are in position to reason about hybrid systejadtories by utilizing the MTL robustness Definition
2.5 and Theorem 4.1. Now the atomic propositions can maphseds ofH placing, thus, requirements not only on
the continuous state-space, but also on the mode of thechgizsiem. Informally, a robustness value(gfr) =
[, Ola,, (v, t) will mean the following:

e If k = 0 andr # 0, then we can place a tube of radiju$ around the continuous part of the trajectory which
will guarantee equivalence under the MTL formula. Moreovteis required that at each point in timethe
locations are the same for all such trajectories.

e If £ > 0, then the specification is satisfied and, moreover, thecti@jg is at leask discrete transitions away
from being falsified.

e If £ < 0, then the specification is falsified and, moreover, the ¢tajy is at leask discrete transitions away
from being satisfied.

Remark 4.1 Note that both functionBistq, and Distqo never evaluate to some value of the fofln+oo) with

k € Z (see Proposition A.3). This is important because the teaigogic robustness value is now going to be a
member of the s&f> = V U {+o00} whereV = Z x R. In order for the triplet(V, +, <) to be an ordered Abelian
group and, thus, the robust MTL semantics to have a propenitiefi of negation, each member @fmust have an
inverse. The negation for the MTL robust semantics indugethé aforementioned metrics is simply the pairwise
negation. In Proposition A.3, we also demonstrate how te&adce function®istq4, and Distdg can be computed
based on the well known understood distance funcfidizt . andDist,.

4.3 Monte Carlo Sampling

One of the issues that arise when giving generalized (orribd{)frobust semantics to MTL formulas is how to sample
over the spacély, x A x R"™. Recall thatA x R™ is the space of parameters that parameterize the inputisigna

17



J B N\ il
13 14 15 16 -
|-
:
-— 3F |
12
251 \
2 :Qigl”—
8 15F I -
==
: y y 1 S
1 2 3 4 ost
0 0; L
0 1 2 3 4 0 05 1 15 2 25 3 35 4
X
(a) (b)

Figure 6: Example 4.3: (a) The environment of the vehiclechemark. The arrows indicate the direction of the vector
field in each location and the numbers the id of each locafidre green box indicates the set of initial conditions
projected on the position plane. The plotted trajectorsifiels the specificatiop, = O(pa1 — (p22R—p23)). The red
lines indicate the predicates . (b) The scatter plot of the sampled initial positions pctgel on the position plane,
along with the least robust trajectory of the vehicle benatioexample for specificatiop; = (= p11) Ujo 25.0 P12-

other words, what is the probability distribution inducedtbe robustness functiof? In general, this issue can only
be addressed in a case-by-case scenario depending on gralged metrial that is utilized.

In this work, for the generalized quasi-metdg, we propose to use a Parallel Metropolis coupled Markovrchai
Monte Carlo algorithm (see Algorithm 2). For a poiftty, A\, 7) € Hy x A x R™, the robustness function is now
Fho, A7) = Dyp(Agy(ho, 4N, 7). If f(ho, A\, 7) = (k,7) € V, then we defingf; (ho, A\, 7) = k € Zo, and
falho, A\, 7) = r € R. In brief, in Algorithm 2, an inputh;, A1, ;) will be more likely sampled over an in-
put <h1, A17T1>, if fl(hh )\1, 7'1) = fl(hQ, AQ, 7'2) and fQ(hl, /\1,7'1) << fQ(hQ, )\2, 7’2), or, if fl(hh )\1,7’1) }é
fi(ha, Ao, m2) and f1(h1, A1, 71) << fi(ha, A2, 72). The discussion in Section 3.2 on the importance @nd the
proposal schemes still applies. Similarly, we can definexgpdiag algorithm for the metrie.

