
1 Introduction
Since the dawn of discrete-choice modelling in the 1960s, when binary logit and probit
models became useful tools to derive values of time, we have come a long wayöand
increasingly faster in the last few years. We have seen almost three decades of
unchecked rule by the multinomial (MNL) and nested logit (NL) models, with the
more powerful and flexible multinomial probit (MNP) being left aside because of
the difficulties involved with its use in real-life problems. Today, when computing
power and better numerical techniques have made possible its use in practical appli-
cations, MNP has been overshadowed again by the equally flexible and/or powerful
but less unyielding, mixed logit (ML) model. Both approaches have the ability to treat
correlated and heteroscedastic alternatives, as well as random taste variations through
the estimation of random rather than fixed parameters.

In this paper we discuss a number of issues related to the interpretation of results
and the use of this exciting model in real-life applications. In particular, we dig deeper
into the use of the model to estimate measures of willingness to pay (WTP), such as the
value of time or the value of a statistical life (Rizzi and Ortüzar, 2003).

The WTP for a unit change in a certain attribute can be computed as the marginal
rate of substitution (MRS) between income and the quantity expressed by the attribute,
at constant utility levels (Gaudry et al, 1989). The concept is equivalent to computing
the compensated variation (Small and Rosen, 1981), as one usually works with a linear
approximation of the indirect utility function. Thus, point estimates of the MRS
represent the slope of the utility function for the range where this approximation holds.
Furthermore, as income does not enter in the truncated indirect utility function, the
MRS is calculated with respect to minus the cost variable (Jara-D|̈az, 1990). In this way,
theWTP in a linear utility function simply equals the ratio between the parameters of the
variable of interest (that is, time in the case of the subjective value of time, SVT) and
the cost variable (that is, the marginal utility of income, which itself has to follow
certain properties in a well-specified model).
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A nontrivial problem is that the estimated parametersöeven in the case of models
which assume fixed population coefficients, such as the MNL and NLöare random
variables with a probability distribution (an asymptotic normal distribution in the
MNL). Therefore, it is not clear which is the distribution of the ratio WTP (Armstrong
et al, 2001). This is naturally further compounded in the case of random coefficient
models, such as the ML and MNP models. Fortunately, as we will see, the fact that the
ML model can yield individual-based coefficient estimates as well as estimates of
the parameters governing their population distribution, helps somewhat in this quest.

The rest of this paper is organised as follows. In section 2 we present the ML model
as a fairly general random utility model, and contrast it with the popular but restrictive
MNL model. In section 3 we briefly explain two methods available to estimate the ML
model: the classical (Revelt and Train, 2000; Train, 1998) and Bayesian approaches
(see, for example, Huber and Train, 2001). In section 4 we succinctly describe a
stated-preference (SP) experiment designed to obtain WTP estimates for reductions
in atmospheric pollution, and present results based on the estimation of MNL models.
In section 5 we analyse in some detail the results of estimating random parameter ML
models with this dataset, by means both of the classical and of the Bayesian
approaches. In section 6 we discuss several issues associated to WTP estimation using
ML population parameters, and in section 7 do the same but for the richer case of
individual-level parameters. In section 8 we present our main conclusions.

2 A flexible random utility model
An individual n facing an alternative Aj in a choice situation t, will perceive a utility
level Unjt which is completely deterministic to him or her, and so will proceed to select
that option with the greatest utility. However, the modeller is forced to assume that the
Us are random variables, as otherwise we cannot explain why apparently equal indi-
viduals (that is, equal in all attributes which can be observed or measured) choose
different options. A standard form for Unjt is

Unjt � bXnjt � enjt , (1)

where Xnjt is the observed attribute vector and b is a vector of marginal utility param-
eters. The term enjt is white noise that can, for example, usefully be assumed to
distribute independently and identically (iid) Gumbel (0, se ), providing the remaining
unobserved variability of the model. This last assumption leads to an MNL probability
function, for the individual n choosing alternative Ai in situation t:

P�ijXn � �
exp�lbXin �XJ

j � 1

exp�lbXjn �
,

where the scale parameter l is inversely related to the unknown standard deviation se ,
and in practical model applications it is standardised (that is, taken as one) as it cannot
be estimated separately from the taste parameters b (Ortüzar and Willumsen, 2001).

The MNL formulation has important limitations, mainly because of the rigidity of
its error structure (a diagonal covariance matrix with equal variances). To overcome
these limitations we can restate the random utility expression for Unjt in a more general
form:

Unjt � bnXnjt �XnjtYnjt � enjt ,

where bn is now the vector of marginal utility parameters for individual n ; Ynjt is a
vector of loadings that map the error components according to the desired model
structure, and Xnjt is a vector of stochastic components which follow a distribution
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specified by the analyst, with zero mean and unknown variance. The terms Xnjt and enjt
are the same as in equation (1).

An adequate specification of the Ynjt vector allows us to treat different error
structures, such as heteroscedasticity, correlation, cross-correlation, dynamics, and
even autoregressive error components. For good revisions and discussions of the
literature related to this general form and its applications, see Hensher and Greene
(2003), Train (2003), and Walker (2001).

Because the estimation of WTP values deals with parameter ratios, hereafter we
will deal only with a random-parameters structure in which the marginal utility param-
eters are individual specific (that is, different for each sampled individual n), but the
same across choice situations. This last assumption may be relaxed if choice situations
are significantly separated along time, as taste parameters could then be altered. The
results stated below can be extended, however, to more complex error structures, but
this would just make their computation more involved. Hence, hereafter the general
random utility model will be presented in a more concise form:

Unjt � bnXnjt � onjt ,

where onjt � XnjtYnjt � enjt .
The terminology of random-parameter logit arises from the way in which taste

heterogeneity (that is, individual taste parameters) has been treated to allow estimation
(Algers et al, 1999; Revelt and Train, 1998; Train, 1998). In a departure from the
popular but rigid specification of the MNL model, we can state that the model param-
eters are not fixed across the population but, rather, are random variables with a
certain distribution specified by the analyst according to prior knowledge of the utility
structure. The random-utility model may thus be written as

Unjt � Xnjtbn � enjt ! bn � f�b, R� , (2)

where b is the vector of population means of the parameters, and R is their covariance
matrix over the population. In expression (2), each individual-level parameter is consid-
ered as a conditional draw from the frequency distribution of the population parameter. In
other words, we acknowledge that every individual has a distinct set of taste coefficients
and that these follow a certain frequency distribution over the population.

3 Estimation procedures
The two estimation procedures presented below yield the same type of results for two
groups of parameters: (1) the mean and standard deviation of the parameter distributions
over the population; and (2) individual-level marginal utility parameters.

First we briefly present the classical approach, incorporating the latest developments in
the field of estimation via simulated maximum-likelihood methods (Bhat, 2001; Garrido
and Silva, 2004; Train, 2003), including the framework by which population-distribution
parameters combined with information from individual choices can lead to consistent
estimates of individual partworths (Revelt and Train, 2000). Second, we present the hierar-
chical Bayes estimation procedure, which has undergone remarkable development in
recent years (Allenby and Rossi, 1999; Andrews et al, 2002; Huber and Train, 2001; Lahiri
and Gao, 2001; McCulloch and Rossi, 1994; Sawtooth Software, 1999).

