
Adoption of Open Source Software in
Software-Intensive Industry

Øyvind Hauge

Doctoral Thesis
Submitted for the Partial Fulfilment of the Requirements for the Degree of

philosophiae doctor

Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and Technology

June 17th, 2010

Copyright c©2010 Øyvind Hauge

ISBN 978-82-471-2112-2 (printed version)

ISBN 978-82-471-2113-9 (electronic version)

ISSN 1503-8181

NTNU Serial number 2010:76

Printed in Norway by NTNU-trykk, Trondheim

Abstract

Context: Open source software (OSS) has seen significant adoption, and it has changed
not only how software-intensive companies develop and make money on software, but
also how they select and acquire software. As a consequence of these changes there has
been confusion about how organizations may benefit from OSS.

Objective: Through answering the following research questions (RQ1-RQ3), this thesis
aims to explore and describe (1) the different ways in which organizations adopt OSS and
(2) how these organizations select OSS components.

RQ1: How and to what extent are software-intensive organizations currently adopting
OSS?

RQ2: What is the current status of research on OSS adoption in organizations and how
may this research benefit practitioners?

RQ3: Which strategies and resources do software developers use to identify, evaluate, and
select OSS components?

Method: This thesis consists of six related studies, all focused on the adoption of OSS in
software-intensive organizations. These studies embody case studies, systematic literature
reviews, and surveys using face-to-face interviews, e-mail, and web-based questionnaires.

Results: Based on these six studies, this thesis provides the following five contributions
(C1-C5) through eight papers (P1-P8):

C1 Empirically grounded descriptions of how several organizations adopt OSS.
C2 A systematic review of the literature on OSS adoption in organizations.
C3 A classification framework presenting six ways of organizational OSS adoption,

each with its particular benefits and challenges. The six ways include: deploying
OSS products, using OSS CASE tools, integrating OSS components, participat-
ing in the development of OSS products, providing OSS products, and using OSS
development practices.

C4 Descriptions, based on empirical evidence, of the strategies and resources practi-
tioners actually use to identify, evaluate, and select OSS components.

C5 A model for situated software selection and its constraints, indicating why formal-
ized selection methods have failed to see significant adoption.

Conclusion: Practitioners should observe that they have several possibilities and take this
into account when adopting OSS. Research on OSS adoption should focus on a few topics,
borrow more support from related fields within software engineering and information
systems research, and extend the foundation offered by this thesis. Research on software
selection should put stronger emphasis on the situation the selection is conducted in and
the rich (text) experience developers benefit from when selecting (OSS) components.

i

Preface

This thesis is submitted to the Norwegian University of Science and Technology (NTNU)
for partial fulfilment of the requirements for the degree of philosophiae doctor.

This doctoral work has been performed at the Department of Computer and Informa-
tion Science, NTNU, Trondheim, under the supervision of Professor Reidar Conradi as
main supervisor and Professor Letizia Jaccheri and Adjunct Associate Professor Torgeir
Dingsøyr as co-advisors.

This PhD thesis is financed as an integrated-PhD study by an internal scholarship from
the Department of Computer and Information Science and the Faculty of Information
Technology, Mathematics and Electrical Engineering at NTNU. Some of the work has
been financed and performed as part of the NorskCOSI project.

NorskCOSI was a research project funded by the Norwegian Research Council (2006-
2008) through project number 174417. The project was managed by ICT Norway, and
it was part of the European Co-development using inner and Open source in Software
Intensive products (COSI) project under the Information Technology for European Ad-
vancement (ITEA) 2 programme.

iii

Acknowledgements

This thesis is financed by an internal scholarship from the Department of Computer and
Information Science and the Faculty of Information Technology, Mathematics and Elec-
trical Engineering at NTNU, and to some extent by the NorskCOSI project. I would like
to acknowledge both NTNU, NorskCOSI, and the Norwegian Research Council for their
financial support.

Next, I would like to thank Professor Reidar Conradi for his supervision during my time
as a PhD student. Furthermore, I would like to thank the participants in the COSI project
who have provided very valuable input. While I have been deeply involved in all the work
reported in this thesis, much of it has been done in collaboration with colleagues. I would
therefore like to thank my colleagues at IDI/NTNU for our collaboration, in particular
Claudia Ayala, Thomas Østerlie, Sven Ziemer, Daniela S. Cruzes, Carl-Fredrik Sørensen,
and everyone participating in “Forskerfabrikken”. I would also like to thank Juho Lind-
man, Jingyue Li and Xavier Franch for our co-authorship, and Andreas Røsdal, Marinela
Gerea, Pål Haug, Ketil Sandanger Velle and Tron André Skarpenes for the collaboration
related to their Master’s theses.

The many anonymous individuals who have participated in our interviews and surveys
have contributed more than they know and I would like to show my gratitude for sharing
some of your precious time with us. Thank you!

Finally, I would like to thank my family, in particular Constanza, for their support.

NTNU, May 2, 2010
Øyvind Hauge

v

Contents

Abstract i

Preface iii

Acknowledgements v

Contents ix

List of Tables xi

List of Figures xiii

Abbreviation xv

1 Introduction 1
1.1 Background and Scope . 1
1.2 Research Questions . 2
1.3 Conducted Research . 3
1.4 Contributions . 4

1.4.1 Selected Papers . 4
1.4.2 Contributions of this Thesis . 7

1.5 Thesis Structure . 8

2 Background and Related Work 9
2.1 Background . 9

2.1.1 Software Engineering and Empirical Research 9
2.1.2 Open Source Software . 11
2.1.3 Integration of Software Components 14

2.2 Adoption of OSS in Software-Intensive Organizations 16
2.2.1 Significant Potential and Adoption: No Guarantee for Success . . 16
2.2.2 Ways of Leveraging OSS . 17
2.2.3 Uncertainty about What OSS Adoption Is 19
2.2.4 The Lack of Empirical Research on OSS Adoption 20

2.3 Selection of Software Components . 20
2.3.1 The Practical Selection Problem 20

vii

2.3.2 Research: Focus on Formalized Selection Methods 22
2.3.3 Practice: Informal and Based on Familiarity 26

2.4 Summary: Scope and Main Research Challenges 27
2.4.1 Adoption of OSS in Organizations 27
2.4.2 Selection of OSS Components 27
2.4.3 Related Research Areas and the Scope of this Thesis 28

3 Context and Research Design 31
3.1 Research Context . 31

3.1.1 The COSI Project . 31
3.1.2 The Norwegian Software Industry 33

3.2 Applied Research Methods . 33
3.2.1 An Empirical Approach . 33
3.2.2 Choice of Research Methods . 33
3.2.3 Survey Research . 35
3.2.4 Case Study Research . 35
3.2.5 Systematic Literature Reviews 35

3.3 Research Process . 36
3.3.1 Phase 1: Exploration of how Organizations Adopt OSS 36
3.3.2 Phase 2: Completing the Framework 38
3.3.3 Phase 3: Going in Depth on Selection of OSS Components 40

3.4 Evaluation and Validity . 40

4 Results Part 1: Organizational Adoption of OSS 43
4.1 C1: Descriptions of Actual Adoption of OSS 43
4.2 C2: A Systematic Literature Review on Adoption of OSS 45
4.3 C3: A Framework for Organizational Adoption of OSS 46

4.3.1 Benefits and Challenges Related to Adopting OSS 46
4.3.2 Relationships between the Ways of Adopting OSS 49
4.3.3 The Development of the Framework 50

5 Results Part 2: Selection of OSS Components 51
5.1 C4: Descriptions of Actual Selection Practices 52

5.1.1 The use of Formalized Selection Methods 52
5.1.2 Identification of OSS Components 52
5.1.3 Evaluation of OSS Components 53

5.2 C5: Situated Selection of Components 55
5.2.1 The Selection Process . 56
5.2.2 The Selection Context . 57
5.2.3 The Developer . 57

6 Discussions and Evaluation of the Research 59
6.1 Results vs. Existing Literature . 59

6.1.1 Adoption of OSS . 59
6.1.2 Selection of Software Components 60

6.2 Implications for Future Research . 63
6.2.1 Adoption of OSS . 63
6.2.2 Selection of Software Components 63

6.3 Implications for Practice . 65
6.3.1 Adoption of OSS . 65
6.3.2 Selection of Software Components 66

6.4 Results vs. the Research Questions . 66
6.5 Results vs. the Goals of the COSI Project 67
6.6 Validity . 67

6.6.1 Construct Validity . 67
6.6.2 Internal validity . 68
6.6.3 External Validity . 69

6.7 The Scope of the Thesis . 70

7 Conclusions and Future Work 71
7.1 Conclusions . 71

7.1.1 Adoption of OSS . 71
7.1.2 Selection of OSS Components 73

7.2 Future Work . 73

Glossary 75

References 79

A Selected Papers 101
P1 - Surveying Industrial Roles in Open Source Software Development 103
P2 - Adoption of Open Source in the Software Industry 111
P3 - Understanding Open Source in an Industrial Context 125
P4 - An Empirical Study on Selection of Open Source Software - Preliminary

Results . 135
P5 - Challenges of the Open Source Component Marketplace in the Industry . . 143
P6 - Providing Commercial Open Source Software: Lessons Learned 161
P7 - Risks and Risk Mitigation in Open Source Software Adoption: Bridging

the Gap between Literature and Practice 177
P8 - Open Source Software in Organizations - A Systematic Literature Review . 193

B Interview Guides and Questionnaires 257

List of Tables

Table 2.1 OSS business models . 18
Table 2.2 Internet-based approaches to OSS selection 25
Table 2.3 OSS research in relation to other research areas 29

Table 4.1 Organizational adoption of OSS 47
Table 4.2 Potential benefits and drawbacks of adopting OSS 48

Table 5.1 Practices used to identify OSS components 54
Table 5.2 Practices used to evaluate OSS components 55

Table 6.1 Topics for future research . 64

Table 7.1 Relation between research questions, contributions, and papers . . . 72

Table B.1 Interview guides and questionnaires used as in this thesis 258

xi

List of Figures

Figure 1.1 Effective and efficient software development 2
Figure 1.2 Relation between studies and papers 4

Figure 2.1 A brief timeline of relevant events in the OSS history 12
Figure 2.2 A general COTS selection process 23

Figure 3.1 Relation between studies and the three phases of this research . . . 34

Figure 4.1 The number of papers on OSS and OSS in organizations 45
Figure 4.2 Overview of the number of empirical publications on OSS 46
Figure 4.3 The development of the framework for organizational adoption of

OSS . 50

Figure 5.1 Situated selection of OSS components 56

Figure 6.1 A three-dimensional view of software selection 61

xiii

Abbreviations

API Application programming interface
CBSE Component Based Software Engineering
COSI Co-development using inner and Open source in Software Intensive

products. The COSI project was part of the ITEA 2 programme.
COTS Commercial Off-The-Shelf
EBSE Evidence Based Software Engineering
FLOSS Free/Libre Open Source Software
FOSS Free Open Source Software
FS Free Software
FSF The Free Software Foundation
ISS Inner Source Software
ITEA Information Technology for European Advancement.
NACE Statistical Classification of Economic Activities in the European Com-

munity
NTNU Norwegian University of Science and Technology
OSI The Open Source Initiative
OSS Open Source Software
SE Software Engineering
SLR Systematic Literature Review

xv

Chapter 1

Introduction

This thesis is a paper collection consisting of eight papers (P1-P8). This chapter provides
a brief overview of the reported research, including its background and scope, and its
research questions. The chapter furthermore gives an overview of the papers included in
the thesis and the thesis’ contributions. Finally, it presents the structure of the thesis.

1.1 Background and Scope

Open Source Software (OSS) has over the last decade had a significant impact on software-
intensive organizations. With software-intensive organizations we think of any public or
private institution, company, or similar organizations which develop, maintain, or make
heavy use of software. OSS offers these organizations a variety of possibilities and bene-
fits. The collaborative and distributed development paradigm associated with some large
OSS projects has inspired organizations to evolve their own development processes (Wes-
selius, 2008), and increasingly collaborate across company borders (Ågerfalk and Fitzger-
ald, 2008). Moreover, Fitzgerald (2006) describes how OSS has contributed to changing
how software companies make money by provoking a shift from traditional license-based
models into service-based business models. Finally, Ghosh (2006), shows that the easy
and massive access to OSS products has changed how organizations acquire software, and
has enabled significant adoption of OSS products in many domains.

Even though the adoption of OSS has been significant, there has, according to an ITEA
Report on Open Source Software (2004), been much confusion around what OSS is, and
how organizations may benefit from it. ITEA 2 COSI, a European research project, was
therefore established to understand how software intensive industry may benefit from
OSS and from distributed collaborative software development. Understanding how orga-
nizations benefit from or adopt OSS is also the main topic of this thesis.

One of the key challenges for the COSI project and the software-intensive industry is the
continuous commodification of software (van der Linden et al., 2009). Increasingly large
parts of most software systems are becoming commodity, and provide no or little advan-
tage over competitors. Hence, it is usually better to reuse existing commodity components
or to collaborate with others, than to develop new components (see Figure 1.1). At the
same time, we must be aware of not giving away the intellectual property which ensures

1

CHAPTER 1. INTRODUCTION

CollaborationsInter
company

Open

T
ec
h
n
o
lo
g
y

Commodity

Basic for the business

Differentiating

COTS and OSS

Loosing intellecutal
property

Wasting valuable
engineering
resources

Inter-company
collaboration and
gated communities

Technology life cycle

Intra
company

Figure 1.1: Effective and efficient software development

a competitive advantage.

In a review of several empirical studies, Mohagheghi and Conradi (2007) show how Com-
ponent Based Software Engineering (CBSE) and software reuse may reduce the effort
needed to develop software systems and to increase the quality of the end products. Most
software systems are therefore built through integration of reusable software components
(Yang et al., 2005). Given the significance of CBSE and the valuable resource OSS com-
ponents constitute, it is evident that reuse of OSS has made a significant impact on the
software industry.

However, even though software reuse has potential advantages, it is not unproblematic.
The selection of components is according to Gorton et al. (2003), a part of the reuse
process where failure can have significant consequences. The vast numbers of poorly
described OSS components, and fragmented, incomplete, and untrustworthy information
available over the Internet is not making component selection easier. To be able to support
practitioners through improved tools and practices, it is important to understand their
current practice. It is in other words important to understand how software-intensive
organizations currently select OSS components. This leads us to the second topic of
this thesis, selection of software components.

1.2 Research Questions

This thesis has three research questions aiming to explore how software-intensive orga-
nizations adopt OSS (RQ1), to assess the status of research on OSS in organizations
(RQ2), and in particular how these organizations select OSS components to be integrated
into software systems (RQ3). These are:

RQ1: How and to what extent are software-intensive organizations currently adopting

2

CHAPTER 1. INTRODUCTION

OSS?
RQ2: What is the current status of research on OSS adoption in organizations and how

may this research benefit practitioners?
RQ3: Which strategies and resources do software developers use to identify, evaluate, and

select OSS components?

With adoption of OSS we consider software-intensive organizations at any of the five
stages of the adoption process (Rogers, 2003). This includes both organizations that plan
(knowledge, persuasion, and decision) to adopt OSS and organizations that have already
included OSS as part of their software development (implementation and confirmation).
However, we will mainly focus on organizations that have already adopted OSS.

1.3 Conducted Research

This thesis has had a focus on empirical studies, using both qualitative and quantitative
methods in the context of various software-intensive organizations from the ITEA 2 COSI
project (2006-2008) and the Norwegian software industry (see Section 3.1). Moreover, in
collaborations with our colleagues at the Technical University of Catalunya, Barcelona,
one study was also conducted with a sample of the Spanish organizations.

The investigations in this thesis have mainly been conducted through six different stud-
ies (S1-S6) (see Figure 1.2). These studies have been conducted in collaboration with
colleagues and Master’s students at NTNU and the Technical University of Catalunya,
partners in the COSI project, Telenor IT Norway, and other software-intensive organiza-
tions. A brief overview of these studies is presented below (see also Chapter 3).

S1: A survey (2006) conducted in the context of the COSI project, consisting of in-
terviews with five employees from three COSI companies and a web-based ques-
tionnaire with 24 responses from the industrial partners in the COSI project. The
study was aimed at defining a base-line for how the COSI partners adopted OSS.

S2: A survey (2007) conducted in the Norwegian software industry. The survey con-
sisted of a large e-mail survey with more than 700 responses, a web-based ques-
tionnaire with 66 usable responses, and an additional 16 interviews with develop-
ers from different companies. The study was initiated to assess the extent of OSS
adoption in the software sector and to understand how organizations adopted OSS.

S3: A case study (2006-2008) based on material from the COSI project. This material
consisted of several interviews, project deliverables, informal conversations with
project members, workshops, and field notes from project meetings and company
visits. This study was conducted to help the COSI partners in reaching their indi-
vidual goals and to increase our understanding of OSS adoption.

S4: A systematic literature review (2008-2009) focusing on OSS adoption and soft-
ware engineering. The goal of this study was to create a platform for future re-
search on OSS adoption and to use evidence from the literature to understand the
different ways in which organizations adopt OSS.

S5: A survey (2009) in Telenor IT Norway, the IT department of a large telecom com-

3

CHAPTER 1. INTRODUCTION

pany, consisting of four interviews, a questionnaire with more than 80 responses,
and two workshops. This study was conducted to understand the perceived advan-
tages and risks of OSS adoption, and to identify steps to reduce these risks.

S6: A survey (2008-2009) conducted in the Norwegian and the Spanish software-
intensive industry consisting of interviews with 23 software developers from dif-
ferent organizations. The goal of this study was to understand the actual practices
used to select OSS components.

1.4 Contributions

This section gives an overview of the papers included in this thesis and the thesis’ con-
tributions. The relation between the papers, research questions, studies, and the thesis’
contributions is found in Figure 1.2 and Table 7.1.

S1
COSI

survey

P1
S2

Norwegian
survey

P4P2
S6

Spanish/
Norwegian

survey

P5

S3
COSI
case

studies

P3

Study

Paper

A B
Study B
extends
study A

P6

P8
S4

Systematic
literature

review

P7
S5

Norwegian
case
study

2006 2010

Legend

Figure 1.2: Relation between studies and papers

1.4.1 Selected Papers

This thesis includes eight papers that will be labeled P1-P8 throughout the thesis. The
papers are added verbatim as attachments in Appendix A and they are available from the
Software Engineering group’s web page: http://www.idi.ntnu.no/grupper/
su/

4

http://www.idi.ntnu.no/grupper/su/
http://www.idi.ntnu.no/grupper/su/

CHAPTER 1. INTRODUCTION

P1 Øyvind Hauge, Carl-Fredrik Sørensen, and Andreas Røsdal. Surveying In-
dustrial Roles in Open Source Software Development. In Joseph Feller, Brian
Fitzgerald, Walt Scacchi, and Alberto Sillitti, editors, Proceedings of the 3rd
IFIP WG 2.13 International Conference on Open Source Software (OSS2007) -
Open Source Development, Adoption and Innovation, June 11th-14th, Limerick,
Ireland, volume 234/2007 of IFIP Advances in Information and Communication
Technology, pages 259-264, 2007. Springer.
My contribution: I was involved in all stages of the paper, including being the
leading author. Røsdal contributed to design and data collection.

P2 Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi. Adoption of Open
Source in the Software Industry. In Barbara Russo, Ernesto Damiani, Scott A.
Hissam, Björn Lundell, and Giancarlo Succi, editors, Proceedings of the 4th IFIP
WG 2.13 International Conferences on Open Source Software (OSS2008) - Open
Source Development Communities and Quality, September 7th-10th, Milano,
Italy, volume 275/2008 of IFIP Advances in Information and Communication
Technology, pages 211-222, 2008. Springer.
My contribution: I was involved in all stages of the paper, including being the
leading author. Sørensen contributed to design and data collection.

P3 Sven Ziemer, Øyvind Hauge, Thomas Østerlie, and Juho Lindman. Understand-
ing Open Source in an Industrial Context. In Albert Dipanda, Richard Chbeir,
and Kokou Yetongnon, editors, Proceedings of the 4th IEEE International Con-
ference on Signal-Image Technology & Internet-Based Systems (SITIS 2008),
November 30th-December 3rd, Bali, Indonesia, pages 539-546, 2008. IEEE
Computer Society.
My contribution: The paper was a collaborative effort based on discussions and
data from the four authors. I wrote mainly the literature section, took care of
submitting the paper, and prepared the camera-ready version.

5

CHAPTER 1. INTRODUCTION

P4 Øyvind Hauge, Thomas Østerlie, Carl-Fredrik Sørensen, and Marinela Gerea.
An Empirical Study on Selection of Open Source Software - Preliminary Results.
In Andrea Capiluppi and Gregorio Robles, editors, Proceedings of the ICSE 2009
Workshop on Emerging Trends in Free/Libre/Open Source Software Research
and Development (FLOSS 2009), May 18th, Vancouver, Canada, pages 42-47,
2009. IEEE Computer Society.
My contribution: I was involved in all stages of the paper, including being the
leading author. However, Gerea contributed significantly to data collection, and
Østerlie contributed to analyzing and presenting the findings.

P5 Claudia P. Ayala, Øyvind Hauge, Reidar Conradi, Xavier Franch, Jingyue Li,
and Ketil Sandanger Velle. Challenges of the Open Source Component Market-
place in the Industry. In Cornelia Boldyreff, Kevin Crowston, Björn Lundell, and
Anthony I. Wasserman, editors, Proceedings of the 5th IFIP WG 2.13 Interna-
tional Conference on Open Source Systems (OSS2009) - Open Source Ecosys-
tems: Diverse Communities, June 3rd-6th, Skövde, Sweden, volume 299/2009
of IFIP Advances in Information and Communication Technology, pages 213-
224, 2009. Springer.
My contribution: The paper is the result of a collaborative effort led by Ayala
and Hauge. I was involved in the design of the study, transcription, translation,
analysis of the results, and writing of the paper. Data collection was done by
Ayala and Velle.

P6 Øyvind Hauge and Sven Ziemer. Providing Commercial Open Source Soft-
ware: Lessons Learned. In Cornelia Boldyreff, Kevin Crowston, Björn Lun-
dell, and Anthony I. Wasserman, editors, Proceedings of the 5th IFIP Work-
ing Group 2.13 International Conference on Open Source Systems (OSS2009)
- Open Source Ecosystems: Diverse Communities, June 3rd-6th, Skövde, Swe-
den, volume 299/2009 of IFIP Advances in Information and Communication
Technology, pages 70-82, 2009. Springer.
My contribution: The paper is the result of a collaborative effort where I was
the leading author.

6

CHAPTER 1. INTRODUCTION

P7 Øyvind Hauge, Daniela Soares Cruzes, Reidar Conradi, Ketil Sandanger Velle,
and Tron Ándre Skarpenes. Risks and Risk Mitigation in Open Source Software
Adoption: Bridging the Gap between Literature and Practice. In Pär J. Ågerfalk,
John Noll, and Cornelia Boldyreff, Proceedings of the 6th IFIP Working Group
2.13 International Conference on Open Source Systems (OSS2010), May 30th-
June 2nd, Notre Dame, USA, volume 319/2010 of IFIP Advances in Information
and Communication Technology, pages 105-118, 2010. Springer.
My contribution: I was involved in all stages of the paper, including being
the leading author. However, Velle and Skarpenes contributed significantly to
the design of the study and to the data collection, and Cruzes contributed to the
presentation of the finding.

P8 Øyvind Hauge, Claudia P. Ayala, and Reidar Conradi. Open Source Software in
Organizations - A Systematic Literature Review. Submitted to Information and
Software Technology (IST) on December 3rd 2009.
My contribution: The paper is the result of a collaborative effort led by Hauge
and Ayala. I was involved in all stages of the paper, including being the leading
author.

1.4.2 Contributions of this Thesis

This thesis contributes to filling two gaps in OSS research. First, the majority of the re-
search on OSS focuses on communities of volunteers and the activities going on in these
communities (Scacchi et al., 2006; von Krogh and von Hippel, 2006; Stol and Babar,
2009). In contrast, this thesis has focused on the adoption of OSS in organizations. Sec-
ond, most of the research on software selection has focused on suggesting formalized
methods that prescribe how selection should be done (Mahmood et al., 2007; Mohamed
et al., 2007). In contrast, this thesis has focused on describing actual selection practice.

More precisely the thesis has five main contributions (C1-C5). First, C1-C3 offer insight
as to how organizations actually adopt OSS. These three contributions construct a solid
platform for future research on OSS adoption. Based on this platform, we offer implica-
tions for research, in particular, but also for practice. The contributions are:

C1 Through empirically grounded descriptions, we offer insight as to how several or-
ganizations actually adopt OSS, and we show that these organizations adopt OSS
in significantly different ways.

C2 We offer a systematic review of the empirical evidence in the literature on OSS
adoption. We moreover organize this empirical evidence according to how the in-
volved organizations adopt OSS.

C3 Based on C1 and C2, we have developed a classification framework consisting of
six ways in which organizations adopt OSS. This framework offers researchers in-
creased precision when talking about OSS adoption. It may also serve practitioners
in identifying the benefits and challenges related to their own adoption of OSS.

Second, contributions C4 and C5 increase the understanding of software selection. Based

7

CHAPTER 1. INTRODUCTION

on these contributions we draw implications for both practice and research. We suggest
in particular that research on software selection should increase its attention towards the
situation the selection is conducted in and the rich (text) experience available from both
people and across the Internet. The contributions are:

C4 We provide empirically grounded descriptions of the practices software developers
actually use when selecting OSS components.

C5 Based on this empirical foundation, we offer a model for situated1 software selec-
tion. This model puts the practices that are used to select components into a context.
By adding the situation the selection is conducted in as a new dimension to software
selection, the model offers and explanation as to why formalized selection methods
have had limited influence on practice.

1.5 Thesis Structure

This thesis is structured into seven chapters, including this introduction. These are:

Chapter 2 presents the background for the work conducted in this thesis, including soft-
ware engineering, OSS, and integration of software components. Then, it focuses on the
two main topics of this thesis (1) adoption of OSS in organizations and (2) selection of
software components. Readers who are familiar with these topics may skip this chapter.
In addition, the chapter provides an overview of related topics which had to be left out of
the thesis’ scope.

Chapter 3 presents the research conducted in this thesis and the context of this work.

Chapter 4 and 5 give an overview of the main results provided by this research. These
results are organized into the thesis’ two main topics. Chapter 4 focuses on OSS adoption
and presents contributions C1-C3. Chapter 5 focuses on software selection and presents
contributions C4 and C5.

Chapter 6, evaluates and discusses the research with respect to the research literature, re-
search questions, COSI goals, validity, and the scope of the thesis. In addition, it presents
implications for both research and practice. These implications include input for future
research on both OSS adoption and software selection.

Finally, Chapter 7 concludes the thesis and discusses a few possible extensions to this
thesis. Readers who are mainly interested in this thesis’ contributions should read this
introduction together with Chapters 4, 5, and 7.

In addition, Appendix A presents the papers that are published as part of this work, and
Appendix B gives an overview of the interview guides and questionnaires used in this
thesis.

1The term situated action “underscores the view that every course of action depends in essential ways
upon its . . . circumstances” (Suchman, 1987, p. 50). Software selection practices are heavily depending on
the context in which they are performed and on the developer performing them.

8

Chapter 2

Background and Related Work

This chapter provides a background for the topics discussed in this thesis. The chapter
is divided into four sections. The first section gives a brief background for software
engineering, OSS, and software integration. The second and the third section present
related research on the thesis’ two main topic (1) OSS adoption and (2) selection of OSS
components. Finally, the fourth section summarizes the research challenges and gives a
short overview of topics that had to be left outside the scope of this thesis.

2.1 Background

Software engineering, OSS, and software selection constitute a basis for the work con-
ducted in this thesis. In this section, we give a brief overview of software engineering and
software engineering research. We describe OSS as a multifaceted phenomenon, give a
short historical background for OSS, and present the view that OSS is something different
from software engineering. While we disagree with this view, it has dominated much of
the research on OSS. Finally, we give an introduction to software reuse and CBSE.

2.1.1 Software Engineering and Empirical Research

Software Engineering

As software development became increasingly complex, many software development
projects faced premature cancellations, delays, and cost overruns. The application of
engineering practices was believed to remedy these problems, and software engineering
(SE) was the response to what Dijkstra (1972) described as the “software crisis”. Boehm
(1976, p. 1226) defined software engineering as:

The practical application of scientific knowledge in the design and construction
of computer programs and the associated documentation required to develop,
operate, and maintain them.

Even though the severity of this “crisis” has been questioned (Jørgensen and Moløkken-
Østvold, 2006), there is no doubt that software engineering is a complex endeavor cover-

9

CHAPTER 2. BACKGROUND AND RELATED WORK

ing a large span of topics. According to the Software Engineering Body of Knowledge
(SWEBOK) edited by Abran et al. (2004), software engineering covers topics such as
software requirements, design, construction, testing, maintenance, configuration man-
agement, and quality, together with software engineering management, processes, and
tools and methods. Software engineering is furthermore significantly different from other
kinds of engineering (Kruchten, 2004), and it is characterized by the unique, complex and
ever changing nature of software development projects (Basili et al., 1986; Mohagheghi,
2004).

Software Engineering Research

The overall goal of research on software engineering is to inform practitioners through
creating new or revised knowledge related to any of the areas which constitutes software
engineering (Osterweil, 2007). According to Sjøberg et al. (2007, p. 358) software engi-
neering (SE) research concerns:

(1) the development of new, or modification of existing, technologies (process
models, methods, techniques, tools or languages) to support SE activities, and
(2) the evaluation and comparison of the effect of using such technology in the
often very complex interaction of individuals, teams, projects and organisations,
and various types of task and software system [sic].

Much of this research was for a long time motivated by solving the “software crisis”.
However, in failing to solve this crisis, research ended up in what Glass (1994) criticized
as the “research crisis”. Research failed to influence practice because it was troubled by:

• Narrow Focus: While software engineering research covers a wide span of top-
ics, much of this research has had a rather narrow focus (Glass et al., 2002; Segal
et al., 2005; Höfer and Tichy, 2007). Topics like conceptual analysis, measurement
and metrics, and tools, methods, and frameworks frequently occur. Researchers
have furthermore favored a limited number of research methods, included few ref-
erences to other disciplines, and conducted a limited number of longitudinal stud-
ies. Research has been heavily influenced by formal and mathematical approaches
(Boehm, 2006b), it has focused too much on proposing new methods (Fenton,
1993), and has had a bias towards normative research and prescriptive contribu-
tions (Glass et al., 2002; Hansen et al., 2004).

• Lack of Empirical Validation: In their eagerness to propose new methods, many
researchers have made claims and promises about their newly developed methods
without backing them up with solid empirical data (Fenton, 1993; Tichy et al., 1995;
Zelkowitz and Wallace, 1998). Even though the level of validation has increased,
the lack of empirical validation is still a significant challenge to the credibility of
software engineering research (Zelkowitz, 2009).

• Limited Relevance to Practice: Many of the problems researchers have studied
are of little significance to practitioners, while the overlooked problems are often
the ones which turn out to be important (Potts, 1993). Frustrated by the research

10

CHAPTER 2. BACKGROUND AND RELATED WORK

community’s constant focus on proposing new methodos, Glass (2004) requested
advice on how to use current methods rather than an continuous stream of new ones.

The challenges to research on software engineering, motivated some changes to software
engineering research. Potts (1993) requested a more practical approach to research, Tichy
et al. (1993) asked for a scientific basis for the software engineering research, Zelkowitz
and Wallace (1998) motivated for more empirical research, and Basili (1996) discussed
the need for real world studies and the use of the industry as a “laboratory”. Many of
these requests from the nineties were repeated by, for example Sjøberg et al. (2007). All
in all there was, and still is, an agreement that there is a need for:

• More relevance to practice through more varied empirical research in real contexts
• More rigor in the planning, execution, and reporting of this research

Inspired by evidence based medicine, Kitchenham et al. (2004), and Dybå et al. (2005)
proposed evidence based software engineering (EBSE) as an evolution of empirical soft-
ware engineering. By using systematic literature reviews they intend to integrate the
evidence from many empirical studies with current best practices. Having a base of high
quality studies focusing on the same research question(s) is thus a prerequisite for EBSE.

2.1.2 Open Source Software

Open Source Software Is a Multifaceted Phenomenon

OSS products cover almost everything from operating systems (Linux, OpenSolaris),
through object-relational mapping libraries (Hibernate, Apache Torque), to desktop tools
(OpenOffice.org, Thunderbird). Users of these products are through each individual prod-
ucts’ license granted the freedom to run, study, redistribute, and improve the software.
Access to the software’s source code is a prerequisite for these freedoms (Rosen, 2005).
An OSS product can be defined as:

A piece of software released with a software license approved by either the Open
Source Initiative (OSI) or the Free Software Foundation (FSF).

However, the OSS phenomenon is much more than just software products. While there
have been several attempts at defining OSS, “[w]e do not have a universally accepted
definition of OSS” (Wang and Wang, 2001, p. 90). We agree with Brown and Booch
(2002, p. 125) in that “describing a laundry list of different definitions of open-source and
then positing a new one is not particularly fruitful”. We will rather reflect on the fact that
there are several understandings of what OSS is. Brown and Booch (2002),and Gacek
and Arief (2004) illustrate that OSS has a multidisciplinary nature and that it may be
understood as software products, communities, software development processes, release
management processes, business models, and so on.

The diversity of OSS is also seen in the many different communities supporting OSS
products and the practices these communities use. For instance, while Robles et al. (2007)

11

CHAPTER 2. BACKGROUND AND RELATED WORK

show that close to 1500 companies had contributed to Debian, Capiluppi et al. (2003a)
provide evidence that most OSS communities have only one or a few developers. More-
over, Noll (2009) contrasts evidence in the widely cited paper by Mockus et al. (2002),
and shows that the development practices in OSS communities are significantly heteroge-
neous. We therefore consider that:

Open source software (OSS) is a multifaceted phenomenon consisting of a wide
spectrum of software products provided by heterogeneous communities using a
variety of software development and maintenance practices.

Not only are there different understandings of what OSS is, there are also several other
similar terms. Despite some of their historical and ideological differences, this thesis
considers Free Software (FS), Free Open Source Software (FOSS), and Free/Libre Open
Source Software (FLOSS) to be equivalent with Open Source Software (OSS). No dis-
tinctions will be made unless absolutely necessary.

The multidisciplinary nature of OSS can also be seen by looking at the many different
perspectives which have been used to study OSS. In their effort to define OSS, Gacek
and Arief (2004) consider research fields such as computer science, management and
organization science, social science, psychology, economics, and finally law.

A Brief Historical Background

This section gives a simplified view on the OSS history and illustrates how software has
gone from being open and available, through being closed and unavailable, to again be-
coming more open (see Figure 2.1).

Phase 3

Phase 2

Phase 1

2006 The ITEA COSI project, “OSS 2.0” by Fitzgerald (2006)

1998 Netscape’s release of Mozilla, The Open Source Initiative

1991 Linux, World Wide Web

1985 The Free Software Foundation
1983 The GNU project
1977 Berkeley Software Distribution (BSD)

1969 ARPANET, UNIX, IBM’s unbundling of hardware and software

1958 Software is defined

Figure 2.1: A brief timeline of relevant events in the OSS history

Phase 1: The Hacker Era: Many of the programmers in the period after the Second
World War had engineering or physics backgrounds and were using computers mainly to
solve problems from their own domain (Raymond, 1999). Software was at the time mainly
shared freely between researchers and engineers who had common interests. Many of

12

CHAPTER 2. BACKGROUND AND RELATED WORK

these programmers were often called hackers1 because of their interest in software pro-
gramming. Companies within the early computer industry were furthermore mainly fo-
cusing on developing and selling hardware (von Krogh and von Hippel, 2003). This phase
ended when IBM decided to unbundle their software from their hardware in 1969 (Grad,
2002).

Phase 2: The Growth of Proprietary Software: In the late seventies and early eighties
the use of software increased quite dramatically, and AT&T and other companies started
to see the commercial value of software. To exploit this commercial potential, AT&T
released Unix as a for-fee product and restricted access to its source code (Weber, 2004).
Other companies followed AT&T in their commercialization of software, and the eighties
witnessed the rise of software companies like Microsoft, Oracle, and SAP AG.

In contrast to the companies refusing to release their products’ source code, Richard Stall-
man announced the GNU (GNU is Not Unix) project in 1983 and the Free Software Foun-
dation in 1985 (Stallman, 1999). The goal of the GNU project and FSF was to create a
new Unix-like operating system and promote free software. This operating system was
never completed, but with Linus Torvalds’ Linux kernel, GNU/Linux has grown to be-
come perhaps the most well known OSS product ever.

Phase 3: The Commercialization of OSS: Even though Stallman (1999) and the Free
Software Foundation emphasized that software should be free as in free speech, not as in
free beer, “Free” did not correspond very well with commercial companies. As a response
to this, the term “open source” was coined in relation to Netscape’s release of its Mozilla
web browser under an OSS license in 1998 (Hamerly et al., 1999). Later the same year,
Bruce Perence and Eric Raymond initiated the Open Source Initiative as an organization
for education and advocacy of OSS (Perens, 1999).

Although open source software is considered a better term for commercial companies,
OSS did not immediately see significant commercial adoption. However, in the beginning
of the new millennium there has been an increasing interest in OSS, and Fitzgerald (2006,
p. 587) writes that OSS has evolved “into a more mainstream and commercially viable
form”. In 2006, ITEA initiated the industrial research project COSI and a report, edited
by Ghosh (2006), illustrates the economic impact of OSS on the ICT sector.

The Alienation of OSS - Views that OSS is Something “Different”

OSS has to a certain extent been characterized by the many conflicting views of what it is
and how it is different from “traditional” software. In particular, advocates of OSS have
claimed that OSS is cheaper, has fewer defects, gets improvements faster, and is generally
better than “other kinds” of software.

“Both evidence and theory confirm that open source delivers better reliability,
lower costs, shorter development times, and a higher quality of code (includ-

1A hacker is not a person who breaks security measures, but "someone who loves to program and enjoys
being clever about it." (Stallman, 1999, p. 53).

13

CHAPTER 2. BACKGROUND AND RELATED WORK

ing better security)” (Raymond, 2004, p. 88).

At the same time, Østerlie and Jaccheri (2007) state that many researchers have treated
and described OSS as being something different from proprietary software products and
traditional software development as well. There are conflicting views on open source and
free software (Stallman and Lessig, 2002), and contrasts between OSS vs. proprietary
or closed source software (Paulson et al., 2004), OSS vs. Commercial-Off-The-Shelf
(COTS) (Di Giacomo, 2005b), the cathedral vs. the bazaar (Raymond, 2001), copyleft
vs. copyright (de Laat, 2005), OSS development vs. software engineering (Dinh-Trong
and Bieman, 2005), and so on. We furthermore see companies which use OSS to differ-
entiate themselves from their competitors by using the OSS brand. For instance, slogans
such as “The world’s most popular open source database” (MySQL) and “global leader
in enterprise-class open source middleware” (JBoss) are used to illustrate that these com-
panies offer something different than other software vendors.

Fitzgerald (2005), Fuggetta (2003), and others question whether these statements are re-
ally true and show that the reality is somewhat more nuanced. For instance:

• The majority of OSS projects struggle to attract contributors (Capiluppi et al.,
2003b; Krishnamurthy, 2002).

• Many of the developers participating in the development of OSS are paid by their
employers to do so (Hertel et al., 2003; Robles et al., 2007).

• Many OSS products are company initiated (Bonaccorsi et al., 2007).
• The quality of OSS products is not always as good as expected (Stamelos et al.,

2002).
• OSS products may also be developed in-house without any community (Noll, 2009).

More recent research is starting to overcome the view that OSS is something different.
Fitzgerald (2006) says that OSS has evolved into a more commercially viable form, and
we agree with Baird (2008) in that pitting OSS up against proprietary software is meaning-
less. Proprietary software and OSS are rather converging, and we see that organizations
most often adopt a hybrid approach to OSS and combine OSS with proprietary software
(Bonaccorsi et al., 2006; Baird, 2008).

2.1.3 Integration of Software Components

Software reuse and CBSE have had the significant impact on software development through
dealing with some of its complexity (Boehm, 2006a). Software reuse, CBSE, and inte-
gration with existing systems have therefore became the preferred way of developing
software (Yang et al., 2005).

The basic idea of software reuse is to take existing software components and reuse them
in other software systems. While Karlsson (1995) discusses software development for
reuse and software development with reuse, this thesis is only focusing on software de-
velopment with reuse. Software development with reuse is believed to (1) reduce the
development time and cost, (2) give a richer feature set than if the required functionality

14

CHAPTER 2. BACKGROUND AND RELATED WORK

was developed from scratch, and (3) increase the quality as compared to development
from scratch (Mohagheghi and Conradi, 2007). Frakes and Kang (2005, p. 529) define
software reuse as:

the use of existing software or software knowledge to construct new software.

We see that software reuse involves more than just the reuse of software artifacts. Soft-
ware reuse does in fact concern reuse of procedures, knowledge, documentation, archi-
tectures, design, and code (Rothenberger et al., 2003). However, in this thesis we will
mainly concern ourselves with the reuse of software components.

Although we acknowledge that there are several definitions of what a component is (Torchi-
ano and Morisio, 2004), we rely mainly on only one of these definitions. Szyperski et al.
(2002, p. 41) define a software component as:

a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and
is subject to composition by third parties.

From the definition of a component we see that it is a piece of source code and it is devel-
oped independently from the system in which it is integrated. These pieces of source code
can take several forms. The granularity of a component can, according to Mohagheghi
(2004), vary from subroutines and classes, through libraries and modules, to frameworks
constituting a whole product line. While much of the early research focused on reuse of
COTS, a reusable component may also be developed in-house or as OSS.

By decomposing software systems into components, Parnas (1972, p. 1055) expected
to “reduce the programming [of the system] to the relatively independent programming
of a number of small, manageable programs”. The development of small independent
components was expected to:

• Enable parallel development of components
• Increase comprehensibility
• Increased flexibility and reuse
• Simplify (internal) modification of a component

Boehm and Abts (1999), and Vitharana (2003) recognize similar advantages of CBSE, but
add that CBSE may increase the quality of a software product through (massive) reuse of
its parts and through enabling simple replacement of one component with another. CBSE
can therefore be seen as an important enabler of extensive software reuse.

Even though there is some discussion about what CBSE and component based software
development (CBSD) are (Brown and Wallnau, 1998), they can be said to concern the con-
struction of a software system through integrating (relatively) independent components.
One system can consist of many components and one component can be part of several
systems. There are also several different stakeholders involved in CBSE, each of which
have different requirements to the components and the final system. Vitharana (2003)

15

CHAPTER 2. BACKGROUND AND RELATED WORK

identifies (1) the component provider2 which develops the reusable components, (2) the
integrator which integrates these components into a software system, and (3) the customer
which sponsors the development of the system as the three most important stakeholders in
CBSE. In addition, we may also include the (4) end user. Each of these four stakeholders
may have multiple relations with other stakeholders.

We have already seen that software reuse and CBSE are the standard ways of developing
(all kinds of) software, and that a range of software components of different granularity,
from different domains etc. are reused. However, reuse projects and the processes used
in these projects can also have significant variations (Morisio et al., 2000; Rothenberger
et al., 2003). Li et al. (2009) find furthermore that CBSE can be used with any kind of
traditional development process. Software reuse is thus used:

• In all kinds of software products
• With all kinds of reusable software artefacts
• With all kinds of software projects, processes, and practices

2.2 Adoption of OSS in Software-Intensive Organizations

In this section, we give a brief overview of existing work on how organizations approach
OSS. First, we illustrate that OSS adoption may give significant advantages. However,
there are possible pitfalls related to this adoption, and there are furthermore several ways
of adopting OSS. This, and the perception that OSS is something different from tradi-
tional software, have made practitioners uncertain about what it means to adopt OSS. If
practitioners fail to understand what OSS adoption means, they could miss the benefits
OSS adoption may give. Finally, we will show that there is a lack of research investigating
this matter.

2.2.1 Significant Potential and Adoption: No Guarantee for Success

Due to the success of big projects like Linux, Apache, and Mozilla, OSS has become
interesting to software-intensive organizations on several fronts:

• As OSS products or components: SourceForge and other portals host thousands
of products spanning not only several domains, but also the whole software stack.
Ghosh (2006) estimated the total value of available OSS products to be in the range
of billions of Euros. Several empirical studies show that the adoption of such prod-
ucts is significant (Ghosh, 2002; Glynn et al., 2005; Lundell et al., 2006).

• Through OSS communities: Many OSS projects have achieved significant dif-
fusion of their products and have attracted a large number of contributions from
their communities. This is for instance exemplified in the contributions and user
assistance in Apache and Mozilla projects (Mockus et al., 2002; Lakhani and von
Hippel, 2003). To achieve similar benefits, several software-intensive organizations

2Vitharana (2003) uses the terms “component developer” and “application assembler”.

16

CHAPTER 2. BACKGROUND AND RELATED WORK

have also released their own OSS products and contributed to OSS products con-
trolled by others (Henkel, 2006; Bonaccorsi et al., 2007; Stam, 2009).

• Through “OSS development practices”: Several OSS projects have managed
to deal with many of the challenges related to distributed software development
(Crowston et al., 2007; Østerlie and Wang, 2007). Even though there is no set of
development practices which are universal to all OSS projects, practices such as
user participation, short release cycles, and peer code reviews have frequently been
associated with OSS projects and are often labeled “OSS practices” (Feller and
Fitzgerald, 2002; Scacchi, 2004). The successful application of these practices has
inspired several companies to adopt them (Melian and Mähring, 2008; Wesselius,
2008).

Despite offering significant potential, OSS does not come without possible pitfalls. These
pitfalls may stop organizations from exploring the opportunities offered by OSS.

The amount of OSS products available is considerable, and many of these products are
high quality products like Linux, Apache HTTP Server, and MySQL. While these high
profile products have attracted a lot of attention in the research literature e.g. (Mockus and
Herbsleb, 2002; Dahlander and Magnusson, 2005; Yu, 2007), the products at the other end
of the scale have attracted next to no attention. Despite this lack of attention, the qual-
ity of many OSS products is, according to Stamelos et al. (2002), lower than expected.
Moreover, many products are struggling to attract attention or simply do not work at all
(Krishnamurthy, 2002; Capiluppi et al., 2003a). However, it is not only the community-
driven OSS projects which struggle, commercially initiated OSS products are also having
problems attracting a community and getting contributions from this community (Boldyr-
eff et al., 2004; Bleek et al., 2005; Järvensivu and Mikkonen, 2008).

While it is possible to read about organizations struggling with their adoption of OSS
products in the media, it is rare to see studies of failed or at least problematic OSS adop-
tion endeavours in the research literature. Fitzgerald (2009) reports one story from an Irish
hospital where they succeeded at adopting an OSS e-mail solution, but failed to adopt an
OSS office application suite. Even though the research literature has focused little on
OSS adoption failures, failure is a possible scenario for organizations that consider OSS
adoption.

2.2.2 Ways of Leveraging OSS

Organizations adopt OSS in different ways. For instance, Henkel (2006) discusses partic-
ipation in the Linux embedded community, Chen et al. (2008) investigates the integration
of OSS components, and Fitzgerald (2009) presents two cases where OSS products are de-
ployed in a hospital environment. However, to our knowledge no attempt has been made
to get a complete overview of these differences in a software engineering perspective.

The ways software-intensive organizations adopt OSS are typically influenced by a de-
sire to either make or save money, or in other words their business model. Even though
business models are outside the scope of this thesis, they illustrate that organizations have

17

CHAPTER 2. BACKGROUND AND RELATED WORK

several ways of benefiting from OSS. The business models also influence how these or-
ganizations approach OSS in software development. Based on Hecker (1999), Raymond
(2001), Krishnamurthy (2005), and Fitzgerald (2006), we present an overview of some
OSS business models in Table 2.1. However, these business models focus on on creating
revenue stream, and less on how these organizations actually do software development.

Table 2.1: OSS business models
Business model Description

Loss-Leader/Support
Sellers/Brand Licensing

Release products as OSS to retain market position and to sell
related products, services, or brands. May be combined with a
dual licensing schema.

Distributor Package and distribute OSS products developed by someone
else and charge for these and other services.

Service Provider Provide services of any kind related to any OSS product pro-
vided by someone else, and charge for these services.

Accessorizing Sell accessories to OSS products ranging from mugs and T-
shirts, to professionally-edited and produced documentation.

Widget Frosting Provide software products as OSS to attract contributions or to
share development costs. This is particularly relevant for many
hardware manufacturers that require software to operate their
products, but make no money selling this software.

Software Producer Integrate existing OSS products or the source code of these
products into their own software.

Although Hecker (1999), Raymond (2001), Krishnamurthy (2005), and Fitzgerald (2006)
use different names for each of the business models, most of them have one thing in
common: most companies provide and make money on related services and/or products.
According to Fitzgerald (2006), OSS and its general lack of license fees is in fact con-
tributing to shifting the software industry’s traditional license-based business models to-
wards service-based models. Despite this shift towards more service-based models, most
organizations which adopt OSS business models are still providing proprietary products in
what Bonaccorsi et al. (2006) call a “hybrid business model”. OSS seems to have found
a place in the market together with, rather than instead of, proprietary products (Baird,
2008).

The four-level ladder of resource allocation by Grand et al. (2004) illustrates another di-
mension of how organizations approach OSS. The model shows how organizations dedi-
cate (sparse) resources to leveraging OSS:

Level 1 The organization is mainly a user of OSS products and needs to dedicate re-
sources to deploy OSS products within its own organization.

Level 2 The organization uses OSS as a complementary asset, though for instance de-

18

CHAPTER 2. BACKGROUND AND RELATED WORK

livering OSS products together with its hardware products or as part of their
software products.

Level 3 The organization actively contributes to the development of OSS products con-
trolled by itself or by others.

Level 4 The organization bases its whole business around providing services related to
existing OSS products.

Finally, Dahlander and Magnusson (2005) present three different relationships an organi-
zation may have to an OSS community. The authors illustrate how the organization may
(1) exploit and harm the community as a parasite, (2) benefit from the community in a
commensialistic way, or (3) live in a symbiotic relationship with the community. In a
more recent paper, Dahlander and Magnusson (2008) show that an organization may use
different strategies for making use of OSS communities, either though accessing, align-
ing, or assimilating the communities.

We see that organizations may have different business approaches to OSS, different levels
of resource allocations, and different relationships to OSS communities using different
strategies for benefiting from them. These are but a few of the possible options an organi-
zation has when adopting OSS. However, in the remainder of this thesis we will focus on
how software-intensive organizations face OSS in their own software development, and
the benefits and challenges they meet when doing so.

2.2.3 Uncertainty about What OSS Adoption Is

The OSS phenomenon has been characterized by several contrasts (see Section 2.1.2).
These contrasts and the view that OSS is something “different” have contributed to alien-
ating OSS and making practitioners uncertain about how they may benefit from it. Or-
ganizations have faced OSS with skepticism and confusion. Goode (2005) showed that
practitioners did not see the relevance of OSS and were therefore skeptic about adopting
it. According to an ITEA Report on Open Source Software (Daclin, 2004), there has been
a lot of confusion around what OSS is and how organizations may benefit from it. There
are several factors which could have contributed to creating this confusion and skepticism:

• Organizations are used to proprietary software provided by a vendor. The presen-
tation of OSS as something different than proprietary software, has made organiza-
tions uncertain about its relevance.

• OSS advocates have created unrealistic expectations to OSS products by portraying
them as being better, faster, cheaper, and so on. When OSS products fail to live up
to this hype, practitioners’ skepticism towards OSS is increased.

• The research literature has been unclear about what it actually means to adopt OSS.
Several publications discuss adoption of OSS without clarifying how, or what, the
involved organizations actually do related to OSS. Özel et al. (2007) discuss “F/OSS
usage and adoption” in public administration, Bonaccorsi et al. (2006) talk about
companies which “have entered the open source field”, and Ravesteyn and Silvius
(2008) discuss organizations which “are active in the OSS domain”. However, none

19

CHAPTER 2. BACKGROUND AND RELATED WORK

of these really state clearly what these organizations actually do in relation to OSS.
This unclarity further increases the confusion around OSS adoption.

We fear that this cofusion around OSS adoption may prevent software-intensive organiza-
tions from leveraging OSS, and it is therefore important to understand what OSS adoption
means to organizations.

2.2.4 The Lack of Empirical Research on OSS Adoption

The views that OSS is something different has contributed to creating an excessive focus
in the research literature on communities of volunteers and the activities taking place in
these communities (Feller et al., 2006; Stol and Babar, 2009). von Krogh and von Hippel
(2006) categorize the research on the OSS phenomenon into three areas: (1) motivation
of OSS contributors, (2) governance, organization, and the process of innovation in OSS
projects, and (3) competitive dynamics enforced by OSS. In another overview of OSS
literature, Scacchi et al. (2006) focus on the processes found in OSS projects. By over-
looking organizations and their approaches to OSS, both these overviews illustrate the
excessive focus on OSS as a community-driven phenomenon.

Even though there are several studies which focus on different aspects of OSS adoption,
(Henkel, 2006; Ågerfalk and Fitzgerald, 2008; Dahlander and Magnusson, 2008), the ma-
jority of these are published relatively recently. The research community is furthermore
lacking an overview of, and a clear direction for, this research.

2.3 Selection of Software Components

Software reuse and CBSE span a large number of topics, stakeholders, and challenges
(Vitharana, 2003; Crnkovic, 2001). However, most of these are outside the scope of this
thesis. This thesis will mainly focus on the integrator and one of the most important
parts of the integrator’s job, selection of components. In this section we illustrate why
selection is both important and challenging. We show that research has mainly focused on
proposing formalized methods for selection of components, but that these methods have
seen little adoption.

2.3.1 The Practical Selection Problem

A simplified view of the integrator’s responsibilities can be divided into three main activ-
ities (1) determining the customer’s requirements, (2) selecting components matching
these requirements, and (3) integrating the selected component(s) into the resulting sys-
tem. We will hereafter mainly focus on the selection of components. This selection
consists of (a) identifying candidate components, (b) evaluating them, and (c) choosing
one or more of them. Solving this practical selection problem is imperative to successful
software reuse and CBSE (Kunda and Brooks, 2000; Mahmood et al., 2007). However,
there are several challenges involved in selection. For instance, there is a large number

20

CHAPTER 2. BACKGROUND AND RELATED WORK

of (evolving) components, attributes, features, and combinations of both hardware and
software that have to be considered (Ncube and Dean, 2002).

The components should match the customer’s requirements, but they should also also be
reusable, meaning that they should solve a common problem, be of good quality, and
be easy to understand (Mili et al., 1995). However, mismatch between the functionality
offered by the component and the customer’s original requirements, may influence these
requirements (Alves and Finkelstein, 2003). If the components miss functionality, the
customer may be convinced to make (significant) cost savings by accepting a solution with
somewhat reduced functionality. If the components have extra functionality, they may
inspire the customer into using the software in new ways. Selection therefore concerns an
evaluation of technical (functional and non-functional) requirements, but also commercial
and organizational issues (Brereton and Budgen, 2000).

The consequences of selecting a poor component are serious, as reusable components
“will often have shortfalls in usability, dependability, interoperability, and localizability
to different countries and cultures” (Boehm, 2006a, p. 21). These shortcomings may
create significant challenges related to maintenance of the system and thus increase main-
tenance costs (Reifer et al., 2003; Boehm, 2006b). The integrator and/or the integrator’s
customers have to live with the consequences of their choices. Assessment and selection
of components is because of these long term consequences, one of the most critical phases
of CBSE (Ochs et al., 2001).

However, selecting a component is far from simple in the large, uncontrolled, and complex
OSS marketplace. This virtual marketplace is where OSS products are made available,
typically through the Internet. With OSS and the general evolution of the Internet, web-
based services, and user contribution (Web 2.0), the marketplace has over the last years
evolved and become even more complex. It contains a large number of components,
a lot of information from a number of stakeholders, and several new roles and actors
undertaking these roles. These actors provide different kinds of information and have their
own motivations for doing so. While this commercial marketplace gives integrators access
to vast number of reusable components, it is not problem-free. Ayala (2008) describes the
marketplace as:

• Uncontrolled
• Constantly changing and increasing in size
• Plagued by information with unclear trustworthiness
• Dominated by components with (strong) inter-dependencies
• Held back by the lack of standard descriptions for the components provided in the

marketplace, and by the marketplace’s lack of reuse mechanisms

Even though new roles or services like code-search engines and software repositories
attempt to reduce the marketplace’s complexity, there is still no complete overview of
everything, and the marketplace is still plagued by unreliable information and poor com-
ponents. This complex marketplace has made it difficult for integrators to find the compo-
nents they need (Brereton and Budgen, 2000; Kunda and Brooks, 2000). We agree with

21

CHAPTER 2. BACKGROUND AND RELATED WORK

Wang and Wang (2001, p. 90) in that “the myriad number of OSS packages make actual
adoption a real challenge.”

2.3.2 Research: Focus on Formalized Selection Methods

The importance of selecting the “right” component from this complex marketplace made
Brereton and Budgen (2000) identify selection and evaluation of components as an one
of four key issues for research on component based development. Selection of COTS
and OSS has therefore received a lot of attention within the software engineering commu-
nity. However, this research has some of the same problems as the literature on software
engineering (see Section 2.1.1):

• A bias towards suggesting formalized and prescriptive methods and evaluation schemes
for selecting components

• Little or no empirical validation of the suggested methods and schemes
• Limited reported use of these methods and schemes in practice

The Bias Towards Formalized Selection Methods

Ayala (2008) shows that the literature on software selection has had a focus on analysis,
evaluation, and decision techniques for selection of components, while minor attention
has been drawn towards identification of components and knowledge management. Ayala
also points out that there has been a focus on one-time selection of components. Further
reuse of the component and the knowledge gained in the selection process has attracted
less attention. In reviews of the CBSE literature, several authors identify a considerable
bias towards (proposing new) systematic or formalized methods for selection and evalu-
ation of components (Mohamed et al., 2007; Land et al., 2008; Birkmeier and Overhage,
2009). Fitzgerald (1996, p. 4) defines formalized methods as:

formally-defined, brand-named or published . . . methodologies, of which there
are many examples in the literature

Even though the selection methods identified by these reviews are different, they share the
same basic principles and are built with the same natural science or rational engineering
mindset to problem solving. The methods are in most cases strictly systematic, and they
frequently expect that all the requirements already are defined and stable, and that several
components and plenty of (trustworthy) information is available. Based on a review of
18 of these selection methods, Mohamed et al. (2007) describe a general COTS selection
method. Figure 2.2 illustrates this process where the integrator (1) defines the customer’s
requirements, (2) identifies candidate components, (3) filters these candidates based on
the most important requirements, (4) evaluates the remaining components, and (5) selects
the best component. Even though these methods share many of the same concepts, the
structure of their activities differ. Land et al. (2008, p. 104) group a number of the pro-
posed methods into the following four groups: (1) sequential with branches, (2) iterative,
(3) situation-driven/opportunistic/flexible, and (4) concurrent and interrelated processes.

22

CHAPTER 2. BACKGROUND AND RELATED WORK

1. Define evaluation
criteria based on

stakeholders'
requirements and

constraints

2. Search for COTS
products and

create long list
N components

3. Filter long list
based on

most important
requirements

4. Evaluate short list
M components

5. Evaluate output
of 4 and select.
1 component

Figure 2.2: A general COTS selection process

The more recent work on the selection of OSS components shows the same trends. Re-
searchers continue proposing and reviewing formalized selection methods and frame-
works, together with evaluation criteria and scheme. In just a few of the examples, Al-
fonzo et al. (2008) provide 102 metrics for evaluating OSS tools for analysis and design
of software systems, Ardagna et al. (2007) present the FOCSE metrics framework which
contains 13 general purpose metrics and 5 specific metrics for evaluating security aspects,
and Johansson and Sudzina (2009) propose and discuss 17 criteria for evaluating OSS
ERP systems. In addition, Cruz et al. (2006) offer a systematic approach to evaluation of
OSS products consisting of eleven usage scenarios and a number of functional, technical,
organizational, legal, economical, and political requirements. del Bianco et al. (2009)
present the QualiPSo model of OSS trustworthiness consisting of three qualities and 11
sub-qualities together with a (large) number of metrics. Finally, Majchrowski and Deprez
(2008) establish an operational method for selection of OSS components. There are in
also other initiatives like the Open Source Maturity Model (OSMM) (Golden, 2004), the
Open Business Readiness Rating (OpenBRR, 2005), and the Qualification and Selection
of Open Source software (QSOS) method (Semeteys et al., 2006).

Limited Empirical Validation

In a review of 15 selection methods, Birkmeier and Overhage (2009) finds that few of
the reviewed methods are validated empirically. While there are empirical studies on
COTS selection (see Section 2.3.3), this lack of validation is common to much of the
research on software engineering (Fenton, 1993). Besides a few exceptions, very few of
the proposed methods and evaluation scheme for OSS selection are actually validated em-
pirically. The validation which has been performed is furthermore rather limited. There

23

CHAPTER 2. BACKGROUND AND RELATED WORK

are only a few papers reporting cases where the authors have selected an OSS product
(Di Giacomo, 2005a; Goh et al., 2006, 2008). However, these authors use methods and
evaluation schemes which they have developed themselves. Therefore, Li (2006) and Ay-
ala (2008) have identified a need for more empirical research on selection of components.

Problems with the Formalized Approaches

Formalized selection methods have only been able to influence practice to a very limited
extent (see Section 2.3.3). This very limited influence may be caused by several problems.
Birkmeier and Overhage (2009) suggest that the lack of tool-support and the lack of oper-
ative descriptions on how to use the proposed methods could contribute to hindering the
adoption of methods for COTS selection. Others suggest that there is a mismatch between
requirements and evaluation criteria (Lewis and Morris, 2004), and that the information
needed to evaluate a component is often not available (Bertoa et al., 2003). Gorton et al.
(2003) state that it may be impractical to conduct complete evaluations with respect to
time and cost. Ncube and Dean (2002) state that the use of weighted calculations based
on a set of individual scores is misleading. Finally, Li et al. (2009) claim that formalized
selection methods are not used because of the integrator having strong relationships with
one vendor or because selection takes place during all stages of a development project,
not only during a selection stage of the project. The literature on OSS selection highlights
several problems with many of the proposed methods as well:

• Have too strong focus on technical issues, and too little on the impact on the busi-
ness including costs of adoption and extension (del Bianco et al., 2009; Lavazza,
2007)

• Lack relevant evaluation criteria, or have unclear or overlapping ones (Cabano et al.,
2007; Deprez and Alexandre, 2008; Taibi et al., 2007)

• Ignore important software artefacts like the code (Samoladas et al., 2008)
• Are highly subjective (Samoladas et al., 2008)
• Lack possibilities for automation (Samoladas et al., 2008)
• Cannot be used with several stakeholders (Majchrowski and Deprez, 2008)
• Lack of advice on how to use the methods (Majchrowski and Deprez, 2008)
• Lack context sensitivity (Deprez and Alexandre, 2008)
• Information is not available (Deprez and Alexandre, 2008; Taibi et al., 2008)
• Unclear scoring rules (Deprez and Alexandre, 2008)

In a related paper on formalized software development methodologies, Fitzgerald (1998)
shows that the adoption of formalized methods is slim at best. In the cases these methods
are applied, they are not followed rigorously. Furthermore, Fitzgerald (1996, p. 3) dis-
cusses several problems with formalized methodologies and claims that “the assumption
that increased adoption of methodologies addresses the problems inherent to systems de-
velopment is by no means proven”. He continues to state that researchers too often try to
find one best way to develop a software, but fail. Often, the proposed methods:

• Are very similar

24

CHAPTER 2. BACKGROUND AND RELATED WORK

• Lack empirical foundation
• Overestimate peoples’ abilities and skills
• Focus too much on the method and too little on the product being developed
• Are assumed to be applied in all contexts
• Do not sufficiently focus on the developer and the constant changes in the environ-

ment where the development is taking place

Other Initiatives

While most of the research on OSS selection has focused on proposing new methods and
evaluation criteria, there has been a few interesting initiatives. Hummel et al. (2008) sug-
gest a tool which uses unit tests and the Google Code search engine to identify code frag-
ments which can be reused. Automated tool integration is also the goal of the hierarchical
quality model proposed by Samoladas et al. (2008). In a position paper, Gallardo-Valencia
and Sim (2009, p. 49) propose Internet-scale code search, or “searching the Internet for
source code to help solve a software development problem” as an emerging research field,
and says that this problem needs a novel solution.

Ayala et al. (2007) suggest initiating an open Wiki-based portal for sharing and reusing
information, about and experiences with, components. The idea is that the Wiki should
be built from the ground up, support collaboration and knowledge sharing, and enable
systematic support for selection and evaluation of components. There are also a wide
variety of Internet-based initiatives, which do not necessarily have their origin from the
research community (see Table 2.2).

Table 2.2: Internet-based approaches to OSS selection
Service Description

SourceForge Hosting site which is the home of close to a quarter of a
million OSS projects.

Google Code Both a search engine for components and a hosting site for
OSS projects.

ohloh A large Wiki based software directory for OSS.

Koders A search engine for OSS code.

Tigris An OSS community focused on software development tools
and an entry point to a large number of such tools.

Apache The Apache Software Foundation provides organizational,
legal, and financial support for a range of OSS projects and
serves as an entry point to these projects.

CMS Matrix One of several matrix sites. This one compares a large num-
ber of Content Management Systems (CMS).

25

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.3 Practice: Informal and Based on Familiarity

The aim of the proposed methods for COTS selection is, according to Mahmood et al.
(2007), to “identify and rank candidate components; and finally select [the] components
which best meet stakeholder requirements”. While this is a notable goal, most or perhaps
all of these proposed methods seem to have failed at reaching wide adoption. Instead,
developers use informal methods based on the individual developer’s previous experience
with the component and testing through prototyping (Torchiano and Morisio, 2004). Ac-
cording to Li et al. (2006a), the selection process has to be fast because of limitations in
time and cost. It is therefore not possible to test several components completely.

According to Tran and Liu (1997) and Kunda and Brooks (2000), identification of com-
mercial components has typically been done through conferences, literature reviews, train-
ing, and communication with vendors. Familiarity and previous experience is also a
very important source of components, and many companies have, according to Li et al.
(2006a), internal knowledge keepers. If no one knew of any components they (1) used
search engines to find alternatives, (2) selected a couple of them, and (3) downloaded
and tested a demo of these. Consequently, Norris (2004) and Chen et al. (2008) describe
Internet searches as one of the most important methods for identifying OSS components.
These searches are primarily executed through search engines, but also through project
hosting sites like SourceForge, code specific search engines like Google Code, and to
some extent social tagging sites like delicious3 (Umarji et al., 2008).

The evaluation of OSS components, and the development of criteria for evaluating OSS
components, have also attracted limited attention in empirical studies. However, basic
developer dependent rules of thumbs like assessing the vitality of community, listening to
the experience of others, and searching for information in mailing lists, forums and so on,
are observed (Merilinna and Matinlassi, 2006). Li et al. (2006a) found that practitioners
tested key functionality and relied on newsgroups to assess the quality of the components.
Respondents in another study said that wide adoption of an OSS component could be a
substitute for run-time tests (Maki-Asiala and Matinlassi, 2006). Morisio et al. (2002)
found that prototyping, vendor demonstrations, and reviews of material such as manuals
and user guides were used to evaluate COTS together with evaluation of vendor avail-
ability. Land et al. (2008) categorized these practices into high level evaluation (based
on available information), and prototyping (based on using the actual component). Land
et al. (2009) found that the establishment of requirements and the actual selection is of-
ten interrelated, because it is difficult to break down system requirements to evaluation
criteria. They furthermore found and that some of their respondents did not evaluate the
components before adopting them.

3http://delicious.com/

26

http://delicious.com/

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Summary: Scope and Main Research Challenges

Based on the literature discussed above and our own explorative research, we have iden-
tified two main research challenges and three research questions. It is important to point
out that when this research was initiated, there existed very few publications on the topic.
The research questions presented below are therefore formed throughout the execution of
this work. After we had identified how organizations adopt OSS (see Section 4.3), we
decided to continue our research group’s existing work on CBSE (Torchiano and Morisio,
2004; Li, 2006; Ayala, 2008), and to focus on selection of OSS components.

2.4.1 Adoption of OSS in Organizations

There is, as shown, a significant potential for software-intensive organizations in adopting
OSS. OSS has therefore seen quite significant adoption. This adoption is for several
reasons expected to increase. However, this adoption is not without pitfalls.

Failed OSS endeavors, and the alienation of OSS, have contributed to creating an uncer-
tainty about what it entails to adopt OSS and how organizations may benefit from it. Many
software-intensive organizations have therefore been skeptic about adopting it. Adoption
of OSS has furthermore been overlooked by OSS researchers until recently. It is therefore
timely to investigate how software-intensive organizations may adopt OSS, and to estab-
lish a platform for future research on OSS adoption. This leads us to the following two
research questions:

RQ1: How and to what extent are software-intensive organizations currently adopting
OSS?

