JOURNAL OF MEMORY AND LANGUAGE 39, 124—148 (1998)
ARTICLE NO. ML 982566

Category Learning by Inference and Classification

Takashi Yamauchi and Arthur B. Markman
Columbia University

The nature of category formation is linked to the tasks applied to learn the categories. To
explore this idea, we investigated how three different methods of category learning— Classifica-
tion Learning, Inference Learning, and Mixed Learning (a mixture of the two)—affect the way
people form categories. In Classification Learning, subjects learned categories by predicting the
class to which an individually presented exemplar belonged given feature information about the
exemplar. In Inference Learning, subjects learned categories by predicting a feature value of a
stimulus given the class to which it belonged and information about its other features. In Mixed
Learning, subjects received the Classification task on some trials and the Inference task on other
trials. The results of two experiments and model fitting indicate that inference and classification,
though closely related, require different strategies to be carried out, and that when categories
are learned by inference or by classification, subjects acquire categories in a way that accommo-

dates these strategies. © 1998 Academic Press

Categories serve a variety of purposes in-
cluding classification, inference, communica
tion, visual perception, and complex reasoning
(Biederman, 1987; Gelman, 1986, 1988;
Gentner, 1989; Glucksberg & Keysar, 1990;
Harnad, 1987; Heit & Rubinstein, 1994; Holy-
oak & Thagard, 1995; Lassaline, 1996; Osher-
son, Smith, Wilkie, Lopes, & Shafir, 1990;
Rips, 1975; Smith & Medin, 1981). How do
we acquire categories rich enough to subserve
these functions? Research on categorization
has been primarily concerned with the study
of classification and has often neglected to
address this question. Central to this approach
is the assumption that classification learning
isachief vehicle for forming categories. Cate-
gories, however, are used in widely different
circumstances and incorporate a variety of in-
formation. Thus, it may be more appropriate
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to assume that categories are formed in rela-
tion to specific tasks at hand. From this per-
spective, the nature of category formation can
be examined with respect to the tasks involved
in learning (Markman, Yamauchi, & Makin,
1997; Ross, 1996; Whittlesea, Brooks, &
Westcott, 1994).

The purpose of this article is to examine
the link between the function of categories
and the formation of categories. We will ad-
dress this problem by contrasting two of the
fundamental functions of categories—infer-
ence and classification—in the context of cat-
egory learning (Smith, 1994). Inference and
classification play a critical role in the forma-
tion of natural categories. For example, the
family resemblance structure of basic level
categories is said to emerge in the process of
balancing specificity and generality associated
with feature prediction (i.e., inference) and ob-
ject classification (Rosch, Mervis, Gray, John-
son, & Boyes-Braem, 1976). Additionaly, in-
ference and classification are functionally re-
lated and can betreated asidentical if category
labels and category features are compatible
(Anderson, 1990, 1991). In this regard, eluci-
dating the mechanisms involved in the two
tasks and their impact on category formation
would help us to understand the relationship
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between category learning and category for-
mation and would provide insight into grasp-
ing the nature of category formation in an ex-
perimental setting. In the following studies,
we will examine (1) how inference and classi-
fication are carried out by using categories and
(2) how the different mechanisms associated
with the two tasks alter the way people form
categories when categories are learned by in-
ference or by classification.

In this paper, wefirst review severa empiri-
cal studies that highlight the distinction be-
tween inference and classification. Next, we
describe three learning procedures—Infer-
ence Learning, Classification Learning, and
Mixed Learning and lay out how inference
and classification differ in the context of cate-
gory learning and how these differences affect
the way people form categories. Then, we
present two studies that investigate the impact
of the three learning procedures on category
formation. Finally, we fit two mathematical
models of classification—Medin and Schaf-
fer's (1978) context model and Anderson’s
(1990, 1991) rational model —to examine fur-
ther the distinction between the two tasks.

Throughout this paper, we use the term cat-
egory label to refer to a symbol that denotes
aparticular group of stimuli and theterm cate-
gory feature to mean a symbol that denotes
a characteristic of a stimulus. Classification,
which involves the prediction of the category
label of a stimulus, is characterized in our
experiments as a practice in which a stimulus
is placed into one of two groups when the
attributes of the stimulus are known. Infer-
ence, which involves the prediction of the
value of a category feature, is characterized
in our experiments as a practice in which an
attribute of astimulus (i.e., acategory feature)
is predicted when the group to which the stim-
ulusbelongs (i.e., the category label) and other
attributes of the stimulus are known (for simi-
lar descriptions of inference, see Estes, 1994,
Murphy & Ross, 1994; Yamauchi & Mark-
man, 1995). For example, classification as we
defined it is akin to the situation in which
people predict a category to which a person
belongs (e.g., Democrat) by observing his at-
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tributes (e.g., supports affirmative action and
favors reducing defense spending). In con-
trast, inference as we defined it is akin to the
situation in which people predict an attribute
of aperson (e.g., supports affirmative action)
based on a category label to which the person
belongs and his other attributes (e.g., is a
Democrat and favors reducing defense spend-
ing). Finally, we define category representa-
tion as the mental structure that specifies the
information that was acquired through interac-
tion with the members of categories and as-
sumethat the specified information is obtained
in the process of making classifications and
inferences using categories.

INFERENCE AND CLASSIFICATION

Despite the close relationship between in-
ference and classification, severa empirical
findings revea that people adopt different
strategies to carry out the two tasks. In infer-
ence, subjects tend to pay particular attention
to relationships between exemplars within a
category (e.g., family resemblance among ex-
emplars within a category or typicality infor-
mation about exemplarsin acategory) (Lassa
line& Murphy, 1996; Rips, 1975; Rosch et d.,
1976), whilein classification subjectsfocus on
feature information useful for dividing exem-
plars into groups (Ahn & Medin, 1992;
Medin, Wattenmaker, & Hampson, 1987). In
one study, for example, Lassaline and Murphy
(1996) asked subjectsto predict feature values
of category exemplars given other feature val-
ues of the exemplars. Following thisinference
task, subjects sorted a set of exemplars into
categories. Subjects in this task were much
more likely to sort the stimuli on the basis of
family resemblance than were subjects who
sorted the stimuli after making other judg-
ments (who generally sorted the exemplars
based on the values of a single feature dimen-
sion). As further support, Rips (1975) found
that the likelihood that people predict that sub-
ordinate category members have a particular
feature value is correlated with the typicality
of that category member, suggesting that peo-
ple make inferences based on family resem-
blance between exemplars (see also Malt,
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Ross, & Murphy, 1995; Murphy & ROss,
1994; Ross & Murphy, 1996; for the argument
that people focus on a single target category
to make inferences).

In contrast to inference, people tend to fo-
cus on a small number of diagnostic features
in classification (Medin et al., 1987; Nosofsky,
Clark, & Shin, 1994; Nosofsky, Palmeri, &
Mckinley, 1994; Tversky, 1977). Sorting
tasks, which are quintessential classification
tasks, provide evidence that subjects generally
attend to a limited number of diagnostic fea
turesthat distinguish between categories when
they classify stimuli, as subjectsin these tasks
tend to group stimuli with asingle salient fea-
ture even in the presence of a clear family-
resemblance structure (Ahn & Medin, 1992;
Medin et al., 1987). Nosofsky and his col-
leagues (1994) al so demonstrate that a compu-
tational model based on simple rules and ex-
ceptions can account for peopl€’ s performance
on awide variety of classification tasks. Other
research suggests that different types of diag-
nostic features become salient in classification
depending on the way that the stimuli are
grouped (Tversky, 1977). Although people
may carry out a classification task in anumber
of different ways, it seems reasonable to as-
sume that focusing on diagnostic features is
one of many strategies that people adopt in
classification. In the following studies, we will
investigate why people use different strategies
to make inferences or classifications and how
these differences affect the way people form
categories.

OVERVIEW OF EXPERIMENTS

We developed an inference-based learning
task (i.e., the Inference Learning task; see Fig.
1 and Estes, 1994; Yamauchi & Markman,
1995 for descriptions of similar inference
tasks) and compared it with a standard classi-
fication-based learning task (i.e., the Classifi-
cation Learning task) in order to investigate
the distinction between inference and classi-
fication and their impact on category forma
tion. In the standard classification-based learn-
ing task, subjects acquire categoriesincremen-
tally by predicting the category label of
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individually presented stimuli and receiving
feedback after each response (Posner & Keele,
1968, 1970; Medin & Schaffer, 1978; Malt,
1989; Nosofsky, 1986; Shepard, Hovland, &
Jenkins, 1961). Similarly, in the inference-
based learning task (i.e., Inference Learning),
subjects acquire categories incrementaly by
predicting feature values of individualy pre-
sented stimuli and receiving feedback after
each response. For example, in the Classifica-
tion task (see Fig. 1a), subjects are presented
with a stimulus depicting the values of the
form, size, color, and position of the geometric
figure and they predict the category label of
that stimulus. In the Inference task (see Fig.
1b), subjects are presented with the values of
the size, shape, and position of the geometric
figure along with the category label to which
the stimulus belongs (e.g., Set A), and they
predict the value of a missing feature (e.g.,
the color). On different trias, subjects in In-
ference Learning predict the values of differ-
ent features. In addition to these two condi-
tions, we aso included a ‘*Mixed Learning’’
condition in Experiment 1, in which subjects
classified stimuli on some trials, and made
feature inferences on others.

Initially, no information about the catego-
ries was given to subjects in our studies, so
that they had to learn the two categories by
trial and error. The learning phase continued
until subjects reached a criterion of 90% accu-
racy in three consecutive blocks (24 trials) or
until they completed 30 blocks (240 trials).
Following the learning phase, the nature of the
category representation is probed on transfer
trials, which consisted of classifications and
inferences of old stimuli that appeared during
learning and new stimuli that did not appear
during learning. In the transfer phase, all sub-
jects received the same trials.