3.1 Classical estimation
By c̀lassical estimation' we mean the maximum-likelihood procedure commonly used
to estimate this kind of model (Train, 2003). Following standard arguments, let a
person's sequence of T choices be denoted by yn � ( y1n , .::, yTn ), where ytn � i if
Unit > Unjt , 8j 6� i. The conditional probability of observing an individual n stating a
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sequence yn of choices, given fixed values for the model parameters �bn , is given by the
product of logit functions:

L� yn j bn � �
YT
t � 1

exp�l�bnXnti �XJ
j � 1

exp�l�bnXntj �

0BBBB@
1CCCCA

gnit

, (3)

where gnit equals one if ytn � i, and zero otherwise. Now, as bn is unknown, the
unconditional probability of choice is given by the integration of equation (3) weighted
by the density distribution of bn over the population:

P� yn � �
�
L� yn j bn �f� bn jb, R�dbn ,

where f( � ) is the multivariate distribution of bn over the sampled population. If
covariance terms are not specified, R is a diagonal matrix.

The log-likelihood function in b and R is given by

l�b, R� �
XN
n � 1

ln Pn � yn � ,

but, as the probability Pn does not have a closed form it is approximated through
simulation (SPn ), where draws are taken from the mixing distribution f( � ) weighted
by the logit probablity, and then averaged up (McFadden and Train, 2000). The issue
of how many draws should be performed and how they should be taken is discussed
below.

The simulated log-likelihood function is given by

sl�b, R� �
XN
n � 1

ln SPn � yn � . (4)

Conveniently, the simulator for the choice probabilities is smooth and unbiased. Different
forms of `smart' drawing techniques (that is, Halton and other low-discrepancy
sequences, antithetic, quasi-random sampling, etc) can be used to reduce the simulation
variance and to improve the efficiency of the estimation (Bhat, 2001; Garrido and
Silva, 2004; Hajivassiliou and Ruud, 1994; Hensher and Greene, 2003).

Numerical procedures are used to find maximum-likelihood estimators for b and R.
These parameters define a frequency distribution for the bn over the population.
To obtain actual point estimates for each bn a second procedure, described by Revelt
and Train (2000), is required as follows.

The conditional density h( bn j yn , b, R) of any bn given a sequence of Tn choices yn
and the population parameters b and R, may be expressed by Bayes's rule as

h� bn j yn , b, R� �
Pn � yn j bn �f� bn j b, R�

Pn � yn j b, R�
. (5)

The conditional expectation of bn results from integrating over the domain of bn . This
integral can be approximated by simulation, averaging weighted draws b r

n from the
population-density function f� bn j b, R�. The simulated expectation SE is given by

SE� bn j yn , b, R� �

XR
r � 1

b r
nPn � yn j b r

n �
XR
r � 1

Pn � yn j b r
n �

.
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Revelt and Train (2000) also propose, but do not apply, an alternative simulation
method to condition individual-level choices. Consider the expression for h( bn j yn , b, R)
in equation (5). The denominator is a constant value as it does not involve bn , so a
proportionality relation can be established as

h� bn j yn , b, R� / Pn � yn jbn �f� bn jb, R� .
Draws from the posterior h( bn j yn , b, R) can then be obtained using the Metropolis ^
Hastings algorithm (Chib and Greenberg, 1995), with successive iterations improving
the fit of the bn to the observed individual choices. During this process, the prior
f( bn jb, R), that is, the parameter distribution obtained by maximum likelihood,
remains fixed; it provides information about the population distribution of bn . After
a number of burnout iterations to ensure that a steady state has been reached [typi-
cally, a few thousands (Kass et al, 1998)], only one of every m of the sampled values
generated is stored to avoid potential correlation among them; m is obtained as a result
of the convergence analysis (Raftery and Lewis, 1992). From these values a sampling
distribution for h( bn j yn , b, R) can be built, and inferences about the mean and
standard deviation values can be obtained (Arora et al, 1998; Sawtooth Software, 1999).
In this paper we favoured this last procedure for implementation purposes.(1)

The outcome of the estimation process is two sets of parameters: b and R, the
population parameters obtained by simulated maximum likelihood and bn , the indi-
vidual parameters for n � 1, .::, N, estimated via conditioning the observed individual
choices on the estimated population parameters.

3.2 Bayesian estimation
Use of the Bayesian statistic paradigm for the estimation of ML models has gained
much interest in recent years (Huber and Train, 2001; Sawtooth Software, 1999; Train,
2001). The ability to estimate individual partworths appeared initially as its main
appeal, but it has shown further advantages with respect to the estimation procedure.
The Bayesian approach considers the parameters as stochastic variables so, applying
Bayes's rule of conditional probability, a posterior distribution for bn conditional on
observed data and prior beliefs about these parameters can be estimated.

Let C(b, R) be the analyst's prior knowledge about the distribution of b and R, and
consider a likelihood function for the observed sequence of choices conditional on
fixed values of b and R. By Bayes's rule, the posterior distribution for bn , b,and R is
proportional toYN

n � 1

L� yn j bn �f� bn jb, R�C�b, R� .

Draws for b and R can be obtained by use of Gibbs sampling, and draws for bn are
taken by means of the Metropolis ^Hastings algorithm; a detailed sequential procedure
has been described by Sawtooth Software (1999). A crucial element that has not
been mentioned in recent applications is the need to test for the convergence of the
series and lack of correlation among the steady-state regime values (Cowles and Carlin,
1996).

Train (2001) discusses how the posterior means from the Bayesian estimation can
be analysed from a classical perspective. This is thanks to the Bernstein ^ von Mises
theorem, which states that, asymptotically, the posterior distribution of a Bayesian

(1) The approach was coded in WinBUGS, a software package developed by the MRC Biostatistics
Unit at the University of Cambridge and the Imperial College School of Medicine at St Mary's,
London. The program is free for downloading from their website: http://www.mrc-bsu.cam.ac.uk/
bugs/welcome.shtml
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estimator converges to a normal distribution which is the same as the asymptotic
distribution of the maximum-likelihood estimator (that is, the standard deviation of
the posterior distribution of the Bayesian estimator can be taken as the classical
standard error of a maximum-likelihood estimator). This means that classical statistical
analysis (for example, the construction of t-statistics to analyse the significance of an
estimated parameter) can be performed on Bayesian estimators without compromising
the interpretation of the results.

Bayesian estimation has certain advantages over the classical approach.
(a) No numerical maximisation routines are necessary; rather, draws from the posterior
distribution are taken until convergence is achieved.
(b) As the number of attributes considered in the utility expression grows, the number
of elements in the covariance matrix R rises exponentially, increasing computation time
in the classical approach. However, the Bayesian method can handle a full covariance
matrix almost as easily as a restricted one, with computation time rising only with the
number of parameters.
(c) Identification issues are related to the lack of orthogonality in the effects of the random
variables, and not to the number of independent equations representing these. This means
that an identification problem may arise when the effect of a certain variable in the
structural utility formulation is confused with the effect of another variable, but not
because of insufficient sample points.

The Bayesian estimation procedure was also implemented inWinBUGS (Spiegelhalter
et al, 2001). This package incorporates Gibbs sampling protocols and the Metropolis ^
Hastings sampling algorithm(2), but lacks a convergence analysis, which has to be
performed separately. Both estimation procedures were applied to the atmospheric
pollution reduction valuation stated-preferences experiment described below, and the
main results compared.