RQ2: What is the current status of research on OSS adoption in organizations and
how may this research benefit practitioners?

2.4.2 Selection of OSS Components

We have seen that selection of the right component(s) is a prerequisite for successful
software reuse. While the OSS marketplace gives integrators access to a vast number of
reusable software assets, it is large, complex, and dominated by a number of stakeholders
who provide a lot of information for totally different reasons. Many of these stakeholders
have their own agenda, and selection of components in this marketplace is therefore not
simple.

Research on the selection of both COTS and OSS has had a predominant bias toward dis-
cussing and proposing new methods and evaluation schemes. These methods and schemes
have seen limited empirical validation and are rarely used in practice. Based on the re-
search communities, failure to influence selection practice, Mohamed et al. (2007, p. 106)
lists the following as two of several challenges for the research community:

• To support the selection of appropriate and effective methods for our context

27

CHAPTER 2. BACKGROUND AND RELATED WORK

• To show how COTS selection approaches can be adapted to fit into different con-
texts

To support selection and to improve practice, it is important to start with empirically
studying practitioners’ current selection practices. We will therefore address the following
research question:

RQ3: What is the current status of research on OSS adoption in organizations and
how may this research benefit practitioners?

2.4.3 Related Research Areas and the Scope of this Thesis

Even though OSS is described as something different, we see clear parallels between re-
search on OSS in organizations and several areas within software engineering and infor-
mation systems research. Gacek and Arief (2004) consider research fields like computer
science, management and organization science, social science, psychology, economics,
and finally law to be relevant to OSS research.

While we are aware of the research on, for instance, diffusion and adoption of innova-
tions (Rogers, 2003) and other open, grassroot movements like Wikipedia, Creative Com-
mons, open innovation, OpenCourseware, and OpenStreetMap (Chesbrough, 2003), this
research had to be left outside the scope of this thesis. This thesis focuses on software
engineering and endeavors to put research on OSS in organizations into context, and we
will therefore relate it mainly to research areas within software engineering and informa-
tion systems. Based on our classification framework for OSS adoption (see Section 4.3),
we draw parallels between OSS and some related research areas in Table 2.3. However,
this is not an exhaustive list.

There are also several parallels which may be drawn between research on software selec-
tion and other areas, for instance, decision support systems (Ruhe, 2002), and decision
making which includes such elements as social aspects (Munda, 2004) and uncertainty
(Begg et al., 2003). However, this research also had to be left outside the scope of this
thesis.

28

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.3: OSS research in relation to other research areas
Way of adopting OSS Related research areas
Deploying OSS products Introduction, deployment, diffusion, and acceptance

of information systems (IS) and information technol-
ogy (Fichman, 1992; Karahanna et al., 1999; Vessey
et al., 2002; Venkatesh et al., 2003)

Using OSS CASE tools Computer Aided Software Engineering (CASE)
(Fuggetta, 1993; Wicks and Dewar, 2007)

Integrating OSS components CBSE (Brereton and Budgen, 2000; Li et al., 2009;
McIlroy, 1969; Yang et al., 2005) and software reuse
(Mohagheghi and Conradi, 2007; Vitharana et al.,
2003)

Participating in OSS communi-
ties

No clearly related research area within software engi-
neering/information systems. However, Ågerfalk and
Fitzgerald (2008) relate their research with offshoring
and outsourcing.

Providing OSS products No clearly related research area, however Ågerfalk
and Fitzgerald (2008) relate their research with off-
shoring and outsourcing.

Using OSS development prac-
tices

Software process improvement (Aaen et al., 2001;
Dybå, 2005), distributed development (Persson et al.,
2005), and global (Spinellis, 2006) and agile (Warsta
and Abrahamsson, 2003) software development

29

CHAPTER 2. BACKGROUND AND RELATED WORK

30

Chapter 3

Context and Research Design

This chapter briefly presents the context of this thesis: the ITEA COSI project and the
Norwegian software industry. Then it introduces the thesis’ research design, which is a
combination of several studies concerning how organizations adopt and leverage OSS. Fi-
nally, we give an introduction to the research methods used to address the thesis’ research
questions: surveys, case studies, and systematic literature reviews. These methods are
common to software engineering research, and the introduction is therefore very brief.

3.1 Research Context

The research presented in this thesis has been performed in the context of the ITEA COSI
project and the Norwegian software-intensive industry. This section will give a brief
background for these two contexts.

3.1.1 The COSI Project

Co-development using inner and Open source in Software Intensive products (COSI) was
a three year European research project (2006 to 2008). COSI was part of the Information
Technology for European Advancement (ITEA) 2 programme and it had both industrial
and academic participants from Spain, the Netherlands, Sweden, Finland, and Norway.

Project Goals

The overall goal of the COSI project was to understand how software-intensive industry
may benefit from OSS and from distributed collaborative software development. More
precisely, the project aimed to achieve the goals (G1-G4) listed below (van der Linden,
2006). While these goals were dominated by the project’s large industrial partners focus-
ing on embedded systems, the more operational goal of the project was to improve each
individual partner’s exploitation of OSS. The goals of the project were:

G1 Provide instruments, which will determine how and when to perform software en-
gineering in heterogeneous distributed concurrent collaborations.

G2 Introduce the advantages of open source methodology in systems development.

31

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

G3 Improve the understanding and cooperation between the open source world and the
industry.

G4 Improve the capabilities of the system producers to strategically use the shift of
software towards commodity.

Project Organization

The project was organized in five work packages (WPs) focusing on business and organi-
zation issues (WP1), development processes (WP2), models for requirements, architec-
ture, and design (WP3), dissemination (WP4), and project management (WP5).

NTNU and the other Norwegian partners were almost exclusively involved in WP2. The
work in this work package focused on processes for providing OSS products, integrat-
ing (and maintaining) OSS components into new or existing systems, learning from the
development practices used in OSS communities, and participating in OSS communities.

The Norwegian Sub-Project

The Norwegian part of the project was supported by the Research Council of Norway.
It consisted of a project manager from ICT Norway and three industrial partners: eZ
Systems, Keymind, and Linpro. Oslo Stock Exchange, IT Farm, Tell.U, and Friprog
were later involved in the project as well. NTNU participated as an academic partner
with Reidar Conradi, Carl-Fredrik Sørensen, Thomas Østerlie, Sven Ziemer, and Øyvind
Hauge.

eZ Systems, established 1999, has since their start-up had success providing their own
OSS content management system, eZ Publish. eZ Systems has around 60 employees
spread across their offices in Norway, Denmark, France, USA, Japan, and Germany. In
addition to eZ Publish, eZ Systems provides premium services, product responsibility, and
other related software products. Around their products they have a community consisting
of customers and contributors from all over the world.

Keymind Computing AS, formed in 1998, is a small consulting company focused on
developing, maintaining and supporting IT solutions. When the COSI project started they
had six employees, located in three different offices. Keymind uses OSS components
and OSS tools in the development of their solutions. Through the COSI project they also
released an OSS product named Keywatch (Eide, 2007).

Linpro has since their beginning in 1995 focused on services around the Linux platform
and other OSS products. When the COSI project started Linpro had about 50 employees,
but it has since then merged with Swedish Redpill. Redpill Linpro has today about 180
employees. Redpill Linpro integrates OSS into their customers’ products, provides their
own OSS products, participates in the development of other OSS products, and provides
a wide spectrum of services based on OSS solutions.

32

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

3.1.2 The Norwegian Software Industry

The main part of the Norwegian software sector1 consists of software houses and soft-
ware consultancy companies. The 8 750 software companies, which in 2007 constituted
the software sector, employed 31 000 employees, and according to SSB (2009) had a
turnover of NOK 45 billion (about e 5 billion). The majority of these companies are
small, and only 1100 of them had five or more employees. Most of the companies focus
on consultancy services and provide products mainly to one customer. The percentage
of companies developing software products for a resale market is significantly lower, and
they employ about 20% of the employees in the software sector.

The Telenor Group focuses on offering mobile subscriptions, fixed phone lines, cable TV,
and other similar services. Even though it is not part of the “core” of the software industry,
it needs an IT and software infrastructure. In Norway alone, they have an IT department
of about 380 employees, contract external consultants at a regular basis, and outsource
services to their partners. The Telenor IT employees develop, maintain, and support the
software infrastructure which is necessary for Telenor’s products and services.

3.2 Applied Research Methods

This section describes the research methods and some of the tools for data collection and
data analysis used in this thesis. In addition, it will also present some of the rationale
behind using these tools and methods.

3.2.1 An Empirical Approach

Section 2.1.1 identified a general need for more empirical research within software engi-
neering. Fitzgerald and Feller (2001) describe a similar situation for research on OSS. In
this work in particular, we have chosen an empirical approach to studying the adoption of
OSS for mainly two reasons:

• To tidy up the misconceptions about what OSS adoption really means to organiza-
tions, and to allow practitioners to see the true possibilities of OSS.

• To understand practitioners’ real practices and problems, and thereby to be able to
focus research on issues which really matters.

In addition to the two reasons mentioned above, the ITEA COSI project’s research design
expected an empirical approach to (1) identify a baseline for how the industrial partners
leveraged OSS, and (2) conduct process improvement work in collaboration with them.

3.2.2 Choice of Research Methods

In their classification of software engineering research methods, Glass et al. (2002) list
as many as 22 empirical and non-empirical research methods. Each of these methods

1The part of the economic activity classified under NACE 72.2, see NACE (2009).

33

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

or combinations of them may be applied to almost any research problem. Researchers
are thus left with a large number of possibilities. However, as we discussed in Section
2.1.1, software engineering researchers tend to limit themselves to a few options like
experiments, case studies, surveys, and data analysis (Höfer and Tichy, 2007). Finding
appropriate methods for the research reported here was influenced by three factors.

First, the uncertainty about what OSS adoption entails and the lack of empirical research
on adoption of OSS motivated an initial explorative and descriptive approach. This
initial phase of exploration (Phase 1) consisted of the three first studies reported in this
thesis (see Figure 3.1). Phase 2, which consisted of two new studies, was used to complete
the framework presented in Section 4.3. In Phase 3, we studied the integrator role, and in
particular the selection of OSS components.

Phase 1: Exploring OSS adoption
- Study 1: COSI survey
- Study 2: Norwegian survey
- Study 3: COSI case study/participatory observation

Phase 2: Completing the framework
- Study 4: Systematic literature review
- Study 5: Telenor survey and workshops

Phase 3: In depth study on selection of OSS components
- Study 6: Spanish Norwegian survey

Figure 3.1: Relation between studies and the three phases of this research

Second, the COSI project through its research design expected participation from the aca-
demic partners through our involvement in the execution of several industry case studies.
This participation may be considered participatory observation. The access to a number
of geographically distributed and significantly different companies, all of which leveraged
OSS, motivated the use of survey research.

Third, we wanted to conduct valid and reproducible studies. Even though we have focused
on the survey method, we wanted to triangulate and gather data through different methods
and from various settings.

In this research we have used different tools for collecting both quantitative and quali-
tative data. The quantitative data has been used to understand the scope of OSS adoption
and to understand trends. Qualitative data has been used to understand some of the many
nuances which we observe when studying organizations. The two main tools for data
collection used in this research have been questionnaires and semi-structured inter-
views. However, we have also held workshops, participated in project meetings, visited
and observed some of the industrial partners on several occasions, and participated in
conferences and other events together with them.

34

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

3.2.3 Survey Research

Survey research is a method for understanding the opinions and activities of a population
at large (Babbie, 1990). The purpose of conducting a survey can be either descriptive,
explorative, or explanatory, and Fink (2002, p. 1) defines a survey as:

a system for collecting information from or about people to describe, compare,
or explain their knowledge, attitudes, and behavior.

Surveys are typically conducted by drawing a (representative) sample from a population,
and based on the results from this sample, one tries to generalize the results to the whole
population. Samples may be drawn through both probability (e.g. random, systematic,
stratified random, and multistage) and non-probability (e.g. quota, dimensional, conve-
nience, purposive, and snowball) sampling techniques (Robson, 2002). Surveys can be
used to collect both qualitative and quantitative data, typically through questionnaires or
interviews (Wohlin et al., 2003). Questionnaires are typically designed to contain mostly
closed questions, but open, more explorative questions are also used.

3.2.4 Case Study Research

A case study is a way of studying real projects in a particular context through detailed
monitoring and observation of the project’s activities (Wohlin et al., 2003). Case study
research aims to gather rich evidence from real life contexts (Kitchenham et al., 1995).
Yin (2003, p. 13) defines a case study as:

an empirical inquiry that investigates a contemporary phenomenon within its
real-life context, especially when the boundaries between phenomenon and con-
text are not clearly evident.

Case studies can, according to Easterbrook et al. (2008), be both exploratory and con-
firmatory. In the industrial context of the COSI project we had little or no control over
the context and the events taking place in this context. Case studies are then a suitable
approach to studying and exploring the phenomenon taking place (Yin, 2003). Evidence
is typically gathered from a large number of sources like documentation, archival records,
interviews, direct and participant observation, post-mortem analysis, and (physical) arti-
facts.

3.2.5 Systematic Literature Reviews

A systematic literature review is a rigorous and transparent meta- or secondary-study
which reviews a set of (empirical) primary studies. Systematic literature reviews can,
according to Turner et al. (2008), be conducted to either identify research trends and
categorize research papers, or to answer a specific research question. Kitchenham (2007,
p. vi) defines a systematic literature review as:

35

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

a form of secondary study that uses a well-defined methodology to identify, anal-
yse and interpret all available evidence related to a specific research question in
a way that is unbiased and (to a degree) repeatable.

Systematic reviews are characterized by their use of a predefined review protocol and a
planned, defined, and documented search strategy with explicit inclusion and exclusion
criteria (Budgen and Brereton, 2006). The rigor of the publications in this set of primary
studies is assessed according to a predefined set of criteria. In the end, the researcher
should be able to write a synopsis based on the final sample of (high quality) publications.

3.3 Research Process

This section provides an overview of the research conducted in this thesis. This work is a
combination of several related studies centered around how software-intensive organiza-
tions leverage OSS adoption. In total, six studies (S1-S6) have been conducted as part of
this work. These studies were, as mentioned, conducted in three phases. The next section
describes the three phases, the six studies, and the background of each of these studies.

3.3.1 Phase 1: Exploration of how Organizations Adopt OSS

The first phase involved an initial exploration of the opportunities that organizations have
when approaching OSS. This resulted in two papers which discuss how organizations
can leverage OSS (P1 and P3, also see further discussion in Chapter 4). Moreover, P2
discusses the level of adoption of OSS in the software sector. In addition to this initial
exploration of how organizations approach OSS, we gave a little bit more attention to
organizations which integrate OSS components into their software (P4), and to one case
from the COSI project where a company was providing their own OSS products (P6).

Study 1: COSI Survey

The first phase of the COSI project’s research design consisted of creating a baseline de-
scription of how the industrial partners adopted OSS. Based on a literature review and
conversations with several of the project partners, we defined four roles for how the in-
dustrial partners adopted OSS: OSS provider, ISS participant, OSS participant, and OSS
integrator. For each of these roles we wanted to address the following questions:

• Why do industrial actors undertake the four OSS roles?
• What are the advantages and challenges related to undertaking them?
• Which software development practices are used in these roles and how does the

adoption of OSS influence these practices?

Based on these questions, we created an interview guide which was used in in-depth semi-
structured interviews with employees in the Norwegian COSI partners. We interviewed

36

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

two developers in Keymind, one developer in Linpro, and one developer and the CEO at
eZ Systems. Each interview lasted more than three hours, interrupted by breaks.

The interview guide and the results from the interviews were used as a basis for a web-
based questionnaire. The questionnaire had one part for each of the four roles, and each
part covered the questions listed above with several metrics in the questionnaire.

We distributed the web-questionnaire to all of the industrial partners in the COSI project
and encouraged them to ask at least one of their employees to respond. Selection of
the individual respondents was, because of the composition of the project, left up to the
companies. We received in total 24 responses for the four roles: 3 OSS providers, 6 ISS
participants, 6 OSS participants, and 9 OSS integrators.

Study 2: Norwegian Survey

The first COSI study was followed up with a new survey which, through the ITEA office,
was distributed to all of the project members in all ongoing ITEA projects. Due to restric-
tions related to access to the project members’ e-mail addresses, we had limited control
over the population and sampling, and we had no way of sending reminders. Due to low
response rates we decided to run an extended version of this survey with a Norwegian
sample. The Norwegian survey consisted of two parts.

The first part focused on integration and selection of OSS components. Results from
this part are reported in P4. It combined the interviews from the COSI survey with a
number of new semi-structured interviews with Norwegian software developers, several
of which were conducted through a Master’s thesis by Gerea (2007). Developers from a
total of 16 companies were interviewed, some of them more than once. Almost all of the
interviews were recorded and transcribed. The goal of the interviews was to understand
the challenges OSS integrators faced, and the practices they used when selecting and
integrating OSS components into their software solutions.

The second part of the survey covered software-intensive organizations that (1) provided
their own OSS products, and (2) integrated OSS components and possibly participated in
OSS communities. This part of the survey was conducted through an e-mail survey and a
web-based questionnaire, and it was reported in P2. The objective of this survey was to
(1) assess the extent of OSS adoption in the software industry, and (2) survey the practices
that integrators and providers of OSS used in software development. The e-mail survey
consisted of a sample of more than 1000 Norwegian software-intensive companies. We
contacted these by email asking four simple questions. We received more than 700 valid
responses to our questions concerning the respondents’ adoption of OSS. 569 of these
companies were involved in software development, and 266 (47%) of them adopted OSS
components.

Thereafter, we invited 204 of the 266 organizations that said they had adopted OSS com-
ponents to participate in a web-based questionnaire. The questionnaire had two parts
focusing on (1) providing OSS products and (2) integrating OSS components into a soft-
ware product and possibly participating in one or more OSS communities. 95 of these

37

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

companies completed our questionnaire, and left us with 74 useful responses. This part of
the survey gave us a lot of descriptive statistics about how the respondents adopted OSS
and the practices they used when doing so. Even though much of this material has not
been published, it served as valuable input for further studies, and is important for our
understanding of OSS adoption.

Study 3: COSI Case Study

The research design of the COSI project consisted of the five phases listed below. Each of
the industrial partners were to identify one particular challenge they faced in relation to
their adoption of OSS. Based on this challenge, they conducted two iterations with case
study and improvement activities.

1. State of the art/baseline of the company’s adoption of OSS and related processes
2. 1st case study iteration
3. Improvement of their OSS related processes
4. 2nd case study iteration
5. Improvement of their OSS related processes and validation of improvement

While the COSI project had its defined goals, each individual partner had their own im-
provement goals within the framework of the project. In accordance with the project’s
research design, the academic partners aided the industrial partners in improvement activ-
ities and helped them in reporting2 the outcome of these activities. The research we did
was thus an ongoing activity for the whole duration of the project.

NTNU participated in a number of activities in the project. All of these activities increased
our understanding of the challenges the industrial partners met and the practices they
used to deal with them. In addition to 3-4 yearly project meetings, we visited each of
the Norwegian industrial partners several times and participated in meetings, workshops,
seminars, and conferences together with them. To further increase our understanding of
their challenges, we conducted several interviews as well as the survey mentioned above
(Study 1). Finally, several Master’s students did their theses in collaboration with the
industrial partners, e.g. Eide (2007), Gerea (2007), and Schanke (2007).

Results from this combined effort are reported in P3 and P6 where we look in particular
at the eZ Systems case and some of their experiences. Results from the COSI project are
also reported in P1 and P4.

3.3.2 Phase 2: Completing the Framework

To complete the picture of how organizations leverage OSS, we conducted a systematic
literature review and another case study or extended survey in a Norwegian company.
The iterative process related to conducting the systematic review and creating the frame-
work (see Section 4.3) was a synergic process. On the one hand, conducting the literature

2Public deliverables are available from the project’s web site: http://www.itea-cosi.org/

38

http://www.itea-cosi.org/

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

review helped in developing the framework. On the other hand, developing the frame-
work and having a good understanding of how organizations leverage OSS was crucial to
conduct the literature review and to organize the literature.

The companies in the COSI project and the companies in the surveys focused on soft-
ware development. Even though Telenor IT develops software as well, their focus in our
collaboration was not directly software development, but rather deploying OSS products
and maintaining them as part of their software infrastructure. However, this software
infrastructure was used in their software development.

Study 4: Systematic Literature Review

Based on our previous studies and the lack of clarity about what OSS adoption really is,
we conducted a systematic literature review of the published research on OSS in organi-
zations. This study is reported in P8. The goal of this study was to answer the following
questions:

• How do organizations adopt OSS?
• What has been the focus of empirical research on OSS adoption?
• What are the characteristics and limitations of this research?

The review was conducted in accordance with the guidelines by Kitchenham (2007) for
systematic literature reviews. We reviewed papers published in 24 journals and 7 con-
ference and workshops proceedings from 1998 to 2008. From a population of close to
25 000 publications, we got more than 1500 hits on the keyword “open source”. These
publications were reviewed in several iterations and we ended up with a sample of 112
empirical papers with evidence on how organizations adopt OSS.

Study 5: Telenor IT Survey

To study another way of adopting OSS, we performed a survey with Telenor IT Norway.
Telenor is a large Norwegian telecom/mobile operator which was considering to increase
their adoption of OSS operating systems, databases, application servers etc. Much of the
work was conducted through a Master’s thesis by Skarpenes and Velle (2009). Some of
the results related to risks and risk mitigation are reported in P7. The aim of the work was
the following:

• How and to what extent is Telenor IT adopting OSS today?
• What are their employees’ attitudes towards an increased adoption of OSS prod-

ucts?
• What are the benefits and drawbacks (risks) of such an increased adoption?
• Which measures can and should be put in place for succeeding (reducing the risks)

with an increased adoption of OSS products?

In this work we conducted semi-structured interviews, a questionnaire with responses
from more than 80 employees, and two workshops with members of Telenor’s Open
Source 2010 project group and other employees of Telenor IT. One of the workshops was

39

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

organized as an interactive KJ session (Birk et al., 2002), where the participants were
engaged through (1) writing down their concerns on post-it notes and placing them on
a board, and (2) reorganizing these notes into groups of related issues. The interviews,
questionnaire, and workshops reflected the goals listed above.

3.3.3 Phase 3: Going in Depth on Selection of OSS Components

In creating the framework and elaborating how software-intensive organizations adopt
OSS, we maintained a bird’s eye view of OSS in organizations. In this view there are
several opportunities to go further in depth in a variety of issues (see P8). In the light of
earlier work (Torchiano and Morisio, 2004; Li et al., 2006a, 2008; Ayala, 2008) and (P4),
we saw a particular opportunity to look closer at the challenges related to integrating and
selecting OSS components.

Study 6: Spanish/Norwegian Survey

The Norwegian survey was followed up with an extended Norwegian/Spanish collabo-
rative effort. Preliminary results from this work are reported in P5. In total, the study
consisted of 23 semi-structured interviews with a convenience sample of Spanish and
Norwegian software developers. Even though the sample was a convenience one, we were
able to get a good representation of a variety of different companies. All but two of the
interviews were recorded and transcribed. However, only the first eight were included in
P5. Results from all the interviews will appear in a new paper by Ayala, Hauge, Franch,
Conradi, and Li. The interviews aimed at answering the following two questions:

• How do software developers select OSS components?
• Which resources do these developers use when selecting OSS components?

3.4 Evaluation and Validity

Research should be conducted in such a way that its results are believable, or in other
words valid. Yin (2003) recognizes that the validity may be increased through triangula-
tion by using different data sources, different researchers, different theories, and different
research methods. The research reported here is conducted in collaboration with other
researchers. We have collected data from several different settings as an ongoing activity
for the last four to five years. While we have had a focus on survey research, we have also
used different methods for gathering data. Nevertheless, this work is not without limi-
tations. These limitations are discussed in each of the papers, but we will also provide
a brief validity discussion in Section 6.6. Wohlin et al. (2000) listed the following four
types of validity:

• Internal validity concerns the degree to which the results can be trusted, based on
the study context. Internal validity is discussed in Section 6.6.

• External validy concerns the degree to which the results can be generalized to other
populations and settings. External validity is also discussed in Section 6.6.

40

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

• Construct validity concerns the relationship between theory and observation. This
work has mainly been explorative and descriptive, rather than theory testing, and
construct validity is therefore not that relevant. However, construct validity also
concerns using the right tools and metrics for gathering the data. This will be dis-
cussed in Section 6.6.

• Conclusion validity concerns whether or not the right conclusions are drawn based
on the collected data. The conclusion validity is in, experiments and qualitative
analysis, concerned with ensuring (significant) statistical relationships between the
treatment and outcome, or the independent and the dependent variables. Even
though we have gathered qualitative data (P1, P2, and P7), these have mainly been
used to explore and describe rather than to test (causal) relationships. Statistical
conclusion validity is therefore not that relevant for this thesis.

41

CHAPTER 3. CONTEXT AND RESEARCH DESIGN

42

Chapter 4

Results Part 1: Organizational
Adoption of OSS

This chapter presents three of the thesis’ contributions (C1-C3). First, we illustrate empir-
ically how several organizations adopt OSS (C1). These organizations adopt OSS quite
differently, and they are therefore gaining different benefits and facing different chal-
lenges. Second, we present the results from a systematic literature review on OSS adop-
tion (C2). Third, to help organizations in (1) seeing the real opportunities in OSS adoption
and (2) understanding the challenges they may face, we have developed a classification
framework containing six ways in which organizations may adopt OSS (C3).

These three contributions constitute a platform for future research on OSS adoption by
establishing a solid empirical foundation and providing increased precision to researchers
and practitioners who talk about OSS adoption.

4.1 C1: Descriptions of Actual Adoption of OSS

We observe that different organizations adopt OSS in distinctly different ways. We
made this observation already in P1 where we presented four roles for how organizations
adopt OSS. The roles were: OSS integrator, OSS participant, OSS provider, and Inner
Source Software (ISS) participant. An ISS participant is an organization which uses OSS
tools and development practices within the organization or a consortium of organizations
(van der Linden, 2006). P1 furthermore discussed some of the motivations these four
roles have for adopting OSS, and some of the challenges they face (see Table 4.2). The
differences between how organizations adopt OSS are further illustrated by P6 and P7:

• In P6 we reported from our collaboration with the OSS provider, eZ Systems. The
paper presents a brief timeline from the “accidental” release of an OSS product,
through the evolution of a successful and healthy OSS company. We focused on the
development of eZ System’s main product from two independent software products
to a three-layered system architecture. With this three-layered architecture, eZ is
able to attract quite significant contributions to the plug-in layer on the top and
the component library on the bottom, while maintaining quite strict control over
the business-critical middle layer. We discuss some of the possible benefits and

43

CHAPTER 4. RESULTS PART 1: ORGANIZATIONAL ADOPTION OF OSS

challenges of having a community and provide a few lessons learned from the case,
focusing on the importance of allowing the adoption of OSS (or business model) to
evolve.

• P7 reports a study conducted together with Telenor IT. The paper focuses on the
advantages Telenor IT sees in increasing their deployment of OSS products, the
risks related to such an adoption, and steps for mitigating these risks. Telenor IT
is primarily adopting OSS to increase its freedom from their proprietary vendors
and thereby reducing their expenses on licenses and support. Telenor IT is mainly
concerned about 24/7 support for the products they adopt, since around-the-clock
operations is key to their business. Ensuring support and placing the responsibil-
ity for operations is therefore an important step to reduce risks for Telenor IT. By
contrasting these findings with the literature, we illustrate that the companies have
different motivations for adopting OSS. Moreover, by combining findings from the
Telenor study with the literature (see Table 4 in P7), we begin bridging the gap
between literature and practice. We furthermore aim to make OSS adopters aware
of some of issues to consider when adopting OSS, and some of the steps they may
take to deal with these issues.

We see that these companies adopt OSS differently because they want to gain different
benefits from OSS. Telenor IT Norway wants to reduce its costs on proprietary software
licenses and support agreements, while eZ Systems wants to create a sustainable business
around their own OSS products. eZ Systems benefit from reduced expenses on marketing,
simplified sales, and community contributions. Moreover, the organizations described in
P4 and P5 integrate OSS components into their software systems and gain benefits from
software reuse, reduced license fees, and the availability of OSS communities. Quite
often they also benefit from the availability of a lot of information (see Chapter 5).

Finally, in P3 we discussed three ways of OSS-based software development; developing
with OSS products, developing OSS products, and developing with OSS tools and prac-
tices. We argue that OSS is used in different ways by each of the companies participating
in the COSI project and that the way they adopt OSS is shaped by the opportunities they
see in OSS. We exemplify this by showing some of the many practices the COSI compa-
nies use when adopting OSS in a certain way (see Table 1 in P3).

We moreover see that the adoption of OSS in software intensive organizations is sig-
nificant. In P2, we found that from a sample of 569 Norwegian companies developing
software, 47% were integrating OSS into their products. These products served all main
business sectors and covered a spectrum of different functionalities. However, in our sam-
ple we saw that the respondents had a small overweight of customers within the public
sector, and primarily delivered web-based and enterprise solutions. Consultancy compa-
nies used OSS components more frequently than software houses, and large companies
adopted OSS components somewhat more frequently than smaller ones. In addition, we
found that about 16% participated in OSS communities and 5% provided their own OSS
products. However, in the web-survey, 30 out of 66 respondents said that they contributed
to one or more OSS communities. This participation was in most cases limited to forum

44

CHAPTER 4. RESULTS PART 1: ORGANIZATIONAL ADOPTION OF OSS

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
0

20

40

60

80

100

120
Empirical research papers
on OSS in organizations
Experience reports on
OSS in organizations
Non-empirical papers on
OSS in organizations
All papers on OSS

Figure 4.1: The number of papers on OSS and OSS in organizations

activity, bug reports, bug fixes, and so on.

Finally, we saw that a significant part of the respondents in the web-survey relied quite
extensively on OSS. However, the extent to which their business was centered around
OSS, varied. This is exemplified by P6 and P7. While OSS is a (small) part of Telenor
IT’s business, eZ Systems has established its whole business around a few OSS products.
We saw the same in P2. While, 43% of the respondents said that less than 20% of their
turnover came from OSS related activities, 13% responded that more than 80% of their
turnover came from such activity.

4.2 C2: A Systematic Literature Review on Adoption of
OSS

Another important contribution from this thesis is a systematic review of the literature on
OSS adoption (P8). In this review we systematically evaluated and classified empirical
research on OSS adoption and created an overview of this research. This overview forms
a solid foundation for this thesis and hopefully also for the work of others to come.

From a population of close to 25000 papers we identified 674 publications which we
found relevant to OSS, and 112 publications containing empirical evidence on how orga-
nizations adopt OSS. From Figure 4.1, we see that there was an increase in the number
of publications focusing on OSS adoption around 2004. However, empirical research on
OSS adoption was still limited when the work with this thesis started (fall 2005).

We found that the published empirical evidence on OSS in organizations covered a wide
spectrum of topics, had little overlap, and was dominated by experience reports. Almost
all of the publications came from Europe or the US, and most of them could benefit from

45

CHAPTER 4. RESULTS PART 1: ORGANIZATIONAL ADOPTION OF OSS

increased rigor in their descriptions of method, research questions, findings etc. There
was moreover an emphasis on studies which presented evidence from only one context.

To provide an overview of this empirical research in the literature, we classified the
112 empirical publications from the literature review using our classification framework.
From this classification we found that a large number of papers do not focus on the specific
ways of adopting OSS (Figure 4.2). There was instead an overweight of papers focusing
on general issues like motivation for adopting OSS (Bonaccorsi and Rossi, 2006; Morgan
and Finnegan, 2007; Ven and Verelst, 2008), the extent to which OSS is adopted (Nikula
and Jantunen, 2005; Lundell et al., 2006), and so on. There is also some research on
the adoption of OpenOffice.org in the public sector (Ven et al., 2006; Rossi et al., 2006;
Dobusch, 2008). However, the majority of the publications focus on a diverse set of is-
sues.

Deploying OSS products
Using OSS CASE tools

Integrating OSS component
Participating in OSS communities

Providing OSS products
Using OSS practices

OSS adoption in general

0

2

4

6

8

10

12

14

16

18

20

Empirical research papers
(of 59 papers)
Experience reports
(of 53 papers)

Figure 4.2: Overview of the number of empirical publications on OSS

Even though a clear common goal was missing in the research on OSS adoption, it sup-
ported our empirical observation that organizations have different motivations for adopt-
ing OSS, and that they adopt OSS in distinctly different ways.

4.3 C3: A Framework for Organizational Adoption of
OSS

By ways of adopting OSS, we think of ways in which software-intensive organizations can
benefit from OSS products, the communities surrounding many of these products, and the
collaborative development practices often found in these communities. We briefly present
the framework in Table 4.1, before we describe the development of the framework.

4.3.1 Benefits and Challenges Related to Adopting OSS

The different ways of adopting OSS are distinguished by the practical steps organizations
take when leveraging OSS. However, the ways of adopting OSS are also distinguished

46

CHAPTER 4. RESULTS PART 1: ORGANIZATIONAL ADOPTION OF OSS

Table 4.1: Organizational adoption of OSS
Way of adopting OSS Description
Deploying OSS products Deploy OSS products or tools (e.g. OpenOffice.org, Linux, or

JBoss) in their operation environment as end users.
Using OSS CASE tools Using OSS CASE tools (e.g. Eclipse, Subversion, or GCC) in

their software development.
Integrating OSS compo-
nents

Integrate OSS components (e.g. Hibernate, Google Web
Toolkit, or Plone) into their own or their clients’ software sys-
tems. The components may also be extended or modified.

Participating in the devel-
opment of OSS products

Participate (through e.g. code contributions, forum activity, or
financial support) in the development of OSS products con-
trolled by another organization or community (e.g. Linux,
Eclipse, or OpenOffice.org).

Providing OSS products Develop, maintain, and provide their own OSS products, and
relate to the communities around these products. MySQL, Qt
Software, and JBoss are examples of such companies.

Using OSS development
practices

Use (collaborative) development practices (e.g. code sharing,
peer review, and user contributions) often associated with OSS
communities to support (distributed) software development in-
side an organization or a consortium of organizations.

by their advantages and their challenges. These differences make the framework valuable
as it may help an organization to understand the real benefits of adopting OSS, while
preparing to deal with the right challenges.

47

CHAPTER 4. RESULTS PART 1: ORGANIZATIONAL ADOPTION OF OSS
Ta

bl
e

4.
2:

Po
te

nt
ia

lb
en

efi
ts

an
d

dr
aw

ba
ck

s
of

ad
op

tin
g

O
SS

W
ay

of
ad

op
tin

g
O

SS
Po

te
nt

ia
lb

en
efi

ts
Po

te
nt

ia
lc

ha
lle

ng
es

D
ep

lo
yi

ng
O

SS
pr

od
uc

ts
•A

cc
es

s
to

a
ve

ry
la

rg
e

nu
m

be
r

of
so

ft
w

ar
e

pr
od

uc
ts

w
ith

ou
tl

ic
en

si
ng

fe
es

•
In

cr
ea

se
d

in
de

pe
nd

en
ce

fr
om

pr
op

ri
et

ar
y

ve
nd

or
s

•A
lig

ni
ng

th
e

us
e

of
O

SS
pr

od
uc

ts
w

ith
ex

-
is

tin
g

te
ch

no
lo

gy
,s

ki
lls

,a
nd

re
so

ur
ce

s
•E

ns
ur

in
g

su
ffi

ci
en

ts
up

po
rt

an
d

ex
pe

rt
is

e

U
si

ng
O

SS
C

A
SE

to
ol

s
•

A
cc

es
s

to
a

la
rg

e
nu

m
be

r
of

pr
of

es
si

on
al

de
ve

lo
pm

en
tt

oo
ls

w
hi

ch
ar

e
w

id
el

y
us

ed
•T

he
to

ol
s

m
ig

ht
in

flu
en

ce
th

e
de

ve
lo

pm
en

t
pr

oc
es

s
an

d
th

e
re

su
lti

ng
pr

od
uc

t
In

te
gr

at
in

g
O

SS
co

m
po

-
ne

nt
s

•
A

cc
es

s
to

re
us

ab
le

so
ft

w
ar

e
co

m
po

ne
nt

s
w

hi
ch

ar
e

de
ve

lo
pe

d,
te

st
ed

,a
nd

m
ai

nt
ai

ne
d

by
so

m
eo

ne
el

se
•

A
cc

es
s

to
so

ur
ce

co
de

,
in

fo
rm

at
io

n,
an

d
as

si
st

an
ce

fr
om

a
co

m
m

un
ity

•
M

ai
nt

ai
ni

ng
so

ft
w

ar
e

sy
st

em
s

co
ns

is
t-

in
g

of
(m

od
ifi

ed
)

co
m

po
ne

nt
s

fr
om

se
ve

ra
l

pr
ov

id
er

s
ov

er
w

hi
ch

th
ey

ha
ve

lit
tle

or
no

co
nt

ro
l

•
N

av
ig

at
in

g
th

ro
ug

h
an

d
ev

al
ua

tin
g

a
la

rg
e

nu
m

be
ro

fp
ro

du
ct

s
an

d
va

st
am

ou
nt

s
of

he
t-

er
og

en
eo

us
in

fo
rm

at
io

n
Pa

rt
ic

ip
at

in
g

in
th

e
de

ve
l-

op
m

en
to

fO
SS

pr
od

uc
ts

•
Sh

ar
in

g
de

ve
lo

pm
en

t
an

d
m

ai
nt

en
an

ce
co

st
s

•I
nfl

ue
nc

in
g

th
e

di
re

ct
io

n
of

th
e

pr
od

uc
ta

nd
en

su
ri

ng
its

fu
tu

re

•D
ec

id
in

g
w

ha
tt

o
co

nt
ri

bu
te

w
ith

ou
tg

iv
in

g
aw

ay
cr

iti
ca

li
nt

el
le

ct
ua

lp
ro

pe
rt

y
•

G
ai

ni
ng

th
e

ne
ce

ss
ar

y
st

at
us

to
ge

tc
on

tr
i-

bu
tio

ns
ac

ce
pt

ed
•A

vo
id

in
g

ex
ce

ss
iv

e
us

e
of

re
so

ur
ce

s
Pr

ov
id

in
g

O
SS

pr
od

uc
ts

•I
nc

re
as

ed
di

ff
us

io
n

of
pr

od
uc

t,
an

d
si

m
pl

i-
fie

d
m

ar
ke

tin
g

an
d

sa
le

s
•

V
al

ue
-a

dd
in

g
co

m
m

un
ity

co
nt

ri
bu

tio
ns

(b
ug

re
po

rt
s,

bu
g

fix
es

,e
xt

en
si

on
s,

et
c.

)

•A
ttr

ac
tin

g
an

d
su

st
ai

ni
ng

a
co

m
m

un
ity

•A
lig

ni
ng

th
e

in
te

re
st

s
of

a
la

rg
e

nu
m

be
ro

f
st

ak
eh

ol
de

rs
•I

nc
or

po
ra

tin
g

co
nt

ri
bu

tio
ns

fr
om

th
e

co
m

-
m

un
ity

U
si

ng
O

SS
de

ve
lo

pm
en

t
pr

ac
tic

es
•

Im
pr

ov
ed

de
ve

lo
pm

en
t

pr
ac

tic
es

,
pa

rt
ic

u-
la

rl
y

re
la

te
d

to
di

st
ri

bu
te

d
co

lla
bo

ra
tiv

e
so

ft
-

w
ar

e
de

ve
lo

pm
en

t

•C
ha

ng
es

to
ex

is
tin

g
pr

ac
tic

es

48

CHAPTER 4. RESULTS PART 1: ORGANIZATIONAL ADOPTION OF OSS

In Table 4.2 we provide an overview of what we believe are the most important benefits
and challenges related to adopting OSS in a certain way. This overview is based on our
work in the COSI project (see P1, P3, and P6), the Telenor case (P7), and the literature
review (P8). This does not however imply that adopting OSS in a certain way guarantees
anyone the benefits of OSS. Rather these benefits are the most prominent possibilities
which the individual actor may unlock. Moreover, an organization adopting OSS may
also face other challenges than the ones listed below.

4.3.2 Relationships between the Ways of Adopting OSS

It must be emphasized that there are interdependencies between the approaches in the
classification framework and the possibility that an organization may adopt OSS in sev-
eral ways at the same time. Campbell-Kelly and Garcia-Swartz (2009) show that organi-
zations evolve how they adopt OSS over time. This further complicates the interdepen-
dencies between the different ways of adopting OSS. The categories in our framework
are therefore not mutually exclusive. There are, in particular, a few categories which are
closely related.

First, organizations which participate in the development of an OSS product are most
likely integrating this product into one of their own systems (Jaaksi, 2007; Mannaert and
Ven, 2005). In P2, we found that at least 30% of the companies which integrate OSS into
their systems, also participate in one or more OSS community. Second, organizations
adopting OSS development practices are also frequently using OSS CASE tools to facil-
itate the adoption of these practices (Lindman et al., 2008; Wesselius, 2008). In the case
described in P6, we saw how a provider of OSS products relied on the integration of OSS
products developed by someone else. A consequence of this reliance was that they also
spent a quite significant amount of resources participating in the development of PHP.

Next, the difference between a few of the categories is one of degrees rather than or-
thogonality. Grand et al. (2004) make similar observations, in that the dedication to OSS
is a matter of allocating different levels of resources. There are, for instance, overlap-
ping areas between deploying OSS products and integrating OSS products into a system
(Adams et al., 2005b,a), and between participating in the development of an OSS product
and providing an OSS product (Ågerfalk and Fitzgerald, 2008; Dahlander et al., 2008).
While P7 focused on the deployment of OSS (infrastructure) products, Telenor IT was
also integrating OSS components into some of their products. Different organizations
may also adopt the same OSS product quite differently. In one case, several organizations
simply deployed Linux on their severs (Ven and Verelst, 2006), while others extended it,
integrated it into their products, and participated in the development of it (Henkel, 2006).

There are also internal differences within each of the ways of adopting OSS. Even though
different organizations provide OSS products, they have different motivations, resources,
and success. Where Bleek et al. (2005) describe a public project which is struggling,
P6 describes an organization which has successfully established a sustainable business
around providing OSS products. Li et al. (2006c) show that the reuse of OSS components

49

CHAPTER 4. RESULTS PART 1: ORGANIZATIONAL ADOPTION OF OSS

is adapted to the organizations’ individual development processes. In P2 we show that
the level of participation for most organizations is limited. However, other organizations
may participate quite significantly (Henkel, 2006; Robles et al., 2007).

4.3.3 The Development of the Framework

The framework has undergone a certain evolution. Figure 4.3 illustrates this evolution and
the relationship between P1, P3, and P8. Already in P1 we presented four roles for how
organizations adopt OSS. We discussed the roles; OSS integrator, OSS participant, OSS
provider, and Inner Source Software (ISS) participant. Then, in P3 we discussed three
ways of OSS-based software development; developing with OSS products, developing
OSS products, and developing with OSS tools and practices. Finally, in P8 we developed
the full framework, consisting of six ways of adopting OSS. Results from this paper are
already presented in Section 4.2 and in the description of the framework, in Table 4.1.

OSS
Integrator

OSS
Provider

OSS
Participant

ISS
Participant

Developing
with OSS
products

Developing
OSS

products

Developing
with OSS
practices
and tools

Integrating
OSS

components

Participating
in OSS

communities

Providing
OSS products

Using OSS
development

practices

Using OSS
CASE tools

Deploying
OSS products

P1 P3 P8

Figure 4.3: The development of the framework for organizational adoption of OSS

50

Chapter 5

Results Part 2: Selection of OSS
Components

Limited understanding of actual selection practice, has led researchers to make unrealistic
assumptions about how to improve practices. While numerous quality models, selection
methods, and evaluation schemes have been proposed, they see very limited use. Empiri-
cally grounded insight into actual practices is therefore essential to understanding how to
inform these practices.

Based on surveys of the selection practices used in a number of software-intensive orga-
nizations, we identify and describe several practices for identifying and evaluating OSS
components. The new insight into actual selection practices offered by the empirical
evidence in P4, P5, and from the web-survey in Study 2, constitutes the fourth contribu-
tion of this thesis (C4). We find that the use of formalized methods is very limited and
that developers:

• Identify components through using previous experience, monitoring OSS related
resources, getting recommendations, and unstructured web searches.

• Evaluate components based on previous experience, the track record of the compo-
nent, informal evaluation of community resources, and prototyping.

With this insight as a background, we have developed a model for situated software se-
lection (C5). This model offers a new dimension to the research on software selection.
Most of this research has criticized practice for being ad hoc and unreliable, and it has
tried to formalize selection through quality models, selection methods, and evaluation
schemes (see Section 2.3). Our situated selection model shows that the many constraints
inherent to the situation the selection is conducted in, significantly influence the outcome
of the selection process. These constraints furthermore contribute to preventing the adop-
tion of formalized methods. Even though formalized approaches are rare, we argue that
current practices are not ad hoc and unreliable. Developers benefit from their experience
and the experience of others, and thereby reduce the uncertainty and costs related to eval-
uating, learning, and relying on new technology. Based on these observations we suggest
directions for future research.

51

CHAPTER 5. RESULTS PART 2: SELECTION OF OSS COMPONENTS

5.1 C4: Descriptions of Actual Selection Practices

5.1.1 The use of Formalized Selection Methods

The use of formalized (or normative) selection methods was almost not existing, and al-
most none of the respondents in our surveys mentioned using any of the methods proposed
by the literature (see Section 2.3). When asked, “To what extent did your local business
unit perform the following activities when evaluating OSS components to this product?”
the respondents in the web-survey (Study 2) gave the following items an average rating1

of 1.73 and 1.48 (see Table 5.2):

• Used documented checklists to evaluate the components
• Used a selection process which is well documented in the company

When asked about their typical selection process, one interviewee said that “there is no
defined method in that sense” [P5.ES1]. The norm was instead to utilize an informal
and developer dependent selection of components, using the practices for identifying and
evaluating OSS components described below.

However, some of the respondents said that they had their own informal, lightweight pro-
cesses for selection, particularly for central and important components. In addition, a few
companies had standardized architectures, consisting of a set of components, that were
maintained by an architecture team. In some cases, these teams conducted the selection
on behalf of the individual projects. Hence, some companies had processes for selecting
components, but these were generally not influenced by the research literature.

Nevertheless, one organization in the second part of Study 62 did in fact try to follow the
Open Source Maturity Model (OSMM). While both the respondents from that organiza-
tion agreed that it had been useful to use this method, they did not apply it on a daily
basis. “We could not do it as it implies a lot of time to find all the information, so for
non critical components we mostly base our decisions only on recommendations from our
development team” [ES12].

5.1.2 Identification of OSS Components

Perhaps the most prominent source of components, and information about these compo-
nents, is the individual developer’s previous experience with the components. As one
respondent said: “It’s usually a matter of using people’s experience and knowledge about
OSS components” [P4.Beta]. Previous knowledge was also rated relatively high in the
web-survey in Study 2 (see Table 5.13). This knowledge comes first of all from experi-
ence with specific components through, for instance, previous projects. In addition, many

1Using a five point Likert scale with the following labels: None at all (1), Small (2), Some (3), Large
(4), and Very large (5)

2Results from this part of the survey will appear in a paper by Ayala, Hauge, Franch, Conradi, and Li.
3Using a five point Likert scale with the following labels: None at all (1), Small (2), Some (3), Large

(4), and Very large (5)

52

CHAPTER 5. RESULTS PART 2: SELECTION OF OSS COMPONENTS

developers spend time monitoring both the OSS community and specific domains. “We
follow a lot of forums, news groups and stuff like that to monitor the areas of interest”
[P4.Upsilon].

The monitoring was frequently mentioned as being done through the use of web portals,
news sites, mailing lists, forums, RSS-feeds, and blogs. One respondent said that he read
“different private blogs where one basically picks up trends” [P5.NO2]. These resources
were typically related to the technological platform(s) (e.g. Java or .net), but some were
also related to either technical (e.g. content management systems or web applications)
or business (e.g. banking or energy) domains. The resources reported the experiences
of other developers who had used certain components, together with news about recent
releases, and so on. Through this monitoring, the developers were frequently aware of the
components they would need, or at least where to look for them. The monitoring can thus
be seen as an early investment for later identification of components.

Many of these web resources contained recommendations of specific components for
specific use. “We select components people are talking about by reading articles on cer-
tain web sites” [P4.Delta]. The developers we interviewed were also using these resources
to request advice and recommendations (typically forums and mailing lists). However,
these web resources were not the only place where developers sought advice. Colleagues
and other people in the developers’ social network were often consulted when they were
looking for components, and some respondents said they looked at similar (OSS) products
to see which components they contained.

Finally, when the developers were unaware of any components, and could not find any
useful advice through their familiar channels, they opted for unstructured web searches,
typically through Google. “When we do not have a clear idea of the kind of components
that may cover the functionality we are looking for, we directly go to Google” [P5.ES2].
Sources like SourceForge and other language or domain specific repositories were also
used. “We google what we need or we go to some repository” [P4.Theta]. However,
repositories like SourceForge were more prominent in the web-survey than in the inter-
views (see Table 5.1). Google was by far the service most frequently mentioned by the
respondents. This could be explained by the fact that some respondents found it a bit
cumbersome to navigate through SourceForge and similar sources.

5.1.3 Evaluation of OSS Components

Previous experience was again the most important factor. If a developer had a positive
experience with a suitable component, it was often reused right away without closer eval-
uation. “If someone has experience [with a component], we normally select this one”
[P5.ES2]. Another respondent explained this further saying that, “if you have used the
tool or the component before . . . you know it works” [P4.Gamma]. Our respondents in
both the interviews and the web-survey also relied on the experiences of other people
whom they trusted (see Table 5.2). They moreover put a lot of emphasis on such rec-
ommendations. Equally, a component was rapidly rejected if the developer had or heard

53

CHAPTER 5. RESULTS PART 2: SELECTION OF OSS COMPONENTS

Table 5.1: Practices used to identify OSS components (n=66)
Practice Mean STD
Searched OSS portals (SourceForge.net, tigris.org, apache.org,
eclipse.org, etc.)

3.67 0.95

Used search engines (Google, Msn search, etc.) to search for individual
OSS components

3.59 1.05

Selected OSS components based on previous experience 3.51 1.16
Used search engines (Google, Msn search, etc.) to search for compar-
isons of several OSS components

3.18 0.94

Asked friends and colleagues etc. whether they know any OSS candi-
date components

3.05 1.10

Requested advice at forums and mailing lists 2.43 1.13
Reviewed books and magazines 2.17 1.04
Used a company internal “knowledge base” 1.90 1.17
Used an (external) component broker to find the component 1.18 0.70

negative experiences concerning it.

Not only the experiences of colleagues were consulted, but also those of other developers
who reported their experiences on the Internet. “Another thing which we almost always
do is to read opinions . . . and examine a bit the experience other people have” [P5.ES3].
They do this because, “if we can say, by looking at the Internet or the references that
. . . this is a component that is used in other places . . . we do not need to have . . . a very
serious evaluation” [P4.Tau]. These experiences may consist of (problem) reports or
discussions in forums, comparisons of several components in a blog post, reviews or
tutorials in domain specific portals, or similar. We see that all of these sources are rich,
textual experience reports.

Moreover, a famous (OSS) product’s usage of a certain component was considered to
be a testimonial to the component’s usefulness and quality. That the component had a
track record was in fact considered to be quite important by several of the respondents.
However, “sometimes it is difficult to formulate an opinion from information contained in
the Internet because some of the opinions are extremely contradictory” [P5.ES2]. Often,
to deal with contradictory information, a variety of sources was consulted.

Many of the communities behind OSS products offer open access to a large number of
information resources like web sites, issue trackers, documentation, forums, mailing lists,
and of course the product’s source code. These community resources are used to get
an impression of the product, potential problems with the component, how active the
community is, its plans for the future, and so on. However, we found that respondents
primarily made such assessments in an unstructured manner, based on gut feelings instead
of rigorous evaluations following extensive lists of evaluation criteria.

To be able to evaluate whether or not a new component was good enough for the intended
use, most respondents said they did some prototyping or test integration with it. “If we do

54

CHAPTER 5. RESULTS PART 2: SELECTION OF OSS COMPONENTS

Table 5.2: Practices used to evaluate OSS components (n=65)
Practice Mean STD
Performed testing and/or prototyping with the components 3.74 1.15
Looked for references and/or other experiences with the components 3.46 0.99
Reviewed documentation for the components 3.35 1.04
Assessed the activity within the community around the components 3.05 1.27
Estimated how much effort would be used on selection and integration
of the component and included this estimate into the project plan

2.95 1.19

Performed architecture reviews of the components 2.64 1.15
Defined a list of requirements for the components before the selection
started

2.63 1.27

Used shortlists (to identify several components with similar functional-
ity)

2.42 1.07

Documented the choice of the components and the rationale behind this
choice

2.32 1.03

Performed code reviews of the components 2.00 0.98
Used documented checklists to evaluate the components 1.73 1.08
Used a selection process which was well documented in the company 1.48 0.86

not know the component beforehand, we just try to make a prototype” [P4.Beta]. Through
this prototyping they gained experience with the component, got a feel for how easy it
was to integrate it with other components, and assessed the component’s documentation
like tutorials, API descriptions etc. Prototyping was also rated highly in the web-survey
(see Table 5.2). We believe this is because it is so easy to download an OSS component
and test it, and because getting first-hand experience with a component gives the developer
rich experience with its capabilities.

5.2 C5: Situated Selection of Components

Based on the empirical evidence from Studies 2 and 6, we have developed a model for
situated selection. By “situated” (Suchman, 1987) we mean that the selection process
is always situated in a particular context with a particular team of developers4 (see Fig-
ure 5.1). This offers a new dimension to the understanding of selection and the use of
formalized selection methods.

The selection of OSS components is, like many other decisions in life, influenced by a
number of factors besides the objective requirements. When buying a car for instance, one
might have a preference for a certain brand, might get recommendations from a friend, and
might already trust a certain dealer. The goal of the model in Figure 5.1 is to illustrate the
complexity of component selection. Moreover, it shows that this selection is constrained
and heavily influenced by a number of factors besides the client’s requirements, and the
many evaluation criteria suggested in the literature (see Section 2.3).

4By developers we also include architects, designers, testers, and so on.

55

CHAPTER 5. RESULTS PART 2: SELECTION OF OSS COMPONENTS

SELECTION CONTEXT

SELECTION PROCESSDEVELOPER

ORGANIZATION PRODUCT PROJECT

ESTABLISH
CRITERIA

IDENTIFY EVALUATE
* Experience with technologies,
components, projects, domains,
providers, and information
resources
* Training and education
* Personal preference/desire to
learn new technology
* Personal and virtual network

* Not covered
by this thesis in
any detail

* Previous
experience
* Monitoring
* Recom-
mendations
* Web search

* Previous
experience
* The experience
of others
* Track record
* Community
resources
* Prototyping

* Goals
* Identity
* Standard
architecture/
technology
* Incentive
models
* Career paths

* Architecture
* Other
components

* Goals
* Resources
* Client
requirements &
technological
platform
* Development
tools

MARKETPLACE
* Availability of
components and
information
* Component
and information
providers

Figure 5.1: Situated selection of OSS components

5.2.1 The Selection Process

The purpose of component selection is to find a component that provides certain func-
tionality. In P4 we found that developers often select the first component which is good
enough (“first fit”), rather than struggling to find the best component (“best fit”)5. While
several components could be compared to each other at the same time to find the best
one, the respondents often identified and evaluated one component at a time. If the first
component was assessed to be good enough, it was selected. If it did not satisfy the de-
veloper’s requirements, he identified another component and evaluated this one. This is
confirmed by P5.

Rather than exploring the unknown, developers tend to stick with what they have found
and what they know of (as long as it is good enough). One respondent said that “we prefer
to use a component we already know, rather than assuming the risk of using a new one,
even when the new component could perform better” [P5.ES4].

Even though we have separated identification of components from evaluation of compo-
nents in both the papers and in Figure 5.1, the relationship between these two activities is
very close. When a developer looks for components he is constantly evaluating what he
finds, such as project web sites, recommendations from colleagues, or forum posts. More-
over, when evaluating a component he may identify other related components through, for
instance, experience reports from other developers. Hence, there is an ongoing interaction
between identification and evaluation.

5Mistree and Allen (1997) use the terms satisfy (first fit) and optimize (best fit) to make a similar dis-
tinction.

56

CHAPTER 5. RESULTS PART 2: SELECTION OF OSS COMPONENTS

This thesis has not focused on the establishment of evaluation criteria and requirements
engineering. However, we have included this activity in Figure 5.1, because we saw that
the learning taking place during the identification and evaluation of a component was
significant. If the component was rejected, the developer would not only have a better
understanding of the problem, but also of possible solutions to it. Hence, he would have
new and more precise criteria for the evaluation of the actual component and of similar
components. While the developer bases his evaluations on the initial requirements from
the client, many of the evaluation criteria are in fact not identified until the identification
and evaluation of the components actually starts.

A three way relationship exists between the (1) requirements/evaluation criteria, (2) the
selection context and the developer, and (3) the available components. Based on the
initial requirements, the selection context, and the developer’s previous experience, the
developer starts looking for components in the search space he is familiar with. This
search space constrains and to some extent determines the outcome of his search. The
available components and the evaluation of these extends the developer’s experience and
(most likely) causes him to update and change his initial requirements and evaluation
criteria.

5.2.2 The Selection Context

The selection context consists of the organization and the project developing the product,
the product itself, and the component marketplace. All these elements set boundaries for
the outcome of the selection.

Some organizations use standard architectures, have close relationships with certain providers,
or have decided to be, for instance, a ‘Java company”. Moreover, the product and/or the
client may already have an (IT) architecture consisting of other products and components.
Any new components must be compatible with the existing ones. The client may also
have close relationships to a vendor or support provider, or have employees with certain
training. “Often . . . the client wants this [particular] technology” [P5.ES1]. Finally, the
marketplace may not offer a large number of similar components. At least in some of
the domains, certain combinations of OSS components were more or less de facto stan-
dards, or at least very commonly used together. For instance, Java web applications often
consisted of Spring, Hibernate, several Apache common libs, and so on.

5.2.3 The Developer

The developer(s) conducting the selection was obviously one of the strongest factors influ-
encing its outcome. Their experience with technologies, domains, component providers,
information resources, and specific components influenced not only where they would
look, but also what they would look for, and how (closely) they would evaluate a compo-
nent. “There are a lot of portals about OSS and technologies, but I tend to use the ones
I usually follow and trust” [P5.ES3]. The developers’ interest in technology and desire
to learn new technologies also influenced their decisions. “Even though the team has ex-

57

CHAPTER 5. RESULTS PART 2: SELECTION OF OSS COMPONENTS

perience with one line of technology, it may want to learn another” [P5.ES1]. Finally,
the developers were influenced by advice from their network of both personal and on-line
contacts.

58

Chapter 6

Discussions and Evaluation of the
Research

In this chapter we evaluate and discuss the research presented in Chapters 4 and 5. First,
we discuss the results in relation to the research literature. Second, we discuss implica-
tions for research and practice. Third, we evaluate the fulfilment of the research questions
(see also Table 7.1). Fourth, we evaluate how the thesis has contributed towards complet-
ing the COSI project’s goals. Fifth, we present a brief discussion of issues related to the
validity of the thesis’ results. Finally, we briefly discuss the scope of the thesis.

6.1 Results vs. Existing Literature

6.1.1 Adoption of OSS

In Chapter 2 we highlighted several shortcomings in the OSS literature. First, several
OSS researchers and advocates have described OSS as a homogeneous phenomenon and
as something different than traditional software and software development. Second,
researchers have discussed adoption of OSS without really clarifying what they mean.
Third, there has been uncertainty about what OSS adoption actually entails.

This thesis extends, and to some degree contradicts, previous work through empirically
illustrating that organizations adopt OSS in distinctly different ways, and by providing
a classification framework describing six such ways. By doing this we show that OSS is a
multi-faceted phenomenon which organizations actually embrace quite differently, and
we increase the understanding of what OSS adoption actually entails.

Kitchenham et al. (1995) recommend that researchers describe the context of the studied
organizations. Since organizations adopt OSS in different ways, this recommendation be-
comes even more important. Our framework may be used for this purpose, as researchers
may use it to (1) describe how the organizations they study adopt OSS, and (2) position
and align their work. We have used the framework to support three activities. First, we
have used it to organize the literature on OSS adoption (see P8 and Section 4.2). Second,
we have used the framework to relate OSS research to other relevant software engineering

59

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

research (see Section 2.4.3). Third, we have used the framework to suggest directions for
future research (see Section 6.2.1).

We support, Grand et al. (2004) and Lundell et al. (2006) when they state that many orga-
nizations show significant commitment to OSS, and the observation of Bonaccorsi et al.
(2006) that most organizations combine OSS with commercial (and often proprietary)
products and services. We moreover agree with Fitzgerald (2006) who claims that OSS
is evolving into a more commercially viable form. For instance, Henkel (2006) and Rob-
les et al. (2007) illustrate this by showing that many OSS products are to a large extent
developed by paid developers.

As a consequence of the commitment many organizations show to OSS, we claim that the
strict distinction many OSS and software engineering researchers make (between tradi-
tional software (development) and OSS) is futile. OSS should rather be treated as a part
of software engineering. We furthermore find profound similarities between research on
OSS adoption and established fields within software engineering and information systems
research. Thus, we relate OSS research to these areas (see Section 2.4.3).

Unlike existing literature reviews (Feller et al., 2006; Scacchi et al., 2006; von Krogh and
von Hippel, 2006; Østerlie and Jaccheri, 2007; Stol and Babar, 2009), which give little
attention to organizations, our review focuses on the adoption of OSS in organizations. In
addition, we introduce the systematic literature review to the OSS research arena together
with Stol and Babar (2009).

While there are publications which focus on how organizations approach OSS through
business models (Hecker, 1999; Fitzgerald, 2006) and allocation of resources (Grand
et al., 2004), few focus on the practical implications of using OSS for software-intensive
organizations. This thesis, on the other hand, aims to explain how software-intensive
organizations adopt OSS and some of the implications of this adoption.

6.1.2 Selection of Software Components

Our findings relating to the practices developers use when selecting components are sim-
ilar to previous research on COTS (Tran and Liu, 1997; Kunda and Brooks, 2000; Torchi-
ano and Morisio, 2004; Li et al., 2005, 2006a) and OSS (Norris, 2004; Chen et al., 2008).
We may conclude two things from this observation:

• Since the practices used to select OSS and COTS are similar one could argue that
the two types of components are not that different in use. OSS is not something
very different from COTS and traditional software. This observation is supported
by e.g. Li et al. (2006b) and Ajila and Wu (2007).

• The selection practice has not changed that much over the last ten years. Selection
is still conducted as an informal process, based on the individual developer’s expe-
rience, unstructured web searches, and prototyping. Research on selection, and in
particular formalized selection methods, has not seen successful adoption, and has
not been able to influence practice to any significant degree.

60

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

In the eighties and nineties, software research was criticized for having a bias towards
proposing a string of new methods (see Section 2.1.1). These were not validated and they
had limited impact on practice. The same can be said about much of the research on both
COTS and OSS selection. Researchers have proposed a number of selection methods
and evaluation schemes, but few of these have been empirically validated and applied in
practice. Based on the limited influence research has had on practice, several researchers
have suggested various explanations as to why these efforts have failed (see Section 2.3.2).
However, not all of these explanations are satisfactory. We should therefore ask ourselves:
(1) why is this so, and (2) are there other ways to aid practitioners in software selection?

In the dominating understanding of software selection, selection has either been ad hoc
or formalized. We believe that our model for situated selection adds a new dimension to
the discussions around software selection (see Figure 6.1). Rather than being either ad
hoc or formalized, selection practices are fitted to the situation the selection is conducted
in. The new dimension added by the situated model could contribute to explaining why
formalized approaches have had limited impact on practice, and it should influence the
direction of research on software selection.

Situated
Based on: Experience, knowledge, and resources
available in the organization and on the Internet.
Properties: Adapted to the constraints related to the
selection context and the developers' skills and
interests. Benefits from previous investments in
learning technology.

Formalized
Based on: Quality models, evaluation
schemes, structured methods.
Properties: Structured, predictable ,
repeatable, and documented.

Ad hoc
Based on: A one time need
for a single component.
Properties: Unreliable and
unrepeatable

Figure 6.1: A three-dimensional view of software selection

We agree to a large extent with the work of Fitzgerald (1996) on methods for software
development, and we believe that a few of the constraints of the situation the selection
is conducted in are the main reasons for why formalized selection methods have seen
limited adoption.

The evaluation criteraia are frequently not defined up front: Lack of, unclear, or
overlapping evaluation criteria have been claimed to be shortcomings of the proposed
methods for OSS selection (see Section 2.3.2). However, if we are to develop one evalu-
ation scheme containing every useful criteria (reflecting functional, non-functional, non-
technical, and other types of requirements), it will become a complex ontology. Defining

61

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

and agreeing on these criteria is at best very hard (Bowker and Star, 2000). Such schemes
will also be very complex to use for developers, regardless of being customizable or not.

In practice, we see that it is difficult for developers to define, select, and weigh all the
criteria for evaluating a component until they actually starts identifying and evaluating
their alternatives. We support the view of Land et al. (2009) that the actual evaluation
criteria used to select components are often vague and not defined before the selection is
under way. It is rather “the candidate [components that] decide the evaluation criteria
for you” [P5.ES1]. We saw that the learning taking place during the identification and
evaluation of a component was an important input to the evaluation of the component,
and of other components.

A few context specific constraints are far more important than general evaluation
criteria: Several of the evaluation schemes for OSS contain a large number of evaluation
criteria. Most of these are general and may be used in several contexts. A component
may get a high score in such a formalized evaluation. However, we find that, most often,
one or a few specific constraints decide the outcome of the selection. Instead of using
a number of general evaluation criteria, developers make their decisions based on a few
important constraints specific to their own context (see Figure 5.1). This is supported by,
for instance, Bhuta and Boehm (2005, p. 140), who found that cost constraints set by the
client “eliminated most single-solution, end-to-end COTS products”. It is also supported
by Land et al. (2008), who found that it was quite common to select one technology or
component (a keystone) that would significantly constrain the selection of the remaining
components.

In addition, both Li et al. (2006a) and Land et al. (2008) found that the designation of
which evaluation criteria are the most important ones depends on the domain, the organi-
zation, the particular system, and the importance of the component in question. Different
projects used different processes and criteria in their selection of components. This is also
acknowledged by Goh et al. (2008, p. 88), who review web portals and state that “each of
the four portals has unique strengths and weaknesses, and each may be the best fit under
different circumstances and needs”.

Developers rely on experience (reports) rather than metrics: While much of the lit-
erature has focused on metrics, developers often rely on the rich (text) experiences from
other developers, and their own hands-on experiences with the components. An expe-
rience report from a trusted source is in many circumstances far more valuable than the
(weighted) numbers any metric or evaluation matrix could produce. Li et al. (2006a) made
similar observations in that developers relied on newsgroups to evaluate COTS and were
therefore more likely to select components with rich forums around them.

Relying on experience saves time and reduces uncertainty: Li et al. (2006a) describe
how developers need time to learn and evaluate new technology. By relying on their own
or others’ experiences with the component, the developers are able to cut the time needed
to evaluate components. This may involve everything from relying on the testament of a
few people, to, in extreme cases, the testament of thousands or even millions of users. A

62

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

more formalized approach would require a more thorough evaluation of several compo-
nents.

The most valuable experience is their own. By reusing a component they know, they
reduce the uncertainty related to adopting a new component. Another technology may
offer a “better” solution to the problem. However, the reuse of familiar technology enables
the developer to benefit from his experience and helps him to avoid the uncertainty related
to adopting a new component. The developers may also avoid further diversifying the
company’s technological portfolio.

6.2 Implications for Future Research

6.2.1 Adoption of OSS

OSS and software engineering researchers should, because of the similarities mentioned
above, align their efforts and study common research problems, instead of alienating OSS
and treating it as something new and unique (see Section 2.1.2). OSS researchers should
in particular borrow more support from related areas within software engineering and
information systems research (see Section 2.4.3).

Research on adoption of OSS has so far also been limited and fragmented (particularly up
to the point where this work was initiated). OSS researchers should therefore align their
effort and focus on a few issues. We agree with e.g. Basili et al. (1986) in that these issues
should be of high relevance to practitioners. To this end we:

• Provide empirically grounded descriptions of how organizations adopt OSS (C1).
• Have systematically collected, assessed, and summarized existing research (C2).
• Offer a framework for organizational adoption of OSS, that gives researchers a more

precise vocabulary when talking about OSS adoption (C3).

In addition, we provide a set of topics which could direct further research (see Table 6.1).
By doing so we hope to create a platform that other researchers can build on in their own
research.