4.4 Examples

The new hybrid notion of MTL robustness is useful in the cahtd testing for hybrid systems. Namely, our original
definition of MTL robustness places requirements only ondahgervable continuous-time trajectories of the system
while ignoring the underlying discrete dynamics. The newusiness notion can structurally distinguish system
trajectories that might have similar robustness valuesretise. Thus, it can be used to guide our search algorithms
towards less robust system modes. Moreover, we can now ergifisrent requirements at different operating modes
of the system. This was not possible before.

Example 4.3 Consider a complex instance of the vehicle benchmark [28Jwshin Fig. 6. The benchmark studies a
hybrid automatori{ with 4 x 4 discrete locations and continuous variables, x», x3, 24 that form the state vector
x = [z1 w2 w3 24]T. We refer to the vectori; 2] and[x3 24]7 as the position and the velocity of the system,
respectively. The structure of the hybrid automaton canditebvisualized in Fig. 6. The invariant set of evéiy;)
location is anl x 1 box that constraints the position of the system, while thecity can flow unconstrained. The
guards in each location are the edges and the vertices tlatammon among the neighboring locations.

Each location has affine constant dynamics with drift. Iradein each location(i, j) of the hybrid automaton,
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the system evolves under the differential equatien Az — Bu(i, j) where
u(i,j) = [sin(rC(i,5)/4) cos(nC(i,5)/4)]* and

00 1 0 0 0 4234
A= [88?.2 0%1 } B = {(1).2 091 } C= [?ggg}
00 . 0.1 —1.2 2211
Our first goal is to find an initial state in the séf, = {13} x [0.2,0.8] x [3.2,3.8] x [—0.4,0.4] x [—0.4,0.4]
that will falsify the formulap; = (= p11) Ujp,25.0] P12, Wherein atomic propositiop;; refers to the shaded rectangle
(bottom right) in Fig. 6(b) angh,» to the unshaded rectangle above in Fig. 6(b). In det@ilp:1) = {4} x [3.2, 3.8] x
[0.2,0.8] x R? andO(p12) = {8} x [3.2,3.8] x [1.2,1.8] x R2. Informally,»; says that the system should reagh
within 25 time units without passing through,. The least robust~ 0) trajectory found by our algorithm is shown
in Fig. 6(b) along with the scatter plot for the samples. Nibtgt it could be the case that the system is correct with
the respect to the specification, but it is definitely not silyucorrect.
The second specification that we consider for falsificaarni= O(pa; — (p22R—p23)) whereR is the temporal
operator release an®(pa1) = {10} x {z € R* | 21 > 1.1}, O(pa2) = {5,6} x {x € R* | 2 < 1.05} andO(pa3) =
{9} x {z € R* | 1 < 0.9}. Essentially, we are looking for a trajectory that satisfigs, = <(pa1 A ((—pa2)Upas)),
i.e., a trajectory that exceeds vallid in z; only in location 10 and, then it goes below valu@ in z; only in location
9, but it never drops below value05 in z» in locations5 and6 (z. may take any value in any other location besides
5 and 6 orz, in any location must stay aboue)5). o

5 Experiments

We have implemented our techniques and, in particular, e metrics inside our Matlab toolbox SATLIRo [8].
Our toolbox is general enough to interact with various méansiodeling CPS including Simulink/Stateflow models.
We currently support full time bounded MTL for continuouswasll as hybrid time trajectories. We remark that
all the benchmark problems are distributed with SLTRO at https:/sites.google.com/a/asu.edu/

s-taliro/ which also includes all the MTL specifications used in thistiea.

We performed a comparison of our implementation (MC) adainsimple uniform random (UR) exploration
of the state-space. Both MC and UR are each run for a maximumbau of 1000 tests, terminating early if a
falsifying trajectory is found. Since these techniquesrarelomized, each experiment was repeated 100 times (runs)
under different seeds in order to obtain statistically Sigant results. Uniform random exploration provides araide
measure of the difficulty of falsifying a property over a givimput. Its rate of success empirically quantifies the
difficulty of falsifying a given property. Finally, we havdraady argued about the importance of obtaining the least
robust trajectory where falsification cannot be achievexthis end, we compare the set of minima found using MC
as well as that using UR and the corresponding running times.