4 The stated-preference experiment
A residential-location-based stated-preference experiment was undertaken in Santiago
to assess the valuation of atmospheric-nuisance reductions. A full description of the
microeconomic formulation, survey design, and main results derived from MNL models
has been presented (Ortüzar and Rodriguez, 2002). It is important to mention that a great
deal of effort was spent in defining an air-pollution attribute that would be under-
standable and representative. The number of days per year with an alert status associated
with the air quality of a particular dwelling zone was eventually selected (DAödays of
alert). Other attributes considered in the formulation were: travel time to work (TTW);
travel time to study (TTS); and a dummy variable (dCURRENT) that attempted to capture
the inertia effect associated with the current residential location.

Selected households(3) were asked to rank once ten alternative residential locations
(that is, nine arising from a fractional factorial design considering only main effects,
plus their current location).(4) One beauty of the exercise was the family discussion
about alternative locations and, as a result, the serious intent with which the ranking
task was performed. The rank data were later converted into nine independent-choice
situations per household, as is common in this type of study. After lexicographic and

(2) A GAUSS code for Bayesian estimation written by Kenneth Train was also tried out, but not
used in the final estimations. We are grateful to him for sharing his code.
(3) Families renting a flat who had moved to their dwelling during the previous year; the idea was
that these people would find a residential-location-based stated-preference experiment easier to
handle.
(4) The survey design was a straightforward application of agreed stated-preference principles
(Louviere et al, 2000).
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inconsistent responses had been excluded in the usual way, the sample size consisted of
648 observations from a total of 75 households. Maximum-likelihood estimation
results for a MNL model are shown in table 1.

All parameters are significant and have the expected sign. WTP values calculated
as the ratio of all attribute parameters and the RENT coefficient(5) are shown in table 2,
together with confidence intervals calculated according to Armstrong et al (2001).

It is worth mentioning that the subjective values of time below are in close agreement
with values estimated both previously and afterwards in the country for rather different
settings (Galilea and Ortüzar, 2004; Iragu« en and Ortüzar, 2004; Ortüzar et al, 2000;
Përez et al, 2003). This gives us great confidence about the quality of the data used.

5 Estimation of random-parameter logit
5.1 Classical estimation: population parameters
As we saw above, the classical approach to the estimation of ML models has two
stages. In the first, simulated maximum likelihood yields estimates of the population
distribution of the parameters. Estimation results for a ML model with iid normal
parameters are presented in table 3 (over), together with the previous MNL-model
results for the sake of comparison.(6) In this model, ML1, the nine choices from
each household were considered, correctly, as repeated-choice observations. Although
the rank transformation assumed independent choices for each family, nevertheless, the
whole set is correlated in relation to the choices made by other households.

Table 1. Estimation results (with t-statistics shown in parentheses), excluding lexicographic and
inconsistent responses.

Attribute Parameter

Travel time to work (TTW) (minutes per week) ÿ0.00417 (ÿ10.6)
Travel time to study (TTS) (minutes per week) ÿ0.00250 (ÿ7.8)
Days of alert (DA) (days per year) ÿ0.27370 (ÿ11.0)
Rent (RENT) (103 Ch $ a month) ÿ0.02641 (ÿ12.5)
dCURRENT 0.89690 (5.9)

Log-likelihood ÿ849.6

Table 2. Point estimates, with 95% confidence intervals shown in parentheses, for subjective
valuation of attributes.

Attribute Subjective value

TTW (Ch$ per minute) 36 (29 ± 45)
TTS (Ch$ per minute) 22 (16 ± 28)
DA (Ch$ per days of alert per year) 124 362 (100 818 ± 152 301)

(5) To obtain the subjective value of time figures (Ch$ per minute), the ratios of the parameters of
time and rent were multiplied by the factor (12/52) 1000. To obtain the WTP for the DA attribute
(Ch$ per day), the ratio of the parameters DA and RENTwas multiplied by 12 000. At the time of the
survey 1US $ � 490 Ch$.
(6) Maximum-likelihood estimation was conducted with the aid of a GAUSS code written by Train,
Revelt, and Ruud at the University of Berkeley, CA. The code is available for downloading at
Kenneth Train's web page: http://elsa.berkeley.edu/�train. We tested using multivariate normally
distributed parameters but found nonsignificant covariances; so, for reasons of computing time
saving, we stuck to independent distributions.
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The inertia parameter (dCURRENT) was originally considered to vary over the
population, but its estimated deviation was statistically negligible (t-test 0.66), so in
the final estimation round it was considered fixed.

The estimation of an ML model results in a substantial improvement of fit over the
MNL model, which is a common result in mixed-logit applications (Hensher, 2001a;
Train, 1998) because of the increased explanatory power of the specification. However,
attention must be paid to the ML model results as unwelcome effects may arise from
its unconstrained formulation. The frequency distribution of the parameters over the
population accounts for taste variations and unobserved heterogeneity, and this has
been proven to exist beyond socioeconomic characterisation (Iragu« en and Ortüzar,
2004; Morey and Rossman, 2002; Ortüzar et al, 2002; Rizzi and Ortüzar, 2004).
However, a normally distributed parameter will yield individual values with both
negative and positive signs, as its domain covers all real values. This means that
implausible positive values for the RENT, TTW, TTS, and DA parameters could be
obtained for some observations.

In fact, the portion of the population for which the model assigns an incorrect
parameter sign can be estimated as the cumulative mass function of the frequency
distribution of the parameter over the population evaluated at zero (that is, for
supposedly negative parameters, the area under the frequency curve between zero
and positive infinity). In this case, model ML1 would account for 4% of the population
having positive TTW parameters, 1% of the population having positive TTS parameters,
12% of the population having positive DA parameters, and 11% of the population
having positive RENT parameters. Although this problem may be overcome in various
ways most of these methods introduce further problems; hence, the issue is discussed
in more depth below.(7)

Another significant effect of the ML model is the considerably larger mean values
for the attribute parameters compared with those in the MNL model. This stems from
the fact that the ML model decomposes the unobserved component of utility and
normalises the parameters through the scale factor l.

Table 3. Multinomial (MNL) and mixed logit (ML) model results (with t-statistics shown in
parentheses) with four independently and identically distributed normal distribution parameters
and one fixed.

Attribute Parameter

MNL ML1

TTW mean ÿ0.00417 (ÿ10.6) ÿ0.009924 (ÿ7.9)
standard deviation 0.005734 (4.5)

TTS mean ÿ0.00250 (ÿ7.8) ÿ0.005769 (ÿ8.2)
standard deviation 0.002656 (2.7)

DA mean ÿ0.27370 (ÿ11.0) ÿ0.478625 (ÿ6.8)
standard deviation 0.405665 (4.7)

RENT mean ÿ0.02641 (ÿ12.5) ÿ0.057396 (ÿ7.0)
standard deviation 0.047482 (6.2)

dCURRENT mean 0.89690 (5.9) 1.053245 (5.5)

Log-likelihood ÿ849.6 ÿ747.0

(7) For example, by the use of a log-normal distribution, but this is not the only way to constrain
parameter estimates to a positive domain. One could define other distributions and truncate them
to the positive range. Furthermore, the log-normal carries undesirable effects, such as a biased
mean value caused by its long tail. The distribution is discussed below to keep consistency with
other studies cited here, but note that recent research discusses the application of a truncated
normal distribution in a ML model estimation with Bayes (Train and Sonnier, 2003).
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Assume a utility structure given by

Unjt � bXnjt � enjt ,

which is a standard MNL specification. The variance of U is a result of the iid Gumbel
term, and is computed as

var�Unjt � � var�enjt � �
p 2

6l 2
.