6.2.2 Selection of Software Components

Almost 15 years ago, Fitzgerald (1996) suggested changing the focus of research away
from formalized methodologies software development. We believe research on general
selection methods, evaluation criteria, and quality models could benefit from a similar
change of focus. First, we suggest that research should acknowledge developers’ use of
experience and recommendations, both from people they know and from the Internet.
Second, research should reflect the constraints inherent to the situation the selection is
conducted in, not just suggest general product-specific evaluation criteria. There are, as
pointed out by Land et al. (2008), several concerns that need to be satisfied, not just
technical ones. We furthermore agree with Glass (2004) in that research should provide

63

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

Table 6.1: Topics for future research
Way of adopting OSS Possible topics for future research
Deploying OSS products • What are long-term costs and consequences of deploying and

keeping OSS products operational?
Using OSS CASE tools • What kinds of tools are needed for collaborative software

development across organizational and community borders?
• How do organizations collaborate using such software devel-
opment tools?

Integrating OSS compo-
nents

• How may software developers most efficiently navigate
through and select OSS components?
• How may software developers benefit from OSS communi-
ties and the (unstructured) resources available over the Inter-
net?
• How can software developers maintain and secure the sus-
tainability of software systems consisting of components from
a variety of providers?

Participating in OSS com-
munities

• When, how, and with what should an organization participate
in the development of OSS products controlled by someone
outside of the organization?
• How can we effectively contribute only parts of a product
and at the same time retain other parts private?

Providing OSS products • How are OSS providers able to attract and sustain a commu-
nity?
• What are the success criteria for incorporating contributions
(requirements, code, bug reports/fixes etc.) from a commu-
nity?

Using OSS development
practices

• How can development practices from OSS communities be
adopted within organizations?
• How may organizations successfully collaborate through
community or consortium based software development?

64

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

practitioners advice on how to use current methods rather than constantly suggesting new
ones.

Despite research’s excessive focus on suggesting new methods, there are a few interesting
trends we believe are worth more attention in the future. Contradictory to many of the
suggested selection methods, these trends may result in concrete tools which may be very
useful to practitioners.

Metrics for automated quality evaluation (Samoladas et al., 2008). If successful, these
metrics may be integrated directly into tools and one may avoid the problems of manually
gathering necessary information. However, automated solutions are most likely unable
to deal with neither all kinds of requirements and evaluation criteria (functional, non-
functional, platform, and non-technical requirements) nor identifying the critical criteria.

Specialized Internet-based search for code fragments and software components (Hum-
mel et al., 2008; Gallardo-Valencia and Sim, 2009). Specialized search tools may find
more relevant information while avoiding some of the problems related to irrelevant hits
from general search tools. A few tools already exist e.g. Google Code1 and Koders2,
but these should be developed and explored further. We believe that rich experience and
problem reports should be made accessible to simplify the evaluation of the components.

Using a community-based approach to populate and maintain reuse repositories (Ayala
et al., 2007). This may split the cost of constructing a reuse repository and increase its
value. Platforms like ohloh3 and SourceForge4 incorporate some of this functionality, but
still focus on the developer of the components rather than the reuser.

6.3 Implications for Practice

6.3.1 Adoption of OSS

This thesis shows that there are several ways of leveraging OSS, and that each of these
ways involves different challenges. Organizations may also adopt OSS in several different
ways at the same time. Organizations should therefore not try to carbon copy the success
of others, but rather identify the advantages of OSS adoption in their own context. They
may find that OSS provides other opportunities than they expected. Hence, we agree with
Melian and Mähring (2008) and Ven et al. (2008) in that organizations must analyse the
opportunities and consequences of OSS adoption in their own context.

The framework provided above, and the success stories identified in P8, may aid organi-
zations in understanding what “OSS adoption” means to their organization. The concrete
advantages, challenges, and experiences reported in P6 and P7 may help organizations

1http://code.google.com/
2http://www.koders.com/
3http://www.ohloh.net/
4http://www.sf.net/

65

http://code.google.com/
http://www.koders.com/
http://www.ohloh.net/
http://www.sf.net/

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

which either provide their own OSS products, or which deploy OSS products into their
operation environment.

6.3.2 Selection of Software Components

Practitioners should, to a greater extent, acknowledge the value of employees with OSS
based experiences. They should first of all allow, and encourage, their developers to spend
time familiarizing themselves with OSS components, concepts, communities, Internet re-
sources, and so on. This is a valuable investment which will reduce later efforts needed
to identify and evaluate OSS components. Second, developers should share their expe-
riences with the components they use openly on the Internet. As these experiences are
a valuable resource during the identification and evaluation of OSS components, every-
one should collectively contribute to this pool of resources. By investing a little bit in
contributing to the community, one may encourage others to do the same, and hopefully
reduce one’s own efforts in the future.

6.4 Results vs. the Research Questions

To answer how organizations adopt OSS (RQ1), we have provided a classification frame-
work for organizational OSS adoption (C3). This framework contains six ways of adopt-
ing OSS, each offering different opportunities and challenges. The framework is based on
empirical evidence (C1) from the COSI project (P1 and P3) and from two Norwegian or-
ganizations, eZ Systems (P6) and Telenor IT Norway (P7). The framework is furthermore
supported by evidence from our systematic literature review (P8) (C2).

The extent to which organizations adopt OSS (RQ1) is partly answered by the empirical
evidence (C1) provided by this thesis, and in particular by P2. Based on this paper and
related literature (Ghosh, 2002; Glynn et al., 2005; Nikula and Jantunen, 2005), we see
that the adoption of OSS in software-intensive organizations is significant. The awareness
that the level of OSS adoption is significant, and the knowledge that there are many orga-
nizations which successfully leverage OSS, provides motivation for increased adoption of
OSS and further research on issues related to this adoption. However, further exploration
of the actual level of adoption was not done. Knowing the exact level of OSS adoption
among software-intensive organizations will most likely not contribute to improving their
practice.

In P8 we present a systematic review of the OSS literature published between 1998 and
2008 (C3). This review addresses the second research question (RQ2). We find that the
number of publications has been limited but is increasing, and that these publications have
focused on a large number of fragmented topics. Much of the research has furthermore
had a somewhat introverted, focus has and treated OSS as something distinctly different
from software engineering. The OSS research community may increasingly aid practi-
tioners through focusing its research on a few topics rather than diversifying it. These
topics should be identified in collaboration with practitioners. In Table 6.1, we have pro-
vided an overview of what we believe could be interesting topics for future research.

66

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

Furthermore, OSS research should also borrow more support from related areas within
software engineering and information systems research (see Table 2.3).

The results presented in Chapter 5 address the third research question (RQ3), by present-
ing empirical grounded descriptions of actual selection practices. While focusing on the
practices developers use, the previous sections also describe several of the resources de-
velopers use when identifying, evaluating, and selecting OSS components. Through these
descriptions we provide a baseline for understanding and improving both the practices and
resources developers use when selecting OSS components.

6.5 Results vs. the Goals of the COSI Project

Due to the participation of a few large multi-national companies, the COSI project ini-
tially focused on distributed development, or heterogeneous distributed concurrent col-
laborations. This focus was also reflected in the project’s goals (see Section 3.1.1). The
industrial partners from Norway were not in this position, and did not have the same focus
as some of the project’s larger partners. The project was furthermore divided into three
work packages, while we were mainly involved with one them.

For these reasons, this thesis does not aim to fulfill all of the project’s goals. This thesis
has mainly focused on aiding the project in reaching its third goal (G3). Through G3,
COSI intended to “improve the understanding and cooperation between the open source
world and the industry”. This thesis has helped the project in reaching this goal through
providing new knowledge about how organizations adopt OSS, and thereby increasing the
understanding of how industry may benefit from OSS. However, the research on selection
of software components was conducted outside the scope of the COSI project.

6.6 Validity

While, the individual papers contain discussions of validity, this section discusses and
summarizes some of the most important issues. Some of these issues are general to all
the research conducted in this thesis, while others are mainly concerned with either the
(1) adoption of OSS or (2) selection of OSS components. Conclusion validity will not be
discussed since this thesis does not include statistical testing.

6.6.1 Construct Validity

In this thesis, we have used several questionnaires (P1, P2, and P7) and interview guides
(P1, P2, P7, P4 and P5). These interview guides and questionnaires are available in
Appendix B, and they may be reused in other (replication) studies.

The interview guides and questionnaires were first of all inspired by the literature, but also
by earlier work within the group e.g. (Conradi and Li, 2005; Li et al., 2008). Hence, the
focus and choice of metrics were in line with the literature. Both the interview guides and

67

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

the questionnaires were developed over several iterations as a collaborative effort by sev-
eral researchers. They were also pretested internally by colleagues, and most often also by
a small number of respondents. The interview guides were furthermore semi-structured
and allowed a dialogue between the respondent and the interviewer(s). This was useful
for avoiding misunderstandings and for exploring new and interesting topics. This di-
alogue would not have been possible with questionnaires, and some of the respondents
could have interpreted a few of the questions differently.

With an even more careful design of the questionnaires, we could have increased the
number of metrics for each of the variables in the questionnaires. This would most likely
have forced us to reduce the number of variables included in the questionnaires, but it
would have enabled us to statistically test the relationship between some of the variables.
However, the questionnaires were mainly used for exploring how and to what extent the
various organizations adopted OSS. Testing of relationships between different practices
is deferred to future research.

6.6.2 Internal validity

One of the main challenges related to the internal validity of this work is the interpretation
we, as researchers, had to do with the data we collected. However, for most of the work we
were a team of researchers who worked with the data over time. We furthermore gathered
data from different sources, and taped and transcribed almost all of the interviews we
conducted. This simplified the analysis of the interviews and allowed other researchers to
take part in this work.

Issues related to the Adoption of OSS: Even though the data from the COSI project and
from the collaboration with Telenor has been collected over an extended period of time,
we were not able to get the same level of data richness as ethnographic or observational
case studies. Nevertheless, we are confident that we have presented an accurate picture
of how these organizations have adopted OSS. In addition to our own empirical work,
we gathered an extensive amount of empirical evidence from the literature and based our
development of the classification framework on both.

Issues related to the Selection of Software Components: In P4 and P5 we preferred
width over depth, and interviewed one person from several organizations rather than sev-
eral persons from just a few organizations. Interviewing more people from the same
organization could have give an even better understanding of the specific organization’s
practices. However, our goal was to evaluate the practices used in the industry, rather than
in just one company.

The interviews were conducted by different researchers, and in the case of P4 slightly
different interview guides. However, these guides and the interview guide used in P5,
were developed through a collaborative effort over time. The interview guides also helped
counter the fact that people have a tendency to talk about their practices “in general”.
Through the interview guides, we tried to make them focus on a specific project and the
selection of specific components. When doing so, we have to be aware that the practices

68

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

in other projects or for other components may have been different. Therefore, in Study
6, we also asked if the practices from the specific case were representative for how they
usually selected components.

6.6.3 External Validity

All of the companies involved in this research were European, with an overweight of Nor-
wegian and Spanish companies. Dybå (2005) points out that there may be organizational
differences between European and, for instance, American companies. The majority of
Norwegian software-companies are relatively small and most of them have flat organiza-
tional structures.

Issues related to the Adoption of OSS: While we were able to draw a randomized sam-
ple in P2, there may have been differences between respondents and non-respondents.
These differences may be an issue as OSS enthusiasts are probably more likely to partic-
ipate in the survey. However, we did a follow up of non-responses without finding any
significant differences.

In addition, the companies involved in the COSI project had a strong interest in OSS.
Even though they represented different types of companies, this strong interest in OSS
should be kept in mind when attempting to extrapolate the results from studies within the
project (P1, P3, P6) to other contexts. Based on collaboration with other organizations,
we do not see any reason why the OSS adoption in the COSI project should be different
from how these organizations adopted OSS. However, the COSI partners’ adoption of
OSS may have been more extensive.

OSS is furthermore a multifaceted phenomenon which spans several research fields (see
Section 2.1.2). In our systematic literature review (P8), we focused on the intersection
between OSS, software engineering, and to a minor extent information systems and man-
agement literature. We should therefore be careful when generalizing the results from this
review to OSS research in other areas.

Issues related to the Selection of Software Components: While we were able to draw
a randomized sample in P2 (Norwegian companies), the samples P4 (Norwegian compa-
nies) and P5 (Norwegian and Spanish companies) were based on convenience sampling.
This included both the companies and the individual respondents included in the surveys.
However, we were able to get a varied sample where most kinds of organizations were
represented.

Nevertheless, the majority of these companies were small or medium sized, and we have
not extensively explored potential differences between organizations of different sizes
(P2, P4, and P5). The majority of the projects/products included in P4 and P5 were rel-
atively small and focused on business and web applications. Large projects and projects
with real-time or life-critical requirements may behave differently, and formalized meth-
ods for software selection may see more significant adoption in such contexts.

69

CHAPTER 6. DISCUSSIONS AND EVALUATION OF THE RESEARCH

6.7 The Scope of the Thesis

In retrospect it would have been beneficial to define a more narrow focus for the thesis at
an earlier stage. However, the state of the research on OSS adoption back in 2005, did
not permit this (see Section 2.2.3). Instead, the thesis contributes to building a founda-
tion for further research on OSS adoption (C1-C3). Moreover, when this foundation was
established we decided to focus on the selection of OSS components (C4-C5).

In (P8), we criticize OSS research for not borrowing enough support from related liter-
ature. The scope of this thesis has been limited to OSS and software engineering (see
Section 2.4.3). We acknowledge that the part on adoption of OSS could have benefited
from having a wider scope, and from borrowing more support from research on diffusion
and adoption of (information) technology (Fichman, 1992; Rogers, 2003). However, after
establishing the platform for future research (described above), we decided to build on
this platform and focus our work on a topic closer to the core of software engineering,
software selection.

We also acknowledge that the part on software selection could also have benefited from
having a wider scope, and from borrowing more support from (in particular) theories
for decision making such as social aspects (Munda, 2004) and uncertainty (Begg et al.,
2003). Like the previous part of this thesis, this part may also have benefited from research
on diffusion and adoption of (information) technology. So, all these directions must be
explored through future work.

When studying software selection, we have mainly looked at the identification and eval-
uation of components. There are indeed other phases of CBSE that are highly relevant
to software selection. However, these had to be left out of this work. Future work may
look closer at the actual decision being taken after the evaluation is completed, require-
ments engineering and requirements negotiation with respect to the functionality offered
by the available components, and the actual integration and maintenance of the selected
components.

70

Chapter 7

Conclusions and Future Work

This thesis has presented an empirical view on the adoption of OSS in software-intensive
organizations. The overall goal of the thesis has been to increase the understanding of
how software-intensive organizations may adopt OSS. Through several industrial surveys
and studies conducted in collaboration with industrial partners, we have explored and
described several aspects of OSS adoption. We have in particular contributed to building
a theory around what it means to adopt OSS, and how software-intensive organizations
actually select OSS components.

7.1 Conclusions

The research presented in this thesis has focused on two topics. First, it has tried to sort
out some of the unclarity and misconceptions around what it means for an organization to
adopt OSS. Second, it has attempted to aid researchers and practitioners in reducing some
of the risk and complexity related to the selection of OSS components. From these two
topics three research questions (RQ1-RQ3) were defined. Table 7.1 summarizes how this
thesis has responded to these research questions, and it relates the contributions (C1-C5)
and the papers (P1-P8) tied to these research questions.

7.1.1 Adoption of OSS

Based on several industrial studies, we have provided an empirical description of how a
number of organizations adopted OSS in distinctly different ways (C1). Each of these
ways offered unique benefits and involved different challenges. Organizations should
acknowledge this variety and should not blindly follow the success of others. OSS is not
a one-size-fits-all solution. Instead, organizations must analyze their opportunities and
shape their adoption of OSS to their own organization.

We have also conducted an extensive review of the literature on OSS adoption (C2). The
literature review showed that existing empirical research on OSS adoption has been rel-
atively limited and fragmented. However, our work, together with more recent work by
other researchers has contributed to filling this gap and building a solid foundation for
future work.

71

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Table 7.1: Relation between research questions, contributions, and papers
Research Question Response Reported in
RQ1 How and to what extent
are software-intensive
organizations currently
adopting OSS?

Organizations adopt OSS in signifi-
cantly different ways. This thesis of-
fers a classification framework describ-
ing six such ways (C3). This framework
is based on:

P1, P3, and
P8

- Descriptions of how a number of orga-
nizations actually adopt OSS (C1).

P1-P7

- A systematic literature review (C2). P8

The adoption of OSS in software-
intensive organizations is considerable.

P2

RQ2 What is the current status
of research on OSS adoption in
organizations and how may this
research benefit practitioners?

The status of the OSS adoption research
is given in our literature review (C2).
The amount of empirical evidence has
until recently been limited and the liter-
ature is relatively fragmented and trou-
bled with a lack of quality studies. To
increase the value of research for prac-
titioners, we offer directions for future
research.

P8 and Sec-
tion 6.2.1

RQ3 Which strategies and
resources do software
developers use to identify,
evaluate, and select OSS
components?

Practitioners most often use informal
selection practices, heavily depending
on their previous experience. We pro-
vide empirically founded descriptions of
these practices (C4).

P4, P5

Moreover, we put these practices in to
context by describing a model for situ-
ated software selection (C5).

Section 5.2

The differences between the ways of adopting OSS should be reflected by researchers to
a far greater extent than they are today. To this end, we have provided a classification
framework for organizational adoption of OSS (C3). Our framework gives researchers
and practitioners a more precise vocabulary when discussing OSS adoption. Practitioners
may also use it to explore their own adoption of OSS. The framework identifies that
organizations adopt OSS in the following six ways:

• Deploying OSS products
• Using OSS CASE tools
• Integrating OSS components into their systems
• Participating in the development of OSS products controlled by someone else
• Providing their own OSS products and relating to their surrounding communities
• Using OSS development practices in their own software development

72

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1.2 Selection of OSS Components

Based on the platform described above, we have drawn our attention towards integration
of OSS components, and in particular the selection of such components. Research on soft-
ware selection has suggested a continuous stream of formalized methods and evaluation
schemes, without any particular influence on practice. The first step towards improving
practice, is to describe the practices currently in use.

Our empirical findings (C4) describe how software developers identify, evaluate, and fi-
nally decide upon OSS components. We have found that practice is heavily influenced
by previous experience (primarily the developer’s or his colleagues’, but also by expe-
rience found across the Internet), informal monitoring of Internet sites and communi-
ties, unstructured Internet searches, and prototyping. Formalized methods and evaluation
schemes see very limited adoption.

Based on these results, we have provided a model for situated selection (C5). This model
offers a new dimension to software selection and to the traditional view that selection is
either ad hoc or formalized. The model presents some of the complexity and constraints
involved in the selection of OSS components. Moreover, it illustrates how important
the developer and his work context are to the selection process. The process cannot be
separated from the context and the developer(s) executing it.

We have furthermore used the model to present an understanding of why formalized meth-
ods for software selection have failed to influence practice. This is because selection is a
process where the understanding of both the requirements and the candidate components
is evolving, as the developer explores and evaluates his alternatives. Moreover, a few con-
text specific criteria or constraints are often far more important than the many evaluation
criteria suggested by research. Finally, practitioners rely on rich (textual) experience and
prototyping rather than quantifiable metrics. To rely on experience partly from inside the
team and partly from various Internet sources, saves time and reduces uncertainty.

7.2 Future Work

Through the research presented above, we have created a basis for future research on both
OSS adoption and software selection. We recommend that OSS researchers (1) focus
their attention on a limited number of issues, (2) identify these issues together with prac-
titioners, and (3) align their work with research on software engineering and information
systems. There are several ways of extending the work on OSS adoption, and we have
suggested several possibilities in Section 6.2.1. We hope that these topics may serve as
input to the ongoing discussions on OSS adoption.

However, we decided to focus our work on integration of OSS components, and in par-
ticular selection of such components. Based on this work, we recommend that research
on software selection should benefit from putting more emphasis on actual practice and
less on suggesting new methods and evaluation schemes. Furthermore, we have provided

73

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

some considerations in Section 6.2.2 on general research on software selection. In ad-
dition to these general issues, there are a few issues which may continue and extend the
work in this thesis in particular.

We have mainly conducted a single interview with one, or in some cases two, developers
from each organization. Future studies of the practices developers actually use when
selecting OSS components could benefit from increased depth and closer collaboration
with the developers. Moreover, our samples in these studies had an overweight of projects
developing web and business applications. They did not contain projects that developed
critical applications, and the practices used in such projects may be more formalized.
Future research may also look into this.

The most interesting issue which may add the most value to practitioners, is perhaps the
use of (simple) search tools for aggregating rich experience reports for software compo-
nents or a combination of such components. This is not something we have explored, but
we see this as a very interesting topic, perhaps under the umbrella by Gallardo-Valencia
and Sim (2009), named “Internet-Scale Code Search”.

In addition, we believe that systems consisting of combinations of components from sev-
eral (OSS) providers, upon which the integrator has no direct control, could be an im-
portant challenge for the future (see also Boehm (2006b)). This is, component providers,
integrators, customers, and users that constitute large and evolving networks of distributed
and interrelated stakeholders. Selecting the right components, integrating them, maintain-
ing them, and influencing their future in such a network will be a tough challenge which
needs scrutiny. Finally, in such networks, how do integrators solve the mismatch between
the offering in the marketplace and the customer’s requirements? Are customers involved
in requirements renegotiation based on this mismatch, does the integrator modify the
component or develop addware, or does he reject all available components and start from
scratch?

74

Glossary

Adoption of OSS With adoption of OSS we consider software-intensive orga-
nizations at any of the five stages of the adoption process
(Rogers, 2003). This includes both organizations that plan
(knowledge, persuasion, and decision) to adopt OSS and orga-
nizations that have already included OSS as part of their soft-
ware development (implementation and confirmation).

Component-Based
Software Engineering

The process of defining, implementing and integrating, or
composing loosely coupled independent components into sys-
tems (Sommerville, 2007, p. 440).

Copyleft Copyleft or reciprocity requires that derivative works that are
based on a piece of software with certain software licenses (e.g.
GPL) use the same license (Rosen, 2005).

Formalized method A formally-defined, brand-named or published methodology,
of which there are many examples in the literature (Fitzgerald,
1996, p. 4).

Inner Source Software Inner Source Software is the use of OSS development tools and
development practices within an organization or a consortium
of organizations (van der Linden, 2006).

NACE Nomenclature statistique des activités économiques dans la
Communauté européenne (French for Statistical Classification
of Economic Activities in the European Community). The
NACE codes are used to classify economic activity (compa-
nies) according to their main business (NACE, 2009).

75

GLOSSARY

Open source software Open source software (OSS) is a multifaceted phenomenon
consisting of a wide spectrum of software products provided
by heterogeneous communities using a variety of software de-
velopment and maintenance practices.

Open Source Soft-
ware product

A piece of software released with a software license approved
by either the Open Source Initiative (OSI) or the Free Software
Foundation (FSF).

OSS community An OSS community consists of the users and developers sur-
rounding an OSS product. These community members are of-
ten, based on their level of involvement, placed into the follow-
ing groups: core-developers, co-developers, active users, and
passive users (Crowston and Howison, 2006).

Situated That an action is situated means that it depends heavily on its
circumstances (Suchman, 1987, p. 50).

Software Computer programs, procedures, and possibly associated doc-
umentation and data pertaining to the operation of a computer
system (IEEE 1990).

Software component A unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component
can be deployed independently and is subject to composition
by third parties (Szyperski et al., 2002, p. 41).

Software engineering The practical application of scientific knowledge in the de-
sign and construction of computer programs, and the associ-
ated documentation required to develop, operate, and maintain
them (Boehm, 1976, p. 1226).

Software engineering
research

Software engineering research concerns (1) the development of
new, or modification of existing, technologies (process models,
methods, techniques, tools or languages) to support SE activ-
ities, and (2) the evaluation and comparison of the effect of
using such technology in the often very complex interaction
of individuals, teams, projects and organisations, and various
types of task and software system (Sjøberg et al., 2007, p. 358)
[sic].

76

GLOSSARY

Software-intensive or-
ganization

An organization is here defined as any public or private insti-
tution, company, or similar entity that develops, maintains, or
makes heavy use of software.

Software reuse The use of existing software or software knowledge to con-
struct new software (Frakes and Kang, 2005, p. 529).

System An entity that interacts with other entities, i.e., other systems,
including hardware, software, humans, and the physical world
with its natural phenomena. These other systems are the envi-
ronment of the given system. The system boundary is the com-
mon frontier between the system and its environment (IEEE,
1990).

77

GLOSSARY

78

References

Ivan Aaen, Jasper Arent, Lars Mathiassen, and Ojelanki Ngwenyama. A Conceptual Map
of Software Process Improvement. Scandinavian Journal of Information Systems, 13:
123–146, 2001. ISSN 0905-0167.

Alain Abran, James W. Moore, Pierre Bourque, and Robert Dupuis, editors. Guide to
the Software Engineering Body of Knowledge. IEEE Computer Society, 2004. ISBN
0-7695-2330-7.

Paul Adams, Cornelia Boldyreff, David Nutter, and Stephen Rank. Adaptive Reuse of
Libre Software Systems for Supporting On-line Collaboration. In Feller et al. (2005a),
pages 1–4. ISBN 1-59593-127-9. doi: 10.1145/1082983.1083259.

Paul Adams, David Nutter, Stephen Rank, and Cornelia Boldyreff. Using Open Source
Tools to Support Collaboration within CALIBRE. In Scotto and Succi (2005), pages
61–65.

Pär. J. Ågerfalk and Brian Fitzgerald. Outsourcing to an Unknown Workforce: Exploring
Opensourcing As a Global Sourcing Strategy. MIS Quarterly, 32(2):385–409, June
2008. ISSN 02767783.

Samuel A. Ajila and Di Wu. Empirical study of the effects of open source adoption on
software development economics. Journal of Systems and Software, 80(9):1517–1529,
2007. ISSN 0164-1212. doi: 10.1016/j.jss.2007.01.011.

Orlando Alfonzo, Kenyer Domínguez, Lornel Rivas, Maria Pérez, Luis Mendoza, and
Maryoly Ortega. Quality Measurement Model for Analysis and Design Tools Based on
FLOSS. In Farookh Khadeer Hussain and Elizabeth Chang, editors, Proceedings of the
19th Australian Conference on Software Engineering (ASWEC’08), March 26th-28th,
Perth, Australia, pages 258–268. IEEE Computer Society, 2008. ISBN 978-0-7695-
3100-7. doi: 10.1109/ASWEC.2008.4483214.

Carina Alves and Anthony Finkelstein. Investigating Conflicts in COTS Decision-
Making. International Journal of Software Engineering and Knowledge Engineering,
13(5):1–21, 2003.

Claudio A. Ardagna, Ernesto Damiani, and Fulvio Frati. FOCSE: An OWA-based Eval-

79

REFERENCES

uation Framework for OS Adoption in Critical Environments. In Feller et al. (2007),
pages 3–16. ISBN 978-0-387-72485-0. doi: 10.1007/978-0-387-72486-7_1.

Claudia P. Ayala. Systematic Construction of Goal-Oriented COTS Taxonomies. PhD
thesis, Technical University of Catalunya (UPC), 2008.

Claudia P. Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, and Jingyue
Li. Open Source Collaboration for Fostering Off-The-Shelf Components Selection.
In Feller et al. (2007), pages 17–30. ISBN 978-0-387-72485-0. doi: 10.1007/
978-0-387-72486-7_2.

Claudia P. Ayala, Øyvind Hauge, Reidar Conradi, Xavier Franch, Jingyue Li, and
Ketil Sandanger Velle. Challenges of the Open Source Component Marketplace in
the Industry. In Boldyreff et al. (2009), pages 213–224. ISBN 978-3-642-02031-5.
doi: 10.1007/978-3-642-02032-2_19.

Earl R. Babbie. Survey Research Methods. Wadsworth Publishing, 2nd edition, 1990.
ISBN 978-0534126728.

Stacy Avery Baird. The Heterogeneous World of Proprietary and Open-Source Soft-
ware. In Tomasz Janowski and Theresa A. Pardo, editors, Proceedings of the 2nd
International Conference on Theory and Practice of Electronic Governance (ICE-
GOV ’08), December 1st-4th, Cairo, Egypt, volume 351 of ACM International Con-
ference Proceeding Series, pages 232–238. ACM, 2008. ISBN 978-1-60558-386-0.
doi: 10.1145/1509096.1509143.

Victor R. Basili. The Role of Experimentation in Software Engineering: Past, Current,
and Future. In Tom Maibaum, Dieter Rombach, and Marvin V. Zelkowitz, editors,
Proceedings of the 18th International Conference on Software Engineering (ICSE ’96),
March 25th-29th, Berlin, Germany, pages 442–449. IEEE Computer Society, 1996.
ISBN 0-8186-7246-3. doi: 10.1109/ICSE.1996.10002.

Victor R. Basili, Richard W. Selby, and David H. Hutchens. Experimentation in Software
Engineering. IEEE Transactions on Software Engineering, 12(7):733–743, July 1986.

Steve H. Begg, Reidar B. Bratvold, and John M. Campbell. Decision-Making under Un-
certainty. In Proceedings of the 7th International Symposium on Reservoir Simulation
Symposium on Reservoir Simulation, June 23rd-27th, Baden-Baden, Germany, 2003.

Manuel F. Bertoa, José M. Troya, and Antonio Vallecillo. A Survey on the Quality In-
formation Provided by Software Component Vendors. In Fernando Brito e Abreu,
Mario Piattini, Geert Poels, and Houari A. Sahraoui, editors, Proceedings of the 7th
ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineer-
ing (QAOOSE’03), July 21st-25th, Darmstad, Germany, pages 25–30, 2003.

Jesal Bhuta and Barry W. Boehm. A Method for Compatible COTS Component Selection.
In Franch and Port (2005). ISBN 3-540-24548-0. doi: 10.1007/b105900.

Andreas Birk, Torgeir Dingsøyr, and Tor Stålhane. Postmortem: Never Leave a Project

80

REFERENCES

without It. IEEE Software, 19(3):43–45, 2002. ISSN 0740-7459. doi: 10.1109/ms.
2002.1003452.

Dominik Birkmeier and Sven Overhage. On Component Identification Approaches - Clas-
sification, State of the Art, and Comparison. In Grace A. Lewis, Iman Poernomo, and
Christine Hofmeister, editors, Proceedings of the 12th International Symposium on
Component-Based Software Engineering (CBSE 2009), June 24th-26th, East Strouds-
burg, USA, volume 5582/2009 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2009. ISBN 978-3-642-02413-9. doi: 10.1007/978-3-642-02414-6_1.

Wolf-Gideon Bleek, Matthias Finck, and Bernd Pape. Towards an Open Source Devel-
opment Process? Evaluating the Migration to an Open Source Project by Means of the
Capability Maturity Model. In Scotto and Succi (2005), pages 37–43.

Barry W. Boehm. Software Engineering. IEEE Transaction on Computers, C-25(12):
1226–1241, 1976.

Barry W. Boehm. A View of 20th and 21st Century Software Engineering. In Osterweil
et al. (2006), pages 12–29. ISBN 1-59593-375-1. doi: 10.1145/1134285.1134288.

Barry W. Boehm. Some future trends and implications for systems and software engi-
neering processes. Systems Engineering, 9(1):1–19, 2006b. ISSN 1098-1241. doi:
10.1002/sys.v9:1.

Barry W. Boehm and C. Abts. COTS integration: Plug and Pray? Computer, 32(1):
135–138, Jan 1999. ISSN 0018-9162. doi: 10.1109/2.738311.

Cornelia Boldyreff, David Nutter, and Stephen Rank. Communication and Conflict Is-
sues in Coollaborative Software Research Projects. In Joseph Feller, Brian Fitzgerald,
Scott A. Hissam, and Karim R. Lakhani, editors, Collaboration, Conflict and Con-
trol Proceedings of the 4th Workshop on Open Source Software Engineering (WOSSE
2004), May 25th, Edinburgh, Scotland, pages 14–17, 2004.

Cornelia Boldyreff, Kevin Crowston, Björn Lundell, and Anthony I. Wasserman, edi-
tors. Proceedings of the 5th IFIP Working Group 2.13 International Conference on
Open Source Systems (OSS2009) - Open Source Ecosystems: Diverse Communities,
June 3rd-6th, Skövde, Sweden, volume 299/2009 of IFIP Advances in Information
and Communication Technology, 2009. Springer. ISBN 978-3-642-02031-5. doi:
10.1007/978-3-642-02032-2.

Andrea Bonaccorsi and Christina Rossi. Comparing motivations of individual pro-
grammers and firms to take part in the open source movement: From community
to business. Knowledge, Technology, and Policy, 18(4):40–64, dec 2006. doi:
10.1007/s12130-006-1003-9.

Andrea Bonaccorsi, Silvia Giannangeli, and Christina Rossi. Entry Strategies Un-
der Competing Standards: Hybrid Business Models in the Open Source Software
Industry. Management Science, 52(7):1085–1098, 2006. ISSN 0025-1909. doi:
10.1287/mnsc.1060.0547.

81

REFERENCES

Andrea Bonaccorsi, Dario Lorenzi, Monica Merito, and Christina Rossi. Business Firms’
Engagement in Community Projects. Empirical Evidence and Further Developments of
the Research. In Andrea Capiluppi and Gregorio Robles, editors, Proceedings of the
First International Workshop on Emerging Trends in FLOSS Research and Develop-
ment (FLOSS 2007), May 21th, Minneapolis, USA, pages 1–5, Minneapolis, US, 2007.
IEEE Computer Society. ISBN 0-7695-2961-5. doi: 10.1109/floss.2007.3.

Geoffrey C. Bowker and Susan Leigh Star. Sorting Things Out: Classification and Its
Consequences. The MIT Press, 2000. ISBN 978-0262522953.

Pearl Brereton and David Budgen. Component-Based Systems: a Classification of Issues.
Computer, 33(11):54–62, Nov 2000. ISSN 0018-9162. doi: 10.1109/2.881695.

Alan W. Brown and Grady Booch. Reusing Open-Source Software and Practices: The
Impact of Open-Source on Commercial Vendors. In Cristina Gacek, editor, Soft-
ware Reuse: Methods, Techniques, and Tools Proceedings of the 7th International
Conference Software Reuse: Methods, Techniques, and Tools (ICSR-7), April 15-19,
Austin, USA, volume 2319/2002 of Lecture Notes in Computer Science, pages 123–
136. Springer, 2002. ISBN 978-3-540-43483-2. doi: 10.1007/3-540-46020-9_9.

Alan W. Brown and Kurt C. Wallnau. The current state of CBSE. IEEE Software, 15(5):
37–46, Sep/Oct 1998. ISSN 0740-7459. doi: 10.1109/52.714622.

David Budgen and Pearl Brereton. Performing Systematic Literature Reviews in Software
Engineering. In Osterweil et al. (2006), pages 1051–1052. ISBN 1-59593-375-1. doi:
10.1145/1134285.1134500.

Michele Cabano, Cesare Monti, and Giulio Piancastelli. Context-Dependent Evaluation
Methodology for Open Source Software. In Feller et al. (2007), pages 301–306. ISBN
978-0-387-72485-0. doi: 10.1007/978-0-387-72486-7_32.

Martin Campbell-Kelly and Daniel D. Garcia-Swartz. Pragmatism, not ideology: Histor-
ical perspectives on IBM’s adoption of open-source software. Information Economics
and Policy, 21(3):229 – 244, 2009. ISSN 0167-6245. doi: 10.1016/j.infoecopol.2009.
03.006.

Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. Characteristics of Open Source
Projects. In Gerardo Canfora, Mark van den Brand, and Tibor Gyimóthy, editors, Pro-
ceedings of the Seventh European Conference on Software Maintenance and Reengi-
neering (CSMR ’03), March 26th-28th, Benevento, Italy, pages 317–327. IEEE Com-
puter Society, 2003a. ISBN 0-7695-1902-4. doi: 10.1109/CSMR.2003.1192440.

Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. Evidences in the evolution of os
projects through changelog analyses. In Feller et al. (2003).

Weibing Chen, Jingyue Li, Jianqiang Ma, Reidar Conradi, Junzhong Ji, and Chunnian
Liu. An Empirical Study on Software Development with Open Source Components in
the Chinese Software Industry. Software Process: Improvement and Practice, 13(1):
89–100, 2008. ISSN 1077-4866. doi: 10.1002/spip.v13:1.

82

REFERENCES

Henry W. Chesbrough. The era of open innovation. MIT Sloan Management Review, 44
(3):35, 2003. ISSN 15329194.

Reidar Conradi and Jingyue Li. Observations on Versioning of Off-The-Shelf Compo-
nents in Industrial Projects. In Jim Whitehead, editor, Proceedings of the 12th In-
ternational Workshop on Software Configuration Management (SCM ’05), September
5th-6th, Lisbon, Portugal, pages 33–42. ACM, 2005. ISBN 1-59593-310-7. doi:
10.1145/1109128.1109131.

Ivica Crnkovic. Component-based Software Engineering - New Challenges in Software
Development. Software Focus, 2(4):127–133, 2001. doi: 10.1002/swf.45.

Kevin Crowston and James Howison. Hierarchy and centralization in free and open source
software team communications. Knowledge, Technology, and Policy, 18(4):65–85, dec
2006. doi: 10.1007/s12130-006-1004-8.

Kevin Crowston, Qing Li, Kangning Wei, U. Yeliz Eseryel, and James Howison. Self-
organization of teams for free/libre open source software development. Information
and Software Technology, 49(6):564 – 575, 2007. ISSN 0950-5849. doi: 10.1016/j.
infsof.2007.02.004. Qualitative Software Engineering Research.

David Cruz, Thomas Wieland, and Alexander Ziegler. Evaluation Criteria for Free/Open
Source Software Products Based on Project Analysis. Software Process: Improvement
and Practice, 11(2):107–122, 2006. doi: 10.1002/spip.257.

Daclin. ITEA Report on Open Source Software. Technical report, Information Technol-
ogy for European Advancement (ITEA), January 2004. URL http://www.itea2.
org/itea_report_on_oss.

Linus Dahlander and Mats G. Magnusson. Relationships between Open Source Software
Companies and Communities: Observations from Nordic Firms. Research Policy, 34
(4):481–493, 2005. doi: 10.1016/j.respol.2005.02.003.

Linus Dahlander and Mats G. Magnusson. How do Firms Make Use of Open Source
Communities? Long Range Planning, 41(6):629 – 649, 2008. ISSN 0024-6301. doi:
10.1016/j.lrp.2008.09.003.

Linus Dahlander, Lars Frederiksen, and Francesco Rullani. Online Communities and
Open Innovation: Governance and Symbolic Value Creation . Industry & Innovation,
15(2):115–123, April 2008. doi: 10.1080/13662710801970076.

Ernesto Damiani, Brian Fitzgerald, Walt Scacchi, and Marco Scotto, editors. Proceedings
of the 2nd IFIP Working Group 2.13 International Conference on Open Source Soft-
ware (OSS2006) - Open Source Systems, June 8th-10th, Como, Italy, volume 203/2006
of IFIP Advances in Information and Communication Technology, 2006. Springer.
ISBN 978-0-387-34225-2. doi: 10.1007/0-387-34226-5.

Paul B. de Laat. Copyright or copyleft?: An analysis of property regimes for software

83

http://www.itea2.org/itea_report_on_oss
http://www.itea2.org/itea_report_on_oss

REFERENCES

development. Research Policy, 34(10):1511 – 1532, 2005. ISSN 0048-7333. doi:
10.1016/j.respol.2005.07.003.

Vieri del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi. Quality of Open
Source Software: The QualiPSo Trustworthiness Model. In Boldyreff et al. (2009),
pages 199–212. ISBN 978-3-642-02031-5. doi: 10.1007/978-3-642-02032-2_18.

Jean-Christophe Deprez and Simon Alexandre. Comparing Assessment Methodologies
for Free/Open Source Software: OpenBRR and QSOS. In Andreas Jedlitschka and Outi
Salo, editors, Product-Focused Software Process Improvement Proceedings of the 9th
International Conference on Product-Focused Software Process Improvement (PRO-
FES 2008), June 23rd-25th, Monte Porzio Catone, Italy, volume 5089/2008 of Lecture
Notes in Computer Science, pages 189–203. Springer, 2008. ISBN 978-3-540-69564-6.
doi: 10.1007/978-3-540-69566-0_17.

Mariella Di Giacomo. MySQL: Lessons Learned on a Digital Library. IEEE Software,
22(3):10–13, 2005a. ISSN 0740-7459. doi: 10.1109/ms.2005.71.

Piergiorgio Di Giacomo. COTS and Open Source Software Components: Are They Re-
ally Different on the Battlefield? In Franch and Port (2005), pages 301–310. ISBN
3-540-24548-0. doi: 10.1007/b105900.

Chris DiBona, Sam Ockman, and Mark Stone, editors. Open Sources: Voices from the
Open Source Revolution. O’Reilly, 1999. ISBN 1-56592-582-3.

Edsger W. Dijkstra. The Humble Programmer. Communications of the ACM, 15(10):
859–866, 1972. ISSN 0001-0782. doi: 10.1145/355604.361591.

Trung T. Dinh-Trong and James M. Bieman. The FreeBSD Project: A Replication Case
Study of Open Source Development. IEEE Transactions on Software Engineering, 31
(6):481–494, June 2005. ISSN 0098-5589. doi: 10.1109/tse.2005.73.

Leonhard Dobusch. Migration Discourse Structures: Escaping Microsoft’s Desktop
Path. In Russo et al. (2008), pages 223–235. ISBN 978-0-387-09683-4. doi:
10.1007/978-0-387-09684-1_18.

Tore Dybå. An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Transactions on Software Engineering, 31(5):410–424, May 2005.
ISSN 0098-5589. doi: 10.1109/tse.2005.53.

Tore Dybå, Barbara A. Kitchenham, and Magne Jørgensen. Evidence-based software
engineering for practitioners. Software, IEEE, 22(1):58–65, Jan.-Feb. 2005. ISSN
0740-7459. doi: 10.1109/ms.2005.6.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Selecting
Empirical Methods for Software Engineering Research. In Shull et al. (2008), pages
285–311. ISBN 978-1-84800-043-8. doi: 10.1007/978-1-84800-044-5_11.

Tor Erik Eide. Study of the Release Process of Open Source Software - Case Study.
Master’s thesis, Norwegian University of Science and Technology NTNU, 2007.

84

REFERENCES

Joseph Feller and Brian Fitzgerald. Understanding Open Source Software Development.
Addison Wesley, 2002. ISBN 0-201-73496-6. ISBN :0-201-73496-6.

Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors. Taking
Stock of the Bazaar: 3rd Workshop on Open Source Software Engineering (WOSSE
2003), May 3rd, Portland, USA, 2003.

Joseph Feller, Brian Fitzgerald, Scott A. Hissam, Karim R. Lakhani, and Walt Scacchi,
editors. Open Source Application Spaces: Proceedings of the Fifth Workshop on Open
Source Software Engineering (WOSSE 2005), May 17th, St. Louis, USA, 2005a. ACM.
ISBN 1-59593-127-9.

Joseph Feller, Brian Fitzgerald, Karim R. Lakhani, and Scott A. Hissam, editors. Perspec-
tives on Free and Open Source Software. The MIT Press, Cambridge, Massachusetts,
2005b. ISBN 0-262-06246-1.

Joseph Feller, Patrick Finnegan, David Kelly, and Maurice MacNamara. Developing
Open Source Software: A Community-Based Analysis of Research. In Eileen M.
Trauth, Debra Howcroft, Tom Butler, Brian Fitzgerald, and Janice I. DeGross, editors,
Social Inclusion: Societal and Organizational Implications for Information Systems
FIP TC8 WG 8.2 International Working Conference, July 12th-15th, Limerick, Ireland,
volume 208 of IFIP International Federation for Information Processing, pages 261–
278. Springer, 2006. ISBN 978-0-387-34587-1. doi: 10.1007/0-387-34588-4_18.

Joseph Feller, Brian Fitzgerald, Walt Scacchi, and Alberto Sillitti, editors. Proceed-
ings of the 3rd IFIP Working Group 2.13 International Conference on Open Source
Software (OSS2007) - Open Source Development, Adoption and Innovation, June
11th-14th, Limerick, Ireland, volume 234/2007 of IFIP Advances in Information
and Communication Technology, 2007. Springer. ISBN 978-0-387-72485-0. doi:
10.1007/978-0-387-72486-7.

Norman Fenton. How Effective Are Software Engineering Methods? Journal of Systems
and Software, 22(2):141–146, 1993. ISSN 0164-1212. doi: 10.1016/0164-1212(93)
90092-c.

Robert G. Fichman. Information Technology Diffusion: A Review of Empirical Re-
search. In Janice I. DeGross, Jack D. Becker, and Joyce J. Elam, editors, Proceedings
of the Thirteenth International Conference on Information Systems (ICIS ’92), Decem-
ber 13th-16th, Dallas, USA, pages 195–206, Minneapolis, MN, USA, 1992. University
of Minnesota.

Arlene G. Fink. The Survey Handbook. Sage Publications, 2nd edition, 2002. ISBN
978-0761925804.

Brian Fitzgerald. Formalized systems development methodologies: A critical perspective.
Information Systems Journal, 6(1):3–23, January 1996. ISSN 1350-1917.

Brian Fitzgerald. An empirical investigation into the adoption of systems development

85

REFERENCES

methodologies. Information & Management, 34(6):317–328, 1998. ISSN 0378-7206.
doi: 10.1016/s0378-7206(98)00072-x.

Brian Fitzgerald. Has Open Source Software a Future? In Feller et al. (2005b), pages
93–106. ISBN 0-262-06246-1.

Brian Fitzgerald. The Transformation of Open Source Software. MIS Quarterly, 30(3):
587–598, 2006.

Brian Fitzgerald. Open Source Software Adoption: Anatomy of Success and Failure.
International Journal of Open Source Software & Processes, 1(1):1–23, 2009. ISSN
1942-3926.

Brian Fitzgerald and Joseph Feller. Guest Editorial Open source software: investigat-
ing the software engineering, psychosocial and economic issues. Information Systems
Journal, 11(4):273–276, 2001. doi: 10.1111/j.1365-2575.2001.00109.x.

William B. Frakes and Kyo Kang. Software Reuse Research: Status and Future. IEEE
Transactions on Software Engineering, 31(7):529–536, 2005. ISSN 0098-5589. doi:
10.1109/tse.2005.85.

Xavier Franch and Daniel N. Port, editors. Proceedings of the 4th International Confer-
ence on Component-Based Software Systems (ICCBSS 2005), February 7th-11th, Bil-
bao, Spain, volume 3412/2005 of Lecture Notes in Computer Science, 2005. Springer.
ISBN 3-540-24548-0. doi: 10.1007/b105900.

Alfonso Fuggetta. A Classification of CASE Technology. Computer, 26(12):25–38, 1993.
ISSN 0018-9162. doi: 10.1109/2.247645.

Alfonso Fuggetta. Open source software–an evaluation. Journal of Systems and Software,
66(1):77 – 90, 2003. ISSN 0164-1212. doi: 10.1016/s0164-1212(02)00065-1.

Cristina Gacek and Budi Arief. The Many Meanings of Open Source. IEEE Software, 21
(1):34–40, 2004. ISSN 0740-7459. doi: 10.1109/ms.2004.1259206.

Rosalva E. Gallardo-Valencia and Susan Elliott Sim. Internet-Scale Code Search. In
Sushil Bajracharya, Adrian Kuhn, and Yunwen Ye, editors, Proceedings of the 2009
ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools and Eval-
uation (SUITE ’09), May 16th, Vancouver, Canada, pages 49–52. IEEE Computer So-
ciety, 2009. ISBN 978-1-4244-3740-5. doi: 10.1109/suite.2009.5070022.

Marinela Gerea. Selection of Open Source Components - A Qualitative Survey in Nor-
wegian IT Industry. Master’s thesis, Norwegian University of Science and Technology
NTNU, 2007.

Rishab Aiyer Ghosh. Free libre and open source software: Survey and study. Technical
report, International Institute of Infonomics, University of Maastricht, 2002. URL
http://www.infonomics.nl/FLOSS/report/.

86

http://www.infonomics.nl/FLOSS/report/

REFERENCES

Rishab Aiyer Ghosh. Study on the Economic Impact of Open Source Soft-
ware on Innovation and the Competiveness of the Information and Communi-
cation Technologies (ICT) Sector in the EU. Technical report, UNU-MERIT,
2006. URL http://ec.europa.eu/enterprise/ict/policy/doc/
2006-11-20-flossimpact.pdf.

Robert L. Glass. The Software-Research Crisis. IEEE Software, 11(6):42–47, 1994. ISSN
0740-7459. doi: 10.1109/52.329400.

Robert L. Glass. Matching Methodology to Problem Domain. Communications of the
ACM, 47(5):19–21, 2004. ISSN 0001-0782. doi: 10.1145/986213.986228.

Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. Research in software engineer-
ing: an analysis of the literature. Information and Software Technology, 44(8):491–506,
2002. ISSN 0950-5849. doi: 10.1016/s0950-5849(02)00049-6.

Eugene Glynn, Brian Fitzgerald, and Chris Exton. Commercial Adoption of Open Source
Software: An Empirical Study. In June Verner and Guilherme Horta Travassos, editors,
Proceedings of International Symposium on Empirical Software Engineering (ISESE
2005), November 17th-18th, Noosa Heads, Australia, pages 225–234. IEEE Computer
Society, 2005. doi: 10.1109/ISESE.2005.1541831.

Dion Hoe-Lian Goh, Alton Chua, Davina Anqi Khoo, Emily Boon-Hui Khoo, Eric Bok-
Tong Mak, and Maple Wen-Min Ng. A checklist for evaluating open source digital
library software. Online Information Review, 30(4):360, 2006. ISSN 14684527.

Dion Hoe-Lian Goh, Alton Chua, See-Yong Yee, Kia-Ngoh Poh, and How-Yeu Ng. Eval-
uating open source portals. Journal of Librarianship and Information Science, 40(2):
81–92, 2008. doi: 10.1177/0961000608089344.

Bernard Golden. Succeeding with Open Source. Addison-Wesley Professional, 2004.
ISBN 978-0321268532.

Sigi Goode. Something for nothing: management rejection of open source software in
Australia’s top firms. Information & Management, 42(5):669–681, 2005. ISSN 0378-
7206. doi: 10.1016/j.im.2004.01.011.

Ian Gorton, Anna Liu, and Paul Brebner. Rigorous Evaluation of COTS Middleware
Technology. Computer, 36(3):50–55, 2003. ISSN 0018-9162. doi: 10.1109/mc.2003.
1185217.

Burton Grad. A Personal Recollection: IBM’s Unbundling of Software and Services.
IEEE Annals of the History of Computing, 24(1):64–71, Jan-Mar 2002. ISSN 1058-
6180. doi: 10.1109/85.988583.

Simon Grand, Georg von Krogh, Dorothy Leonard, and Walter Swap. Resource allocation
beyond firm boundaries: A multi-level model for Open Source innovation. Long Range
Planning, 37(6):591–610, December 2004. doi: 10.1016/j.lrp.2004.09.006.

87

http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf
http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf

REFERENCES

Jim Hamerly, Tom Paquin, and Susan Walton. Freeing the Source: The Story of Mozilla.
In DiBona et al. (1999), pages 197–206. ISBN 1-56592-582-3.

Bo Hansen, Jeremy Rose, and Gitte Tjørnehøj. Prescription, description, reflection: the
shape of the software process improvement field. International Journal of Information
Management, 24(6):457 – 472, 2004. ISSN 0268-4012. doi: 10.1016/j.ijinfomgt.2004.
08.007.

Øyvind Hauge and Sven Ziemer. Providing Commercial Open Source Software: Lessons
Learned. In Boldyreff et al. (2009), pages 70–82. ISBN 978-3-642-02031-5. doi:
10.1007/978-3-642-02032-2_8.

Øyvind Hauge, Claudia P. Ayala, and Reidar Conradi. Open Source Software in Organi-
zations - A Systematic Literature Review. TO APPEAR.

Øyvind Hauge, Carl-Fredrik Sørensen, and Andreas Røsdal. Surveying Industrial Roles
in Open Source Software Development. In Feller et al. (2007), pages 259–264. ISBN
978-0-387-72485-0. doi: 10.1007/978-0-387-72486-7_25.

Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi. Adoption of Open Source in
the Software Industry. In Russo et al. (2008), pages 211–222. ISBN 978-0-387-09683-
4. doi: 10.1007/978-0-387-09684-1_17.

Øyvind Hauge, Thomas Østerlie, Carl-Fredrik Sørensen, and Marinela Gerea. An Em-
pirical Study on Selection of Open Source Software - Preliminary Results. In An-
drea Capiluppi and Gregorio Robles, editors, Proceedings of the ICSE 2009 Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and Development
(FLOSS 2009), May 18th, Vancouver, Canada, pages 42–47. IEEE Computer Society,
2009. ISBN 978-1-4244-3720-7. doi: 10.1109/FLOSS.2009.5071359.

Øyvind Hauge, Daniela S. Cruzes, Reidar Conradi, Ketil Sandanger Velle, and Tron An-
dré Skarpenes. Risks and Risk Mitigation in Open Source Software Adoption: Bridg-
ing the Gap between Literature and Practice. In Proceedings of the 6th IFIP Working
Group 2.13 International Conference on Open Source Systems (OSS2010), May30th-
June 2nd, Notre Dame, USA, IFIP International Federation for Information Processing,
2010.

Frank Hecker. Setting Up Shop: The Business of Open-Source Software. IEEE Software,
16(1):45–51, 1999. ISSN 0740-7459. doi: 10.1109/52.744568.

Joachim Henkel. Selective revealing in open innovation processes: The case of embedded
Linux. Research Policy, 35(7):953 – 969, 2006. ISSN 0048-7333. doi: 10.1016/j.
respol.2006.04.010.

Guido Hertel, Sven Niedner, and Stefanie Herrmann. Motivation of software de-
velopers in Open Source projects: an Internet-based survey of contributors to the
Linux kernel. Research Policy, 32(7):1159 – 1177, 2003. ISSN 0048-7333. doi:
10.1016/s0048-7333(03)00047-7. Open Source Software Development.

88

REFERENCES

Andreas Höfer and Walter Tichy. Status of Empirical Research in Software Engineering.
In Victor R. Basili, Dieter Rombach, Kurt Schneider, Barbara A. Kitchenham, Dietmar
Pfahl, and Richard W. Selby, editors, Proceedings of the International Workshop on
Empirical Software Engineering Issues. Critical Assessment and Future Directions,
June 26th-30th, Dagstuhl Castle, Germany, volume 4336/2007 of Lecture Notes in
Computer Science, pages 10–19. Springer, 2007. ISBN 978-3-540-71300-5. doi: 10.
1007/978-3-540-71301-2_3.

Oliver Hummel, Werner Janjic, and Colin Atkinson. Code conjurer: Pulling reusable
software out of thin air. IEEE Software, 25(5):45–52, 2008. ISSN 0740-7459. doi:
10.1109/ms.2008.110.

IEEE. IEEE Standard 610.12-1990: Standard for Glossary of Software Computer Engi-
neering Terminology. Technical report, IEEE, 1990.

Ari Jaaksi. Experiences on Product Development with Open Source Software. In
Feller et al. (2007), pages 85–96. ISBN 978-0-387-72485-0. doi: 10.1007/
978-0-387-72486-7_7.

Juha Järvensivu and Tommi Mikkonen. Forging A Community - Not: Experiences On
Establishing An Open Source Project. In Russo et al. (2008), pages 15–27. ISBN
978-0-387-09683-4. doi: 10.1007/978-0-387-09684-1_2.

Björn Johansson and Frantisek Sudzina. Choosing Open Source ERP Systems: What
Reasons Are There For Doing So? In Boldyreff et al. (2009), pages 143–155. ISBN
978-3-642-02031-5. doi: 10.1007/978-3-642-02032-2_14.

Magne Jørgensen and Kjetil Moløkken-Østvold. How Large Are Software Cost Over-
runs? Critical Comments on the Standish Group’s CHAOS Reports. Information and
Software Technology, 48(4):297–301, April 2006. doi: 10.1016/j.infsof.2005.07.002.

Elena Karahanna, Detmar W. Straub, and Norman L. Chervany. Information technology
adoption across time: A cross-sectional comparison of pre-adoption and post-adoption
beliefs. MIS Quarterly, 23(2):183–213, 1999. ISSN 02767783.

Even-André Karlsson, editor. Software Reuse: a Holistic Approach. John Wiley & Sons,
Inc., New York, NY, USA, 1995. ISBN 0-471-95819-0.

Barbara A. Kitchenham. Guidelines for performing Systematic Literature Reviews in
Software Engineering. Technical report, Software Engineering Group, School of Com-
puter Science and Mathematics, Keele University, and Department of Computer Sci-
ence, University of Durham, 2007. EBSE Technical Report, EBSE-2007-01.

Barbara A. Kitchenham, Lesley M. Pickard, and Shari Lawrence Pfleeger. Case Studies
for Method and Tool Evaluation. IEEE Software, 12(4):52–62, July 1995. ISSN 0740-
7459. doi: 10.1109/52.391832.

Barbara A. Kitchenham, Tore Dybå, and Magne Jørgensen. Evidence-based software en-
gineering. In Anthony Finkelstein, Jacky Estublier, and David Rosenblum, editors, Pro-

89

REFERENCES

ceedings of the 26th International Conference on Software Engineering (ICSE 2004),
May 23th-28th, Edinburgh, Scotland, pages 273–281. IEEE Computer Society, May
2004.

Sandeep Krishnamurthy. Cave or Community? An Empirical Examination of 100 Mature
Open Source Projects. First Monday, 7(6), 2002.

Sandeep Krishnamurthy. An Analysis of Open Source Business Models. In Feller et al.
(2005b), pages 279–296. ISBN 0-262-06246-1.

Philippe Kruchten. Putting the "Engineering" into "Software Engineering". In Paul
Strooper, editor, Proceedings of the 2004 Australian Software Engineering Confer-
ence, 13-16 April, Melbourne, Australia, pages 2–8. IEEE Computer Society, 2004.
doi: 10.1109/aswec.2004.1290452.

Douglas Kunda and Laurence Brooks. Identifying and Classifying Processes (traditional
and soft factors) that Support COTS Component Selection: a Case Study. European
Journal of Information Systems, 9(4):226–234, December 2000.

Karim R. Lakhani and Eric von Hippel. How open source software works: ’free’ user-
to-user assistance. Research Policy, 32(6):923 – 943, 2003. ISSN 0048-7333. doi:
10.1016/s0048-7333(02)00095-1.

Rikard Land, Lauren Blankers, Michel Chaudron, and Ivica Crnkovic. COTS Selection
Best Practices in Literature and in Industry. In Hong Mei, editor, Proceedings of the
10th International Conference on Software Reuse (ICSR 2008), May 25th-29th, Bei-
jing, China, volume 5030/2008 of Lecture Notes in Computer Science, pages 100–111.
Springer, July 2008. ISBN 978-3-540-68062-8. doi: 10.1007/978-3-540-68073-4_9.

Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva, and Adnan Causevic. Reuse
with Software Components - A Survey of Industrial State of Practice. In Stephen H.
Edwards and Gregory Kulczycki, editors, Proceedings of the 11th International Con-
ference on Software Reuse (ICSR 2009) - Formal Foundations of Reuse and Domain
Engineering, September 27th-30th, Falls Church, USA, volume 5791/2009 of Lecture
Notes in Computer Science, pages 150–159, 2009. ISBN 978-3-642-04210-2. doi:
10.1007/978-3-642-04211-9_15.

Luigi Lavazza. Beyond Total Cost of Ownership: Applying Balanced Scorecards to Open-
Source Software. In Sergiu Dascalu, Petre Dini, Sandro Morasca, Tadashi Ohta, and
Andre Oboler, editors, Proceedings of the International Conference on Software Engi-
neering Advances (ICSEA 2007), August 25th-31st, Cap Esterel, France, pages 74–74,
2007. doi: 10.1109/icsea.2007.19.

Grace A. Lewis and Edwin J. Morris. From System Requirements to COTS Evaluation
Criteria. In Rick Kazman and Dan Port, editors, Proceedings of the Third International
Conference on COTS-Based Software Systems, (ICCBSS 2004), February 1st-4th, Re-
dondo Beach, USA, volume Volume 2959/2004 of Lecture Notes in Computer Science,
pages 159–168. Springer, 2004. doi: 10.1007/b96987.

90

REFERENCES

Jingyue Li. Process Improvement and Risk Management in Off-The-Shelf Component-
Based Development. PhD thesis, Norwegian University of Science and Technology
NTNU, 2006.

Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Umair Khan,
Marco Torchiano, and Maurizio Morisio. Validation of New Theses on Off-the-Shelf
Component Based Development. In Filippo Lanubile and Carolyn B. Seaman, editors,
Proceedings of the 11th IEEE International Software Metrics Symposium (METRICS
’05), September 19th-22nd, Como, Italy, page 26. IEEE Computer Society, 2005. ISBN
0-7695-2371-4. doi: 10.1109/metrics.2005.53.

Jingyue Li, Finn Olav Bjørnson, Reidar Conradi, and Vigdis By Kampenes. An Empirical
Study of Variations in COTS-Based Software Development Processes in the Norwegian
IT Industry. Empirical Software Engineering, 11(3):433–461, 2006a. ISSN 1382-3256.
doi: 10.1007/s10664-006-9005-5.

Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Marco Torchiano,
and Maurizio Morisio. An Empirical Study on Decision Making in Off-The-Shelf
Component-Based Development. In Osterweil et al. (2006), pages 897–900. ISBN
1-59593-375-1. doi: 10.1145/1134285.1134446.

Jingyue Li, Marco Torchiano, Reidar Conradi, Odd Petter N. Slyngstad, and Christian
Bunse. A State-of-the-Practice Survey of Off-the-Shelf Component-Based Develop-
ment Processes. In Maurizio Morisio, editor, Proceedings of the 9th International
Conference on Software Reuse (ICSR’06), June 12th-15th, Torino, Italy, volume Vol-
ume 4039/2006 of Lecture Notes in Computer Science, pages 16–28. Springer, 2006c.
ISBN 3-540-34606-6. doi: 10.1007/11763864_2.

Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Marco Torchiano, Maurizio Mori-
sio, and Christian Bunse. A state-of-the-practice survey of risk management in devel-
opment with off-the-shelf software components. IEEE Transactions on Software Engi-
neering, 34(2):271–286, March 2008. ISSN 0098-5589. doi: 10.1109/tse.2008.14.

Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N. Slyngstad,
and Maurizio Morisio. Development with Off-The-Shelf Components: 10 Facts. IEEE
Software, 26(2):80–87, 2009. ISSN 0740-7459. doi: 10.1109/MS.2009.33.

Juho Lindman, Matti Rossi, and Pentti Marttiin. Applying Open Source Development
Practices Inside a Company. In Russo et al. (2008), pages 381–387. ISBN 978-0-387-
09683-4. doi: 10.1007/978-0-387-09684-1_36.

Björn Lundell, Brian Lings, and Edvin Lindqvist. Perceptions and Uptake of Open Source
in Swedish Organisations. In Damiani et al. (2006), pages 155–163. ISBN 978-0-387-
34225-2. doi: 10.1007/0-387-34226-5.

Sajjad Mahmood, Richard Lai, and Y. S. Kim. Survey of component-based software
development. IET Software, 1(2):57–66, 2007. doi: 10.1049/iet-sen:20060045.

Annick Majchrowski and Jean-Christophe Deprez. An Operational Approach for Se-

91

REFERENCES

lecting Open Source Components in a Software Development Project. In Rory V.
O’Connor, Nathan Baddoo, Kari Smolander, and Richard Messnarz, editors, Proceed-
ings of the 15th European Conference on Software Process Improvement (EuroSPI
2008), September 3rd-5th, Dublin, Ireland, volume 16 of Communications in Computer
and Information Science, pages 176–188. Springer, 2008. ISBN 978-3-540-85934-5.
doi: 10.1007/978-3-540-85936-9_16.

Pekka Maki-Asiala and Mari Matinlassi. Quality Assurance of Open Source Compo-
nents: Integrator Point of View. In Carl K. Chang, Aditya Mathur, and Johnny
Wong, editors, Proceedings of the 30th Annual International Computer Software and
Applications Conference (COMPSAC ’06), September 17th-21st, Chicago, USA, vol-
ume 2, pages 189–194. IEEE Comuter Society, 2006. ISBN 0-7695-2655-1. doi:
10.1109/compsac.2006.153.

Herwig Mannaert and Kris Ven. The Use of Open Source Software Platforms by Inde-
pendent Software Vendors: Issues and Opportunities. In Feller et al. (2005a), pages
35–38. ISBN 1-59593-127-9. doi: 10.1145/1083258.1083266.

Douglas McIlroy. Mass Produced Software Components. In Naur and Randell (1969),
pages 138–151.

Catharina Melian and Magnus Mähring. Lost and Gained in Translation: Adoption of
Open Source Software Development at Hewlett-Packard. In Russo et al. (2008), pages
93–104. ISBN 978-0-387-09683-4. doi: 10.1007/978-0-387-09684-1_8.

Janne Merilinna and Mari Matinlassi. State of the Art and Practice of OpenSource Com-
ponent Integration. In Ivica Crnkovic and Paul Grünbacher, editors, Proceedings of the
32nd EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO’06), August 29th - September 1th, Dubrovnik, Croatia, pages 170–177.
IEEE Computer Society, 2006. ISBN 0-7695-2594-6. doi: 10.1109/euromicro.2006.61.

Hafedh Mili, Fatma Mili, and Ali Mili. Reusing Software: Issues and Research Direc-
tions. Software Engineering, IEEE Transactions on, 21(6):528–562, Jun 1995. ISSN
0098-5589. doi: 10.1109/32.391379.

Farrokh Mistree and Janet K. Allen. Optimization in Decision-Based Design. In Proc-
cedings of Decision-Based Design Workshop, April, Orlando, USA, 1997.

Audris Mockus and James D. Herbsleb. Why Not Improve Coordination in Distributed
Software Development by Stealing Good Ideas from Open Source? In Joseph Feller,
Brian Fitzgerald, Frank Hecker, Scott A. Hissam, and Karim R. Lakhani, editors, Meet-
ing challenges and surviving success: the 2nd Workshop on Open Source Software
Engineering (WOSSE 2002), May 25th, Orlando, USA, 2002.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002. ISSN 1049-331X. doi: 10.1145/
567793.567795.

92

REFERENCES

Parastoo Mohagheghi. The Impact of Software Reuse and Incremental Development on
the Quality of Large Systems. PhD thesis, Norwegian University of Science and Tech-
nology NTNU, July 2004. ISBN 82-471-6408-6 ISSN 1503-8181.

Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic benefits
of software reuse: a review of industrial studies. Empirical Software Engineering, 12
(5):471–516, 2007. ISSN 1382-3256. doi: 10.1007/s10664-007-9040-x.

Abdallah Mohamed, Güenther Ruhe, and Armin Eberlein. COTS Selection: Past, Present,
and Future. In John Leaney, Jerzy W. Rozenblit, and Jianfeng Peng, editors, Proceed-
ings of the 14th Annual IEEE International Conference and Workshops on the En-
gineering of Computer-Based Systems (ECBS ’07), March 26th-29th, Tucson, USA,
pages 103–114. IEEE Computer Society, March 2007. ISBN 0-7695-2772-8. doi:
10.1109/ecbs.2007.28.

Lorraine Morgan and Patrick Finnegan. How Perceptions of Open Source Software Influ-
ence Adoption: An Exploratory Study. In Hubert Österle, Joachim Schelp, and Robert
Winter, editors, Proceedings of the Fifteenth European Conference on Information Sys-
tems (ECIS 2007), June 7th-9th, St. Gallen, Switzerland, pages 973–984. University of
St. Gallen, 2007.

Maurizio Morisio, Colin Tully, and Michel Ezran. Diversity in Reuse Processes. IEEE
Software, 17(4):56–63, 2000. ISSN 0740-7459. doi: 10.1109/52.854069.

Maurizio Morisio, Carolyn B. Seaman, Victor R. Basili, A. T. Parra, Steve E. Kraft, and
Steven E. Condon. COTS-based software development: Processes and open issues.
Journal of Systems and Software, 61(3):189 – 199, 2002. ISSN 0164-1212. doi: doi:
10.1016/s0164-1212(01)00147-9.

Giuseppe Munda. Social multi-criteria evaluation: Methodological foundations and op-
erational consequences. European Journal of Operational Research, 158(3):662–677,
2004. ISSN 0377-2217. doi: 10.1016/s0377-2217(03)00369-2.

NACE. Nomenclature statistique des activités économiques dans la Communauté eu-
ropéenne, 2009. URL http://ec.europa.eu/environment/emas/pdf/
general/nacecodes_en.pdf. Accessed 2009-07-14.

Peter Naur and Brian Randell, editors. Software Engineering, Report on a conference
sponsored by the NATO SCIENCE COMMITTEE, October 7th-11th, Garmisch, Ger-
many. Scientific Affairs Division NATO, Brussels, Belgium, 1969.