Table 1 reports on the results of our comparison on two beackproblems using different MTL properties or
problem instances. The first benchmark problem is the Autieiiaansmission (AT) model considered in Example
2.1. We consider a number of MTL specifications of increasiifiiculty to falsify. The formulasps'”, $47 and
4T are of the formpAT = = (pf A O7,p4T), whereZ, = [0,10], Zy = [0,7.5] andZ; = [0, 5]. Formulag'”
is described in Example 2.2 whitef'” is =< (p7' A (g 19057 ), whereO(ps'T) = [125,400) x R.  The second
benchmark is a Simulink model of a 3rd ord&r— ¥ modulator whose description can be found in [17]. The 3rd
orderA — ¥ modulator has unknown initial conditions in the §ef).1,0.1]* and a one dimensional input signal that
takes values in a sét.,,, ups]. The problem instances in Table 1 indicate the bounds omiht isignal[w,,, us].

The specification for théh — ¥ modulator is that the state of the system should always remahe sef—1, 1]3.

We find that the performance varies depending on the easenhitth the property can be violated by means of
uniformly sampling the input space. If the property can b&lgdalsified, then it is advantageous to utilize uniform
random search. MC for easy problem instances seems to ¢rraed get trapped at local minima. In practice, we may
periodically reset the MC simulation using random restatfitavever, such restarts were not used in our experimental
comparison. The use of MC is clearly advantageous when titdgm is challenging. In hard problem instances, MC
can falsify the specification when UR fails to falsify. Moxen, even when falsification fails, MC still computes lower

19



Table 1. Experimental Comparison of Monte-Carlo (MC) vs. ifdmm Random (UR) falsification on benchmark
problems with Euclidean output spaces. Each instance wder@00 times and each run was executed for a maximum
of 1000 tests. LegendtFals: the number of runs falsifiedRobustness (min, average, variangef the runs that
were not falsifiedTime: (min, average, maxime in seconds per run.

Problem ) #Fals. Robustness Time (sec)
MC | UR MC UR MC UR
AT (2.54,7,
AT of 97 | 100 18.5) - (0.2,11,92) | (0.2,3,16)
AT S 96 | 100 <g"g?”1%?;§’ - (0.2,16,94) | (0.2,10,48)
AT (8-107%,0.42, (0.04,0.96,
AT 4 51| 0 1.2) 0.35) (7,61,94) | (93,94,99)
AT (5.86,5.95, (5.91, 6.06,
AT ; 0| o0 0.02) 0.01) (92,93,93) | (92,92,93)
AT (0.15,0.41, (0.25,0.57,
AT 5 0 0 2.55) 0.06) (93,93,94) | (92,93,94)
A_x (0.00,0.04, (0.00,0.01,
Pe 0as | oa-x || 84 | 81 16104 12104y || 0-219,41) | (0:2,19,43)
A_YS (0.00, 0.06, (0.00,0.03,
PEoios | ¢a-s || 58 | 40 7.0 10-4) 2.2.10-4) (0.7,26,39) | (0.3,30,38)
A s (0.00,0.07 (0.01,0.06
B0 55035 | $a- 21 1 2.1-10-3) 7.9-10-4) (4.1,35,49) | (5.4,37,44)

minimum and average robustness values with the same cotigmaticost. Further experimental results on a simpler
benchmark problem can be found in [47]. The results in [43) &lonfirm the aforementioned conclusions.

