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Category Learning by Inference and Classification
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The nature of category formation is linked to the tasks applied to learn the categories. To
explore this idea, we investigated how three different methods of category learning—Classifica-
tion Learning, Inference Learning, and Mixed Learning (a mixture of the two)—affect the way
people form categories. In Classification Learning, subjects learned categories by predicting the
class to which an individually presented exemplar belonged given feature information about the
exemplar. In Inference Learning, subjects learned categories by predicting a feature value of a
stimulus given the class to which it belonged and information about its other features. In Mixed
Learning, subjects received the Classification task on some trials and the Inference task on other
trials. The results of two experiments and model fitting indicate that inference and classification,
though closely related, require different strategies to be carried out, and that when categories
are learned by inference or by classification, subjects acquire categories in a way that accommo-
dates these strategies. q 1998 Academic Press

Categories serve a variety of purposes in- to assume that categories are formed in rela-
tion to specific tasks at hand. From this per-cluding classification, inference, communica-

tion, visual perception, and complex reasoning spective, the nature of category formation can
be examined with respect to the tasks involved(Biederman, 1987; Gelman, 1986, 1988;

Gentner, 1989; Glucksberg & Keysar, 1990; in learning (Markman, Yamauchi, & Makin,
1997; Ross, 1996; Whittlesea, Brooks, &Harnad, 1987; Heit & Rubinstein, 1994; Holy-

oak & Thagard, 1995; Lassaline, 1996; Osher- Westcott, 1994).
The purpose of this article is to examineson, Smith, Wilkie, Lopes, & Shafir, 1990;

Rips, 1975; Smith & Medin, 1981). How do the link between the function of categories
and the formation of categories. We will ad-we acquire categories rich enough to subserve

these functions? Research on categorization dress this problem by contrasting two of the
fundamental functions of categories—infer-has been primarily concerned with the study

of classification and has often neglected to ence and classification—in the context of cat-
egory learning (Smith, 1994). Inference andaddress this question. Central to this approach

is the assumption that classification learning classification play a critical role in the forma-
tion of natural categories. For example, theis a chief vehicle for forming categories. Cate-

gories, however, are used in widely different family resemblance structure of basic level
categories is said to emerge in the process ofcircumstances and incorporate a variety of in-

formation. Thus, it may be more appropriate balancing specificity and generality associated
with feature prediction (i.e., inference) and ob-
ject classification (Rosch, Mervis, Gray, John-
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125INFERENCE AND CLASSIFICATION

between category learning and category for- tributes (e.g., supports affirmative action and
favors reducing defense spending). In con-mation and would provide insight into grasp-

ing the nature of category formation in an ex- trast, inference as we defined it is akin to the
situation in which people predict an attributeperimental setting. In the following studies,

we will examine (1) how inference and classi- of a person (e.g., supports affirmative action)
based on a category label to which the personfication are carried out by using categories and

(2) how the different mechanisms associated belongs and his other attributes (e.g., is a
Democrat and favors reducing defense spend-with the two tasks alter the way people form

categories when categories are learned by in- ing). Finally, we define category representa-
tion as the mental structure that specifies theference or by classification.

In this paper, we first review several empiri- information that was acquired through interac-
tion with the members of categories and as-cal studies that highlight the distinction be-

tween inference and classification. Next, we sume that the specified information is obtained
in the process of making classifications anddescribe three learning procedures—Infer-

ence Learning, Classification Learning, and inferences using categories.
Mixed Learning and lay out how inference

INFERENCE AND CLASSIFICATIONand classification differ in the context of cate-
gory learning and how these differences affect Despite the close relationship between in-

ference and classification, several empiricalthe way people form categories. Then, we
present two studies that investigate the impact findings reveal that people adopt different

strategies to carry out the two tasks. In infer-of the three learning procedures on category
formation. Finally, we fit two mathematical ence, subjects tend to pay particular attention

to relationships between exemplars within amodels of classification—Medin and Schaf-
fer’s (1978) context model and Anderson’s category (e.g., family resemblance among ex-

emplars within a category or typicality infor-(1990, 1991) rational model—to examine fur-
ther the distinction between the two tasks. mation about exemplars in a category) (Lassa-

line & Murphy, 1996; Rips, 1975; Rosch et al.,Throughout this paper, we use the term cat-
egory label to refer to a symbol that denotes 1976), while in classification subjects focus on

feature information useful for dividing exem-a particular group of stimuli and the term cate-
gory feature to mean a symbol that denotes plars into groups (Ahn & Medin, 1992;

Medin, Wattenmaker, & Hampson, 1987). Ina characteristic of a stimulus. Classification,
which involves the prediction of the category one study, for example, Lassaline and Murphy

(1996) asked subjects to predict feature valueslabel of a stimulus, is characterized in our
experiments as a practice in which a stimulus of category exemplars given other feature val-

ues of the exemplars. Following this inferenceis placed into one of two groups when the
attributes of the stimulus are known. Infer- task, subjects sorted a set of exemplars into

categories. Subjects in this task were muchence, which involves the prediction of the
value of a category feature, is characterized more likely to sort the stimuli on the basis of

family resemblance than were subjects whoin our experiments as a practice in which an
attribute of a stimulus (i.e., a category feature) sorted the stimuli after making other judg-

ments (who generally sorted the exemplarsis predicted when the group to which the stim-
ulus belongs (i.e., the category label) and other based on the values of a single feature dimen-

sion). As further support, Rips (1975) foundattributes of the stimulus are known (for simi-
lar descriptions of inference, see Estes, 1994; that the likelihood that people predict that sub-

ordinate category members have a particularMurphy & Ross, 1994; Yamauchi & Mark-
man, 1995). For example, classification as we feature value is correlated with the typicality

of that category member, suggesting that peo-defined it is akin to the situation in which
people predict a category to which a person ple make inferences based on family resem-

blance between exemplars (see also Malt,belongs (e.g., Democrat) by observing his at-
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126 YAMAUCHI AND MARKMAN

Ross, & Murphy, 1995; Murphy & Ross, individually presented stimuli and receiving
feedback after each response (Posner & Keele,1994; Ross & Murphy, 1996; for the argument

that people focus on a single target category 1968, 1970; Medin & Schaffer, 1978; Malt,
1989; Nosofsky, 1986; Shepard, Hovland, &to make inferences).

In contrast to inference, people tend to fo- Jenkins, 1961). Similarly, in the inference-
based learning task (i.e., Inference Learning),cus on a small number of diagnostic features

in classification (Medin et al., 1987; Nosofsky, subjects acquire categories incrementally by
predicting feature values of individually pre-Clark, & Shin, 1994; Nosofsky, Palmeri, &

Mckinley, 1994; Tversky, 1977). Sorting sented stimuli and receiving feedback after
each response. For example, in the Classifica-tasks, which are quintessential classification

tasks, provide evidence that subjects generally tion task (see Fig. 1a), subjects are presented
with a stimulus depicting the values of theattend to a limited number of diagnostic fea-

tures that distinguish between categories when form, size, color, and position of the geometric
figure and they predict the category label ofthey classify stimuli, as subjects in these tasks

tend to group stimuli with a single salient fea- that stimulus. In the Inference task (see Fig.
1b), subjects are presented with the values ofture even in the presence of a clear family-

resemblance structure (Ahn & Medin, 1992; the size, shape, and position of the geometric
figure along with the category label to whichMedin et al., 1987). Nosofsky and his col-

leagues (1994) also demonstrate that a compu- the stimulus belongs (e.g., Set A), and they
predict the value of a missing feature (e.g.,tational model based on simple rules and ex-

ceptions can account for people’s performance the color). On different trials, subjects in In-
ference Learning predict the values of differ-on a wide variety of classification tasks. Other

research suggests that different types of diag- ent features. In addition to these two condi-
tions, we also included a ‘‘Mixed Learning’’nostic features become salient in classification

depending on the way that the stimuli are condition in Experiment 1, in which subjects
classified stimuli on some trials, and madegrouped (Tversky, 1977). Although people

may carry out a classification task in a number feature inferences on others.
Initially, no information about the catego-of different ways, it seems reasonable to as-

sume that focusing on diagnostic features is ries was given to subjects in our studies, so
that they had to learn the two categories byone of many strategies that people adopt in

classification. In the following studies, we will trial and error. The learning phase continued
until subjects reached a criterion of 90% accu-investigate why people use different strategies

to make inferences or classifications and how racy in three consecutive blocks (24 trials) or
until they completed 30 blocks (240 trials).1these differences affect the way people form

categories. Following the learning phase, the nature of the
category representation is probed on transfer