However, part of the variance is treated explicitly as a separate error component in the
ML model:

Unjt � �b� scn �Xnjt � enjt ,

where s is the vector of standard deviations of the model parameters over the popula-
tion, b is the vector of means and cn is a vector of standard random perturbations that
may be distributed, for example, normally. In this case the variance of U would be
computed as

var�Unjt � � s 2X 2
njt � var�ênjt � � s 2X 2

njt �
p 2

6l̂ 2
,

and because the model variance is independent of its specification (it depends exclu-
sively on the data), it is easy to see that the scale parameter l̂ (l̂ > l), means larger
mean parameter estimates for the ML model.

This issue deserves special consideration, particularly when model estimates are
used for valuation purposes as the rescaling process may result in mean estimates that
are relatively higher for some attributes than for others. For example, the rescaling of
model ML1 relative to the MNL model yields enlargement factors that range from 1.17
(for the dCURRENT parameter) to 2.4 (for the TTW parameter), determining different
directions of change for the parameter ratios of model ML1 relative to MNL.

Then, the rescaling effect is driven by the reduced unobserved variance, but a
different mechanism determines the uneven nature of the enlargement factors for
each parameter. An intuitive explanation for this would be that the explicit treatment
of parameter variation over the population into the systematic utility portion is
equivalent to the incorporation of an explanatory variable previously left out in the
original (MNL) model. This is analogous to one of the misspecification problems
discussed by Horowitz (1981), and would lead to the restructuring of the utility param-
eters to compensate for the extra explanation accounted for.(8) In any case, the point is
that the direction of parameter rescaling relative to the MNL model has to be con-
sidered a potential source of model misspecification, just as the omission of explanatory
variables is. As will be shown below, this issue may have some repercussions on WTP
estimations.

5.2 Classical estimation: individual-level parameters
Individual-level parameters were calculated using the simulated maximum likelihood
estimates and conditioning them with individual household choices, as shown in
section 3. Frequency charts for the 75 individual household parameters are shown
in figure 1 (over). The charts reflect the actual frequency distribution of the parameters
over the population, which is in fact discrete as the sample has only a finite number of
`individuals' (that is, 75 households). The figures show that given the sample size, the
frequency distributions do not resemble smooth normal distributions, as we assumed

(8) Comments by Joan Walker on this issue are greatly appreciated.

Willingness-to-pay estimation with mixed logit models 533



F
re
q
u
en
cy

F
re
q
u
en
cy

F
re
q
u
en
cy

F
re
q
u
en
cy

10

8

6

4

2

0

30

25

20

15

10

5

0

8

7

6

5

4

3

2

1

0

8

7

6

5

4

3

2

1

0

ÿ0
.0
1
8

ÿ0
.0
1
7

ÿ0
.0
1
5

ÿ0
.0
1
4

ÿ0
.0
1
2

ÿ0
.0
1
1

ÿ0
.0
0
9

ÿ0
.0
0
8

ÿ0
.0
0
6

ÿ0
.0
0
5

ÿ0
.0
0
3

ÿ0
.0
0
2

ÿ0
.0
0
0

ÿ0
.0
0
9
0

ÿ0
.0
0
8
5

ÿ0
.0
0
8
0

ÿ0
.0
0
7
5

ÿ0
.0
0
7
0

ÿ0
.0
0
6
5

ÿ0
.0
0
6
0

ÿ0
.0
0
5
5

ÿ0
.0
0
5
0

ÿ0
.0
0
4
5

ÿ0
.0
0
4
0

ÿ0
.0
0
3
5

ÿ0
.0
0
3
0

ÿ0
.0
0
2
5

ÿ0
.0
0
2
0

ÿ1
.2
5

ÿ1
.1
5

ÿ1
.0
5

ÿ0
.9
5

ÿ0
.8
5

ÿ0
.7
5

ÿ0
.6
5

ÿ0
.5
5

ÿ0
.4
5

ÿ0
.3
5

ÿ0
.2
5

ÿ0
.1
5

ÿ0
.0
5

0
.0
5

M
o
re

ÿ0
.1
3
0

ÿ0
.1
1
5

ÿ0
.1
0
0

ÿ0
.0
8
5

ÿ0
.0
7
0

ÿ0
.0
5
5

ÿ0
.0
4
0

ÿ0
.0
2
5

ÿ0
.0
1
0

0
.0
0
5

0
.0
2
0

Individual parameters

(a)

(b)

(c)

(d)

Figure 1. Histograms of (a) TTW, (b) TTS, (c) DA, (d) RENT point estimates for sampled population.
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for the estimation process. This means that a certain amount of error must be expected
when analysing a discrete set of values using a continuous distribution.

The distributions of household parameters reveal that only small percentages of
the sample have values with theoretically incorrect signs. In fact, it is obvious that the
previously calculated values for the expected percentages with wrong sign were over-
estimated. The actual percentages with incorrect sign are given in table 4, along with
the original estimations; the actual values were computed simply by counting individ-
ual cases with a theoretically incorrect sign (that is, a positive value). The original
values had been calculated as the cumulative mass function evaluated from zero to
positive infinity.

The percentages for the DA and RENT parameters correspond to just three and six
sampled households, respectively. Furthermore, in all nine cases the t-tests results of
the individual parameters were below one, suggesting that the incorrect-sign param-
eters were not statistically significant. Hence they could be considered as null values
for those exclusive households, and the sign assumptions could be maintained.

This finding has another consequence worth noticing: the parameter signs were
basically correct even when an unconstrained (normal) distribution was imposed on
them. This could be considered a case-specific situation, but it suggests that forcing the
parameters to follow a log-normal distribution, for example, may not be necessary and
hence a potential problem with that function could be avoided. As is known, log-normal
distributions tend to produce likelihood functions that are extremely flat around
the maximum, making convergence hard to achieve (Algers et al, 1999; Hensher and
Greene, 2003).

An interesting result arises if we evaluate the log-likelihood function for the indi-
vidual-level parameters instead of the population parameters [that is, the log-likelihood
value calculated at convergence with equation (4)]. In this case the log-likelihood value
for the estimated model shows a substantial improvement in fit: from ÿ747.0 for the
log-likelihood based on population parameters, to ÿ512.9 for the value calculated from
individual-level coefficients. This is not a surprise, as the individual-level parameters
characterise the log-likelihood function more precisely than do the mean and standard
deviation of the population, resembling more accurately the observed household
choices.

5.3 Bayesian estimation
In this case, the use of the combination of Gibbs sampling and the Metropolis ^
Hastings algorithm leads to the simultaneous estimation of the two sets of parameters
described above (population and individual-based parameters). The first set, which are
the comparable ones, is presented in table 5 (over) (model ML2) together with those
of model ML1. Although the values are similar, the ML2 parameters are larger in
magnitude but again not in a constant scale. It is worth noting that for larger samples
(that is, samples of more than 300 individuals, or around 3000 observations) we have

Table 4. Percentage of individual parameters with incorrect sign.