Table 2 compares the performance of the falsification aligwron benchmark problems with hybrid output space.
We compared UR with MC on two benchmark problems on variompteal logic formulas of increasing difficulty to
falsify. The first benchmark problem was AT. As opposed toptevious experiments, the specifications now not only
place conditions on the continuous state of the system,Isoitoa the discrete locations. In detail, we are looking to
generate tests such that the system goes through all the stahe state chaselection _state (see Fig. 2), i.e.,
steady _state , upshifting anddownshifting , while the vehicle speed exceeds a thresholth detalil, for
i = 6,7,8, we consider the formulag'” = —(Op{!T AOps T AOp4T), wherepi'T = {steady_state} x [v;, +00) X
R, pg‘f = {downshifting} X [v;, +00) X R andpéf = {upshifting} x [v;, +00) x R with vg = 79, v; = 79.5
andvg = 80. Since S-RLIRo does not support yet automatic extraction of guard conubtizwe compared only UR
with MC using the metriel? for the distance computations.

The second example that we consider is the Navigation (NVigleark problem from [28]. This is a hybrid
automaton benchmark problem and both the control locatmsthe guards of the transitions are available to us.
Thus, we compared the performance of the Monte Carlo sampliorithm under the metriad;, andd{ with the
performance of Uniform Random sampling underdiemetric. The problem instance that is used in our experiments
is presented in [47]. We performed a number of experimeritguke following formulas:

1. NV = (= pN) Ujo,25.0] plV, whereO(pNY) = {4} x [3.2,3.8] x [0.2,0.8] x R? andO(ply") = {8} x
[3.2,3.8] x [1.2,1.8] x RZ;

2. o5V =0V — (Y R-pdY)), whereR is the temporal operatoeleaseand O(pd}") = {10} x {z €
R* |21 > 1.1}, O(pdY) = {5,6} x {x € R* | 22 < 1.05} andO(p2}V) = {9} x {z € R* | z; < 0.9};

3. oV = 0PVl — O-pliV), whereO(p3V) = {10} x {x € R* | 23 > 1.05 A2y > 2}, O(p3yY) =
{5} x{z eR* |21 < 1A <1.95);
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Table 2: Experimental Comparison of Monte-Carlo (MC) vs. ifdmm Random (UR) falsification on benchmark
problems with hybrid output spaces. Each instance was nub0@ times and each run was executed for a maximum
of 1000 tests. Legend#Fals: the number of runs falsified[ime: (min, average, maxtime in seconds per run,
MC-H : MC with metricdy, MC-HO: MC with metricdg.

Problem| #Fals. Time
MC-H | MC-HO | UR MC-H MC-HO UR

AT ar - 93 86 - (0.4,24,138) (0.4, 56, 139)

AT aT - 94 55 - (0.1,25,128) | (0.6,81,127)

AT ar - 0 0 - (110,115,139) | (109,111,115)
NVoo5 | 77 63 68 34 || (4.2,542,831) | (34,545,865) | (44,623,817)
NV0,19 v 100 100 | 100 | (1.1,24,140) (1.7,25,168) (0.9,22,108)
NVioag | #7V || 100 100 | 100] (0.8,8.7,62) (0.8,17,503) (0.7,4.0,22)
NVip19 | 97V 100 100 | 100 (1.2,18, 85) (1.4,26,66) (0.8, 35, 427)
NVio1g | 67 38 47 5 || (21.0,419,595) | (15,390,584) | (9.4,404,437)

4. oVV =0(plY — 0-plV), whereO(p}V) = {10} x {x e R* | 21 > 1.2 A x5 > 2}; and

5. ¢V =0(plY — O-pa2), whereO(phV) = {5} x {zx e R* | 21 <1 Az < 1.9}

First, we observe that on easy problem instancesgilé’ -}V, the performance of all algorithms is comparable
in terms of computation time. On hard problem instanced) Mﬁ H and MC-HO outperform UR in terms of numbers
of falsifications.

The experimental results indicate that the best way to ampraybrid system falsification / verification is with
a layered approach. Assuming that at the initial designestdlge errors are abundant, then it is preferable to run
random sampling for the falsification process. As the systesign becomes more mature, then Monte Carlo sampling
with the new metrics introduced in this paper can be utilifmdthe falsification. When the level of confidence in
the system design has increased and potentially the systsigrndis robust enough, then the designer may use a
reachability analysis algorithm (for example SpaceEx)2Blowever, we remark that currently reachability analysis
tools cannot handle arbitrary MTL specifications. A moreadet! discussion on system verification that compares the
advantages/disadvantages of falsification and reachafiéthods can be found in [1, 2].