OVERVIEW OF EXPERIMENTS trials, which consisted of classifications and
inferences of old stimuli that appeared duringWe developed an inference-based learning

task (i.e., the Inference Learning task; see Fig. learning and new stimuli that did not appear
during learning. In the transfer phase, all sub-1 and Estes, 1994; Yamauchi & Markman,

1995 for descriptions of similar inference jects received the same trials.
In our experiments, the stimuli were dividedtasks) and compared it with a standard classi-

fication-based learning task (i.e., the Classifi- into two classes such that every exemplar
shared three feature values with its corre-cation Learning task) in order to investigate

the distinction between inference and classi- sponding prototype (A0 or B0) and one feature
fication and their impact on category forma-
tion. In the standard classification-based learn- 1 This 90% accuracy criterion was introduced to keep
ing task, subjects acquire categories incremen- the experiment to a reasonable length (about 30 to 40

min).tally by predicting the category label of
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127INFERENCE AND CLASSIFICATION

FIG. 1. (a) A stimulus frame for a classification trial; in a particular classification trial, a subject is given
a figure whose form, size, color, and position are specified. Then, the subject is asked to predict the category
label (Set A or Set B) of the stimulus. (b) A stimulus frame for an inference trial; in a particular inference
trial, a subject is given a figure whose form, size, position, and the category label are specified. Then, the
subject is asked to predict the color of the item.

value with the prototype of the other category ture (1, 1, 1, 0, ?) Å (form, size, color, posi-
tion, category-label) in the exemplar A1, as-(Table 1). We used simple stimuli consisting

of geometric figures varying in their size, suming that the category label is just another
feature (see Anderson, 1990). Analogously,form, position, and color in order to focus

on the effect of the learning procedures (see on each inference question (e.g., a question
about the form of the stimulus A1), subjectsMedin & Schaffer, 1978).

In Classification Learning, subjects classi- predicted the value of a missing feature (e.g.,
the value of form) while the values of thefied the eight exemplars but not the prototype

stimuli. In Inference Learning, subjects in- other three features and the category label
were shown (e.g., the values of size, color,ferred all the feature values of stimuli except

for the ‘‘Exception-features.’’ The Exception- position, and the category label). This ques-
tion has a schematic structure (?, 1, 1, 0, 1)features, shown in bold italics in Table 1, are

the feature values of a category that are consis- Å (form, size, color, position, category-label)
and is formally equivalent to the classificationtent with the prototype of the other category.

For example, the values of all the features in question (e.g., (1, 1, 1, 0, ?)), provided that
the prediction of category labels and the pre-Set A are 1 except the values of the exception

features which are 0. We did not include Ex- diction of category features are in principle
compatible. The Exception-feature trials haveception-feature inferences in the learning

phase and presented them only in the transfer a different structure. For example, the position
inference for the stimulus A1 yields a sche-phase for two reasons. First, we excluded

them to keep the Classification Learning con- matic structure (1, 1, 1, ?, 1), and is analogous
to the classification of a prototype—(1, 1, 1,dition and the Inference Learning condition as

equivalent as possible. On each classification 1, ?). Because prototype stimuli were not pre-
sented in Classification Learning, it is neces-question, subjects predicted the value of the

category label given the values of all the four sary to exclude Exception-feature inferences
from Inference Learning to keep the two learn-feature dimensions (e.g., the stimulus A1 in

Table 1). This question has a schematic struc- ing conditions equivalent.
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128 YAMAUCHI AND MARKMAN

TABLE 1

Stimulus Structure Used in Experiment 1

Category A Form Size Color Position Category B Form Size Color Position

A1 1 1 1 0 B1 0 0 0 1
A2 1 1 0 1 B2 0 0 1 0
A3 1 0 1 1 B3 0 1 0 0
A4 0 1 1 1 B4 1 0 0 0

A0 (prototype) 1 1 1 1 B0 (prototype) 0 0 0 0

Note. Exception-features are shown in bold italics.

Second, we excluded Exception-feature egories. In this section, we would like to dis-
cuss how these two strategies can be translatedquestions from Inference Learning in order to

examine the nature of feature information into our experimental setting and how they
would influence the way people form catego-used for making inferences in the transfer

phase. On an Exception-feature inference trial, ries when categories are learned by inference
or by classification.there are two possible choices, one that is con-

sistent with the value of the prototype of the As a general rule, we assume that inferences
guide subjects to focus on the target categorycategory, and the other that is consistent with

exception values of each category. For exam- (see Malt, et al., 1995; Murphy & Ross, 1994;
Ross & Murphy, 1996), while classificationple, on the Exception-feature question for the

stimulus A1 (Table 1), subjects see a stimulus often leads subjects to focus on a small num-
ber of diagnostic features that are useful towith form, size, color and the category label

with a value of 1, and they infer the value of divide exemplars into groups. This distinction
might have arisen because the two tasks areposition (e.g., (1, 1, 1, ?, 1)). If they respond

with the value of 0 (e.g., right), then they are associated with two different purposes of cate-
gories. Inference often requires the identifica-making a response consistent with the stimu-

lus A1 (e.g., (1, 1, 1, 0, 1)), which is presented tion of an unknown property or the internal
structure that is not readily apparent (Gelman,in feedback during learning. If they respond

with the value of 1 (e.g., left), then they are 1986). Thus, focusing on the commonalities
among exemplars within a category might bemaking a response consistent with the proto-

type (i.e., A0(1, 1, 1, 1, 1)) of the category, advantageous for inference. In contrast, classi-
fication is related to the operation of objectwhich is not given in feedback during learn-

ing. Thus, the choice of feature values on these recognition and identification (see Nosofsky,
1986). For this purpose, finding a salient fea-trials may provide some insight to assess the

degree to which subjects use either family re- ture that differentiates between exemplars is
useful. This focus is evident in sorting tasks, insemblance information or exception-feature

information for inference. which subjects consistently use a single salient
feature to sort stimuli if no intervening tasks

HYPOTHESES AND PREDICTIONS are given prior to sorting (see Lassaline &
Murphy, 1996; Markman & Makin, in press).In the previous section, we described sev-

eral empirical studies that are consistent with Although it is not clear exactly how sorting
tasks speak to the classification task, it seemsthe idea that inference and classification in-

volve different mechanisms; in inference sub- plausible to assume that this focus on a single
salient feature will occur in classification tasksjects assess relationships between exemplars

within a category while in classification they as well.
In sum, we assumed that categories learnedfocus on features that distinguish between cat-
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129INFERENCE AND CLASSIFICATION

for inference or for classification will embody bilities—the probability that the feature value
1 is likely given the values of other featuresthe characteristics that accommodate these

two strategies. We argue that inference pro- and its category label [2a], and the probability
that the feature value 0 is likely given themotes the acquisition of category representa-

tions characterized with the prototypes of the values of other features and its category label
[2b]. As in classification, they may alsocategories, while classification facilitates the

formation of categories consistent with rules choose the feature value ‘‘1’’ if one of the two
probabilities exceeds a particular threshold. Inand exceptions or concrete exemplars. The

following normative models illustrate these either case, subjects would assess at least one
of the two conditional probabilities in an infer-processes.

In Classification Learning, subjects would ence question of the stimulus A12

fulfill the classification task by assessing at
P(Ff1ÉC1, Fs1, Fc1, Fp0)least one of two conditional probabilities—

the probability that the response ‘‘Set A’’ is
likely given the feature information about Å P(C1, Ff1, Fs1, Fc1, Fp0)

P(C1, Fs1, Fc1, Fp0)
[2a]

Stimulus_i (i.e., P(SetAÉStimulus_i)) and the
probability that the response ‘‘Set B’’ is likely P(Ff 0ÉC1, Fs1, Fc1, Fp0)
given the feature information about Stimulus_i
(i.e., P(SetBÉStimulus_i)). For example, sub- Å P(C1, Ff 0, Fs1, Fc1, Fp0)

P(C1, Fs1, Fc1, Fp0)
[2b]

jects may choose the response ‘‘Set A’’ if
P(SetAÉStimulus_i) is larger than P(SetBÉ

As the four equations show, the four condi-Stimulus_i), or vice versa. It is also possible
tional probabilities that may be assessed inthat subjects make a classification judgment
inference and classification are in principleby setting a decision criterion. For example,
identical if the category labels (C1 and C0) andthey may choose ‘‘Set A’’ if P(SetAÉ
the feature form (Ff1 and Ff 0) are identical.Stimulus_i) is larger than, say, 0.5, and choose

The assumption that subjects at the begin-‘‘Set B’’ if P(SetAÉStimulus_i) is not larger
ning of the learning phase attend to a diagnos-than 0.5. In either case, at least one of the
tic feature in classification suggests that sub-following two conditional probabilities would
jects obtain a classification judgment primar-be assessed in the classification question of
ily based on the value of the target feature,the stimulus A1
while ignoring information about other fea-
tures that are not attended. To translate thisP(C1ÉFf1, Fs1, Fc1, Fp0)
process, the feature values Fs1, Fc1, Fp0 can be
removed from Eqs. [1a] and [1b], resulting inÅ P(C1, Ff1, Fs1, Fc1, Fp0)