Cornelius Ncube and John Dean. The Limitations of Current Decision-Making Tech-
niques in the Procurement of COTS Software Components. In John Dean and An-
drée Gravel, editors, Proceedings of the First International Conference on COTS-Based
Software Systems (ICCBSS 2002), February 4th-6th, Orlando, USA, volume 2255/2002
of Lecture Notes in Computer Science, pages 176–187. Springer, 2002. ISBN 978-3-
540-43100-8. doi: 10.1007/3-540-45588-4_17.

93

http://ec.europa.eu/environment/emas/pdf/general/nacecodes_en.pdf
http://ec.europa.eu/environment/emas/pdf/general/nacecodes_en.pdf

REFERENCES

Uolevi Nikula and Sami Jantunen. Quantifying the Interest in Open Source System: Case
South-East Finland. In Scotto and Succi (2005), pages 192–195.

John Noll. What Constitutes Open Source? A Study of the Vista Electronic Medical
Record Software. In Boldyreff et al. (2009), pages 310–319. ISBN 978-3-642-02031-
5. doi: 10.1007/978-3-642-02032-2_27.

Jeffrey S. Norris. Mission-critical Development with Open Source Software: Lessons
Learned. IEEE Software, 21(1):42–49, 2004. doi: 10.1109/MS.2004.1259211.

Michael Ochs, Dietmar Pfahl, Gunther Chrobok-Diening, and Beate Nothhelfer-Kolb. A
Method for Efficient Measurement-based COTS Assessment and Selection - Method
Description and Evaluation Results. In Proceedings of the Seventh International Soft-
ware Metrics Symposium (METRICS 2001), April 4th-6th, London, England, pages
285–296. IEEE Computer Society, 2001. doi: 10.1109/metric.2001.915536.

OpenBRR, 2005. Business Readiness Rating for Open Source. Technical Report
BRR 2005 - RFC 1, www.openbrr.org, 2005. URL http://www.openbrr.org/
wiki/images/d/da/BRR_whitepaper_2005RFC1.pdf.

Thomas Østerlie and Letizia. Jaccheri. A Critical Review of Software Engineering Re-
search on Open Source Software Development. In Wrycza Stanislaw, editor, Proceed-
ings of the 2nd AIS SIGSAND European Symposium on Systems Analysis and Design,
June 5th, Gdansk, Poland, pages 12–20. Gdansk University Press, 2007. ISBN 978-
83-7326-447-2.

Thomas Østerlie and Alf Inge Wang. Debugging Integrated Systems: An Ethnographic
Study of Debugging Practice. In Ladan Tahvildari and Gerardo Canfora, editors,
Proceedings of the 23rd IEEE International Conference on Software Maintenance
(ICSM’2007), October 2nd-5th, Paris, France, pages 305–314. IEEE Computer So-
ciety Press, 2007. ISBN 978-1-4244-1256-3. doi: 10.1109/ICSM.2007.4362643.

Leon J. Osterweil. A Future for Software Engineering? In Lionel C. Briand and Alexan-
der L. Wolf, editors, Proceedings of the 29th International Conference on Software
Engineering archive (ICSE) - Future of Software Engineering, May 20th-26th, Min-
neapolis, USA, pages 1–11, Washington, DC, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2829-5. doi: 10.1109/fose.2007.1.

Leon J. Osterweil, Dieter Rombach, and Mary Lou Soffa, editors. Proceedings of the
28th International Conference on Software Engineering (ICSE 2006), May 20th-28th,
Shanghai, China, 2006. ACM Press. ISBN 1-59593-375-1.

Bülent Özel, Uros Jovanovic, Beyza Oba, and Manon van Leeuwen. Perceptions on
F/OSS Adoption. In Feller et al. (2007), pages 319–324. ISBN 978-0-387-72485-0.
doi: 10.1007/978-0-387-72486-7_35.

David L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972. ISSN 0001-0782. doi:
10.1145/361598.361623.

94

http://www.openbrr.org/wiki/images/d/da/BRR_whitepaper_2005RFC1.pdf
http://www.openbrr.org/wiki/images/d/da/BRR_whitepaper_2005RFC1.pdf

REFERENCES

James W. Paulson, Giancarlo Succi, and Armin Eberlein. An Empirical Study of Open-
Source and Closed-Source Software Products. IEEE Transactions on Software En-
gineering, 30(4):246–256, April 2004. ISSN 0098-5589. doi: 10.1109/TSE.2004.
1274044.

Bruce Perens. The Open Source Definition. In DiBona et al. (1999). ISBN 1-56592-582-
3.

Anna Persson, Brian Lings, Björn Lundell, Anders Mattsson, and Ulf Ärlig. Communi-
cation, Coordination and Control in Distributed Development: an OSS Case Study. In
Scotto and Succi (2005), pages 88–92.

Colin Potts. Software-Engineering Research Revisited. IEEE Software, 10(5):19–28, Sep
1993. ISSN 0740-7459. doi: 10.1109/52.232392.

Pascal Ravesteyn and Gilbert Silvius. Willingness to Cooperate Within the Open Source
Software Domain. In Russo et al. (2008), pages 367–373. ISBN 978-0-387-09683-4.
doi: 10.1007/978-0-387-09684-1_34.

Eric S. Raymond. A Brief History of Hackerdom. In DiBona et al. (1999). ISBN 1-
56592-582-3.

Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly, 2001. ISBN 0596001088.

Eric S. Raymond. Up from Alchemy. IEEE Software, 21(1):88, 90, 2004. ISSN 0740-
7459. doi: 10.1109/ms.2004.1259228.

Donald J. Reifer, Victor R. Basili, Barry W. Boehm, and Betsy Clark. Eight Lessons
Learned during COTS-Based Systems Maintenance. IEEE Software, 20(5):94–96,
2003. ISSN 0740-7459. doi: 10.1109/ms.2003.1231161.

Gregorio Robles, Santiago Dueñas, and Jesús M. González-Barahona. Corporate involve-
ment of libre software: Study of presence in debian code over time. In Feller et al.
(2007), pages 121–132. ISBN 978-0-387-72485-0. doi: 10.1007/978-0-387-72486-7_
10.

Colin Robson. Real World Research. Blackwell Publishing, 2nd edition, 2002. ISBN
978-0-631-21305-5.

Everett M. Rogers. Diffusion of Innovations. Free Press, New York, USA, 5th edition,
2003. ISBN 0-7432-2209-1.

Larwrence Rosen. Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall PTR, 2005. ISBN 0-13-148787-6.

Bruno Rossi, Barbara Russo, and Giancarlo Succi. A study on the introduction of Open
Source Software in the Public Administration. In Damiani et al. (2006), pages 165–171.
ISBN 978-0-387-34225-2. doi: 10.1007/0-387-34226-5_16.

95

REFERENCES

Marcus A. Rothenberger, Kevin J. Dooley, Uday R. Kulkarni, and Nader Nada. Strategies
for software reuse: a principal component analysis of reuse practices. Software En-
gineering, IEEE Transactions on, 29(9):825–837, Sept. 2003. ISSN 0098-5589. doi:
10.1109/tse.2003.1232287.

Güenther Ruhe. Intelligent Support for Selection of COTS Products. In Akmal B.
Chaudhri, Mario Jeckle, Erhard Rahm, and Rainer Unland, editors, Web- and
Database-Related Workshops (NODe 2002), October 7th-10th, Erfurt, Germany, vol-
ume 2593/2009 of Lecture Notes in Computer Science, pages 34–45. Springer, 2002.
ISBN 978-3-540-00745-6. doi: 10.1007/3-540-36560-5_3.

Barbara Russo, Ernesto Damiani, Scott A. Hissam, Björn Lundell, and Giancarlo Succi,
editors. Proceedings of the 4th IFIP Working Group 2.13 International Conferences
on Open Source Software (OSS2008) - Open Source Development Communities and
Quality, September 7th-10th, Milano, Italy, volume 275/2008 of IFIP Advances in In-
formation and Communication Technology, 2008. Springer. ISBN 978-0-387-09683-4.
doi: 10.1007/978-0-387-09684-1.

Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioannis Stamelos. The
SQO-OSS Quality Model: Measurement Based Open Source Software Evaluation .
In Russo et al. (2008), pages 237–248. ISBN 978-0-387-09683-4. doi: 10.1007/
978-0-387-09684-1_19.

Walt Scacchi. Free and Open Source Development Practices in the Game Community.
IEEE Software, 21(1):59–66, 2004. ISSN 0740-7459. doi: 10.1109/ms.2004.1259221.

Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani.
Understanding Free/Open Source Software Development Processes. Software Process:
Improvement and Practice, 11(2):95–105, 2006. doi: 10.1002/spip.255.

Per Kristian Schanke. Going open: Building the platform to reach out. Master’s thesis,
Norwegian University of Science and Technology NTNU, 2007.

Marco Scotto and Giancarlo Succi, editors. Proceedings of The First International Con-
ference on Open Source Systems (OSS2005), July 11th-15th, Genova, Italy, 2005.

Judith Segal, Antony Grinyer, and Helen Sharp. The type of evidence produced by empir-
ical software engineers. SIGSOFT Software Engineering Notes, 30(4):1–4, 2005. ISSN
0163-5948. doi: 10.1145/1082983.1083176.

Raphaël Semeteys, Oliver Pilot, Laurent Baudrillard, Gonéri Le Bouder, and Wolfgang
Pinkhardt. Method for Qualification and Selection of Open Source software (QSOS)
version 1.6. Technical report, Atos Origin, April 2006. URL http://www.qsos.
org/download/qsos-1.6-en.pdf.

Forrest Shull, Janice Singer, and Dag I. K. Sjøberg, editors. Guide to Advanced Em-
pirical Software Engineering. Springer, 2008. ISBN 978-1-84800-043-8. doi:
10.1007/978-1-84800-044-5.

96

http://www.qsos.org/download/qsos-1.6-en.pdf
http://www.qsos.org/download/qsos-1.6-en.pdf

REFERENCES

Dag I. K. Sjøberg, Tore Dybå, and Magne Jørgensen. The Future of Empirical Meth-
ods in Software Engineering Research. In Lionel C. Briand and Alexander L. Wolf,
editors, Proceedings of Future of Software Engineering (FOSE ’07), May 23rd-25th,
Minneapolis, USA, pages 358–378, Washington, DC, USA, 2007. IEEE Computer So-
ciety. ISBN 0-7695-2829-5. doi: 10.1109/fose.2007.30.

Tron André Skarpenes and Ketil Sandanger Velle. Open Source Software at Telenor IS.
Master’s thesis, Norwegian University of Science and Technology, 2009.

Ian Sommerville. Software Engineering. Addison Wesley, 8th edition, 2007. ISBN 978-
0321313799.

Diomidis Spinellis. Global software development in the FreeBSD project. In Philippe
Kruchten, Deependra Moitra, Wolfgang Strigel, and Christof Ebert, editors, Pro-
ceedings of the 2006 International Workshop on Global Software Development for
the Practitioner, May 23rd, Shanghai, China, pages 73–79. ACM Press, 2006. doi:
10.1145/1138506.1138524.

SSB. Statistics Norway - Databehandlingsvirksomhet. Strukturstatistikk, 2007, 2009.
URL http://www.ssb.no/stdata/. Accessed 2009-07-13.

Richard M. Stallman. The GNU Operating System and the Free Software Movement. In
DiBona et al. (1999). ISBN 1-56592-582-3.

Richard M. Stallman and Lawrence Lessig. Free Software Free Society: selected essays of
Richard M. Stallman. Free Software Foundation, June 2002. ISBN 978-1882114986.

Wounter Stam. When does community participation enhance the performance of open
source software companies? Research Policy, 38(8):1288–1299, October 2009. doi:
10.1016/j.respol.2009.06.004.

Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and G. L. Bleris. Code quality
analysis in open source software development. Information Systems Journal, 12(1):43–
60, 2002.

Klaas-Jan Stol and Muhammed Ali Babar. Reporting Empirical Research in Open Source
Software: The State of Practice. In Boldyreff et al. (2009), pages 156–169. ISBN
978-3-642-02031-5. doi: 10.1007/978-3-642-02032-2_15.

Lucy A. Suchman. Plans and Situated Actions : The problem of human-machine commu-
nication. Cambridge University Press, 1987. ISBN 0-521-33137-4.

Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software, Beyond
Object Oriented Programming. Addison-Wesley, 2nd. edition, 2002. ISBN 0-201-
74572-0.

Davide Taibi, Luigi Lavazza, and Sandro Morasca. OpenBQR: a framework for the
assessment of OSS. In Feller et al. (2007), pages 173–186. ISBN 978-0-387-72485-0.
doi: 10.1007/978-0-387-72486-7_14.

97

http://www.ssb.no/stdata/

REFERENCES

Davide Taibi, Vieri del Bianco, Davide Dalle Carbonare, Luigi Lavazza, and Sandro
Morasca. Towards The Evaluation of OSS Trustworthiness: Lessons Learned From
The Observation of Relevant OSS Projects. In Russo et al. (2008). ISBN 978-0-387-
09683-4. doi: 10.1007/978-0-387-09684-1_37.

Walter F. Tichy, Nico Habermann, and Lutz Prechelt. Summary of the Dagstuhl workshop
on future directions in software engineering: February 17–21, 1992, SchloßDagstuhl.
SIGSOFT Software Engineering Notes, 18(1):35–48, 1993. ISSN 0163-5948. doi:
10.1145/157397.157399.

Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Experimental evalu-
ation in computer science: A quantitative study. Journal of Systems and Software, 28
(1):9 – 18, 1995. ISSN 0164-1212. doi: 10.1016/0164-1212(94)00111-y.

Marco Torchiano and Maurizio Morisio. Overlooked Aspects of COTS-Based Develop-
ment. IEEE Software, 21(2):88–93, 2004. ISSN 0740-7459. doi: 10.1109/ms.2004.
1270770.

Vu Tran and Dar-Biau Liu. A procurement-centric Model for Engineering Component-
based Software Systems. In Ez Nahouraii, editor, Proceedings of the Fifth Interna-
tional Symposium on Assessment of Software Tools and Technologies, June 2nd-5th,
Pittsburgh, USA, pages 70–79. IEEE Computer Society, June 1997. doi: 10.1109/ast.
1997.599913.

Mark Turner, Barbara A. Kitchenham, David Budgen, and Pearl Brereton. Lessons
learnt Undertaking a Large-scale Systematic Literature Review. In Guiseppe Visag-
gio, Maria Teresa Baldassarre, Stephen Linkman, and Mark Turner, editors, Proceed-
ings of the 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2008), June 26th-27th, Bari, Italy. British Computer Society, 2008.

Medha Umarji, Susan Elliott Sim, and Crista Lopes. Archetypal Internet-Scale Source
Code Searching. In Russo et al. (2008), pages 257–263. ISBN 978-0-387-09683-4.
doi: 10.1007/978-0-387-09684-1_21.

Frank van der Linden. Full Project Proposal COSI Co-development using inner & Open
source in Software Intensive products. Technical report, ITEA, 2006.

Frank van der Linden, Björn Lundell, and Pentti Marttiin. Commodification of Industrial
Software: A Case for Open Source. IEEE Software, 26(4):77–83, July-Aug. 2009.
ISSN 0740-7459. doi: 10.1109/ms.2009.88.

Kris Ven and Jan Verelst. The Organizational Adoption of Open Source Server Software
by Belgian Organizations. In Damiani et al. (2006), pages 111–122. ISBN 978-0-387-
34225-2. doi: 10.1007/0-387-34226-5_11.

Kris Ven and Jan Verelst. The Impact of Ideology on the Organizational Adoption of
Open Source Software. Journal of Database Management, 19(2):58–72, April 2008.

Kris Ven, Dieter Van Nuffel, and Jan Verelst. The Introduction of OpenOffice.org in

98

REFERENCES

the Brussels Public Administration. In Damiani et al. (2006), pages 123–134. ISBN
978-0-387-34225-2. doi: 10.1007/0-387-34226-5_12.

Kris Ven, Jan Verelst, and Herwig Mannaert. Should You Adopt Open Source Software?
IEEE Software, 25(3):54–59, 2008. ISSN 0740-7459. doi: 10.1109/ms.2008.73.

Viswanath Venkatesh, Michael G. Morris, Gordon B. Davis, and Fred D. Davis. User
Acceptance of Information Technology: Toward a Unified View. Mis Quarterly, 27(3):
425–478, September 2003.

Iris Vessey, Venkataraman Ramesh, and Robert L. Glass. Research in Information Sys-
tems: An Empirical Study of Diversity in the Discipline and Its Journals. Journal of
Management Information Systems, 19(2):129–174, 2002. ISSN 0724-1222.

Padmal Vitharana. Risks and Challenges of Component-Based Software Development.
Communications of the ACM, 46(8):67–72, 2003. doi: 10.1145/859670.859671.

Padmal Vitharana, Fatemah "Mariam" Zahedi, and Hemant Jain. Design, Retrieval, and
Assembly in Component-based Software Development. Communications of the ACM,
46(11):97–102, 2003. ISSN 0001-0782. doi: 10.1145/948383.948387.

Georg von Krogh and Eric von Hippel. Special issue on open source software de-
velopment. Research Policy, 32(7):1149 – 1157, 2003. ISSN 0048-7333. doi:
10.1016/s0048-7333(03)00054-4.

Georg von Krogh and Eric von Hippel. The Promise of Research on Open Source
Software. Management Science, 52(7):975–983, July 2006. ISSN 0025-1909. doi:
10.1287/mnsc.1060.0560.

Huaiqing Wang and Chen Wang. Open Source Software Adoption: A Status Report.
IEEE Software, 18(2):90–95, 2001. ISSN 0740-7459. doi: 10.1109/52.914753.

Juhani Warsta and Pekka Abrahamsson. Is open source software development essentially
an agile method? In Feller et al. (2003).

Steven Weber. The Success of Open Source. Harvard University Press Camebridge, 2004.
ISBN 0-674-01292-5.

Jacco Wesselius. The Bazaar inside the Cathedral: Business Models for Internal Markets.
IEEE Software, 25(3):60–66, 2008. ISSN 0740-7459. doi: 10.1109/ms.2008.79.

Mike N. Wicks and Richard G. Dewar. A new research agenda for tool integration. Jour-
nal of Systems and Software, 80(9):1569–1585, September 2007. ISSN 0164-1212.
doi: 10.1016/j.jss.2007.03.089.

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in Software Engineering - An Introduction. Kluwer
Academic Publishers, Boston / Dorrecht / London, 2000. ISBN 0-7923-8682-5.

Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical Research Methods
in Software Engineering. In Reidar Conradi and Alf Inge Wang, editors, Empirical

99

Methods and Studies in Software Engineering, volume 2765/2003 of Lecture Notes
in Computer Science, pages 7–23. Springer, 2003. ISBN 978-3-540-40672-3. doi:
10.1007/b11962.

Ye Yang, Jesal Bhuta, Barry W. Boehm, and Daniel N. Port. Value-Based Processes for
COTS-Based Applications. IEEE Software, 22(4):54–62, August 2005. ISSN 0740-
7459. doi: 10.1109/MS.2005.112.

Robert K. Yin. Case Study Research Design and Methods. Applied Social Research
Methods. Sage Publications, 3rd edition, 2003. ISBN 0-7619-2553-8.

Liguo Yu. Understanding component co-evolution with a study on Linux. Empirical
Software Engineering, 12(2):123–141, apr 2007. doi: 10.1007/s10664-006-9000-x.

Marvin V. Zelkowitz. An update to experimental models for validating computer technol-
ogy. Journal of Systems and Software, 82(3):373–376, March 2009. ISSN 0164-1212.
doi: 10.1016/j.jss.2008.06.040.

Marvin V. Zelkowitz and Dolores R. Wallace. Experimental Models for Validating Tech-
nologies. IEEE Computer, 31(5):23–31, 1998. ISSN 0018-9162.

Sven Ziemer, Øyvind Hauge, Thomas Østerlie, and Juho Lindman. Understanding Open
Source in an Industrial Context. In Albert Dipanda, Richard Chbeir, and Kokou
Yetongnon, editors, Proceedings of the 4th IEEE International Conference on Signal-
Image Technology & Internet-Based Systems (SITIS’2008), November 30th-December
3rd, Bali, Indonesia, pages 539–546. IEEE Computer Society, 2008. ISBN 978-0-
7695-3493-0. doi: 10.1109/SITIS.2008.99.

Appendix A

Selected Papers

101

PAPER 1
Øyvind Hauge, Carl-Fredrik Sørensen, and Andreas Røsdal. Surveying Industrial Roles
in Open Source Software Development. In Joseph Feller, Brian Fitzgerald, Walt Scacchi,
and Alberto Sillitti, editors, Proceedings of the 3rd IFIP WG 2.13 International Confer-
ence on Open Source Software (OSS2007) - Open Source Development, Adoption and In-
novation, June 11-14, Limerick, Ireland, volume 234/2007 of IFIP, pages 259-264, 2007.
Springer.

103

SURVEYING INDUSTRIAL ROLES IN OPEN

SOURCE SOFTWARE DEVELOPMENT

Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal
Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

Abstract: Industry uses Open Source Software (OSS) to a greater and greater extent. We

have defined four industrial OSS roles; OSS provider, OSS integrator, OSS

participant and Inner Source Software (ISS) participant. Based on these four

roles we have performed a survey in the ITEA COSI project. We provide

initial answers to what motivates companies to undertake these roles, what are

the advantages and challenges of undertaking them, and which development

practices they use while undertaking these roles.

Key words: Open Source, Industry, Roles, Survey, Motivations, Development Practices

1. INTRODUCTION

The cost of producing software from scratch goes hand in hand with the
steadily increasing size and complexity of the software. Reuse of standard
components has been seen as one solution to keep costs down. Reusable
components have been developed in-house or acquired from other vendors.

OSS provides quality software, enables new ways of developing
software, and makes new business strategies possible. OSS can be important
in the battle against constantly larger and more complex software. Several
major industrial actors like Sun Microsystems, Oracle, IBM, and Novell,
have already started to benefit from OSS.

The entry of industry into the OSS field opens up a new research arena.
The ITEA COSI project wants to increase the understanding of how industry
can benefit from OSS. As part of the ongoing work in the ITEA COSI
project we have performed a survey of current OSS development practices in

2 Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal

parts of the European software industry. The survey gave several interesting
indications. The availability of OSS is perhaps the most important reason
behind use of OSS. The main advantages for a company having an OSS
product come from, value added by supplementary products and community
innovation. Attracting and supporting an OSS community requires hard
work and there are challenges related to community contributions.

We start by presenting the four industrial OSS roles and the applied
research method before we present our results and sum up with a discussion
and conclusions.

2. RELATED WORK AND INDUSTRIAL ROLES

Our literature survey did not discover many empirical studies of
industrial OSS involvement. However, examples can be found e.g. [1-5].

We want to highlight the need for more varied and reproducible
empirical research. The majority of the publications we found were case
studies or experience reports which are hard to reproduce. The work is in
many cases performed in only one setting, most often in a non-industrial
setting.

Based on literature and conversations with the industrial partners of the
ITEA COSI project we defined four industrial roles: OSS Provider, OSS
Integrator, OSS Participant, and Inner Source Software (ISS) Participant.

An OSS provider is a company which controls the code base of an OSS
product. MySQL, Trolltech, and Sun Microsystems are some examples. The
OSS integrator is a company which, uses OSS components in their products
or build their products on top of OSS infrastructure. The OSS participant is a
company actively interacting with one or more OSS projects. IBM and SUN
are for instance participating in the development of the Apache DB. The ISS

participant is a company participating in an inter department or inter
company collaborative development using OSS development practices.

3. RESEARCH METHOD

In the first phase of the ITEA COSI project, we wish to create a baseline
description of the industrial OSS related development. The following
questions were based on a literature review and in conversations with project
partners: Why do industrial actors undertake the four OSS roles? What are
the advantages and challenges related to undertaking them? Which
development practices are used in these roles?

SURVEYING INDUSTRIAL ROLES IN OPEN SOURCE SOFTWARE

DEVELOPMENT

3

Based on these questions, we created an interview guide which was used

in semi-structured interviews with Norwegian COSI partners. The interviews
were performed at the offices of the industrial partners and all of them were
recorded and later transcribed.

We interviewed two developers in company A, one developer in
company B, and one developer and one CEO in company C. Company A is a
small company which uses OSS in their development. Company B is a
medium sized consulting company delivering services and products based on
OSS. Company C is a medium sized company which provides an OSS
product.

The interview guide and the results from the interviews were used as a
basis for a web-survey. The survey had one part for each OSS role.

The ITEA COSI project consists of big companies from telecom and
embedded software, but also smaller and more traditional software
companies. Selection of the respondents was because of the composition of
the project, unfortunately out of our hands. We distributed the survey to the
all of the project partners and encouraged them to respond at least once. The
companies selected their respondent(s) themselves and we received the
following number of responses; OSS provider: 3, ISS participant: 6, OSS
participant: 6 and OSS integrator: 9, in total 24 responses.

4. RESULTS

OSS providers are motivated to release their products as OSS of several
factors. The community can perform testing and provide new functionality,
bug-fixes, bug-reports, and translations. This may enhance the functionality
and increase the quality of the product. The community members may
contribute to the innovation of the product in form of new ideas and new
requirements. They can also provide supplementary products and services.

Releasing a product as OSS is a way to make it available to a large user
group. If the community is satisfied with the product, it will most likely
share its experiences with others and thereby give the OSS provider free
marketing and increased publicity.

Increased value, availability and publicity, boost the possibility of
attracting new users. This is important because many industrial OSS
providers sell services related to their OSS products. The more users, the
more potentially paying customers and the more likely it is that someone
will contribute to the development of the product.

We believe that the innovation and the supplementary products and
services which increase the value of the product are more important than

4 Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal

code contributions. This is because the Oss provider has to review
contributions in form of code, requests, and opinions.

Maximizing community contributions and reducing the work related to
these contributions is one of the challenges an OSS provider faces.
Attracting a community is another major challenge for an OSS provider and
according to our respondents, hard work.

It is important to offer the community a piece of quality software they
need, infrastructure to support the community, enough documentation and
information to get the community members going and to make them feel
involved. However, it is important not to involve the community too much
because involvement will create overhead and delays.

The OSS integrator is motivated by the low purchase price of the OSS
products. Perhaps even more important is the high availability of OSS.
Standard compliance was also mentioned as a reason why people use OSS.

Many OSS products are available through project web sites containing
documentation, forums and mailing lists, bug and feature trackers, road
maps, developer info and so on. The honesty about the true status of the OSS
product and the availability of information make it easier for the OSS
integrator to understand and evaluate it.

OSS components are primarily selected through informal processes. The
OSS integrator discovers a need for a component. He forms an initial idea of
what the software should do. Based on these initial requirements he performs
an informal search to create a long-list. This long-list is later reduced to a
short-list. The components on the short-list are tested or evaluated closer
before one product is selected.

The candidate components may be found through many sources; prior
experience, friends or co-workers, request for help on forum or mailing-list,
searches in OSS portals or search engines. Search engines are used to find
both single components and comparisons of several components.

Missing functionality, incompatible licenses, unfamiliar programming
languages, lack of stable releases, no activity in community, bad or no
reputation, and absence of documentation, are easy-to-check evaluation
criteria. To evaluate the components further the developer may subscribe to
mailing lists, study documentation, perform code reviews, and test the
software in a small prototype. Plans and roadmaps, compatibility to other
software, standard compliance, reputation of the product and the provider,
the development process used in the community, and support from
community or a commercial provider, were all mentioned as evaluation
criteria in this process. This evaluation was mostly informal but some
respondents reported that they used checklists.

The OSS integrator is faced with some challenges. There are vast
numbers of OSS available out there and finding quality products can be hard.

SURVEYING INDUSTRIAL ROLES IN OPEN SOURCE SOFTWARE

DEVELOPMENT

5

By changing the source code of the OSS products he uses, the OSS

integrator is left with two choices: He can keep the changes to himself or
feed the changes back into the product. Convincing the OSS project to
include these changes can be hard. If he is unable to make the OSS project
include his changes he has to maintain this code himself. This could be time-
consuming and it may lead to problems with new releases of the OSS.

Most of the OSS participants could not surprisingly be classified as
active or passive users. They provide occasional bug fixes and requirements,
subscribe to mailing-lists, read news, and primarily use the software.

The respondents were overall satisfied with the OSS products, their
communities, information from the community, and their relationship with
the community. However, they acknowledged that they would have been
able to influence the community more through increased participation.

Participation as a company was not surprisingly rooted in the need for the
product. Learning was also mentioned as one important motivation for some
companies. On the individual level learning, idealism, and personal interest
in the product were mentioned as the most important factors.

The participants in ISS development use some development practices
often used in OSS development. The use of e-mail and mailing list was due
to the distributed development quite extensive.

To provide the participating developers a shared view of the code, code
repositories were used. These repositories were controlled by gatekeepers or
module owners. Based on the code base, several pre-releases of the software
were made available to give the users an early impression of the product and
to allow the users to provide feedback to the developers.

Some of the respondents reported saved development effort and
maintenance effort due to ISS cooperation.

5. DISCUSSION AND CONCLUSIONS

In the section about related work we requested more and more varied
empirical research related to industrial OSS involvement. We are aware of
some of the limitations of our own work and we will discuss some of these
here.

The survey was intended to be a baseline for the companies in the ITEA
COSI project. The selection of respondents was done from this population
and we cannot claim that our results are valid for other populations.

The number of respondents was unfortunately quite low. The selection of
respondents was done by convenience sampling. We were, due to the
sampling method, unable to control mortality rates and drop out rates for the

6 Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal

questionnaire. These factors reduce the internal validity and the statistical
validity of the survey.

We have however increased the validity through interviews with some of
the respondents and through expert review. We have presented the results to
the ITEA COSI project and to several of the respondents. None of them gave
us any indications that the results were flawed.

We believe that our work is a step on the way to understand how industry
can benefit from OSS products and development methodologies. The survey
has given us initial ideas of what motivates companies to undertake the four
roles OSS provider, OSS integrator, OSS participant, and ISS participant.
Furthermore, we have described some of the advantages and challenges
related to undertaking these roles. At last we have started to describe some
of the processes and practices used by these roles.

The work of answering the initial questions about motivations, processes,
advantages and challenges are by far not completed. We will continue this
work and a second version of the survey is under development. This survey
will be distributed to a larger European population through ITEA.

ACKNOWLEDGEMENT

The Norwegian COSI is sponsored by the Norwegian Research Council’s
IKT-2010 program. The COSI project is part of the ITEA 2 program.

REFERENCES

1. W-G. Bleek, M. Finck, and B Pape, Towards an Open Source Development Process?

Evaluating the Migration to an Open Source Project by Means of the Capability Maturity

Model, Proceedings of the First International Conference on Open Source Systems,

Genova, Italy, 37–43 (2005)

2. C. Jensen and W. Scacchi, Collaboration, Leadership, Control, and Conflict Negotiation

and the Netbeans.org Open Source Software Development Community, Proceedings of the

38th Annual Hawaii International Conference on System Sciences, 196b-196b, (2005).

3. V. K. Gurbani, A. Garvert, and J.D. Herbsleb, A Case Study of a Corporate Open Source

Development Model, Proceeding of the 28th international Conference on Software

Engineering ICSE '06, Shanghai, China, 472–481 (2006)

4. C. Rossi and A. Bonaccorsi, Why Profit-Oriented Companies Enter the OS Field? Intrinsic

vs. Extrinsic Incentives. Proceedings of the fifth Workshop on Open Source Software

Engineering, 1–5 (2005)

5. L. Dahlander and M. G. Magnusson, Relationships between Open Source Software

Companies and Communities: Observations from Nordic Firms. Research Policy, 34(4),

481–493 (2005)

PAPER 2
Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi. Adoption of Open Source
in the Software Industry. In Barbara Russo, Ernesto Damiani, Scott A. Hissam, Björn
Lundell, and Giancarlo Succi, editors, Proceedings of the 4th IFIP WG 2.13 International
Conferences on Open Source Software (OSS2008) - Open Source Development Com-
munities and Quality, September 7-10, Milano, Italy, volume 275/2008 of IFIP, pages
211-222, 2008. Springer.

111

Adoption of Open Source in the Software
Industry

Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi

Norwegian University of Science and Technology

{oyvind.hauge|carl.fredrik.sorensen|reidar.conradi}@idi.ntnu.no

Abstract: Is Open Source Software (OSS) undergoing a transformation to a

more commercially viable form? We have performed a survey to investigate the

adoption of OSS in the Norwegian software industry. The survey was based on an

extensive screening of software companies, with more than 700 responses. The

survey results support the transformation predicted by Fitzgerald [4]. Close to

50% of the software industry integrate OSS components into vertical solutions

serving all major business sectors. In addition, more than 30% of the 95 respon-

dents in our survey have more than 40% of their income from OSS related ser-

vices or software. The extensive adoption of OSS in the software industry may be

a precursor of the OSS adoption in other business sectors.

Introduction

Open source software (OSS) is predicted to transform "into a more mainstream

and commercially viable form" [4], where companies play an increasingly more

important role. A premise for this transformation is increased commercial partici-

pation in the development of OSS products and increased use of OSS in vertical

domains. However, only a few surveys provide empirical findings which support

this assumed transformation, and most of these focus on the use of desktop tools

and horizontal infrastructures like the LAMP stack. Is really OSS undergoing a

transformation?

To answer this question we have performed a large scale survey in the Norwe-

gian software industry. Our analysis shows that close to 50% of the software in-

dustry integrate OSS components into vertical solutions targeting customers from

all major business sectors. In addition, more than 30% of the respondents in our

survey have more than 40% of their income from OSS related services or soft-

ware.

Our results show that the adoption of OSS in the Norwegian software industry

is significant. The industry's contribution to the OSS community is however lim-

ited. Nevertheless, it is reason to believe that OSS is actually undergoing a trans-

2

formation into a more commercially viable form. The use of OSS in the software

industry may eventually influence the rest of the market when software companies

integrate OSS into their products. However, a lack of software companies adopt-

ing OSS may hamper the adoption of OSS in other sectors [15].

Related Work

Estimating the market share of OSS is a comprehensive task. Nevertheless, several

attempts have been made e.g. [5, 6, 18]. Common to most of these is their focus

on a few products like the LAMP stack and end-user applications like mail or of-

fice tools. One example is the Netcraft1 survey of web servers on the Internet.

While several consultancy companies have attempted to estimate the adoption of

OSS, we rather focus on research published through academic channels.

Without providing any numbers, Glynn et al. conclude that OSS has had sig-

nificant penetration in the software/consultancy and service/communication sec-

tor, but that it is more limited in the government/public sector [7]. Studies from

the UK [17], Finland [15], and the U.S. [16] report only limited OSS adoption in

the public sector with Linux as the only exception. Linux was used by more than

50% of the respondents in both the study from Finland and the U.S. Together with

the other elements of the LAMP stack, Linux is quite frequently used in other sec-

tors as well [6]. However, this adoption varies from country to country, on com-

pany size, and between sectors. For a mixed sample from industry and public sec-

tor, the use or planned use is reported to be as low as 17.7% in Sweden and as

high as 43.7% in Germany [6]. Furthermore, numbers vary between about 10%

and 75% for different strata [6]. A survey on Australia's top companies reports

that 26% of the respondents used a varied spectrum of OSS products [8]. With the

exception of Linux, Apache HTTP Server and perhaps a few others, most surveys

report that less than 30% of the respondents have adopted OSS. Yet, little is

known about the extent of the internal adoption of OSS in these companies.

In studies focusing on the software sector, 44% of the companies in a Finnish

sample use OSS in their business [13] and in a study on Off-the-Shelf develop-

ment, 44 or 38.3% of the 115 projects use OSS components [11]. Without being

able to provide any numbers representative for the whole population, an Italian

study found that software companies using OSS commonly adapt or build on top

of these OSS products [1].

The transformation predicted by Fitzgerald involves company participation in

the development of OSS products [4]. Companies are already known to be con-

tributing by allowing employees spend their time at work participating in OSS

projects [10]. Companies are among others involved in 97 of the 300 most active

SourceForge projects [2]. However, this is most likely not representative for all of

1 http://news.netcraft.com/

3

SourceForge's more than 170 000 projects. A Swedish survey also found that sev-

eral companies actively contribute to OSS projects [12].

We see that companies and organizations have adopted OSS and that they are

involved in the development of OSS. There are however only a limited number of

empirical findings which show the extent of this adoption and the demography of

these companies. This paper will provide results which quantifies the adoption of

OSS components in the Norwegian software industry.

Survey Method

The purpose of the study was to investigate to what extent the Norwegian software

industry approaches OSS development. As an expansion of [9], we carried out a

nationwide survey to investigate this matter.

Population: The Norwegian Software Industry

Legal entities in Norway are registered in The Norwegian Central Coordinating

Register for Legal Entities2 (CCRLE) with a Nomenclature Generale des Activites

Economiques dans L`Union Europee (NACE) code. Based on 2005 data from

CCRLE and other registers, Statistics Norway33 (SSB) reports that about 70 000

employees, or 4.7 % of all employees in Norway, are employed in the whole ICT

sector [14]. In addition, the sector has a turnover of about €22 billion [14].

Table 1 The Norwegian 72.xx sector based on data from CCRLE 2007.

Sub sector NACE Entities

Computer and related activities 72.00 26105

Hardware consultancy 72.10 251

Software consultancy and supply 72.20 21559

- Publishing of software (software houses: resale) 72.21 1295

- Other software consultancy and supply (single sale) 72.22 20264

Data processing 72.30 489

Database activities 72.40 2916

Maintenance & repair: office, accounting and comp. machinery 72.50 733

Other computer related activities 72.60 163

The ICT sector in Norway includes telecommunication (64.20), ICT manufac-

ture industry (32.xx), ICT wholesale and retail trade (51.8x), and the soft- and

2 http://www.brreg.no/
3 The Norwegian counterpart to the U.S. Census Bureau http://www.ssb.no/

4

hardware sector (72.xx). Based on CCRLE data from 2007, we found that ap-

proximately 26 000 legal entities and 38 500 employees constitute the soft- and

hardware sector, see Table 1. This gives an average company size of about 1.5

employees. According to SSB only about 13 000 of these legal entities are active

companies. More than 70% of these have less than one full time employee and

about 1300 have five or more employees [14]. We will in this paper focus on the

software sector (72.2x).

The Sampling Process

Data from CCRLE helped us constructing a close-to representative sample of

software companies [3], with a focus on software (72.21) and consultancy (72.22)

companies with more than five employees. However, the sample also included

companies from the other 72.xx sub-sectors and companies with fewer than five

employees. The purpose of the sampling process illustrated in Fig. 1 was twofold.

First, estimate the share of companies integrating OSS components into their

products. Second, create a sample for our survey consisting of companies using

OSS components.

Fig. 1 The sampling process.

Step 1: The sample was constructed based on a convenience sample of 439

companies and a stratified random sample of 1262 legal entities from CCRLE.

The convenience sample was based on stratified random samples two from earlier

studies and supplemented with companies from our knowledge and companies ap-

pearing in the media. The strata were defined according to the business organiza-

tion form, the 72.xx sub-sectors, and the number of employees.

Step 2: Then, the two lists were merged. 300 duplicates entries were removed

during this merger. Several companies occurred in both samples and some compa-

nies were registered with more than one legal entity, typically larger companies.

We used data from CCRLE and the Internet to find web-sites and email addresses

for the companies. Another 395 or 31.3 % of the 1262 randomly selected legal en-

tities were removed from the list because no contact information could be found.

Knowing that only about 50% of the companies in the sector were active, this was

5

not a surprise. The vast majority of these companies were small and most likely

inactive companies. The final list contained contact information for 1008 compa-

nies from the Norwegian software industry.

Step 3: The screening process was carried out by sending the companies a brief

request on email containing the questions stated below. About 200 of the compa-

nies from the convenience sample were contacted in March 2007 and the rest in

June/July. One reminder was sent by email in September. The 200 companies con-

tacted in March were only asked the first three questions while the remaining

companies were asked all four questions.

1. How many employees do you have in Norway?

2. Are you doing software development in Norway?

3. Do you use open source components in your products or services (other than

Linux, Apache HTTP Server, Eclipse, PhP/Perl, MySQL etc.)?

4. Do you participate in or run any open source projects?

38 of the 1008 email addresses did not work, leaving 970 companies. 201 of

these companies came from the convenience sample, 555 from the stratified ran-

dom sample, and 236 companies were included in both samples. 739 companies

replied which give us a response rate of 73.3%. 32 companies responded that their

company was inactive or about to be dissolved, one company did not want to par-

ticipate, and another four duplicate legal entities were found, leaving 702 or

69.6% valid responses. The response rates were similar across most of the differ-

ent strata (size and sector). The names of the respondents and their email ad-

dresses were stored together with the other contact information.

Step 4: 569 or 81.1% of the 702 companies in our screening process confirmed

that they perform software development. These companies make the basis for fur-

ther analysis. The percentage of companies involved in software development is

similar across different size and business types. However, when looking at sectors,

the percentage varies from 73.6% (72.40 Database activities) to 90.2% (72.20

Publishing of software).

The Survey Process

Close to 50% of the 569 companies constituting our sample integrate OSS compo-

nents into their products. 204 of these companies were invited to participate in a

web survey. The survey contained three parts focusing on (1) development of a

commercial OSS product, (2) integration of OSS components into a software

product, and (3) demographic information. The respondents should answer based

on their experiences with the development of a typical software product contain-

ing OSS components. This product was selected by respondents and we had no

control over this selection. To learn more about the companies and to increase the

response rates, every second company ordered by size was contacted by phone.

The companies were asked if they could participate and were sent an email with

instructions if they accepted our invitation. The other half was invited to partici-

6

pate through email. One reminder was sent by email about a month later. 12 or

5.9% of the 204 companies could not or did not want to participate. Nevertheless,

95 of the 204 companies or 46.6% completed the survey. Of these 95, 21 were

only involved in software development without directly developing software

products, for instance consultancy companies providing developers to external

customers. This left 74 or 36.3% valid responses for the two main parts.

Results

This section presents results from both the screening process and from the survey.

Selection and Integration of OSS Components

Out of the 569 companies constituting our sample, 266 or 46.9% integrate OSS

components into their software solutions. This use goes beyond merely using OSS

operating systems, databases, infrastructure, development tools, and programming

languages. The companies actually find, evaluate, and integrate OSS components

into their software solutions. The integration of OSS components happens less

frequently in software houses. Only 34.1% of the companies registered in sector

72.21, use OSS components in their products, see Table 2.

Table 2 Adoption of OSS components distributed over sectors.

Sector Sample Size OSS Adoption

72.21 Publishing of software 129 34.1%

72.22 Other software consultancy and supply 328 51.5%

72.30 Data processing 18 38.9%

72.40 Database activities 39 53.8%

Other 55 47.3%

From Table 3 we see that large companies integrate OSS components more of-

ten into their products than smaller companies. 56.9% of the companies with more

than 100 employees use OSS and 50.0% of the companies with 25 to 99 employ-

ees integrate OSS components into their products compared to around 43% of the

companies with between 2 and 24 employees. Companies with one or less than

one full time employee, use OSS components somewhat more frequently.

66 companies completed the second part of the survey based on their experi-

ences from the development of a software product containing OSS component.

The products delivered by these companies serve all main business sectors with a

small emphasis on the public and health sector. The functionality of these products

was directed mainly towards web/portals and enterprise solutions. The respon-

7

dents classified 40.9% of the products as domain specific and 36.4% as differenti-

ating end-user products.

Table 3 Adoption of OSS components distributed over the number of employees.

Number of employees Sample Size OSS Adoption

0 to 1 33 48.5%

2 to 4 61 42.6%

5 to 9 80 43.8%

10 to 24 189 43.9%

25 to 99 146 50.0%

More than 100 58 56.9%

Even though OSS components can reduce the development effort substantially,

they are in most cases integrated as part of a larger solution. In 72.7% of the prod-

ucts, OSS components provide less than 40% of the functionality of the end prod-

uct. The number of OSS components is also kept low. 68.2% of the products con-

tain less than six OSS components and 83.3% contain less than eleven OSS

components. The effort spent developing these products during the last year, range

from less than one (1) person-month to between 101 and 500 person-months.

OSS Related Activities

During the last year, 75.8% of the companies have developed between one and

three software products containing OSS components. In one extreme case, one

company had developed more than 50 products containing OSS components. In

Part 3 of the survey, we requested the respondent to estimate how much of the

company's income is generated by OSS related services or software development,

see Table 4. Even though 41 of the 95 respondents answered less than 20% and 22

answered "don't know", 29 or 30.5% answered that more than 40% of their in-

come comes from OSS related services or software.

Table 4 Income from OSS related services and software development.

Income from OSS Number of companies

NA/Don't know 22

0% 8

1-20% 33

21-40% 3

41-60% 7

61-80% 9

81-99% 6

100 % 7

8

Participation in OSS Projects

In total 368 of the 569 companies developing software responded to the fourth

screening question. 60 or 16.3% of the respondents said that employees in their

company participated in OSS projects. This participation was in some cases part

of their job and in other more a hobby. Another 18 or 4.9% of the 368 companies

said they have their own OSS project. However, through the researchers' previous

experience with some of these companies we would say that the OSS projects are

only an important part of the business for a few of them.

30 of the 66 companies completing Part 2 of the survey answered that they in-

teracted with or participated in OSS projects during the development of their prod-

uct. This interaction and participation was in all but three cases not organized

through the company but rather left up to the individual developer.

Discussion

The use of OSS in Norwegian software industry is significant. Close to 50% of

the companies developing software have integrated OSS components into one or

more of their products and more than 30% of the respondents to our survey get

over 40% of their income from OSS related services or software. The use of OSS

in software houses (72.21) living of the sales of software licenses is somewhat

lower than in other software sectors. This could be caused by reciprocal OSS li-

censes (e.g. GPL) which requires derivate products to be released under the same

license, thus removing the software houses profits from sales of licenses. Another

conceivable explanation is that companies focusing on development of their own

software products are involved in the development of fewer products per year than

consulting companies serving several different customers.

The products developed by the respondents served all major business sectors

and 77.3% of them were classified as domain specific or differentiating end-user

products. Thus, we can conclude that OSS is used in vertical products targeting all

business sectors.

We observed increasing OSS use in relation to increasing company size. How-

ever, Lundell et al. observed that companies with more than 250 employees

seemed more conservative towards OSS adoption [12], Bonaccorsi et al. found

that size does not favor OSS adoption [1], and Ghosh et al. found variations in the

adoption of OSS over company size, countries, and sectors [6]. The relation be-

tween size and OSS adoption needs to be investigated in future research. How-

ever, we see two possible explanations for this increased use of OSS. First, small

companies commonly focus on a limited number of customers and specialize on a

small set of different technologies. Several such companies replied that they were

not using OSS because they focused only on one not-OSS-compatible technology.

While large companies, often serve many customers using several different tech-

9

nologies, including OSS. Second, large companies hire more people. Because they

hire more people it is more likely that they employ people with prior experiences

with OSS.

Comparing the results from this survey with other results is a bit complicated.

First, the number of related studies is fairly limited. Second, while we focused on

integration of OSS components, most studies include all kinds of OSS products.

Third, other studies focus on other sectors than the software sector. The 46.9%

adoption of OSS components in the software sector is therefore lower than some

of the extreme results in [5, 6]. If our survey had included all kinds of OSS, we

suspect the percentage of OSS users to be significantly higher. On the other hand,

our results are in line with the results from [13] where 44% of the software com-

panies used OSS in their business.

Generalization to other countries is made somewhat more difficult because of

the variations found in other studies [6]. There are also factors which influence the

adoption of OSS in the Norwegian software sector. While the effects of these fac-

tors must be further examined, we believe the size of the companies, influence the

OSS adoption. Most software companies in Norway are small or medium sized.

Many have relatively few and mostly domestic customers, and they have also cho-

sen to focus on a limited set of technologies. In addition, the Norwegian govern-

ment has the last years increased its focus on open standards and OSS through

public reports and the establishment of a national centre of expertise of OSS. Fur-

thermore, there seems to be a push in Norway towards increased use of agile

methods. While using such methods it is important to get something up and run-

ning as fast as possible. This and the fact that the cost of personnel in Norway is

quite high may encourage higher reuse of code and components, including OSS.

Industrial participation in OSS projects seems limited and managed on an

individual level. Only 16% of the software companies confirm that they do par-

ticipate in the development of one or more external OSS products. This number

has however some uncertainty. First, 200 of the companies in the screening proc-

ess were not asked whether they participated in any OSS projects. Second, there is

some confusion about what participation is. Some companies answered "we do not

participate but we report bugs and share occasional bug fixes" while others an-

swered "we do participate with some bug reports and bug fixes". However, we in-

terpreted both these statements as participation. Third, participation in OSS pro-

jects is in most cases managed on a personal level. Knowing what all other

employees are doing is difficult if not impossible for the respondents in our

screening process and the number of companies participating in OSS projects

could therefore be higher.

The sample has an intentional bias towards companies with more than five

employees. This bias was reinforced by the fact that we were unable to find con-

tact information for several small and probably inactive companies. The majority

of companies without a web site are most likely inactive since nowadays the Web

is considered the most important communication channel.To aid the sampling we

benefited from CCRLE and the NACE sector codes. While this classification was

of great help, the software industry is an industry with rapid and frequent changes.

10

As a consequence of these changes, central registers such as CCREL are not up-

to-date at all times. For example, only about 90% of the companies under 72.20

"Publishing of software" actually develop software.

Response rates of 73.3% for the screening process and 36.3% valid responses

in the main survey is decent compared to many other studies but low response

rates is one of the challenges with survey research. Even though there is room for

improvement, we have been able to get responses from a large and close to repre-

sentative sample of the Norwegian software industry. The research design is well

documented and replicating the survey in another setting should be easy, though

labor-intensive.

Conclusion

Results from our study show limited company involvement in the development of

OSS products but widespread use of OSS components. By integrating OSS into

vertical products serving all major business sectors, the software industry will con-

tribute to wider adoption of OSS. The software industry has clearly started to

adopt OSS products and contribute to the transformation of OSS into a commer-

cially viable form. However, this transformation is far from completed.

The results presented here are currently followed up in several ways. In parallel

to this survey, we have also approached OSS adoption through qualitative studies.

Data from both the survey and these qualitative studies is currently being ana-

lyzed. Findings from these analyses will provide a basis for further research. This

survey focuses on the Norwegian software sector, which is dominated by small

and medium sized companies. The adoption of OSS may be different in other sec-

tors and in other countries. We are therefore looking at the possibilities of con-

ducting similar surveys in both other sectors and European countries. To under-

stand the trend of OSS adoption, we are also considering a replication of the

survey in Norway. Furthermore, the survey identified a few companies developing

their own OSS products. We plan to follow up on these companies to try to under-

stand if they manage to attract and sustain communities and how they interact with

these communities.

References

1. Andrea Bonaccorsi, Silvia Giannangeli, and Cristina Rossi. Entry Strategies under Competing
Standards: Hybrid Business Models in the Open Source Software Industry. Management Sci-
ence, 52(7):1085-1098, July 2006.

2. Andrea Bonaccorsi, Dario Lorenzi, Monica Merito, and Cristina Rossi. Business Firms' En-
gagement in Community Projects. Empirical Evidence and Further Developments of the Re-
search. In Proceedings of the First International Workshop on Emerging Trends in FLOSS

11

Research and Development FLOSS'07, page 13, Minneapolis, US, 2007. IEEE Computer So-
ciety.

3. Reidar Conradi, Jingyue Li, Odd Petter N. Slyngstad, Vigdis By Kampenes, Christian Bunse,
Maurizio Morisio, and Marco Torchiano. Reflections on Conducting an International Survey
of Software Engineering. In June Verner and Guilherme H. Travassos, editors, Proceedings
on International Symposium on Empirical Software Engineering ISESE'05, pages 214-223,
Brisbane, Australia, 2005.

4. Brian Fitzgerald. The Transformation of Open Source Software. MIS Quarterly, 30(3), 2006.
5. Rishab Aiyer Ghosh. Study on the Economic Impact of Open Source Software on Innovation

and the Competiveness of the Information and Communication Technologies (ICT) Sector in
the EU. Technical report, UNU-MERIT, 2006.

6. Rishab Aiyer Ghosh, Gregorio Robles, and Ruediger Glott. Free Libre and Open Source Soft-
ware: Survey and Study. Technical report, International Institute of Infonomics, University of
Maastricht, 2002.

7. Eugene Glynn, Brian Fitzgerald, and Chris Exton. Commercial Adoption of Open Source
Software: An Empirical Study. In Proceedings of International Conference on Empirical
Software Engineering, pages 225-234, Noosa Heads, Australia, 2005.

8. Sigi Goode. Something for Nothing: Management Rejection of Open Source Software in Aus-
tralia's Top Firms. Information & Management, 42(5):669-681, 2005.

9. Øyvind Hauge, Carl-Fredrik Sørensen, and Andreas Røsdal. Surveying Industrial Roles in
Open Source Software Development. In Joseph Feller, Brian Fitzgerald, Walt Scacchi, and
Alberto Sillitti, editors, Proceedings on the Third International Conference on Open Source
Systems, pages 259-264, Limerick, Ireland, 2007. Springer.

10. Karim R. Lakhani and Robert G. Wolf. Why Hackers Do What They Do: Understanding
Motivations and Effort in Free/Open Source Software Projects. In Joseph Feller, Brian Fitzger-

als, Scott A. Hissam, and Karim R. Lakhani, editors, Perspectives on Free and Open Source
Software, pages 3-23. MIT Press, 2005.

11. Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Umair Khan, Marco
Torchiano, and Maurizio Morisio. An Empirical Study on Off-the-Shelf Component Usage in
Industrial Projects. In Frank Bomarius and Seija Komi-Sirvio, editors, Proceedings of the 6th
International Conference on Product Focused Software Process Improvement PROFES'2005,
pages 54-68. Springer, 2005.

12. Björn Lundell, Brian Lings, and Edvin Lindqvist. Perceptions and Uptake of Open Source in
Swedish Organisations. In Ernesto Damiani, Brian Fitzgerald, Walt Scacchi, Marco Scotto,
and Giancarlo Succi, editors, Proceedings of The Second International Conference on Open
Source Systems, pages 155-163, Como, Italy, 2006. Springer.

13. Uolevi Nikula and Sami Jantunen. Quantifying the Interest in Open Source System: Case
South-East Finland. In Marco Scotto and Giancarlo Succi, editors, OSS 2005: Proceedings of
the First International Conference on Open Source Systems, 11-15 Juli 2005, Genova, Italy,
pages 192-195, 2005.

14. SSB. StatBank Norway, 2007. http://statbank.ssb.no/statistikkbanken/, accessed 2007-08-01.
15. Mikko Välimäki, Ville Oksanen, and Juha Laine. An Empirical Look at the Problems of

Open Source Adoption in Finnish Municipalities. In Proceedings of the 7th International
Conference on Electronic Commerce ICEC'05, pages 514-520, Xi'an, China, 2005. ACM.

16. Shahron van Rooij. Open Source software in US higher education: Reality or illusion? Edu-
cation and Information Technologies, 12(4):191-209, December 2007.

17. Teresa Waring and Philip Maddocks. Open Source Software implementation in the UK pub-
lic sector: Evidence from the field and implications for the future. International Journal of In-
formation Management, 25(5):411-428, October 2005.

18. David A. Wheeler. Why Open Source Software / Free Software (OSS/FS, FLOSS, or
FOSS)? Look at the Numbers!. http://www.dwheeler.com/oss_fs_why.html, accessed 2007-
12-09.

PAPER 3

Sven Ziemer, Øyvind Hauge, Thomas Østerlie, and Juho Lindman. Understanding
Open Source in an Industrial Context. In Albert Dipanda, Richard Chbeir, and Kokou
Yetongnon, editors, Proceedings of the 4th IEEE International Conference on Signal-
Image Technology&Internet-Based Systems (SITIS 2008), November 30-December 3,
Bali, Indonesia, pages 539-546, 2008. IEEE Computer Society.

125

Understanding open source in an industrial context

Sven Ziemer, Øyvind Hauge and Thomas Østerlie
Norwegian University of Technology and Science

Sem Sælandsvei 7–9, NO-7491 Trondheim, Norway
{sven.ziemer, oyvind.hauge, thomas.osterlie}@idi.ntnu.no

Juho Lindman
Helsinki School of Economics

Runeberginkatu 22-24, FI-00101 Helsinki , Finland
juho.lindman@hse.fi

Abstract

This paper discusses the meaning of open source in an
industrial context. Building a grounded theory from an
industry-driven R&D project, our analysis shows that open
source in an industrial context is multifaceted. We find that
the meaning of open source must be established in the con-
text of the individual organization.

Keywords: Software development with open source,
Adoption of open source

1 Introduction

Over a decade has passed since the fledgling Linux in-
dustry coined the term open source to overcome resistance
to industry adoption of free software [24]. Throughout this
period, open source has been advocated as a viable alter-
native form of software development that will revolution-
ize the software industry [2]. A recent addition to the on-
going discussion on the impact of open source contends
that open source has undergone a transformation to a more
mainstream commercially viable form where vendors pro-
vide their products as open source [9].

While we agree that open source has undergone such a
transformation, the nature and form of this shift is more of
an open question. Indeed, we argue that open source in an
industrial context is more multifaceted than merely provid-
ing open source products. This paper offers a grounded
theory based on open source adoption in a European in-
dustrial R&D project. With basis in this, we seek to con-
tribute towards developing a more nuanced understanding
of what open source in an industrial context means. We
find that ’what open source in an industrial setting is’ can
only be established in the context of individual organiza-

tions. For open source to remain a viable alternative in
an industrial context, the meaning of ’open source’ needs
to remain fluid and multifaceted. As such, efforts to pro-
vide definite characterizations of the phenomenon remains
at best fruitless and at worst counterproductive to the goal
of industrial adoption of open source.

However, it is out collective experience that the fluidity
of the open source term is a major stumbling block for many
actors in the software industry when adopting open source.
It remains unclear to them what open source actually means
to their organization. Without the ability to match the flu-
idity of open source with the activities of their organiza-
tions, no viable form can be found. As diffusion of open
source at the industry level require that individual organiza-
tions adopt open source industrially, problems of matching
the fluidity of the term may hamper the industrial adoption
of open source [28]. By offering a grounded theory with
three categories of open source in an industrial context, this
paper offers a guide for practitioners to match the fluidity of
open source with their organization’s activities.

To this end, the paper is organized as follows. Section 2
gives an overview over related work on industrial adoption
of open source. Section 3 presents the research setting and
method, while Section 4 presents an analysis of the data
and our findings. Finally, concluding remarks are given in
section 5.

2 Related work

OSS has been advocated as a viable alternative form of
software development that which revolutionize the software
industry [2]. With this premise, a critical topic for research
is therefore to understand how OSS changes the way the
software develop and provide software. Even though there
is a trend towards higher industrial involvement in OSS de-

velopment [12], most research has focused on the big, suc-
cessful OSS projects such as Apache, FreeBSD, Linux, and
Mozilla [23]. Two recent literature reviews on OSS devel-
opment [26] and OSS research [30] illustrates this by barely
mentioning OSS in a commercial context.

Defining the OSS phenomenon has been a key preoccu-
pation of the OSS research literature. These definitions have
been targeted at a bilateral audience consisting of the OSS
communities and commercial companies. First, to shape the
hacker identity [29] and second to create a credible option
for companies [25]. Although many observe that OSS ”is
not a precise term” [11, page 35] and that ”[t]here is a great
variation in perceptions of the OS phenomenon” [18, page
157], definitions and characterizations of OSS are still pre-
dominantly of community-driven OSS development [23].
This, despite the fact that the existing literature on OSS in
a commercial context illustrates that there is a spectrum of
commercial approaches to OSS [8].

Depending on their organizational opportunities, a com-
pany may try to implement one of several business mod-
els [13, 15]. Two generic business models are the ”support
seller”, where a company sells services on top of OSS, and
the ”loss-leader”, where a company uses OSS to drive the
use of industrial software product by promoting OSS [13].
How companies actually implement these business models
vary and Bonaccorsi et al. found a ”significant heterogene-
ity in . . . the degree of openness to OS” [4, page 1085].

This heterogeneity is reflected in the literature by a vari-
ety of specific topics, like adoption [10], re-use [19], inte-
gration [21], maintenance [33], and evaluation [6]. Several
of these activities are also studied within the software en-
gineering field for instance [17]. In addition to adopting
OSS products companies have started to show interest in
the tools and development practices used in OSS communi-
ties. By looking at successful OSS projects, companies can
adopt these tools and practices into their own organization
[7, 20].

Despite company involvement in about one third of the
top 300 SourceForge projects [5], company contributions to
OSS projects have so far gained minor attention. Company
contributions to OSS projects will primarily come through
individual developers [16] or from more substantial com-
pany commitment [14]. Companies not only contribute to
the development of community-driven OSS, but many well-
known OSS products originate in commercial companies as
well.

Companies may provide a variety of different OSS prod-
ucts. For instance programming languages, operating sys-
tems, and integrated development environments [32]. Pro-
viding such products is not trivial [3], and therein lie the
challenges in maximizing the benefits from an OSS devel-
opment model through for example code contributions [31].

In the following, we will study and analyze what indus-

trial open source entails for companies participating in an
European industry-driven R&D project.

3 Research method

Research setting – This paper reports from research per-
formed in COSI1, a European industrial research and devel-
opment project. The project’s goal is to increase awareness
of industrial usage of distributed collaborative software and
OSS. COSI is organized as a consortium of 13 industrial
and academic partners from 5 countries.

The COSI project runs for 3 years, from November 1
2005 until October 31 2008. It is is organized into work
packages (WPs) covering: community and business mod-
els, development processes, and software architecture. Each
work package has a five-phased research design as outlined
in Figure 1. The industrial partners execute two case ex-
ecutions, related to improvement work in their own orga-
nization. The overall COSI research design is that of a
multi-case study; each industry partners improvement work
is considered a single case study. A short overview of the
phases are given below:

• State of the art: The partners document their state of
the practice of interest, while the academic partners
work on the state of the art of a related area. Based on
this, the companies select their case for the first case
execution.

• 1st case execution: Depending on the company con-
text, this case execution is improving the company
practices on the selected area or preparing an improve-
ment in the second case execution.

• Improvement: Using the results of the first case execu-
tion, the goals for the second case execution are iden-
tified and defined.

• 2nd case execution: Activities to realize the improve-
ment goals of the improvement phase are planned, ex-
ecuted and observed/measured.

• Validation: The case executions are validated; depend-
ing on each partners use of this design, both case exe-
cutions or only a single case execution are validated.

The authors’ role – All of the authors participate in the
COSI project as representatives of academic partners. As
representatives of the project partners, we function as sub-
project managers of one sub-project within the WP on de-
velopment processes, and two sub-projects within the WP

1http://www.itea-cosi.org/

Nov. 1
2005

Aug. 1
2006

May. 1
2007

Oct. 1
2007

Jun. 1
2008

Oct. 31
2008

Phase 1:
State of the art

Phase 2:
1st case execution

Phase 3:
Improvement

Phase 4:
2nd case execution

Phase 5:
Validation

State of the art Improvement Improvement and validation

Case study selection Case study execution Case study execution
Ph
as
es

Ac
tiv
iti
es

Figure 1. COSI research design

on community and business models. As sub-project man-
agers, we have been closely involved with planning for and
reporting from the industry partners’ case studies.

We participate in the COSI project as part of our
individual research agendas as open source researchers
within respectively software engineering and information
systems research. While we participate in working towards
the common goals of the COSI project as project partners,
the project is also as one of several research settings where
we are doing research on open source. In this paper, we
therefore report from the COSI project as open source
researchers.

Materials – The results presented in this paper are based
on an analysis of the industrial partners’ activities during the
three first phases of the COSI R&D project. The analysis is
based on several data sources’.

• Two project deliverables: Each documenting the first
iteration of the case studies and planning for the second
iteration from the WP on communities and business
models and from the WP on development processes
[34, 22].

• We have performed 21 interviews with developers and
managers from 5 industrial partners. We have taped
and transcribed some of the interviews, while making
notes from others.

• Three of the authors have performed 2 workshops with
one industrial partner to facilitate planning for the sec-
ond iteration of case studies. In addition, one of the
authors had a postmortem session with another indus-
trial partner. In both cases, notes were made.

As project participants, we have also spent time talking
to the industrial partners during five project meetings held
in 2006 and 2007 to learn more about their organizations
and case studies.

Data analysis – The analysis focused on exploring how
the industrial partners develop with open source. Through
an iterative process of open and axial coding, we have built
a grounded theory [27] with three categories of ’developing
with open source in an industrial context’ among the COSI
partners, along with a set of sub-categories. These are pre-
sented in Table 3.

4 Developing with OSS in an industrial con-
text

Two of the authors grouped and summarized the COSI
partner reports, describing their activities in the project. To-
gether, all reports [23, 34] illustrate the variety among the
industrial partners’ adoption of open source in industrial
software development. While all COSI partners believe that
they ’are doing open source software development’, they
use open source in different ways and in different contexts,
aiming at different partner specific goals and experiencing
that there exist different success criteria and enablers. As a
consequence of the COSI research design, the partners are
focusing on how to improve their own use of open source
and describe their goals for the improvements activities.
The purpose of this analysis is therefore to empirically illus-
trate how OSS is used in different ways by the COSI partner
companies, and how the way the COSI companies develop
software with open source is shaped by the opportunities
the organization sees in adopting open source in software
development. In the context of these companies, we seek
to illustrate how OSS in industrial software development
is a multifaceted phenomenon shaped by factors internal to
companies and the environment in which they are situated.
As such, we identify three broad categories of developing
with OSS among these companies:

• Developing with OSS tools and practices

• Developing with OSS products

• Developing OSS products

Category Sub-category Data from COSI
Developing with OSS
practices and tools

Inner source • Code sharing to cooperate on joint code across departmental
boundaries
• Adoption of SourceForge and OSS project structure within a
multi-national company to overcome reuse and redevelopment
issues across projects in different parts of the organization

Taking advantage of OSS
tool standardization

• Providing plug-ins for company’s commercial process mod-
eling and improvement product on top of Eclipse

Distributed development • Use of SVN to facilitate software development across differ-
ent networks within a global company
•Use of SVN within a consultancy to facilitate work towards a
source code repository while working in sites with no Internet
access

Developing with OSS
products

Selection and evaluation •Developing schemas for comparing different components for
use in particular projects
• Schema for evaluating the risk of adopting ”infrastructure”
components

Integration • Using OSS as off-the-shelf components to build own prod-
ucts
• Base products upon OSS applications (database, web server,
etc.)
•Wrap OSS components before integration

Outsourcing • Company reports that it is providing a software product
based upon an existing content management system in order to
outsource its own development activities to community mem-
bers well-versed in the product’s code, for a free or as consul-
tants

Developing OSS product Distribution of effort • Recruit community to help develop product as it is too ex-
pensive to develop own product from scratch
• Recruit members of community to contribute to expanding
existing product

Standardization • Establish product as de facto standard
• Standardized tests for product evaluation

Inter-company cooperation • Releasing product as OSS in order to make use of source-
forge.net as a platform for inter-company cooperations
• Product released as OSS to avoid legal issues on ownership
between companies cooperating on a joint product

Differentiating • Using the ”open source” label to differentiate product in a
saturated market

Table 1. Categories of development with OSS in the COSI project

There are variations among the companies, and we give
some examples within each of the three main categories.
These categories, along with examples from the COSI
project are summarized in Table 3. The remainder of this
section is dedicated a more thorough presentation of each of
the three categories with examples from the COSI project.
These examples reflect the companies own use of open
source. The relation between the categories is discussed
later in this paper.

4.1 Developing with OSS tools and prac-
tice

This category covers the use of OSS development tools
and OSS practices [20] in the development activities of the
COSI partner companies. Examples of tools that are used
by the COSI partners are editors, compilers, build environ-
ments and issue trackers. Some partners have also intro-
duced software practices that are commonly associated with
successful OSS communities. The software developed by
partners in this category does not have to be an OSS prod-
uct.

Beyond the issue of tool choice for software develop-
ment and/or use of OSS practices, we found the COSI part-
ners addressing several issues within this category.

Code Sharing – Two of the COSI partner companies ap-
plied tools and practices to improve their development prac-
tices on code sharing [7]. In one case, the company – de-
veloping a software product line – is introducing code shar-
ing between different development teams, where one team
is developing core components and the remaining teams
are integrating these into different products. In doing so,
the company sees two opportunities, making this approach
worthwhile: increased knowledge sharing between the de-
velopment teams and shorter time-to-market. In a second
case, a company adopts SourceForge and OSS project struc-
tures, to provide an infrastructure for code sharing. How-
ever, in this case the focus is on reusing previously devel-
oped software in new projects.

OSS tool standardization – The use of OSS development
tools is widespread and several of the COSI partners use
OSS development tools by default. In addition to software
development, OSS tools can be used as part of consulting
services. One company in the project has built their own
framework for process modeling on top of Eclipse. To-
gether with Eclipse, this tool is used in the company’s con-
sulting services.