6 Related work

Due to the known undecidability results in the analysis dbriy systems [3] and the state explosion problem of
the reachability computation algorithms (see [35] for sawlated references), a lot of recent research activity has
concentrated on testing approaches to the verificationmfromous and hybrid systems [36, 64].

The use of Monte Carlo techniques for model checking has beesidered previously by Grosu and Smolka [32].
Whereas Grosu and Smolka consider random walks over thenatda defined by the system itself, our technique
defines random walks over the input state space. These gyenaral, distinct approaches to the problem. In practice,
our approach does not have the limitation of being resttitig the topology of the system’s state transition graph.
Depending on this topology, the probability of visiting te& deeper in the graph can sometimes be quite small in
pathological cases. On the other hand, Grosu et al.’s tqukréan be extended readily to the case of systems with
control inputs without requiring a finite parameterizatafrthe control. We are currently investigating the posgibil
of combining both types of random walks in a single framewdttevious work by some of the authors in this work
considered Monte-Carlo techniques for finding bugs in progr [56]. However, our previous efforts did not have the
systematic definition of robustness that we employ here.

There exist two main approaches to the testing problem ofithydystems. The first approach is focused on
choosing inputs and/or parameters in a systematic fasbias $ cover the state-space of the system [21, 10, 12, 46,
49]. These approaches are mainly based on the theory ofyapiploring random trees (RRTs). The other approach
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is based on the notion of robust simulation trajectory [1B,3b, 41]. In robust testing, a simulation trajectory can
represent a neighborhood of trajectories achieving, thetser coverage guarantees. Recently, the authors in §&] h
made the first steps in bridging these two aforementionetbagpes.

On the research front of falsification/verification of temgidogic properties through testing, the results are kahit
[48, 52, 24]. The work that is the closest to ours appears2h [bhe authors of that work develop a different notion
of robustness for temporal logic specifications, which &alsed as a fithess function for optimization problems.
Besides the differences in the application domain, i.€] {dcuses on parameter estimation for biological systems,
whereas our paper deals with the falsification of hybrideyst, the two works have also several differences at the
theoretical and computational levels. At the theoretieatl, we have introduced a new metric for hybrid spaces which
enables reasoning over hybrid trajectories, while at themgdational level our approach avoids set operations, e.g.
union, complementation etc, which, in general, increasetimputational load.

Younes and Simmons, and more recently, Clarke et al. haympeaal the technique &ftatistical Model Checking
(SMC). SMC targets stochastic system models such as cantintime Markov chains [62] or Stochastic Hybrid
Automata (SHA) [14]. For example, in order to model impetfgnsors in Example 2.1, we may add Gaussian noise
to the sensor that reads the engine speed. Then, the rgssytem would be a SHA. The goal of SMC is to asses
the probability that a system satisfies a giygababilistictemporal logic property. This probability can be safely
approximated using Wald'’s probabilistic ratio test. SMike lour technique, requires a simulator to be available for
the system, but not a transition relation representatiarcohtrast to SMC, our approach is guided by a robustness
metric towards less robust trajectories. On the other hiluied;omplex nature of the system and the robustness metrics
imply that we cannot yet provide guarantees on whether garithm has converged to the global minimum of the
temporal logic robustness function. However, this is argoimg endeavor.

Remark 6.1 Our method does not try to assess the probability of failow to detect a failure. That is, our goal is to
provide the engineer with tools in order to detect desigrbfgms in the system rather than perform a failure analysis.
In our framework, if a failure is detected, then the desighas a counterexample to work with in order to “debug”
the system. Moreover, if a failure is not detected, then #mgher is still provided with the least robust behavior
found. The fact that the system might be correct with prditgloine does not imply that the system is robustly correct.
Therefore, we view SMC and our approach as complementargn IMBD cycle, the model should be first assessed
for its robustly correct behavior, and, then, a failure aysis should be performed under various failure models and
requirements.