P(Ff1, Fs1, Fc1, Fp0)
[1a]

Eqs. [3a] and [3b], if, for example, subjects
focus on the feature formP(C2ÉFf1, Fs1, Fc1, Fp0)

Å P(C2, Ff1, Fs1, Fc1, Fp0)
P(Ff1, Fs1, Fc1, Fp0)

, [1b] P(C1ÉFf1) Å
P(C1, Ff1)

P(Ff1)
[3a]

where C1 and C2 stand for the category labels P(C0ÉFf1) Å
P(C0, Ff1)

P(Ff1)
[3b]

with the values 1 and 2, respectively, and Ff1,
Fs1, Fc1, and Fp0 stand for the feature values

2 As the two equations [1] and [2] show, the classifica-of form, size, color, and position—(1, 1, 1,
tion task is related to cue validity (i.e., how likely the0), respectively.
category given a feature) and the inference task is related

Analogously, subjects in Inference Learn- to category validity (i.e., how likely a feature given a
ing may carry out the inference task by as- category). If the category label is equivalent to other fea-

tures, then the two equations are identical.sessing at least one of two conditional proba-
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Similarly, the assumption that subjects fo- Schaffer, 1978; Nosofsky, 1986; Nosofsky et
al., 1989).cus on the target category in inference can be

translated into Eqs. [4a] and [4b] provided that In contrast to classification, the focus on
the target category promotes the acquisitionthe focus on the target category is made by

the focus on the category label (see Murphy & of categories consistent with family resem-
blance or prototypes of the two categories. InRoss, 1994, for the argument of a focus on a

single target category in inference, and see this setting, the two category labels represent
the two groups unambiguously, so that sub-Yamauchi & Markman, in preparation; for an

argument for a focus on the category label in jects can focus on the category labels and link
them directly to feedback C1 and Ff1 in thisinference)
example). No Exception-feature questions are
presented to subjects in Inference Learning,

P(Ff1ÉC1) Å
P(C1, Ff1)

P(C1)
[4a] so that subjects may associate the category

label with the prototype (e.g., A0(1, 1, 1, 1)).
As a result, Inference Learning should facili-P(Ff 0ÉC1) Å

P(C1, Ff 0)
P(C1)

. [4b]
tate the acquisition of category representations
consistent with prototypes or family resem-
blance between members of each category.As in classification, the feature information

Fs1, Fc1, Fp0 is unattended or not used for the In natural settings, if inferences are made
to a large number of exemplars and to a vari-inference judgment.

Our argument is that the difference in focus ety of feature dimensions, feature values that
people associate with the category labelbetween inference and classification will ulti-

mately lead to the acquisition of distinct cate- should be close to the average feature values
of all the exemplars within the category as thegory representations, even if the stimuli pre-

sented in each learning procedure convey number of inferences increases (see Hintz-
man, 1986). If the exemplars of a category areroughly the same amount of information about

the relationship of the features to the catego- clustered by a family resemblance structure,
the average feature values that subjects linkries (see the previous section). In this category

structure, none of the features are perfectly with the category label can be approximately
the prototype of that category.3 As a conse-correlated with the category division. There-

fore, the focus on any single feature is not quence, making inferences would promote the
formation of categories consistent with thesufficient to predict the category division more

than 75% of the time. Thus, subjects in Classi- prototypical values of the categories. In con-
trast, the focus on a diagnostic feature, whichfication Learning need either to store some

specific cases, such as the case in which the may be adopted in classification, would im-
pede the extraction of prototypes even whenfeature value Ff 0 is linked to the category label

C1, or to employ a disjunction rule (e.g., sub- classification is made to a large number of
exemplars. If the focus on a diagnostic featurejects make the response ‘‘Set A’’ if at least

two of three features have the values 1, other- is effective for prediction, then there is no
need to attend to other features. If the focuswise they make the response ‘‘Set B’’). In

either case, this would induce subjects to at- is not very effective for prediction, then one
can look for another diagnostic feature or em-tend to concrete exemplars or exception-fea-

tures in Classification Learning along with a ploy some decision rules (e.g., conjunction or
disjunction rules). Thus, classification wouldlimited number of diagnostic features. Conse-

quently, Classification Learning facilitates the obscure information about other features that
acquisition of category representations charac-
terized by the information about salient fea- 3 Because we used the binary values (1 and 0) to distin-
tures along with some exceptions or with a guish the two feature values, we employed modes to rep-

resent the prototypes of the two categories.number of concrete exemplars (Medin &
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are not focused, which would in turn deter the given the assumption that Inference Learning
promotes the formation of categories congru-extraction of the prototype of a category.

This reasoning leads to three basic predic- ent with family resemblance information, sub-
jects in Inference Learning should be the besttions in our experiments. First, the idea that

inference is in general linked to the assess- on the inference transfer task. Analogously,
subjects in Mixed Learning should be betterment of family resemblance within a category

will be examined by observing subjects’ re- both in classification transfer and in inference
transfer to the extent that they receive Infer-sponse-patterns in Exception-feature infer-

ences. In particular, we predict that subjects ence Learning trials and Classification Learn-
ing trials. This pattern of data should emergein the three learning conditions should re-

spond with prototype-feature values more of- regardless of subjects’ familiarity with Infer-
ence or Classification Learning tasks.ten than with Exception-feature values. In the

category structure employed in our experi- In the two experiments reported below, we
will test these predictions. In Experiment 1,ments (Table 1), the two prototypes—A0(1,

1, 1, 1) and B0(0, 0, 0, 0)—recapitulate the subjects learn the two categories with one of
three learning procedures—Inference Learn-family resemblance structure of the two cate-

gories. If the judgment involved in inference ing, Classification Learning, or Mixed Learn-
ing, and we examine the distinction betweenrequires assessing the feature values that ex-

emplars of a category have in common (e.g., inference and classification by focusing on
subjects’ performance on transfer questions.family resemblance among category exem-

plars), then subjects in all three learning con- In Experiment 2, we will test directly if the
different strategies employed in the two learn-ditions will exhibit a tendency to select the

feature values that are shared by many of ex- ing tasks can specify the formation of catego-
ries.emplars in a category (e.g., prototype-feature

values) rather than the features values that are
shared by exemplars of the other category EXPERIMENT 1
(e.g., Exception-feature values).

Method
Second, this tendency may be reduced for

subjects in Classification Learning as com- Participants. Participants were 77 under-
graduates at Columbia University who partici-pared to subjects in Inference Learning. If

classification induces attention to a small pated in the experiment for course credit. The
data from 4 subjects were removed from thenumber of diagnostic features and some spe-

cific exceptions, then subjects in Classification analyses because these subjects failed to fol-
low the instructions, and the data from 1 sub-Learning may be less likely to respond with

prototype-feature values than may subjects in ject were lost due to a coding error. In all, the
data from 72 subjects (24 per condition) wereInference Learning given Exception-feature

questions. analyzed.
Materials. Stimuli used for this experimentThird, the hypothesis that the two learning

procedures produce different category repre- were like those used in the first experiment
of Medin and Schaffer’s (1978) studies. Theysentations can be tested by examining sub-

jects’ overall performance for the transfer were geometric figures having four feature di-
mensions—form (circle, triangle), color (red,tasks. Given the assumption that Classification