In our experiments, the stimuli were divided
into two classes such that every exemplar
shared three feature values with its corre-
sponding prototype (A0 or BO) and one feature

! This 90% accuracy criterion was introduced to keep
the experiment to a reasonable length (about 30 to 40
min).
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Is this figure in Set A or Set B?

(setA) (SetB )

If this figure is in Set A, then the item
is either Green or Red. Is this item
Green or Red?

(Green) ( Red )

FIG. 1. (a) A stimulus frame for a classification trial; in a particular classification trial, a subject is given
afigure whose form, size, color, and position are specified. Then, the subject is asked to predict the category
label (Set A or Set B) of the stimulus. (b) A stimulus frame for an inference trial; in a particular inference
trial, a subject is given a figure whose form, size, position, and the category label are specified. Then, the

subject is asked to predict the color of the item.

value with the prototype of the other category
(Table 1). We used simple stimuli consisting
of geometric figures varying in their size,
form, position, and color in order to focus
on the effect of the learning procedures (see
Medin & Schaffer, 1978).

In Classification Learning, subjects classi-
fied the eight exemplars but not the prototype
stimuli. In Inference Learning, subjects in-
ferred all the feature values of stimuli except
for the ** Exception-features.”” The Exception-
features, shown in bold italicsin Table 1, are
the feature values of acategory that are consis-
tent with the prototype of the other category.
For example, the values of al the features in
Set A are 1 except the values of the exception
features which are 0. We did not include Ex-
ception-feature inferences in the learning
phase and presented them only in the transfer
phase for two reasons. First, we excluded
them to keep the Classification Learning con-
dition and the Inference Learning condition as
equivalent as possible. On each classification
guestion, subjects predicted the value of the
category label given the values of al the four
feature dimensions (e.g., the stimulus Al in
Table 1). This question has a schematic struc-

ture (1, 1, 1, 0, ?) = (form, size, color, posi-
tion, category-label) in the exemplar A1, as-
suming that the category label is just another
feature (see Anderson, 1990). Analogoudly,
on each inference question (e.g., a question
about the form of the stimulus A1), subjects
predicted the value of a missing feature (e.g.,
the value of form) while the values of the
other three features and the category label
were shown (e.g., the values of size, color,
position, and the category label). This ques-
tion has a schematic structure (?, 1, 1, 0, 1)
= (form, size, color, position, category-label)
and isformally equivalent to the classification
guestion (eg., (1, 1, 1, O, ?)), provided that
the prediction of category labels and the pre-
diction of category features are in principle
compatible. The Exception-feature trials have
adifferent structure. For example, the position
inference for the stimulus Al yields a sche-
matic structure (1, 1, 1, ?, 1), and is analogous
to the classification of a prototype—(1, 1, 1,
1, ?). Because prototype stimuli were not pre-
sented in Classification Learning, it is neces-
sary to exclude Exception-feature inferences
from Inference L earning to keep the two learn-
ing conditions equivalent.
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TABLE 1

Stimulus Structure Used in Experiment 1

Category A Form  Size  Color Position Category B Form  Size  Color Position
Al 1 1 1 0 Bl 0 0 0 1
A2 1 1 0 1 B2 0 0 1 0
A3 1 0 1 1 B3 0 1 0 0
A4 0 1 1 1 B4 1 0 0 0
AO (prototype) 1 1 1 1 BO (prototype) 0 0 0 0

Note. Exception-features are shown in bold italics.

Second, we excluded Exception-feature
questions from Inference Learning in order to
examine the nature of feature information
used for making inferences in the transfer
phase. On an Exception-featureinferencetrial,
there are two possible choices, one that is con-
sistent with the value of the prototype of the
category, and the other that is consistent with
exception values of each category. For exam-
ple, on the Exception-feature question for the
stimulus Al (Table 1), subjects see a stimulus
with form, size, color and the category label
with avalue of 1, and they infer the value of
position (e.g., (1, 1, 1, ?, 1)). If they respond
with the value of 0 (e.g., right), then they are
making a response consistent with the stimu-
lusAl(eg., (1,1, 1,0, 1)), whichispresented
in feedback during learning. If they respond
with the value of 1 (e.g., left), then they are
making a response consistent with the proto-
type (i.e,, AO(1, 1, 1, 1, 1)) of the category,
which is not given in feedback during learn-
ing. Thus, the choice of feature values on these
trials may provide some insight to assess the
degree to which subjects use either family re-
semblance information or exception-feature
information for inference.

HYPOTHESES AND PREDICTIONS

In the previous section, we described sev-
eral empirical studies that are consistent with
the idea that inference and classification in-
volve different mechanisms; in inference sub-
jects assess relationships between exemplars
within a category while in classification they
focus on features that distinguish between cat-

egories. In this section, we would like to dis-
cuss how these two strategies can be trand ated
into our experimental setting and how they
would influence the way people form catego-
ries when categories are learned by inference
or by classification.

Asageneral rule, we assume that inferences
guide subjects to focus on the target category
(see Malt, et a., 1995; Murphy & Ross, 1994;
Ross & Murphy, 1996), while classification
often leads subjects to focus on a small num-
ber of diagnostic features that are useful to
divide exemplars into groups. This distinction
might have arisen because the two tasks are
associated with two different purposes of cate-
gories. Inference often requires the identifica-
tion of an unknown property or the interna
structure that is not readily apparent (Gelman,
1986). Thus, focusing on the commonalities
among exemplars within a category might be
advantageous for inference. In contrast, classi-
fication is related to the operation of object
recognition and identification (see Nosofsky,
1986). For this purpose, finding a salient fea-
ture that differentiates between exemplars is
useful. Thisfocusisevident in sorting tasks, in
which subjects consistently use asingle salient
feature to sort stimuli if no intervening tasks
are given prior to sorting (see Lassaline &
Murphy, 1996; Markman & Makin, in press).
Although it is not clear exactly how sorting
tasks speak to the classification task, it seems
plausible to assume that this focus on asingle
salient feature will occur in classification tasks
as well.

In sum, we assumed that categories |earned
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for inference or for classification will embody
the characteristics that accommodate these
two strategies. We argue that inference pro-
motes the acquisition of category representa
tions characterized with the prototypes of the
categories, while classification facilitates the
formation of categories consistent with rules
and exceptions or concrete exemplars. The
following normative models illustrate these
processes.

In Classification Learning, subjects would
fulfill the classification task by assessing at
least one of two conditional probabilities—
the probability that the response “*Set A’ is
likely given the feature information about
Stimulus i (i.e.,, P(SetA|Simulus i)) and the
probability that theresponse ‘‘ Set B'’ islikely
given the feature information about Stimulus i
(i.e., P(SetB|Simulus_i)). For example, sub-
jects may choose the response “‘Set A’ if
P(SetA| Simulus i) is larger than P(SetB|
Simulus i), or vice versa. It is also possible
that subjects make a classification judgment
by setting a decision criterion. For example,
they may choose ‘“‘Set A" if P(SHA|
Simulus i) islarger than, say, 0.5, and choose
“Set B if P(SetA|Simulus i) is not larger
than 0.5. In either case, at least one of the
following two conditional probabilities would
be assessed in the classification question of
the stimulus A1

P(Cl| Ffll Fslv Fclv FpO)
— P(C11 Ffl; Fsl1 l:Cl1 FpO)

1
P(Ffli Fslv FCl! FpO) [ a]
P(C2| Ffl! FSL FCl! FpO)
— P(C21 Ffl! Fslv FCll FpO) [1b]

P(Fflv FSl! FCl! FpO)

where C,; and C, stand for the category labels
with the values 1 and 2, respectively, and F;.,
Fa, Fe, and Fpo stand for the feature values
of form, size, color, and position—(1, 1, 1,
0), respectively.

Analogously, subjects in Inference Learn-
ing may carry out the inference task by as-
sessing at least one of two conditiona proba-
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bilities—the probability that the feature value
1 is likely given the values of other features
and its category label [2a], and the probability
that the feature value O is likely given the
values of other features and its category |abel
[2b]. As in classification, they may also
choosethefeaturevalue‘' 1"’ if one of the two
probabilities exceeds a particular threshold. In
either case, subjects would assess at least one
of thetwo conditional probabilitiesin an infer-
ence question of the stimulus A1?

P(Ffl|Clv FS].! FCl! FpO)
— P(Cla Ffl'l Fsla FCll FpO)

2
P(C11 FSlv Fclv Fpo) [ a]
P(Ff0|C1! F511 I:Cll FpO)
— P(CL FfOl Fslv Fclr FpO) [Zb]

P(Cla Fslv FCll FpO)

As the four equations show, the four condi-
tional probabilities that may be assessed in
inference and classification are in principle
identical if the category labels (C, and Cp) and
the feature form (F¢; and F;,) are identical.

The assumption that subjects at the begin-
ning of the learning phase attend to a diagnos-
tic feature in classification suggests that sub-
jects obtain a classification judgment primar-
ily based on the value of the target feature,
while ignoring information about other fea
tures that are not attended. To translate this
process, the feature values Fy, Fe, Fpo Can be
removed from Egs. [1a] and [1b], resulting in
Egs. [34] and [3b], if, for example, subjects
focus on the feature form

F’(QIH&=% [34]
P(Col Fr) =% [3b]

2 As the two equations [1] and [2] show, the classifica-
tion task is related to cue validity (i.e., how likely the
category given afeature) and the inference task is related
to category validity (i.e., how likely a feature given a
category). If the category label is equivalent to other fea-
tures, then the two equations are identical.
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Similarly, the assumption that subjects fo-
cus on the target category in inference can be
translated into Egs. [4a] and [4b] provided that
the focus on the target category is made by
the focus on the category label (see Murphy &
Ross, 1994, for the argument of a focus on a
single target category in inference, and see
Yamauchi & Markman, in preparation; for an
argument for a focus on the category label in
inference)

P(Fi|Cy) = % [4a]
P(F1o|Cy) = % [4b]

As in classification, the feature information
Fa, Fe1, Fpo is unattended or not used for the
inference judgment.