7 Conclusions

Embedded systems require the verification of elaboratefsdmns such as those that can be expressed in MTL.
The undecidability of the MTL verification problem over sucbmplex continuous systems mandates the use of
lightweight formal methods that usually involve testing.this paper, we have presented a testing framework for the
Metric Temporal Logic (MTL) falsification of hybrid systenasing Monte-Carlo optimization techniques. The use of
hit-and-run Monte-Carlo optimization is required in ortieovercome the difficulties in handling the complex system
dynamics as well as the nonlinearities in the objective fiomc Moreover, in order to enable more efficient search in
hybrid state-spaces, a generalized distance functionnwtiasiuced.

Experimental results indicate the superiority of our tagframework over random search on the hard benchmark
examples. The advantages of our approach are not limitgdtorthe fact that we can falsify arbitrary systems, but
also that we can provide robustness guarantees even tonsyftat have been proven correct. The techniques and the
methods that were introduced in this paper have been impitsdén our Matlab toolbox SALIRO [8].
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APPENDIX

Proof: [of Theorem 4.1] The proof is by induction on the structuréhaf formula.
1. We will present only the base cases, since the other cesaeatical with those in the proofs in [26] and [25].
o If [p,OJa(y,t) > 0, then by definitiorDistq(y(¢), O(p)) > 0, which implies thaty(t) € O(p) and,
thus, that(y, t, O) = p.
o If (y,t,0) = p, then by definitiony (t) € O(p), which implies thaDistq(y(¢), O(p)) = 0, and, thus,
that[[¢a O]]d(ya t) = 0.

Note that the equality in the first case fails when the sigaiey (¢) is right on the boundary of the séX(p),
i.e.,y(t) € 90(p). If [p,Ola(y,t) = 0, then we cannot distinguish whethgr, t, O) = p or (y, t, O) - p.

2. Similar to the previous proof.

3. We will present the base case and the negation (the otbes @ae based on the definition of supremum and
infimum over the partial ordex of d and are similar to the negation).

e Base case:

— If [p, Ola(y,t) =€ > 0, then(y,t,O) = p and by definitiordistq(y(t), Y\O(p)) = ¢ = 0, which

implies thatB4(y(t),e) € O(p). Sincey’ € B, (y,c), we havepq(y,y’) = sup,e g d(y(t),y’(t)) <
e. Thatis,d(y(t),y’(t)) < € and, thusy’(t) € Ba(y(t),e) C O(p). Hence(y’, t, O) [= p.

— Similar to the previous case.
e Negation:

— Positive case: If—¢,Ola(y,t) = ¢ > 0, then (i) (y,t,0) E —¢, i.e., (y,t,0) = ¢, and (ii)
[¢,Ola(y,t) = —e < 0. Then, by (ii) and the induction hypothesis we have that fbrya €
BPd(Yve)’ (y/atvo) l;é ¢
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— Negative case: Similar to the previous case.
We chose to present negation in order to demonstrate thegpiepthat the negation must satisfy.

Proposition A.1 The generalized distance functidg is a quasi-metric.

Proof: We will need to demonstrate that the identity property argdtttangle inequality hold. In the following, we
leth; = (él, Zi) € Hwith ¢ = 1,2, 3.

Identity: Sincer is a quasi-metric, we have({1, ¢2) = 0iff £; = ¢5. Sinced is a metric, we havé(z1,22) =0
iff Z1 = Z9. Hence,dh(hl, hg) = <0,0> iff hi1 = hs.