Learning promotes the acquisition of category green), size (large, small), and position (left,
right) (Fig. 1). Each stimulus was bounded byrepresentations consistent with rules and ex-

ceptions or concrete exemplars, subjects in a 20.3 1 17.4 cm rectangular frame drawn
with a solid black line on the computer screen.Classification Learning should be the best on

classification transfer tasks, assuming that cat- The structure of the two categories is illus-
trated in Table 1 (see Medin et al., 1987). Aegories formed in Classification Learning fa-

cilitate classification judgment. Similarly, single stimulus set was drawn containing an
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arbitrary assignment of dimension values of 0 they predicted other dimensions (form, size,
or position). Subjects responded by clickingand 1 in the stimulus design. For form, the

value of 0 was triangle, and the value of 1 one of two labeled buttons with the mouse.
For each stimulus, the location of the correctwas circle. For size, the value of 0 was small,

and the value of 1 was large. For color, the choice was randomly determined. The Mixed
condition was a mixture of classification andvalue of 0 was green, and the value of 1 was

red. For position, the value of 0 was right, and inference blocks. Half of the blocks in this
condition were classification and half were in-the value of 1 was left. All subjects saw the

same stimulus set. The eight stimuli (A1–A4, ference. The order of the blocks was deter-
mined randomly for each subject.4B1–B4) were divided into two categories. The

category exemplars share three features with Initially, no information about the category
division was given to subjects, and so subjectsthe prototype of that category and one feature

with the prototype of the other category. Thus, had to guess. Following each response, feed-
back was provided in a stimulus frame thatno single feature can unambiguously deter-

mine the category division. depicted the correct response; the stimulus and
the feedback remained on the screen for 3 sProcedure. The basic procedure of the ex-

periment involved three phases—a learning after their response. The stimulus frames that
depicted correct responses were identical inphase, a filler phase, and a transfer phase. In

the learning phase, subjects were randomly both classification and inference tasks. In
Classification Learning, subjects saw all eightassigned to one of three experimental condi-

tions—Classification, Inference, and Mixed. exemplars but not the two prototypes (i.e.,
A0(1, 1, 1, 1) and B0(0, 0, 0, 0)). In InferenceFor all the three conditions, subjects continued

in the learning phase until they performed Learning, subjects answered all the feature
questions for each stimulus except for the Ex-three consecutive blocks with a combined ac-

curacy of 90% or until they completed 30 ception-feature questions.
Following the learning trials, all subjects inblocks (240 trials). A classification block con-

sisted of presentations of eight exemplars. One the three learning conditions participated in
the same transfer tasks, which followed a 10-inference block included inferences of all four

feature dimensions. One block of the Mixed min filler task, where subjects judged the
pronounceability of nonsense words. In thecondition was either a classification block or

an inference block. In the three conditions, transfer phase, subjects were first given classi-
fication transfer tasks followed by inferenceevery exemplar appeared once in the feedback

of each block. The order of stimulus presenta- transfer tasks. In this phase, the instructions
specifically asked subjects to make their deci-tion was determined randomly.

In the Classification Learning condition, sions based on the categories learned during
the learning phase when the values of the foursubjects were shown one of the eight stimuli

and were asked to indicate the category to features were given. In the classification trans-
fer task, as in the classification learning task,which it belonged by clicking a button with

the mouse (Fig. 1a). In the Inference Learning subjects were asked to indicate the category
label of a stimulus based on the categoriescondition, subjects made inferences of one of

four features while its category label and the they learned. In the inference transfer task, as
in the inference learning task, subjects wereremaining three feature values were depicted

in the stimulus frame. For instance, in Fig. 1b, asked to indicate the value of the missing fea-
subjects were given a stimulus frame con-
taining the form, size, and position of the item

4 Three consecutive blocks used to assess the learningas well as its category label, and the color of
criterion could differ one subject from another and could

the item was left unspecified. They were then be any combination of classification and inference blocks
asked to select one of the two values of the in the Mixed condition because the order of the presenta-

tion of the blocks was determined randomly.unspecified feature—color. On other trials,
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ture of the stimulus based on the categories 30 block maximum.6 In all, 22 subjects
reached the criterion in the Inference Learningthey learned when the category label to which

the stimulus belonged and the values of other condition, 23 in the Classification Learning
condition, and 20 in the Mixed Learning con-features of the stimulus were shown. No feed-

back was given during transfer. First, subjects dition. First, we measured the number of
blocks that were required to reach the criterionclassified the eight exemplars that appeared in

the learning phase as well as two new proto- to examine relative difficulty of the three
learning conditions. In this measure, the threetype stimuli (A0 and B0) that were not pre-

sented during the learning phase. Immediately learning conditions were significantly differ-
ent: F(2, 62) Å 10.62, MSE Å 32.1, p õafter each classification, subjects indicated

whether they had seen the stimulus during the 0.001.7 In particular, subjects in Inference
Learning (m Å 6.5) required fewer blocks tolearning trials.5 The order of stimulus presen-

tation for the ten stimuli was determined ran- reach the criterion than did subjects in Classi-
fication Learning (m Å 12.3), or in Mixeddomly. Following the classification task, sub-

jects proceeded to the inference transfer task. Learning (m Å 14.2); for both comparisons,
t ú 4.0, p õ 0.001(Bonferroni). The differ-They performed all possible feature inferences

including Exception-feature inferences (32 in- ence between subjects in Classification Learn-
ing and subjects in Mixed Learning was notferences in total). The order of stimulus pre-

sentation for inference transfer was deter- statistically significant, t(41)Å 0.96, pú 0.10.
In the transfer phase, the proportions of cor-mined randomly. The entire experiment took

30 to 40 min. rect responses exceeded a chance level in ev-
ery dependent measure of the three learningDesign. There were three between-subjects

learning conditions: Inference, Classification, conditions; t ú 2.5, p õ 0.05, implying that
the Classification Learning task and the Infer-and Mixed. Five dependent measures served

for our analyses. First, we examined the num- ence Learning task were capable of producing
category representations flexible enough to beber of subjects who reached the 90% accuracy

criterion, and the number of blocks needed to used with the transfer task that was not given
during learning. As predicted, performance ofreach the criterion in the learning phase. The

rest of the measures encompassed the transfer subjects in each condition was generally better
when the learning task matched the transfertasks: the proportion of correct classifications

of old exemplars, the proportion of correct task. The three learning procedures differed
in the classification transfer of old stimuli;classifications of the prototypes, the propor-

tion of correct inferences to old exemplars, Classification, m Å 0.92; Mixed, m Å 0.88;
Inference, m Å 0.77; F(2,62) Å 8.42, MSE Åand the proportion of inferences to Exception-

features consistent with the prototype features 0.02, p õ 0.001 (Fig. 2a). Subjects in Classi-
fication Learning were more accurate thanof the category.
subjects in Inference Learning; t(43) Å 4.22,
p õ .001. Subjects in Mixed Learning alsoResults and Discussion
performed better than did subjects in Inference

All dependent measures were analyzed with Learning in the classification transfer of old
one-way ANOVAs. For these analyses, we stimuli, although this difference was only mar-
used the data from only those subjects who
reached the 90% accuracy criterion before the

6 Since analyses of the data from all the subjects (in-
cluding subjects who did not reach the 90%-above accu-
racy criterion) showed basically the same patterns as ob-

5 We collected the recognition performance data of the served in the subjects who reached the criterion, we report
only the data obtained from the subjects who reached thesubjects on an exploratory basis. Because this experiment

was not designed to survey recognition performance (i.e., criterion in the following two experiments.
7 The number of blocks shown in these results includesthere were only 2 new stimuli out of 10 stimuli), we will

not discuss this task further. three consecutive blocks used to assess the criterion.
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FIG. 2. (a) The classification transfer performance for old stimuli and prototype stimuli of Experiment
1. (b) The inference transfer performance for old stimuli and Exception-feature stimuli of Experiment 1.
For the Exception-feature inferences, the proportion that subjects responded with the prototype stimuli was
reported (i.e., prototype-accordance responses).

ginally significant; t(43) Å 2.49, p õ 0.06. view that assessing family resemblance infor-
mation is critical for inference. The three con-The performance for classification of proto-

types did not differ reliably between condi- ditions differed significantly in their prefer-
ence for prototype-accordance responses, F(2,tions; Classification, m Å 0.96; Inference, m

Å 0.96; Mixed, m Å 0.93; F(2,62) õ 1, MSE 62) Å 3.34, MSE Å 0.08, p õ 0.01. As pre-
dicted, the tendency to respond consistent withÅ 0.04. In inference transfer of old stimuli,

subjects in the three learning conditions dif- prototype-feature values (i.e., prototype-ac-
cordance responses) was reduced significantlyfered in their performance (Fig. 2b); Infer-

ence, m Å 0.94; Mixed, m Å 0.95; Classifica- in subjects in Classification Learning as com-
pared to subjects in Inference Learning, t(43)tion, m Å 0.81; F(2,62) Å 11.3, MSE Å 0.01,

põ 0.001. Subjects in Inference Learning and Å 2.73, p õ 0.05, implying that classification
tends to promote a focus on exceptions or con-subjects in Mixed Learning made higher pro-

portions of correct responses than did subjects crete exemplars to a larger degree than does
inference.in Classification Learning; respectively, t(43)

Å 3.45, p õ 0.01; t(43) Å 3.92, p õ .001. To summarize, three aspects of the results
of Experiment 1 are in accord with the hypoth-These results imply that the category represen-

tations obtained by each learning procedure esis that subjects employ different strategies
to make inferences or classifications. First, onare specific to each learning condition to some

extent while maintaining some level of gener- Exception-feature questions, subjects in all the
three conditions responded with prototype-ality.