Our argument is that the difference in focus
between inference and classification will ulti-
mately lead to the acquisition of distinct cate-
gory representations, even if the stimuli pre-
sented in each learning procedure convey
roughly the same amount of information about
the relationship of the features to the catego-
ries (see the previous section). In this category
structure, none of the features are perfectly
correlated with the category division. There-
fore, the focus on any single feature is not
sufficient to predict the category division more
than 75% of the time. Thus, subjectsin Classi-
fication Learning need either to store some
specific cases, such as the case in which the
feature value F;q islinked to the category label
C,, or to employ a disjunction rule (e.g., sub-
jects make the response ‘*Set A’ if at least
two of three features have the values 1, other-
wise they make the response ‘“Set B'’). In
either case, this would induce subjects to at-
tend to concrete exemplars or exception-fea-
tures in Classification Learning along with a
limited number of diagnostic features. Conse-
guently, Classification Learning facilitates the
acquisition of category representations charac-
terized by the information about salient fea-
tures along with some exceptions or with a
number of concrete exemplars (Medin &
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Schaffer, 1978; Nosofsky, 1986; Nosofsky et
al., 1989).

In contrast to classification, the focus on
the target category promotes the acquisition
of categories consistent with family resem-
blance or prototypes of the two categories. In
this setting, the two category labels represent
the two groups unambiguously, so that sub-
jects can focus on the category labels and link
them directly to feedback C; and Fy; in this
example). No Exception-feature questions are
presented to subjects in Inference Learning,
so that subjects may associate the category
label with the prototype (e.g., AO(L, 1, 1, 1)).
As aresult, Inference Learning should facili-
tate the acquisition of category representations
consistent with prototypes or family resem-
blance between members of each category.

In natural settings, if inferences are made
to alarge number of exemplars and to a vari-
ety of feature dimensions, feature values that
people associate with the category label
should be close to the average feature values
of all the exemplars within the category as the
number of inferences increases (see Hintz-
man, 1986). If the exemplars of a category are
clustered by a family resemblance structure,
the average feature values that subjects link
with the category label can be approximately
the prototype of that category.® As a conse-
quence, making inferences would promote the
formation of categories consistent with the
prototypical values of the categories. In con-
trast, the focus on a diagnostic feature, which
may be adopted in classification, would im-
pede the extraction of prototypes even when
classification is made to a large number of
exemplars. If the focus on a diagnostic feature
is effective for prediction, then there is no
need to attend to other features. If the focus
is not very effective for prediction, then one
can look for another diagnostic feature or em-
ploy some decision rules (e.g., conjunction or
disjunction rules). Thus, classification would
obscure information about other features that

3 Because we used the binary values (1 and 0) to distin-
guish the two feature values, we employed modes to rep-
resent the prototypes of the two categories.
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are not focused, which would in turn deter the
extraction of the prototype of a category.

This reasoning leads to three basic predic-
tions in our experiments. First, the idea that
inference is in genera linked to the assess
ment of family resemblance within a category
will be examined by observing subjects’ re-
sponse-patterns in Exception-feature infer-
ences. In particular, we predict that subjects
in the three learning conditions should re-
spond with prototype-feature values more of-
ten than with Exception-feature values. In the
category structure employed in our experi-
ments (Table 1), the two prototypes—AO0(1,
1, 1, 1) and BO(O, O, O, O)—recapitulate the
family resemblance structure of the two cate-
gories. If the judgment involved in inference
reguires assessing the feature values that ex-
emplars of a category have in common (e.g.,
family resemblance among category exem-
plars), then subjectsin all three learning con-
ditions will exhibit a tendency to select the
feature values that are shared by many of ex-
emplars in a category (e.g., prototype-feature
values) rather than the features values that are
shared by exemplars of the other category
(e.g., Exception-feature values).

Second, this tendency may be reduced for
subjects in Classification Learning as com-
pared to subjects in Inference Learning. If
classification induces attention to a small
number of diagnostic features and some spe-
cific exceptions, then subjectsin Classification
Learning may be less likely to respond with
prototype-feature values than may subjectsin
Inference Learning given Exception-feature
guestions.

Third, the hypothesis that the two learning
procedures produce different category repre-
sentations can be tested by examining sub-
jects overall performance for the transfer
tasks. Given the assumption that Classification
Learning promotes the acquisition of category
representations consistent with rules and ex-
ceptions or concrete exemplars, subjects in
Classification Learning should be the best on
classification transfer tasks, assuming that cat-
egories formed in Classification Learning fa-
cilitate classification judgment. Similarly,
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given the assumption that Inference Learning
promotes the formation of categories congru-
ent with family resemblance information, sub-
jects in Inference Learning should be the best
on the inference transfer task. Anaogously,
subjects in Mixed Learning should be better
both in classification transfer and in inference
transfer to the extent that they receive Infer-
ence Learning trials and Classification Learn-
ing trials. This pattern of data should emerge
regardless of subjects’ familiarity with Infer-
ence or Classification Learning tasks.

In the two experiments reported below, we
will test these predictions. In Experiment 1,
subjects learn the two categories with one of
three learning procedures—Inference Learn-
ing, Classification Learning, or Mixed Learn-
ing, and we examine the distinction between
inference and classification by focusing on
subjects’ performance on transfer questions.
In Experiment 2, we will test directly if the
different strategies employed in the two learn-
ing tasks can specify the formation of catego-
ries.

EXPERIMENT 1
Method

Participants. Participants were 77 under-
graduates at Columbia University who partici-
pated in the experiment for course credit. The
data from 4 subjects were removed from the
analyses because these subjects failed to fol-
low the instructions, and the data from 1 sub-
ject were lost due to a coding error. In dl, the
data from 72 subjects (24 per condition) were
analyzed.

Materials. Stimuli used for this experiment
were like those used in the first experiment
of Medin and Schaffer’s (1978) studies. They
were geometric figures having four feature di-
mensions—form (circle, triangle), color (red,
green), size (large, small), and position (left,
right) (Fig. 1). Each stimulus was bounded by
a 20.3 X 17.4 cm rectangular frame drawn
with asolid black line on the computer screen.

The structure of the two categoriesisillus-
trated in Table 1 (see Medin et al., 1987). A
single stimulus set was drawn containing an



132

arbitrary assignment of dimension values of 0
and 1 in the stimulus design. For form, the
value of 0 was triangle, and the value of 1
was circle. For size, the value of 0 was small,
and the value of 1 was large. For color, the
value of 0 was green, and the value of 1 was
red. For position, the value of 0 wasright, and
the value of 1 was left. All subjects saw the
same stimulus set. The eight stimuli (A1-A4,
B1-B4) weredivided into two categories. The
category exemplars share three features with
the prototype of that category and one feature
with the prototype of the other category. Thus,
no single feature can unambiguously deter-
mine the category division.

Procedure. The basic procedure of the ex-
periment involved three phases—a learning
phase, a filler phase, and a transfer phase. In
the learning phase, subjects were randomly
assigned to one of three experimental condi-
tions—Classification, Inference, and Mixed.
For all the three conditions, subjects continued
in the learning phase until they performed
three consecutive blocks with a combined ac-
curacy of 90% or until they completed 30
blocks (240 trials). A classification block con-
sisted of presentations of eight exemplars. One
inference block included inferences of all four
feature dimensions. One block of the Mixed
condition was either a classification block or
an inference block. In the three conditions,
every exemplar appeared oncein the feedback
of each block. The order of stimulus presenta-
tion was determined randomly.

In the Classification Learning condition,
subjects were shown one of the eight stimuli
and were asked to indicate the category to
which it belonged by clicking a button with
the mouse (Fig. 18). In the Inference Learning
condition, subjects made inferences of one of
four features while its category label and the
remaining three feature values were depicted
in the stimulus frame. For instance, in Fig. 1b,
subjects were given a stimulus frame con-
taining the form, size, and position of the item
as well as its category label, and the color of
the item was left unspecified. They were then
asked to select one of the two values of the
unspecified feature—color. On other trials,
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they predicted other dimensions (form, size,
or position). Subjects responded by clicking
one of two labeled buttons with the mouse.
For each stimulus, the location of the correct
choice was randomly determined. The Mixed
condition was a mixture of classification and
inference blocks. Half of the blocks in this
condition were classification and half werein-
ference. The order of the blocks was deter-
mined randomly for each subject.

Initially, no information about the category
division was given to subjects, and so subjects
had to guess. Following each response, feed-
back was provided in a stimulus frame that
depicted the correct response; the stimulus and
the feedback remained on the screen for 3 s
after their response. The stimulus frames that
depicted correct responses were identical in
both classification and inference tasks. In
Classification Learning, subjects saw all eight
exemplars but not the two prototypes (i.e.,
A0(1, 1, 1, 1) and BO(O, 0, O, 0)). In Inference
Learning, subjects answered al the feature
guestions for each stimulus except for the Ex-
ception-feature questions.