Attribute Percentage with incorrect sign

population distribution individual parameters

TTW 4 0
TTS 1 0
DA 12 4
RENT 11 8
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found closer differences in scale between Bayesian and classical estimates, as have
other analysts (Huber and Train, 2001).

The observed substantial improvement in fit relates to the fact that the Bayesian
log-likelihood function, unlike that for the classical approach, is constructed as the
summation of the logarithm of the individually calculated choice probabilities with
their actual individual parameters, and not with averaged simulated probabilities.(9)

So, even though both values essentially express the fit of the model to the data, they are
calculated differently, and cannot be compared directly. To obtain a value equivalent to
the classically obtained log-likelihood from the Bayesian procedure, we inserted the
Bayesian estimates as initial values in the maximum-likelihood procedure; in this way
we aimed to get a simulation of the choice probabilities based on the Bayesian
solution. The log-likelihood value for the Bayesian estimates was ÿ769.0 (that is, worse
than the classical value), and the process later converged to ÿ747.0, showing that the
maximum-likelihood procedure was invariantly reaching a global maximum.(10)

On the other hand, if we compute the log-likelihood value as the multiplication of
the logarithms of individual choice probabilities (based on individual parameters), there
is a discrepancy between classically obtained individual values and the Bayesian results.
The c̀lassical' values yield a log-likelihood of ÿ512.9, whereas the Bayesian results give
the value of ÿ474.9.

To sum up, classical estimation yields better results in terms of fit for population
parameters, whereas the Bayesian procedure appears to be considerably more powerful
for individual-level parameters (at least for a small sample). This result has an intuitive
explanation: the maximum-likelihood procedure seeks a mean value that best repre-
sents the choices of the sampled population, plus a dispersion value that emulates the
variability around this mean. On the other hand, the Bayesian procedure is aimed
directly at satisfying the choices of each sampled person, and the population param-
eters are estimated taking this into account. In the classical approach the fact that the
sampled population is finite and discrete is conveniently forgotten for the sake of
simplicity, and the individual-level models are conditioned from parameters of an
infinite population.

Now we move to consider the second set of estimated parameters: the individual
bn . Frequency distributions for these values are plotted in figure 2. Again, the actual

Table 5. Hierarchical Bayes and maximum-likelihood estimators for mixed logit (ML) model
population parameters, with t-statistics shown in parentheses.

Attribute Parameter

ML1 ML2

TTW mean ÿ0.009924 (ÿ7.9) ÿ0.01141 (ÿ6.7)
standard deviation 0.005734 (4.5) 0.01133 (8.2)

TTS mean ÿ0.005769 (ÿ8.2) ÿ0.00783 (ÿ4.6)
standard deviation 0.002656 (2.7) 0.01025 (7.5)

DA mean ÿ0.478625 (ÿ6.8) ÿ0.56960 (ÿ8.3)
standard deviation 0.405665 (4.7) 0.46920 (7.0)

RENT mean ÿ0.057396 (ÿ7.0) ÿ0.06974 (ÿ8.9)
standard deviation 0.047482 (6.2) 0.05339 (5.6)

dCURRENT mean 1.053245 (5.5) 1.16800 (5.8)

Log-likelihood ÿ747.0 ÿ474.9

(9) The simulated probabilities are also individual based, but they are random outcomes which bear
no relation to the information provided by each household.
(10) We are grateful to Kenneth Train for having pointed this out to us.
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Figure 2. Histograms of (a) TTW, (b) TTS, (c) DA, (d) RENT individual point estimates for sampled
population.
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percentages of households with wrong-sign parameters are significantly lower than the
proportions estimated according to the distribution mass defined by the population
parameters. This comparison is shown in table 6.

The incorrect-sign percentage for the case of TTS corresponds to a single house-
hold which had a completely insignificant parameter (t � 0:02). Those for the DA and
RENT parameters correspond to the same households who received a wrong-sign
parameter in the classical estimation, and the values were again not significantly
different from zero.

5.4 Comparison
In previous literature it has been maintained that the two approachesöclassical and
Bayesianölead to equivalent and similar results (Huber and Train, 2001; Revelt
and Train, 2000). As the two estimation methods are similar in spirit (that is, they
share the same behavioural assumptions), the comparative advantages to the analyst
(that is, ease of implementation and analysis) must be taken into account in deciding
the preferred procedure.

To compare the approaches overcoming their scale problem, a correlation analysis
of both sets of individual-level parameters was conducted (table 7). The results suggest
that both procedures explain the variability of the coefficients over the population in a
fairly similar way.

In the end, we found the Bayesian approach preferable for the following reasons.
(a) Implementation of the estimation procedures was easier in WinBUGS, as it incor-
porates both the Gibbs sampler and the Metropolis ^Hastings algorithm as internal
functions.
(b) As Bayesian methods do not involve maximisation procedures, the problem of
multiple solutions (that is, the case of the ML log-likelihood function) is eliminated
and, with a sufficiently high number of simulations, convergence is assured.
(c) Bayesian methods are known to work well even with small samples (Lenk et al,
1999); this was also the case here, as evidenced by the substantially better fit of the
model estimated through hierarchical Bayes. Therefore, the Bayesian estimates have to
be considered more reliable.

Table 6. Percentage of individual parameters with incorrect sign.

Attribute Percentage with incorrect sign

population distribution individual parameters

TTW 15.7 0.0
TTS 22.2 1.3
DA 11.2 4.0
RENT 9.6 8.0

Table 7. Correlation between parameters estimated through classical and Bayesian techniques.

Attribute Correlation

TTW 0.968
TTS 0.900
DA 0.996
RENT 0.985
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6 Estimation of willingness to pay from population parameters
Most ML applications have been limited to estimating the first set of parameters
discussed above: the mean and spread of the distribution of population parameters over
the sample. In general, the estimation of WTP values involves taking ratios of stochas-
tic variables, even for models with fixed coefficients (Armstrong et al, 2001). In the ML
case this problem is compounded by the fact that not only the estimates but also the
parameters themselves are random variables, and this is not a trivial issue (Meijer and
Rouwendal, 2000).

In this section we discuss some econometric aspects of four different methods
which may be used to achieve WTP estimates from the parameter distributions.(11)

Although the methods can be applied to jointly distributed parameters, in this case
only independent distributions were used. However, we checked that the results were
indeed coincidental.

6.1  Ratios of population means
The simplest way to derive WTP values is to take the ratio of the means of the
parameter distributions involved. In other words, if

yu � f�mu , su � ^ yd � g�md , sd � ,
then

yu
yd
! mu

md

.

This is not the mean value of the WTP, but a WTP value derived from the coefficients
of the `average individual' for each parameter. Therefore, this interpretation should not
be used in cost ^ benefit analysis, and the calculation of this index may only be used as
a means of testing model specification.

The ratios of population means for the ML2 model are presented in table 8,
along with the MNL model estimates. In this case all the distributions are normal.
Confidence intervals for the ratios were again calculated using the t-test formula
proposed by Armstrong et al (2001).

In previous sections we opined that the ML parameters had a tendency to grow in
magnitude over the MNL parameters. Nevertheless, the parameter ratios tend to be
quite stable. In fact, the parameter ratios for models MNL and ML2 lie within each
other's confidence intervals, except for the WTP value for DA reductions, where the
mean value for model ML2 is not included in the interval for model MNL. Even
though the opposite does happen, a distinction has to be made and the analyst should
acknowledge the superior explanatory power of the ML model specification in order to
select a final WTP value.