The response-patterns observed on Excep- feature values more often than with exception-
feature values. The results imply that checkingtion-feature transfer trials were also consistent

with the view that inference promotes the as- family resemblance information is critical in
inference. Second, this tendency was reducedsessment of family resemblance while classi-

fication increases attention to a few diagnostic in subjects given Classification Learning, sug-
gesting that classification tends to induce at-features and exceptions. First, subjects in all

the three conditions typically responded with tention to exception-feature values to a larger
degree than does inference. Third, subjects’feature values that were in accord with the

category prototypes (i.e., prototype-accor- performance on the transfer tasks was gener-
ally better when the learning task and thedance responses); Inference, mÅ 0.86; Mixed,

m Å 0.76; Classification, m Å 0.64; for all transfer task matched, indicating that the rep-
resentation acquired in each learning proce-conditions, t ú 2.5, p õ 0.03, confirming the
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dure may be specific to the corresponding condition, provided that Inference Learning
leads to the acquisition of a category represen-learning task, while these representations re-

tain a minimum level of flexibility to cope tation consistent with family resemblance in-
formation, and that Classification Learning re-with both inference and classification transfer

tasks. In particular, the finding that subjects sults in the acquisition of a category represen-
tation consistent with rules and exceptions orin Mixed Learning excelled both in inference

and classification transfer tasks seems to sug- concrete exemplars.
We hypothesized earlier that Classificationgest that the combination of the two learning

tasks produces a category representation rich Learning facilitates the formation of catego-
ries involving to rules and exceptions or con-enough to deal with both inference and classi-

fication transfer tasks at a high level of accu- crete exemplars, while Inference Learning in-
duces the acquisition of categories in accor-racy.

These results are consistent with the hy- dance with the information about family
resemblance within a category. Because apothesis that subjects employ different strate-

gies to deal with the inference task and with small number of features assessed in Classifi-
cation Learning would not be sufficient to an-the classification task, though they are not

conclusive to rule out alternative interpreta- swer the inference questions on all four feature
dimensions, subjects in the Classification-firsttions. In particular, subjects’ familiarity with

each transfer task might have contributed to condition may need to store extra rules and
exceptions or concrete exemplars to cope withthe observed results of Experiment 1. For ex-

ample, the different levels of prototype-accor- the subsequent Inference Learning trials. By
contrast, prototype information (e.g., A0(1, 1,dance responses might have emerged in sub-

jects of Inference Learning and of Classifica- 1, 1) and B0(0, 0, 0, 0)) processed in Inference
Learning is also useful for dividing the exem-tion Learning because they differ in terms of

their familiarity with the inference transfer plars into the two classes in this setting, so
that the representation obtained from Infer-task.

The purpose of Experiment 2 is to rule out ence Learning can be applied in the subse-
quent Classification Learning task withoutthis possibility and to contrast directly the

characteristics of category representations modifying its characteristics extensively. As
a consequence, we predict that learning theproduced in Inference Learning and in Classi-

fication Learning. In this experiment, we had categories starting from Inference and fol-
lowed by Classification should be less cum-subjects participate both in Inference Learning

and in Classification Learning in sequence but bersome than learning the categories in the
reverse order. In other words, if Inferencein different orders. One group of subjects

learned the categories by the Inference Learn- Learning produces a category representation
consistent with family resemblance informa-ing task first, and then they learned the same

categories by the Classification Learning task tion, and if Classification Learning produces
a category representation consistent with rules(i.e., Inference-first condition). The other

group of subjects learned the same categories and exceptions or concrete exemplars, sub-
jects should require fewer trials to reach theby the Classification Learning task first, and

then they learned the same categories by the two learning criteria in the Inference-first con-
dition than in the Classification-first condition.Inference Learning task (i.e., Classification-

first condition). As in Experiment 1, subjects Following the same line of logic, given Excep-
tion-feature questions, subjects in the Infer-continued in one learning task until they

reached the 90% accuracy criterion or they ence-first condition should choose prototype-
accordance features more often than shouldspent 30 blocks (240 trials) in total. In this

setting, we predict that subjects will find it subjects in the Classification-first condition
because subjects in the Inference-first condi-easier to learn the categories in the Inference-

first condition than in the Classification-first tion would form categories according to fam-
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TABLE 2ily resemblance information while subjects in
the Classification-first condition would form The Number of Learning Blocks Spent in Each

Learning Task of Experiment 2categories corresponding to rules and excep-
tions or concrete exemplars.

Learning order Inference Classification Total

EXPERIMENT 2
Inference-first 7.9 7.8 15.7

Method
Classification Inference Total

Participants. Participants were 57 members
Classification-first 12.5 9.2 21.7of the Columbia University community, who

participated in the experiment for the payment
Note. One block contains 8 trials.of $6.00.8 The data from 9 subjects were re-

moved from the analyses—6 for failing to
complete the experiment, 2 due to a coding
error, and 1 for not following the instructions. measures as used in Experiment 1 served for
Thus, we were left with 48 subjects (24 per analyses.
condition).

Results and DiscussionMaterials. The stimuli used for this experi-
ment were identical to those used in Experi- To assess the relative difficulty of the two
ment 1. learning orders, we first examined the number

Procedure. The procedure for this experi- of blocks required to reach the learning crite-
ment was identical to that employed in Experi- rion. The data are summarized in Table 2 and
ment 1 except for the following key manipula- were analyzed with a 2(Learning order—In-
tion. In the present experiment, all the subjects ference-f irs t vs Classif icat ion-first) 1
went through both Classification and Infer- 2(Learning type—Inference vs Classification)
ence Learning, but in different orders. Half of ANOVA. In all, 20 subjects in the Inference-
the subjects were assigned to the Inference- first condition and 18 subjects in the Classi-
first condition performing the Inference fication-first condition reached both criteria.
Learning task first until they reached the learn- As predicted, learning the categories starting
ing criterion—above 90% accuracy over three from Inference was easier than learning the
successive blocks (24 trials)—or they com- same categories starting from Classification.
pleted 30 blocks (240 trials). After reaching Subjects in the Inference-first condition re-
the criterion in Inference Learning they per- quired fewer learning blocks to reach the cri-
formed Classification Learning until they terion in both tasks (m Å 15.7) than did sub-
reached the same learning criterion or com- jects in the Classification-first condition (m
pleted 30 blocks of trials. The other half of Å 21.7); F(1,36) Å 5.01, MSE Å 34.8, p õ
the subjects (i.e., the Classification-first condi- 0.05. The results are consistent with the idea
tion) received the two tasks in the reverse that Inference Learning and Classification
order. Learning produce distinct category represen-

Design. The experiment was designed with tations. The interaction between Learning or-
a between-subject factor consisting of two lev- der (Inference-first vs Classification-first)
els: Inference-first (Inference learning fol- and Learning type (Inference vs Classifica-
lowed by Classification learning) and Classi- tion) was not significant, F(1,36) Å 1.41,
fication-first (Classification learning followed MSE Å 39.64, p ú 0.10. To examine the
by Inference learning). The same dependent effect of the two learning orders further, we

compared the number of blocks required to
reach the learning criterion as a function of8 Originally, the data from 81 subjects were collected
each learning task. In Classification Learn-for this experiment. Due to an experimenter error, 24

subjects who participated in one condition were dropped. ing, subjects required significantly fewer
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FIG. 3. (a) The classification transfer performance for old stimuli and prototype stimuli of Experiment
2. (b) The inference transfer performance for old stimuli and Exception-feature stimuli of Experiment 2.

blocks to reach the learning criterion if Clas- with our prediction, subjects in the Infer-
ence-first condition made Exception-featuresification Learning was given after Inference

Learning (m Å 7.8) than if it was given be- inferences in accordance with prototype-fea-
ture values more often (m Å 0.86) than didfore Inference Learning (m Å 12.5); t(36)

Å 2.64, p õ 0.05. In contrast, in Inference subjects in the Classification-first condition
(m Å 0.54), t(36) Å 2.96, p õ 0.01, implyingLearning, the number of blocks required to

reach the learning criterion did not differ sig- that category representations formed in the
Inference-first condition and those in thenificantly whether Inference Learning was

given before Classification Learning (m Å Classification-first condition differed sig-
nificantly in the degree that family resem-7.9) or it was given after Classification

Learning (m Å 9.2); t(36) Å 0.62, p ú 0.10. blance information was incorporated into
their representations.The results suggest that Inference Learning

helped subjects to cope with the subsequent Further support for this interpretation was
found in a subject-analysis in which 17 outClassification Learning task while Classifi-

cation Learning did not help the subsequent of 20 subjects in the Inference-first condition
made responses in accordance with the pro-Inference Learning task.