Following the learning trials, all subjectsin
the three learning conditions participated in
the same transfer tasks, which followed a 10-
min filler task, where subjects judged the
pronounceability of nonsense words. In the
transfer phase, subjects were first given classi-
fication transfer tasks followed by inference
transfer tasks. In this phase, the instructions
specifically asked subjects to make their deci-
sions based on the categories learned during
the learning phase when the values of the four
features were given. In the classification trans-
fer task, as in the classification learning task,
subjects were asked to indicate the category
label of a stimulus based on the categories
they learned. In the inference transfer task, as
in the inference learning task, subjects were
asked to indicate the value of the missing fea-

“ Three consecutive blocks used to assess the learning
criterion could differ one subject from another and could
be any combination of classification and inference blocks
in the Mixed condition because the order of the presenta-
tion of the blocks was determined randomly.
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ture of the stimulus based on the categories
they learned when the category label to which
the stimulus belonged and the values of other
features of the stimulus were shown. No feed-
back was given during transfer. First, subjects
classified the eight exemplars that appeared in
the learning phase as well as two new proto-
type stimuli (AO and BO) that were not pre-
sented during the learning phase. Immediately
after each classification, subjects indicated
whether they had seen the stimulus during the
learning trials.®> The order of stimulus presen-
tation for the ten stimuli was determined ran-
domly. Following the classification task, sub-
jects proceeded to the inference transfer task.
They performed all possible feature inferences
including Exception-feature inferences (32 in-
ferences in total). The order of stimulus pre-
sentation for inference transfer was deter-
mined randomly. The entire experiment took
30 to 40 min.

Design. There were three between-subjects
learning conditions: Inference, Classification,
and Mixed. Five dependent measures served
for our analyses. First, we examined the num-
ber of subjects who reached the 90% accuracy
criterion, and the number of blocks needed to
reach the criterion in the learning phase. The
rest of the measures encompassed the transfer
tasks: the proportion of correct classifications
of old exemplars, the proportion of correct
classifications of the prototypes, the propor-
tion of correct inferences to old exemplars,
and the proportion of inferences to Exception-
features consistent with the prototype features
of the category.

Results and Discussion

All dependent measures were analyzed with
one-way ANOVASs. For these analyses, we
used the data from only those subjects who
reached the 90% accuracy criterion before the

® We collected the recognition performance data of the
subjects on an exploratory basis. Because this experiment
was hot designed to survey recognition performance (i.e.,
there were only 2 new stimuli out of 10 stimuli), we will
not discuss this task further.
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30 block maximum.® In al, 22 subjects
reached the criterion in the Inference Learning
condition, 23 in the Classification Learning
condition, and 20 in the Mixed Learning con-
dition. First, we measured the number of
blocks that were required to reach the criterion
to examine relative difficulty of the three
learning conditions. In this measure, the three
learning conditions were significantly differ-
ent: F(2, 62) = 1062, MSE = 321, p <
0.001.” In particular, subjects in Inference
Learning (m = 6.5) required fewer blocks to
reach the criterion than did subjects in Classi-
fication Learning (m = 12.3), or in Mixed
Learning (m = 14.2); for both comparisons,
t > 4.0, p < 0.001(Bonferroni). The differ-
ence between subjectsin Classification Learn-
ing and subjects in Mixed Learning was not
statistically significant, t(41) = 0.96, p > 0.10.

In the transfer phase, the proportions of cor-
rect responses exceeded a chance level in ev-
ery dependent measure of the three learning
conditions; t > 2.5, p < 0.05, implying that
the Classification Learning task and the Infer-
ence Learning task were capable of producing
category representations flexible enough to be
used with the transfer task that was not given
during learning. As predicted, performance of
subjectsin each condition was generally better
when the learning task matched the transfer
task. The three learning procedures differed
in the classification transfer of old stimuli;
Classification, m = 0.92; Mixed, m = 0.88;
Inference, m = 0.77; F(2,62) = 8.42, MSE =
0.02, p < 0.001 (Fig. 2a). Subjects in Classi-
fication Learning were more accurate than
subjects in Inference Learning; t(43) = 4.22,
p < .001. Subjects in Mixed Learning also
performed better than did subjectsin Inference
Learning in the classification transfer of old
stimuli, although this difference was only mar-

6 Since analyses of the data from all the subjects (in-
cluding subjects who did not reach the 90%-above accu-
racy criterion) showed basically the same patterns as ob-
served in the subjects who reached the criterion, we report
only the data obtained from the subjects who reached the
criterion in the following two experiments.

”The number of blocks shown in these results includes
three consecutive blocks used to assess the criterion.
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FIG. 2. (8) The classification transfer performance for old stimuli and prototype stimuli of Experiment
1. (b) The inference transfer performance for old stimuli and Exception-feature stimuli of Experiment 1.
For the Exception-feature inferences, the proportion that subjects responded with the prototype stimuli was

reported (i.e., prototype-accordance responses).

ginaly significant; t(43) = 2.49, p < 0.06.
The performance for classification of proto-
types did not differ reliably between condi-
tions; Classification, m = 0.96; Inference, m
= 0.96; Mixed, m = 0.93; F(2,62) < 1, MSE
= 0.04. In inference transfer of old stimuli,
subjects in the three learning conditions dif-
fered in their performance (Fig. 2b); Infer-
ence, m = 0.94; Mixed, m = 0.95; Classifica-
tion, m = 0.81; F(2,62) = 11.3, MSE = 0.01,
p < 0.001. Subjectsin Inference Learning and
subjects in Mixed Learning made higher pro-
portions of correct responses than did subjects
in Classification Learning; respectively, t(43)
= 345, p < 0.01; t(43) = 3.92, p < .00L.
Theseresultsimply that the category represen-
tations obtained by each learning procedure
are specific to each learning condition to some
extent while maintaining some level of gener-
ality.

The response-patterns observed on Excep-
tion-feature transfer trials were also consistent
with the view that inference promotes the as-
sessment of family resemblance while classi-
fication increases attention to afew diagnostic
features and exceptions. First, subjects in al
the three conditions typically responded with
feature values that were in accord with the
category prototypes (i.e., prototype-accor-
danceresponses); Inference, m = 0.86; Mixed,
m = 0.76; Classification, m = 0.64; for all
conditions, t > 2.5, p < 0.03, confirming the

view that assessing family resemblance infor-
mation is critical for inference. The three con-
ditions differed significantly in their prefer-
ence for prototype-accordance responses, F(2,
62) = 3.34, MSE = 0.08, p < 0.01. As pre-
dicted, thetendency to respond consistent with
prototype-feature values (i.e., prototype-ac-
cordance responses) was reduced significantly
in subjects in Classification Learning as com-
pared to subjects in Inference Learning, t(43)
= 2.73, p < 0.05, implying that classification
tends to promote a focus on exceptions or con-
crete exemplars to a larger degree than does
inference.

To summarize, three aspects of the results
of Experiment 1 are in accord with the hypoth-
esis that subjects employ different strategies
to make inferences or classifications. First, on
Exception-feature questions, subjectsin all the
three conditions responded with prototype-
feature values more often than with exception-
feature values. Theresultsimply that checking
family resemblance information is critical in
inference. Second, this tendency was reduced
in subjects given Classification Learning, sug-
gesting that classification tends to induce at-
tention to exception-feature values to a larger
degree than does inference. Third, subjects
performance on the transfer tasks was gener-
aly better when the learning task and the
transfer task matched, indicating that the rep-
resentation acquired in each learning proce-
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dure may be specific to the corresponding
learning task, while these representations re-
tain a minimum level of flexibility to cope
with both inference and classification transfer
tasks. In particular, the finding that subjects
in Mixed Learning excelled both in inference
and classification transfer tasks seems to sug-
gest that the combination of the two learning
tasks produces a category representation rich
enough to deal with both inference and classi-
fication transfer tasks at a high level of accu-
racy.

These results are consistent with the hy-
pothesis that subjects employ different strate-
gies to deal with the inference task and with
the classification task, though they are not
conclusive to rule out alternative interpreta-
tions. In particular, subjects familiarity with
each transfer task might have contributed to
the observed results of Experiment 1. For ex-
ample, the different levels of prototype-accor-
dance responses might have emerged in sub-
jects of Inference Learning and of Classifica-
tion Learning because they differ in terms of
their familiarity with the inference transfer
task.

The purpose of Experiment 2 is to rule out
this possibility and to contrast directly the
characteristics of category representations
produced in Inference Learning and in Classi-
fication Learning. In this experiment, we had
subjects participate both in Inference Learning
and in Classification Learning in sequence but
in different orders. One group of subjects
learned the categories by the Inference Learn-
ing task first, and then they learned the same
categories by the Classification Learning task
(i.e., Inference-first condition). The other
group of subjects learned the same categories
by the Classification Learning task first, and
then they learned the same categories by the
Inference Learning task (i.e., Classification-
first condition). As in Experiment 1, subjects
continued in one learning task until they
reached the 90% accuracy criterion or they
spent 30 blocks (240 trias) in total. In this
setting, we predict that subjects will find it
easier to learn the categories in the Inference-
first condition than in the Classification-first
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condition, provided that Inference Learning
leadsto the acquisition of a category represen-
tation consistent with family resemblance in-
formation, and that Classification Learning re-
sults in the acquisition of a category represen-
tation consistent with rules and exceptions or
concrete exemplars.