Distributed development – Another company in the
COSI project experienced a shift towards geographically
distributed software development internally in the company.

To support this development, a transition towards an OSS
configuration management tool with Internet support was
started. A different case is the support for nomadic software
development that has been introduced by another COSI
partner company. In this case the company wants to support
their developers in case they are without network access,
and make it possible to make changes to local copies of the
code repository.

4.2 Developing with OSS products

Developing with OSS products encompasses develop-
ment activities where OSS products are adopted and in-
tegrated into a software system. An OSS product can –
among others – part of the technical infrastructure of a soft-
ware system, or a component offering some service. Typical
activities for this category are selecting OSS products [6],
maintaining or customizing OSS products [33] as well as
integration issues [21]. The examples from the COSI R&D
project give insight into how these practices are shaped by
company context and opportunities each company pursues
in adapting these practices.

Selection – Several COSI partner companies are address-
ing issues in their selection practices. The variety of is-
sues illustrate how different the partners handle OSS prod-
uct selection based on their environment. These issues in-
volve full lifetime management – managing all stages in-
volved in using an OSS product for its entire lifetime, in-
cluding licenses and the companies available competence
with a product – , risk evaluation [17] – evaluating the risk
related to selecting an OSS product, especially ”infrastruc-
ture” components –, and balancing responsibility – by bal-
ancing the responsibility for the selection of an OSS product
between organization and individual; this aims at preserving
the individuals enthusiasm and initiatives, and reducing the
risk for bad selections through organization control of the
selection.

Integration – There are two concerns among the COSI
partner companies that have an influence on their integra-
tion of OSS products. First, one partner chose to wrap OSS
products before integration. In order to have a stable version
of their own software this partner decided to make it inde-
pendent of the actual OSS products and make it possible to
replace the OSS products. Second, another partner designs
an architecture of OSS products that their own product is
using.

Outsourcing – By providing an OSS content manage-
ment system (CMS) one of the companies in the project is
offering an extendable platform for its users and allow them
to extend the platform with plug-ins. By catering for this

development, the company outsources the development of
plug-ins to the platform users, which in turn use the OSS
platform as a building block in their software. These plug-
ins are important for the products success and much of the
customized functionality the users want is found in these
plug-ins. Some of these plug-ins have also been incorpo-
rated into the final CMS. The company has thereby suc-
ceeded in outsourcing some of the development effort to the
community while the users benefit from the plug-ins devel-
oped by others.

4.3 Developing OSS products

The last category covers the development of OSS prod-
ucts, i.e. releasing the software using an open source license
and making it available for download [9]. Users of this OSS
product are free to use and change the software as long as
the license agreement is not violated. Other typical activi-
ties within this category are promotion of an OSS product
and the establishment of an associated community.

Distribution of effort – Among the opportunities that are
pursued by partners developing OSS product is distribution
of effort. This can be achieved by establishing a commu-
nity of volunteers, and motivating it to submit ideas, bug
fixes and code to the product. In one case, a company es-
tablish a community to recruit partners that have an interest
into the product and are willingly to take on their share of
effort and responsibility to develop a product. Developing
the product alone would be to expensive for the company. In
another case, a company was starting a community of vol-
unteers to receive contributions to expand the product with
new functionality. In addition the community is regarded as
a recruitment opportunity to hire new staff.

Standardization – One project partner has in one of its
products implemented a much used standard for handling,
storing, and transmitting information. To be able to test im-
plementations of such a standard it is necessary to have a
validation tool which checks the conformity of an imple-
mentation. The one who controls the validation tool con-
trols, how the standard should be implemented. To estab-
lish this implementation as a de facto standard and to en-
sure that other implementations are compatible with their
implementation the project partner has developed and re-
leased a validation tool. This tool has been released as open
source to increase the diffusion of the validation tool and
to strengthen the position of their implementation as the de
facto standard.

Inter-company cooperation – Inter-company collabora-
tion on a software product owned by one of the companies
in the collaboration can be difficult. The participants in such

collaboration may not want to give the ownership of their
software to another company and, in fear of lawsuits it may
be difficult to accept code from another company. To avoid
challenges related to intellectual property and legal issues,
one company released their product under an open source li-
cense and created an open source community with the other
partners in the collaboration. This made it easier to get con-
tributions from other companies while avoiding the legal
conflicts related to accepting them.

Differentiating – In a saturated marked with many com-
petitors, a software provider may use the open source label
to differentiate itself and its products from the competitors
and their products. There are several possible advantages
of having a product licensed as an OSS product. Some ex-
amples are; community contributions may increase product
quality, the product is available without any license fees,
and the fact that OSS products give the customers vendor
freedom and enable them to get support in case the provider
goes out of business. These and other advantages can be
used to make the company and their product stand out.

5 Conclusions

The above analysis of development with open source in
the COSI R&D project shows that while there is a shift to-
wards a more commercially viable form of OSS among the
partner companies. However, the nature and form of this
shift is not given. How they adopt OSS in their software
development is shaped by factors internal to the companies,
as well as the environment they are part of.

The implication of this is as follows. Rather than seeing
companies’ adoption of OSS in software development tak-
ing a singular form it needs to retain its multifaceted form in
order for OSS to remain a commercially viable alternative.
Companies must adapt open source to their particular orga-
nizational context and environments. However, providing
three categories for developing with open source in an in-
dustrial context, can contribute to make practitioners more
aware of the multifaceted nature of the phenomena. This
awareness may help them to understand how they better can
utilize open source in their organization.

Our analysis identifies three distinct categories for devel-
oping with open source in an industry context, based on our
experience from the COSI project. The different categories
show how OSS is used in different ways and for different
purposes. The way OSS used by the companies is thus also
shaped by the opportunities that are perceived and pursued.
Other classifications of how OSS is used in an industrial
context exist and highlight other aspects than the one high-
lighted by this paper. One such example uses the following
three categories: using existing OSS, contributing to exist-

ing OSS projects, and releasing proprietary software under
an OSS license [1].

The categories identified by this work are not exclusive
in the way that a company only uses OSS in one way. Based
on our experience from the COSI project, we find it likely
that companies that develop with OSS products also will use
OSS tools and practices, but not necessarily vice versa. The
same holds for companies developing OSS products, where
it is most likely that they also develop with OSS products,
tools and practices. While having performed the first two
steps of grounded theory, we have not performed the third
step, selective coding [27]. The purpose of selective coding
is to refine the developed theory. Doing selective coding
to establish the relationship between our categories will be
future work.

Our sample is a convenience sample of the 13 compa-
nies in the COSI project. The theory we build is grounded
in and limited to this sample. There is no saturation of sub-
categories and new aspects of using open source in an indus-
trial context will emerge both from our sample and when we
expand our sample of companies in our future work.

However, our results support for our claim that open
source is not a singular phenomena and that companies have
to match the fluidity of the term with the activities of their
organization to utilize open source in their organizations.

References

[1] O. Alexy and J. Henkel. Promoting the penguin: Who is
advocating open source software in commercial settings? In
G. T. Solomon, editor, Proceedings of the Sixty-Sixth Annual
Meeting of the Academy of Management (CD), 2007.

[2] B. Behlendorf. Open Source as a Business Strategy. In
C. DiBona, S. Ockman, and M. Stone, editors, Open
Sources: Voices from the Open Source Revolution, pages
149–170. O’Reilly & Associates, Sebastapol, CA, 1999.

[3] W.-G. Bleek, M. Finck, and B. Pape. Towards an Open
Source Development Process - Evaluating the Migration to
an Open Source Project by Means of the Capability Maturity
Model. In M. Scotto and G. Succi, editors, Proceedings of
the First International Conference on Open Source Systems
(OSS’2005), pages 37–43, 2005.

[4] A. Bonaccorsi, S. Giannangeli, and C. Rossi. Entry Strate-
gies Under Competing Standards: Hybrid Business Models
in the Open Source Software Industry. Management Science,
52(7):1085–1098, July 2006.

[5] A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi. Busi-
ness Firms’ Engagement in Community Projects. Empiri-
cal Evidence and Further Developments of the Research.
In Proceedings of the First International Workshop on
Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007), 2007.

[6] D. Cruz, T. Wieland, and A. Ziegler. Evaluation Criteria
for Free/Open Source Software Products Based on Project
Analysis. Software Process: Improvement and Practice,
11(2):107–122, March-April 2006.

[7] J. Dinkelacker, P. K. Garg, R. Miller, and D. Nelson. Pro-
gressive Open Source. In Proceedings of the 24rd Inter-
national Conference on Software Engineering (ICSE’2002),
2002.

[8] M. Fink. The Business and Economics of Linux and Open
Source. Prentice Hall, New Jersey, 2002.

[9] B. Fitzgerald. The Transformation of Open Source Soft-
ware. MIS Quarterly, 30(2):587–598, 2006.

[10] B. Fitzgerald and T. Kenny. Developing an Information Sys-
tems Infrastructure with Open Source Software. IEEE Soft-
ware, 21(1):50–55, January-February 2004.

[11] C. Gacek and B. Arief. The Many Meanings of Open
Source. IEEE Software, 21(1):34–40, January-February
2004.

[12] Ø. Hauge, C.-F. Sørensen, and R. Conradi. Adoption
of Open Source in the Software Industry. In B. Russo,
E. Damiani, S. A. Hissam, B. Lundell, and G. Succi, edi-
tors, Open Source Development Communities and Quality
Working Group 2.3 on Open Source Software, volume 275
of IFIP International Federation for Information Process-
ing, pages 211–222. Springer, 2008.

[13] F. Hecker. Setting Up Shop: The Business of Open-Source
Software. IEEE Software, 16(1):45–51, January-February
1999.

[14] J. Henkel. Selective Revealing in Open Innovation Pro-
cesses: The Case of Embedded Linux. Research Policy,
35(7):953–969, September 2006.

[15] S. Krishnamurthy. An Analysis of Open Source Business
Models. In J. Feller, B. Fitzgerald, S. A. Hissam, and K. R.
Lakhani, editors, Perspectives on Free and Open Source
Software, pages 279–296. MIT Press, Cambridge, Mas-
sachusetts, 2005.

[16] K. R. Lakhani and R. G. Wolf. Why hackers do what
they do: Underdstanding motivation and effort in free/open
source software projects. In J. Feller, B. Fitzgerald, S. A.
Hissam, and K. R. Lakhani, editors, Perspectives on Free
and Open Source Software. MIT Press, 2005.

[17] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N. Slyn-
gstad, and M. Morisio. A State-of-the-Practice Survey on
Risk Management in Development with Off-The-Shelf Soft-
ware Component. IEEE Transaction on Software Engineer-
ing, 34(2):271–286, February 2008.

[18] B. Lundell, B. Lings, and E. Lindqvist. Perceptions and Up-
take of Open Source in Swedish Organisations. In E. Dami-
ani, B. Fitzgerald, W. Scacchi, M. Scotto, and G. Succi, edi-
tors, Open Source Systems, IFIP Working Group 2.13 Foun-
dation on Open Source Software, volume 2003, pages 155–
163. Springer, 2006.

[19] T. Madanmohan and R. De’. Open Source Reuse in Com-
mercial Firms. IEEE Software, 21(6):62–69, November-
December 2004.

[20] K. Martin and B. Hoffman. An Open Source Approach to
Developing Software in a Small Organization. IEEE Soft-
ware, 24(1):46–53, January/February 2007.

[21] Z. Obrenovic and D. Gaševic. Open Source Software: All
You Do Is Put It Together. IEEE Software, 24(5):86–95,
September-October 2007.

[22] T. Østerlie. Improved community models. Deliverable
D1.2.2. To be made available for download from http:

//www.itea-cosi.org/modules/wikimod/
index.php?page=ProjectDeliverables, Octo-
ber 2007.

[23] T. Østerlie and L. Jaccheri. A Critical Review of Soft-
ware Engineering Research on Open Source Software De-
velopment. In Proceeding of the 2nd AIS SIGSAND Euro-
pean Symposium on Systems Analysis and Design, Gdansk,
Poland, June 5, 2007, 2007.

[24] B. Perens. The Open Source Definition. In C. DiBona,
S. Ockman, and M. Stone, editors, Open Sources: Voices
from the Open Source Revolution. O’Reilly & Associates,
Sebastapol, CA, 1999.

[25] E. Raymond. The Cathedral & The Bazar - Musings On
Linux And Open Source By An Accidental Revolutionary.
O’Reilly, revised edition edition, 2001.

[26] W. Scacchi. Free/Open Source Software Development: Re-
cent Research Results and Methods. In M. V. Zelkowitz,
editor, Advances in Computers, volume 69, pages 243–269.
Academic Press, 2007.

[27] A. C. Strauss and J. M. Corbin. Basics of Qualita-
tive Research: Techniques and Procedures for Developing
Grounded Theory (Second Edition (6 Nov 1998)). Sage Pub-
lications, Inc, 1998.

[28] E. B. Swanson and N. C. Ramiler. The Organizing Vision
in Information Systems Innovation. Organization Science,
8(5):458–474, September - October 1997.

[29] A. M. Szczepanske, M. Bergquist, and J. Ljungberg. High
Noon at OS Corral: Duels and Shoot-Outs in Open Source
Discourse. In J. Feller, B. Fitzgerald, S. A. Hissam, and
K. R. Lakhani, editors, Perspectives on Free and Open
Source Software, pages 431–446. MIT Press, Cambridge,
Massachusetts, 2005.

[30] G. von Krogh and E. von Hippel. The Promise of Research
on Open Source Software. Management Science, 52(7):975–
983, July 2006.

[31] A. I. Wasserman and E. Capra. Evaluating Software En-
gineering Processes in Commercial and Community Open
Source Projects. In Proceedings of the First International
Workshop on Emerging Trends in FLOSS Research and De-
velopment (FLOSS’07: ICSE Workshops 2007), page 5,
Washington, DC, USA, 2007. IEEE Computer Society.

[32] J. West and S. O’Mahony. Contrasting Community Build-
ing in Sponsored and Community Founded Open Source
Projects. In Proceedings of the 38th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’05), page
196c, 2005.

[33] L. Yu. Indirectly predicting the maintenance effort of
open-source software: Research Articles. Journal of Soft-
ware Maintenance and Evolution: Research and Practice,
18(5):311–332, 2006.

[34] S. Ziemer and T. Østerlie. Improved heteroge-
neous process models, Deliverable D2.1.3. To
be made available for download from http:
//www.itea-cosi.org/modules/wikimod/
index.php?page=ProjectDeliverables, Octo-
ber 2007.

PAPER 4
Øyvind Hauge, Thomas Østerlie, Carl-Fredrik Sørensen, and Marinela Gerea. An Em-
pirical Study on Selection of Open Source Software - Preliminary Results. In Andrea
Capiluppi and Gregorio Robles, editors, Proceedings of the ICSE 2009 Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and Development (FLOSS
2009), May 18th, Vancouver, Canada, pages 42-47, 2009. IEEE Computer Society.

135

An Empirical Study on Selection of Open Source Software - Preliminary Results

Øyvind Hauge, Thomas Østerlie, Carl-Fredrik Sørensen, and Marinela Gerea
Norwegian University of Technology and Science

{oyvind.hauge, thomas.osterlie, carl.fredrik.sorensen, marinela.gerea}@idi.ntnu.no

Abstract

Growing attention on component-based development has
inspired the development of several normative methods for
selection of software components. Despite these efforts, em-
pirical studies show only minor adoption of such methods.
To understand how research can contribute to improving
the selection of components we interviewed developers from
16 Norwegian software companies which integrate Open
Source Software (OSS) components into their systems. We
find that the selection of OSS components has a situational
nature where project specific properties significantly con-
strain the selection’s outcome, and that developers employ
a ’first fit’ rather than ’best fit’ approach when selecting
OSS components. This could explain the limited adoption
of normative selection approaches and general evaluation
schemas. Moreover, it motivates a shift from developing
such methods and schemas towards understanding the situ-
ational nature of software selection.

1 Introduction

With an increased attention on component-based devel-
opment the past decades, companies have widely adopted
open source software (OSS). With the view that using the
right software is critical to project success [31], software
engineering researchers have focused their attention on de-
veloping normative methods for selecting OSS components
[1, 20, 24, 27]. While successful applications of such
methods have been reported, research shows that compo-
nent selection in practice is ad hoc and developer depen-
dent [16, 19, 22, 28]. Beyond sweeping statements about
the prevalence of ad hoc and developer dependent selection
methods, little is known about what software developers ac-
tually do when selecting OSS components.

To better understand if and in what ways researchers may
contribute to improving how developers select OSS compo-
nents in practice, we have conducted interviews with devel-
opers in 16 Norwegian software companies integrating OSS
into their products. Based on these interviews we find that:

• Project specific constraints are much more decisive in the
selection of OSS components than the general evaluation
criteria suggested by existing evaluation schema.

• Software developers employ the principle of ’first fit’
as the principle of evaluation, whereas existing research
on evaluation and selection methods employs ’best fit’.
Rather than identifying a set of components to evaluate,
software developers evaluate individual OSS components
sequentially. Knowledge gained in rejecting one compo-
nent is fed back as new evaluation criteria in the evalua-
tion of the next.
As such, we contribute to existing research on OSS com-

ponent evaluation in practice with an understanding of the
situational and contingent nature of OSS selection. Our
contribution motivates a shift in research from developing
generalized schemas for OSS component evaluation, to-
wards an appreciation of the situational and contingent na-
ture of software evaluation.

2 Related Literature

2.1 Normative Selection Methods

Several initiatives have proposed a variety of normative
approaches suggesting how selection of components-off-
the-shelf (COTS) should be done. Most of these methods
focus on identifying the requirements to the components,
defining evaluation criteria based on these requirements,
and comparing candidate components using weighted eval-
uation matrices. An overview of the eighteen most signifi-
cant COTS selection methods aggregates these approaches
into a five-step general COTS selection process [20]. This
process has a few properties which are worth noticing; the
requirements are expected to be defined and weighted up
front, it is a ’best fit’ formal or mathematical competition
between several likely candidate components, and the iden-
tification of these components is basically ignored.

The availability of the Internet as a marketplace for com-
ponents and the wide adoption of OSS have introduced new
challenges for selection of software components. Source-
Forge, other general and domain specific software repos-

itories, different software foundations and individual OSS
providers offer an abundance of OSS components. Getting
an overview of these resources is a challenging task. More-
over, OSS component are not usually backed by marketing
campaigns, and they are not pushed towards software de-
velopers by a provider. This makes identifying and evalu-
ating OSS components even more challenging. As a reac-
tion to these challenges and as a continuance of the research
done on COTS, several methods, frameworks and evalua-
tion schema for OSS have been put forward like the Open
Business Readiness Rating (OpenBRR), Open Source Ma-
turity Model, Qualification and Selection of Open Source
(QSOS) and for instance [4, 6, 7, 17, 27]. These norma-
tive approaches still emphasize defining and weighting a
set of requirements before comparing two or more compo-
nents using formal evaluation schemas consisting of exten-
sive lists of reusable evaluation criteria.

Only a limited1 number of empirical studies on selec-
tion of OSS components have been performed [16]. How-
ever, both studies on COTS and OSS conclude that even
though there are successful applications of normative selec-
tion methods for both COTS and OSS, such methods are
rarely applied in practice [16, 19, 22, 28]. Moreover, these
studies conclude that practitioners use ad hoc, manual, and
developer dependent methods for selection of components.
These ad hoc methods rarely take advantage of pre-defined
selection processes and formal mathematical evaluations.

The literature presents various possible explanations for
this, none of which are particularly satisfying. First, the lit-
erature mentions problems with the methods like missing
operational descriptions on how to use them [17], overlap-
ping or missing evaluation criteria [7], missing match be-
tween requirements and evaluation criteria [14], and miss-
ing context sensitivity [7]. Second, it mentions that prac-
titioners think it is impractical to perform complete evalu-
ations in terms of time and cost [10]. Third, it mentions
issues related to the situation in which the selection is per-
formed. These are issues like missing information needed to
satisfy complex evaluation criteria [3], availability of only
one or a few candidate components, influence of a strong
relationship with one provider, and selection of compo-
nents during all stages of a project rather than just a specific
component-selection stage [16]. Cabano et al. acknowledge
the need for methods which are sensitive to the context in
which the selection is performed but address this with an
approach similar to existing methods [4].

2.2 Identification and Evaluation of OSS

The way developers identify components and develop
evaluation criteria influences the outcome of a selection pro-

1We ignore one frequently cited paper due to the paper’s controversy
related to copyright infringement.

cess. Empirical studies on selection of OSS are as men-
tioned generally missing and it is therefore a bit unclear
what the manual selection methods comprise. Conferences,
literature reviews, training, and communication with ven-
dors are mentioned as common ways of identifying com-
mercial components [13, 29]. This is relevant for OSS
but much has changed with the availability of the Internet
as a marketplace for components. Consequently, Internet
searches are described as one of the most important methods
for identifying OSS components [5, 22]. These searches are
primarily executed through search engines but also through
project hosting sites like SourceForge, code specific search
engines like Google Code and to some extent social tagging
sites like delicious [30]. Familiarity and previous experi-
ence is next to Internet searches mentioned as an important
source of components [2, 15].

The evaluation of OSS components and the development
of evaluation criteria have also attracted limited attention
in empirical studies. However, basic developer dependent
rules of thumbs like assessing the vitality of community, lis-
ten to the experience of others, and search for information in
mailing lists, forums and so on, are observed [19]. Respon-
dents in another study said that wide adoption of an OSS
component could be a substitute for run-time tests [18].

3 Method

The setting of this study is the Norwegian software in-
dustry which consists of about 13000 active companies.
Most of these are small, and only 1300 of them have more
than five employees [26]. In 2005, this industry had about
36 500 employees and a turnover of more than e6 billion
[26]. OSS is widely used and close to 50% of the Norwe-
gian software industry integrate OSS components into their
software products [12].

The interviews included here were conducted in the con-
text of two Masters Theses focusing on selection of OSS
components [9] and the use of OSS in the software indus-
try [11]. The interviewees were selected from consultancy
companies, software houses, or internal software develop-
ment departments in large organizations. Table 1 gives an
overview of the respondents’ employers. However, Greek
letters are used to anonymize the company names. The first
thesis contains 45 minutes long interviews with one devel-
oper from all of the 16 companies in Table 1 but Alpha
and Lambda. The second thesis contains two hour long
interviews with two developers in the following compa-
nies Alpha, Epsilon, and Kappa, and with one developer
in Lambda. The short interviews were mainly conducted by
phone while the longer ones were done face to face.

All but one of the interviews were recorded and tran-
scribed. The data was extensively analyzed through listen-
ing to the recordings, reading through the transcriptions and

No. of Consultancy Software Internal
employees company house development
< 10 Kappa Gamma, Theta
10 to 24 Eta Delta
25 to 49 Upsilon Iota
50 to 99 Beta,

Lambda
Epsilon Sigma

> 100 Alpha, Rho,
Tau, Xi

Zeta

Table 1. The Respondents’ Employers

field notes, and coding the material according to topics.

4 Results

4.1 The Use of Normative Methods

The use of normative selection methods as defined by the
research community like OpenBRR, QSOS and so on was
totally absent in our sample. The development was ad hoc
and informal developer dependent selection was the norm
throughout all of the companies. As one developer respon-
dent: ”I have not read about any formal processes. It [se-
lection] is done in an ad hoc manner” [Iota]. The infor-
mal selection was primarily based on previous experience,
monitoring of the OSS community, Internet searches and
recommendations from people in the developers’ social and
on-line networks.

We did, however, observe some use of company specific
processes related to important components within some of
the larger companies in the sample. These companies had
formalized a few activities and evaluation criteria which
should be followed and one developer said that ”We have
a formal process in [Xi] when integrating big components
because we are developing software which can used in other
parts of [Xi]” [Xi]. A few companies had created their own
selection processes but these were in general quite informal
and as put by another developer ”We have a process for se-
lection of OSS components but it is not a formal one with a
specific name” [Upsilon].

4.2 Identification of OSS Components

The experience the project members have with compo-
nents is perhaps the most important, decisive and commonly
used source of OSS components. If a project member has
experience with a suitable component, they often leapfrog
the whole selection process and starts using the component
right away. ”It’s usually a matter of using people’s experi-
ence and knowledge about OSS components” [Beta].

Monitoring the OSS community is another way of
pro-actively identifying components and many developers
maintain an awareness of available components by keeping
an eye on the OSS community. ”We follow a lot of forums,
news groups and stuff like that to monitor the areas of inter-
est” [Upsilon]. In addition to forums and news groups they
subscribe to mailing lists and news letters, and read OSS
related news sites. The awareness created by monitoring
the OSS community is useful when they need a component.
The monitoring is often done as part of the developer’s own
interest but also as part of the company strategy. ”A frame-
work team actually does this job [selection of components].
They are Java developers that are up to date in the Java
community and know what is available” [Tau].

Unstructured searches, primarily on the Internet, is prob-
ably the most common way of finding components if no one
in the project has any experience with or knowledge of any
components, one developer said that ”We google what we
need or we go to some repository” [Theta]. Components
may be identified through search engines like Google, gen-
eral software repositories like SourceForge and language
or domain specific repositories and sites like CPAN, The-
ServerSide and so on. Developers use such searches par-
ticularly when they have specific problems which need a
particular kind of functionality.

Recommendations from a developer’s social network is
also an important source for identification of OSS com-
ponents. Moreover, recommendations may also be found
through the Internet as developers frequently read refer-
ences and experience reports from developers with similar
needs or particular experience with a component. One re-
spondent said that ”We select components people are talk-
ing about, by reading articles on certain web sites” [Beta].
It is also common to identify components through seeing
them in use somewhere else, for instance in another com-
mercial or OSS product. ”A major project like JBOSS may
be using for instance a database like Hypersonic ... so we
know that it is a good recommendation” [Delta]. A devel-
oper may discover such components through monitoring the
OSS community or by investigating which components spe-
cific software systems consist of.

4.3 Evaluation of OSS Components

The open nature of OSS communities allows simple
evaluation of an OSS component’s web site, documentation,
license, release frequency, number of bugs, mailing lists, fo-
rums and so on. This can be done in a relatively short time
and it educates the developer on the component and its ca-
pabilities but also on the problem domain in general.

Despite the fact that information on new components is
easily available, previous experience is also the most promi-
nent source of confidence in a component. It is also the first

place developers look when they wants to evaluate a com-
ponent. As one developer respondent, ”If you have used
the tool or the component before ... you know it works”
[Gamma]. If developers have positive experience with a
component they will easily select it again. No extensive se-
lection process is needed, no training is necessary and no
new technology has to be adopted. ”If we have a compo-
nent we try to stick to this one until we decide that this is
not good enough anymore” [Tau].

The experience other people have with a specific type
of components gives clear indications of the capabilities of
the available components. Developers are therefore actively
searching for and reviewing feedback from people in similar
situations. The experience of other people can help identi-
fying components and contributing to building confidence
in a specific component. These references are often found
on the Internet through general search engines, the commu-
nities of the specific OSS components, domain or technol-
ogy specific sites, and technology blogs. By reading and
listening to the experiences others have it is often quite easy
to decide whether to reject a component, continue evalu-
ating it, or even start using it. ”If we can say, by looking
at the Internet or the references that ...this is a component
that is used in other places ... we do not need to have ...
a very serious evaluation” [Tau]. However, most compa-
nies do not want to be the first one to try a new component.
One developer said that ”If there is very little information
about this component if we cannot find it used anywhere
else ... then we are quite skeptical that this is good for us
in the long run” [Tau]. Companies prefer respected compo-
nents with a proven track record and they select components
which have been successfully applied in other commercial
or OSS projects. ”It is important for us that we find compo-
nents that have a reputation” [Kappa].

The easiest way to gain experience with a component
is of course to download it and create a small prototype.
Prototyping is therefore the most common way to test and
get acquainted with new components. ”If we do not know
the component beforehand we just try to make a prototype”
[Beta]. A test integration can expose the component and
enable the developer to assess whether the component pro-
vides the necessary functionality and performs as expected.

5 Discussion

5.1 The Situational Nature of Selection

The previous section describes how software developers
identify OSS components by using their experience, mon-
itoring the OSS community, reviewing recommendations,
and performing Internet searches. It also describes how de-
velopers evaluate OSS components through using their ex-
perience, reviewing information available on the Internet,

and developing prototypes. Based on these observations,
we highlight two aspects of OSS selection which have a
fundamental influence on the adoption of both normative
selection methods and general evaluation schemas used in
formal comparison of components; (1) the situated nature
of OSS selection and (2) how developers employ ’first fit’
rather than ’best fit’ selection of OSS components.

The situational nature [25] of OSS selection is evident
as selection of OSS components is always performed in
a situation consiting of a developer and a customer, their
strategies, technologies, infrastructures and more than any-
thing their employees. These elements create a situation
in which the selection is performed and they significantly
constraints the outcome of the selection. Component selec-
tion was in most cases left up to the individual developers
who searched for and evaluated components using their dis-
tinct experience, skills, and preferences. These developers
work within companies which often focus on one or a few
technologies, and with customers which have a certain in-
frastructure and personnel skilled to manage this infrastruc-
ture. Furthermore, there may be project specific properties
like an existing architecture, budget constraints, and con-
straints on which OSS licenses which could be used. All
these properties, which are specific to the situation in which
the selection is performed, significantly restrict the solution
space and thereby the number of possible OSS components.

The ’first fit’ selection is seen when developers start
searching for suitable components based on their experi-
ence, and social and online networks. When identifying an
OSS component which could solve the problem it is very
easy for them to download and test it through a prototype. If
the component solves the developers’ current problem they
would normally not see any need to look for other compo-
nents. The developers then select the first component which
solves the problem in a satisfactory way making the selec-
tion a ’first fit’ rather than a ’best fit’. If the first component
does not solve the problem they sequentially broaden the
search to identify new components. At the same time as the
identification and evaluation of new components continues,
the developers educate themselves on the problem they are
trying to solve. Knowledge gained from the identification
and evaluation of one component is fed into the develop-
ment of evaluation criteria for the next component.

These two observations have implications for the use
of normative selection methods and general evaluation
schemas, we believe the situated nature of OSS selection
and the ’first fit’ rather than ’best fit’ selection explains why
such selection methods and evaluation schemas see only
limited adoption. First, the properties specific to the situ-
ation of the individual development projects are far more
important than the evaluation criteria proposed in general
OSS evaluation schemas. The fact that a few project specific
constraints are so much more decisive in the selection of

OSS components, makes using general pre-defined evalua-
tion schemas impractical at best. The need for greater sen-
sitivity to the situation where the selection is taking place
is also observed by others but not necessarily reflected in
proposed evaluation methods [7]. Second, the identification
and evaluation of components is actually done sequentially
in short iterations. The criteria used to evaluate OSS com-
ponents are gradually developed during the identification
and evaluation of components, rather than before the selec-
tion starts. This implies that it is difficult to use normative
methods because many of these methods suggest that the
final evaluation criteria should be defined and weighted be-
fore the selection starts.

Similar observations about both the iterative nature of
development of evaluation criteria [21] and the use of ad
hoc selection processes [15, 19] have been made by others.
It is therefore quite surprising that the research community
has reflected so little over the influence this has on software
selection and the use of normative selection methods and
general evaluation schemas.

5.2 Limitations and Future Work

This research has mainly focused on small companies
and the selection of components which should fit within
a technological framework. Software companies may use
other approaches when evaluating and selecting the fun-
damental technological platform(s) on which they want to
base their business. While the selection of fundamental
technology is important, companies select the components
which should be integrated into this technology much more
frequently. To aid software companies it is therefore valu-
able to understand the choices they frequently make and the
rational behind these decisions.

We observed some signs of process formality related to
important components in some of the companies. None of
the software systems which were discussed in the interviews
were life or mission critical systems. We could expect that
the criticality of the requirements would increase in such
situations and thus also the rigorousness of the process.

The interviews included in this study have been per-
formed in different contexts with slightly different purposes
and it is therefore difficult to discuss the validity of these
results. Nevertheless, the observations reported here are in
line with other empirical studies on the selection of OSS and
COTS [5, 15, 16, 19, 30]. Even though this study focused
on the selection of OSS the results may also be valid for
COTS selection. However, this is input for future studies.

To verify the empirical results and to investigate some
of the issues discussed above, we are performing further
studies on how software developer identify and select OSS
components, the resources they use while doing this, and
the availability of relevant information in the Internet [2].

While the respondents reported only minor problems
with selection of OSS components, ad hoc selection has
drawbacks. These drawback should be further explored in
light of for instance decision making theory to better under-
stand the trade-offs in ad hoc selection.

6 Conclusion

Normative selection methods and general evaluation
schemas may be valuable to increasing practitioners’ aware-
ness of issues related to OSS components and their com-
munities. However, neither have seen significant adoption.
We suggest that this is caused by two key characteristics of
how developers identify, evaluate and select components.
First, component selection is always taking place in a sit-
uation where constraints specific to this sitation are much
more important than the criteria proposed in general eval-
uation schemas. Second, software developers employ the
principle of ’first fit’ rather than ’best fit’ which is proposed
by most normative selection methods. Software develop-
ers evaluate individual OSS components sequentially rather
than first identifying a set of components before evaluat-
ing them. New or refined evaluation criteria are added as
knowledge gained in evaluating one component, is fed back
into the evaluation.

Researchers should therefore focus on understanding the
situated nature of the OSS selection and the development
of evaluation criteria which are sensitive to the situation,
rather than continue the development of normative selection
methods and general evaluation schemas meant to fit any
situation. To succeed at this it is important to understand
how practitioners actually select OSS components.

OSS providers could make information about their com-
ponents like feature lists, future plans, known issues and
dependencies, documentation, tutorials, release cycle and
so on easily available to help software developers in the se-
lection of OSS components. Furthermore, OSS providers
should encourage their users to share their experience, and
facilitate this sharing. Simple measures like this would sim-
plify the evaluation of their software and it would most
likely contribute to increasing the adoption of OSS.

References

[1] C. A. Ardagna, E. Damiani, and F. Frati. FOCSE: An OWA-
based Evaluation Framework for OS Adoption in Critical
Environments. In Feller et al. [8], pages 3–16.

[2] C. P. Ayala, Ø. Hauge, R. Conradi, X. Franch, J. Li, and
K. S. Velle. Challenges of the Open Source Component
Marketplace in the Industry. In FORTHCOMING OSS2009
Proceedings of the Fifth International Conference on Open
Source Systems. Springer, 2009.

[3] M. F. Bertoa, J. M. Troya, and A. Vallecillo. A Survey on
the Quality Information Provided by Software Component

Vendors. In QAOOSE’03 Proceedings of the 7th ECOOP
Workshop on Quantitative Approaches in Object-Oriented
Software Engineering, pages 25–30, 2003.

[4] M. Cabano, C. Monti, and G. Piancastelli. Context-
Dependent Evaluation Methodology for Open Source Soft-
ware. In Feller et al. [8], pages 301–306.

[5] W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, and C. Liu. An Em-
pirical Study on Software Development with Open Source
Components in the Chinese Software Industry. Software
Process: Improvement and Practice, 13(1):89–100, 2008.

[6] D. Cruz, T. Wieland, and A. Ziegler. Evaluation Criteria
for Free/Open Source Software Products Based on Project
Analysis. Software Process: Improvement and Practice,
11(2):107–122, 2006.

[7] J.-C. Deprez and S. Alexandre. Comparing Assessment
Methodologies for Free/Open Source Software: OpenBRR
and QSOS. In PROFES’2008 Proceedings of the 9th Inter-
national Conference on Product-Focused Software Process
Improvement, volume 5089/2008 of Lecture Notes in Com-
puter Science, pages 189–203. Springer, June 2008.

[8] J. Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti, editors.
Open Source Development, Adoption and Innovation IFIP
Working Group 2.13 on Open Source Software, June 11-14,
2007, Limerick, Ireland, volume 234 of IFIP International
Federation for Information Processing. Springer, 2007.

[9] M. Gerea. Selection of Open Source Components - A Qual-
itative Survey in Norwegian IT Industry. Master’s thesis,
Norwegian University of Science and Technology NTNU,
2007.

[10] I. Gorton, A. Liu, and P. Brebner. Rigorous Evaluation of
COTS Middleware Technology. Computer, 36(3):50–55,
2003.

[11] Ø. Hauge. Open Source Software in Software Intensive In-
dustry - A Survey. Master’s thesis, Norwegian University of
Science and Technology NTNU, 2007.

[12] Ø. Hauge, C.-F. Sørensen, and R. Conradi. Adoption of
Open Source in the Software Industry. In Russo et al. [23],
pages 211–222.

[13] D. Kunda and L. Brooks. Identifying and Classifying Pro-
cesses (traditional and soft factors) that Support COTS Com-
ponent Selection: a Case Study. European Journal of Infor-
mation Systems, 9(4):226–234, Dec. 2000.

[14] G. A. Lewis and E. J. Morris. From System Requirements
to COTS Evaluation Criteria. In ICCBSS 2004 Proceedings
of the Third International Conference on COTS-Based Soft-
ware Systems, volume Volume 2959/2004 of Lecture Notes
in Computer Science, pages 159–168. Springer, 2004.

[15] J. Li, F. O. Bjørnson, R. Conradi, and V. B. Kampenes. An
Empirical Study of Variations in COTS-based Software De-
velopment Processes in Norwegian IT Industry. In MET-
RICS ’04: Proceedings of the Software Metrics, 10th Inter-
national Symposium, pages 72–83, Washington, DC, USA,
2004. IEEE Computer Society.

[16] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N. Slyn-
gstad, and M. Morisio. Development with off-the-shelf com-
ponents: 10 facts. IEEE Software, 26(2):2–9, 2009.

[17] A. Majchrowski and J.-C. Deprez. An Operational Ap-
proach for Selecting Open Source Components in a Soft-
ware Development Project. In EuroSPI’2008 Proceedings

of the 15th European Conference on Software Process Im-
provement, volume 16 of Communications in Computer and
Information Science, pages 176–188. Springer, Sept. 2008.

[18] P. Maki-Asiala and M. Matinlassi. Quality Assurance of
Open Source Components: Integrator Point of View. In
COMPSAC ’06 Proceedings of the 30th Annual Interna-
tional Computer Software and Applications Conference,
volume 2, pages 189–194, Los Alamitos, CA 90720-1314,
2006. IEEE Comuter Society.

[19] J. Merilinna and M. Matinlassi. State of the Art and Prac-
tice of OpenSource Component Integration. In EUROMI-
CRO’06 Proceedings of the 32nd EUROMICRO Conference
on Software Engineering and Advanced Applications, pages
170–177, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[20] A. Mohamed, G. Ruhe, and A. Eberlein. COTS Selection:
Past, Present, and Future. In ECBS ’07 Proceedings of the
14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, pages 103–
114. IEEE Computer Society, Mar. 2007.

[21] C. Ncube and N. A. M. Maiden. Procurement-oriented re-
quirements engineering method for the component-based
systems engineering development paradigm. In Develop-
ment Paradigm. International Workshop on Component-
Based Software Engineering, pages 1–12, 1999.

[22] J. S. Norris. Mission-critical Development with Open
Source Software: Lessons Learned. IEEE Software,
21(1):42–49, 2004.

[23] B. Russo, E. Damiani, S. A. Hissam, B. Lundell, and
G. Succi, editors. Open Source Development Communities
and Quality IFIP Working Group 2.13 on Open Source Soft-
ware September 7-10, 2008, Milano, Italy, volume 275 of
IFIP International Federation for Information Processing.
Springer, 2008.

[24] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos.
The SQO-OSS Quality Model: Measurement Based Open
Source Software Evaluation . In Russo et al. [23], pages
237–248.

[25] L. A. Schuman. Plans and Situated Actions : The problem
of human-machine communication. Cambridge University
Press, 1987.

[26] SSB. StatBank Norway, 2007. Online, http://
statbank.ssb.no/statistikkbanken/, accessed
2007-08-01.

[27] D. Taibi, L. Lavazza, and S. Morasca. OpenBQR: a frame-
work for the assessment of OSS. In Feller et al. [8], pages
173–186.

[28] M. Torchiano and M. Morisio. Overlooked Aspects of
COTS-Based Development. IEEE Software, 21(2):88–93,
2004.

[29] V. Tran and D.-B. Liu. A procurement-centric Model for En-
gineering Component-based Software Systems. In Proceed-
ings of the Fifth International Symposium on Assessment of
Software Tools and Technologies, pages 70–79, June 1997.

[30] M. Umarji, S. E. Sim, and C. Lopes. Archetypal Internet-
Scale Source Code Searching. In Russo et al. [23], pages
257–263.

[31] H. Wang and C. Wang. Open Source Software Adoption: A
Status Report. IEEE Software, 18(2):90–95, 2001.

PAPER 5

Claudia P. Ayala, Øyvind Hauge, Reidar Conradi, Xavier Franch, Jingyue Li, and Ketil
Sandanger Velle. Challenges of the Open Source Component Marketplace in the Indus-
try. In Cornelia Boldyreff, Kevin Crowston, Björn Lundell, and Anthony I. Wasserman,
editors, Proceedings of the 5th IFIP WG 2.13 International Conference on Open Source
Systems (OSS2009) - Open Source Ecosystems: Diverse Communities, June 3-6, Skövde,
Sweden, volume 299/2009 of IFIP, pages 213-224, 2009. Springer

143

*Her work was carried out during the tenure of an ERCIM "Alain Bensoussan" Fellowship Pro-

gramme.

Challenges of the Open Source Component
Marketplace in the Industry

Claudia Ayala1,2,*, Øyvind Hauge1, Reidar Conradi1, Xavier Franch2, Jingyue
Li1 and Ketil Sandanger Velle1

1Norwegian University of Science and Technology (NTNU)

{oyvind.hauge, reidar.conradi, jingyue.li, ketilsan}@idi.ntnu.no
2 Technical University of Catalunya (UPC)

{cayala, franch}@lsi.upc.edu

Abstract The reuse of Open Source Software components available on the Inter-

net is playing a major role in the development of Component Based Software Sys-

tems. Nevertheless, the special nature of the OSS marketplace has taken the “clas-

sical” concept of software reuse based on centralized repositories to a completely

different arena based on massive reuse over Internet. In this paper we provide an

overview of the actual state of the OSS marketplace, and report preliminary find-

ings about how companies interact with this marketplace to reuse OSS compo-

nents. Such data was gathered from interviews in software companies in Spain and

Norway. Based on these results we identify some challenges aimed to improve the

industrial reuse of OSS components.

1. Introduction

Nowadays, Component-Based Software Development (CBSD) is considered the

standard way of developing software systems [3]. The main motivation behind this

is reusability as “reusing components avoid reinventing the wheel”. This allows

companies a faster technology adoption and innovation whilst reducing costs and

time-to-market [18]. In particular, the existence of the Open Source Software

(OSS) marketplace, consisting of tens of thousands of OSS components which are

developed and freely available over the Internet, has greatly influenced the soft-

ware reuse practices and the overall economy behind [8, 11].

In this huge diversity, one of the most influential activities in CBSD is the se-

lection of components [7, 26]. Successful reuse of OSS components highly de-

pends on being able to navigate in the OSS marketplace to identify and evaluate

which component(s) may (best) fit the requirements [25]. In the industrial prac-

tice, the selection of OSS components is considered a highly risky activity as

companies are confronted with incredibly large amounts of diverse, partial, and

ephemeral, information about OSS components. This information could be tacit

and it is not always trustable. Therefore, it is not easy for companies to fully ex-

ploit the benefits of reusing OSS components [18].

To support the industry in this crucial task, we need to understand the industrial

needs for selecting components and the state of the OSS marketplace as the place

where components are found. To do so, we investigated: (1) the elements that con-

stitute the OSS marketplace, and the current state of such infrastructure from the

point of view of industrial reusers. (2) How reusers interact with the OSS market-

place to select OSS components. First, we assessed a variety of Internet resources

and identified their main characteristics and utility. Second, we performed semi-

structured interviews in companies in Spain and Norway. Based on these investi-

gations we identify challenges aimed to improve the industrial reuse of OSS com-

ponents.

2. State-of-the-Art

Systematic software reuse is an engineering strategy proposed to increase produc-

tivity and software quality, and lead to economic benefits [9]. It is based on the

premise that for reuse to be effective, a proper infrastructure enabling reusers to

find and understand the components that best fit their needs should exist [21]. Al-

though systematic software reuse has been an active research area for more than a

decade [9], the special nature of OSS has taken the original concept of systematic

reuse based on centralized repositories into a completely different arena based on

massive reuse over Internet. Therefore, the need of new approaches for effectively

finding and understanding components has been widely recognized [2, 9].

Although research and practitioners have proposed a diverse set of methods and

evaluation guidelines for supporting components selection (e.g., [16, 17, 19]),

these proposals have not been widely adopted in the industrial practice [15]. The

literature presents various possible explanations for this: that the proposed me-

thods are failing to deal with identification of components and information for

evaluating them [4, 6], and that it is impractical to perform complete evaluations

in terms of time and cost [12].

The Internet as the infrastructure of the OSS marketplace constitute as we see

an important part of both identification and evaluation of OSS components [25].

However, we know little about this OSS marketplace and how practitioners

search, evaluate and choose components from this marketplace.

In order to envisage effective solutions for enabling successful reuse of OSS

components, further empirical studies are needed to better understand how re-

searchers may contribute to developing the marketplace and improving how reus-

ers select OSS components. The work presented in this paper is trying to contri-

bute to this fact.

3. Elements of the OSS Marketplace

The OSS reuse environment greatly differs to the “classical” reuse environment

based on centralized repositories [21]. In this section, we describe the high-level

elements that constitute the OSS marketplace in order to understand the new re-

quired needs for improving OSS components reusability.

Although the word marketplace may have different connotations [5, 14, 24], in

the context of this paper, as OSS marketplace we refer to the self-organizing vir-

tual place on the Internet that includes the exchange interactions between reusers

and providers of OSS components as well as the actions of other actors that facili-

tate or promote such transactions.

The OSS marketplace implies diverse elements, relationships and interactions

over internet: Providers offer OSS components through their own websites. Reus-

ers use a search mechanism or Intermediary services to find and select compo-

nents, whilst Promoters foster the OSS movement.

Although it is not our intention to further describe the marketplace interactions,

as it implies a broad line of research, we briefly describe its main elements and

provide some examples of the actors that actually cover these elements.

• Reuser: Refers to developers that search in the marketplace for components

that may cover certain functionality. Such component(s) are intended to be in-

tegrated in a software system. The work described in this paper focus on the

problems reusers face in their OSS selection practices.

• Provider: Refers to OSS communities or companies which develop and release

OSS components. Currently there are thousands of OSS communities and

therefore thousands of potential component providers. Examples are

moodle.org, linux.org, eclipse.org, FreMed.org, Openmrs.org etc.

• Search Mechanism: Refers to the mechanism that allows navigation through

the marketplace. General-purpose tools to navigate through the Internet as

Google exist. But some specialized tools as Google Code Search or Kooders

have been designed for indexing various open source repositories and to allow

more focused component searches on the web.

• Promoter: Refers to individuals and organizations which main aim is to foster

the OSS movement. Examples are the Open Source Technology Group

(OSTG), Free Software Foundation (FSF), Apache Foundation, and personal

blogs with useful resources. Practical research efforts from academia and/or in-

dustry can be also found, an example is the CeBASE repository that provides a

"lessons learned" database.

• Intermediary: Refers to profit or non-profit organizations or individuals that

index and/or distribute OSS components or other related products and services.

Examples are companies selling support around certain components or domains

as Forrester or Gartner; and General-oriented or Domain specific portals as

SourceForge or TheServerSide respectively.

4. The Study

The aim of the study is to establish an empirical foundation of the challenges of

the OSS marketplace when dealing with the needs of industrial Reusers. The study

consisted of two parts: a) investigation of the actual state of the marketplace, b)

investigation of how Reusers interact with the OSS marketplace to select OSS

components.

4.1 Investigation of the OSS Marketplace

To better understand the state of the marketplace and the kind of resources it of-

fers for supporting components selection, we further assessed more than 60 related

sites and search mechanisms on the Internet. The elements of the marketplace in-

troduced in Section 3 were identified throughout this analysis. The studied sites

were identified from the answers of the respondents of the study described in Sec-

tion 4.2, previous studies e.g. [10, 13, 15], research team’s experience, and web

investigation. Of course, we do not claim that we have reviewed all existing por-

tals or search tools of the marketplace, indeed by the nature of the marketplace it

is not realistic to think that this can be done. However, we think that the ones we

have assessed are representative of the marketplace elements and their actual of-

ferings. The focus of the assessment was on the factors affecting the selection of

OSS components. This set of resources was analyzed between March and Novem-

ber 2008. Main results are briefly summarized in the context of Section 5.

4.2 Investigation of Reusers Interaction with the Marketplace

We performed an explorative study in Small and Medium Enterprises (SME). The

study consisted of semi-structured interviews with people involved in CBSD using

OSS components (i.e., Reusers). We asked about how they identify and evaluate

OSS components, which resources they use and the problems they face with such

resources.

With a basis in earlier studies e.g. [10, 13, 15], we developed and tested an in-

terview guide. It focuses on the experience of industrial Reusers with a finished

project in which one or more OSS components were used. The interview guide

contained one part each about identification and evaluation, the use of internet and

social resources in OSS selection, and finally demographic information. The inter-

views were performed in 5 companies from Spain (ES1-ES5) and 3 from Norway

(NO1-NO3). See Table 1 for an overview of the respondents, their companies and

the projects. We considered having data from different countries valuable to

strengthen the external validity of the results.

Table 1. Some details of the study.

Id Company Scope No.

Employees

Project Experience

with CBSD

ES1 Web monitoring SW 10 Web-statistics, Ruby,

1 person/month, part of

larger system

2 years,

MSc

ES2 HW sales, add-on SW

development

150-200 CMS/e-commerce, PHP,

4 person/months

6 years,

MSc

ES3 SW development/

consultancy

4 Web application, Java,

8 person/months

10 years,

MSc

ES4 Organizational IT de-

partment

15 Web application, PHP

24 person/month

8 years,

MSc

ES5 SW development/
consultancy

70-100 e-Business application
10 person/month

11 years,
MSc

NO1 SW development/

consultancy

20 Web search, Java, 2 per-

son/months, part of larger

system

11 years,

MSc

NO2 SW development/
consultancy

200 Web application, Java, 6
person/years

4 years,
MSc

NO3 SW house 12 Linguistic SW, .Net, 10

person/years

7 years,

BSc

Each interview took around one hour, and was performed face to face by one or

two researcher in the native language of the interviewees (Spanish or Norwegian).

To establish the interviews' context and limitations, we began each interview by

stating our motivation. We rigorously avoided suggesting any Internet resources

during the interviews. Moreover, in cases when the interviewee did not remember

the URL or location of a specific resource, they were asked to send us such infor-

mation by e-mail. The resources mentioned by the interviewees were evaluated as

described in Section 4.1. The semi-structured nature of the interview, allows to

further inquiry in relevant areas and to get useful qualitative data. Each interview

was recorded and transcribed. To perform the data analysis, the research team lis-

tened through the recorded interviews or read through the transcriptions. Then, as

all authors speak English, we were able to analyze and discuss the obtained data in

several meetings.

The following section relates the results obtained from these studies.

5. Resources Used to Select OSS Components in the Industry

In this section, we report our assessment of the existing resources in the market-

place and how the interviewees used these resources to select OSS components.

Scenarios are used to describe our findings, followed by discussions of some of

the problems the Reusers face when using resources in the marketplace.

It is important to remark that the objective of the scenarios is to show how

Reusers used existing resources and not to explain the process they follow in de-

tail. The scenarios may therefore be overlapping.

5.1 Searching

The search process departs from the need to find a component that may cover cer-

tain functionality in the final system. Further assessment of components is per-

formed in the context of the subsequent evaluation and decision activities.

5.1.1 Existing Resources for Performing OSS Searching

To enable navigation throughout the OSS marketplace, some Search mechanisms

and a variety of portals issued by Promoters and/or Intermediaries exist (see Sec-

tion 3). One of the main goals of these portals is to offer categorizations aimed to

guide their users to find information, services and components themselves. From

our assessment of several of these portals, we observed that understanding and use

of the portal content is not an easy task, especially if the domain is absolutely un-

known.

Furthermore, according to their topics, these portals range from general-

oriented as SourceForge to domain-specific portals. Domains can be understood at

different levels. For instance, domain technologies as presented in TheServerSide

which is related to the Java technology or more specific ones as the health care

domain as Openmrs.org. On the other hand, the collaborative and “open source”

philosophy has also enabled the formation and explosion of open and collabora-

tive portals. These are aimed to discuss and exchange experiences around specific

domains. Examples are CMSMatrix and WikiMatrix in the content management

system and wiki management system domains respectively.

To describe how interviewees used these resources, we identify three different

situations described in terms of the following scenarios.

5.1.2 Scenario S1- No Search is Required

Reusers are aware of a component that may fit the functionality they are looking

for, or someone (a colleague or member of the project team) has used and recom-

mended the components. As one developers said “if someone has experience [with

a component] we normally select this one” (ES2). Reusers do in other words

quite often select components based on previous experience, even without looking

for other candidates.

5.1.2.1 Problems Related to Scenario S1

Although no problems with the use of resources were found in the context of this

scenario (i.e., it does not imply any search), it highlights the influence previous

experiences have on the outcome of the whole selection process.

5.1.3 Scenario S2 – Regular Monitoring of the Marketplace

Experienced Reusers tend to be familiar with the domains they work with, and

they typically monitor the marketplace to inform themselves of technologies and

trends (even before they have a specific need). As a result, the component search-

ing process is influenced by this familiarity, and it turns out to be a gradual

process rather than a momentarily one.

In this context, when Reusers are looking for components, they review the por-

tals they already know to see what components are being used by the community.

“We know or have bookmarks of several portals we usually review to be aware of

the components and technologies that are being used by the community. In par-

ticular, the most representative portal for our work is TheServerSide” (ES3). Por-

tals are however not the only kind of resources used in this monitoring and Reus-

ers benefit from a range of information sources. One respondent said that they

read “different private blogs where one basically picks up trends”(NO2), another

preferred information from printed source. “We buy a lot of magazines and typi-

cally O´Really Books” (NO3).

In addition, Reusers will tend to come back to the ones he knows and trust.

“There are a lot of portals about OSS and technologies, but I tend to use the ones I

usually follow and trust” (ES3). Reading a variety of news sites and portals could

be time consuming and one respondent said that “I am more depending on the RSS

feeds which I subscribe to. I do not actively read as much on the page [as be-

fore]” (NO1).

5.1.3.1 Problems Related to Scenario S2

Reusers mentioned to be concerned about trust and contradictory information.

“Sometimes it is difficult to formulate an opinion from information contained in

internet because some of the opinions are extremely contradictory, so it is not easy

to decide if a component could be a candidate” (ES2).

In general, Reusers considered that having more comprehensive search func-

tionality and more flexible classification systems in portals could be valuable.

Since search was used a lot it could simplify the identification of components.

5.1.4 Scenario S3 – Open Search

When Reusers do not have strong experience in a domain, they usually do not

know where to find components that may cover the functionality they are looking

for. In these cases, they mostly mentioned to use general search engines (Google

was mentioned the most). “When we do not have a clear idea of the kind of com-

ponents that may cover the functionality we are looking for, we directly go to

Google” (ES2).

From our assessment of the marketplace we observed that some specialized

search engines as Google Code Search or Koders exist, but none of the intervie-

wees mentioned to use them. “No, we do not know any specialized tool to find

components, we always use Google” (ES1).

Regarding the use of intermediary portals hosting hundreds of OSS compo-

nents, a reuser said“I know SourceForge, but in portals like this it is really diffi-

cult to navigate and find relevant components. It is better to find components in a

specialized portal (i.e., domain-specific) and then go to SourceForge for down-

load it” (ES1)

5.1.4.1 Problems Related to Scenario S3

Reusers recognize that using general search engines as Google, the number of re-

turned hits is frequently large and many of these hits are irrelevant. “We know we

will have a lot of irrelevant hits but anyway it is easier to arrive to the component

and its community by Google” (ES5). In addition, the accuracy of the search relies

heavily on how well they are able to identify the exact terms to describe the func-

tionality “It is more than anything Google search tactics” (ES1).

5.2 Evaluation and Decision

The evaluation and decision process implies the investigation of the features of the

candidate components in order to choose the one(s) that (best) fit the system re-

quirements.

5.2.1 Existing Resources for Performing OSS Evaluation and Decision

Our assessment of the existing resources to perform such tasks leads us to confirm

that each existing portal describes components following its own classification and

description model. There are in other words no standard for describing compo-

nents. Thus, very different kinds of information are included: from technical do-

cumentation, newsletters, and articles to information coming from social collabor-

ative features, as wikis, chats, blogs, and forums.

The following scenarios describe how Reusers use existing resources when

they come to perform the component evaluation and decision activities.

5.2.2 Scenario E1- Experience-Based Evaluation

Reusers usually do not have enough time to evaluate components as much as they

would like. As a result, they tend to use components they already know. “We

usually cannot evaluate a component as much as we would like because it re-

quires time we usually do not have, so we tend to use only components we know or

some colleagues have recommended” (ES4).

In some cases they did not even considered other candidates that could fit better

to the required task. “We prefer to use a component we already know than assum-

ing the risks of using a new one, even when the new component could perform bet-

ter” (ES4).

5.2.2.1 Problems Related to Scenario E1

 Reusers recognize that the evaluation and decision process is not performed prop-

erly and it is mainly biased for personal experiences that narrow the exploitation

of reuse.

We observed that the reuse of components is mainly seen in the form of fine-

grained or commodity components that do not imply so much risk if they should

be replaced.

5.2.3 Scenario E2 – Searching for Information for Evaluating Components

Although the formal documentation of the OSS component obtained from the

Provider was considered important at the technical level, experience either per-

sonal or of others plays a crucial role when evaluating and deciding which com-

ponent to use, as stated in Scenario E1.

If the Reuser does not have personal experience with a particular component he

usually consults his personal network (i.e., colleagues) or uses Google to search

for more information. “Another things which we almost always do is to read opi-

nions ... and examine a bit the experiences other people have.” (ES3). These

searches are usually performed by using the name of the component as a keyword,

in order to find other portals, forums or blogs which can provide more informa-

tion. The most valuable information is: experience reports of successful imple-

mentations, possible problems with the use of the component and solutions to

these problems. If required, Reusers may for instance pose questions in forums or

on mailing lists as well.

5.2.3.1 Problems Related to Scenario E2

Existing portals are facing serious problems for making information available in a

suitable way [6]. Some reusers mentioned to be unhappy with the completeness

and quality of the documentation. One developer complained over this quality say-

ing “There are a lot [of OSS projects] which are not well documented” (NO3).

Improving this documentation could simplify the evaluation of the components.

“What would have made it [OSS selection] a lot easier was if more of those offer-

ing OSS libraries put a bit more work into the documentation because this is often

insufficient” (NO1). However, others mentioned to be quite happy with the docu-

mentation of other components. “We have been using Hybernate for a long time

and we are quite happy with the extensive documentation and community support

we have” (ES3). Assessing the interviewees answers and the characteristics of

their projects we realized that the level of maturity of the community where the

component come from, seem to have a significant impact on the quality of the do-

cumentation. Mature communities tend to provide better documentation.

The general perception of existing collaborative mechanisms for sharing know-

ledge as forums and wikis was really appreciated, but reusers mentioned to have

problems with dealing with the subjective nature of opinions and unstructured in-

formation. “There are a lot of subjective meanings out there” (NO1). Indeed, ex-

isting portals do not offer advanced features that could help reasoning about and

structuring scattered and subjective information. Furthermore, personalization fea-

tures are also rare, and as basic as configuration of the appearance, payment per-

sonalization and RSS advertisement.

6. Discussion of Results

Although the benefits of having OSS components available are well-known, their

successful reuse implies many challenges. Based on the empirical observations

from the studies presented in the previous sections, we discuss the main issues that

should be faced to improve OSS components selection.

• The rapid changes and growing nature of the OSS marketplace. New compo-

nents and technologies are continuously offered, but also new and improved

versions of existing components are frequently released. One straightforward

example of the difficulty to deal with the changing nature of the marketplace

can be seen in the evolution of mail servers products, which at present could al-

so provide instant messaging or even video-conferencing facilities. So, to effec-

tively classify components in order that they can be easily found by reusers is

not trivial [2]. In this context, existing resources for enabling finding of com-

ponents are facing some problems. Although industrial reusers do not really

bother about searching, they are aware that the narrow character of their current

searching processes and the influence of previous experiences hamper the fully

exploitation of OSS reuse.

• The lack of standards for describing OSS and huge of information diversity.

The lack of standards for describing OSS and the huge amounts of diverse, par-

tial and subjective information about components makes it tough for reusers:

first, to trust on the information and second, to perform and informed evalua-

tion and decision. This contributes to the fact that decisions are mostly based

on experience and limited knowledge of available components. Hence, the need

for decision support mechanisms has been recognized [19]. Several research

proposals recognize this problem and have proposed solutions that range from

developing a general ontology [6, 23], to the use of semantic web technologies

[1] and description logics. However, the real applicability of most of these pro-

posals have resulted scarce [15, 19]. At this respect, personalization and rec-

ommendation functionality in portals are perceived as desirable by industrial

reusers (e.g. users that selected this component also selected this…) as this

could help them to get relevant information.

• The influence of Experience on the selection process. As our results confirm,

experience either personal or of others play a critical role on the selection of

OSS components. Although, the OSS spirit encourages the free and collabora-

tive production and sharing of knowledge, there is a demanding need to effec-

tively deal with the inherent subjectivity of the information. Reputation me-

chanisms as used in other business domains as ebay.com could be really

valuable to deal with the subjectivity of diverse opinions.

Table 2 summarizes and relates the identified practical problems of Reusers

when selecting OSS components and the challenges related to the elements of the

marketplace.

Table 2. Summary of Reuser Problems and Associated Challenges

Reuser Problem

Marketplace
Element

Challenge

S
ea

rc
hi

n
g

Difficulty to navigate
through diversity of

portals

Search
Mechanism

Advanced and configurable search en-
gines.

Difficulty to find
Components Intermediary

More flexible classification schemas able
to efficiently represent and deal with vo-
latility and growing size of the market-
place.

E
v

al
u

at
io

n
 &

D

ec
is

io
n

Poor documentation
quality

Provider To improve components documentation

Difficulty to find rele-
vant information and

deal with its subjectivity

Provider
More sophisticated knowledge portals
with decision-making support

All
Need of integral efforts for improve-
ments based on Reusers needs.

7. Threads of Validity

The results presented here are preliminary and we are about to conduct further

studies, including more interviews to verify our results and get more observations.

The companies in this study were selected by convenience and we had only li-

mited control over the selection of the projects. However, the results presented

here come from companies in several domains and of different size. The projects

are also of different size and types, and the interviewees have different back-

grounds, see Table 1. One limitation is that most interviewed companies were de-

veloping web applications. The web applications domain is normally not

represented by critical systems and, it is a domain in which there are plenty of

OSS components. Both facts have an impact on how components are selected. We

could expect somewhat different results in critical systems and in domains where

OSS components are rare.

Furthermore, the interview guide used was prepared based on previous expe-

rience with similar studies [10, 13, 15] and it was pretested both in Spain and in

Norway. To make answering as easy as possible for the interviewees, the inter-

views were performed in their respective native tongues. Two members of the re-

search team are native Spanish speakers and two are native Norwegian speakers,

one of which also speaks Spanish. To avoid misunderstandings and to simplify the

analysis and discussions of the interviews, we taped, transcribed and translated the

interviews to English as all authors speak English.

8. Conclusions and Future Work

The study and the results presented in this paper are discussed from the perspec-

tive of industrial reusers of OSS components with a particular focus on their needs

when performing OSS selection. The systematic software reuse theory is used as a

background for the discussions of the needs. Traditional view of reuse as a centra-

lized reuse databases is challenged by the Internet as a massive marketplace for

OSS components.

The relevance of this study is twofold: First, it may serve as a solid basis for

understanding the real needs of OSS industrial reusers when selecting compo-

nents, and therefore to properly address research and industrial efforts from sever-

al arenas. Second, the challenges identified here could help to the OSS market-

place elements to contribute to maturing the marketplace. A more mature

marketplace would allow reusers to fully exploit the benefits of OSS components

and thereby contribute to increasing the adoption of OSS in the industry.

As future work, our goal is to further explore the industrial OSS selection by

performing more interviews in both Norway and Spain. We expect to collect data

that could help to describe how reusers and to understand how reusers can maxim-

ize the benefit of the OSS marketplace.

9. References

1. Ankolekar A, Herbsleb JD, Sycara K (2003) “Addressing Challenges to Open Source
Collaboration With the Semantic Web”. In Feller J, Fitzgerald B, Hissam SA, Lakhani
KR (Editors), Taking Stock of the Bazaar: 3rd Workshop on Open Source Software
Engineering, pp 9-14.

2. Ayala CP (2008) Systematic Construction of Goal-Oriented COTS Taxonomies. PhD
Thesis. Technical University of Catalunya.

3. Basili VR, Boehm BW (2001) COTS-based Systems Top 10 List. Computer, 34(5):91-
95.

4. Bertoa M, Troya JM, Vallecillo A (2003) A Survey on the Quality Information Pro-
vided by Software Component Vendors. In QAOOSE'03 Proceedings of the 7th
ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineer-
ing, pp. 25-30.

5. Brereton P, Linkman S, Thomas N, Bøegh J, De Panfilis S (2002) Software Compo-
nents - Enabling a Mass Market. In STEP'2002: Proceedings of the 10th International

Workshop on Software Technology and Engineering Practice, pp. 169-176. IEEE
Computer Society.

6. Cechich A, Requile-Romanczuk A, Aguirre J, Luzuriaga JM (2006) Trends on COTS
Component Identification. In ICCBSS'2006: Proceedings of the Fifth International
Conference on Commercial-Off-The-Shelf (COTS)-Based Software Systems, pp. 90-
99. IEEE Computer Society.

7. Clark J, Clarke C, De Panfilis S, Granatella G, Predonzani P, Sillitti A, Succi G, Ver-
nazza T (2004) Selecting components in large COTS repositories. Journal of Systems
and Software, 73(2):323-331.

8. Fitzgerald B (2006) The Transformation of Open Source Software. MIS Quarterly,
30(3): 587-598.

9. Frakes WB, Kang K (2005) Software Reuse Research: Status and Future. IEEE Trans-
actions on Software Engineering, 31(7):529-536, 2005.

10. Gerea M (2007) Selection of Open Source Components - A Qualitative Survey in Nor-
wegian IT Industry. Master's thesis, Norwegian University of Science and Technology.

11. Ghosh RA (2006) Study On the Economic Impact of Open Source Software on Innova-
tion and the Competiveness of the Information and Communication Technologies (ICT)
Sector in the EU. Technical report, UNU-MERIT.

12. Gorton I, Liu A, Brebner P (2003) Rigorous Evaluation of COTS Middleware Technol-
ogy. Computer, 36(3):50-55.

13. Hauge Ø, Sørensen C-F, Conradi R (2008) Adoption of Open Source in the Software
Industry. In Russo et al. [22], pp. 211-222.

14. Knudsen D (2003) B2B-Marketplace Value Creation, Conceptual Predictions and Em-
pirical Findings. In NOFOMA'2003 Proceedings of the 15th Annual Conference for
Nordic Researchers in Logistics, pp 318-331.

15. Li J, Conradi R, Bunse C, Torchiano M, Slyngstad OPN, Morisio M (2009) Develop-
ment with Off-The-Shelf Components: 10 Facts. IEEE Software, March-April 2009.

16. Majchrowski M, Deprez J-C (2008) An Operational Approach for Selecting Open
Source Components in a Software Development Project. In EuroSPI'2008 Proceedings
of the 15th European Conference on Software Process Improvement. Springer - Vo-
lume 16 of Communications in Computer and Information Science, pp 176-188.

17. Merilinna J, Matinlassi M (2006) State of the Art and Practice of Open-Source Compo-
nent Integration. In Proceedings of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 170-177. IEEE Computer Society.

18. Mohagheghi P, Conradi R (2008) An Empirical Investigation of Software Reuse Bene-
fits in a Large Telecom Product. ACM Transactions of Software Engineering and Me-
thodology, Vol. 17, No. 3, Article 13, 30 pages.

19. Mohamed A, Ruhe G, Eberlein A (2007) COTS Selection: Past, Present, and Future. In
Proceedings of the 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, pages 103-114. IEEE Computer Society.

20. Norris JS (2004) Mission-Critical Development with Open Source Software: Lessons
Learned. IEEE Software, 21(1):42-49.

21. Prieto-Díaz R, Freeman P (1987) Classifying Software for Reusability. IEEE Software.
4(1):6-16.

22. Russo B, Damiani E, Hissam SA, Lundell B, Succi C (2008) (Editors) Open Source
Development Communities and Quality Working Group 2.3 on Open Source Software.
IFIP International Federation for Information Processing. Springer.