Triangle Inequality: We need to show that for all;, ho, hs € H, dn(h1, h2) < dn(h1, hs) + dn(hs, ha). We
proceed by case by case analysis:

1. Casel; = ¢5 = {3: Then,

dh(hl, hg) = <0, d(Zl, 22)> S <0, d(Zl, 23) + d(Zg, 22)>
= <0, d(Zl, Z3)> + <O, d(Zg, 22)> = dh(hl, h3) + dh(hg, hg)

2. Casely = {5 # 5. Then,n(¢1,£43) > 0 andn(¢3,¢2) > 0 and
dh(hl, hg) = <O, d(zl, 22)> < <7T(€1, 63) + 7T(€3, éz), O> e <7T(€1, 63), O> + <7T(€3, 62), O>
S <7T(£1 N fg), min diStd(Zl, Gt(él, f))> + <7T(€3, 82), min diStd(Zg, Gt (fg, é))>

LEON L (£1,03) LEONL (£3,02)
= dh(hl, hg) + dh(hg, hg)

3. Casely # ¢; and ¢; = ¢5: Then,

dh(h,l, hg) = <7T(€1, 62), Zea/{[ﬂi&ll ) diStd(Zl, Gt(él, 6))>

But, 7T(€1, 62) =0+ 7T(€3, 62) = 7T(€1, 63) + 7T(€3, 62), and, also,
263/{}11(1211,22) diStd(Zl, G' (61, 6)) - 568/{/{1}(1511,22) inf{d(Zh Z) | < ¢ (617 é))}

< min  inf{d(z1, 2) + d(zs,2) | 2 € GH(ly,
_eea/\%l(rell,ez)m{ (21,23) +d(z3,2) | (41, 0)}

=d(z1,23) + feaNm,ri(It}l,fg) inf{d(z3,2) | z € G'({1,0)}

(41243) d(

i dist G'(t3,0
21,23)+£€8Nmﬂl(rl}312) ista(z3, G'({3,0))

ThUS,dh(hl, hg) = <7T(€1, fg), Ee{)/{/ni(rfl ; )distd(zl, Gt (fl, f))>

< <7T(€17 53) + 7T(€37 é?)v d(zla 23) + ZGBJ{fI‘,l\-i(Illl,l2) diStd(Z3? Gt(€37 é))>

<M%(z1,Z3)>+<7T(€3,€2), min distd(Z3,Gt(€3,€))>

LEON (£1,02)
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= dn(h1, hs) + dn(hs, ko)
4. Casely # (5 and {5 = ¢5: Then,

dh(h,l, hg) = <7T(€1, 62), Ze@j{fni(Illl 62) diStd(Zl, Gt(él, E))>

But, W(ﬁl,ég) = 7T(€1,€3) +0= W(él,ég) + 7T(€3,€2), and, also,

. . (L2=03) . .
dist G, 0 = dist G, 0
reorlim | dista(21, G (6, 6)) reorlim | dista(21, G (6, 0)

< in distq(z1, G'(¢1,0)) +d
= rcont () O (21, G"(01,€)) + d(z3, 22)

sinced(zs, z2) > 0. Thus,

h,l, h2 = (T 61, 62 min diStd(Zl, Gt (61, é))>

" 0EON, (£1,62)

IN

LEON L (£1,43)

7T 17 3 mln )diStd(ZlaG Elv > <Md 23,22 >

ZeaN(
(h1,hs) + dh(h37h2)

<7T El,ég —+ 63,62) min diStd(Zl,Gt(él,g)) +d(23,22)>
dp(

5. Case/; 75 lo, 01 75 f3 and 2 75 2% Then,ﬂ(fl,fg) < 7T(£1,€3) + W(fg,fg), and

_ . . t
dh(hl, hg) = <7T(£1, 62), eea/\/m,,l(rt}l,éz) dlStd(Zl, G (fl, f))>
< <7T(€1, fg) =+ 7T(£3, 62), O> = <7T(€1, fg), 0> + <7T(€3, fg), 0>
S <7T(€1, ég), Zea,’\nf}ri(rfll,fg) diStd(Zl, Gt (51, é))> + <7T(€3, 52), ZeaNm,,i(rflg,fg) diStd(Zg, Gt (53, é))>
= dn(h, h3) 4+ dn(hs, ha)

Proposition A.2 The generalized distance functidf] is a quasi-metric.