We hypothesized earlier that Classification
Learning facilitates the formation of catego-
ries involving to rules and exceptions or con-
crete exemplars, while Inference Learning in-
duces the acquisition of categories in accor-
dance with the information about family
resemblance within a category. Because a
small number of features assessed in Classifi-
cation Learning would not be sufficient to an-
swer theinference questionson all four feature
dimensions, subjects in the Classification-first
condition may need to store extra rules and
exceptions or concrete exemplars to cope with
the subsequent Inference Learning trials. By
contrast, prototype information (e.g., AO(1, 1,
1, 1) and BO(0, O, 0, 0)) processed in Inference
Learning is also useful for dividing the exem-
plars into the two classes in this setting, so
that the representation obtained from Infer-
ence Learning can be applied in the subse-
gquent Classification Learning task without
modifying its characteristics extensively. As
a consequence, we predict that learning the
categories starting from Inference and fol-
lowed by Classification should be less cum-
bersome than learning the categories in the
reverse order. In other words, if Inference
Learning produces a category representation
consistent with family resemblance informa
tion, and if Classification Learning produces
acategory representation consistent with rules
and exceptions or concrete exemplars, sub-
jects should require fewer trials to reach the
two learning criteriain the Inference-first con-
dition than in the Classification-first condition.
Following the sameline of logic, given Excep-
tion-feature questions, subjects in the Infer-
ence-first condition should choose prototype-
accordance features more often than should
subjects in the Classification-first condition
because subjects in the Inference-first condi-
tion would form categories according to fam-
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ily resemblance information while subjects in
the Classification-first condition would form
categories corresponding to rules and excep-
tions or concrete exemplars.

EXPERIMENT 2
Method

Participants. Participants were 57 members
of the Columbia University community, who
participated in the experiment for the payment
of $6.00.2 The data from 9 subjects were re-
moved from the analyses—6 for failing to
complete the experiment, 2 due to a coding
error, and 1 for not following the instructions.
Thus, we were left with 48 subjects (24 per
condition).

Materials. The stimuli used for this experi-
ment were identical to those used in Experi-
ment 1.

Procedure. The procedure for this experi-
ment wasidentical to that employed in Experi-
ment 1 except for the following key manipula-
tion. In the present experiment, all the subjects
went through both Classification and Infer-
ence Learning, but in different orders. Half of
the subjects were assigned to the Inference-
first condition performing the Inference
Learning task first until they reached thelearn-
ing criterion—above 90% accuracy over three
successive blocks (24 trials)—or they com-
pleted 30 blocks (240 trias). After reaching
the criterion in Inference Learning they per-
formed Classification Learning until they
reached the same learning criterion or com-
pleted 30 blocks of trials. The other half of
the subjects (i.e., the Classification-first condi-
tion) received the two tasks in the reverse
order.

Design. The experiment was designed with
abetween-subject factor consisting of two lev-
es. Inference-first (Inference learning fol-
lowed by Classification learning) and Classi-
fication-first (Classification learning followed
by Inference learning). The same dependent

8 Originaly, the data from 81 subjects were collected
for this experiment. Due to an experimenter error, 24
subjects who participated in one condition were dropped.
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TABLE 2

The Number of Learning Blocks Spent in Each
Learning Task of Experiment 2

Learning order Inference  Classification Total
Inference-first 79 7.8 15.7
Classification  Inference  Tota

Classification-first 125 9.2 217

Note. One block contains 8 trials.

measures as used in Experiment 1 served for
analyses.

Results and Discussion

To assess the relative difficulty of the two
learning orders, we first examined the number
of blocks required to reach the learning crite-
rion. The data are summarized in Table 2 and
were analyzed with a 2(Learning order—In-
ference-first vs Classification-first) X
2(L earning type— Inference vs Classification)
ANOVA. Inall, 20 subjectsin the Inference-
first condition and 18 subjects in the Classi-
fication-first condition reached both criteria
As predicted, learning the categories starting
from Inference was easier than learning the
same categories starting from Classification.
Subjects in the Inference-first condition re-
quired fewer learning blocksto reach the cri-
terion in both tasks (m = 15.7) than did sub-
jects in the Classification-first condition (m
= 21.7); F(1,36) = 5.01, MSE = 34.8,p <
0.05. The results are consistent with the idea
that Inference Learning and Classification
L earning produce distinct category represen-
tations. Theinteraction between L earning or-
der (Inference-ffirst vs Classification-first)
and Learning type (Inference vs Classifica-
tion) was not significant, F(1,36) = 1.41,
MSE = 39.64, p > 0.10. To examine the
effect of the two learning orders further, we
compared the number of blocks required to
reach the learning criterion as a function of
each learning task. In Classification Learn-
ing, subjects required significantly fewer
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FIG. 3. (8) The classification transfer performance for old stimuli and prototype stimuli of Experiment
2. (b) The inference transfer performance for old stimuli and Exception-feature stimuli of Experiment 2.

blocksto reach the learning criterion if Clas-
sification L earning was given after Inference
Learning (m = 7.8) than if it was given be-
fore Inference Learning (m = 12.5); t(36)
= 2.64, p < 0.05. In contrast, in Inference
Learning, the number of blocks required to
reach thelearning criterion did not differ sig-
nificantly whether Inference Learning was
given before Classification Learning (m =
7.9) or it was given after Classification
Learning (m = 9.2); t(36) = 0.62, p > 0.10.
The results suggest that Inference Learning
helped subjects to cope with the subsequent
Classification Learning task while Classifi-
cation Learning did not help the subsequent
Inference Learning task.

The results obtained from transfer perfor-
mance, which are summarizedin Fig. 3, were
also consistent with the idea that Classifica-
tion Learning and Inference Learning yield
distinct categories. Although subjects in the
two learning orders did not differ in the clas-
sification of old stimuli—Inference-first (m
= 0.95), Classification-first (m = 0.91), t(36)
= 1.36, p > 0.10—and in the classification
of prototype stimuli—Inference-first (m =
0.88), Classification-first (m = 0.81), t(36)
= 0.64, p > 0.10—, subjects in the Infer-
ence-first condition (m = 0.95) were signifi-
cantly more accurate in making inferences
to old stimuli than were subjects in the Clas-
sification-first condition (m = 0.88), t(36) =
2.89, p < 0.01. More importantly, consistent

with our prediction, subjects in the Infer-
ence-first condition made Exception-feature
inferences in accordance with prototype-fea-
ture values more often (m = 0.86) than did
subjects in the Classification-first condition
(m=0.54), t(36) = 2.96, p < 0.01, implying
that category representations formed in the
Inference-first condition and those in the
Classification-first condition differed sig-
nificantly in the degree that family resem-
blance information was incorporated into
their representations.

Further support for this interpretation was
found in a subject-analysis in which 17 out
of 20 subjectsin the Inference-first condition
made responses in accordance with the pro-
totype-feature values more than 75% of the
time, and only 3 out of 20 subjects made
responses in accordance with exception-fea-
ture values more than 75% of the time. In
contrast, 8 out of 18 subjects in the Classifi-
cation-first condition chose feature valuesin
accordance with prototypes more than 75%
of the time, and 6 out of 18 subjects made
responses in accordance with exception-fea-
ture values more than 75% of the time. Thus,
the results of the Exception-feature infer-
ences reveal that subjectsin the two learning
orders differed in the proportion of proto-
type-accordance responses.

To examine further whether subjectsin the
Classification-first condition learned the cat-
egories by augmenting single feature infor-
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mation to cope with inference questions, we
conducted a post hoc analysis for the infer-
ence transfer of old stimuli. In particular, we
measured the standard deviations of correct
responses of four feature dimensions, taking
the data from individual subjects as random
variables. The rationale for this analysis is
that subjects selectively attending to a small
number of features will show high variability
of correct responses over the four feature
dimensions, exhibiting accurate performance
for one feature dimension but not for the
others. In contrast, subjects attending to four
feature-dimensions equally would display
the same level of performancein all the four
dimensions, resulting in less variability be-
tween feature dimensions. Subjects exhib-
ited higher variability in the Classification-
first condition (m = 0.14) than in the Infer-
ence-First condition (m = 0.08); t(36) =
2.69, p < 0.05. The results of this analysis
provide additional support for our hypothesis
that classification makes use of a small num-
ber of diagnostic features.

Taken together, these results of Experi-
ment 2 are consistent with the view that sub-
jects form different category representations
in the two learning orders, supporting the
hypothesis that Classification Learning and
Inference Learning give rise to the acquisi-
tion of distinct category representations. In
Classification Learning, subjects seem to ob-
tain a category representation congruent with
a small number of diagnostic features and
exceptions, while in Inference Learning,
subjectstend to obtain a category representa-
tion congruent with family resemblance in-
formation. Because the information about a
diagnostic feature and exceptions is not suf-
ficient to answer all inference questions, and
because the information about family resem-
blance between exemplarsis suitable to deal
with both inference and classification ques-
tions, subjects required more trials to reach
the learning criterion in the two learning
tasks when categories were learned by classi-
fication first followed by inference than by
the reverse order.

Some may argue that the effect observed
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in Inference Learning and in Classification
Learning is aresult of alink between encod-
ing and retrieval tasks. In Inference Learning,
subjects answered inference questions of all
the four feature dimensions whereas in Clas-
sification Learning subjects answered ques-
tions about the category labels only. On this
basis, the observed distinction between Infer-
ence Learning and Classification Learning
may be an artifact of thisexperimental setting
because what is learned in the two learning
procedures can be no more than a link be-
tween the encoding task and the retrieval task
(Estes, 1976, 1986; Medin & Schaffer, 1978;
Tulving, 1983; Tulving & Thomson, 1973;
see also Roediger, 1989). This explanation,
though plausible, cannot account for why
subjects in the two learning orders exhibited
drastically different transfer performance
when the order of the two learning proce-
dures was changed. In this study, all the sub-
jects in the two conditions learned the same
categories by the same tasks—Inference
Learning and Classification Learning—with
the identical stimuli. Nonetheless, subjects
acquired different categoriesif the two learn-
ing procedures were given in different orders.
Itisdifficult to see how asimplelink between
encoding and retrieval procedures caused the
disparity between the two learning orders. By
the same token, the results of Experiment 2
cannot be explained by subjects familiarity
with the corresponding learning task. We ar-
gue that the specific mechanisms tied to in-
ference and classification were one of the
main determinants of the observed results in
the two learning orders.