23. Simmons G, Dillon T (2006) Towards An Ontology for Open Source Software Devel-
opment. In Damiani E, Fitzgerald B, Scacchi W, Scotto M (Editors), Open Source Sys-
tems IFIP Working Group 2.13 Foundation on Open Source Software, pp 65-75. Sprin-
ger.

24. Ulkuniemi P, Seppanen V (2004) COTS Component Acquisition in An Emerging Mar-
ket. IEEE Software, 21(6):76-82, 2004.

25. Umarji M, Elliott-Sim S, Lopes C (2208) Archetypal Internet-Scale Source Code
Searching. In Russo et al. [22], pp. 257-263.

26. Vitharana P, Zahedi F, Jain H (2003) Design, Retrieval, and Assembly in Component-
based Software Development. Communications of the ACM, 46(11):97-102.

PAPER 6

Øyvind Hauge and Sven Ziemer. Providing Commercial Open Source Software: Lessons
Learned. In Cornelia Boldyreff, Kevin Crowston, Björn Lundell, and Anthony I. Wasser-
man, editors, Proceedings of the 5th IFIP Working Group 2.13 International Conference
on Open Source Systems (OSS2009) - Open Source Ecosystems: Diverse Communities,
June 3-6, Skövde, Sweden, volume 299/2009 of IFIP, pages 70-82, 2009. Springer.

161

Providing Commercial Open Source Software:
Lessons Learned

Øyvind Hauge and Sven Ziemer

Norwegian University of Science and Technology

{oyvind.hauge|sven.ziemer}@idi.ntnu.no

Abstract Even though companies like Sun, IBM, MySQL and others have re-

leased several commercial Open Source Software (OSS) products, little evidence

exist of how to successfully launch such products and establish a living commu-

nity around them. This paper presents a case study from a small software company

succeeding at establishing a business model and a vivid community around their

own OSS products. Based on this case study, the paper presents lessons learned

which could help other OSS providers.

1 Introduction

Open Source Software (OSS) development has become a serious source of reve-

nue for the software industry [10, 13]. Large companies like Apple, IBM, Sun and

others have released significant amounts of their software as OSS. Going open

source can however be a significant change for a commercial organization [5].

Small and medium enterprises (SME) do not have the same resources as large

companies to adapt to these changes. Yet, companies like JBOSS, MySQL and Qt

Software have successfully established businesses around their own OSS products.

Even though these OSS providers have been quite successful, the research litera-

ture contains only limited empirical evidence on the challenges and benefits which

face a commercial OSS provider [27]. We define a commercial OSS as an OSS

product being released by for-profit organizations like MySQL [7], Philips

Healthcare [18], JBoss [25], and IBM, Apple and Sun [26]. While these large well

known OSS providers have received some attention, small companies providing

their own OSS products are overlooked. This is unfortunate since SMEs with less

than 250 employees constitute almost 70% of the sector for computer and related

activities in the European Union [9].

In this paper we present the story of a small Norwegian software company that

has built their business around their OSS products. We analyze the case and com-

pare the findings from this case with what has been reported in the literature.

2

Based on this discussion we also present some lessons learned that may help other

companies in their establishment of a viable business model around their own OSS

products.

2 Related Works

Companies and organizations providing OSS have attracted some attention in the

literature as for instance [1, 7, 16, 25, 26]. Nevertheless, research on commercial

OSS providers is generally missing [27]. Here we discuss three important topics

from this literature; business models, communities and software licenses.

2.1 Business Models and Related Issues

The ways companies approach OSS development are diverse [28] and several

business models are described in the literature [10, 14, 17, 20]. Four such models

are the value-adding service enabler, market creation, leveraging community de-

velopment and leveraging the OSS brand [10]. Two of these models are particu-

larly interesting for OSS providers (1) using an OSS product to create a market for

other services and products and (2) getting contributions from the OSS community

[26]. An OSS provider may also use OSS branding to promote its products. While

service enabling is more appropriate for companies extending existing OSS com-

munities rather than OSS providers seeking to create their own. Companies may

also use OSS products to reach other strategic goals besides directly making

money on them. The DICOM validation tool was released as OSS primarily to es-

tablish a de facto standard to save rather than to make money [18]. Moreover, Sun

established the Java platform to limit Microsoft's control over industry standards

[26].

Companies like MySQL and JBOSS do on the other hand build their business

around their OSS products [7, 25]. Profiting from the OSS product and its com-

munity is for these companies particularly important. Thus creating or identifying

a demand for one's products and services is one of the most important risks facing

an OSS provider [25]. Roxen tried to make an OSS competitor to the Apache

HTTP Server but was forced to change focus due to the strong position of Apache

and a lack of demand for their own OSS solution [7]. To be able to create or iden-

tify a need for ones products, a commercial OSS provider must understand its cus-

tomers and their domains. They should therefore hire developers with domain

knowledge [27] and use their own software [15] to better understand its strengths

and weaknesses.

Making adjustments to the business model and adapting to opportunities and

challenges, is key for an OSS provider. When Firefox started to get popular, a

wave of viruses and security issues came across the Internet and created a need for

3

a new browser. Firefox was there to fill that need [1]. JBOSS has also been able to

adapt to changing opportunities and customer needs [25]. First, the community re-

quested training and documentation. Second, customers demanded advice on

building Java applications on top of JBOSS. Third, customers wanted support.

Fourth, customers all over the world needed local expertise. JBOSS has evolved

its business model by providing training, documentation, consulting services, sup-

port and finally an international partner program [25].

2.2 Community

Succeeding at attracting a community is one of the most difficult challenges re-

lated to releasing a commercial OSS product [7, 18]. Just releasing the source

code is clearly not enough [1]. Considerable investment and several support func-

tions may be needed to successfully release an OSS product [15, 27]. First, practi-

cal measures must be taken to prepare a product for release. The source code

should be documented and written in a comprehensible manner so it can be under-

stood by users and developers, and the product should be packaged and distributed

in easy installable packages [2, 19].

Next, it is necessary to create a common infrastructure on which the company

and the community can collaborate. The provider has to set up tools for easy

communication and sharing of code, knowledge, experiences and problems [2]. In

one project, the participants failed to agree on a configuration management strat-

egy and a set of tools for version control [6]. This made development difficult and

contributed to the failure of the project [6].

Another prerequisite for releasing an OSS product is a stable team of core de-

velopers which can secure the continuity of the project [15]. This core team should

provide the necessary structure to keep the project moving forward [27]. The pro-

vider must have resources which can support the product's community including

responding to questions and bug reports, fixing problems, take care of contribu-

tions and so on [2, 15]. Even though companies may release a product to get con-

tributions from the community [10] most end up implementing almost all the code

themselves [24]. A reason for this could be that it proves difficult to rely on the

community performing mundane tasks like maintenance, support and so on [15].

Next, in many cases the company wants control over the product to be able to

guarantee the quality of it to its customers. Furthermore, the company's employees

work with the product the whole time and they are therefore the ones with the

most extensive knowledge of it.

To run a community it must be included in the ways of the company, the com-

munity members must feel able to contribute to and influence the product, and the

provider must respect the norms and values of an OSS community [7, 27]. The

OSS norms and values must also be spread to the community, in particular other

companies, as the idea of not sharing with other companies is still rooted in the

culture of many companies [2].

4

To include the community, the provider must apply a governance model which

is appropriate for the needs of all the stakeholders involved in the community [27].

Too much focus on only a group of stakeholders could be harmful in the long run

[15]. Consequently, the provider must be open to new community members and

make it as simple as possible to participate in the community [4, 15]. Open com-

munication and transparency should help community members understanding the

provider and ongoing activities. OSS projects should furthermore have well

documented goals, roles and responsibilities [4]. When opening up the develop-

ment around Mozilla, the development crew had to release more information and

to use public information channels to include the community members [1]. In an-

other project, the project team wanted to deliver a mature product to the OSS

community and decided to develop it internally before releasing a mature version

[6]. This was a big mistake as communication with the community was very

scarce during the development. External users were because of the lack of com-

munication and a product, not particularly interested when the product was re-

leased.

To encourage community contributions, the provider should also consider let-

ting go of some control [1]. Too strict control over the product and the community

may be counterproductive [18]. If necessary, payment or gifts could be considered

to encourage certain behavior or to get contributions [7].

2.3 Software Licensing

Commercial OSS providers must apply a license which is fruitful for both the

company and the community [7, 27]. The license must enable the company to

make money on either the product or related services and it should enable the

growth of a vivid community. A license which the users are unhappy with can se-

verely limit the adoption of a product and it may provoke strong reactions from

the community [12].

An OSS provider has a few choices when it comes to selecting a license, as he

may develop new licenses or reuse existing ones. Creating new licenses is dis-

couraged [11] since potential users will be unfamiliar with the new license, and

since it would require significant resources to create a license of high quality. By

reusing existing and well known licenses it is more likely that potential users are

familiar with the license, that it is tested, and that it is of good quality.

When reusing existing licenses the OSS provider basically has three choices

[8]. First, the OSS provider may use a license like GPL which requires all derivate

products to be released under the same license. This may enable him to release the

product under a proprietary license as well and thereby create an income from a

dual licensing scheme [11]. However, a dual licensing scheme requires that the

provider own intellectual property rights for the whole code base. Second, the

OSS provider may select a license like MPL which requires direct changes to the

original code base to be licensed with the same license, and thereby ensuring that

5

bug fixes and similar changes done by others will be available. Third, the OSS

provider may use a license like the new BSD license which sets no restrictions on

the choice of license on derivate works, and thereby encourage adoption in any

kinds of products.

3 Method

This paper reports on research performed in the COSI project. COSI stands for

"Co-development using inner & Open source in Software Intensive products" and

is a European industrial research and development project. The project ran for

three years, from November 2005 until October 2008 and was organized as a con-

sortium of 13 industrial and academic partners from five countries. The project's

goal was to increase awareness of industrial usage of distributed collaborative

software and OSS. The research design of the COSI project consisted of five

phases, including two case executions, where the companies were working on se-

lected issues identified by the project's plan. During the case executions the com-

panies documented their practices, identified problematic issues and improved

these practices.

The authors worked with the five Norwegian companies in the project, support-

ing and guiding their activities in the project. In addition, we collected data rele-

vant for OSS research. In the case of eZ, the activities were focused on under-

standing and improving the community management practice, and both case

executions addressed this issue.

This research has applied two methods for data collection in this approach: the

qualitative research interview and post-mortem analysis (PMA). In addition, we

had access to the project deliverables from eZ and had also several informal meet-

ings with the company at COSI workshop meetings, community conferences and

other occasions.

Eleven interviews have been conducted with four persons from the develop-

ment group from eZ at several occasions, distributed over the three years the pro-

ject lasted. The interviews have been unstructured [21] and have been focused on

both on the current community management practice and the history of eZ's main

product eZ Publish (hereafter Publish). Notes were taken from all interviews and

sent to the interviewees for review.

The authors organized two PMA [3] sessions with most of the developers in the

development team. Both sessions focused on how the community management

process could be changed in order to increase the number of community contribu-

tions to Publish. During these sessions we described the current community man-

agement practice and identified both positive and negative issues with this prac-

tice. In addition root-cause analyses for some of the negative issues were

conducted.

This paper presents the story of a SME that has successfully developed an OSS

product and attracted a large community that contributes substantially to the ongo-

6

ing development of the product. The authors had access to eZ for more than three

years. During this time an understanding of how eZ was able to make these

achievements was built up based on the conversations with the employees and the

authors’ reflection. As mentioned above there is little literature on how SMEs de-

velop OSS products, what business models they choose and how they create and

take advantage of a community to develop an OSS products. This paper shares

lessons learned from such a company and contributes thus to a broader under-

standing of how SMEs can release OSS products and used the products to attract a

community of users and developers.

In analyzing the data and identifying potential lessons learned we found that

there are two ways of understanding of eZ's achievements. The first way of under-

standing is the one of the interviewees, who presented the development of Publish

as a series of strategically planned activities. The second way of understanding is

from the authors, who see the development of Publish not as a strategic planned

activity but rather driven by the skill to identify new opportunities and to make

rapid decisions to realize the opportunities. It is the authors’ view that both under-

standings are equally valuable and needed to attract and take advantage of a com-

munity.

4 The eZ Systems Case

eZ Systems is a Norwegian software provider founded in 1999. Today they have

around 60 employees spread over offices in Norway, Denmark, Germany, France

and North America. eZ has almost since its origin focused on providing a PHP

based OSS Content Management System (CMS), eZ Publish. The company has a

large customer base from all over the world and the CMS has been downloaded

more than 2.5 million times from their web site, as of February 2009.

4.1 The Early Days 1999-2001

In the beginning, eZ focused on developing applications for stock brokers but de-

livered at the same time consultant services to local businesses. These services in-

cluded network and systems administration, and application and web develop-

ment. The increasing popularity of the Internet gave them several customers who

wanted web sites. Many of these sites contained similar functionality and eZ soon

started reusing code from one site to another. This reusable code was quickly bun-

dled into two packages, Publish (article management) and Trade (shop manage-

ment) and released under the GPL, see Fig. 1. The employees' support for the OSS

ideology made releasing the packages as OSS, natural.

The company continues developing stock market applications. Meanwhile, the

CMS attracts attention in the OSS community and requests for consulting services

7

related to Publish are coming in. In parallel, they start selling the OSS philosophy

to local businesses. The philosophy is simple, if eZ disappears or if the customer is

unhappy with eZ's work, he has access to the source code and he may hire some-

one else. Publish is an attractive product and as a consequence of growing interest

from both customers and the OSS community, Publish gradually requires more

and more attention. This growing interest forces them to focus on either the stock

market applications or Publish. Even though it is a bold move including signifi-

cant risks, the final decision is to discontinue the stock market application and fo-

cus 100% on Publish. The employees have a strong desire for OSS, they really

want to create a viable business model based on OSS, and releasing an OSS prod-

uct sounds fun.

Fig. 1. The development of the Publish architecture

4.2 The Middle Ages 2001-2005

After deciding to focus on the development of the CMS, eZ starts developing Pub-

lish 2.0. This version is module based with the intention of enabling custom mod-

ules extending the core functionality, see Fig. 1. However, the possibility to ex-

tend existing modules without changing the kernel is very limited, if existing.

Even though there are some problems with the modular architecture, the system

provides interesting functionality, and it therefore attracts a rather large commu-

nity of OSS users.

The development of the third version starts in 2003 and the PHP 4 based 3.0

version is released in March the next year. The focus of this version is increasing

the modularity of Publish, allowing Plug-ins and simplifying the configuration of

the system. A simple two layer architecture consisting of a library and the applica-

tion itself is attempted in addition to the plug-ins, see Fig. 1. However, the two

layers are soon too dependent of each other, making it eventually impossible to

8

use the library without installing the application. Even though eZ is unable to keep

the two layers separated the plug-in architecture is a success in the sense that it

enables the users of Publish to extend it with their own functionality.

4.3 Components and Publish 4.0 2005-Today

Due to dependency problems in Publish it is decided to make a new independent

library, giving birth to eZ Components (hereafter Components), see Fig. 1. The li-

brary is built separately from the CMS and the development process is opened up

to the community. The idea is to create a library which could be used for a wide

variety of PHP applications. The library should also be included into Publish when

it reached a mature state. This is done iteratively to straighten out eventual prob-

lems one at a time. The Library is furthermore a way of refactoring the code in

Publish, gradually introducing PHP 5 to the CMS and ensuring support for Win-

dows, Unix and Linux. Late 2007, the forth major version of Publish is released.

Through refactoring of Publish and by incorporating Components into the CRM, it

gains PHP 5 support. Components furthermore enables those making plug-ins for

Publish to make use of the functionality it provides and thereby achieving syner-

gies between the two communities. The division of the system into independent

parts enables the growth of three communities around Components, Publish and

the plug-ins, see Fig. 2.

Fig. 2 The parts of eZ Publish and their surrounding communities.

5 Analysis of the eZ Case and Comparison with Findings from
the Literature

In the previous section we gave an historical overview of how a small Norwegian

software company has successfully launched an OSS product and attracted a large

ecosystem of users and developers. This ecosystem can, as illustrated in Fig. 2, be

9

divided into three communities. In this section we will review the case, using the

challenges identified in the literature.

5.1 Business Model and the Benefits of Communities

Having a large number of potential customers in the community around Publish

creates a greater need for services like support, quality assurance, training, instal-

lation, and hosting. Furthermore, it makes selling these services easier and reduces

the need for marketing. Users are made aware of Publish through the Internet and

services are often sold through bottom-up adoption of the product. Advantages

like reduced marketing efforts and shorter sales cycles are also observed else-

where [19, 25].

The Plug-ins community has developed a large number of plug-ins which ex-

tend the functionality of Publish. These plug-ins increase the whole value of the

product, enable community members to solve their specific problems, and help eZ

to understand these problems. Furthermore, one might see the activity in the Plug-

ins community as a way of outsourcing the development and maintenance of these

plug-ins, and thereby reducing eZ's development efforts. The community mem-

bers' investments in developing these plug-ins build a stronger connection be-

tween them and Publish and thereby increase their loyalty to it.

The Components community contributes code to a library eZ would have

needed to develop regardless of these contributions. Next, the future of PHP is es-

sential to eZ's products and Components, particularly if it becomes widely

adopted, is a tool eZ can use to keep up with and influence the development of

PHP. Adoption of the library will also contribute positively to increasing eZ's

reputation, particularly in the OSS community.

Using the categorization of business models in [10] we see that the communi-

ties around eZ support different strategic goals. Publish is creating a market for the

supplementary services eZ and their partners provide. More, through the two other

communities, eZ gets contributions from the OSS community. OSS products can

as we see be used to reach other strategic goals than directly increasing the income

of a company [18, 27]. Components, the plug-ins and their communities illustrate

this as they contribute to reducing eZ's development costs, increasing the value of

Publish, and to monitoring and influencing the future of PHP. eZ are in other

words using different strategies for each of the communities to support their over

all business strategy.

 eZ is furthermore able to construct a good understanding of the needs of their

users through feedback, requirements and interaction with all three communities.

Community developed plug-ins, recruitment of developers from the community

and the use of their own product give eZ better understanding of the domain and

thereby reduce their expenses on market research.

The business strategy of eZ has evolved from application development target-

ing a specific domain to providing services and support to the ecosystem around

10

an OSS product. An evolution of the business model can also be seen in the

JBOSS case [25]. Income from services and support are more predictable and con-

sistent than from licenses and consulting, and less sensitive to economic turn-

around [25]. This is being particularly true when having a large install base. It is

therefore natural to evolve the business model as the customer base grows.

5.2 Community

Infrastructure eZ has been investing in a common infrastructure for the three

communities. For the Plug-in community, eZ is hosting a portal for plug-ins, as

well as organizing developer days at their annual Publish event. The infrastructure

for Publish consists of forums, mailing lists, issue trackers, documentation and

source code. For the Components community mailing lists and an open issue

tracker are provided.

Providing this infrastructure is a rather small investment, even for a small com-

pany. In addition, eZ did not set up their community infrastructure before the

product was released but did so over time, driven by the activity level and demand

of the communities. The cost of establishing the infrastructure has thus been

spread out over several years. This contrasts the findings of [15, 27], that both

mention that considerable investment is needed to release an OSS product and to

set up support functions. One possible explanation is that eZ never planned from

the start to provide an OSS product.

Attracting and governing a community Attracting and governing a commu-

nity is one of the most challenging aspects of releasing an OSS product [7, 18].

Today eZ has an ecosystem that consists of three communities, serving its two

products. Together this ecosystem attracts users, volunteers and customers to use

the products and to be part of the communities. eZ is attracting the communities

by providing two interesting products that are downloaded and used by a large

user base. eZ is further attracting member to their communities by accepting and

hosting plug-ins to their Publish product, and by accepting contributions from both

the Publish and Components community. eZ also communicates a positive attitude

towards open source to the outside world and uses the open source label to differ-

entiate itself from non-open source competitors.

Attracting a community starts with releasing an attractive product, that is of in-

terest to a potential large user base. The most active community in eZ ecosystem

is the Plug-in community. It started when users started developing their own func-

tionality by using the plug-in mechanism in the architecture of Publish. These de-

velopers wanted to share their plug-ins with other Publish users, and reflected thus

the same attitude to open source that made eZ release Publish as an open source

product in the first place. The plug-in community is attractive to its members even

when the members are not included in the way of the company. The inclusion in

the way of the company is suggested to be a necessity to attract a community [7,

27]. eZ is including the members of the Publish and Component communities in

11

varying degrees, but in none of the communities are the members fully included in

the way of the company. The community members' motivation to contribute is

thus not the inclusion in the way of a company but rather implementing function-

ality they are interested in themselves. The argument made here is not that it is not

important to include community members into the ways of a company, but that the

attraction of a community starts with a product that is appealing to a large number

of users.

eZ is as of now not satisfied with the activity level in the Publish community

and would like to increase it. This deals with how to govern a community, and

with how to balance conflicting interests between the community and eZ custom-

ers. Since Publish is the strategic core product for eZ, control with the product and

its future development is needed for strategic reasons. Exercising too much con-

trol, however, may result in that the community looses its attractiveness with its

members [18].

5.3 Software Licensing

Publish and Components address different strategic goals. To avoid licensing

problems, to attract a community and to reflect these strategic goals, eZ selected

two different, but well established OSS licenses. The GNU Public License (GPL)

allows the community to use Publish without paying any license fees. At the same

time it gives eZ control over how Publish is used. GPL requires code sharing and

prevents the use of the source code in proprietary products. Moreover, GPL en-

ables eZ to dual license Publish and thereby getting some income from the license

sales. eZ provides proprietary licenses for companies which (1) include Publish in

their proprietary products, (2) build proprietary extensions on top of Publish and

(3) use Publish as any other proprietary software. This last license is particularly

useful for companies which not yet have legally approved the use of OSS licenses

in their organization. However, to lower the threshold for adoption of Compo-

nents, eZ released it under the New Berkeley Software Distribution (BSD) license

which gives adopters quite unlimited freedoms.

6 Lessons learned

With eight years of experience, the eZ case identifies some lessons learned about

how to release an open source product.

Allow your business model to evolve Providing an OSS product is not a trivial

task, and the experience from the eZ case shows that providing an OSS product

may take unexpected turns. Even though the use of OSS in the software industry is

growing, OSS business models have yet to stabilize themselves. It is thus impor-

tant to plan for a business model and to allow it to evolve with the opportunities

12

and challenges presented by the product and its community. Core team needs ex-

perience from other OSS projects and communities Setting up an OSS community

requires knowledge about how open source communities function. Having devel-

opers with experience from other open source communities is beneficial since they

have fit hand experience with OSS values and practices. The Components com-

munity is a good example that this is helping to create an active community.

Balance control and bureaucracy related to community contributions Lack

of control over community contributions directly to your product can reduce the

quality of it and potentially introduce illegitimate source code into the product.

Too strict control on the other hand may discourage contributions and community

participation. It is therefore important to clearly specify where you are going with

your product and what kind of contributions you want, and to make contributions

and wanted behavior visible to other community members.

Be part of your own community In order to sustain a community of volun-

teers a community needs to be active and including. This can be achieved when

the core development team is part of the community, and uses a common infra-

structure to share information and to co-ordinate all activities. This creates the

transparency that a community is expecting. The opposite of such a transparent

community would be a community where the core team uses a parallel infrastruc-

ture to communicate and co-ordinate their activities internally.

Apply well known licenses which suit both you and your users Unnecessary

strict licenses may limit the adoption of a product. Both OSS users and paying

customers will most likely go elsewhere if their needs are not met by the soft-

ware's license. To avoid intimidating the users, simple, well known licensing

models should be chosen. Explain the OSS licenses, its permissions and restric-

tions. Launching a product as OSS could include a constant fear of license in-

fringement. When the source code is available it is technically quite simple to

misuse the source code. However, this has not been a problem for eZ and the very

few incidents which have occurred have easily been solved.

7 Discussion and conclusions

Finally, some issues will be pointed out. First, investing in an infrastructure is not

reserved only to open source providers. While this investment has been seen as

something that is an extra investment for companies providing OSS, providers of

commercial products need an infrastructure as well to stay in touch with their cus-

tomers, and receive error reports and other feedback.

eZ Systems have established an ecosystem with three communities that are

based on different business models and give different benefits in return. This strat-

egy to create more than one community with an OSS product seems to enable eZ

to take advantage of several of the benefits that are associated with having a com-

munity of users. This division helps attracting and directing contributions to two

areas where it is more convenient to receive them while controlling the core prod-

13

uct. At the same time as eZ wants to attract more contributions to Publish (the

core), there is also a need to keep certain control with this product for commercial

reasons. Resolving conflicts between community interests and commercial inter-

ests is a delicate balance.

This paper has presented the history of the two open source products provided

by eZ and the three communities that constitute the ecosystem around these prod-

ucts. Based on eZ's experience, we have identified some lessons learned which

could help other OSS providers. There is no single answer on how to succeed as

an OSS provider. In case presented in this paper, however, there are some factors

that contributed to the success of the provided OSS. This includes the evolvement

of the business model, having an attractive product and adapting to community

needs and opportunities.

Acknowledgments

The research has been conducted within the ITEA COSI project and is supported by the Research
Council of Norway. We are grateful for the support from eZ Systems and to our colleagues in the
COSI project, in particular Vidar Langseid, Thomas Østerlie, and Carl-Fredrik Sørensen.

References

1. Mitchell Baker. The Mozilla Project: Past and Future. In Chris DiBona, Danse Cooper, and
Mark Stone, editors, open sources 2.0, pages 3-20. O'Reilly Media Inc, 1005 Gravenstein
Highway North, Sebastopol, CA 95472, 2006.

2. Massimo Banzi, Guido Bruno, and Giovanni Caire. To What Extent Does It Pay to Approach
Open Source Software for a Big Telco Player?. In Russo et al. [22],pages 307-315.

3. Andreas Birk, Torgeir Dingsøyr, and Tor Stålhane. Postmortem: Never Leave a Project with-
out It. IEEE Software, 19(3):43-45, 2002.

4. Wolf-Gideon Bleek and Matthias Finck. Ensuring Transparency - Migrating aClosed Software
Development to an Open Source Software Project. In IRIS'28 Proceedings of the 28th Infor-
mation Systems Research Seminar in Scandinavia, 2005. 6-9 August.

5. Wolf-Gideon Bleek, Matthias Finck, and Bernd Pape. Towards an Open SourceDevelopment
Process ? Evaluating the Migration to an Open Source Project by Means of the Capability
Maturity Model. In Scotto and Succi [23], pages 37-43.

6. Cornelia Boldyreff, David Nutter, and Stephen Rank. Communication and Conflict Issues in
Collaborative Software Research Projects. In Joseph Feller, Brian Fitzgerald, Scott A. His-
sam, and Karim R. Lakhani, editors, Collaboration, Conflict and Control Proceedings of the
4th Workshop on Open Source Software Engineering, pages 14-17, 2004.

7. Linus Dahlander and Mats G. Magnusson. Relationships between Open Source Software
Companies and Communities: Observations from Nordic Firms. Research Policy, 34(4):481-
493, 2005.

8. Paul B. de Laat. Copyright or copyleft?: An analysis of property regimes for software devel-
opment. Research Policy, 34(10):1511-1532, 2005.

9. Eurostat: Number of persons employed by enterprise size-class in the EU-27, 2009. Online:
http://ec.europa.eu/eurostat/, accessed 2009-02-12.

10. Brian Fitzgerald. The Transformation of Open Source Software. MIS Quarterly, 30(3):587-
598, 2006.

14

11. Karl Fogel. Producing Open Source Software: How to Run a Successful Free Software Pro-
ject. O'Reilly, 1005 Gravenstein Highway North, Sebastopol, CA 95472, 2005.

12. Jim Hamerly, Tom Paquin, and Susan Walton. Freeing the Source: The Story of Mozilla. In
Chris DiBona, Sam Ockman, and Mark Stone, editors, Open Sources:Voices from the Open
Source Revolution, pages 197-206. O'Reilly, 1999.

13. Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi. Adoption of Open Source in the
Software Industry. In Russo et al. [22], pages 211-222.

14. Richard E. Hawkins. The economics of open source software for a competitive firm.
NETNOMICS, 6(2):103-117, August 2004.

15. Juha Järvensivu and Tommi Mikkonen. Forging A Community Not: Experiences On Estab-
lishing An Open Source Project . In Russo et al. [22], pages 15-27.

16. Chris Jensen and Walt Scacchi. Collaboration, Leadership, Control, and Conflict Negotiation
and the Netbeans.org Open Source Software Development Community. In HICSS'2005 Pro-
ceedings of the 38th Annual Hawaii International Conference on System Sciences, page
196b. IEEE Computer Society, 2005.

17. Sandeep Krishnamurthy. An Analysis of Open Source Business Models. In Joseph Feller,
Brian Fitzgerald, Karim R. Lakhani, and Scott A. Hissam, editors, Perspectives on Free and
Open Source Software, pages 279-296. The MIT Press, Cambridge, Massachusetts, 2005.

18. Juho Lindman and Topi Uitto. Case study of company's relationship with open source com-
munity in open source software development. In IRIS'31 Proceedings of the 31st Information
Systems Research Seminar in Scandinavia, pages 1-22, 2008.

19. Alberto Onetti and Fabrizio Capobianco. Open Source and Business Model Innovation. The
Funambol Case. In Scotto and Succi [23], pages 224-227.

20. Eric Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Ac-
cidental Revolutionary. O'Reilly, Sebastapol, CA, 2001.

21. Colin Robson. Real World Research. Blackwell Publishing, 2nd edition, 2002.
22. Barbara Russo, Ernesto Damiani, Scott A. Hissam, Björn Lundell, and Giancarlo Succi, edi-

tors. Open Source Development Communities and Quality IFIP Working Group 2.13 on
Open Source Software September 7-10, 2008, Milano, Italy, volume 275 of IFIP International
Federation for Information Processing. Springer, 2008.

23. Marco Scotto and Giancarlo Succi, editors. OSS'2005 Proceedings of The First International
Conference on Open Source Systems, 2005.

24. Anthony I.Wasserman and Eugenio Capra. Evaluating Software Engineering Processes in
Commercial and Community Open Source Projects. In Andrea Capiluppi and Gregorio
Robles, editors, FLOSS '07 First International Workshop on Emerging Trends in FLOSS Re-
search and Development, page 1, Washington, DC, USA, May 2007. IEEE Computer Soci-
ety.

25. Richard T. Watson, Donald Wynn, and Marie-Claude Boudreau. JBoss: The Evolution of
Professional Open Source Software. MIS Quarterly Executive, 4(3):329-341, September
2005.

26. Joel West. How open is open enough?: Melding proprietary and open source platform strate-
gies. Research Policy, 32(7):1259 - 1285, 2003.

27. Joel West and Siobhán O'Mahony. Contrasting Community Building in Sponsored and
Community Founded Open Source Projects. In HICSS'2005 Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, page 196c. IEEE Computer Society,
2005.

28. Sven Ziemer, Øyvind Hauge, Thomas Østerlie, and Juho Lindman. Understanding Open
Source in an Industrial Context. In SITIS'2008 Proceedings of the 4th IEEE International
Conference on Signal-Image Technology & Internet-Based Systems, pages 539-546. IEEE
Computer Society, 2008.

PAPER 7
Øyvind Hauge, Daniela Soares Cruzes, Reidar Conradi, Ketil Sandanger Velle, and Tron
Ándre Skarpenes. Risks and Risk Mitigation in Open Source Software Adoption: Bridging
the Gap between Literature and Practice. In Pär J. Ågerfalk, John Noll, and Cornelia
Boldyreff, Proceedings of the 6th IFIP Working Group 2.13 International Conference
on Open Source Systems (OSS2010), May 30th-June 2nd, Notre Dame, USA, volume
319/2010 of IFIP Advances in Information and Communication Technology, pages 105-
118, 2010. Springer.

177

Risks and Risk Mitigation in Open Source Software

Adoption: Bridging the Gap between Literature and

Practice

Abstract. The possible benefits of open source software (OSS) have led
organizations all over the world into adopting a variety of OSS products.
However, the risks related to such an adoption, and how to reduce these risks,
are not well understood. Based on data from interviews, a questionnaire, and
workshops, this paper reports ongoing work in a multi-national
telecommunications company. The paper has three main contributions. First, it
extends identifies and discusses several risks related to OSS adoption. Second,
it identifies steps for reducing several of these risks. Third, it shows how
research can be used to increase the visibility of, and involve the employees in,
ongoing OSS efforts.

 1 Introduction

The promise of reduced costs, increased flexibility, and freedom from proprietary
vendors has convinced organizations worldwide into deploying open source software
(OSS) products in their production environments and integrating OSS components
into their software systems [15,16,19,20]. While a couple of studies have looked at
the possible benefits and drawbacks of such OSS adoption [2,24,35], few have
discussed steps for dealing with related risks.

Our primary goal is to identify relevant risks and risk mitigation steps for
organizations that adopt OSS. The secondary goal of the study presented here is to
explore the opportunities for increasing organizations’ adoption of OSS. This
includes identifying potential benefits of an increased OSS adoption. The main
research questions investigated in this study are:
RQ1. What are the perceived benefits of an increased adoption of OSS products?
RQ2. What are the perceived risks of such an adoption?
RQ3. What steps may an organization take to reduce the risks related to such an
adoption?

The study presented in this paper was partially conducted at Telenor, a large
international telecommunications company. Telenor's Norwegian IT division has
already adopted some OSS products, but it is currently looking into increasing its
adoption. However, to avoid the possible pitfalls of OSS adoption, Telenor IT wants

to identify (1) the benefits s and risks which are relevant to their context and (2) how
to deal with potential risks. To support Telenor in finding the answers to these
questions, we have conducted a study consisting of semi-structured interviews, a
questionnaire with 86 responses, and three workshops.

This paper is structured as follows: Section 2 gives an overview of related work.
Section 3 presents the interviews, questionnaire, and workshops conducted in this
study. Section 4 presents the results from this work and forms a basis for the
discussions in Section 5. Section 6 discusses limitations of this paper while Section 7
concludes the paper and presents input for future work.

 2 Related Literature

OSS can be adopted in different ways. In [18] we show that OSS can be adopted
through deploying OSS products, using OSS CASE tools, integrating OSS
components, participating in the development of OSS products, providing OSS
products, or through using OSS development practices. Grand et al. [18] present a
four level model for resource allocation to OSS. In a company perspective, the four
levels are (1) company as a user of OSS software, (2) OSS software as
complementary asset, (3) OSS software as a design choice, and (4) OSS compatible
business mode. This paper focuses on the deployment of OSS products (like
operating systems, database servers, application servers etc) within in a company at
level 1 or 2 in Grand et al.'s model for resource allocation.

 2.1 Possible benefits of OSS

The literature discusses several possible benefits (B) of OSS adoption:
Cost cuts (B1): OSS has been claimed to enable costs cuts through for instance

reduced license fees, hardware requirement, scaling costs, etc. [2,14,24,33].
Independence from proprietary vendors (B2): The adopter of OSS may also

get increased freedom from vendor lock-in and increased influence on providers of
both proprietary and OSS products [2,5,6,23,24].

Simplified procurement and license management (B3): The majority of OSS
products tend to come with only a few different licenses and without licensing fees.
This may simplify the procurement of the software and the licensing of derivative
products [23,28].

Software reuse (B4): Through adopting software products that are developed,
tested, and used by others, we may gain the benefits of software reuse. This includes
extra/new functionality, increased R&D and innovation, improved quality (e.g.
reliability, security, performance, defect density) and increased productivity
[2,5,6,14,25,34]. OSS may also contribute to increased standardization [1,21] or to
establishing de-facto standards if no standards exist [23].

High availability (B5): OSS products are most often easily available together
with source code and trustworthy information about the products’ true state
[22,23,35].

Community support (B6): This openness may lead to increased collaboration
between community members [2,24]. The community might also provide free
maintenance and upgrades of the software together with user support [5,24,33]. .

 2.2 Potential risks of OSS adoption

There are also risks (R) related to adopting OSS but not all organizations consider
them, as there are organizations adopting OSS without performing any cost/benefit
analysis [35]. There are no papers that explicit focus on potential risks of OSS
adoption, but the literature mentions several possible drawbacks of OSS Adoption.

Hidden costs (R1): Adoption of OSS products is not without costs: It may be
time-consuming to evaluate them [31]. Adoption may involve user training and
configuration [24,31]. We might need to spend resources on community participation
[23]. Many organizations would need premium professional support [14,35].

Lack of products (R2): While there are many OSS products available, there
may still be a lack of products with specific functionality [6,24]. The quality of these
products can also be questionable [14,35]. OSS products may furthermore suffer
from limited standardization and compatibility with document formats or with
versions of other software products [2,24,25].

Lack of providers, expertise, and support (R3): Despite the significant
adoption of OSS, there may still be a lack of expertise and support for specific
products [2,24,31,35]. The lack of professional providers may also introduce unclear
liability and uncertainty about the longevity of OSS project as OSS projects may
lack roadmaps and documentation [2,24]. Holck et al. hypothesized that this lack of
traditional vendor-customer relationship could stop the adoption of OSS [22].

Customization needs (R4): It may be necessary to customize the OSS products
to fit them into the context in which they are going to be used [1]. When changing an
OSS product we may get a maintenance responsibility [36] as these changes must be
updated when more recent versions of the software are adopted. When these
situations arise, the adopter must decide to follow the new releases or ensure
backward compatibility with his own changes [23].

Licensing issues (R5): The variety of OSS licenses available is confusing, as
there is a lack of guidance on how to interpret them [31]. When adopting OSS and in
particular when integrating OSS into derivative software systems, it may be
challenging to combine code under an OSS licenses with proprietary licenses and
APIs [23].

 2.3 Risk mitigation in OSS adoption

As there are few publications discussing risk mitigation (RM), this section describes
results from the literature on success criteria and enabling versus inhibiting factors of
OSS adoption. Some of these issues may contribute to reduce the risks related to
OSS adoption.

Employee attitude, awareness, and skills (RM1): A positive employee attitude
towards OSS and the OSS ideology can enforce the adoption of it [4,5,16,25,34].
The adoption of OSS should also be made visible, so that end users have an
awareness of the technology adoption [6]. Finally, if employees have the necessary

skills, training, and experience with OSS, the probability of a successful adoption
will increase [6,16,32].

Management support (RM2): Management support is also important for OSS
adoption [6,14,16]. Management should provide resources for driving the adoption,
and a clear plan for analysis, testing, and pilot projects [6, 13, 16].

Access to support (RM3): The quality of the OSS components [29] is an
important factor for a successful adoption, and for many adopters it is also necessary
to have access to professional support [6,13].

Success stories (RM4): It is furthermore an advantage if the products have been
successfully adopted by other companies [16]. Lack of such success stories or lack of
other users could easily complicate the OSS adoption [2,4].

No lock-in (RM5): An organization may have a hard time adopting OSS if they
are locked in by industry-wide purchasing agreements and standards for IT or
already have a coherent stable IT infrastructure based on proprietary or legacy
technology [6,16]. The costs related to moving away from such a lock-in situation
can significantly impede the adoption of OSS [4,17,35].

 3 Context and Research Method

Telenor is currently among the ten largest mobile operators in the world, with over
164 million mobile subscriptions and revenues of more than €12 billion in 2008.
Telenor Norway IT (hereafter Telenor IT) is the information technology and
software support division under Telenor’s Norwegian branch. It has about 380
employees that together with several external partners develop, maintain, and
support more than 500 IT systems. Open Source 2010 is an internal project aiming at
exploring the opportunities of increased adoption of OSS products like databases,
operating systems, and application servers.

Telenor IT’s motivation for conducting this study was threefold. First, Telenor IT
wanted to increase the awareness of OSS and its Open Source 2010 project within
the organization. Second, it wanted to get feedback from and involve the employees
in the project’s work. Third, it wanted to weaken proprietary providers’ grip on
Telenor reducing expenses on licensing and support.

This study consisted of four main steps. As part of a systematic literature

review on OSS in organizations, we reviewed the literature for evidence on the
perceived benefits and drawbacks of OSS [20]. Some of the output from this review
was used as an input for Section 2. Next, we conducted semi-structured interviews
with four employees from different parts of Telenor IT. The interviews were carried
out through 30 minutes face-to-face sessions. These sessions were recorded and the
recordings were later transcribed. Based on these interviews, we developed a
questionnaire. The questionnaire was pre-tested by colleagues at the university and
nine employees from different parts of Telenor IT. The questionnaire was written in
Norwegian, and the final version contained 42 open and closed questions. For the
closed questions we used 5-point Likert scales. Several of the 42 questions
concerned the three research questions. However, we will focus mainly on the
questions below (Q1-6):

Q1. Which advantages and disadvantages do you see with the use of OSS in
Telenor IT? (See Table 1);

Q2. For which reasons do you think Telenor IT should select OSS instead of
proprietary products and vise versa? (See Table 2);

Q3. Why should Telenor IT increase its use of OSS? (Open, textual input);
Q4. Which risks do you see with increased use of OSS in Telenor IT? (Open

question);
Q5. If the use of OSS in Telenor IT should be increased, what should do Telenor

do to facilitate this? (See Table 3);
Q6. Where would an increased use of OSS be appropriate? (Open question).

The questionnaire was conducted with a sample of 140 employees from Telenor
IT that were handpicked by our local contact. This sampling technique was used to
get a representative sample of employees from all relevant parts of the organization
while avoiding employees who were not involved in development and/or support of
Telenor’s software systems. In total 86 respondents completed the survey, giving a
response rate of over 60%. The analysis of the data consisted of descriptive statistics,
statistical tests and comparison/grouping of about 200 comments from the open
questions.

After the analysis, we held three workshops. First, we presented the results from
the questionnaire to several employees from various parts of the organization.
Second, three project members and three employees with experience from different
operating environments participated in a discussion around (1) benefits, (2) risks,
and (3) approaches related to increasing the organization’s adoption of OSS. These
three sessions were performed as ”KJ sessions” [3], where each of the workshop
participants used post-it notes to write down their concerns and put these notes on a
white board. Then the participants re-arranged related notes into groups as a
collaborative effort. These groups of related issues were then discussed. 152 post-it
notes were collected and grouped into 11, 10, and 7 groups for the three sessions.
Finally, we presented these results during a third dissemination workshop, open to all
employees at Telenor IT.

 4 Results

Results presented in this section were grouped according to the research questions
stated in the introduction.
RQ1. Based on the interviews, questions (Q1, Q2, Q3), and the workshop, we have

identified the main perceived benefits (BT) of OSS adoption;
RQ2. Based on the interviews, question (Q4), and the workshop, we have identified

several potential risks (RT) related to adoption of OSS;
RQ3. Mainly through the workshop and the interviews, but also questions (Q5, Q6),

we have identified steps for (1) facilitating the adoption of OSS and (2) steps for
mitigating (RMT) some of the risks related to it.

In the following, we summarize the main findings related to the research
questions, while keeping a focus on the results most relevant to Telenor IT.

 4.1 RQ1: Potential benefits of OSS

Reduced costs (BT1): Cost reduction is the most cited advantage of OSS adoption.
Table 1 shows that the respondents to the questionnaire agreed (Q1.1). Several
respondents stressed the value of reducing the expenses on support agreements and
claimed that OSS could contribute to this. One respondent suggested that they could
simplify the administration of (proprietary) software licenses. Moreover, Table 2
shows that the respondents expected both development and maintenance costs to be
lower with OSS (Q2.1 and Q2.2). Finally, if Telenor could standardize on one OSS
platform, the IT department could increase its productivity and reduce costs from
running on a more homogeneous and cheaper hardware platform.

Table 1. Potential advantages and disadvantages with OSS in Telenor IT (Q1)

ID Statement Mean STD

Q1.1 Reduced licenses costs 4.56 0.86
Q1.2 Independence from providers 4.48 0.88
Q1.3 Ability to apply pressure on providers 4.41 0.93
Q1.4 Motivational factor for the employees 4.16 0.99
Q1.5 Access to read and modify source code 4.10 1.01
Q1.6 Confidence and experiences with provider 3.26 1.18
Q1.7 Existing contracts with providers 3.19 1.28

Independence from proprietary vendors and ability to apply pressure on

providers (BT2) was frequently discussed by interviewees, workshop participants
and many of the responses to Q3 (see also Q1.2 and Q1.3). They highlighted in
particular the ability to use OSS to apply pressure on their vendors in order to make
them lower their license and support fees. As one respondent wrote “[when using
OSS, one] may chose to pay for support if you actually need it (often one does not

need it)” (Q3).

Attractive and future-oriented technology as a motivational factor for the

employees (BT3): Several popular technologies are offered as OSS, and the
interviewees mentioned that using OSS could improve the Telenor brand (Q2.4), be
a source of motivation for current employees (Q1.4), and be a way to attract skilled
employees. The ability to work with new and open technology was also perceived as
being fun by the workshop participants. In fact, quite a lot of attention was drawn to
this issue. OSS technology was also considered to be the future for several areas. For
instance, one workshop participant wrote that “OSS is future oriented and it enables

access to competency”. A respondent in the questionnaire wrote that “OSS is

becoming the industry standard in many areas” (Q3).

Ease of use through access to information and the source code (BT4): The
respondents also suggested that OSS technology was easier to use because of its
openness and the high availability of the software, its source code, and related
information (see also Q1.5, Q2.3, and Q2.5). One workshop participant wrote that
because of this availability “[it] is easier to make prototypes and to evaluate the

software”. A respondent in the questionnaire wrote: “it is better to modify what is

meant to be modified rather than buying a final package and doing extra

development around it [the package]” (Q3). The workshop participants furthermore
believed that the flexibility and openness of OSS could give them better and more

innovative solutions. Easy access to new technology and a lot of development tools,
together with the technical support, documentation, and other resources, could
further reduce the effort needed to develop and maintain their systems. Having
relatively open access to the communities that develop OSS products was seen as a
great advantage not only to get support but also to influence the development of the
products they would use. One responded: “OSS products are quite often having

active communities with dedicated users who are more than willing to help” (Q3).
OSS communities were in these aspects considered to be more accessible than
proprietary vendors.

Table 2. Reasons for selecting OSS versus proprietary software (Q2)

ID Statement Mean STD

Q2.1 Reduced maintenance costs. 4.15 1.15
Q2.2 Reduced development costs. 4.05 1.13
Q2.3 Possibility to run pilot-tests (alpha/beta tests) before release. 3.94 1.2
Q2.4 Improve Telenor’s brand and reputation. 3.76 1.17
Q2.5 Adaptability to existing systems. 3.68 1.32
Q2.6 Development time. 3.64 1.13
Q2.7 Influence on provider (add new or changed functionality). 3.64 1.43
Q2.8 Availability of external expertise and experience. 3.48 1.35
Q2.9 Availability of support during development. 3.32 1.33
Q2.10 Available information (manuals etc.). 3.24 1.43
Q2.11 Functional requirements (adequate functionality) 3.19 1.17
Q2.12 Non-functional requirements (quality, reliability, security,

scalability, performance, usability etc.
2.95 1.26

Q2.13 Availability of support in production 2.87 1.38

 4.2 RQ2: Potential risks and drawbacks

Lack of support and expertise (RT1): The lack of a professional provider is not
necessarily a problem. However, the lack of support and expert advice, in particular
for complex problems, was considered as one of the major challenges with OSS. One
of the interviewees feared that they would need to increase their internal resources
quite dramatically. Telenor requires professional support 24/7. However, providers
of such support are not necessarily available for all OSS products. One workshop
participant pointed this out and wrote that “[there are] few/no international support

organizations (for instance when you need 24/7 operation)”. Moreover, since the
diffusion of OSS products is not always as large as their proprietary equivalents, the
workshop participants feared that it could be difficult to get hold of both expert
consultants and highly skilled employees.

Hard to select the right OSS product (RT2): The respondents expressed an
uncertainty related to whether there existed OSS equivalents for some of the largest
and most advanced systems they had. The respondents moreover feared that existing
OSS products were immature and would miss key functions. One respondent wrote
that “there are in some cases no OSS products, or no OSS products which are good

enough, for solving certain problems” (Q4). The products may also lack support
from a viable community and they may therefore have an uncertain future. Adopting

such immature or unsupported products can introduce significant costs further down
the road, and it was therefore considered important to find the right products.

Change and hidden costs (RT3): OSS products would in most cases be acquired
and maintained somewhat differently than proprietary products. Most OSS products
are available over the Internet and do not have the same number of providers pushing
and supporting the products. These changes may improve the way the organization
works but any change introduces challenges, uncertainty, and at least some costs. A
workshop participant wrote that “[Telenor] has to find and relate to new partners”,
something which would include both change and cost. The respondents were
uncertain whether the cost savings from reduced licensing and support fees would
outweigh the cost related to switching technology and changing the way they
worked, as some of them described the total cost of adopting OSS as “foggy”. One
respondent wrote that “replacing familiar technology” (Q4) could be a potential risk.
Replacing existing technology would also make some of the expertise they currently
possess less valuable.

Unclear liability and responsibility (RT4): As of today Telenor’s partners have
relatively clearly defined responsibilities. Changing these relationships was
considered an important challenge. One responded that it could lead to “unclear

distribution of roles between provider - customer [Telenor]” (Q4). Most OSS
products lack a clear (professional) vendor and the respondents feared ending up in
situations with unclear liability, where they were unable to influence the provider,
and where they would not get sufficient support. One respondent wrote “[we have]

no provider to make responsible in situations with critical errors” (Q4). Such
situations could put a significant strain on Telenors’s internal resources.

Uncontrolled adoption and modification (RT5): Changes, or potential anarchy,
related to the acquisition of software was discussed to some length in the workshop.
This is because (1) there are a lot of easily available OSS products (in many different
versions), (2) there is a lot of hype around many of these products, and (3) they are
very easy to modify. Some participants feared that this could lead to uncontrolled
and constant adoption and modification of new OSS products, giving them a diverse
and uncontrolled and expensive to maintain a software portfolio. One workshop
participant wrote that he feared that “one [Telenor employees] selects products

because they are OSS, not because they solve our problems”. A respondent in the
questionnaire feared what he called “product anarchy” meaning that the selected a
lot of products without really making sure that they were the right ones.

4.3 RQ3: Mitigating the risks related to OSS adoption

Place responsibility, dedicate resources, and ensure support (RMT1): To
make sure that Telenor IT's employees have access to necessary resources to
develop, support, and operate OSS based software systems, it was considered very
important to place the responsibility for the products Telenor adopts between internal
resources and external partners. This was highlighted by several participants in our
study. One of them wrote that “[Telenor must] coordinate with development,

internal operations, and external [service] providers”. This could involve increasing
the internal resources or allocating employees to not only support of OSS solutions,

but also to developing new solutions and monitoring the OSS community. It may
also involve finding and dealing with new partners, or driving existing partners into
adopting new technology. The participants in the study expressed particular concerns
about ensuring support for the really difficult problems.

Start pilot projects (RMT2): The respondents agreed that it was important not to
rush the adoption of OSS, but promoted instead a cautious, stepwise approach to
OSS. According to them, Telenor IT had to gain experience with one project at the
time through identifying projects where OSS would be give real benefit. These pilot
projects could then be used to illustrate the potential and true benefits of OSS within
the organization. The respondents acknowledged that pilot projects were important
not only to illustrate the potential of OSS products, but also to have a more moderate
learning curve and limit the consequences of problems. One workshop participant
wrote that “[Telenor should] incrementally introduce OSS and consider new/revise

measures based on our own experience”.
Increase awareness and make the OSS initiative visible (RMT3): The first

thing which could be done, is making the organization’s current and planned use of
OSS visible to, not only its employees and management, but also its partners (see
Table 3). In the workshop one participant wrote that “[Telenor IT must] make the

concrete advantages visible”. By identifying successful cases of OSS adoption and
making these visible, they may create a positive attitude towards OSS and show that
it is a viable option for the future. Moreover, it was considered important to explain
why Telenor IT is planning to increase its adoption of OSS.

Table 3. Possible steps for increasing the adoption of OSS (Q3)

ID Statement Mean STD

Q3.1 Start one/several pilot projects to show possible effects of OSS 4.54 0.85
Q3.2 Make the OSS initiative visible for all employees 4.48 0.63
Q3.3 Make visible the OSS already present in the organization 4.44 0.85
Q3.4 Top management commitment to the OSS initiative 4.42 0.95
Q3.5 Make someone responsible for monitoring selected OSS domains 4.15 0.93
Q3.6 Improve both internal and external knowledge management (e.g.

with a Wiki, message boards, mailing lists, blogs or similar)
4.14 0.94

Q3.7 Hire new employees with OSS experience 3.96 0.99
Q3.8 Hire external consultants with updated expertise 3.06 1.19
Q3.9 Restructure the business model of Telenor IT 2.74 1.12

Include OSS in strategies supported by top management (RMT4): Finally, the
adoption of OSS should not be left up to chance and the individual employees’ taste.
A workshop participant wrote that “[Telenor] should not allow the system or project

select freely [it should rather] be part of a strategic technological decision”. To
ensure that the OSS adoption was planned, it should be part of a strategy where (top)
management, developers, operations, and support were involved in the decision
making process. It was furthermore considered important to assess the benefits
versus the costs in each specific case. Management support was considered
important because Telenor IT currently used OSS mainly in development but not so
much in production. Moving OSS to production environments would require wide
support.

5 Risks and Risk Mitigation Strategies

Our empirical results confirm many of the findings from the literature review
presented in Section 2. Through the literature review and our study we have
identified several risks related to the adoption of OSS products. Table 4 shows an
aggregation of the results from this study and from the literature, in a first step
towards a risk mitigation approach in OSS adoption. Most of these are already
presented in Section 2 or 4. The table is divided in three main columns. The first
column lists the main risks identified in the study. The second column describes
possible steps for mitigating these risks. This is once more based in our study and the
papers that implicitly or explicitly discuss these steps. The third column describes
other possible steps that were only identified in the literature. Still, we think they are
worth mentioning.

Besides the results shown in Table 4, we identified some general steps for
reducing the risks related to adoption of OSS products such as: (1) increasing the
employees' skills (hire new or train existing) (RM1), (2) increasing the employees'
attitude towards, and awareness of, current adoption of OSS and ongoing OSS
initiatives (RM1), (3) ensuring top management commitment to the OSS initiative
(RM2), and (4) avoiding going from a proprietary to an OSS lock-in (RM5).

The literature also mentions licensing and customization of the OSS products as
potential risks related to OSS adoption. These risks were not discussed in the table or
in our results. First, Telenor IT's Open Source 2010 project did not consider
licensing issues to be a problem, particularly since Telenor is not going to distribute
its software. Issues related to releasing the source code were therefore not relevant.
However, it was suggested to seek legal advice to approve a set of OSS licenses, and
adopt only products with these licenses. Second, customization needs was not given
much attention. One possible explanation could be that Telenor IT focused on
software like operating systems, database servers, and application servers. These
products constitute a “software infrastructure” and are mainly configured and
deployed. Customization problems is perhaps more relevant for other kinds of
software products like software components and desktop tools.

6 Limitations of this study

The sampling for the questionnaire was conducted by our contact person at
Telenor. This may pose a possible threat to the validity of our results, since the
sample and respondents may have more experience with OSS than the rest of the
organization. However, our contact has long experience from the company, we got a
high response rate, and the respondents reflect the organization at large. Moreover,
when we presented the results at the workshops the audience was allowed to
participate, and we did not get any feedback indicating that the results were wrong.

There are many different OSS products available, and these products do not
share the same properties. The same holds for proprietary products. Asking about
benefits, risks, and steps for reducing risks related to an increased OSS adoption is
therefore a bit problematic. We must have in mind that the answers reflect the
individual respondent’s perception of OSS and proprietary products. To get more
precise data one would need to compare individual OSS products against specific
proprietary products.

Table 4. Possible risks and steps for reducing these risks

Possible risk reduction steps Potential risks of

adopting OSS products From the Telenor case From the literature

OSS products may lack
(professional) support.
There may be limited
access to expertise, and
situations involving
unclear liability and
division of responsibility
may occur.
(R3+RT1+RT4)

- Place responsibility at an early stage
(RMT1)
- Make sure that your service and support
providers support OSS products (find new
ones or ask existing ones to extend their
service offering) (RMT1)
- Increase and dedicate internal resources
to OSS (RMT1)
- Increase employee skills (hire new or
train existing) (RM1+RMT1)

- Encourage local
“OSS champions”
[16]

Hidden costs related to
adopting OSS, replacing
existing technology, and
changing current
processes. (R1+RT3)

- Conduct risk assessments
- Execute pilot studies and a planned
stepwise adoption (RM2+RMT2)
- Adopt (only) products which show a
clear added-value and have a proven track
record (RM4&5)

- Evaluate the total
costs of ownership
of OSS products in
your own context
[35]

Hard to select the right
product due to (1) lack
of products or products
with matching
functionality and/or
quality, and (2) the
amount of products and
information available.
(R2+RT2)

- Adopt only mature products which give
clear benefits (RMT4)
- Dedicate personnel to monitoring the
OSS community and selecting OSS
products (RMT1)

Research suggests
several methods for
selecting OSS
products like for
instance [7,9,30]

Uncontrolled adoption
and modification, due to
the high availability of
OSS products, their low
purchase price, and the
access to these products'
source code. (RT5)

- Have a plan/strategy behind adopting the
various OSS products (RMT4)
- Adopt (only) products which show a
clear added-value and have a proven track
record (RM4&5)
- Standardize on a limited set of
technologies/products (RMT4)
- Begin with a few products (e.g.
operating systems, databases, and server
applications)
- Have specific requirements in call for
tenders/requirements specifications that
the products should run on OSS platforms
- Keep track of the adopted software
- Create guidelines for adoption
- Dedicate personnel with responsibilities
for OSS adoption (e.g. review and
monitoring) (RMT1)
- Conduct risk assessments
- Involve management, development,
operation, support, (and external partners).
(RMT1)

- Define a strategy
for maintenance and
modifications [35]
- Set up a central
software repository
for adopted products
[10]

7 Conclusion and Future Work

Based on an extensive literature review and a study from a telecom company, we
have identified several risks related to the deployment of OSS products, and several
possible steps for reducing these risks. The main results of the studies conducted at
Telenor are described in this paper, and the link between our results from a company
and the literature is established in Section 5. There are limitations associated with the
findings from this paper. Nevertheless, we believe the results of this study are a first
step towards focusing the research, on risks of OSS adoption, on more measurable
approaches for such evaluation. Finally, our study focuses on bridging the gap
between OSS research and practice by focusing on topics highly relevant to
practitioners. The study is furthermore an example of how researchers and
practitioners may benefit from closer collaboration.

As future work we intend to follow the process of adoption of OSS at this
company to further investigate and measure the real effect of the adoption of OSS. A
particular focus will be directed towards the relationship between the Telenor IT’s
internal development and support, and their partners.

We also acknowledge that many of the risks and mitigation steps described in
this paper are similar to the ones described in the literature of adoption/diffusion of
general information technology e.g. [12, 26]. This research could also lend research
on OSS adoption valuable support (see e.g. [13]). We intend to do more research in
order to investigate these issues, so we can focus the OSS research on the issues that
are mostly related to the OSS adoption, and not part of the general issues related to
general adoption/diffusion of information technology.

References

1. Paul Adams, Cornelia Boldyreff, David Nutter, and Stephen Rank. Adaptive Reuse of
Libre Software Systems for Supporting On-line Collaboration. In Joseph Feller, Brian
Fitzgerald, Scott A. Hissam, Karim R. Lakhani, and Walt Scacchi, editors, Open Source
Application Spaces: Proceedings of the Fifth Workshop on Open Source Software
Engineering (WOSSE 2005), pages 1–4. ACM, 2005.

2. Pär. J.Ågerfalk, Andrea Deverell, Brian Fitzgerald, and Lorraine Morgan. Assessing the
Role of Open Source Software in the European Secondary Software Sector: A Voice from
Industry. In Scotto and Succi [26], pages 82–87.

3. Andreas Birk, Torgeir Dingsøyr, and Tor Stålhane. Postmortem: Never Leave a Project
without It. IEEE Software, 19(3):43–45, 2002.

4. Andrea Bonaccorsi, Silvia Giannangeli, and Christina Rossi. Entry Strategies Under
Competing Standards: Hybrid Business Models in the Open Source Software Industry.
Management Science, 52(7):1085–1098, 2006.

5. Andrea Bonaccorsi and Christina Rossi. Comparing motivations of individual
programmers and firms to take part in the open source movement: From community to
business. Knowledge, Technology, and Policy, 18(4):40–64, dec 2006.

6. Daniel Brink, Llewelyn Roos, James Weller, and Jean-Paul Van Belle. Critical Success
Factors for Migrating to OSS-on-the-Desktop: Common Themes across Three South
African Case. In Damiani et al. [8], pages 287–293.

7. David Cruz, Thomas Wieland, and Alexander Ziegler. Evaluation Criteria for Free/Open
Source Software Products Based on Project Analysis. Software Process: Improvement and
Practice, 11(2):107-122, 2006.

8. Ernesto Damiani, Brian Fitzgerald, Walt Scacchi, and Marco Scotto, editors. Proceedings
of the 2nd IFIP Working Group 2.13 International Conference on Open Source Software
(OSS2006) - Open Source Systems, June 8-10, Como, Italy, volume 203/2006 of IFIP
International Federation for Information Processing. Springer, 2006.

9. Vieri del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi. Quality of Open
Source Software: The QualiPSo Trustworthiness Model. In Cornelia Boldyreff, Kevin
Crowston, Björn Lundell, and Anthony I. Wasserman, editors, Proceedings of the 5th IFIP
Working Group 2.13 International Conference on Open Source Systems (OSS2009) -
Open Source Ecosystems: Diverse Communities, June 3-6, Skövde, Sweden, volume
299/2009 of IFIP International Federation for Information Processing, pages 199-212.
Springer, 2009.

10. Jamie Dinkelacker, Pankaj K. Garg, Rob Miller, and Dean Nelson. Progressive Open
Source. In Will Tracz, Jeff Magee, and Michal Young, editors, Proceedings of the 24th
International Conference on Software Engineering (ICSE 2002), May 19th-25th, Orlando,
Florida, pages 177–184. ACM, 2002.

11. Joseph Feller, Brian Fitzgerald, Walt Scacchi, and Alberto Sillitti, editors. Proceedings of
the 3rd IFIP Working Group 2.13 International Conference on Open Source Software
(OSS2007) - Open Source Development, Adoption and Innovation, June 11th-14th,
Limerick, Ireland, volume 234/2007 of IFIP International Federation for Information
Processing. Springer, 2007.

12. Robert G. Fichman. Information Technology Diffusion: A Review of Empirical Research.
In Janice I. DeGross, Jack D. Becker, and Joyce J. Elam, editors, Proceedings of the
Thirteenth International Conference on Information Systems (ICIS '92), December 13th-
16th, Dallas, USA, pages 195-206, Minneapolis, MN, USA, 1992. University of
Minnesota.

13. Brian Fitzgerald. Open Source Software Adoption: Anatomy of Success and Failure.
International Journal of Open Source Software & Processes, 1(1):1–23, 2009.

14. Brian Fitzgerald and Tony Kenny. Developing an Information Systems Infrastructure with
Open Source Software. IEEE Software, 21(1):50–55, 2004.

15. Rishab Aiyer Ghosh. Study on the Economic Impact of Open Source Software on
Innovation and the Competiveness of the Information and Communication Technologies
(ICT) Sector in the EU. Technical report, UNU-MERIT, 2006.

16. Eugene Glynn, Brian Fitzgerald, and Chris Exton. Commercial Adoption of Open Source
Software: An Empirical Study. In June Verner and Guilherme Horta Travassos, editors,
Proceedings of International Symposium on Empirical Software Engineering (ISESE
2005), November 17th-18th, Noosa Heads, Australia, pages 225–234. IEEE Computer
Society, 2005.

17. Sigi Goode. Something for nothing: management rejection of open source software in
Australia’s top firms. Information & Management, 42(5):669–681, 2005.

18. Simon Grand, Georg von Krogh, Dorothy Leonard and Walter Swap. Resource allocation
beyond firm boundaries: A multi-level model for Open Source innovation. Long Range
Planning, 37(6): 591-610, 2004.

19. Øyvind Hauge, Claudia P. Ayala, and Reidar Conradi. Open Source Software in
Organizations - A Systematic Literature Review. TO APPEAR.

20. Øyvind Hauge, Carl-Fredrik Sørensen, and Reidar Conradi. Adoption of Open Source in
the Software Industry. Barbara Russo, Ernesto Damiani, Scott A. Hissam, Björn Lundell,
and Giancarlo Succi, editors. Proceedings of the 4th IFIP Working Group 2.13
International Conferences on Open Source Software (OSS2008) - Open Source
Development Communities and Quality, September 7th-10th, Milano, Italy, volume
275/2008 of IFIP International Federation for Information Processing, pages 211–222.
Springer, 2008.

21. Øyvind Hauge, Carl-Fredrik Sørensen, and Andreas Røsdal. Surveying Industrial Roles in
Open Source Software Development. In Feller et al. [11], pages 259–264.

22. Jesper Holck, Michael Holm Larsen, and Mogens Kühn Pedersen. Managerial and
Technical Barriers to the Adoption of Open Source Software. In Xavier Franch and Daniel
N. Port, editors, Proceedings of the 4th International Conference on Component-Based
Software Systems (ICCBSS 2005), February 7-11, Bilbao, Spain, volume 3412/2005 of
LNCS, pages 289–300. Springer, 2005.

23. Ari Jaaksi. Experiences on Product Development with Open Source Software. In Feller et
al. [11], pages 85–96.

24. Lorraine Morgan and Patrick Finnegan. Benefits and Drawbacks of Open Source
Software: An Exploratory Study of Secondary Software Firms. In Feller et al. [11], pages
307–312.

25. Bülent Ozel, Uros Jovanovic, Beyza Oba, and Manon van Leeuwen. Perceptions on
F/OSS Adoption. In Feller et al. [12], pages 319–324.

26. Everett M. Rogers. Diffusion of Innovations. Free Press, New York, USA, 5th edition,
2003.

27. Marco Scotto and Giancarlo Succi, editors. Proceedings of The First International
Conference on Open Source Systems (OSS2005), July 11th-15th, Genova, Italy, 2005.

28. Nicolas Serrano, Sonia Calzada, Jose Maria Sarriegui, and Ismael Ciordia. From
Proprietary to Open Source Tools in Information Systems Development. IEEE Software,
21(1):56– 58, 2004.

29. So Young Sohn and Min Seok Mok. A strategic analysis for successful open source
software utilization based on a structural equation model. Journal of Systems and
Software, 81(6):1014–1024, June 2008.

30. Davide Taibi, Luigi Lavazza, and Sandro Morasca. OpenBQR: a framework for the
assessment of OSS. In Feller et al. [11], pages 173-186.

31. Francis Tiangco, Alison Stockwell, John Sapsford, and Austen Rainer. Open-source
software in an occupational health application: the case of Heales Medical Ltd. In Scotto
and Succi [26], pages 130–134.

32. Kris Ven, Dieter Van Nuffel, and Jan Verelst. The Introduction of OpenOffice.org in the
Brussels Public Administration. In Damiani et al. [8], pages 123-134.

33. Kris Ven and Jan Verelst. The Organizational Adoption of Open Source Server Software
by Belgian Organizations. In Damiani et al. [8], pages 111–122.

34. Kris Ven and Jan Verelst. The Impact of Ideology on the Organizational Adoption of
Open Source Software. Journal of Database Management, 19(2):58–72, April 2008.

35. Kris Ven, Jan Verelst, and Herwig Mannaert. Should You Adopt Open Source Software?
IEEE Software, 25(3):54–59, 2008.

36. Kris Ven and Herwig Mannaert. Challenges and strategies in the use of Open Source
Software by Independent Software Vendors. Information and Software Technology, 50(9-
10):991{1002, August 2008.

PAPER 8

P9 Øyvind Hauge, Claudia P. Ayala, and Reidar Conradi. Open Source Software in
Organizations - A Systematic Literature Review. Submitted to Information and Software
Technology (IST) on December 3rd 2009.