The results obtained from transfer perfor- totype-feature values more than 75% of the
time, and only 3 out of 20 subjects mademance, which are summarized in Fig. 3, were

also consistent with the idea that Classifica- responses in accordance with exception-fea-
ture values more than 75% of the time. Intion Learning and Inference Learning yield

distinct categories. Although subjects in the contrast, 8 out of 18 subjects in the Classifi-
cation-first condition chose feature values intwo learning orders did not differ in the clas-

sification of old stimuli—Inference-first (m accordance with prototypes more than 75%
of the time, and 6 out of 18 subjects madeÅ 0.95), Classification-first (m Å 0.91), t(36)

Å 1.36, p ú 0.10—and in the classification responses in accordance with exception-fea-
ture values more than 75% of the time. Thus,of prototype stimuli—Inference-first (m Å

0.88), Classification-first (m Å 0.81), t(36) the results of the Exception-feature infer-
ences reveal that subjects in the two learningÅ 0.64, p ú 0.10—, subjects in the Infer-

ence-first condition (m Å 0.95) were signifi- orders differed in the proportion of proto-
type-accordance responses.cantly more accurate in making inferences

to old stimuli than were subjects in the Clas- To examine further whether subjects in the
Classification-first condition learned the cat-sification-first condition (m Å 0.88), t(36) Å

2.89, p õ 0.01. More importantly, consistent egories by augmenting single feature infor-
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mation to cope with inference questions, we in Inference Learning and in Classification
Learning is a result of a link between encod-conducted a post hoc analysis for the infer-

ence transfer of old stimuli. In particular, we ing and retrieval tasks. In Inference Learning,
subjects answered inference questions of allmeasured the standard deviations of correct

responses of four feature dimensions, taking the four feature dimensions whereas in Clas-
sification Learning subjects answered ques-the data from individual subjects as random

variables. The rationale for this analysis is tions about the category labels only. On this
basis, the observed distinction between Infer-that subjects selectively attending to a small

number of features will show high variability ence Learning and Classification Learning
may be an artifact of this experimental settingof correct responses over the four feature

dimensions, exhibiting accurate performance because what is learned in the two learning
procedures can be no more than a link be-for one feature dimension but not for the

others. In contrast, subjects attending to four tween the encoding task and the retrieval task
(Estes, 1976, 1986; Medin & Schaffer, 1978;feature-dimensions equally would display

the same level of performance in all the four Tulving, 1983; Tulving & Thomson, 1973;
see also Roediger, 1989). This explanation,dimensions, resulting in less variability be-

tween feature dimensions. Subjects exhib- though plausible, cannot account for why
subjects in the two learning orders exhibitedited higher variability in the Classification-

first condition (m Å 0.14) than in the Infer- drastically different transfer performance
when the order of the two learning proce-ence-First condition (m Å 0.08); t(36) Å

2.69, p õ 0.05. The results of this analysis dures was changed. In this study, all the sub-
jects in the two conditions learned the sameprovide additional support for our hypothesis

that classification makes use of a small num- categories by the same tasks—Inference
Learning and Classification Learning—withber of diagnostic features.

Taken together, these results of Experi- the identical stimuli. Nonetheless, subjects
acquired different categories if the two learn-ment 2 are consistent with the view that sub-

jects form different category representations ing procedures were given in different orders.
It is difficult to see how a simple link betweenin the two learning orders, supporting the

hypothesis that Classification Learning and encoding and retrieval procedures caused the
disparity between the two learning orders. ByInference Learning give rise to the acquisi-

tion of distinct category representations. In the same token, the results of Experiment 2
cannot be explained by subjects’ familiarityClassification Learning, subjects seem to ob-

tain a category representation congruent with with the corresponding learning task. We ar-
gue that the specific mechanisms tied to in-a small number of diagnostic features and

exceptions, while in Inference Learning, ference and classification were one of the
main determinants of the observed results insubjects tend to obtain a category representa-

tion congruent with family resemblance in- the two learning orders.
formation. Because the information about a

FITTING CATEGORIZATION MODELSdiagnostic feature and exceptions is not suf-
ficient to answer all inference questions, and In the two experiments, we have examined

the distinction between inference and classi-because the information about family resem-
blance between exemplars is suitable to deal fication solely by contrasting the effect of

the three learning procedures. The results ofwith both inference and classification ques-
tions, subjects required more trials to reach the two experiments are consistent with the

idea that Inference Learning and Classifica-the learning criterion in the two learning
tasks when categories were learned by classi- tion Learning lead to the formation of dis-

tinct categories, supporting the view thatfication first followed by inference than by
the reverse order. subjects employ different strategies to make

judgments related to inference or classifica-Some may argue that the effect observed
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tion. This conclusion can be tested further looked for the minimum values of the sum
of squared deviation between predicted andby comparing subjects’ performance within

each learning condition. That is, if our argu- observed values (SSE). The data from clas-
sification transfer and inference transferment is sound, performance for inference

transfer tasks and performance for classifi- were examined separately in each learning
condition. There were 10 data points in thecation transfer tasks should differ consider-

ably even within a single learning condition. classification transfer of Experiments 1 and
2, and there were 32 data points in the infer-We tested this idea by fitting existing models

of classification to the data obtained from ence transfer of Experiments 1 and 2.
inference transfer tasks as well as from clas-

Fitting the Context Model and thesification transfer tasks. If inference is car-
Rational Modelried out by the same process as by the one

employed in classification, existing models The GCM has eight parameters—c, r, b1,
w1, w2, w3, w4, and w5. According to theof classification should be able to account

for the data from classification transfer and model, the probability that subjects classify
the stimulus Si into the category C1, P(C1/Si),from inference transfer equally well.

We fit Medin and Schaffer’s context is obtained by calculating the overall similar-
ity between the stimulus Si and the categorymodel (1978) and Anderson’s rational

model to the data (Anderson, 1990, 1991; members in C1 divided by the sum of overall
similarity between the stimulus Si and all theNosofsky, 1986). To fit the context model,

we employed Nosofsky’s Generalized Con- members of categories available to subjects
(see Nosofsky, 1986, p. 42 for the modifica-text Model (GCM) because of its generality

and clarity (Nosofsky, 1986). We chose the tion of the GCM to relate the model to the
context model):rational model because of its proposal that

the primary impetus for categorization is to
maximize people’s ability to make infer-
ences about features of category members. P(C1/Si) Å

b1 (
j√C1

nij

b1 (
j√C1

nij / (1 0 b1) (
l√C2

nil

,
The rational model treats the category label
as another feature and assumes that it can
be predicted in the same manner that the

where
features of objects are predicted. The pur-
pose of this model fitting is to test the central

nij Å e0(C[ (
N

kÅ1
wkÉxik0xjkÉ

r ]1/r )r Å e0Cr (
N

kÅ1
wkÉxik0xjkÉ

r
.assumption that subjects employ qualita-

tively different strategies to carry out the
inference and classification tasks. In this The similarity between the probe stimulus Si

and an exemplar stimulus Sj is denoted by nij,sense, this model fitting is not intended to
compare the relative efficacy of the two which decreases exponentially as a function of the

discrepancy between feature values Éxik 0 xjkÉ.models. The comparison between the two
models is beyond the scope of the present The parameters, wk, represent the selective at-

tention given to each feature dimension. r ispaper because these models were developed
to account for data from classification tasks the parameter associated with the psychologi-

cal distance between feature values. c is thenot from inference tasks.
The results of the model fitting for Experi- scale parameter representing overall discrimi-

nability of stimuli in a psychological space.ment 1 are summarized in Tables 3 and 4,
and are described in the following subsec- In order to reduce the number of free parame-

ters, we fixed two parameters b1 and r(b1 Åtions. The results of the model fitting for
Experiment 2 are shown in the Appendix. 0.5 and r Å 1) and combined c and wk. This

modification yields five free parameters cwk(0For both models, parameters were found by
a random-start hill-climbing algorithm that õ cwk õ `) and makes the GCM identical to
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Medin and Schaffer’s context model (1978) nal partitions. First, the clusters emerge be-
cause objects in the world have inherentwhere Medin and Schaffer’s similarity param-

eters, f *, s*, c*, and p*, correspond to the atten- qualities for clustering due to the inability
to crossbreed. Second, the clusters revealtion parameters cwk in logarithmic functions

(in this setting, cw1 Å 0ln f *, cw2 Å 0ln s*, information about their members, showing,
for example, the probability that a particu-cw3 Å 0ln c*, cw4 Å 0ln p*).