FITTING CATEGORIZATION MODELS

In the two experiments, we have examined
the distinction between inference and classi-
fication solely by contrasting the effect of
the three learning procedures. The results of
the two experiments are consistent with the
idea that Inference Learning and Classifica-
tion Learning lead to the formation of dis-
tinct categories, supporting the view that
subjects employ different strategies to make
judgments related to inference or classifica-
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tion. This conclusion can be tested further
by comparing subjects’ performance within
each learning condition. That is, if our argu-
ment is sound, performance for inference
transfer tasks and performance for classifi-
cation transfer tasks should differ consider-
ably even within a single learning condition.
Wetested thisidea by fitting existing models
of classification to the data obtained from
inference transfer tasks as well as from clas-
sification transfer tasks. If inference is car-
ried out by the same process as by the one
employed in classification, existing models
of classification should be able to account
for the data from classification transfer and
from inference transfer equally well.

We fit Medin and Schaffer’'s context
model (1978) and Anderson’s rational
model to the data (Anderson, 1990, 1991;
Nosofsky, 1986). To fit the context model,
we employed Nosofsky’s Generalized Con-
text Model (GCM) because of its generality
and clarity (Nosofsky, 1986). We chose the
rational model because of its proposal that
the primary impetus for categorization is to
maximize people's ability to make infer-
ences about features of category members.
The rational model treats the category |abel
as another feature and assumes that it can
be predicted in the same manner that the
features of objects are predicted. The pur-
pose of this model fitting isto test the central
assumption that subjects employ qualita-
tively different strategies to carry out the
inference and classification tasks. In this
sense, this model fitting is not intended to
compare the relative efficacy of the two
models. The comparison between the two
models is beyond the scope of the present
paper because these models were devel oped
to account for data from classification tasks
not from inference tasks.

Theresults of the model fitting for Experi-
ment 1 are summarized in Tables 3 and 4,
and are described in the following subsec-
tions. The results of the model fitting for
Experiment 2 are shown in the Appendix.
For both models, parameters were found by
a random-start hill-climbing algorithm that
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looked for the minimum values of the sum
of squared deviation between predicted and
observed values (SSE). The data from clas-
sification transfer and inference transfer
were examined separately in each learning
condition. There were 10 data points in the
classification transfer of Experiments 1 and
2, and there were 32 data pointsin the infer-
ence transfer of Experiments 1 and 2.

Fitting the Context Model and the
Rational Model

The GCM has eight parameters—c, r, b1,
wl, w2, w3, w4, and wh. According to the
model, the probability that subjects classify
the stimulus S into the category C;, P(C/S),
is obtained by calculating the overall similar-
ity between the stimulus S and the category
members in C; divided by the sum of overall
similarity between the stimulus S and all the
members of categories available to subjects
(see Nosofsky, 1986, p. 42 for the modifica-
tion of the GCM to relate the model to the
context model):

b, = nj
jec
P(C//S) = — ,
b]_ E nij + (1_ bl) E n”
jeCy leCc2
where
N N
nij — e—(C[kElwklﬁk_xjk\r]llr)r _ e_crkzlwkmk_xjk‘r'

The similarity between the probe stimulus §
and an exemplar stimulus § is denoted by ny,
which decreases exponentidly as afunction of the
discrepancy between feature values | X, — X/ .
The parameters, w, represent the selective at-
tention given to each feature dimension. r is
the parameter associated with the psychologi-
cal distance between feature values. c is the
scale parameter representing overall discrimi-
nability of stimuli in a psychological space.
In order to reduce the number of free parame-
ters, we fixed two parameters b; and r(b, =
0.5 and r = 1) and combined ¢ and w,. This
modification yields five free parameters cw (0
< W, < ) and makes the GCM identical to
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Medin and Schaffer’'s context model (1978)
where Medin and Schaffer’ s similarity param-
eters, f', ¢, ¢’, and p’, correspond to the atten-
tion parameters cw in logarithmic functions
(in this setting, cwy; = —Inf’, cw, = —In &',
cwz; = —Inc, cw, = —In p’).

To fit inference data, we slightly extended
the model by treating category labels as an-
other feature and calculated feature infer-
ences in the same manner that classification
performance was calculated. For example,
when predicting classification performance,
the similarity distance between a probe item
(4,1, 1,0, 1) = (form, size, color, position,
category-label) and a category item (0, 1, 1,
1, 1) was obtained by estimating the feature
match excluding the category labels; in this
case

CWy X1 — X1| + CWa| X2 — Xz

+ CWs| Xz — Xj3| + CWa|Xis — Xal.

Similarly, when predicting the feature value
of form, for example, the similarity distance
between the two items was obtained by feature
match excluding form but including category
labels; in this case

CWa| X2 — Xi2| + CW3|Xiz — X3l

+ CWy| X — Xj4| + CWs| X5 — Xj5|1

where cws is an attention parameter given to
category labels. To obtain psychological dis-
tance associated with each feature value (i.e.,
Xij), the GCM requires stimulus identification
data and a confusion matrix. These data were
not available to us so that we used the arbi-
trary feature values (1 and 0) in each feature
dimension.

Anderson’s rational model is based on
the assumption that people form categories
to maximize the predictability to features
of objects (Anderson, 1991). A main vehi-
cle of the rational model liesin the internal
partitions that are formed through experi-
ence with exemplars. Anderson (1990) de-
scribes two important qualities of the inter-
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nal partitions. First, the clusters emerge be-
cause objects in the world have inherent
qualities for clustering due to the inability
to crossbreed. Second, the clusters reveal
information about their members, showing,
for example, the probability that a particu-
lar object exhibits a certain feature value.
Anderson suggests that it is this second
quality of partitions that enables people to
draw predictions about objects and to clas-
sify a new object into a group (Anderson,
1990, p. 97).

To examine classification and inference
performance, we calculated the probability es-
timated by

PUIF) = = PIF)PGK),

where P(ij | F) is the probability that a stimu-
lus has a feature value j on the dimension i
given the feature structure F, P(k|F) is the
probability that the stimulus is grouped in the
partition k given its feature structure F, and
P(ij | k) is the probability that the stimulus has
afeature valuej on afeature dimensioni given
a partition k. The rationa model has a cou-
pling parameter c that affects the prior proba-
bility that an item comes from a particular
partition. We further introduced five parame-
ters associated with four feature dimensions
and category |labels to accommodate attention
salience given to each feature dimension (we
treated category labels as another feature di-
mension). These parametersyield a new equa-
tion to estimate P(ij |K)—the probability of
displaying a feature value in a given partition
k (see Anderson, 1990, p. 116 for this modifi-
cation)

P(ij[F) .

To give the model extra flexibility, we aso
introduced a response parameter r (the same
modification can be found in Nosofsky,
Gluck, Pameri, Mckinley and Glauthier,
1994, p. 359). Thus, the probability P;, that
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TABLE 3

The Results of Model Fitting for Experiment 1 (MCM)

Classification transfer

Learning CW; CW, CWs CW,4 SSE Accountability Correlation
Inference 1.58 1.06 1.64 0.19 0.021 0.83 0.92
Mixed 1.78 155 1.70 0.87 0.040 0.20 0.46
Classification 1.15 3.43 2.16 1.08 0.031 0.41 0.64

Inference transfer

Learning cw, oW, CW; CW, CWs SSE Accountability Correlation
Inference 0.01 0.01 0.01 0.01 241 0.10 -0.01 —0.61
Mixed 0.01 0.01 0.01 0.01 221 0.38 -0.01 -0.77
Classification 0.05 0.01 0.01 0.39 112 0.48 0.04 0.20

Note. cw;—cw, are the parameters associated with feature dimensions (form, size, color, position). cws is the
parameter given to category labels. SSE is the sum of squared difference between predicted and observed values.
SST is the sum of squared difference between the mean of observed values and the observed values. Accountability

= 1 — (SSE/SST); MCM, modified context model.

subjects predict the feature value a in the ith
dimension is estimated by

I
A (Pt Pl
where p;, and p;, are the probability estimated
by the rationa model to predict the feature
values a and b in the ith dimension, respec-
tively. Because the order of stimulus presenta-
tion also affects the accountability of the ratio-
nal model, 40 sequences of stimulus presenta-
tion were generated randomly, and optimal
parameter values were determined separately
for each presentation. The results reported be-
low and the accountability score shownin Ta-
ble 4 are based on the best fitting parameter
values obtained from one of forty sequences
of stimulus presentation.

Results of Model Fitting (Experiment 1)

Tables 3 and 4 summarize the results of the
model fitting of the modified context model
and of the rational model, respectively. Over-
al, the two models provide reasonably good
fits to the data obtained from classification

transfer performance of Inference Learning
and of Classification Learning, but not of
Mixed Learning (see Tables 3 and 4 for de-
tails). A similar trend appeared in the model
fitting of Experiment 2 (see Appendix).’ In
contrast, the two models appear inappropriate
to account for inference transfer data regard-
less of the learning conditions.

In accounting for inference transfer perfor-
mance, for example, the modified context
model produced attention parameters close to
the minimum value for almost al the four
feature dimensions except the category labels
(cw; = 0.01, 0 < cw < ). The results indi-
cate that the model relied on the category la-
bels almost exclusively to derive inference
judgments. Furthermore, within the range of
the attention parameters the model’ s account-

° The poor performance observed in the two models
in accounting for classification transfer performance
in Experiment 2 might have derived primarily from
their performance for the prototype stimuli. Taking
out the predictions made to the prototype stimuli, the
average correlations between the observed values and
the predicted values reach 0.75 in the two learning
orders.
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ability measures (i.e., accountability = 1 —
(SSE/SST)) barely exceeded the estimates
made by the overall averages of the data
Clearly, given the modification suggested in
this section, the algorithm employed in the
modified context model does not seem appro-
priate to account for inference transfer perfor-
mance.