193

Adoption of Open Source Software in Software-Intensive

Organizations - A Systematic Literature Review

Øyvind Hauge∗,1, Claudia Ayala1,2, Reidar Conradi1

IDI, NTNU, Sem Sælands vei 7-9, NO-7491 Trondheim, Norway

Abstract

Context: Open source software (OSS) is changing the way organizations
develop, acquire, use, and commercialize software.
Objective: This paper seeks to identify how organizations adopt OSS, classify
the literature according to these ways of adopting OSS, and with a focus on
software development evaluate the research on adoption of OSS in organiza-
tions.
Method: Based on the systematic literature review method we reviewed pub-
lications from 24 journals and seven conference and workshop proceedings,
published between 1998 and 2008. From a population of 24289 papers, we
identified 112 papers which provide empirical evidence on how organizations
actually adopt OSS.
Results: We show that adopting OSS involves more than simply using OSS
products. We moreover provide a classification framework consisting of six
distinctly different ways in which organizations adopt OSS. This framework
is used to illustrate some of the opportunities and challenges organizations
meet when approaching OSS, to show that OSS can be adopted successfully
in different ways, and to organize and review existing research. We find that
this research does not sufficiently describe the context of the organizations
studied. It is furthermore fragmented and fails to benefit fully from related
research fields. Finally, we present directions for future research.
Conclusion: Practitioners should embrace the many opportunities OSS of-

∗Corresponding author. Tel: +47 73 59 07 31; Fax: +47 73 59 44 66
Email addresses: oyvind.hauge@idi.ntnu.no (Øyvind Hauge),

cayala@lsi.upc.edu (Claudia Ayala), reidar.conradi@idi.ntnu.no (Reidar Conradi)
1Norwegian University of Science and Technology
2Technical University of Catalunya

Preprint submitted to Information Software Technology January 18, 2010

fers, but consciously evaluate the consequences of adopting it in their own
context. Practitioners may use our framework and the success stories pro-
vided by this literature review to understand how they can benefit from OSS.
Researchers should align their work and perform more empirical research on
topics which are important to organizations. Researchers may use our frame-
work to position their work and to describe the context of the organization
they are studying.

Key words:
open source software, organizations, software development, systematic
literature review

1. Introduction

The open source software (OSS) phenomenon has over the last decade
had a significant impact, not only on the software industry, but also on
software-intensive organizations in both the public and private sector. The
collaborative development model often associated with OSS communities has
introduced a new software development model. This model has inspired soft-
ware companies into evolving their existing development processes [60, 203]
and collaborating both internally and across company borders [7]. Next, it is
claimed that the existence of freely available software allows faster adoption
of technology, increased innovation, and reduced costs and time-to-market
[33, 139]. These potential advantages have influenced how organizations
acquire software, and have led to a significant adoption of OSS products
in several domains [89, 98, 140, 187]. Finally, OSS and its general lack of
license fees contribute to shifting the software industry’s traditional license-
based business models towards service-based models [79]. Hence, OSS is
significantly influencing the ways organizations develop, acquire, use, and
commercialize software [69].

It is therefore vital to help organizations in meeting the challenges related
to OSS, and to align our research efforts with their real needs. The topic for
this study is therefore adoption of OSS in software-intensive organizations,
with a particular focus on software development. To identify what we know
about how organizations adopt OSS we have performed a systematic liter-
ature review following the guidelines proposed by Kitchenham [115]. With
a focus on software development, this systematic literature review seeks to
evaluate, synthesize, and present the empirical research results on OSS within

2

organizations.
The targeted audience for this systematic review is primarily researchers

in the OSS, software engineering, and information systems fields, wanting to
study settings involving OSS and organizations. However, organizations and
practitioners which adopt (or plan to adopt) OSS may also appreciate the
review.

This systematic literature review contributes to the literature and ongoing
research on OSS within the software engineering and information systems do-
main in three ways: (1) by reviewing and summarizing what we know about
how organizations actually leverage OSS, (2) by providing a classification
framework for how organizations adopt OSS, and (3) by offering directions
for future research on OSS in organizations.

Researchers and practitioners may use these contributions to more clearly
understand the practical challenges when adopting OSS, and properly align
their efforts for facing them. Researchers may use this literature review to
get an overview of current research, identify new research questions, and
position and align their own work. More importantly, they may use our clas-
sification framework to describe and discuss the context of the organizations
they study. Practitioners may use this framework and the success stories pro-
vided here to understand how they may leverage OSS in their own context,
and to identify the practical challenges they might face when doing so.

The remainder of this paper is structured as follows: In Section 2 we
provide a brief background to OSS and an overview of other reviews of the
OSS literature. We develop a classification framework for how organizations
adopt OSS. In addition, we relate OSS to relevant research areas and present
the objectives of this study. In Section 3 we describe the systematic review
process. In Section 4 we characterize the literature on adoption of OSS in
organizations and use the classification framework to present key issues from
this literature. In Section 5 we answer our research questions and discuss
the results with their implications and limitations. Moreover, we provide
directions for future research. In Section 6 we conclude the paper.

2. Background

In this section we give a brief background on the OSS phenomenon and
summarize other reviews on OSS research. We present a classification frame-
work for organizational adoption of OSS. Then, we relate research on OSS

3

to relevant areas in software engineering and information systems research.
Finally, we present the objectives for this literature review.

2.1. Open Source Software

Eric Raymond describes the development of OSS as a bazaar-like activity
driven by volunteers, and claims that OSS is cheaper, has fewer defects, gets
improvements faster, and is generally better than ”other kinds” of software
[154, 155]. Based on the Apache and the Mozilla projects, Mockus et al.
[136] describe OSS development as controlled by groups of core developers
and supported by large communities of contributors. They hypothesize that
the OSS products have lower defect density than commercial software and
that OSS development rapidly responds to user requests. Others, e.g. Crow-
ston and Howison [44] and Scacchi [166], support this view and claim that
the development in OSS communities is distinctly different from traditional
software development.

This view of OSS and OSS development as being something radically
different has triggered research on a variety of topics. These include OSS
seen as a new innovation model [194], the motivations of OSS developers
[102], OSS business models [27] and a wide spectrum of other research topics
in computer science, management and organization science, social science,
psychology, economics, and law [85].

Software engineering research has for instance studied self-organizing in
OSS communities [45, 212], user-to-user support [119], knowledge manage-
ment [173], and quality assurance [215]. Software engineering researchers
have additionally used OSS products to study general software engineering
problems like evolution [211], cloning [114], and the use of metrics to identify
error prone classes [170].

However, the view that the development of OSS is something radically
different from traditional software development is questioned by, for instance
Fitzgerald [78] and Fugetta [84]. Østerlie and Jaccheri [146] offer a critique of
how OSS development has been described as a homogeneous phenomenon in
the software engineering research literature. The literature has not reflected
the variety observed in the OSS phenomenon, but rather has focused on
large, successful, and community-driven OSS projects. Moreover, Capiluppi
et al. [40] provide evidence that the majority of OSS projects struggle to
attract contributors, Noll [142] shows that OSS can also be developed inside
commercial software development companies without any active communi-
ties, and Stamelos et al. [177] show that the quality of OSS software is not

4

always as good as expected. Finally, Fitzgerald [79] argues that the OSS
phenomenon has evolved into a more commercially viable form where vol-
unteers and commercial organizations collaboratively contribute to evolving
the phenomenon.

There are thus conflicting views on what the OSS phenomenon actually
is and there is not even consensus on which label to use on the phenomenon.
We acknowledge that there are (minor) differences between open source, free
software, and free (libre) open source software (FOSS/FLOSS). However,
this ongoing debate is beyond the scope of this paper. We will instead treat
OSS, free software, and FLOSS as synonyms, and focus on software develop-
ment and the parts of the phenomenon where commercial organizations are
involved. We will in particular look at three aspects of it related to organiza-
tions: (1) the use of software products licensed with a license approved by the
Open Source Initiative [145], (2) the interaction with the communities sur-
rounding many OSS products, and (3) the use of the collaborative software
development practices often associated with many of these communities.

2.2. Summary of Previous Reviews

Reviews of the literature on OSS are given by Feller et al. [71], Stol and
Babar [180], Scacchi et al. [167], von Krogh and von Hippel [196], and the
aforementioned paper by Østerlie and Jaccheri [146]. While all these reviews
are on OSS, none of them focus on OSS in organizations. In fact, the adoption
of OSS in organizations is hardly mentioned by any of the authors.

Feller et al. [71] aim to identify the kinds of OSS communities that have
been studied, the kinds of research questions which have been asked, and the
methods researchers have used to answer these questions. The paper mainly
focuses on classifying and characterizing a set of 155 publications on OSS.
Feller et al. find that the OSS research literature has large gaps, and that
commercial organizations are underrepresented as subjects in the research on
OSS.

Stol and Babar [180] reviewed 219 publications from the four first Inter-
national Conferences on Open Source Systems. Like Feller et al. [71], Stol
and Babar focus on assessing the quality of the 63 empirical studies and find
that the literature needs to be improved. To this end, they offer a set of
guidelines for improving the quality of studies on OSS. Moreover, they clas-
sify the empirical papers into: research on OSS communities (39.7% of the
papers), OSS development and maintenance (20.6%), diffusion and adoption

5

of OSS (28.6%), and characteristics of OSS (11.1%). Stol and Babar thereby
confirm that OSS in organizations has attracted limited attention.

In an introduction to a special issue, Scacchi et al. [167] provide an
overview of the research on the development processes found in OSS projects.
Von Krogh and von Hippel [196] give an overview of some of the research
on OSS and organize it into three categories: motivations of contributors,
innovation processes, and competitive dynamics.

2.3. A Classification Framework for Organizational Adoption of OSS

To identify the challenges organizations face when approaching OSS and
to classify the literature, we developed a classification framework consisting
of six ways organizations adopt OSS. By ways of adopting OSS, we think of
ways in which software-intensive organizations can benefit from OSS prod-
ucts, the communities surrounding many of these product, or the develop-
ment practices often associated with the collaborative development of many
such products. We limit our focus to software-intensive organizations which
we define as private or public organizations extensively using or developing
software. Moreover, we focus on ways of adopting OSS which influence an
organization’s software infrastructure or software development.

We briefly present this framework in Table 1. By using the empirical
evidence identified in this review we will discuss some of the relations between
the different categories in Section 5.1.

2.3.1. The Classification Framework

The classification framework in Table 1 contains two main areas in which
organizations can benefit from OSS. First, deploying OSS products entails the
use, and if necessary configuration, of a spectrum of software. These products
range from infrastructure software (like operating systems, databases, and
application servers), through server-based software applications, to desktop
applications. Second, using OSS in software development can be broken
down into five categories.

Using OSS CASE tools involves using tools like integrated development
environments (IDEs), compilers, modeling tools, and so on. The use of OSS
CASE tools is indeed an example of OSS deployment. Still, we decided to
keep OSS CASE tools as a separate category for three reasons. First, the
focus of this review is software development, where CASE tools are exten-

6

Table 1: Organizational adoption of OSS
Way of adopting OSS Example

papers
Deploying OSS products in their operation environment as end users (e.g. deploying
OpenOffice.org, Linux, JBoss)

[62, 81, 190]

Using OSS CASE tools in software development (e.g. using Eclipse, Subversion,
GCC)

[13, 131]

S
o
ftw

a
re

d
ev

elo
p

m
en

t

Integrating OSS components into their own software systems (e.g. integrating
or extending Hibernate, Google Web Toolkit, Plone)

[8, 43, 186]

Participating in the development of OSS products controlled by another orga-
nization or community (e.g. contributing to Linux, Eclipse, OpenOffice.org)

[28, 101, 158]

Providing their own OSS products and relating to a community around these
products (e.g. providing MySQL, Qt, JBoss)

[7, 17, 202]

Using software development practices, often associated with OSS communities,
within a company or consortium of companies (e.g. using practices like code
sharing, peer reviewing, user contributions)

[61, 135, 203]

sively used. Second, there are large numbers of OSS CASE tools available3.
Third, there is already an established research field focusing on Computer
Aided Software Engineering (CASE) tools.

The integration of OSS components involves including OSS components
into other software products or systems. This integration may involve mod-
ifying, extending, or wrapping the OSS components. Even though both de-
ployment and integration of OSS entail reusing OSS products, it is valuable
to separate the two. Organizations which extend and possibly modify an
OSS product increase their dependence on the product and face additional
challenges related to maintenance. The difference between simply deploying
an OSS product and integrating it into one of your software systems is one
of degrees. For instance, building applications with tight integration of e.g.
architectural frameworks and persistence layers poses significantly different
challenges than simply deploying a desktop application.

By participating in the development of OSS, we mean the involvement
of organizations in existing OSS communities, although without having de-
cisive control over the OSS product or the community. Providing an OSS
product, involves organizations like JBoss, MySQL, and Qt Software, which
develop and release OSS products, control the development of these prod-
ucts, and relate to the community around them. The difference between the
two categories is again one of degrees. However, the challenges tied to relat-
ing to a community of thousands of users around one of your own products

3For instance http://www.tigris.org/ has more than 500 such tools

7

are different from those related to contributing a bug-fix to a product con-
trolled by someone else. The division between providing and participating is
also noticed by, for instance, Ågerfalk and Fitzgerald [7] and Dahlander and
Magnusson [50].

There is no set of development practices which are universal to all OSS
projects. Nevertheless, practices such as user participation, short release cy-
cles, and peer code reviews have frequently been associated with OSS projects
and are often labeled ”OSS practices” [72, 166, 215]. Lately, several orga-
nizations have tried to learn from the development practices in successful
OSS projects, through applying these practices within their own organiza-
tion [60, 135, 203].

2.3.2. Related Classifications

The framework extends earlier work in three ways. First, we identify new
ways of adopting OSS as compared to Hauge et al. [99] and Ziemer et al.
[216]. In [99], we present the four roles of OSS integrator, OSS participant,
OSS provider, and inner source software participant as possible ways of ap-
proaching OSS. In [216], we present cases from companies which adopt OSS
through development with OSS practices and tools, development with OSS
products, and development of OSS products. Second, we have a somewhat
broader scope than Dahlander and Magnusson [49, 50], who focus on the
relationships between organizations and OSS communities. Third, we focus
on software development rather than resource allocation as in Grand et al.
[94], or business models as in Hecker [100]. However, the levels in the four-
level ladder for resource allocation presented by Grand et al. [94] are partly
compatible with some of our categories. Table 2 relates our framework to
relevant classifications in [94, 99, 216].

Table 2: The framework and its mapping to related classifications
Way of adopting OSS Mapping to other papers
Deploying OSS products Level 1 [94]

Using OSS CASE tools Level 1 [94] and Development with OSS practices and tools
[216]

S
o
ftw

a
re

d
ev

elo
p

m
en

t

Integrating OSS components Level 2 [94], OSS integrator [99], and Development with OSS
products [216]

Participating in OSS communities Level 3 [94], OSS participant [99]
Providing OSS products Level 3/4 [94], OSS provider [99], and Development of OSS

products [216]
Using OSS development practices Inner source software participant [99], and Development with

OSS practices and tools [216]

8

2.4. Related Research Fields

In their effort to define OSS, Gacek and Arief [85] consider research fields
like computer science, management and organization science, social science,
psychology, economics, and finally law as relevant. To put OSS research
into context we will relate it to relevant research areas. However, as this
literature review focuses on software development, we will consider research
areas only within software engineering and information systems. While we
draw parallels between OSS and some related research areas in Table 3, it is
not an extensive list.

Table 3: OSS research in relation to other research areas
Way of adopting OSS Related research areas
Deploying OSS products Introduction, deployment, diffusion, and acceptance of informa-

tion systems (IS) and information technology [191, 192]
Using OSS CASE tools Computer Aided Software Engineering (CASE) [83, 207]
Integrating OSS components Component-Based Software Engineering (CBSE) [35, 122, 134,

208] and software reuse [137, 193]
Participating in OSS communities No clearly related research area within SE/IS. However,

Ågerfalk and Fitzgerald relate their research with
offshoring and outsourcing [7]

Providing OSS products

Using OSS development practices Software process improvement [1, 65], distributed development
[150], global software development [174], and agile development
[199]

In this review we will consider three ways of using OSS products. OSS
products may first of all be deployed as-is without any changes, used as CASE
tools in software development, or integrated into other software systems. All
these three ways of using OSS products are related to established research
areas within software engineering and information systems research.

The introduction, diffusion, and acceptance of information systems and
information technology have already been studied for a long time in the
information systems field [191, 192]. As we mentioned above, there is an
established research area on CASE tools [83, 207]. Finally, the integration of
OSS components is closely related to research on, for instance, Component-
Based Software Engineering (CBSE) [35, 122, 134, 208] and software reuse
[137, 193].

A large part of the OSS phenomenon is centered on community interac-
tion, either as a provider of an OSS product or as a participant in a com-
munity controlled by someone else. Within the software engineering and
information systems research fields, we find no clearly related research areas.
Nevertheless, Ågerfalk and Fitzgerald [7] relate their research on company
intervention in OSS communities with offshoring and outsourcing.

9

Finally, Scacchi et al. [167] discuss the software development processes
and practices used in OSS communities. Such work can be related to, for
instance, software process improvement [1, 65]. Other researchers relate the
development processes in OSS communities to distributed development [150],
global software development [174], and agile methods [199].

2.5. Objectives of this Review

Our overall objective of summarizing what we know about how organi-
zations adopt OSS has been broken down into three more concrete research
questions:

RQ1 In what ways are software-intensive organizations adopting OSS?

RQ2 What has been the focus of the empirical research on adoption of
OSS in organizations?

RQ3 What are the characteristics and limitations of current, empirical
research on organizational adoption of OSS?

Even though we see that organizations approach OSS in different ways
there are several publications discussing organizational adoption of OSS with-
out clarifying how or what the involved organizations actually do related to
OSS. Some papers discuss ”F/OSS usage and adoption” in public adminis-
tration [148], or companies which ”have entered the open source field” [27]
and ”are active in the OSS domain” [153]. Understanding the practical im-
plications of a specific way of adopting OSS is therefore difficult. So, by RQ1,
we want to identify existing ways of leveraging OSS.

When identifying these ways of adopting OSS we will in particular focus
on organizations which develop software and approaches to OSS related to
software development. This focus is also valid for RQ2. Through RQ2,
we seek to identify the focus of research on OSS in organizations, but with
a particular focus on software development. Finally, by RQ3 we aim to
characterize the research on OSS in organizations, assess its quality, and in
particular identify its limitations.

3. Research Method

The evidence-based software engineering (EBSE) paradigm aims to in-
tegrate the current best evidence from research with practical experience
[117]. Literature reviews, and in particular systematic literature reviews,

10

have therefore become popular within the software engineering research field
as a means of evaluating what we know in a specific area. For instance,
researchers have reviewed published evidence on search-based testing [5],
knowledge management [21], cost estimation [111], and several other topics
[116].

To answer our research questions, we systematically assessed existing ev-
idence related to the adoption of OSS in organizations, using Kitchenham’s
guidelines for systematic literature reviews [115]. The review process was
split into several stages, each of which was performed individually by two
researchers followed by an iterative process to reach consensus before facing
a new stage. The following subsections describe the steps of the literature
review.

3.1. Search and Classification Process

The search process combined searching digital libraries with manual eval-
uation and classification of the results. Figure 1 presents an overview of the
review process and the number of publications included in each stage.

Stage 1 (S1) n = 24289
Activity: Selected a clearly defined set of publication sources
Criteria: Published in a source from Table 1

Stage 2 (S2) n = 1540
Activity: Identified publications through database search
Criteria: Publications containing "open source"

Stage 3 (S3) n = 674
Activity: Reviewed titles and abstracts
Criteria: Publications concerning OSS in general

Stage 4 (S4) n = 162
 Activity: Reviewed by skimming the text
 Criteria: Publications concerning OSS in organizations

Stage 5 (S5) n = 112
Activity: Reviewed by reading the full text
Criteria: Empirical evidence on the use of OSS in organizations

Figure 1: Stages of the study selection process (Adapted from [66])

3.1.1. Stage 1 - Defining a Set of Publications

To have a clearly defined set of publications serving as a basis for this
study, we selected a set of publication channels rather than openly searching
available digital libraries. Relevant journals and conferences were taken from
previous literature reviews on software engineering [66, 92, 113, 116, 171]

11

and OSS [71, 146, 167, 196]. Table 4 gives an overview of the final sample of
publication sources.

Appendices A and B contain more detailed overviews of where we col-
lected the publications, the publication sources’ total number of publications
between 1998 and 2008, the number of publications included in each of the
five stages (S1-S5), and so on.

Table 4: Publication sources
Software Engineering OSS, Information Systems, and

Management

J
o
u

rn
a
ls/

m
a
g
a
zin

es

• ACM Transactions on Software Engineering and
Methodology (TOSEM)
• Communications of the ACM
• Empirical Software Engineering (EMSE)
• IEE Review
• IEE Software Proceedings/IET Software
• IEEE Computer
• IEEE Software
• IEEE Transactions on Software Engineering (TSE)
• Information and Software Technology (IST)
• Journal of Systems and Software (JSS)
• Software Practice and Experience
• Software Process: Improvement and Practice

• First Monday
• Information Systems Journal (ISJ)
• Journal of Database Management
• Journal of Industrial Economics
• Knowledge Technology and Policy
• Long Range Planning
• Management Science
• MIS Quarterly
• MIS Quarterly Executive
• MIT Sloan Management Review
• Organization Science
• Research Policy

C
o
n

feren
ces/

w
o
rk

sh
o
p

s

• IEEE International Symposium on Empirical Soft-
ware Engineering (ISESE)
• IEEE International Symposium on Software Met-
rics (METRICS)
• International Conference on Software Engineering
(ICSE)
• International Symposium on Empirical Software
Engineering and Measurement (ESEM)

• ICSE Workshop on Open Source Soft-
ware Engineering (WOSSE)
• ICSE Workshop on Emerging Trends in
FLOSS Research and Development
• International Conference on Open
Source Systems (OSS)

3.1.2. Stage 2 - Searching with Keywords in Digital Libraries

Publications on OSS from the specific journals and conference proceedings
were identified by searching through a variety of digital libraries and manually
reviewing several static web pages. Only papers published in English between
1998 and 2008 were considered.

To avoid overlooking relevant publications, we opted for a search strat-
egy with high sensitivity [58]. This means that instead of using keywords
like ”commercial open source” and ”open source in industry”, we conducted
all searches using the keywords ”open source” (including quotation marks)
and searched the digital libraries using all fields, including full text where
available. For IEEE Xplore only metadata search was used, even though we

12

discovered late in the review process that it was also possible to search the
database using full text search (see the discussion in Section 5.5).

To verify that using the keywords ”open source” included all relevant pub-
lications, we also tried searching using the keywords ”free software”. How-
ever, relevant papers also contained the keywords ”open source”.

The searches were conducted from November 2008 and finally revised
January 2009. Bibliography for all the publications was stored in the external
bibliography system4.

3.1.3. Stage 3 - Reviewing Titles and Abstracts - Papers on OSS in General

To identify publications which in fact were about OSS and did not just
contain the keywords ”open source”, we individually reviewed the 1540 pa-
pers from the previous stage based on their titles and abstracts, and if neces-
sary by skimming the full text. Only papers on OSS topics like communities,
software development, licensing, business models, adoption, use, and soft-
ware engineering were included. Papers on other open, collaborative activi-
ties (open courseware, wikinomics, open access) were rejected. Additionally,
we rejected introductions of panels, conferences, and special issues, book
reviews, news flashes, and PhD symposium papers.

First, a total number of 763 publications were included by either of the
two first authors. The agreement between the authors was very good (Kappa
value of 0.83). A Kappa value between 0.81-1.0 is an almost perfect agree-
ment and between 0.61-0.80 is a substantial agreement [120]. After two joint
consensus iterations we discarded 89 of the 763 papers and ended up includ-
ing 674 publications.

3.1.4. Stage 4 - Skimming the Text - Papers on OSS in Organizations

Next, to identify publications on adoption of OSS in organizations, we
individually went through the output of the third stage and evaluated the
papers’ topics by reviewing the titles and abstracts, and by skimming the
papers. Publications on adoption, use, and development of OSS in organiza-
tions were included, while those not related to OSS in software development
or actual use of OSS products were rejected. This included approaches to
the OSS phenomenon from economical or social sciences and papers on inno-
vation theory, business models, etc. Moreover, papers proposing methods or
(classification) frameworks without any empirical validation were rejected.

4Aigaion: http://aigaion.nl/

13

Initially 211 publications were included by either one of the two first
authors. The agreement was again quite good (Kappa value of 0.68). After
another joint iteration we rejected 49 papers and classified 162 publications
as being relevant to OSS in organizations.

3.1.5. Stage 5 - Reading the Text - Papers with Empirical Evidence

Then, we classified the publications into three categories inspired by [138];
(R) empirical research papers where the authors present evidence from a re-
search study having an explicit research question, (E) experience reports
where the authors report experiences without having defined an explicit re-
search question, and (N) non-empirical papers. The non-empirical category
includes opinion papers and theoretical papers without explicit empirical ev-
idence.

Of the 162 included papers, 59 were classified as empirical research papers
(R), 53 as experience reports (E), and 50 as non-empirical papers (N). Non-
empirical papers may increase the understanding of how organizations adopt
OSS, but they are not providing any new evidence of how organizations
actually do this. Hence, these papers were not included. Accordingly, the
final stage of the review included 112 publications.

3.2. Quality Assessment

As the research field on OSS adoption is still immature, and since there are
no other review papers on the same topic, we did not want to exclude papers
because of their lack of rigor. The quality assessment was therefore performed
only to evaluate the rigor of the presented research in each publication.

We assessed the 59 empirical research papers using the nine quality met-
rics (QM) presented below. This schema is inspired by other SLRs [66, 178],
and the evaluation criteria used in different journals and conferences [138].
The schema was designed to contain only binary values (yes/no). The quality
of the experience reports was not assessed as they did not contain any ex-
plicit research questions and most often no descriptions of method, findings
and so on.

QM1: Does the paper have a description of the research method?

QM2: Does the paper describe an explicit research question/goal/purpose?

QM3: Does the paper describe motivation for the research question(s)?

QM4: Does the paper discuss limitations or validity?

QM5: Does the paper describe the context of the research?

14

QM6: Does the paper describe data collection?

QM7: Does the paper describe data analysis?

QM8: Does the paper describe sampling or selection of the study object(s)?

QM9: Does the paper present any data?

The quality assessment was performed by one of the two first authors
and verified by the other. We simply verified whether or not the publications
mentioned or discussed issues related to each of the quality metrics. Assess-
ments of the extent to which a paper actually fulfilled each of the quality
metrics, and assessments of the papers’ relevance to practitioners were not
performed. Any differences between the two first authors were solved through
discussions until a consensus was established.

3.3. Data Extraction

In the data collection stage we extracted the following from each of the
publications: main topic, research question or research goal, research method,
study objects, a brief description of empirical evidence relevant to use of OSS
in organizations, and the affiliation and home country of the first authors.

Following the recommendations by [36], one researcher extracted the data,
while the other confirmed the extracted data. Similar to [67], we frequently
used consensus meetings to extract data. These meetings were also used to
identify the topics which are discussed in the next sections of this review.

4. Results

In this section we describe the results from the evaluations of the publica-
tions included in the final stages of this review. Based on these evaluations we
present some characteristics of the literature on OSS in organizations. Then,
we use the classification framework from Section 2.3 to give an overview of
the topics discussed in the literature, and to identify the most important
findings and challenges related to software development.

4.1. Characteristics of the Literature

Here we characterize the literature by presenting the number of publica-
tions per year, the contexts in which research has been performed, and the
applied research methods. Finally, we present the results from the quality as-
sessment. These overviews focus mainly on the 59 empirical research papers.
More detailed data can be found in Appendix B.

15

4.1.1. OSS Related Activity in the Literature

Both the number of publications related to OSS in general (S3) and to
OSS in organizations (S4) has increased significantly the last decade. How-
ever, this increase seems to have stabilized in the last years, with about 100
publications per year on OSS and between 20 to 30 publications on topics
related to OSS in organizations (see Figure 2). While the results show a
significant lack of empirical research papers on OSS in organizations until
2003, the number of such papers has increased since then.

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
0

20

40

60

80

100

120
Empirical research papers
on OSS in organizations
Experience reports on
OSS in organizations
Non-empirical papers on
OSS in organizations
All papers on OSS

Figure 2: The number of papers on OSS and OSS in organizations

The distribution of the papers with respect to our classification framework
is shown in Figure 3. The majority of the 112 empirical papers could be put
into one of the six categories. However, 21 papers discussed issues relevant to
two or more categories. Another 19 papers were not specific to any particular
way of adopting OSS, but rather discussed topics related to adoption of OSS
in general. Hence, it was necessary to add another category (OSS adoption
in general) to classify all the publications. It is, however, important to note
that Table 1 shows how an organization may adopt OSS, while Figure 3
presents a classification of the empirical papers on OSS in organizations.

4.1.2. The Contexts in which Research Is Done

We see that almost all the papers have a first author from Europe (49 em-
pirical research papers (R) and 29 experience reports (E)) or North America

16

Deploying OSS products
Using OSS CASE tools

Integrating OSS component
Participating in OSS communities

Providing OSS products
Using OSS practices

OSS adoption in general

0

2

4

6

8

10

12

14

16

18

20

Empirical research papers
(of 59 papers)
Experience reports
(of 53 papers)

Figure 3: The number of papers in each category

(7 R and 22 E). Publications from the other continents are almost non-
existing, as few publications occur from Australia (1 R and 0 E), Asia (2 R
and 1 E), and Africa (1 R and 0 E). The USA (6 R and 22 E) and Italy (13
R and 8 E) were the two countries with by far the most publications.

From Figure 4 we see that the contexts where the research is performed
come from both the private and public sector. However, the papers often
focus on large communities such as GNOME and Debian GNU/Linux, portals
like SourceForge [20, 28, 101, 158], large companies as Nokia, Philips Medical,
and Hewlett Packard [107, 135, 203], and well known OSS companies like
MySQL and JBoss [49, 202]. However, this bias was not as significant as
expected.

A few other issues are worth mentioning. First, all of the eight empirical
research papers from the public sector focus on deployment of OSS prod-
ucts. Besides [37], which has a mixed sample, no paper focuses on deploying
OSS in the private sector. Second, 27 of the 59 empirical research papers
report findings from samples of several organizations from the private sec-
tor. However, as few as eight papers report findings from one single private
organization. Hence, most research papers dedicate relatively little space to
describing the individual organizations.

4.1.3. The Research Methods

We classified 53 of the 112 empirical papers identified in this review as
experience reports. Hence, the most common method of studying the OSS
phenomenon in organizations is through experience reports. These experi-
ence reports lack explicit research questions, and most also lack a method
description.

17

Research project
OSS community

Public
Mixed public and private

One private organization
Several private organizations

Unclear

0

5

10

15

20

25

30

35

Empirical research papers
(of 59 papers)
Experience reports
(of 53 papers)

Figure 4: The context of the empirical research papers and the experience reports

Table 5 presents an overview of the research method reported in the 59
empirical research papers. Based on the classification provided by Glass et
al. [92], we observed a focus on case studies and surveys.

Table 5: Research methods used
Research method Number of publications
Case study 29
Survey 18
Data analysis 6
Experiment 2
Case study and survey 2
Field study 1
Grounded theory 1

Almost all of the studies were retrospective and gathered information
about past events. This was often done through the use of interviews and
questionnaires. Moreover, most of the studies collected information at one
point in time. Of the 15 publications we classified as longitudinal, seven
presented research in the form of mining and analysis of historical data.

4.1.4. Quality Assessment of the Research on OSS in Organizations

As described in Section 3.2, we developed nine quality assessment metrics.
Each of the empirical research papers were evaluated to either cover or not
to cover these metrics. This was indicated by assigning each of the nine
metrics a binary value of either 1 (cover) or 0 (do not cover). Most of the 59
empirical research papers got a relatively high score in this quality assessment
(see Table 6). The median score of this assessment was 8, the mode 9, and
the mean value was 7.0.

18

Table 6: Quality assessment: Distribution of research papers
Quality assessment score 0 1 2 3 4 5 6 7 8 9 Total
Number of papers 0 0 2 5 1 3 8 8 15 17 59

The binary metrics unfortunately do not reflect the precise extent to
which the papers deal with the issues covered by each of the quality metrics
(see further discussion in Section 5.5). In fact, most papers do little more
than mention such issues as research questions, limitations, data analysis,
and so on. We furthermore found that many of the publications lack details
about the research methods and findings. As a consequence, several papers
have limitations when it comes to how they describe these issues. Moreover,
many of the research papers are explorative and they are therefore lacking a
precise focus and clear contributions.

4.2. Research on OSS in Organizations

In this section we present the focus of the research literature on OSS
in organizations. This overview is presented according to the classification
framework presented in Table 1. Given the review’s focus on software devel-
opment, we will emphasize the findings and challenges relevant to software
development.

In the overview we will focus on the 59 empirical research papers, and will
give a brief overview of all the included empirical research papers in Tables 7
to 12. However, we will in some cases include some of the experience reports
as well. References to all the experience reports may be found in Appendix
B.

4.2.1. General Topics on Adoption of OSS

As many as 19 research papers cover topics which are general to OSS
adoption, rather than directly related to the individual ways in which orga-
nizations adopt OSS. These papers discuss mainly (1) the perceived benefits
and drawbacks of OSS or the motivations for adopting it [33, 139], (2) the
success factors for adoption of OSS [93, 172], and (3) the extent to which OSS
is actually adopted [98, 141]. See Table 7 for an overview of the empirical
research papers.

4.2.2. Deploying OSS Products

In total, 10 research papers and six experience reports focus on the de-
ployment of OSS products. The majority of these are short papers (six pages

19

Table 7: Focus and findings from the empirical research papers on adoption in general
ID Topic
[6] Discusses different strengths/opportunities and threats/weaknesses to OSS in the sec-

ondary software industry. Concludes that the industry is aware of both the pros and
cons.

[27] Companies select hybrid (OSS and proprietary software) business strategies when ap-
proaching OSS.

[29] Of 769 companies only 19 provide OSS (based) solutions alone and 236 provide both
proprietary and OSS (based) ones.

[32, 33,
162]

Companies emphasize (pragmatic) economic and technological motivations for approach-
ing OSS. However, intrinsic motivations may play a role as well.

[91] Motivations for (reduced costs, freedom from vendors) and extent of adoption of OSS
products (used by all respondents).

[93] OSS adoption is complex. Develops a framework for adoption of OSS products consisting of
an external environment, individual factors, and organizational and technological contexts.

[94] Develops a four level model for resource allocation to OSS, showing varying dedication to
OSS.

[99] Illustrates four different ways of adopting OSS.
[98] Shows that about 50% of the Norwegian software industry integrates OSS into their prod-

ucts, that about 16% participate in the development of OSS products controlled by some-
one else, and that about 5% provides their own OSS products.

[127] OSS ideas may be adopted in different ways. Uptake of OSS is high. The interest in OSS
is beyond simply using the LAMP stack.

[139] Discusses several benefits and drawbacks of OSS.
[141] About 50% of the software companies in the Finnish survey use OSS products in their

business.
[153] Organizations are only willing to collaborate if they get financial gains. Discusses motiva-

tions for approaching OSS.
[172] Analyzes different factors which may influence the adoption of OSS products in software

development.
[188] Motivations for using OSS server software: lower cost, higher reliability, availability of

external support. Source code only interesting for integrators.
[189] Organizations are pragmatic in the adoption of OSS. The influence of ideology could matter

in smaller organizations.
[204] Discusses hybrid (open and proprietary) business strategies in large companies.

20

or less) discussing the experience from one context with one or a few OSS
products. Most of these papers illustrate successful use of one or more OSS
products (see Table 8 for an overview of the research papers).

Table 8: Focus and findings from the empirical research papers on deploying OSS
ID Topic
[91] Respondents have not performed cost analysis.
[37] Identifies seven critical success factors for migrating to an OSS desktop: financial mo-

tivation, management support, user awareness, planning planning, analysis and testing,
training, pilots, and support.

[62] Overcoming barriers for migration of the desktop environment. Migration of the desktop
could be hard work. Stakeholders’ attitude may vary and change over time.

[148] Identifies several enablers and inhibitors of deployment of OSS products
[161] Monitors the introduction of OpenOffice.org.
[159] Monitors the use of OpenOffice.org. Illustrates significant adoption.
[160] Illustrate the public sectors’ strong commitment to proprietary document formats, despite

using OpenOffice.org
[164] Monitors the introduction of OpenOffice.org. User’s lack of experience is a barrier.
[187] OpenOffice.org migration is possible, but not problem free. Issues often specific to envi-

ronment. Training is important. No formal cost analysis was performed.
[190] Benefits of OSS depend on context. Comparing ”OSS” directly with ”proprietary software”

in general is futile. Respondents did not perform cost analysis. This should be done.

While the deployment of OSS can give cost savings, migrating from one
technological platform to another is hard work which often includes cus-
tomization, adaptation, integration, and testing [62, 187].

The general costs related to such a migration are unclear [62, 187], and
there are very few studies showing complete calculations of the true costs and
savings of (1) introducing OSS products into organizations, and (2) keeping
the OSS products operational over a longer period of time. One paper reports
cost savings from an OSS migration project at Beaumont Hospital [81], but
it is published just after the initial stage of the project is finished.

Despite this unclarity, many organizations seem to be blinded by the per-
ceived advantages of OSS and have therefore adopted it without performing
any cost-benefit evaluations in their own context [91, 187, 190]. The adoption
of OSS is furthermore frequently bottom-up, in the sense that it is introduced
by engineers rather than strategic top-level decisions [188].

4.2.3. Using OSS CASE Tools

Despite having a close relation to the CASE research field, only seven
experience reports discuss the use of OSS CASE tools in the context of
organizations. Given the amount of OSS CASE tools available, it is surprising
that the use of such tools has not been studied in any empirical research
papers.

21

4.2.4. Integrating OSS Software into Software Systems

Only six empirical research papers discuss issues related to integration
of OSS components. There are, however, as many as 16 experience reports
which briefly describe the integration of some OSS components.

Table 9: Focus and findings from the empirical research papers on integrating OSS
ID Topic
[8] Software organizations can increase productivity and quality through integrating system-

atic reuse of OSS components. OSS reuse does not require any special skills and experience
other than software reuse in general.

[43] Major cost with OSS is learning and understanding new components. Local knowledge
and compliance to requirements were the most decisive factors in choosing components.
A high number of components needed fixes or modifications.

[106] There is a need for human computer interaction experts in the OSS context. Reuse of
OSS enables them to spend more time on user interface. It is challenging to decide what
to contribute because of licenses and patents, and as user interface code can be considered
a competitive advantage.

[123] There are many similarities in using OSS and COTS. Source code is seldom used. Hard
to assess providers’ (community) reputation.

[130, 186] Identifies challenges related to modifying OSS components, and strategies (contributing,
snapshot, forking, and initiating a new OSS project) for dealing with these modifications.

The integration of OSS components is one of the most popular ways of
adopting OSS, in particular in the software industry. From a sample of 146
OSS firms, 69.5% reported that they had adapted OSS to customer needs
[27]. In another sample of 769 companies 33% ”provide solutions which are
based on OSS” [29]. Moreover, 48% of 62 software companies use OSS in their
business [141], and in a sample of 569 software companies, 46.8% integrate
OSS in their software systems [98]. These software systems represent a great
variety of application areas from all major vertical sectors [98]. Finally, Nokia
claims that as much as 75% of the software architecture for its Internet tablet
consists of OSS [107].

Ajila et al. [8] and Li et al. [123] claim that the similarities between reuse
of OSS and COTS (commercial-off-the-shelf) are significant. No particu-
lar skills or experience is needed to integrate OSS components into another
product [8].

Li et al. [123] claim that the source code of OSS components is seldom
modified. Still, Chen et al. [43] report that it is necessary to modify or adapt
many of the OSS products. Mannaert and Ven [130, 186] and Iivari et al. [106]
discuss some of the challenges related to modifying and extending an OSS
product. These challenges are somewhat special for OSS since any developer
has access to the product’s source code and since it is possible to return the

22

modifications to the provider of the product. Finally, Ven and Mannaert [130,
186] present four strategies for dealing with these modifications: contributing
to the OSS community, relying on a snapshot of the code base, forking the
OSS product, or releasing modifications to the OSS product as a new OSS
product.

Some of the most significant challenges of OSS-based projects are, ac-
cording to Chen et al. and Li et al. the cost related to learning and under-
standing the OSS components, and estimating the time it takes to integrate
them [43, 123]. This could be the reason why local expertise is so important
in the decision making when selecting an OSS component [43].

4.2.5. Participating in the Development of OSS

As stated previously, software companies and software intensive organi-
zations have started to base their existence on the use of OSS components
developed by OSS communities [98]. As many as 16 empirical research papers
and six experience reports provide evidence on organizations’ participation in
OSS communities. These organizations are thereby playing an increasingly
important role in many OSS communities.

Most organizations seem to have rather limited contributions to the OSS
communities [33, 43, 91, 98]. The most common way of participation is being
an active user that reports occasional bugs to the community [43, 98, 99].
Only one of 32 respondents from a sample of tertiary education institutions
had participated actively by writing code, while 14 had contributed to an
OSS community through reporting bugs [91]. Furthermore, Bonaccorsi and
Rossi [32] found that 46.2% of companies using OSS components have not
joined any OSS projects, whilst 38.5% have joined five or fewer.

While the majority of organizations contribute on a rather limited level,
the total body of all organizations contributes substantially to various OSS
products [28, 158]. First, Bonaccorsi et al. [28] report that organizations par-
ticipated in 97 of the 300 most active projects on SourceForge. Second, in a
sample of community controlled OSS projects, paid developers contributed
almost 50% of the code [200]. Moreover, the number of organizations con-
tributing to OSS seems to be increasing, for instance the number of compa-
nies participating in the Debian GNU/Linux community has increased from
200 (in 1998) to 1500 (in 2005) [158]. Organizations within the Linux Ker-
nel community are central to the community and do in fact have significant
influence on it [2]. Organizations may have positioned themselves there be-
cause they believe they have to be involved to influence the community [51].

23

Table 10: Focus and findings from the empirical research papers on participating in the
development of OSS

ID Topic
[2] Influence in the Linux Kernel community is centered to a small group. Organizations have

a significant influence on this group.
[20] Shows different types of employee participation. OSS projects are not uniform and homo-

geneous. Could be challenging to get contributions accepted.
[31] Many companies participate in OSS communities. Companies mainly adapt the OSS

product to their needs.
[28] Companies coordinate, develop code for, or provide libraries to one third of the 300 most

active Sourceforge projects. Projects where companies are involved are larger.
[50] Organizations make use of OSS communities through accessing, aligning, and assimilating

the communities.
[51] Companies strategically sponsor individuals to influence OSS communities. Firms believe

they need someone on the inside to influence the communities.
[49] Organizations may have a symbiotic, commensalistic, or parasitic relationship to OSS

communities.
[70] Shows how a network of companies around an OSS product can collaborate to deliver a

”whole product”.
[101] Different companies have different reasons for contributing. Code sharing is very hetero-

geneous. Companies share more than they have to.
[106] There is a need for human computer interaction experts in the OSS context. Reuse of

OSS enables them to spend more time on user interface. It is challenging to decide what
to contribute because of licenses and patents, and as user interface code can be considered
a competitive advantage.

[129] Software developers who participate in OSS communities spend close to 50% of this time
through their work.

[130, 186] Identifies challenges related to modifying OSS components, and strategies (contributing,
snapshot, forking, and initiating a new OSS project) for dealing with these modifications.

[132] Time based releases seem to boost development in community-company collaborations.
[158] A large number of companies give significant code contributions to Debian.
[200] OSS providers must write most (+90%) of the code themselves. About 50% of the code

in community controlled OSS projects was written by paid developers.

24

Nevertheless, companies are clearly becoming a very important part of the
OSS community.

To make sure that an OSS product prospers, and to make sure that modi-
fications to the product’s code are maintained, an organization may decide to
contribute to the product’s community. However, Ven and Mannaert [186]
mention several barriers for contributing to an OSS product. The organi-
zation must first of all spend resources on getting to know the community.
Then they may have modifications which are very specific to their own or-
ganization or which influence several OSS projects. If the patch is accepted
into an OSS product, the organization may have to spend resources main-
taining it as part of the OSS project. Deciding not to contribute can also
be risky as one may be forced to maintain a parallel copy of the product. In
addition, Iivari et al. [106] illustrate how the fear of losing the competitive
edge, and difficulties with licenses and patents, can prevent an organization
from contributing.

Dahlander and Magnusson [49, 50] discuss company-community relation-
ships and how organizations can benefit from communities. In [49] they
identify three types of organization-community relationships:

• Symbiotic: Both the community and the organization benefit from
the relationship.

• Commensalistic: The organization benefits from the relationship but
the community is not affected.

• Parasitic: The organization benefits from the relationship but at the
same time it damages the community.

Later Dahlander and Magnusson [50] show how organizations use three
strategies to benefit from OSS communities. First, organizations access
existing communities or start their own communities. Second, they align
their strategies with the community. Third, they assimilate the community
through dedicating resources to evaluating contributions from the community
or by contributing non-strategic code to the community.

4.2.6. Providing OSS Products

Many organizations have over the last years released their software as
OSS. In total, 15 empirical research papers and 19 experience reports show
how these organizations have developed and provided their own OSS prod-
ucts.

25

Table 11: Focus and findings from the empirical research papers on providing OSS products
ID Topic
[7] Shows a shift from OSS as individual to OSS as a community of organizations. Explores

the opportunities organizations have related to community collaboration.
[17] Presents three cases with robot (hardware) vendors which also provide OSS software for

their robots.
[49] Organizations may have symbiotic, commensalistic, or parasitic relationship to OSS com-

munities.
[50] Organizations make use of OSS communities through accessing, aligning, and assimilating

the communities.
[52] Analyses the transfer of OSS developed in academia to commercial products.
[82] Companies with many patents will more likely release OSS. Companies with many software

trademarks are less likely to release OSS. Companies with many hardware trademarks are
more likely to release OSS.

[110] Organizations must balance leadership vs. too strict control.
[126] Of 134 products from 70 Italian companies, 27 are released as OSS. These products are

considered at least as innovative as the proprietary ones.
[132] Time based releases seem to boost development in community-company collaborations.
[144] Provides recommendation for succeeding with an OSS product: Improve product and

documentation, listen to the community, make it easy to download and install it.
[200] OSS providers must write most (+90%) of the code themselves. About 50% of the code

in community controlled OSS projects was written by paid developers.
[202] Illustrates the evolution of JBoss’ business model.
[201] Discusses ”second generation” OSS business models and presents some data from four

OSS providers.
[204] Discusses hybrid (open and proprietary) business strategies in large companies.
[206] Explores some challenges related to legitimizing the use of an OSS business model.

In a sample of 368 software companies, 5% said they provided their own
OSS products [98]. In a sample of 134 software products, developed by 70
Italian companies, 27 (20%) products were released as OSS [126]. Further-
more, 36 (12%) of the 300 most active projects on SourceForge were founded
by companies [28]. Moreover, we observe that Microsoft [133], research in-
stitutions [52], and other companies in several domains [19, 34, 104, 202]
regularly release new OSS products.

While some provide OSS products to attract and benefit from a commu-
nity, others merely release OSS to attract attention or to disseminate their
software or research results. OSS providers perceive benefits like simpler dis-
semination of their products, reduced marketing costs, simpler recruitment
of new employees, and community contributions in form of bug reports, bug
fixes, feature requests, and added functionality [7, 14, 95, 99, 100, 197, 200,
201, 204]. Most of these advantages are related to actually having a commu-
nity around the product.

Providing an OSS product is described as a global sourcing strategy where
”commercial companies and open source communities collaborate on devel-

26

opment of software” [7, page 385]. Furthermore, Ågerfalk and Fitzgerald
[7] relate their research with offshoring and outsourcing of software develop-
ment. This suggests that there is some division of labor involved in providing
an OSS product. However, based on the observation that the OSS providers
do most of the work and write most of the code themselves, Wasserman
and Capra [200] claim that OSS is primarily a distribution model and not a
development model for organizations.

Other papers report challenges related to similar difficulties such as at-
tracting contributors, involving people at the right time, establishing a com-
mon infrastructure and so on [23, 26, 87, 109, 156]. Despite reporting differ-
ent problems, few focus on identifying and solving these challenges. Another
study presents experiences related to establishing a community and how lim-
ited continuity and a too strong focus on one stakeholder made it difficult to
build a vivid community [109]. The provider must also consider which code
to release as OSS and which to retain under proprietary licenses. Providing
OSS is in other words no free lunch, and simply making the code available is
not enough [100].

One of the exceptions which tries to solve some of these challenges iden-
tifies the obligations and expectations an OSS provider has to its commu-
nity and vice versa [7]. Ågerfalk and Fitzgerald [7] moreover show that the
provider and his community have different perceptions of the extent to which
they fulfill these obligations. Being an OSS provider is not a static business
model. OSS providers have to develop and adapt their business model ac-
cording to the needs of their customers and communities [144, 202].

4.2.7. Using OSS Development Practices

Table 12: Focus and findings from the empirical research papers on using OSS development
practices

ID Topic
[125] Illustrates the use of a company internal Sourceforge-like portal.
[135] Adoption of OSS practices may be a way to standardize development processes. Trans-

parency has both advantages and disadvantages. The OSS phenomenon is adapted to the
organizations when it is adopted.

While there is quite a lot of research on specific development processes in
OSS communities e.g. [167], there is little research on using these processes
and practices inside organizations. We identified two empirical research pa-
pers and 11 experience reports which discuss the use of such practices.

27

Several companies have adopted ”OSS practices” internally or within a
consortium of partners. Common to the cases reported in the literature is
that they are large companies with technologies which are reused in a large-
scale, distributed development environment. While the use of ”OSS prac-
tices” within these large companies shares commonalities, they are labeled
somewhat differently e.g. ”Progressive Open Source” [60, 61, 135], ”inner
source” [125, 203], or ”Corporate Source”[96, 97].

These attempts of adopting ”OSS practices” may have slightly different
purposes. First, one may want to improve the collaboration between the
people responsible for a core platform and the people reusing it throughout
the company [96, 97, 203]. Second, it is possible to increase the visibil-
ity of reusable software components by providing them through a common
platform, much like an internal SourceForge [60, 61, 125]. Third, to increase
transparency and standardize diverse development practices, an organization
may create a common development platform as a vehicle for collaboration
[61].

The introduction of ”OSS practices” is however more a social, rather
than a technical change [61]. While the changes could provide benefits for
the organization, it may also be painful for the individual and the company
to change existing work practices [135]. For instance the experience (or lack
of) with OSS could influence the adoption of new ”OSS practices” [179], and
when adopting such practices in a commercial setting they are shaped to the
organization [135].

5. Discussion

In this section we will discuss each of the research questions in the light
of the findings from the literature review. Then, we discuss opportunities for
future research and finally, possible limitations of this study.

5.1. RQ1: Adoption of OSS in Organizations

In Section 2.5, we asked the following research question: In what ways
are software-intensive organizations adopting OSS?

The short answer to this question is that there exist several ways of adopt-
ing OSS in software-intensive organizations. This literature review provides
evidence that such organizations approach OSS in different ways. With a
focus on software development, we identified six ways in which organizations
adopt OSS (see Section 2.3).

28

Each of these ways of adopting OSS offers different benefits and chal-
lenges. For instance, while access to source code is not that important to
organizations which only deploy OSS products [81], it could be a significant
advantage for OSS integrators [139]. An organization providing an OSS prod-
uct may get feedback and code contributions from their community, but at
the same time they have to deal with a (potentially) large number of stake-
holders [109, 200]. However, relating to a community is not relevant in the
same way for an organization which simply integrates OSS components into
their own products.

We furthermore see variations in the motivations that organizations have
for adopting OSS, the context these organizations are in, the resources they
have, and so on. While OSS seems to be an option in almost all kinds of
settings, we agree with Glynn et al. [93] and Melian and Mähring [135] in
that OSS needs to be understood in the organization-specific situation it is
adopted. This is particularly important as OSS adoption may also involve
organizational changes [81, 135]. According to Glynn et al., adoption of OSS
is a complex situation consisting of an internal and an external environment,
individual factors, and a technological context [93].

5.1.1. The Classification Framework: Inter-dependencies and Internal Dif-
ferences

It must be emphasized that there are interdependencies between the dif-
ferent ways of of adopting OSS, and that an organization may approach OSS
in several ways at the same time. These inter-dependencies are further com-
plicated as organizations may evolve their approach to OSS over time [39].
Hence, the categories in our framework are not mutually exclusive.

There are in particular a few categories which are closely related. First,
organizations which participate in the development of an OSS product are
most likely integrating this product into one of their own systems (see e.g.
[107, 130]). Second, organizations adopting OSS development practices are
also frequently using OSS CASE tools to facilitate the adoption of these
practices, e.g. [125, 203]. Tools like revision control systems, mailing lists,
wikis, build-environments, and documentation systems shape the develop-
ment process and enable the introduction of practices like code sharing, in-
creased transparency, having a core team controlling the core of the product,
peer review of code, and so on [87, 128, 131].

Next, the difference between a few of the categories is, as mentioned in
Section 2.3, one of degrees rather than orthogonality. Grand et al. [94] have

29

similar observations, in that the dedication to OSS is a matter of degree,
or in other words a matter of allocating resources. There are overlapping
areas between deploying OSS products and integrating OSS products into
a system [3, 4], and between participating in the development of an OSS
and providing an OSS product [7, 48]. For example, different organizations
may use the same OSS product quite differently. In one case, a sample
of organizations simply deployed Linux on their servers [188], while others
extended it, integrated it into their own products, and participated in the
development of it [101].

There are also internal differences within each of the ways of adopting
OSS. Even though different organizations provide OSS products, they have
different motivations, resources, and success. Where Bleek et al. [23] de-
scribe a public project which is struggling, Watson et al. [202] report the
(successful) story of JBoss. Li et al. [124] show that the reuse of OSS compo-
nents is adapted to an organization’s current development process. There are
also differences in how organizations participate in the development of OSS
products. While some organizations donate large amounts of source code or
actively participate in the development of the product [28, 101], others pro-
vide more modest contributions like occasional bug reports or forums posts
[43, 98].

We observe situations very much alike these in other cases as well. Despite
approaching OSS in similar manners, there are clear differences between the
various organizations. The classification framework must therefore be un-
derstood and used as a tool for identifying and discussing the opportunities
and challenges different organizations may find when adopting OSS. It is not
an attempt to completely identify all minor variances in how organizations
adopt OSS.

Nevertheless, the categories are still valuable when discussing an organi-
zation’s adoption of OSS. The benefits and challenges related to a specific
organization’s approach to OSS should be discussed as a combination of the
different ways of adopting OSS in the framework. Hence, we recommend
placing an organization in all the categories it would fit into, and investigat-
ing the specific challenges related to each of the categories in the framework.

5.1.2. Implications

Practitioners need to be aware that there is not just one correct way
of adopting OSS. OSS rather offers several opportunities which each have
their unique benefits and drawbacks. Each organization should therefore

30

evaluate the implications of approaching OSS in their own context [189].
This is increasingly important when we see that many organizations adopt
OSS without knowing concretely if or how they will benefit from it and
without having a clear strategy behind this adoption [91, 187, 188, 190].

Practitioners should also be aware that there are most likely others which
have adopted OSS in a similar context. Here, we show that OSS is a viable
option for many organizations and we provide several references to a variety
of successful cases of OSS adoption. These references could be used as a
starting point for an organization’s adoption of OSS.

Researchers ought to avoid treating OSS and the adoption of OSS as
one homogeneous phenomenon. We should acknowledge the individual con-
texts in which OSS is adopted, precisely describe how the organizations we
study approach OSS, and carefully consider how this adoption influences our
findings.

5.2. RQ2: Focus of the Research Literature

The 59 empirical research papers and the 53 experience reports included
in this review cover a very large span of topics but have not had any particular
focus. The research which is specific to how organizations adopt OSS covers
topics from OpenOffice.org migration projects, through code contributions
to existing OSS communities, to using ”OSS development practices”. Both
within and between these topics there are several unexplored gaps.

Besides the studies which investigate the motivations for adopting OSS
products and the migration to OpenOffice.org, there are few overlapping
studies discussing closely related topics. Even though there are a few excep-
tions like [27, 31, 32, 33], [81, 93], [130, 186], and [60, 61, 135], the majority
of the papers come from rather fragmented studies. Few studies have been
reported in more than one publication and almost no publications report
follow-ups or continuations of earlier research.

This lack of focus may be caused by the relatively recent birth of OSS in
organizations as a research area. The many variations in how organizations
adopt OSS may also contribute to diversify the research. Although similar
diversity is seen in research on both software engineering [92] and information
systems [192], OSS researchers could benefit from intensifying their efforts on
a few common problems, rather than exploring an increasingly larger number
of issues.

31

5.3. RQ3: Limitations of Existing Empirical Research

There are relatively few empirical publications on OSS in organizations,
and the quality of published work is not good enough. Much of the published
research lacks relevance and a clear focus, and does not draw enough support
from related literature. These observations are not particular to research on
OSS. For instance, Kitchenham et al. [117], Vessey et al. [192], and Zelkowitz
and Wallace [214] observe a lack of relevant empirical research of high quality
within both the software engineering and information systems fields. Finally,
we would also like to see more research from outside Europe and the USA.

5.3.1. Little Empirical Research

Even though OSS is changing how software is developed, acquired, used,
and commercialized, relatively few empirical research papers on OSS in or-
ganizations are being published. The number of such papers is particularly
low in quality software engineering journals (see Appendix A).

Only 86 (12.8%) of the 674 publications relevant to OSS (S2) and five
(4.5%) of the 112 papers included in the fifth stage (S5) are published in
quality software engineering journals like IST, JSS, EMSE, Software Practice
and Experience, Software Process: Improvement and Practice, TOSEM, or
TSE. On the other hand, 380 (56.47%) of the papers related to OSS and
75 (67.0%) of the 112 publications included in the Stage 5 are published in
the IEEE Software magazine, or through the International Conference on
Open Source Systems and the ICSE Workshop on Open Source Software
Engineering.

5.3.2. Limited Quality

Many of the empirical research papers achieved a decent score in the
quality assessment. Despite this, almost half of the publications we iden-
tified were experience reports and many of the empirical research papers
were troubled by missing information, low rigor, limited validity, and un-
clear contributions. These observations are in line with previous work e.g.
[66, 71, 92, 180, 213, 214], in the sense that much of the published research
has limitations when it comes to planning, execution, and reporting.

5.3.3. Limited Relevance

As many as 19 of the 59 empirical research papers study topics which are
not directly related to how organizations adopt OSS. While these papers are
valuable for understanding the OSS phenomenon, they are not particularly

32

relevant to the specific problems practitioners face every day, and provide
little concrete advice to practitioners.

5.3.4. Lack of Complex and Longitudinal Studies

The research on OSS in organizations is as mentioned a fairly young field.
The immaturity may explain why there are few longitudinal studies and few
studies looking at complex issues beyond the deployment or integration of a
single OSS product. However, Höfer and Tichy [103] made similar observa-
tions concerning longitudinal studies on software engineering.

5.3.5. Does not Reflect Context

Parts of the literature neither describe nor reflect over the actual con-
text in which OSS is adopted. This is seen when papers fail to describe
how the studied organizations adopt OSS. It is also seen when researchers
study samples of organizations without distinguishing between these orga-
nizations’ different approaches to OSS and try to make the generalization
that to all organizations ”adopting OSS”. This lack of context is problematic
since, according to Basili et al. [18], every software development/maintenance
environment is different.

5.3.6. Does not Benefit Fully from Related Research Fields

OSS and OSS development has been described as revolutionary and some-
thing totally different from software engineering [30, 154, 167]. The history
of OSS has furthermore been characterized by contrasts like OSS vs. pro-
prietary or closed source software [149], OSS vs. free software [175], the
cathedral vs. the bazaar [154], copyleft vs. copyright [55], OSS development
vs. software engineering [59], and so on. These contrasts and the perception
that OSS is something different, have contributed to creating a gap between
OSS and other research areas.

We agree with Fitzgerald [78] and Fuggetta [84] in questioning whether
these differences are significant. Moreover, we find evidence that much of
the research on OSS in organizations has in fact profound similarities with
other research areas. The review revealed that organizations deploying OSS
faced the same challenges as with adoption of any other technology [37,
81, 148, 187], and that these issues were often organizational rather than
technical [135, 139]. The adoption of OSS seems to be more depending on
the organization adopting it and the situation in which it is adopted, than
on the technology being released as OSS. Next, we saw that integrating

33

OSS components was very much the same as integrating COTS components
[8, 123]. Finally, many of the advantages of OSS (like reduced development
effort, increased quality, and so on) are really advantages of software re-use
[137, 193]. OSS products can clearly give these benefits, but this is not
necessarily because these products are licensed as OSS.

Despite these similarities, parts of the literature have still treated OSS
as something new and quite different from other information technologies
and methods for software development. Treating a novel research area as
something totally different from existing areas is not a new phenomenon as
”[t]here is a tendency for IS researchers [as well] to treat new technologies as
virgin or greenfield, thereby acting on the belief that prior theories or models
are not appropriate” Vessey et al. [192, page 169].

Some researchers are looking to related research and theories to explain
OSS phenomenons e.g. adoption of IT innovations [93], psychological con-
tract theory [7], and business models and business networks [70]. However,
many researchers present an introverted view of OSS, and when treating OSS
as something totally unique, they fail to draw valuable support from related
literature.

This literature review focuses on empirical studies from the OSS and
software engineering literature. By widening its scope it would have en-
compassed publications that extended literature from a broader spectrum of
areas. Nevertheless, we find that many researchers should draw more sup-
port from related research fields both when identifying research questions
and when discussing their findings.

5.4. Directions for Future Research

Even though the research so far has some limitations there are several op-
portunities for further work. Based on the literature review and the answers
to RQ 2 and 3, we give some recommendations for this work.

5.4.1. General Recommendations

Maturing the research field on OSS in organizations and dealing with
some of its limitations may be done through four main steps:

1. Focus research on topics which are relevant to how organizations ap-
proach OSS

2. Strive to increase the rigor of the empirical studies

3. Conduct more longitudinal, in-depth studies

34

4. Align our research with related research fields

There are several unexplored issues in relation to the ”adoption of OSS”
in general. However, we agree with for instance Charters et al. [42] in that
researchers need to pay more attention to issues that are interesting to prac-
titioners. Hence, we recommend focusing on topics related to the ways in
which organizations actually approach OSS, and issues which could benefit
practitioners, rather than general ”adoption issues”. Researchers and practi-
tioners should increasingly collaborate to define a common research agenda
and study research questions which matter to practitioners. These research
questions should be answered through several related studies from different
contexts.

The overall rigor of the studies performed on OSS, both within organi-
zations and in general, is furthermore not good enough. Consequently, we
should strive to do better work and to present this work in more detail [180].
In particular, we agree with Kitchenham et al. [118] in that the context of
the organizations being studied should be given much more attention.

We observed that few of the studies were longitudinal and that few publi-
cations focused on providing in-depth details from one or a few organizations.
To really understand the profound consequences of approaching OSS, we be-
lieve there is a need for both more longitudinal and in-depth case studies.

Finally, we found evidence that OSS is not that different from other infor-
mation technologies. OSS researchers should therefore increasingly rely on
research and theories from related fields (see Section 2.4). Software engineer-
ing and information systems researchers should see OSS as an opportunity
to investigate general software engineering and information systems research
challenges.

5.4.2. Topics for Future Research

In this section we suggest topics for further research for each of the ap-
proaches to OSS. The topics discussed below may work as an initial starting
point for discussing and staking out the direction of the research on OSS
in organizations. We would in particular recommend investigating two is-
sues: (1) topics related to integration of OSS components and (2) topics con-
cerning participation in organization-community or inter-organizational OSS
collaborations. We find these issues important because integration of OSS
components concerns most software-intensive organizations [98] and because
participation in collaborative software development is increasing [7, 185].

35

The research could focus on identifying the characteristics of successful ap-
proaches to OSS, the challenges these organizations met, and how they solved
them.

Deploying OSS: Many claim that reducing costs is one of the advantages
of deploying OSS server software, infrastructure, and applications. However,
a recent study by Fitzgerald [80] is one of few studies with a longitudinal
view on deployed OSS products. This highlights a need for more studies on:

• What are long-term costs and consequences of deploying and keeping
OSS products operational?

Using OSS CASE tools: The research on OSS CASE tools has been very
limited. However, Wicks and Dewar propose a new agenda for research
on tool integration, requesting a more business-oriented approach to future
research [207]. The use and development of OSS CASE tools and research
on such tools could easily fit into this new agenda. Robbins provides an
extensive overview of OSS tools for development, and claims that CASE
research has a lot to learn from OSS [157]. OSS should furthermore be
particularly interesting to academia since they have access to professional
state-of-the-art tools and the tools’ source code. This enables them to extend
existing tools and test new ideas in collaboration with each other.

Increased participation in OSS projects, increased collaboration between
organizations, and increased use of OSS practices will most likely require
improved collaborative development tools. Hence, there is a potential for
research on:

• What kinds of tools are needed for collaborative software development
across organizational and community borders?

• How do organizations collaborate using such software development tools?

Integrating OSS components:
Navigating through the amounts of OSS components and related infor-

mation available across the Internet is a significant challenge [143]. However,
the information offered over the Internet through OSS communities, web fo-
rums, and so on, constitutes at the same time a valuable resource. Due to the
easy access to reusable software components, we see that software systems
are constantly growing. Software developers are integrating an increasingly
larger number of OSS and commercial components into their products. In

36

doing so they have to relate, adapt, and possibly contribute to a large num-
ber of providers. Therefore, we believe research could focus on the following
questions:

• How may organizations most efficiently navigate through available in-
formation and select OSS components?

• How may organizations benefit from OSS communities and the re-
sources available over the Internet?

• How can organizations maintain and secure the sustainability of soft-
ware systems consisting of components from a variety of providers?

While there are a few studies outside the scope of this review focusing
on software selection [46, 56, 105, 184] and knowledge sharing within OSS
communities [119, 173, 195], none of these are directed towards studying
actual practice in organizations. A few studies have started to look at some
of the challenges in the borderlands between integrating an OSS component
and contributing to the development of it [106, 130, 186], but further research
is needed to solve the maintenance challenges facing developers who integrate
a large number of components into their products.

Participating in OSS communities: To enable organizations to reap ben-
efits from their participation in OSS communities, the research community
should dedicate much more attention to questions concerning this [48, 165].
While there are a few examples [50, 101, 176, 186], more work is needed to aid
organizations in participating in communities and collaborating with other
organizations through collaboratively working on OSS products [7] and to
solve questions like:

• When, how, and with what should organizations participate in the
development of OSS products controlled by others (including inter-
organizational collaborations)?

• How can one effectively contribute only parts of a product and at the
same time retain other parts private?

Providing OSS products: Succeeding at providing an OSS product is not
necessarily easy as there are challenges related to collaborating with a com-
munity, like attracting and relating to contributors, requirements engineering
from a community, balancing focus on community and paying customers, and
so on [109, 200]. We hope to see more research on these topics like e.g. [7, 205]
on the following topics:

37

• How are OSS providers able to attract and sustain a community?

• What are the success criteria for incorporating contributions (require-
ments, code, bug reports/fixes, etc.) from a community?

Using OSS practices: It is more and more difficult to talk about ”OSS
practices” as the practices used in OSS communities are heterogeneous, and
as organizations are increasingly getting involved in, and influenced by, the
development of OSS. Nevertheless, there are opportunities for further re-
search on the use of development practices for distributed software develop-
ment. OSS development in large communities and in and between organi-
zations, are areas where researchers could have an impact on practice. OSS
research has so far focused mainly on processes in communities of volunteers
[167], but some of this research could turn its focus towards the application
of their findings within organizations and questions like:

• How can development practices from OSS communities be adopted
within organizations?

• How may organizations successfully collaborate through community-
or consortium-based software development?

5.5. Limitations of this Study

Even though this systematic literature review has been supported by a
pre-defined study protocol, explorative pilot testing of each of its stages, and
continuous interaction between the authors, it has some limitations.

5.5.1. Completeness of the Selected Set of Publications

By basing the review on a clearly defined set of publications (see Section
3.1), we excluded certain types of publications, work published through other
channels or outside the defined time frame. We can therefore not claim to
have included all relevant publications. However, we based the review on
an extensive set of publications from core software engineering and OSS
publication channels. The most relevant publications should therefore be
included.

5.5.2. Different Search and Data Extraction Facilities

The search and data extraction facilities provided by the various digi-
tal publication databases are different and not necessarily developed with
systematic literature reviews in mind [36, 68]. This posed two challenges.

38

First, the data provided by digital libraries is not always reliable. For
instance, we found several publications which were to be printed in 2009,
registered as published in 2008. This entails that we may have included
papers due for publication in 2009 as published in 2008.

Second, we wanted to cover as many publications as possible and decided
to use full text search, wherever possible. However, the standard search in
IEEE Xplore provides only a meta-data search. Full text search is possible,
but we did not discover this until late in the review process. The use of full
text search in IEEE Xplore would have implied that the number of database
hits (Stage 2) in TSE, ICSE (1998-2005, 2007), ISESE (2002-2005), MET-
RICS, ESEM (2007), and particularly IEEE Software and IEEE Computer
would have been significantly higher.

Even though it was possible to do full text search in IEEE Xplore we
decided against it because of several reasons. First, using a full text search
reduces the precision of the search quite dramatically [58]. Our experience
with the other databases confirms this, and a large number of the publica-
tions included in Stage 2 were not within the scope of this literature review.
The 112 papers from Stage 5 constitute only 7.3% of the papers included
in Stage 2. Therefore, Dieste and Padua [58] recommend searching through
only abstracts and titles as a good searching strategy. Finally, we randomly
reviewed a significant amount of the papers not included in the initial meta-
data search. None of these publications would have been included in Stage
4 or 5 of this literature review.