To fit inference data, we slightly extended lar object exhibits a certain feature value.
Anderson suggests that it is this secondthe model by treating category labels as an-

other feature and calculated feature infer- quality of partitions that enables people to
draw predictions about objects and to clas-ences in the same manner that classification

performance was calculated. For example, sify a new object into a group (Anderson,
1990, p. 97).when predicting classification performance,

the similarity distance between a probe item To examine classification and inference
performance, we calculated the probability es-(1, 1, 1, 0, 1) Å (form, size, color, position,

category-label) and a category item (0, 1, 1, timated by
1, 1) was obtained by estimating the feature
match excluding the category labels; in this P(ijÉF ) Å (

k
P(kÉF )P(ijÉk),

case

where P(ijÉF ) is the probability that a stimu-cw1Éxi1 0 xj1É / cw2Éxi2 0 xj2É

lus has a feature value j on the dimension i
/ cw3Éxi3 0 xj3É / cw4Éxi4 0 xj4É. given the feature structure F, P(kÉF) is the

probability that the stimulus is grouped in the
Similarly, when predicting the feature value partition k given its feature structure F, and
of form, for example, the similarity distance P(ijÉk) is the probability that the stimulus has
between the two items was obtained by feature a feature value j on a feature dimension i given
match excluding form but including category a partition k. The rational model has a cou-
labels; in this case pling parameter c that affects the prior proba-

bility that an item comes from a particular
partition. We further introduced five parame-cw2Éxi2 0 xj2É / cw3Éxi3 0 xj3É

ters associated with four feature dimensions
/ cw4Éxi4 0 xj4É / cw5Éxi5 0 xj5É, and category labels to accommodate attention

salience given to each feature dimension (we
where cw5 is an attention parameter given to treated category labels as another feature di-
category labels. To obtain psychological dis- mension). These parameters yield a new equa-
tance associated with each feature value (i.e., tion to estimate P(ijÉk)—the probability of
xij), the GCM requires stimulus identification displaying a feature value in a given partition
data and a confusion matrix. These data were k (see Anderson, 1990, p. 116 for this modifi-
not available to us so that we used the arbi- cation)
trary feature values (1 and 0) in each feature
dimension.

Anderson’s rational model is based on P(ijÉF ) Å nij / gi

nk / ( gi

.
the assumption that people form categories
to maximize the predictability to features
of objects (Anderson, 1991). A main vehi- To give the model extra flexibility, we also

introduced a response parameter r (the samecle of the rational model lies in the internal
partitions that are formed through experi- modification can be found in Nosofsky,

Gluck, Palmeri, Mckinley and Glauthier,ence with exemplars. Anderson (1990) de-
scribes two important qualities of the inter- 1994, p. 359). Thus, the probability PiA that
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TABLE 3

The Results of Model Fitting for Experiment 1 (MCM)

Classification transfer

Learning cw1 cw2 cw3 cw4 SSE Accountability Correlation

Inference 1.58 1.06 1.64 0.19 0.021 0.83 0.92
Mixed 1.78 1.55 1.70 0.87 0.040 0.20 0.46
Classification 1.15 3.43 2.16 1.08 0.031 0.41 0.64

Inference transfer

Learning cw1 cw2 cw3 cw4 cw5 SSE Accountability Correlation

Inference 0.01 0.01 0.01 0.01 2.41 0.10 00.01 00.61
Mixed 0.01 0.01 0.01 0.01 2.21 0.38 00.01 00.77
Classification 0.05 0.01 0.01 0.39 1.12 0.48 0.04 0.20

Note. cw1–cw4 are the parameters associated with feature dimensions (form, size, color, position). cw5 is the
parameter given to category labels. SSE is the sum of squared difference between predicted and observed values.
SST is the sum of squared difference between the mean of observed values and the observed values. Accountability
Å 1 0 (SSE/SST); MCM, modified context model.

subjects predict the feature value a in the ith transfer performance of Inference Learning
and of Classification Learning, but not ofdimension is estimated by
Mixed Learning (see Tables 3 and 4 for de-
tails). A similar trend appeared in the model

PiA Å
Pr

ia

(Pr
ia / Pr

ib)
, fitting of Experiment 2 (see Appendix).9 In

contrast, the two models appear inappropriate
to account for inference transfer data regard-

where pia and pib are the probability estimated
less of the learning conditions.

by the rational model to predict the feature
In accounting for inference transfer perfor-

values a and b in the ith dimension, respec-
mance, for example, the modified context

tively. Because the order of stimulus presenta-
model produced attention parameters close to

tion also affects the accountability of the ratio-
the minimum value for almost all the four

nal model, 40 sequences of stimulus presenta-
feature dimensions except the category labels

tion were generated randomly, and optimal
(cwi Å 0.01, 0 õ cwk õ `). The results indi-

parameter values were determined separately
cate that the model relied on the category la-

for each presentation. The results reported be-
bels almost exclusively to derive inference

low and the accountability score shown in Ta-
judgments. Furthermore, within the range of

ble 4 are based on the best fitting parameter
the attention parameters the model’s account-

values obtained from one of forty sequences
of stimulus presentation.

9 The poor performance observed in the two modelsResults of Model Fitting (Experiment 1)
in accounting for classification transfer performance
in Experiment 2 might have derived primarily fromTables 3 and 4 summarize the results of the
their performance for the prototype stimuli. Takingmodel fitting of the modified context model
out the predictions made to the prototype stimuli, the

and of the rational model, respectively. Over- average correlations between the observed values and
all, the two models provide reasonably good the predicted values reach 0.75 in the two learning

orders.fits to the data obtained from classification
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ability measures (i.e., accountability Å 1 0 In summary, the disparity between infer-
ence and classification is clearly present in(SSE/SST)) barely exceeded the estimates

made by the overall averages of the data. the results of the model fitting: the two mod-
els provided reasonably good fit to the dataClearly, given the modification suggested in

this section, the algorithm employed in the from the classification transfer tasks, but
failed to account for the data from the infer-modified context model does not seem appro-

priate to account for inference transfer perfor- ence transfer tasks, at least given the modi-
fication suggested above. It may be the casemance.

Similarly, the algorithm used in the rational that the assumption of treating category la-
bels as equivalent to category features maymodel appears implausible in accounting for

the data from the inference transfer task. It not be warranted. Although the two models
have been successful in accounting for a va-produced the best fitting values in all three

learning conditions by creating singleton par- riety of classification performance (Ander-
son, 1990, 1991; Medin & Schaffer, 1978;titions for every learning stimulus (i.e., each

internal partition contained only one exem- Nosofsky, 1986), these models seem to re-
quire a major modification to account for in-plar). Among the 40 different patterns of ran-

domly selected stimulus-presentation se- ference transfer data.
quences, the rational model produced the

GENERAL DISCUSSIONbest parameter values by using singleton par-
titions in 17 out of 40 cases in Classification In an effort to investigate the relationship

between category learning and category for-Learning, 30 out of 40 cases in Inference
Learning, and 34 out of 40 cases in Mixed mation, we have contrasted inference-based

learning with classification-based learning.Learning. These results suggest that the
model obtained the best predictions by ex- The results of the two experiments and the

model fitting show that inference and classi-amining each exemplar separately rather
than by forming clusters, indicating that the fication require different strategies to carry

them out, and, because of these strategies,accountability of the model actually de-
creases as the model forms internal clusters. distinct category representations arise if peo-

ple learn categories by inference or by classi-This phenomenon contradicts the basic as-
sumption of the rational model that internal fication. In particular, inference, which re-

quires a focus on exemplar information withinclusters formed by people provide a basis for
feature predictions (Anderson, 1990, p. 97). a category, helps subjects to extract family

resemblance information within a category.Given the family resemblance category-
structure employed in the two experiments, As a result, categories formed by inference

contain information consistent with the proto-there is no reason to believe that the stimulus
structure used in the two experiments deters typical values of the category members. In

contrast, classification, which tends to pro-the formation of partitions. To account for
the inference transfer data, the two models mote a focus on a small number of diagnostic

features, guides subjects to form categoriesmay need to introduce a major modification.
While we believe that fitting models of cate- consistent with rules and exceptions or con-

crete exemplars.gorization can provide an insight into the
distinction between inference and classifica- In Experiment 1, we found that subjects’

transfer performance was the best when thetion, we think that it is premature for us to
develop a model of classification and infer- transfer task matched the learning task. Sub-

jects who learned the categories by classifica-ence in this stage. More empirical studies
and theoretical investigation should be made tion were the best in classification transfer.