Similarly, the algorithm used in the rational
model appears implausible in accounting for
the data from the inference transfer task. It
produced the best fitting values in al three
learning conditions by creating singleton par-
titions for every learning stimulus (i.e., each
internal partition contained only one exem-
plar). Among the 40 different patterns of ran-
domly selected stimulus-presentation se-
guences, the rational model produced the
best parameter values by using singleton par-
titionsin 17 out of 40 cases in Classification
Learning, 30 out of 40 cases in Inference
Learning, and 34 out of 40 cases in Mixed
Learning. These results suggest that the
model obtained the best predictions by ex-
amining each exemplar separately rather
than by forming clusters, indicating that the
accountability of the model actually de-
creases as the model forms internal clusters.
This phenomenon contradicts the basic as-
sumption of the rational model that internal
clusters formed by people provide abasis for
feature predictions (Anderson, 1990, p. 97).
Given the family resemblance category-
structure employed in the two experiments,
there is no reason to believe that the stimulus
structure used in the two experiments deters
the formation of partitions. To account for
the inference transfer data, the two models
may need to introduce a major modification.
While we believe that fitting models of cate-
gorization can provide an insight into the
distinction between inference and classifica-
tion, we think that it is premature for us to
develop a model of classification and infer-
ence in this stage. More empirical studies
and theoretical investigation should be made
to constrain the nature of the inference pro-
cess before amodel of the inference task can
be developed.
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In summary, the disparity between infer-
ence and classification is clearly present in
the results of the model fitting: the two mod-
els provided reasonably good fit to the data
from the classification transfer tasks, but
failed to account for the data from the infer-
ence transfer tasks, at least given the modi-
fication suggested above. It may be the case
that the assumption of treating category la-
bels as equivalent to category features may
not be warranted. Although the two models
have been successful in accounting for ava-
riety of classification performance (Ander-
son, 1990, 1991; Medin & Schaffer, 1978;
Nosofsky, 1986), these models seem to re-
quire amajor modification to account for in-
ference transfer data.

GENERAL DISCUSSION

In an effort to investigate the relationship
between category learning and category for-
mation, we have contrasted inference-based
learning with classification-based learning.
The results of the two experiments and the
model fitting show that inference and classi-
fication require different strategies to carry
them out, and, because of these strategies,
distinct category representations arise if peo-
ple learn categories by inference or by classi-
fication. In particular, inference, which re-
quiresafocus on exemplar information within
a category, helps subjects to extract family
resemblance information within a category.
As a result, categories formed by inference
contain information consistent with the proto-
typical values of the category members. In
contrast, classification, which tends to pro-
mote a focus on a small number of diagnostic
features, guides subjects to form categories
consistent with rules and exceptions or con-
crete exemplars.

In Experiment 1, we found that subjects
transfer performance was the best when the
transfer task matched the learning task. Sub-
jects who learned the categories by classifica-
tion were the best in classification transfer.
Subjects who learned the categories by infer-
ence were the best in inference transfer. Given
Exception-feature inferences, subjects in the
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three learning conditions predominantly re-
sponded with prototype stimuli, though this
tendency was reduced significantly in subjects
who learned categories by classification. In Ex-
periment 2, we found that the order in which
subjects received the two learning procedures
had a significant impact on subjects perfor-
mance. Subjects found these categories much
easier to learn when they learned the categories
by inferencefirst and followed by classification
than when they learn the same categories in
the reverse order. Findly, in the mode fitting,
we demonstrated that the distinction between
inference and classification is present within
each learning procedure.

The results suggest that the nature of cate-
gory formation can be specified by the task
applied during learning, indicating that the ac-
quisition of categories is inseparable from the
function of categories (see also Kintsch, 1980;
Schank, 1982; Wittgenstein, 1953). For this
reason, we argue for the need to go beyond the
study of classification as a mode of category
learning to look at the impact of other uses of
categories on what is learned (see aso Whittle-
sea et al., 1994, for a similar argument). Other
studies have aso begun to address this issue.
Ross (1996) had subjects classify algebra equa-
tions. He found that the classes formed by sub-
jects were different if the subjects had pre-
viousy manipulated the equations by solving
for avariable than if they had not. Some work
has also addressed the role of communication
in category formation. Markman and Makin (in
press) (Markman, Yamauchi, & Makin, 1997)
report studies in which pairs of subjects were
asked to build LEGO models collaboratively.
One subject was given pictoria instructions for
constructing amodel, and the other subject was
given the pieces needed to build the model (as
well as distractor pieces). Subject pairs had to
settle on a common set of labels for the pieces
in order to carry out this task. After building
the model, subjects were asked to sort the
pieces into groups. Anaysis of the sorting data
revealed a higher level of agreement between
subjects who communicated together than be-
tween subjects who did not communicate with
each other and built different models.
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The present results are a preliminary step
toward understanding the relationship be-
tween category learning and category forma-
tion. Further research must focus on what is
learned about categories through other uses
of categories such as communication, infer-
ence, comparison, and memory (Markman et
al., 1997). Research must also examine the
distinction between inference and classifica-
tion, while addressing precisely what is
learned from these tasks. Further, we exam-
ined only one category structure with the
same stimulus set. Studies must explore the
impact of these variables. Additional work
must also focus on how inference and classi-
fication (and other modes of category func-
tions) are integrated to form coherent cate-
gory representations.

In conclusion, although inference and
classification are closely related, the two
functions require different strategies to be
incorporated. The present experiments sug-
gest that these different strategies, which are
related to the two functions of categories,
give rise to the formation of distinct cate-
gory representations.

APPENDIX

The first two tables are the results of model
fitting obtained by the modified context model
and the rational model for the data from Ex-
periment 2. The last table is the predicted and
observed values of the transfer performance
for Experiment 1. MCM, modified context
model; RM, rationa model; (F, S, C, P),
(form, size, color, position); cw,—cw, are the
parameters associated with feature dimensions
(form, size, color, position); cws is the param-
eter for category labels; g,—g, are the parame-
ters given to feature dimensions (form, size,
color, position); gs is the parameter for cate-
gory labels; ¢ is the coupling parameter and r
is the parameter for the response function;
SSE, sum of squared difference between pre-
dicted and observed vaues; SST, sum of
squared difference between the mean of ob-
served values and the observed values, ac-
countability = 1-(SSE/SST).
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TABLE Al

Experiment 2 (Modified Context Model)

145

Classification transfer

Learning W, CW, CWs CW, SSE Accountability Correlation
Inference-first 1.96 3.16 1.44 154 0.033 —0.30 0.05
Classification-first 0.80 1.78 2.60 144 0.104 -0.12 0.16

Inference transfer

Learning W, CW, CW; CW, CWs SSE Accountability Correlation
Inference-first 0.01 0.01 0.01 0.25 247 0.14 0.01 0.09
Classification-first 0.01 0.01 0.01 0.01 1.35 0.88 -0.01 —0.88

TABLE A2
Experiment 2 (Rational Model)
Classification transfer

Learning O 02 Os Os Os c r SSE  Accountability Correlation  Partitions
Inference-first 0.006 0.006 0.014 0.024 0.09 0.1 1.01 0.024 0.06 0.52 5
Classification-first  0.010 0.008 0.004 0.038 0.096 0.09 074 0.065 0.30 0.55 5

Inference transfer

Learning ' 02 Os Os Os c r SSE  Accountability Correlation  Partitions
Inference-first 0.102 0.058 0.032 0.210 0.064 003 172 0.081 0.42 0.65 8
Classification-first 0422 0604 0324 0378 0.016 001 299 0184 0.79 0.89 8
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TABLE A3

Classification transfer (Experiment 1)

Inference Mixed Classification
Stimulus Observed MCM RM Observed MCM RM Observed MCM RM
Al 0.864 0.895 0.895 0.850 0.920 0.921 1.000 0.958 0.988
A2 0.636 0.701 0.686 0.950 0.853 0.850 1.000 0.893 0.989
A3 0.818 0.789  0.801 0.850 0.866 0.875 0.826 0.848 0.800
A4 0.773 0.709 0.708 0.900 0.846  0.850 1.000 0.955 0.993
B1 0.909 0.895 0.895 1.000 0.920 0.921 0.913 0.958 0.886
B2 0.727 0.701 0.686 0.750 0.853 0.850 0.783 0.893 0.887
B3 0.773 0.789  0.801 0.900 0.866 0.875 0.870 0.848 0.856
B4 0.636 0.709 0.708 0.800 0.846  0.850 0.957 0.955 0.913
A0 0.955 0.907 0.931 0.900 0.951 0.927 0.957 0.978 0.994
BO 0.955 0.907 0.931 0.950 0.951 0.927 0.957 0.978 0.975

Inference transfer (Experiment 1)