Proof: The proof is similar to the proof of Proposition A.1.

Proposition A.3 Let the current pointbé = (¢, z) andO(p) = L, x Z,, thenDistqo (h, O(p)) # (k, £00) for any
k € Z. Similarly for Distgq, (h, O(p)).

Proof: Actually, we will show thaDisto (h, O(p)) = (k, £o0) iff k = +oo.
1. h ¢ O(p) and? ¢ L, and if L, is not reachable from, then for any?’ € L,, we haver(¢,¢') = +oco. Thus,

ON(£,0") = D andming. con, (r,¢) dista(z, G' (¢, £")) = 4+00. HenceDistq,, (h, O(p)) = —distq, (h, O(p)) =
(=00, —00). Also, Distqo (h, O(p)) = (—o00, —cc) by definition.
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2. If h ¢ O(p) and? ¢ L, and if L, is reachable front, thendN(¢,¢') # 0 since (i) at least one of the
neighbors of will have distance td., less thardist (¢, L,) and (ii) we have assumed th@t (¢, ¢’) # () for
all ¢ € Nxt(¢). Thendistq(z, G'(¢,0")) < +oo forall ¢ € ON (¢, ). Let

e argmin{<7T(£,E/),£N€6rnj\[ijl(ul) disty(z, Gt(ﬁ,ﬁ”))> | 0 € Lp}
and set* = mingcopr, (¢,0+) dista(z, G'(€,£")) < 400. ThereforeDistq, (h, O(p)) = —distq, (h, O(p)) =
(=m(¢,£7), —6~). Finally, by definition, we havB®istqo (1, O(p)) = —dista, (h, O(p)) = (—distx (¢, L), 0).

3. Ifh & O(p),butl € L,,ie.z & Z,, thenDistq, (h, O(p)) = —distq, (h, O(p)) = —distaq, (h, (L,\{{} x
Z,)U ({£} x Z,)) = — min{dista, (h, L,\{€} x Z,), dista, (h, {€} x Z,)} = —dista, (h, {¢} x Z,)} =
(0, —distq(z, Z,)). However,distq(z, Z,) < +oo since) ¢ O(p) C Y by assumption. Similarly for
Dist g0 (h, O(p)).

4.1f h € O(p) and Z, C Z, thenDistq, (h,O(p)) = dista, (b, Y\O(p)) = dista,, (h, (L\L,) x Z) U
(L x (Z\Zp))) = min{distq, (h, (L\Ly,) x Y),dista, (h, L x (Z\Z,))} = distqa, (h,L x (Z\Z,))} =
(0,distq(z, Zp)) sincel € L, C L. Howeverdistq(z, Z,) = 0 < o0 sincell C O(p) C Y by assumption.
Similarly for Distqo (2, O(p)).

5. 1fh € O(p) andZ, = Z, i.e.,L, C L, thenDistq, (h, O(p)) = dista, (h, Y\O(p)) = dista, (h, (L\L,) x
Z)U(L x (2\Z,))) = dista, (h, (L\Ly) x Z) U (L x 0)) = distaq, (h, (L\L,) x Z)}. Now, we have two
cases:

e if L\ L, is reachable from, then as in case (2), we haldsty,, (h, O(p)) = (w(¢, £*), 6*) with §* < +o0.

e if L\ L, is notreachable fror thendist, (¢, L\ L,) = +oc and as in case (1), we also ha®’; (¢, (') =
¢ forall ¢ € L\L,. ThusDistq, (h, O(p)) = (+00, +00).

Similarly, we can derive the value ®istqo (7, O(p)).

This concludes the proof since we have considered all plessises.
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