Subjects who learned the categories by infer-to constrain the nature of the inference pro-
cess before a model of the inference task can ence were the best in inference transfer. Given

Exception-feature inferences, subjects in thebe developed.
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144 YAMAUCHI AND MARKMAN

three learning conditions predominantly re- The present results are a preliminary step
toward understanding the relationship be-sponded with prototype stimuli, though this

tendency was reduced significantly in subjects tween category learning and category forma-
tion. Further research must focus on what iswho learned categories by classification. In Ex-

periment 2, we found that the order in which learned about categories through other uses
of categories such as communication, infer-subjects received the two learning procedures

had a significant impact on subjects’ perfor- ence, comparison, and memory (Markman et
al., 1997). Research must also examine themance. Subjects found these categories much

easier to learn when they learned the categories distinction between inference and classifica-
tion, while addressing precisely what isby inference first and followed by classification

than when they learn the same categories in learned from these tasks. Further, we exam-
ined only one category structure with thethe reverse order. Finally, in the model fitting,

we demonstrated that the distinction between same stimulus set. Studies must explore the
impact of these variables. Additional workinference and classification is present within

each learning procedure. must also focus on how inference and classi-
fication (and other modes of category func-The results suggest that the nature of cate-

gory formation can be specified by the task tions) are integrated to form coherent cate-
gory representations.applied during learning, indicating that the ac-

quisition of categories is inseparable from the In conclusion, although inference and
classification are closely related, the twofunction of categories (see also Kintsch, 1980;

Schank, 1982; Wittgenstein, 1953). For this functions require different strategies to be
incorporated. The present experiments sug-reason, we argue for the need to go beyond the

study of classification as a mode of category gest that these different strategies, which are
related to the two functions of categories,learning to look at the impact of other uses of

categories on what is learned (see also Whittle- give rise to the formation of distinct cate-
gory representations.sea et al., 1994, for a similar argument). Other

studies have also begun to address this issue.
Ross (1996) had subjects classify algebra equa- APPENDIX
tions. He found that the classes formed by sub-

The first two tables are the results of modeljects were different if the subjects had pre-
fitting obtained by the modified context modelviously manipulated the equations by solving
and the rational model for the data from Ex-for a variable than if they had not. Some work
periment 2. The last table is the predicted andhas also addressed the role of communication
observed values of the transfer performancein category formation. Markman and Makin (in
for Experiment 1: MCM, modified contextpress) (Markman, Yamauchi, & Makin, 1997)
model; RM, rational model; (F, S, C, P),report studies in which pairs of subjects were
(form, size, color, position); cw1–cw4 are theasked to build LEGO models collaboratively.
parameters associated with feature dimensionsOne subject was given pictorial instructions for
(form, size, color, position); cw5 is the param-constructing a model, and the other subject was
eter for category labels; g1–g4 are the parame-given the pieces needed to build the model (as
ters given to feature dimensions (form, size,well as distractor pieces). Subject pairs had to
color, position); g5 is the parameter for cate-settle on a common set of labels for the pieces
gory labels; c is the coupling parameter and rin order to carry out this task. After building
is the parameter for the response function;the model, subjects were asked to sort the
SSE, sum of squared difference between pre-pieces into groups. Analysis of the sorting data
dicted and observed values; SST, sum ofrevealed a higher level of agreement between
squared difference between the mean of ob-subjects who communicated together than be-
served values and the observed values; ac-tween subjects who did not communicate with

each other and built different models. countability Å 1-(SSE/SST).
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TABLE A1

Experiment 2 (Modified Context Model)

Classification transfer

Learning cw1 cw2 cw3 cw4 SSE Accountability Correlation

Inference-first 1.96 3.16 1.44 1.54 0.033 00.30 0.05
Classification-first 0.80 1.78 2.60 1.44 0.104 00.12 0.16

Inference transfer

Learning cw1 cw2 cw3 cw4 cw5 SSE Accountability Correlation

Inference-first 0.01 0.01 0.01 0.25 2.47 0.14 0.01 0.09
Classification-first 0.01 0.01 0.01 0.01 1.35 0.88 00.01 00.88

TABLE A2

Experiment 2 (Rational Model)

Classification transfer

Learning g1 g2 g3 g4 g5 c r SSE Accountability Correlation Partitions

Inference-first 0.006 0.006 0.014 0.024 0.090 0.1 1.01 0.024 0.06 0.52 5
Classification-first 0.010 0.008 0.004 0.038 0.096 0.09 0.74 0.065 0.30 0.55 5

Inference transfer

Learning g1 g2 g3 g4 g5 c r SSE Accountability Correlation Partitions

Inference-first 0.102 0.058 0.032 0.210 0.064 0.03 1.72 0.081 0.42 0.65 8
Classification-first 0.422 0.604 0.324 0.378 0.016 0.01 2.99 0.184 0.79 0.89 8
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TABLE A3

Classification transfer (Experiment 1)

Inference Mixed Classification

Stimulus Observed MCM RM Observed MCM RM Observed MCM RM

A1 0.864 0.895 0.895 0.850 0.920 0.921 1.000 0.958 0.988
A2 0.636 0.701 0.686 0.950 0.853 0.850 1.000 0.893 0.989
A3 0.818 0.789 0.801 0.850 0.866 0.875 0.826 0.848 0.800
A4 0.773 0.709 0.708 0.900 0.846 0.850 1.000 0.955 0.993
B1 0.909 0.895 0.895 1.000 0.920 0.921 0.913 0.958 0.886
B2 0.727 0.701 0.686 0.750 0.853 0.850 0.783 0.893 0.887
B3 0.773 0.789 0.801 0.900 0.866 0.875 0.870 0.848 0.856
B4 0.636 0.709 0.708 0.800 0.846 0.850 0.957 0.955 0.913
A0 0.955 0.907 0.931 0.900 0.951 0.927 0.957 0.978 0.994
B0 0.955 0.907 0.931 0.950 0.951 0.927 0.957 0.978 0.975

Inference transfer (Experiment 1)

Inference Mixed Classification

Stimulus Questions Observed MCM RM Observed MCM RM Observed MCM RM

A1 F 0.909 0.918 0.911 0.800 0.902 0.935 0.652 0.718 0.721
A2 F 0.909 0.918 0.930 1.000 0.902 0.950 0.652 0.788 0.848
A3 F 0.955 0.918 0.944 0.850 0.902 0.962 0.826 0.788 0.819
A4 F 0.818 0.919 0.859 0.700 0.902 0.757 0.522 0.790 0.671
B1 F 0.909 0.918 0.911 0.900 0.902 0.935 0.652 0.718 0.721
B2 F 0.818 0.918 0.930 0.900 0.902 0.950 1.000 0.788 0.848
B3 F 0.955 0.918 0.944 1.000 0.902 0.962 0.739 0.788 0.819
B4 F 0.773 0.919 0.859 0.550 0.902 0.757 0.478 0.790 0.671
A1 S 0.955 0.918 0.945 0.900 0.902 0.954 0.696 0.723 0.755
A2 S 0.909 0.918 0.961 0.950 0.902 0.967 0.957 0.791 0.894
A3 S 0.909 0.919 0.857 0.800 0.902 0.747 0.609 0.793 0.667
A4 S 0.909 0.918 0.945 1.000 0.902 0.964 0.870 0.785 0.822
B1 S 0.909 0.918 0.945 0.900 0.902 0.954 0.696 0.723 0.755
B2 S 0.909 0.918 0.961 0.950 0.902 0.967 0.913 0.791 0.894
B3 S 0.864 0.919 0.857 0.700 0.902 0.747 0.696 0.793 0.667
B4 S 1.000 0.918 0.945 1.000 0.902 0.964 0.870 0.785 0.822
A1 C 1.000 0.918 0.930 0.900 0.902 0.940 0.783 0.723 0.782
A2 C 0.909 0.919 0.858 0.850 0.902 0.755 0.696 0.793 0.662
A3 C 1.000 0.918 0.961 1.000 0.902 0.965 0.957 0.791 0.897
A4 C 1.000 0.918 0.930 0.950 0.902 0.951 0.870 0.785 0.854
B1 C 0.909 0.918 0.930 1.000 0.902 0.940 0.783 0.723 0.782
B2 C 0.864 0.919 0.858 0.750 0.902 0.755 0.739 0.793 0.662
B3 C 1.000 0.918 0.961 1.000 0.902 0.965 0.913 0.791 0.897
B4 C 0.955 0.918 0.930 0.900 0.902 0.951 0.826 0.785 0.854
A1 P 0.864 0.919 0.859 0.900 0.902 0.762 0.739 0.760 0.675
A2 P 0.955 0.918 0.930 0.950 0.902 0.937 0.957 0.759 0.773
A3 P 0.955 0.918 0.944 1.000 0.902 0.951 0.739 0.759 0.748
A4 P 0.955 0.918 0.911 1.000 0.902 0.933 0.696 0.751 0.719
B1 P 0.864 0.919 0.859 0.800 0.902 0.762 0.652 0.760 0.675
B2 P 0.909 0.918 0.930 0.950 0.902 0.937 0.826 0.759 0.773
B3 P 0.955 0.918 0.944 1.000 0.902 0.951 0.739 0.759 0.748
B4 P 0.864 0.918 0.911 1.000 0.902 0.933 0.826 0.751 0.719
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