(11) We are indebted to Kenneth Train for proposing the ideas that gave birth to this discussion.
However, any errors in our arguments are our sole responsibility.

Table 8.Willingness to pay (WTP) as ratio of population means, with confidence intervals shown
in parentheses, for multinomial (MNL) and mixed logit (ML) models.

Attribute Willingness to pay

MNL ML2

TTW (Ch$ per minute) 36 (29 ± 45) 37 (25 ± 54)
TTS (Ch$ per minute) 22 (16 ± 28) 25 (14 ± 40)
DA (Ch$ per days of 124 362 (100 818 ± 152 301) 98 009 (70 127 ± 135 793)

alert per year)
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In addition, it is worth recalling that, as the method disregards the rest of the
distribution, it considers a unique value for the parametersöneglecting all information
about heterogeneity in the population. In the end, the model is treated almost as an
MNL model; in some ways, making the extra estimation effort worthless.

6.2 Simulation
This method has been applied in the past to construct confidence intervals (Armstrong
et al, 2001; Ettema et al, 1997), and has been used to derive WTP values from ML
models by Hensher and Greene (2003) and Espino et al (2004). It is a first approach
to construct a WTP distribution over the population with the use of information
neglected by the previous method.

In this method, random draws for each parameter are taken from its distribution
and their ratio is computed. This is repeated a large number of times, allowing
frequencies to be computed sampling the WTP distribution. Mean and standard-
deviation values can then be inferred, as well as cumulative values from the resulting
distribution. An important feature of this method is that no assumptions are needed
about the resulting distribution of the parameter ratios. In particular, the ratio of two
normally distributed variables may turn out to be an unstable distribution (Meijer and
Rouwendal, 2000). For example, the ratio of two standard normal distributions is a
Cauchy distribution, and for this the first two moments cannot be estimated analyti-
cally. The ratio of independent multivariate normal distributions has been studied by
Fieller (1932) and Hinkley (1969).

The simulation results for the WTP distribution derived from the population
parameters of model ML2 are shown in table 9. Confidence intervals for the mean
value of the resulting distribution cannot be computed in this case. The standard errors
used for computing the confidence intervals in table 8 correspond to the standard
deviations of the asymptotic distributions of the estimators, which are normally dis-
tributed, and yield boundaries where the ratios of means lie within a 95% confidence
level. The standard-deviation values presented in table 9 are indicators of the variance
of the parameter ratios over the simulated population; the construction of a confidence
interval from these values would yield boundaries within which the parameter ratios of,
say, 95% of the population lie.

As can be seen, the spread of the distributions is extremely large. This is related to
the fact that the simulation process involves drawing values that may be close to zero.
When these correspond to the RENT parameter, the ratio tends to infinity yielding
inordinately large WTP values. To overcome such inconveniently extreme values
(both positive and negative), small and equal percentages were cut off from each tail
of the sampled distribution: 1% off each tail in WTP for both TTW and TTS reduction
distributions, and 3% off each tail in the WTP for DA reduction distribution.

Table 9. Simulated willingness-to-pay (WTP) distributions in multinomial (MNL) and mixed
logit (ML) models.

Attribute Simulated WTP

MNL ML2

TTW mean 36 36
(Ch$ per minute) standard deviation 134.6
TTS mean 22 26
(Ch$ per minute) standard deviation 20.8
DA mean 124 362 94 774
(Ch$ per days of alert per year) standard deviation 161 280
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Hensher and Greene (2003) discuss the effect of removing parts of the simulated
distributions of WTP, and compare this action with constraining the distributions. But
in relation to the validity of this method, the real issue is not whether, or how, to
constrain the distribution to make it theoretically correct. Hensher and Greene (2003)
acknowledge that the mere fact of applying statistic distributionsöwhich are already
analytical constructsöto behavioural parameters governed by an unknown logic
makes constraining (or removing parts of) the parameters or WTP distributions no
better and no worse than an unconstrained distribution, unless there is an underlying
theoretical rationale.

A consistent rationale for cutting off the tails of the distributions is the following:
there are no real people with such extreme values to fill in the tails we are removing. In
fact, much larger percentages should be taken off each tail for the simulated WTP
distribution to be plausibleömaybe even 20% or 30%. So, when applying this method,
the analyst must remember that the final goal is to estimate WTP values for the
sampled population, and for sample sizes smaller than infinity this is a finite set of
values. Therefore, the real problem with the simulation of WTP distributions from
sampled values is not how to constrain them in a correct way but, rather, the fact
that we are simulating countless numbers of values for people who do not even exist.

6.3 Log-normal distribution for WTP
The use of log-normal distributions for parameters over the population has been
proposed by many authors. This would constrain their signs to be consistent and would
yield an analytical expression for the resulting WTP distribution, as the ratio of two
log-normal distributed variables is also log-normally distributed.

Consider a random variable x such that x � N(mx , sx ). Then a variable defined
as X � exp (x) has a log-normal distribution with mean exp (mx � s 2

x=2), and standard
deviation given by exp (mx � s 2

x )=2[ exp (s
2
x )ÿ 1]1=2. Now consider the ratio of two

log-normal variables, say X=Y, then:

X

Y
� exp�x�

exp� y� � exp�xÿ y� � WTP ,

where

WTP � lnN
�
exp

�
mwtp �

s 2
wtp

2

�
, exp

�
mwtp �

s 2
wtp

2

�
�exp�s 2

wtp � ÿ 1��1=2�
�
. (6)

As x and y are normally distributed variables, their difference is also normally
distributed with

�xÿ y� � N�mx ÿ my , s
2
x � s 2

y ÿ 2sxy � .
As we are dealing only with independent parameters, in this case the covariance term
disappears. Then, replacing the above expression in equation (6) we get an expression
for the log-normal WTP distribution:

WTP � lnN
�
exp
�
�mx ÿ my � �

s 2
x � s 2

y

2

�
,

exp
�
�mx ÿ my � �

s 2
x � s 2

y

2

�
�exp�s 2

x � s 2
y � ÿ 1�1=2

�
. (7)

Expression (7) can be used to calculate cumulative proportions and confidence
intervals. Table 10 (over) presents the results of an ML model (ML3-log) where all
taste coefficients were specified as log-normal except for the dCURRENT parameter
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which was taken as fixed.(12) The second column of the table shows the coefficients
of the underlying normal distribution [that is, the mk and sk of equation (7)]. To
compute the WTP values, two courses of action may be followed: first, take the ratio
of the means of each attribute parameter to that of the RENT mean (which is analogous
to the first method described above); and second, take the mean of the resulting WTP
log-normal distribution parameters directly. Both set of results are presented in table 11.

The very considerable differences between the ratios of the mean and the means of
the ratios introduce new evidence to the discussion. The ratios of the means do not
yield the WTP for the mean individual household, but for a virtual one which perceives
the mean marginal utility of the population for each attribute (that is, an `individual
household' which has the mean parameter for, say, the DA attribute and also the mean
parameter for RENT). The existence of this household is not a fact but a mere coincidence,
and even if such a household did exist, its WTP value would not be representative.
So, again, this index may only be useful as a model specification search tool.