Inference Mixed Classification

Stimulus  Questions Observed MCM RM Observed MCM RM Observed MCM RM

Al F 0.909 0918 0.911 0.800 0.902 0.935 0.652 0718 0.721
A2 F 0.909 0918 0.930 1.000 0.902 0.950 0.652 0.788 0.848
A3 F 0.955 0918 0.944 0.850 0.902 0.962 0.826 0.788  0.819
A4 F 0.818 0919 0.859 0.700 0.902 0.757 0.522 0.790 0.671
B1 F 0.909 0918 0.911 0.900 0.902 0.935 0.652 0718 0.721
B2 F 0.818 0918 0.930 0.900 0.902 0.950 1.000 0.788 0.848
B3 F 0.955 0918 0.944 1.000 0.902 0.962 0.739 0.788  0.819
B4 F 0.773 0919 0.859 0.550 0.902 0.757 0.478 0790 0.671
Al S 0.955 0918 0.945 0.900 0.902 0.954 0.696 0.723  0.755
A2 S 0.909 0918 0.961 0.950 0.902 0.967 0.957 0.791  0.894
A3 S 0.909 0919 0.857 0.800 0.902 0.747 0.609 0.793  0.667
A4 S 0.909 0918 0.945 1.000 0.902 0.964 0.870 0.785 0.822
Bl S 0.909 0.918 0.945 0.900 0.902 0.954 0.696 0.723  0.755
B2 S 0.909 0918 0.961 0.950 0.902 0.967 0.913 0.791  0.894
B3 S 0.864 0919 0.857 0.700 0.902 0.747 0.696 0.793  0.667
B4 S 1.000 0918 0.945 1.000 0.902 0.964 0.870 0.785 0.822
Al C 1.000 0918 0.930 0.900 0.902 0.940 0.783 0723 0.782
A2 C 0.909 0919 0.858 0.850 0.902 0.755 0.696 0.793  0.662
A3 C 1.000 0918 0.961 1.000 0.902 0.965 0.957 0.791  0.897
A4 C 1.000 0.918 0.930 0.950 0.902 0.951 0.870 0.785 0.854
B1 C 0.909 0.918 0.930 1.000 0.902 0.940 0.783 0.723 0.782
B2 C 0.864 0919 0.858 0.750 0.902 0.755 0.739 0.793  0.662
B3 C 1.000 0918 0.961 1.000 0.902 0.965 0.913 0.791  0.897
B4 C 0.955 0918 0.930 0.900 0.902 0.951 0.826 0.785 0.854
Al P 0.864 0919 0.859 0.900 0.902 0.762 0.739 0.760 0.675
A2 P 0.955 0.918 0.930 0.950 0.902 0.937 0.957 0.759 0.773
A3 P 0.955 0918 0.944 1.000 0.902 0.951 0.739 0.759  0.748
A4 P 0.955 0918 0.911 1.000 0.902 0.933 0.696 0.751 0.719
B1 P 0.864 0919 0.859 0.800 0.902 0.762 0.652 0.760 0.675
B2 P 0.909 0918 0.930 0.950 0.902 0.937 0.826 0759  0.773
B3 P 0.955 0918 0.944 1.000 0.902 0.951 0.739 0.759  0.748
B4 P 0.864 0918 0911 1.000 0.902 0.933 0.826 0751 0.719




INFERENCE AND CLASSIFICATION

REFERENCES

Ahn, W., & Medin, D. L. (1992). A two-stage model of
category construction. Cognitive Science, 16, 81—
121.

Anderson, J. R. (1990). The adaptive character of
thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1991). The adaptive nature of human
categorization. Psychological Review, 98, 409—429.

Biederman, |. (1987). Recognition-by-components: A the-
ory of human image understanding. Psychological
Review, 94, 115-147.

Estes, W. K. (1976). Structural aspects of associative
models for memory. In C. N. Cofer (Ed.), The struc-
ture of human memory (pp. 31-53). New Y ork: Free-
man.

Estes, W. K. (1986). Array models for category learning.
Cognitive Psychology, 18, 500—549.

Estes, W. K. (1994). Classification and cognition. New
York: Oxford University Press.

Gelman, S. (1986). Categories and induction in young
children. Cognition, 23, 183—2009.

Gelman, S. (1988). The development of induction within
natural kind and artificial categories. Cognitive Psy-
chology, 20, 65—-95.

Gentner, D. (1989). The mechanisms of analogical learn-
ing. In' S. Vosniadou & A. Ortony (Eds.), Smilarity
and analogical Reasoning (pp. 199-241). New
York: Cambridge University Press.

Glucksberg, S., & Keysar, B. (1990). Understanding met-
aphorical comparisons: Beyond similarity. Psycho-
logical Review, 97, 3-18.

Harnad, S. (1987). Introduction: Psychological and cogni-
tive aspects of categorical perception: A critical over-
view. In S. Harnad (Ed.), Categorical perception (pp.
1-28). New York: Cambridge University Press.

Heit, E., & Rubinstein, J. (1994). Similarity and property
effectsin inductive reasoning. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
20, 411-422.

Hintzman, D. L. (1986). ‘* Schema abstraction’’ in amul-
tiple-trace memory model. Psychological Review, 93,
411-428.

Holyoak, K. J., & Thagard, P. (1995). Mental leaps. Cam-
bridge, MA: MIT Press.

Kintsch, W. (1980). Semantic Memory: A Tutorid. In
R. S. Nickerson (Ed.), Attention and performance
VI (pp. 595—620). Hillsdale, NJ: Erlbaum.

Lassaline, M. E., & Murphy, G. L. (1996). Induction and
category coherence. Psychonomic Bulletin & Review,
3, 95-99.

Malt, B. C. (1989). An on-line investigation of prototype
and exemplar strategies in classification. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 15, 539-555.

Malt, B., Ross, B. H., & Murphy, G. L. (1995). Predicting
features for members of natural categorieswhen cate-
gorization is uncertain. Journal of Experimental Psy-

147

chology: Learning, Memory, and Cognition, 21,
646—661.

Markman, A. B., & Makin, V. S. (in press). Referential
communication and category acquisition. Journal of
Experimental Psychology: General.

Markman, A. B., Yamauchi, T., & Makin, V.S (1997).
The creation of new concepts: A multifaceted ap-
proach to category learning. In T.B. Ward, S M.
Smith, & J. Vaid (Eds.), Conceptual Sructures and
Processes: Emergence, Discovery, and Change. (pp.
174-208). Washington, DC: American Psychologi-
cal Association.

Medin, D. L., & Schaffer, M. M. (1978). Context theory
of classification. Psychological Review, 85, 207—
238.

Medin, D. L., Wattenmaker, W. D., & Hampson, S. E.
(1987). Family resemblance, conceptual cohesive-
ness, and category construction. Cognitive Psychol-
ogy, 19, 242-279.

Murphy, G. L., & Ross, B. H. (1994). Predictions from
uncertain categorizations. Cognitive Psychology, 27,
148-193.

Nosofsky, R. M., Clark, S. E., & Shin, H. J. (1989). Rules
and exemplars in categorization, identification, and
recognition. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 15, 282—384.

Nosofsky, R.M., Pameri, T.J, & Mckinley, S.C.
(1994). Rule-plus-exception model of classification
learning. Psychological Review, 101, 53-97.

Osherson, D. N., Smith, E. D., Wilkie, O., Lopez, A, &
Shafir, E. (1990). Category based induction. Psycho-
logical Review, 97, 185-200.

Posner, M. I., & Keele, S. W. (1968). On the genesis of
abstract ideas. Journal of Experimental Psychology,
77, 353-363.

Posner, M. 1., & Keele, S. W. (1970). Retention of ab-
stract ideas. Journal of Experimental Psychology, 83,
304-308.

Rips, L. J. (1975). Inductive judgments about natural cate-
gories. Journal of Verbal Learning and Verbal Be-
havior, 14, 665—681.

Roediger, |., H.L., , Weldon, M. S, & Chalis, B. H.
(1989). Explaining dissociations between implicit
and explicit measures of retention: A processing ac-
count. InH. L. R. Il & C. F. 1. M. (Eds.), Variety of
memory and consciousness. Essaysin honor of Endel
Tulving (pp. 3—41). Hillsdale, NJ: Erlbaum.

Rosch, E., Mervis, C.B., Gray, W., Johnson, D., &
Boyes-Braem, P. (1976). Basic objectsin natural cat-
egories. Cognitive Psychology, 8, 382—439.

Ross, B. H. (1996). Classification and the effects of inter-
acting with instances. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 22,
1249-1265.

Ross, B.H., & Murphy, G.L. (1996). Category-based
predictions: Influence of uncertainty and feature as-
sociations. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 22(3), 763—753.



148

Schank, R. C., Coallins, G.C., & Hunter, L. E. (1986).
Transcending inductive category formation in learn-
ing. Behavioral and Brain Sciences, 9, 639—686.

Shepard, R. N., Hovland, D. I., & Jenkins, H. M. (1961).
Learning and memorization of classifications. Psy-
chological Monographs, 75, (13, Whole No. 517),
1-42.

Smith, E. E. (1994). Concepts and categorization. InE. E.
Smith & D. N. Osherson (Eds.), An invitation to cog-
nitive science (pp. 3—33). Cambridge, MA: MIT
Press.

Smith, E. E., & Medin, D. L. (1981). Categories and con-
cepts. Cambridge, MA: Harvard University Press.

Tulving, E. (1983). Elements of episodic memory. New
York: Oxford University Press.

Tulving, E., & Thomson, D. M. (1973). Encoding speci-
ficity and retrieval processes in episodic memory.
Psychological Review, 80, 352—373.

Tversky, A. (1977). Features of similarity. Psychological
Review, 84, 327-352.

YAMAUCHI AND MARKMAN

Whittlesea, B. W. A., Brooks, L.R., & Westcott, C.
(1994). After the learning is over: Factors controlling
the selective application of general and particular
knowledge. Journal of Experimental Psychology:
Learning, Memory and Cognition, 20, 259—-274.

Wittgenstein, L. (1953). Philosophical investigation. New
York: Macmillan.

Yamauchi, T., & Markman, A. B. (1995). Effects of cate-
gory learning on categorization—An analysis of in-
ference-based and classification-based learning. In
The Proceedings of the Seventeenth Annual Meeting
of the Cognitive Science Society (pp. 786—790).
Pittsburgh, PA: Erlbaum.

Yamauchi, T., & Markman, A. B. (in preparation). Pro-
cesses underlying inference and classification using
categories.

(Received November 6, 1997)
(Revision received January 9, 1998)