5.5.3. Classification of Papers and Missing Information

In Stage 2 we classified the publications primarily based on their titles
and abstracts. This is sometimes hard as many abstracts often omit relevant
information [38]. As a consequence, Brereton et al. [36] recommend review-
ing also the conclusions of the papers in addition to the titles and abstracts.
However, acquiring the whole text for more than 1500 publications and re-
viewing them was not a viable option. Conducting a systematic literature
review is already a very resource demanding exercise.

Reading the papers more closely (Stages 3-5) clearly increased the pre-
cision of the classification, but it could still be quite difficult to classify a
paper due to the paper’s lack of detail and because some papers discuss sev-
eral topics. This was particularly relevant since much of the OSS research
has had a focus on qualitative data. Kitchenham’s guidelines for systematic
literature reviews recommend contacting the authors of such papers to get

39

the necessary details [115]. Even though this was not done, we achieved a
good agreement in the classification process and solved any disagreement by
reaching a consensus.

5.5.4. Quality Assessment

To ensure scientific rigor, we performed a quality assessment by assessing
whether or not the publications covered the nine quality metrics defined in
Section 3.2. This binary (yes/no) scale was in retrospect not sensitive enough
and the quality assessment scores are therefore a bit inflated. Many of the
publications barely mention issues related to some of the quality metrics, but
were still evaluated to cover them.

Using a three-level scale like Kitchenham et al. [116] could have been a
better option. However, this would have required a larger classification effort
and even more subjective judgment. Given the amount of literature reviews
concluding that many publications lack rigor e.g. [66, 71, 92, 180, 213, 214],
spending even more time on detailed quality assessments would hardly have
provided any new insight.

5.5.5. Data extraction and author bias

The most challenging part of the literature review is perhaps extracting
relevant data or findings from the publications and writing a synopsis like
this paper based on such data. Author bias in this process is a potential
problem as the extracted data has primarily a qualitative nature and as we
must prioritize what to include in the synopsis. To reduce this problem we
used a pre-defined study protocol, piloted the various stages of the review,
performed most stages individually, and had continuous discussions about
the review process.

The systematic literature review is one of evidence based software en-
gineering’s key tools for integrating research with practice. One of the ob-
jectives of a systematic literature review is therefore creating guidelines for
practitioners. This was difficult due to the many limitations of the OSS
literature, and is something future research should try to achieve.

6. Conclusion

Unlike existing literature reviews on OSS, this review is a systematic
literature review which focuses on OSS in organizations. We provide an

40

extensive overview of the OSS literature, and together with Stol and Babar
[180] we introduce systematic literature reviews to the OSS research arena.

Our results show that organizations adopt OSS in distinctly different
ways. To better understand these ways of adopting OSS, we have provided
a classification framework which shows that an organization may (1) deploy
OSS infrastructure and applications, (2) use OSS CASE tools, (3) integrate
OSS components, (4) participate in external OSS communities and contribute
to the development of OSS products which are controlled by someone else,
(5) provide their own OSS products, and (6) use OSS development practices.

Known success stories from other organizations is an important factor
which increases an organization’s confidence in OSS, according to Ågerfalk
et al. [6] and Glynn et al. [93]. Here, we show that OSS provides organizations
with several opportunities, that OSS is widely adopted, and that organiza-
tions make up a significant part of the OSS phenomenon. We furthermore
provide references to a large number of success stories which could educate
practitioners and make them feel more confident about adopting OSS.

We see that while the research community’s attention to OSS in organi-
zations has been limited, it seems to be increasing. In addition, this literature
review reveals that the research literature is rather fragmented and lacks a
clear focus, rigor, and longitudinal studies. OSS researchers have further-
more not reflected well enough over how organizations adopt OSS and they
have not benefited fully from related research fields.

The research on OSS in organizations has some identified limitations,
but there are several opportunities for future research. We provide directions
for this work, which apply not only to OSS researchers, but also to software
engineering and information systems researchers, who want to study contexts
in which OSS is developed and used.

From these results we draw several implications. Researchers could use
these contributions to find new research challenges and align their work with
the work of others. They may also use the classification framework to po-
sition their work and to describe the context of the organizations they are
studying. We furthermore advise researchers to put emphasis on how the
studied organizations actually use OSS, and on problems which really mat-
ter to practitioners. Practitioners should be open to OSS and see that it offers
several opportunities. However, they must first evaluate the implications of
adopting OSS in their own context.

41

Acknowledgements

Claudia Ayala’s work was carried out during the tenure of an ERCIM ”Alain Bensous-
san”Fellowship Programme. We acknowledge Thomas Østerlie and Torgerir Dingsøyr for
their comments during the execution and writing phase of this work, and Sari Cunningham
for her assistance with language and proofreading.

References

[1] I. Aaen, J. Arent, L. Mathiassen, O. Ngwenyama, A Conceptual Map of Software
Process Improvement, Scandinavian Journal of Information Systems 13 (2001) 123–
146.

[2] T. Aaltonen, J. Jokinen, Influence in the Linux Kernel Community, in: Feller et al.
[77], pp. 203–208. doi:10.1007/978-0-387-72486-7_16.

[3] P. Adams, C. Boldyreff, D. Nutter, S. Rank, Adaptive Reuse of Libre Software
Systems for Supporting On-line Collaboration, in: Feller et al. [75], pp. 1–4. doi:

10.1145/1082983.1083259.

[4] P. Adams, D. Nutter, S. Rank, C. Boldyreff, Using Open Source Tools to Support
Collaboration within CALIBRE, in: Scotto and Succi [168], pp. 61–65.

[5] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based testing for non-
functional system properties, Information and Software Technology 51 (6) (2009)
957–976. doi:10.1016/j.infsof.2008.12.005.

[6] P. J. Ågerfalk, A. Deverell, B. Fitzgerald, L. Morgan, Assessing the Role of Open
Source Software in the European Secondary Software Sector: A Voice from Industry,
in: Scotto and Succi [168], pp. 82–87.

[7] P. J. Ågerfalk, B. Fitzgerald, Outsourcing to an Unknown Workforce: Exploring
Opensourcing As a Global Sourcing Strategy, MIS Quarterly 32 (2) (2008) 385–409.

[8] S. A. Ajila, D. Wu, Empirical study of the effects of open source adoption on software
development economics, Journal of Systems and Software 80 (9) (2007) 1517–1529.
doi:10.1016/j.jss.2007.01.011.

[9] J. Akkanen, H. Demeter, T. Eppel, Z. Ivánfi, J. Nurminen, P. Stenman, Reusing an
open source application practical experiences with a mobile CRM pilot, in: Feller
et al. [77], pp. 217–222. doi:10.1007/978-0-387-72486-7_18.

[10] C. A. Ardagna, E. Damiani, F. Frati, M. Montel, Using Open Source Middleware
for Securing, e-Gov Applications, in: Scotto and Succi [168], pp. 172–178.

[11] F. Attilio, P. Di Nunzio, F. Di Gregorio, A. Meo, A graphical installation system
for the GNU/Linux Debian distribution, in: Damiani et al. [53], pp. 337–338. doi:
10.1007/0-387-34226-5_35.

42

[12] L. Augustin, D. Bressler, G. Smith, Accelerating Software Development through
Collaboration, in: Tracz et al. [183], pp. 559–563.

[13] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, W. Pugh, Using Static
Analysis to Find Bugs, IEEE Software 25 (5) (2008) 22–29. doi:10.1109/ms.2008.
130.

[14] J. Ayre, F. Gasperoni, A Successful Business Model for Free Software, in: Scotto
and Succi [168], pp. 135–139.

[15] C. Bac, O. Berger, V. Desbordes, B. Hamet, Why and how-to contribute to libre
software when you integrate them into an in-house application?, in: Scotto and Succi
[168], pp. 113–118.

[16] M. Banzi, G. Bruno, G. Caire, To What Extent Does It Pay to Approach Open
Source Software for a Big Telco Player? , in: Russo et al. [163], pp. 307–315.
doi:10.1007/978-0-387-09684-1_27.

[17] P. Barrera, G. Robles, J. M. Cañas, F. Mart́ın, V. Matellán, Impact of Libre Software
Tools and Methods in the Robotics Field, in: Feller et al. [75], pp. 1–6. doi:

10.1145/1083258.1083261.

[18] V. R. Basili, R. W. Selby, D. H. Hutchens, Experimentation in Software Engineering,
IEEE Transactions on Software Engineering 12 (7) (1986) 733–743.

[19] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, JADE: A software framework for de-
veloping multi-agent applications. Lessons learned, Information and Software Tech-
nology 50 (1-2) (2008) 10 – 21. doi:10.1016/j.infsof.2007.10.008.

[20] E. Berdou, Insiders and outsiders: paid contributors and the dynamics of coop-
eration in community led F/OS projects, in: Damiani et al. [53], pp. 201–208.
doi:10.1007/0-387-34226-5_20.

[21] F. O. Bjørnson, T. Dingsøyr, Knowledge management in software engineering: A
systematic review of studied concepts, findings and research methods used, Informa-
tion and Software Technology 50 (11) (2008) 1055–1068. doi:10.1016/j.infsof.

2008.03.006.

[22] W.-G. Bleek, M. Finck, Migrating a Development Project to Open Source Software
Development, in: Feller et al. [74], pp. 9–13.

[23] W.-G. Bleek, M. Finck, B. Pape, Towards an Open Source Development Process?
Evaluating the Migration to an Open Source Project by Means of the Capability
Maturity Model, in: Scotto and Succi [168], pp. 37–43.

[24] P. Boccacci, V. Carrega, G. Dodero, Open source technologies for visually impaired
people, in: Feller et al. [77], pp. 241–246. doi:10.1007/978-0-387-72486-7_22.

43

[25] C. Boldyreff, K. Crowston, B. Lundell, A. I. Wasserman (Eds.), Proceedings of the
5th IFIP Working Group 2.13 International Conference on Open Source Systems
(OSS2009) - Open Source Ecosystems: Diverse Communities, June 3-6, Skövde,
Sweden, Vol. 299/2009 of IFIP International Federation for Information Processing,
Springer, Heidelberg, Germany, 2009. doi:10.1007/978-3-642-02032-2.

[26] C. Boldyreff, D. Nutter, S. Rank, Communication and Conflict Issues in Coollabo-
rative Software Research Projects, in: Feller et al. [74], pp. 14–17.

[27] A. Bonaccorsi, S. Giannangeli, C. Rossi, Entry Strategies Under Competing Stan-
dards: Hybrid Business Models in the Open Source Software Industry, Management
Science 52 (7) (2006) 1085–1098. doi:10.1287/mnsc.1060.0547.

[28] A. Bonaccorsi, D. Lorenzi, M. Merito, C. Rossi, Business Firms’ Engagement in
Community Projects. Empirical Evidence and Further Developments of the Re-
search, in: Capiluppi and Robles [41], pp. 1–5. doi:10.1109/floss.2007.3.

[29] A. Bonaccorsi, L. Piscitello, M. Merito, C. Rossi, How is it possible to profit from
innovation in the absence of any appropriability?, in: Damiani et al. [53], pp. 333–
334. doi:10.1007/0-387-34226-5_33.

[30] A. Bonaccorsi, C. Rossi, Why Open Source Software Can Succeed, Research Policy
32 (7) (2003) 1243–1258.

[31] A. Bonaccorsi, C. Rossi, Contributing to OS Projects. A Comparison between Indi-
vidual and Firms, in: Feller et al. [74], pp. 18–22.

[32] A. Bonaccorsi, C. Rossi, Intrinsic motivations and profit-oriented firms. Do firms
practise what they preach?, in: Scotto and Succi [168], pp. 241–245.

[33] A. Bonaccorsi, C. Rossi, Comparing motivations of individual programmers and
firms to take part in the open source movement: From community to busi-
ness, Knowledge, Technology, and Policy 18 (4) (2006) 40–64. doi:10.1007/

s12130-006-1003-9.

[34] G. Bortis, Experiences with Mirth: an open source health care integration engine,
in: W. Schäfe, M. B. Dwyer, V. Gruhn (Eds.), Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), ACM, New York, USA, 2008, pp.
649–652. doi:10.1145/1368088.1368179.

[35] P. Brereton, D. Budgen, Component-Based Systems: a Classification of Issues, Com-
puter 33 (11) (2000) 54–62. doi:10.1109/2.881695.

[36] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from
applying the systematic literature review process within the software engineering
domain, Journal of Systems and Software 80 (4) (2007) 571–583. doi:10.1016/j.

jss.2006.07.009.

44

[37] D. Brink, L. Roos, J. Weller, J.-P. Van Belle, Critical Success Factors for Migrating
to OSS-on-the-Desktop: Common Themes across Three South African Case, in:
Damiani et al. [53], pp. 287–293. doi:10.1007/0-387-34226-5_29.

[38] D. Budgen, B. A. Kitchenham, S. Charters, M. Turner, P. Brereton, S. Linkman,
Presenting software engineering results using structured abstracts: a randomised
experiment, Empirical Software Engineering 13 (4) (2008) 435–468. doi:10.1007/

s10664-008-9075-7.

[39] M. Campbell-Kelly, D. D. Garcia-Swartz, Pragmatism, not ideology: Historical per-
spectives on ibm’s adoption of open-source software, Information Economics and
Policy 21 (3) (2009) 229 – 244. doi:10.1016/j.infoecopol.2009.03.006.

[40] A. Capiluppi, P. Lago, M. Morisio, Evidences in the evolution of os projects through
changelog analyses, in: Feller et al. [73].

[41] A. Capiluppi, G. Robles (Eds.), Proceedings of the First International Workshop
on Emerging Trends in FLOSS Research and Development (FLOSS 2007), May 21,
Minneapolis, USA, IEEE Computer Society, Washington, USA, 2007.

[42] S. Charters, D. Budgen, M. Turner, B. A. Kitchenham, P. Brereton, S. Linkman, Ob-
jectivity in Research: Challenges from the Evidence-Based Paradigm, in: C. Fidge
(Ed.), Proceedings of the Australian Software Engineering Conference (ASWEC’09),
April 14th17th, Gold Coast, Australia, IEEE Computer Society, 2009, pp. 73–80.
doi:10.1109/aswec.2009.25.

[43] W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, C. Liu, An Empirical Study on Soft-
ware Development with Open Source Components in the Chinese Software In-
dustry, Software Process: Improvement and Practice 13 (1) (2008) 89–100. doi:

10.1002/spip.v13:1.

[44] K. Crowston, J. Howison, The social structure of free and open source software
development, First Monday 10 (2).
URL http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/

article/view/1207/1127

[45] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, J. Howison, Self-organization of teams for
free/libre open source software development, Information and Software Technology
49 (6) (2007) 564 – 575, qualitative Software Engineering Research. doi:10.1016/

j.infsof.2007.02.004.

[46] D. Cruz, T. Wieland, A. Ziegler, Evaluation Criteria for Free/Open Source Software
Products Based on Project Analysis, Software Process: Improvement and Practice
11 (2) (2006) 107–122. doi:10.1002/spip.257.

[47] P. Currion, C. de Silva, B. V. de Walle, Open source software for disaster manage-
ment, Communications of the ACM 50 (3) (2007) 61–65. doi:10.1145/1226736.

1226768.

45

[48] L. Dahlander, L. Frederiksen, F. Rullani, Online Communities and Open Innovation:
Governance and Symbolic Value Creation , Industry & Innovation 15 (2) (2008) 115–
123. doi:10.1080/13662710801970076.

[49] L. Dahlander, M. G. Magnusson, Relationships between Open Source Software Com-
panies and Communities: Observations from Nordic Firms, Research Policy 34 (4)
(2005) 481–493. doi:10.1016/j.respol.2005.02.003.

[50] L. Dahlander, M. G. Magnusson, How do Firms Make Use of Open Source Commu-
nities?, Long Range Planning 41 (6) (2008) 629 – 649. doi:10.1016/j.lrp.2008.

09.003.

[51] L. Dahlander, M. W. Wallin, A Man on the Inside: Unlocking Communities as
Complmentary Assets, Research Policy 35 (8) (2006) 1243–1259. doi:10.1016/j.

respol.2006.09.011.

[52] J.-M. Dalle, G. Rousseau, Toward Collaborative Open-Source Technology Transfer,
in: Feller et al. [74], pp. 34–42.

[53] E. Damiani, B. Fitzgerald, W. Scacchi, M. Scotto (Eds.), Proceedings of the
2nd IFIP Working Group 2.13 International Conference on Open Source Software
(OSS2006) - Open Source Systems, June 8-10, Como, Italy, Vol. 203/2006 of IFIP
International Federation for Information Processing, Springer, Heidelberg, 2006.
doi:10.1007/0-387-34226-5.

[54] E. Davini, E. Faggioni, G. Granatella, D. Tartari, M. Scotto, Open Source in Public
Administration, a real example: OSS for e-government Observatories, in: Scotto
and Succi [168], pp. 119–124.

[55] P. B. de Laat, Copyright or copyleft?: An analysis of property regimes for software
development, Research Policy 34 (10) (2005) 1511 – 1532. doi:10.1016/j.respol.
2005.07.003.

[56] J.-C. Deprez, S. Alexandre, Comparing Assessment Methodologies for Free/Open
Source Software: OpenBRR and QSOS, in: A. Jedlitschka, O. Salo (Eds.), Product-
Focused Software Process Improvement Proceedings of the 9th International Con-
ference on Product-Focused Software Process Improvement (PROFES 2008), Vol.
5089/2008 of Lecture Notes in Computer Science, Springer, Heidelberg, 2008, pp.
189–203. doi:10.1007/978-3-540-69566-0_17.

[57] M. Di Giacomo, MySQL: Lessons Learned on a Digital Library, IEEE Software
22 (3) (2005) 10–13. doi:10.1109/ms.2005.71.

[58] O. Dieste, A. G. Padua, Developing Search Strategies for Detecting Relevant Ex-
periments for Systematic Reviews, in: Juristo et al. [112], pp. 215–224. doi:

10.1109/esem.2007.19.

46

[59] T. T. Dinh-Trong, J. M. Bieman, The FreeBSD Project: A Replication Case Study
of Open Source Development, IEEE Transactions on Software Engineering 31 (6)
(2005) 481–494. doi:10.1109/tse.2005.73.

[60] J. Dinkelacker, P. K. Garg, Corporate Source: Applying Open Source Concepts to a
Corporate Environment, in: J. Feller, B. Fitzgerald, A. van der Hoek (Eds.), Making
Sense of the Bazaar: 1st Workshop on Open Source Software Engineering, 15 May,
Toronto, Canada, IEE Software Proceedings, 2001, pp. 1–9.

[61] J. Dinkelacker, P. K. Garg, R. Miller, D. Nelson, Progressive Open Source, in: Tracz
et al. [183], pp. 177–184. doi:10.1145/581339.581363.

[62] L. Dobusch, Migration Discourse Structures: Escaping Microsofts Desktop Path, in:
Russo et al. [163], pp. 223–235. doi:10.1007/978-0-387-09684-1_18.

[63] G. Dodero, K. Lupi, E. Piffero, Comparing macro development for personal produc-
tivity tools: an experience in validating accessibility of Talking Books, in: Damiani
et al. [53], pp. 247–252. doi:10.1007/0-387-34226-5_24.

[64] B. Donnellan, B. Fitzgerald, B. Lake, J. Sturdy, Implementing an Open Source
Knowledge Base, IEEE Software 22 (6) (2005) 92–95. doi:10.1109/ms.2005.155.

[65] T. Dyb̊a, An Empirical Investigation of the Key Factors for Success in Software
Process Improvement, IEEE Transactions on Software Engineering 31 (5) (2005)
410–424. doi:10.1109/tse.2005.53.

[66] T. Dyb̊a, T. Dingsøyr, Empirical studies of agile software development: A systematic
review, Information and Software Technology 50 (9-10) (2008) 833–859. doi:10.

1016/j.infsof.2008.01.006.

[67] T. Dyb̊a, T. Dingsøyr, Strength of Evidence in Systematic Reviews in Software
Engineering, in: D. Rombach, S. Elbaum, J. Münch (Eds.), Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM ’08), October 9th-10th, Kaiserslautern, Germany, ACM,
New York, USA, 2008, pp. 178–187. doi:10.1145/1414004.1414034.

[68] T. Dyb̊a, T. Dingsøyr, G. K. Hanssen, Applying Systematic Reviews to Diverse
Study Types: An Experience Report, in: Juristo et al. [112], pp. 225–234. doi:

10.1109/ESEM.2007.58.

[69] C. Ebert, Guest Editor’s Introduction: How Open Source Tools Can Benefit Indus-
try, IEEE Software 26 (2) (2009) 50–51. doi:10.1109/ms.2009.38.

[70] J. Feller, P. Finnegan, J. Hayes, Delivering the ’Whole Product’: Business Model
Impacts and Agility Challenges in a Network of Open Source Firms, Journal of
Database Management 19 (2) (2008) 95–108.

47

[71] J. Feller, P. Finnegan, D. Kelly, M. MacNamara, Developing Open Source Soft-
ware: A Community-Based Analysis of Research, in: E. M. Trauth, D. Howcroft,
T. Butler, B. Fitzgerald, J. I. DeGross (Eds.), Social Inclusion: Societal and
Organizational Implications for Information Systems FIP TC8 WG 8.2 Interna-
tional Working Conference, 12-15 July, Limerick, Ireland, Vol. 208 of IFIP In-
ternational Federation for Information Processing, Springer, 2006, pp. 261–278.
doi:10.1007/0-387-34588-4_18.

[72] J. Feller, B. Fitzgerald, Understanding Open Source Software Development, Addison
Wesley, 2002, ISBN :0-201-73496-6.

[73] J. Feller, B. Fitzgerald, S. A. Hissam, K. R. Lakhani (Eds.), Taking Stock of the
Bazaar: 3rd Workshop on Open Source Software Engineering (WOSSE 2003), 2003.

[74] J. Feller, B. Fitzgerald, S. A. Hissam, K. R. Lakhani (Eds.), Collaboration, Conflict
and Control Proceedings of the 4th Workshop on Open Source Software Engineering
(WOSSE 2004), 2004.

[75] J. Feller, B. Fitzgerald, S. A. Hissam, K. R. Lakhani, W. Scacchi (Eds.), Open
Source Application Spaces: Proceedings of the Fifth Workshop on Open Source
Software Engineering (WOSSE 2005), ACM, New York, 2005.

[76] J. Feller, B. Fitzgerald, K. R. Lakhani, S. A. Hissam (Eds.), Perspectives on Free
and Open Source Software, The MIT Press, Cambridge, Massachusetts, 2005.

[77] J. Feller, B. Fitzgerald, W. Scacchi, A. Sillitti (Eds.), Proceedings of the 3rd IFIP
Working Group 2.13 International Conference on Open Source Software (OSS2007) -
Open Source Development, Adoption and Innovation, June 11-14, Limerick, Ireland,
Vol. 234/2007 of IFIP International Federation for Information Processing, Springer,
Heidelberg, Germany, 2007. doi:10.1007/978-0-387-72486-7.

[78] B. Fitzgerald, Has Open Source Software a Future?, in: Feller et al. [76], pp. 93–106.

[79] B. Fitzgerald, The Transformation of Open Source Software, MIS Quarterly 30 (3)
(2006) 587–598.

[80] B. Fitzgerald, Open Source Software Adoption: Anatomy of Success and Failure,
International Journal of Open Source Software & Processes 1 (1) (2009) 1–23.

[81] B. Fitzgerald, T. Kenny, Developing an Information Systems Infrastructure with
Open Source Software, IEEE Software 21 (1) (2004) 50–55. doi:10.1109/ms.2004.
1259216.

[82] A. Fosfuri, M. S. Giarratana, A. Luzzi, The Penguin Has Entered the Building: The
Commercialization of Open Source Software Products, Organization Science 19 (2)
(2008) 292–305. doi:10.1287/orsc.1070.0321.

48

[83] A. Fuggetta, A Classification of CASE Technology, Computer 26 (12) (1993) 25–38.
doi:10.1109/2.247645.

[84] A. Fuggetta, Open source software–an evaluation, Journal of Systems and Software
66 (1) (2003) 77 – 90. doi:10.1016/s0164-1212(02)00065-1.

[85] C. Gacek, B. Arief, The Many Meanings of Open Source, IEEE Software 21 (1)
(2004) 34–40. doi:10.1109/ms.2004.1259206.

[86] A. Galatescu, V. Florian, L. Costea, D. Conescu, Issues in Implementing an Open
Source-based XML Repository Manager for Application Maintenance and Adapta-
tion, in: Feller et al. [73], pp. 57–62.

[87] K. Gary, L. Ibanez, S. Aylward, D. Gobbi, M. B. Blake, K. Cleary, IGSTK: an open
source software toolkit for image-guided surgery, Computer 39 (4) (2006) 46–53.
doi:10.1109/mc.2006.130.

[88] D. M. German, The evolution of the GNOME Project, in: Meeting challenges and
surviving success: the 2nd Workshop on Open Source Software Engineering (WOSSE
2002), 25 May, Orlando, USA, 2002, pp. 1–4.

[89] R. A. Ghosh, Study on the Economic Impact of Open Source Software on Innovation
and the Competiveness of the Information and Communication Technologies (ICT)
Sector in the EU, Tech. rep., UNU-MERIT (2006).
URL http://ec.europa.eu/enterprise/ict/policy/doc/

2006-11-20-flossimpact.pdf

[90] P. Giacalone, OSS implementation solutions for Public Administration applications,
in: Scotto and Succi [168], pp. 259–262.

[91] D. G. Glance, J. Kerr, A. Reid, Factors affecting the use of open source software in
tertiary education institutions, First Monday 9 (2).

[92] R. L. Glass, I. Vessey, V. Ramesh, Research in software engineering: an analysis of
the literature, Information and Software Technology 44 (8) (2002) 491–506. doi:

10.1016/s0950-5849(02)00049-6.

[93] E. Glynn, B. Fitzgerald, C. Exton, Commercial Adoption of Open Source Soft-
ware: An Empirical Study, in: J. Verner, G. H. Travassos (Eds.), Proceedings of
International Symposium on Empirical Software Engineering (ISESE 2005), IEEE
Computer Society, Los Alamitos, USA, 2005, pp. 225–234. doi:10.1109/ISESE.

2005.1541831.

[94] S. Grand, G. von Krogh, D. Leonard, W. Swap, Resource allocation beyond firm
boundaries: A multi-level model for Open Source innovation, Long Range Planning
37 (6) (2004) 591–610. doi:10.1016/j.lrp.2004.09.006.

49

[95] M. Gschwind, D. Erb, S. Manning, M. Nutter, An Open Source Environment for
Cell Broadband Engine System Software, Computer 40 (6) (2007) 37–47. doi:

10.1109/MC.2007.192.

[96] V. K. Gurbani, A. Garvert, J. D. Herbsleb, A Case Study of Open Source Tools
and Practices in a Commercial Setting, in: Feller et al. [75], pp. 1–6. doi:10.1145/
1083258.1083264.

[97] V. K. Gurbani, A. Garvert, J. D. Herbsleb, A Case Study of a Corporate Open
Source Development Model, in: Osterweil et al. [147], pp. 472–481.

[98] Ø. Hauge, C.-F. Sørensen, R. Conradi, Adoption of Open Source in the Software
Industry, in: Russo et al. [163], pp. 211–222. doi:10.1007/978-0-387-09684-1_

17.

[99] Ø. Hauge, C.-F. Sørensen, A. Røsdal, Surveying Industrial Roles in Open Source
Software Development, in: Feller et al. [77], pp. 259–264. doi:10.1007/

978-0-387-72486-7_25.

[100] F. Hecker, Setting Up Shop: The Business of Open-Source Software, IEEE Software
16 (1) (1999) 45–51. doi:10.1109/52.744568.

[101] J. Henkel, Selective revealing in open innovation processes: The case of embedded
Linux, Research Policy 35 (7) (2006) 953 – 969. doi:10.1016/j.respol.2006.04.
010.

[102] G. Hertel, S. Niedner, S. Herrmann, Motivation of software developers in Open
Source projects: an Internet-based survey of contributors to the Linux kernel,
Research Policy 32 (7) (2003) 1159 – 1177, open Source Software Development.
doi:10.1016/s0048-7333(03)00047-7.

[103] A. Höfer, W. Tichy, Status of Empirical Research in Software Engineering, in: V. R.
Basili, D. Rombach, K. Schneider, B. A. Kitchenham, D. Pfahl, R. W. Selby (Eds.),
Proceedings of the International Workshop on Empirical Software Engineering Is-
sues. Critical Assessment and Future Directions, Dagstuhl, June 26th-30th, Castle,
Germany, Vol. 4336/2007 of Lecture Notes in Computer Science, Springer, 2007, pp.
10–19. doi:10.1007/978-3-540-71301-2_3.

[104] T. Hoffman, SchoolTool: Defining Our Niche in the Open Source Architecture of
Schools, in: Scotto and Succi [168], pp. 334–337.

[105] O. Hummel, W. Janjic, C. Atkinson, Code conjurer: Pulling reusable software out
of thin air, IEEE Software 25 (5) (2008) 45–52. doi:10.1109/ms.2008.110.

[106] N. Iivari, H. Hedberg, T. Kirves, Usability in Company Open Source Software Con-
text - Initial Findings from an Empirical Case Study, in: Russo et al. [163], pp.
359–365. doi:10.1007/978-0-387-09684-1_33.

50

[107] A. Jaaksi, Experiences on Product Development with Open Source Software, in:
Feller et al. [77], pp. 85–96. doi:10.1007/978-0-387-72486-7_7.

[108] J. Jacobson, M. Lewis, Game engine virtual reality with CaveUT, Computer 38 (4)
(2005) 79–82. doi:10.1109/mc.2005.126.

[109] J. Järvensivu, T. Mikkonen, Forging a community not: Experiences on estab-
lishing an open source project, in: Russo et al. [163], pp. 15–27. doi:10.1007/

978-0-387-09684-1_2.

[110] C. Jensen, W. Scacchi, Collaboration, Leadership, Control, and Conflict Negotiation
in the Netbeans.org Community, in: Feller et al. [74], pp. 48–52.

[111] M. Jørgensen, M. Shepperd, A systematic review of software development cost es-
timation studies, IEEE Transactions on Software Engineering 33 (1) (2007) 33–53.
doi:10.1109/tse.2007.3.

[112] N. Juristo, C. B. Seaman, S. Vegas (Eds.), First International Symposium on Em-
pirical Software Engineering and Measurement (ESEM’2007), Madrid, Spain 20-21
September, IEEE Computer Society, Los Alamitos, USA, 2007.

[113] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, D. I. K. Sjøberg, A systematic review
of quasi-experiments in software engineering, Information and Software Technology
51 (1) (2009) 71–82. doi:10.1016/j.infsof.2008.04.006.

[114] C. Kapser, M. W. Godfrey, Cloning considered harmful considered harmful: patterns
of cloning in software, Empirical Software Engineering 13 (6) (2008) 645–692. doi:
10.1007/s10664-008-9076-6.

[115] B. A. Kitchenham, Guidelines for performing Systematic Literature Reviews in Soft-
ware Engineering, Tech. rep., Software Engineering Group, School of Computer Sci-
ence and Mathematics, Keele University, and Department of Computer Science,
University of Durham, eBSE Technical Report, EBSE-2007-01 (2007).

[116] B. A. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman, Sys-
tematic literature reviews in software engineering - A systematic literature review,
Information and Software Technology 51 (1) (2009) 7–15. doi:10.1016/j.infsof.
2008.09.009.

[117] B. A. Kitchenham, T. Dyb̊a, M. Jørgensen, Evidence-based software engineering, in:
A. Finkelstein, J. Estublier, D. Rosenblum (Eds.), Proceedings of the 26th Interna-
tional Conference on Software Engineering (ICSE 2004), May 23th28th, Edinburgh,
Scotland, IEEE Computer Society, Los Alamitos, USA, 2004, pp. 273–281.

[118] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,
K. El Emam, J. Rosenberg, Preliminary Guidelines for Empirical Research in Soft-
ware Engineering, IEEE Transactions on Software Engineering 28 (8) (2002) 721–
734.

51

[119] K. R. Lakhani, E. von Hippel, How open source software works: ’free’ user-to-user
assistance, Research Policy 32 (6) (2003) 923 – 943. doi:10.1016/s0048-7333(02)
00095-1.

[120] J. R. Landis, G. G. Koch, The measurement of observer agreement for categorical
data, Biometrics 33 (1) (1977) 159–174.
URL http://www.jstor.org/stable/2529310

[121] N. Lesiecki, Applyinq AspectJ to J2EE application development, IEEE Software
23 (1) (2006) 24–32. doi:10.1109/ms.2006.1.

[122] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N. Slyngstad, M. Morisio, Devel-
opment with off-the-shelf components: 10 facts, IEEE Software 26 (2) (2009) 80–87.
doi:10.1109/MS.2009.33.

[123] J. Li, R. Conradi, O. P. N. Slyngstad, C. Bunse, M. Torchiano, M. Morisio, An Em-
pirical Study on Decision Making in Off-The-Shelf Component-Based Development,
in: Osterweil et al. [147], pp. 897–900. doi:10.1145/1134285.1134446.

[124] J. Li, M. Torchiano, R. Conradi, O. P. N. Slyngstad, C. Bunse, A State-of-
the-Practice Survey of Off-the-Shelf Component-Based Development Processes, in:
M. Morisio (Ed.), Proceedings of the 9th International Conference on Software
Reuse (ICSR’06), June, 12th-15th, Torino, Italy, Vol. Volume 4039/2006 of LNCS,
Springer, 2006, pp. 16–28. doi:10.1007/11763864_2.

[125] J. Lindman, M. Rossi, P. Marttiin, Applying Open Source Development Prac-
tices Inside a Company, in: Russo et al. [163], pp. 381–387. doi:10.1007/

978-0-387-09684-1_36.

[126] D. Lorenzi, C. Rossi, Assessing Innovation in the Software Sector: Proprietary vs.
FOSS Production Mode. Preliminary Evidence from the Italian Case, in: Russo
et al. [163], pp. 325–331. doi:10.1007/978-0-387-09684-1_29.

[127] B. Lundell, B. Lings, E. Lindqvist, Perceptions and Uptake of Open Source in
Swedish Organisations, in: Damiani et al. [53], pp. 155–163. doi:10.1007/

0-387-34226-5.

[128] S. Lussier, New Tricks: How Open Source Changed the Way My Team Works, IEEE
Software 21 (1) (2004) 68–72. doi:10.1109/MS.2004.1259222.

[129] B. Luthiger, C. Jungwirth, Pervasive fun, First Monday 12 (1).

[130] H. Mannaert, K. Ven, The Use of Open Source Software Platforms by Independent
Software Vendors: Issues and Opportunities, in: Feller et al. [75], pp. 35–38. doi:

10.1145/1083258.1083266.

[131] K. Martin, B. Hoffman, An Open Source Approach to Developing Software in a
Small Organization, IEEE Software 24 (1) (2007) 46–53. doi:10.1109/MS.2007.5.

52

[132] J. Martinez-Romo, G. Robles, J. M. González-Barahona, M. Ortuño-Perez, Us-
ing Social Network Analysis Techniques to Study Collaboration between a FLOSS
Community and a Company, in: Russo et al. [163], pp. 171–186. doi:10.1007/

978-0-387-09684-1_14.

[133] J. Matusow, S. McGibbon, D. Rowe, Shared Source and Open Solutions: e-
Government Perspective, in: Scotto and Succi [168], pp. 263–266.

[134] D. McIlroy, Mass Produced Software Components, Scientific Affairs Division NATO,
Brussels, Belgium, 1969, pp. 138–151.

[135] C. Melian, M. Mähring, Lost and Gained in Translation: Adoption of Open Source
Software Development at Hewlett-Packard, in: Russo et al. [163], pp. 93–104. doi:
10.1007/978-0-387-09684-1_8.

[136] A. Mockus, R. T. Fielding, J. D. Herbsleb, Two case studies of open source software
development: Apache and Mozilla, ACM Transactions on Software Engineering and
Methodology 11 (3) (2002) 309–346. doi:10.1145/567793.567795.

[137] P. Mohagheghi, R. Conradi, Quality, productivity and economic benefits of software
reuse: a review of industrial studies, Empirical Software Engineering 12 (5) (2007)
471–516. doi:10.1007/s10664-007-9040-x.

[138] M. Montesi, P. Lago, Software engineering article types: An analysis of the lit-
erature, Journal of Systems and Software 81 (10) (2008) 1694 – 1714. doi:

10.1016/j.jss.2007.11.723.

[139] L. Morgan, P. Finnegan, Benefits and Drawbacks of Open Source Software: An
Exploratory Study of Secondary Software Firms, in: Feller et al. [77], pp. 307–312.
doi:10.1007/978-0-387-72486-7_33.

[140] L. Morgan, P. Finnegan, How Perceptions of Open Source Software Influence Adop-
tion: An Exploratory Study, in: H. Österle, J. Schelp, R. Winter (Eds.), Proceedings
of the Fifteenth European Conference on Information Systems (ECIS 2007), June
7-9 2007, St. Gallen, Switzerland, University of St. Gallen, 2007, pp. 973–984.

[141] U. Nikula, S. Jantunen, Quantifying the Interest in Open Source System: Case
South-East Finland, in: Scotto and Succi [168], pp. 192–195.

[142] J. Noll, What Constitutes Open Source? A Study of the Vista Electronic Med-
ical Record Software, in: Boldyreff et al. [25], pp. 310–319. doi:10.1007/

978-3-642-02032-2_27.

[143] J. S. Norris, Mission-critical Development with Open Source Software: Lessons
Learned, IEEE Software 21 (1) (2004) 42–49. doi:10.1109/MS.2004.1259211.

[144] A. Onetti, F. Capobianco, Open Source and Business Model Innovation. The Fu-
nambol Case, in: Scotto and Succi [168], pp. 224–227.

53

[145] The Open Source Initiative - Open Source Licenses (2009).
URL http://opensource.org/licenses

[146] T. Østerlie, L. Jaccheri, A Critical Review of Software Engineering Research on
Open Source Software Development, in: W. Stanislaw (Ed.), Proceedings of the
2nd AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk
University Press, 2007, pp. 12–20.

[147] L. J. Osterweil, D. Rombach, M. L. Soffa (Eds.), Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE 2006), ACM Press, New York,
USA, 2006.

[148] B. Özel, U. Jovanovic, B. Oba, M. van Leeuwen, Perceptions on F/OSS Adoption,
in: Feller et al. [77], pp. 319–324. doi:10.1007/978-0-387-72486-7_35.

[149] J. W. Paulson, G. Succi, A. Eberlein, An Empirical Study of Open-Source and
Closed-Source Software Products, IEEE Transactions on Software Engineering 30 (4)
(2004) 246–256. doi:10.1109/TSE.2004.1274044.

[150] A. Persson, B. Lings, B. Lundell, A. Mattsson, U. Ärlig, Communication, Coordina-
tion and Control in Distributed Development: an OSS Case Study, in: Scotto and
Succi [168], pp. 88–92.

[151] J. Ploski, W. Hasselbring, J. Rehwinkel, S. Schwierz, Introducing Version Control to
Database-Centric Applications in a Small Enterprise, IEEE Software 24 (1) (2007)
38–44. doi:10.1109/ms.2007.17.

[152] C. Puschmann, P. Reimer, DiPP and eLanguage: Two cooperative models for open
access, First Monday 12 (10).

[153] P. Ravesteyn, G. Silvius, Willingness to Cooperate Within the Open Source Software
Domain, in: Russo et al. [163], pp. 367–373. doi:10.1007/978-0-387-09684-1_34.

[154] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary, O’Reilly, Sebastapol, CA, 2001.

[155] E. S. Raymond, Up from Alchemy, IEEE Software 21 (1) (2004) 88, 90. doi:

10.1109/ms.2004.1259228.

[156] P. C. Rigby, D. Cubranic, S. Thompson, D. M. German, M.-A. Storey, The chal-
lenges of creating open source educational software: the Gild experience, in: Scotto
and Succi [168], pp. 338–340.

[157] J. E. Robbins, Adopting Open Source Software Engineering (OSSE) Practices by
Adopting OSSE Tools, in: Feller et al. [76], pp. 245–264.

[158] G. Robles, S. Dueñas, J. M. González-Barahona, Corporate involvement of libre
software: Study of presence in debian code over time, in: Feller et al. [77], pp.
121–132. doi:10.1007/978-0-387-72486-7_10.

54

[159] B. Rossi, B. Russo, G. Succi, A study on the introduction of Open Source Software
in the Public Administration, in: Damiani et al. [53], pp. 165–171. doi:10.1007/

0-387-34226-5_16.

[160] B. Rossi, B. Russo, G. Succi, Open Source Software and Open Data Standards as
a form of Technology Adoption: a Case Study, in: Feller et al. [77], pp. 325–330.
doi:10.1007/978-0-387-72486-7_36.

[161] B. Rossi, M. Scotto, A. Sillitti, G. Succi, Criteria for the non invasive transition to
OpenOffice, in: Scotto and Succi [168], pp. 250–253.

[162] C. Rossi, A. Bonaccorsi, Why Profit-Oriented Companies Enter the OS Field?: In-
trinsic vs. Extrinsic Incentives, in: Feller et al. [75], pp. 47–51. doi:10.1145/

1083258.1083269.

[163] B. Russo, E. Damiani, S. A. Hissam, B. Lundell, G. Succi (Eds.), Proceedings of the
4th IFIP Working Group 2.13 International Conferences on Open Source Software
(OSS2008) - Open Source Development Communities and Quality, September 7-10,
Milano, Italy, Vol. 275/2008 of IFIP International Federation for Information Pro-
cessing, Springer, Heidelberg, Germany, 2008. doi:10.1007/978-0-387-09684-1.

[164] B. Russo, P. Zuliani, G. Succi, Toward an Empirical Assessment of the Benefits of
Open Source Software, in: Feller et al. [73], pp. 117–120.

[165] C. Santos Jr., Understanding Partnerships between Corporations and the Open
Source Community: A Research Gap, IEEE Software 25 (6) (2008) 96–97. doi:

10.1109/ms.2008.167.

[166] W. Scacchi, Free and Open Source Development Practices in the Game Community,
IEEE Software 21 (1) (2004) 59–66. doi:10.1109/ms.2004.1259221.

[167] W. Scacchi, J. Feller, B. Fitzgerald, S. A. Hissam, K. R. Lakhani, Understanding
Free/Open Source Software Development Processes, Software Process: Improvement
and Practice 11 (2) (2006) 95–105. doi:10.1002/spip.255.

[168] M. Scotto, G. Succi (Eds.), Proceedings of The First International Conference on
Open Source Systems (OSS2005), July 11-15, Genova, Italy, 2005.

[169] N. Serrano, S. Calzada, J. M. Sarriegui, I. Ciordia, From Proprietary to Open Source
Tools in Information Systems Development, IEEE Software 21 (1) (2004) 56– 58.
doi:10.1109/MS.2004.1259219.

[170] R. Shatnawi, W. Li, The effectiveness of software metrics in identifying error-prone
classes in post-release software evolution process, Journal of Systems and Software
81 (11) (2008) 1868 – 1882. doi:10.1016/j.jss.2007.12.794.

55

[171] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-
K. Liborg, A. C. Rekdal, A survey of controlled experiments in software engineering,
IEEE Transactions on Software Engineering 31 (9) (2005) 733–753. doi:10.1109/

tse.2005.97.

[172] S. Y. Sohn, M. S. Mok, A strategic analysis for successful open source software
utilization based on a structural equation model, Journal of Systems and Software
81 (6) (2008) 1014–1024. doi:10.1016/j.jss.2007.08.034.

[173] S. K. Sowe, I. Stamelos, L. Angelis, Understanding knowledge sharing activities in
free/open source software projects: An empirical study, Journal of Systems and
Software 81 (3) (2008) 431–446. doi:10.1016/j.jss.2007.03.086.

[174] D. Spinellis, Global software development in the FreeBSD project, in: P. Kruchten,
D. Moitra, W. Strigel, C. Ebert (Eds.), Proceedings of the 2006 International Work-
shop on Global Software Development for the Practitioner, ACM Press, 2006, pp.
73–79. doi:10.1145/1138506.1138524.

[175] R. M. Stallman, L. Lessig, Free Software Free Society: selected essays of Richard
M. Stallman, Free Software Foundation, 2002.

[176] W. Stam, When does community participation enhance the performance of open
source software companies?, Research Policy 38 (8) (2009) 1288–1299. doi:10.

1016/j.respol.2009.06.004.

[177] I. Stamelos, L. Angelis, A. Oikonomou, G. L. Bleris, Code quality analysis in open
source software development, Information Systems Journal 12 (1) (2002) 43–60.

[178] M. Staples, M. Niazi, Experiences using systematic review guidelines, Journal of
Systems and Software 80 (9) (2007) 1425–1437. doi:10.1016/j.jss.2006.09.046.

[179] K. Staring, O. Titlestad, Networks of Open Source Health Care Action, in: Damiani
et al. [53], pp. 135–141. doi:10.1007/0-387-34226-5_13.

[180] K.-J. Stol, M. A. Babar, Reporting Empirical Research in Open Source Soft-
ware: The State of Practice, in: Boldyreff et al. [25], pp. 156–169. doi:10.1007/

978-3-642-02032-2_15.

[181] F. Tiangco, A. Stockwell, J. Sapsford, A. Rainer, Open-source software in an occu-
pational health application: the case of Heales Medical Ltd., in: Scotto and Succi
[168], pp. 130–134.

[182] K. Toth, Experiences with Open Source Software Engineering Tools, IEEE Software
23 (6) (2006) 44–52. doi:10.1109/ms.2006.158.

[183] W. Tracz, J. Magee, M. Young (Eds.), Proceedings of the 24th International Con-
ference on Software Engineering (ICSE 2002), ACM, New York, USA, 2002.

56

[184] M. Umarji, S. E. Sim, C. Lopes, Archetypal Internet-Scale Source Code Searching,
in: Russo et al. [163], pp. 257–263. doi:10.1007/978-0-387-09684-1_21.

[185] F. van der Linden, B. Lundell, P. Marttiin, Commodification of Industrial Software:
A Case for Open Source, IEEE Software 26 (4) (2009) 77–83. doi:10.1109/ms.

2009.88.

[186] K. Ven, H. Mannaert, Challenges and strategies in the use of Open Source Software
by Independent Software Vendors, Information and Software Technology 50 (9-10)
(2008) 991–1002. doi:10.1016/j.infsof.2007.09.001.

[187] K. Ven, D. Van Nuffel, J. Verelst, The Introduction of OpenOffice.org in the Brus-
sels Public Administration, in: Damiani et al. [53], pp. 123–134. doi:10.1007/

0-387-34226-5_12.

[188] K. Ven, J. Verelst, The Organizational Adoption of Open Source Server Software
by Belgian Organizations, in: Damiani et al. [53], pp. 111–122. doi:10.1007/

0-387-34226-5_11.

[189] K. Ven, J. Verelst, The Impact of Ideology on the Organizational Adoption of Open
Source Software, Journal of Database Management 19 (2) (2008) 58–72.

[190] K. Ven, J. Verelst, H. Mannaert, Should You Adopt Open Source Software?, IEEE
Software 25 (3) (2008) 54–59. doi:10.1109/ms.2008.73.

[191] V. Venkatesh, M. G. Morris, G. B. Davis, F. D. Davis, User Acceptance of Informa-
tion Technology: Toward a Unified View, Mis Quarterly 27 (3) (2003) 425–478.

[192] I. Vessey, V. Ramesh, R. L. Glass, Research in Information Systems: An Empiri-
cal Study of Diversity in the Discipline and Its Journals, Journal of Management
Information Systems 19 (2) (2002) 129–174.

[193] P. Vitharana, F. M. Zahedi, H. Jain, Design, Retrieval, and Assembly in Component-
based Software Development, Communications of the ACM 46 (11) (2003) 97–102.
doi:10.1145/948383.948387.

[194] E. von Hippel, G. von Krogh, Open source software and the ”private-collective”
innovation model: Issues for organization science, Organization Science 14 (2) (2003)
209.

[195] G. von Krogh, S. Spaeth, S. Haefliger, Knowledge Reuse in Open Source Software:
An Exploratory Study of 15 Open Source Projects, in: Proceedings of the Pro-
ceedings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS 2005), IEEE Computer Society, Washington, DC, USA, 2005, p. 198.2.
doi:10.1109/hicss.2005.378.

[196] G. von Krogh, E. von Hippel, The Promise of Research on Open Source Software,
Management Science 52 (7) (2006) 975–983. doi:10.1287/mnsc.1060.0560.

57

[197] J. Waldo, Alive and well: Jini technology today, Computer 33 (6) (2000) 107–109.
doi:10.1109/2.846324.

[198] D. A. E. Wall, Using Open Source for a Profitable Startup, Computer 34 (12) (2001)
158–160. doi:10.1109/2.970592.

[199] J. Warsta, P. Abrahamsson, Is open source software development essentially an agile
method?, in: Feller et al. [73].

[200] A. I. Wasserman, E. Capra, Evaluating Software Engineering Processes in Commer-
cial and Community Open Source Projects, in: Capiluppi and Robles [41], pp. 1–5.
doi:10.1109/floss.2007.6.

[201] R. T. Watson, M.-C. Boudreau, P. T. York, M. E. Greiner, J. Donald Wynn, The
Business of Open Source, Communications of the ACM 51 (4) (2008) 41–46. doi:

10.1145/1330311.1330321.

[202] R. T. Watson, D. Wynn, M.-C. Boudreau, JBoss: The Evolution of Professional
Open Source Software, MIS Quarterly Executive 4 (3) (2005) 329–341.

[203] J. Wesselius, The Bazaar inside the Cathedral: Business Models for Internal Mar-
kets, IEEE Software 25 (3) (2008) 60–66. doi:10.1109/ms.2008.79.

[204] J. West, How open is open enough?: Melding proprietary and open source plat-
form strategies, Research Policy 32 (7) (2003) 1259 – 1285. doi:10.1016/

s0048-7333(03)00052-0.

[205] J. West, S. O’Mahony, The Role of Participation Architecture in Growing Sponsored
Open Source Communities , Industry & Innovation 15 (2) (2008) 145–168. doi:

10.1080/13662710801970142.

[206] A. Westenholz, Institutional Entrepreneurs and the Bricolage of Intellectual Prop-
erty Discourses, in: Damiani et al. [53], pp. 183–193. doi:10.1007/0-387-34226-5_
18.

[207] M. N. Wicks, R. G. Dewar, A new research agenda for tool integration, Journal of
Systems and Software 80 (9) (2007) 1569–1585. doi:10.1016/j.jss.2007.03.089.

[208] Y. Yang, J. Bhuta, B. W. Boehm, D. N. Port, Value-Based Processes for COTS-
Based Applications, IEEE Software 22 (4) (2005) 54–62. doi:10.1109/MS.2005.

112.

[209] Z. Yang, M. Jiang, Using Eclipse as a Tool-Integration Platform for Software De-
velopment, IEEE Software 24 (2) (2007) 87–89. doi:10.1109/ms.2007.58.

[210] T. S. Yoo, M. J. Ackerman, Open Source Software for Medical Image Processing
and Visualization, Communications of the ACM 48 (2) (2005) 55–59. doi:10.1145/
1042091.1042120.

58

[211] L. Yu, Understanding component co-evolution with a study on Linux, Empirical
Software Engineering 12 (2) (2007) 123–141. doi:10.1007/s10664-006-9000-x.

[212] L. Yu, Self-organization process in open-source software: An empirical study, Infor-
mation and Software Technology 50 (5) (2008) 361 – 374. doi:10.1016/j.infsof.
2007.02.018.

[213] M. V. Zelkowitz, An update to experimental models for validating computer tech-
nology, Journal of Systems and Software 82 (3) (2009) 373–376. doi:10.1016/j.

jss.2008.06.040.

[214] M. V. Zelkowitz, D. R. Wallace, Experimental Models for Validating Technologies,
IEEE Computer 31 (5) (1998) 23–31.

[215] L. Zhao, S. Elbaum, Quality assurance under the open source development
model, Journal of Systems and Software 66 (1) (2003) 65 – 75. doi:10.1016/

s0164-1212(02)00064-x.

[216] S. Ziemer, Ø. Hauge, T. Østerlie, J. Lindman, Understanding Open Source in an
Industrial Context, in: A. Dipanda, R. Chbeir, K. Yetongnon (Eds.), Proceedings
of the 4th IEEE International Conference on Signal-Image Technology & Internet-
Based Systems (SITIS’2008), November 30-December 3, Bali, Indonesia, IEEE Com-
puter Society, Los Alamitos, USA, 2008, pp. 539–546. doi:10.1109/SITIS.2008.

99.

APPENDICES

A. Included Publication Sources

Table 13 contains an overview of the journals/magazines and the workshop and con-
ference proceedings included in this review, the databases from which the publications
were identified, and the number of publications included in each stage (S1-5).

59

S
o
u
r
c
e

D
a
ta

b
a
se

N
u
m
b
e
r
o
f
p
u
b
li
c
a
ti
o
n
s

S
1

S
2

S
3

S
4

S
5

R
E

N
A

C
M

T
ra

n
sa

ct
io

n
s

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

a
n

d
M

et
h

o
d

o
lo

g
y

(T
O

S
E

M
)

A
C

M
D

ig
it

a
l

L
ib

ra
ry

2
0
7

2
2

2
0

0
0

0

C
o
m

m
u

n
ic

a
ti

o
n

s
o
f

th
e

A
C

M
A

C
M

D
ig

it
a
l

L
ib

ra
ry

3
2
5
2

2
1
7

2
5

9
1

2
6

E
m

p
ir

ic
a
l

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

(E
M

S
E

)
S

p
ri

n
g
er

li
n

k
2
7
2

3
7

1
1

0
F

ir
st

M
o
n

d
a
y

F
ir

st
m

o
n

d
a
y.

o
rg

9
6
5

2
4
7

7
6

1
3

2
1

9
IC

S
E

W
o
rk

sh
o
p

o
n

O
p

en
S

o
u

rc
e

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

(W
O

S
S

E
)

o
p

en
so

u
rc

e.
u

cc
.i
e

(2
0
0
1
-2

0
0
4
),

A
C

M
D

ig
it

a
l

L
ib

ra
ry

(2
0
0
5
)

9
5

9
5

9
0

2
0

7
7

6

IC
S

E
W

o
rk

sh
o
p

o
n

E
m

er
g
in

g
T

re
n

d
s

in
F

L
O

S
S

R
es

ea
rc

h
a
n

d
D

e-
v
el

o
p

m
en

t
(F

L
O

S
S

)
IE

E
E

X
p

lo
re

1
5

1
5

1
2

3
2

0
1

IE
E

R
ev

ie
w

ie
td

l.
o
rg

9
9
9

5
3

2
0

0
2

IE
E

/
IE

T
S

o
ft

w
a
re

P
ro

ce
ed

in
g
s

ie
td

l.
o
rg

3
2
3

1
2

6
0

0
0

0
IE

E
E

C
o
m

p
u

te
r

IE
E

E
X

p
lo

re
2
6
3
8

3
0

2
3

8
0

5
3

IE
E

E
In

te
rn

a
ti

o
n

a
l

S
y
m

p
o
si

u
m

o
n

E
m

p
ir

ic
a
l

S
o
ft

w
a
re

E
n

g
in

ee
r-

in
g

(I
S

E
S

E
)

IE
E

E
X

p
lo

re
(2

0
0
2
-2

0
0
5
),

A
C

M
D

ig
it

a
l

L
ib

ra
ry

(2
0
0
6
)

1
7
7

8
5

1
1

0
0

IE
E

E
In

te
rn

a
ti

o
n

a
l

S
y
m

p
o
si

u
m

o
n

S
o
ft

w
a
re

M
et

ri
cs

(M
E

T
R

IC
S

)
IE

E
E

X
p

lo
re

2
4
9

7
6

0
0

0
0

IE
E

E
S

o
ft

w
a
re

IE
E

E
X

p
lo

re
1
4
3
9

7
6

5
0

2
1

1
1
4

6
IE

E
E

T
ra

n
sa

ct
io

n
s

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

(T
S

E
)

IE
E

E
X

p
lo

re
9
0
0

1
6

1
6

0
0

0
0

In
fo

rm
a
ti

o
n

a
n

d
S

o
ft

w
a
re

T
ec

h
n

o
lo

g
y

(I
S

T
)

S
ci

en
ce

d
ir

ec
t

1
0
8
9

8
1

1
4

2
1

1
0

In
fo

rm
a
ti

o
n

S
y
st

em
s

J
o
u

rn
a
l

W
il
ey

In
te

rS
ci

en
ce

2
7
9

9
7

1
0

0
1

In
te

rn
a
ti

o
n

a
l

C
o
n

fe
re

n
ce

o
n

O
p

en
S

o
u

rc
e

S
y
st

em
s

(O
S

S
)

o
ss

2
0
0
5
.c

a
se

.u
n

ib
z.

it
(2

0
0
5
),

S
p

ri
n

g
er

-
li
n

k
(2

0
0
6
-2

0
0
8
)

2
1
0

2
0
9

1
7
5

5
5

2
7

1
9

9

In
te

rn
a
ti

o
n

a
l

C
o
n

fe
re

n
ce

o
n

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

(I
C

S
E

)
A

C
M

D
ig

it
a
l

L
ib

ra
ry

(2
0
0
6

a
n

d
2
0
0
8
),

IE
E

E
X

p
lo

re
(1

9
9
8
-2

0
0
5
,

2
0
0
7
)

1
3
2
4

1
0
5

3
2

5
1

4
0

In
te

rn
a
ti

o
n

a
l

S
y
m

p
o
si

u
m

o
n

E
m

p
ir

ic
a
l

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

a
n

d
M

ea
su

re
m

en
t

(E
S

E
M

)
IE

E
E

X
p

lo
re

(2
0
0
7
),

A
C

M
D

ig
it

a
l

L
i-

b
ra

ry
(2

0
0
8
)

1
5
1

1
8

1
2

0
0

0
0

J
o
u

rn
a
l

o
f

D
a
ta

b
a
se

M
a
n

a
g
em

en
t

P
ro

Q
u

es
t

2
9
4

1
8

9
3

2
0

1
J
o
u

rn
a
l

o
f

In
d

u
st

ri
a
l

E
co

n
o
m

ic
s

W
il
ey

In
te

rS
ci

en
ce

3
0
4

2
2

0
0

0
0

J
o
u

rn
a
l

o
f

S
y
st

em
s

a
n

d
S

o
ft

w
a
re

(J
S

S
)

S
ci

en
ce

d
ir

ec
t

1
5
6
7

1
1
9

2
3

2
2

0
0

K
n

o
w

le
d

g
e

T
ec

h
n

o
lo

g
y

a
n

d
P

o
li
cy

S
p

ri
n

g
er

li
n

k
3
6
4

2
8

1
3

7
1

0
6

L
o
n

g
R

a
n

g
e

P
la

n
n

in
g

S
ci

en
ce

d
ir

ec
t

1
0
1
7

1
9

2
2

2
0

0
M

a
n

a
g
em

en
t

S
ci

en
ce

P
ro

Q
u

es
t

1
7
8
7

1
7

1
2

1
1

0
0

M
IS

Q
u

a
rt

er
ly

P
ro

Q
u

es
t

4
0
6

7
3

1
1

0
0

M
IS

Q
u

a
rt

er
ly

E
x
ec

u
ti

v
e

M
is

q
e.

o
rg

1
4
6

1
1

1
1

0
0

M
IT

S
lo

a
n

M
a
n

a
g
em

en
t

R
ev

ie
w

P
ro

Q
u

es
t

8
3
6

2
7

3
0

0
0

0
O

rg
a
n

iz
a
ti

o
n

S
ci

en
ce

P
ro

Q
u

es
t

6
7
4

1
0

3
1

1
0

0
R

es
ea

rc
h

P
o
li
cy

S
ci

en
ce

d
ir

ec
t

1
2
3
2

5
2

1
8

4
4

0
0

S
o
ft

w
a
re

P
ra

ct
ic

e
a
n

d
E

x
p

er
ie

n
ce

W
il
ey

In
te

rS
ci

en
ce

7
6
3

1
0

8
0

0
0

0
S

o
ft

w
a
re

P
ro

ce
ss

:
Im

p
ro

v
em

en
t

a
n

d
P

ra
ct

ic
e

W
il
ey

In
te

rS
ci

en
ce

3
1
5

2
1

1
2

1
1

0
0

5
9

5
3

5
0

T
o
ta

l
2
4

2
8
9

1
5
4
0

6
7
4

1
6
2

1
1
2

n
a

T
a
b

le
1
3
:

In
cl

u
d

ed
jo

u
rn

a
ls

a
n

d
co

n
fe

re
n

ce
s

60

B. Characteristics of the Sample of Publications

The tables below contain overviews of the number of publications per year (Table 14,
the contexts described in these publications (Table 15 and 18), the research methods used
in the empirical research papers (Table 16), and the quality assessment (Table 17).

We use the following abbreviations: Stages 1 to 5 (S1-5), empirical research paper (R),
experience report (E), non-empirical paper (N). The categories from the classification of
the papers are abbreviated as follows: adoption of OSS in general (A), deploying OSS (D),
using OSS CASE tools (T), integrating OSS (I), participating in OSS communities (PA),
providing OSS products (PRO), and using ”OSS development practices” (PRA).

Year S2 S3 S4 S5
R E N

2008 302 109 26 18 6 2
2007 254 110 23 10 9 4
2006 262 106 28 13 7 8
2005 226 117 41 11 17 13
2004 156 64 17 5 6 6
2003 119 63 7 2 1 4
2002 86 37 5 0 3 2
2001 74 37 6 0 2 4
2000 26 9 2 0 1 1
1999 24 15 6 0 1 5
1998 11 7 1 0 0 1

Total 1540 674 162 59 53 50

Table 14: Number of publications in each stage distributed per year

A D T I PA PRO PRA
Several pri-
vate organiza-
tions

[6, 27, 32, 33,
94, 98, 99,
127, 139, 141,
153, 162, 172,
188, 189, 204]

[8, 43, 123] [31, 49, 50] [17, 49, 50, 82,
204]

OSS commu-
nity

[2, 20, 28, 51,
70, 101, 129,
132, 158]

[110, 126, 132]

One private
organization

[106, 130, 186] [106, 130, 186] [144, 201, 202,
206]

[125, 135]

Public [91] [62, 91, 148,
159, 160, 161,
164, 187]

Mixed public
and private

[29, 93] [37] [200] [7, 52, 200]

Unclear [190]

Table 15: The type of contexts described in the empirical research papers

61

A D T I PA PRO PRA
Case study [94, 99, 139,

188, 189]
[37, 62, 159,
160, 164, 187,
190]

[106, 130, 186] [20, 49, 50, 70,
101, 106, 130,
186]

[17, 49, 50, 52,
110, 144, 201,
202, 206]

[125, 135]

Survey [27, 29, 32, 33,
91, 98, 127,
141, 153, 162,
172]

[91, 148] [8, 43, 123] [31, 129, 200] [200]

Data analysis [2, 28, 51, 132,
158]

[82, 132]

Experiment [161] [126]
Field study [204] [204]
Grounded
theory

[6]

Case study
and survey

[93] [7]

Table 16: Research methods used

QA score Papers
2 [29, 202]
3 [52, 110, 164, 201, 206]
4 [17]
5 [91, 200, 204]
6 [32, 37, 106, 127, 130, 148, 159, 160]
7 [20, 62, 93, 94, 132, 135, 141, 162]
8 [2, 6, 28, 31, 33, 49, 99, 101, 123, 139, 144, 153, 158, 172, 187]
9 [7, 8, 27, 43, 50, 51, 70, 82, 98, 125, 126, 129, 161, 186, 188, 189, 190]

Table 17: Quality assessment: Distribution of research papers

D T I PA PRO PRA
Private [131, 143, 151,

198, 209]
[9, 87, 90, 107,
121, 143, 169,
181, 198]

[9, 107, 128] [14, 16, 19, 34,
87, 95, 100,
131, 133, 197,
210]

[12, 60, 61, 96,
97, 128, 131,
179, 197, 203]

Public [24, 57, 63, 81] [13, 182] [10, 15, 54,
152, 182]

[11, 15] [22, 23, 47,
104, 108, 156]

[182]

Research
project

[3, 4] [3, 64, 86] [26]

Community [88] [109]

Table 18: The type of contexts described in the experience reports

62

Appendix B

Interview Guides and Questionnaires

Table B.1 contains an overview of the interview guides and questionnaires that were used
to gather parts of the data for this thesis. All the documents referred to in the table are
available at: http://www.oyvindhauge.net/phd/.

257

http://www.oyvindhauge.net/phd/

Table B.1: Interview guides and questionnaires used as in this thesis
Study Description Developed by Paper

1 COSI Question-
naire

Øyvind Hauge, Andreas Røsdal and Carl-
Fredrik Sørensen

P1

1,2 COSI Interview
guide

Øyvind Hauge, Andreas Røsdal and Carl-
Fredrik Sørensen

P1, P4

2 Norwegian survey
interview guide

Marinela Gerea, Carl-Fredrik Sørensen,
Øyvind Hauge, and Claudia Ayala

P4

2 Norwegian survey
questionnaire

Øyvind Hauge and Carl-Fredrik Sørensen P2

5 Norwegian ques-
tionnaire

Ketil Sandanger Velle, Tron André Skarpenes,
Øyvind Hauge, and Reidar Conradi

P7

5 Norwegian inter-
view guide

Ketil Sandanger Velle, Tron André Skarpenes,
Øyvind Hauge, and Reidar Conradi

P7

6 Norwegian/Spanish
interview guide

Claudia Ayala, Øyvind Hauge, Reidar Conradi,
Xavier Franch, and Jingyue Li

P5

	Abstract
	Preface
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Abbreviation
	Introduction
	Background and Scope
	Research Questions
	Conducted Research
	Contributions
	Selected Papers
	Contributions of this Thesis

	Thesis Structure

	Background and Related Work
	Background
	Software Engineering and Empirical Research
	Open Source Software
	Integration of Software Components

	Adoption of OSS in Software-Intensive Organizations
	Significant Potential and Adoption: No Guarantee for Success
	Ways of Leveraging OSS
	Uncertainty about What OSS Adoption Is
	The Lack of Empirical Research on OSS Adoption

	Selection of Software Components
	The Practical Selection Problem
	Research: Focus on Formalized Selection Methods
	Practice: Informal and Based on Familiarity

	Summary: Scope and Main Research Challenges
	Adoption of OSS in Organizations
	Selection of OSS Components
	Related Research Areas and the Scope of this Thesis

	Context and Research Design
	Research Context
	The COSI Project
	The Norwegian Software Industry

	Applied Research Methods
	An Empirical Approach
	Choice of Research Methods
	Survey Research
	Case Study Research
	Systematic Literature Reviews

	Research Process
	Phase 1: Exploration of how Organizations Adopt OSS
	Phase 2: Completing the Framework
	Phase 3: Going in Depth on Selection of OSS Components

	Evaluation and Validity

	Results Part 1: Organizational Adoption of OSS
	C1: Descriptions of Actual Adoption of OSS
	C2: A Systematic Literature Review on Adoption of OSS
	C3: A Framework for Organizational Adoption of OSS
	Benefits and Challenges Related to Adopting OSS
	Relationships between the Ways of Adopting OSS
	The Development of the Framework

	Results Part 2: Selection of OSS Components
	C4: Descriptions of Actual Selection Practices
	The use of Formalized Selection Methods
	Identification of OSS Components
	Evaluation of OSS Components

	C5: Situated Selection of Components
	The Selection Process
	The Selection Context
	The Developer

	Discussions and Evaluation of the Research
	Results vs. Existing Literature
	Adoption of OSS
	Selection of Software Components

	Implications for Future Research
	Adoption of OSS
	Selection of Software Components

	Implications for Practice
	Adoption of OSS
	Selection of Software Components

	Results vs. the Research Questions
	Results vs. the Goals of the COSI Project
	Validity
	Construct Validity
	Internal validity
	External Validity

	The Scope of the Thesis

	Conclusions and Future Work
	Conclusions
	Adoption of OSS
	Selection of OSS Components

	Future Work

	Glossary
	References
	Selected Papers
	P1 - Surveying Industrial Roles in Open Source Software Development
	P2 - Adoption of Open Source in the Software Industry
	P3 - Understanding Open Source in an Industrial Context
	P4 - An Empirical Study on Selection of Open Source Software - Preliminary Results
	P5 - Challenges of the Open Source Component Marketplace in the Industry
	P6 - Providing Commercial Open Source Software: Lessons Learned
	P7 - Risks and Risk Mitigation in Open Source Software Adoption: Bridging the Gap between Literature and Practice
	P8 - Open Source Software in Organizations - A Systematic Literature Review

	Interview Guides and Questionnaires