Table 11 shows that taking the ratio of the parameter means considerably under-
estimates the mean of the WTP distribution. Hensher and Greene (2003) simulated the
resulting WTP log-normal distribution and also derived an unusually high mean. They
managed to lower it to more plausible values by truncating the simulated distribution,

(12) Usually the log-normal mean, median, and standard-deviation values are derived from the
exponential of normal variables. In WinBUGS, however, log-normal distributions may be specified
directly for the coefficients defined by their mean and standard deviation. Inference of mean and
standard deviation of the exponentiated normal is done simply by inverting the process.

Table 10. Log-normal distributed parameters (with t-statistics shown in parentheses) mixed logit
(ML) models.

Attribute Parameter

ML3-log ML3

TTW mean 0.010189 (5.5) ÿ8.78450
standard deviation 0.678145 (2.4) 2.89762

TTS mean 0.006323 (5.4) ÿ9.84639
standard deviation 0.755265 (3.0) 3.09285

DA mean 0.453518 (2.1) ÿ0.92269
standard deviation 0.249252 (2.4) 0.51375

RENT mean 0.062650 (3.5) ÿ4.84943
standard deviation 0.496853 (2.4) 2.03926

dCURRENT mean 1.06775 (8.6)

Log-likelihood ÿ593.0

Table 11. Ratio of log-normal means and means of the log-normal willingness to pay (WTP).

Attribute WTP for log-normal model

ratio of mean of WTP
means distribution

TTW mean 37.5 2 401
(Ch$ per minute) standard deviation 1 278 543
TTS mean 23.3 1 490
(Ch$ per minute) standard deviation 177 999
DA mean 86 928 5 557 979
(Ch$ per days of alert per year) standard deviation 50 424 646
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but found it very sensitive to this kind of constraint. So this phenomenon is not case
specific and does not seem to depend on the data.

In fact, an analytical explanation for this underestimation can easily be derived.
Consider two independently distributed log-normal structural parameters b and g
(for example, time and cost) with associated normal means b and c and variances s 2

and d 2, respectively. The ratio of their means can be expressed as a function of the
coefficients of the underlying normal distributions:

�b � exp
�
b� s 2

2

�
�g � exp

�
c� d 2

2

�
9>>>>=>>>>;

�b
�g
� exp

�
bÿ c� s 2 ÿ d 2

2

�
.

And from expression (7) we can express the mean of the WTP log-normal distribution
in terms of the same coefficients:

WTP � exp
�
bÿ c� s 2 � d 2

2

�
.

From here we can derive the relation

WTP �
�b
�g
exp d 2 .

Thus, the ratio of the means of log-normal parameters is equal to the mean WTP
value deflated by the exponential of the variance of the normal distribution underlying
the log-normal cost coefficient (that is, the parameter in the denominator of the WTP
ratio). In other words, the WTP mean and the ratio of parameter means are scaled by
a proportionality factor which, by the way, is fixed for the model (that is, the three
attributes considered in this example are scaled by the same factor). The logic of this
effect is as follows: the larger the variance of the cost coefficient, the larger the portion
of the mass of the denominators that will be near to zero, and hence the mean WTP
will grow larger.

The use of log-normal distributions for valuation purposes is not recommended.
Their wide tail tends to give extremely large WTP values, with high probabilities
yielding large portions of cumulative mass close to zero which distort the analysis.
Its main appeal is that it allows constraining the parameters to be strictly positive
(negative coefficients, enter with a negative sign in the utility formulation). However, as
we have seen, the relative ease of the estimation with normal distributions may also
lead to structural parameters with correct theoretical signs. Thus, it is not worthwhile
undergoing the effort of estimating the model with log-normal distributed parameters,
as even if the individual values show a large portion of incorrectly signed people, the
right course of action should be to investigate them for consistency, and perhaps
remove them from the sample.

6.4 Fixing the cost coefficient
A fourth method consists of fixing the cost coefficient and thus letting the WTP
distribution follow the distribution of the numerator; if it follows a normal distribution,
as in our example, the resulting WTP distribution is simply given by:

yatt � N�matt , satt �
9=; yatt

yc
� N

�
matt

yc
,
satt

yc

�
,

yc fixed
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where c indicates cost and att indicates an attribute other than cost. Revelt and Train
(2000) cite three reasons for fixing the cost coefficient: (1) this effectively solves the
problem under discussion; (2) the ML model tends to be unstable when all coefficients
vary over the population, and identification issues arise (Ruud, 1996); and (3) the
choice of an appropriate distribution for the cost coefficient is not straightforward,
as the normal and other distributions allow for positive values, and the log-normal is
both hard to estimate and gives values very close to zeroöas discussed above.

Our models incorporate a fixed coefficient for the dCURRENT attribute, avoiding
potential identification problems. The other two arguments are valid, but can be
resolved by the use of individual-level WTP estimation, as proposed in section 3.
Notwithstanding, there is one drawback of this method that needs attention.

Table 12 compares estimates of WTP derived from the MNL model with those of
an ML model (ML4) with a fixed RENT coefficient. As can be seen, the means of the
resulting WTP distributions are considerably higher than the MNL point estimatesö
a result that has also been reported by Algers et al (1999) and Revelt and Train (1998).

Hensher (2001a; 2001b; 2001c) has also found higher mean WTP values for hetero-
scedastic and autoregressive specifications, which could indicate that mixed-logit
models (with any error structure) tend to overestimate WTP values. But Hensher did
not explore the possibility that constraining only part of the error structure could
be causing an unbalanced growth in the model coefficients, hence producing higher
welfare estimates.

In section 5 we explained why larger means for ML parameters, in relation to
the MNL model, should be expected because of the extra variance explained by the
random parameters; we also discussed possible reasons for obtaining uneven enlarge-
ment factors. In fact, constraining a taste coefficient to be fixed over the population
may make it grow in a less-than-average proportion (that is, the parameters that are
allowed to vary grow more than the parameters that should vary over the population,
but are constrained to be fixed). Note that this is not the case with the dCURRENT
parameter, because its standard deviation was originally estimated and was found not
to be significant. This issue is best illustrated in table 13, where the different columns
present the same model estimated with different parameters being fixed. In all cases,
the coefficients with potential variability remain `small' when fixed.

In this model fixing the RENT coefficient makes the denominator of the WTP
smaller than it should be, causing an overestimation of the mean WTP (as well as of
the whole WTP distribution). The inverse miscalculation can occur if a noncost coeffi-
cient is fixed: then the numerator remains smaller, and so does the WTP value. In
table 13, the cells containing WTP values affected by constraining a given coefficient
are shown in bold.

Table 12. Mean estimates of willingness to pay for fixed-cost coefficient mixed logit (ML) and
multinomial (MNL) models.

Attribute Willingness to pay

MNL ML4

TTW mean 36 51
(Ch$ per minute) standard deviation 54.8
TTS mean 22 31
(Ch$ per minute) standard deviation 47.5
DA mean 124 362 126 160
(Ch$ per days of alert per year) standard deviation 107 430
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Table 13.Willingness to pay (WTP) (with t-statistics shown in parentheses) of mixed logit (ML) models estimated with different parameters being fixed.

Attribute Parametersa

ML1 ML4 RENT fixed ML5 TTW fixed ML6 TTS fixed ML7 DA fixed

TTW mean ÿ0.01141 (ÿ6.7) ÿ0.00966 (ÿ6.2) ÿ0.00688 (ÿ11.9) ÿ0.01036 (ÿ6.7) ÿ0.01004 (ÿ6.1)
standard deviation 0.01133 (8.2) 0.01036 (8.3) - 0.01021 (8.4) 0.01077 (8.2)

TTS mean ÿ0.00783 (ÿ4.6) ÿ0.00588 (ÿ3.9) ÿ0.00672 (ÿ4.2) ÿ0.00503 (ÿ10.3) ÿ0.00708 (ÿ4.3)
standard deviation 0.01025 (7.5) 0.00898 (8.3) 0.00921 (8.0) - 0.00961 (7.9)

DA mean ÿ0.56960 (ÿ8.3) ÿ0.45870 (ÿ8.0) ÿ0.50060 (ÿ8.0) ÿ0.51480 (ÿ8.5) ÿ0.44540 (ÿ13.1)
standard deviation 0.46920 (7.0) 0.39060 (6.9) 0.42240 (6.8) 0.39380 (6.6) -

RENT mean ÿ0.06974 (ÿ8.9) ÿ0.04363 (ÿ13.9) ÿ0.06017 (ÿ8.5) ÿ0.06010 (ÿ8.7) ÿ0.06060 (ÿ8.4)
standard deviation 0.05339 (5.6) - 0.04582 (7.2) 0.04479 (7.5) 0.04874 (7.5)

dCURRENT mean 1.16800 (5.8) 1.01200 (5.6) 1.10000 (5.7) 1.07400 (5.9) 1.08500 (6.0)

Willingness to pay
TTW mean 36 51 26.4 39.8 38
(Ch$ per minute) standard deviation 54.8
TTS mean 22 31 25.7 19.3 26.9
(Ch$ per minute) standard deviation 47.5
DA (Ch$ per days mean 124 362 126 160 99 837 102 788 88 198
ofalert per year) standard deviation 107 430

Log-likelihood ÿ570.0 ÿ698.0 ÿ634.9 ÿ609.1 ÿ646.0
a The WTP for models ML5 to ML7 do not have a standard-deviation estimate as they are constructed as the ratio between a fixed parameter and
another with a normal distribution.



7 Estimation of willingness to pay from individual-level parameters
In section 5 we discussed two econometric processes involved in the estimation of
individual-level structural parameters: the use of a Bayesian approach and the con-
ditioning of individual choices to the population parameters. As mentioned, we applied
the Bayesian approach in this research. The estimation of individual taste parameters
eliminates the issue of analysing theWTP distribution resulting from the division of two
random variables over the population. Instead, individual-level WTP point estimates
can be computed along with their individual confidence intervals.

Figures 3 and 4 present frequency charts for the valuation of the three attributes in
our stated-preference experiment (TTW, TTS, and DA), derived from individual WTP
point estimates obtained from model ML1. The charts show high concentrations on
each edge of the axis, accounting for extremely large positive and negative WTP values.
However, it is important to mention that, notwithstanding the sign of theWTP value, all
implausibly large values belong to households with nonsignificant RENT parameters.
That is, the denominator of the WTP ratio is statistically close to zero, yielding an
inordinately large value.

It is also important to mention that in figures 3(a) and 3(b), the only negative WTP
values are also associated with extreme cases. In fact, they correspond to the few
observations with an incorrect sign for the RENT parameter; as this was also not
significant in those cases, it caused the ratio to grow disproportionably.

As suggested above, special attention should be given to observations with a
cost parameter statistically equal to zero. In these cases, the WTP ratio grows to
implausibly large monetary valuations for reductions in the corresponding attribute.
On the other hand, as the individual household does not place any weight on the cost
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Figure 3. Individual-level point estimates of willingness to pay for reductions lin (a) TTW, (b) TTS.
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attribute, we can debate whether those observations do not consider the cost attribute
at all, or whether the weight they place on it is negligible in relation to the rest of the
attributes. If the last is the case, the interpretation of an extremely large WTP value
would be correct. If not, monetary valuations can not be computed for these observa-
tions. Further theoretical development is necessary to define criteria to help answer
this question, but note that it is case-specific (that is, it depends on the survey design,
the underlying microeconomic model, and the characteristics of the valued attributes).

Having cleared the above, we can now derive the real mean value of the WTP
distribution over the population. The means and standard deviations of the valued
attributes, estimated from the discrete set of individual WTP point estimates, are
presented in table 14. Comparison of these values with those presented in tables 2, 8,
9, 11, and 12, illustrates the potential miscalculation of WTP values which may arise
from attempting to treat the variability of a finite population as a continuous distribu-
tion. The large variances of the WTP values are caused by the extremely large values
resulting from the division by close-to-zero RENT coefficients in some cases, as already
mentioned.

The estimation of individual-level WTP values is as close as we can get to the
correct method of valuation inference from mixed logit models. However, for project
evaluation and cost ^ benefit analysis we usually need data for different groups or
strata in the population. The beauty of individual-level data is that an analysis at the
level of a given stratification can be performed simply by averaging the WTP values of
those individuals present in each strata, along with their cluster variance. In fact,
thresholds (or strata boundaries) can even be defined ex-post in order to minimise
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Figure 4. Individual-level of willingness to pay point estimates for reductions in DA.

Table 14. Mean and standard deviation of individual-level willingness to pay (WTP) values in
multinomial (MNL) and mixed logit (ML) models.

Attribute Individual WTP values

MNL ML1

TTW mean 36 41.6
(Ch$ per minute) standard deviation 42 379
TTS mean 22 18.7
(Ch$ per minute) standard deviation 11 513
DA mean 124 362 139 920
(Ch$ per days of alert per year) standard deviation 1:7� 1011
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the variance of the WTP values across the group, and hence allow more homogeneous
segments to be defined for project evaluation and detailed analysis.

8 Conclusions
We have shown the complexity associated with the use of random-parameter models
for estimating willingness to pay. We have also shown that a useful procedure is to
estimate individual-level parameters, rather than population-distribution parameters as
is normally done. Among other things, this may allow us to find out more accurately
if, for example, some individuals have not responded seriously to a stated-preference
survey. Also, and perhaps more speculatively, with results at the individual level it
may be possible to search for `representative' individuals of a particular class when
sampling in order to collect smaller samples which are richer in individuals with the
appropriate features to represent previously defined strata of interest.

The power of the approach suggests that more emphasis should be put on the
collection of data of high quality, rather than excessive preoccupation with sample
size. Future research can explore the potential of the use of more informative priors to
reduce the necessity for larger sample sizes (even though they will always be preferable).
As evidence for this, in this paper we used a very small sample size (75 individual
households) and still managed to obtain useful results.(13) However, the relation between
the classical and Bayesian estimates was not smooth, as may be the case for larger
samples [that is, more than 300 individuals (see, for example Huber and Train, 2001)],
where the available evidence would suggest that Bayesian estimation does not have clear
advantages over classical procedures. Notwithstanding, our results suggest that the
possibility of estimating robust models with smaller samples could be an important
advantage of this technique.(14)

Finally, it is important to bear in mind that these results are data specific and follow
the main purpose of the studyöwhich is to provide evidence of the potential scenarios
which a researcher could face when estimating these kind of models and, in particular,
willingness-to-pay values. Discussions on the stability and robustness of classically
estimated parameters are available in the existing literature (Bhat, 2001; Garrido and
Silva, 2004; Walker, 2001). Further research is being carried out to look into robustness
issues of Bayesian outputs, but these did not lie within our scope in this paper.
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