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Abstract

In this paper, we propose a metaheuristic to solve the
pickup and delivery problem with time windows. Our ap-
proach is a tabu-embedded simulated annealing algorithm
which restarts a search procedure from the current best so-
lution after several non-improving search iterations. The
computational experiments on the six newly-generated dif-
ferent data sets marked our algorithm as the first approach
to solve large multiple-vehicle PDPTW problem instances
with various distribution properties.

1 Introduction

The class of Vehicle routing problems(VRP) is an inten-
sive research area because of its usefulness to the logistics
and transportation industry. Many new side constraints have
been added to meet real life needs. A famous extension is
the vehicle routing problem with time windows(VRPTW).

Another useful extension that has been proposed to
VRPTW is to handle pickup and delivery where goods must
be collected at a predetermined customer location before it
is delivered to another specified customer location. There-
fore, two additional side constraints are introduced. One
is known as the precedence constraint and the other one is
the coupling constraint. The two constraints require that
any paired pickup and delivery locations must be serviced
by the same vehicle and the pickup location must be sched-
uled before the corresponding delivery location in the route.
Practical applications of this extension include the dial-a-
ride problem, airline scheduling, bus routing, etc.

Let us define the Pickup and Delivery Problem with
Time Windows (PDPTW) formally. Let �������
	��� be
a digraph. ��������������� is the node set where ���������! 
�#" $%�'&�	)(*	,+-+,+.	�/%	0/1$3254,�64-/7� represents the customers and
node ��� denotes the depot where a fleet of vehicles are
housed. In addition, let �98�:;� be the set of pickup loca-
tions and �=<>:'� be the set of delivery locations. There-

fore, �?�@� 8 �A�=<B	�" � 8 "C�D" �=<5"5�@/FE�( . Each node
���G >� has an associated customer demand H,�I�JH-�#�LK* , a
service time 2-����2,�9��KM and a service-time window N 4��O	IPQ�SR .
H.�1TUK for ���V W� 8 and H-�VXUK for ���1 ��=< . For each
pair of nodes YZ���O	���[]\.�S$_^�L`�	0$0	a`b�cKd	�&�	)(6	-+-+,+-	0/F , a non-
negative distance eM�f[ and a non-negative travel time g3�f[ are
known. Due to the time window constraints, arcs may not
exist between some node pairs. Therefore, the arc set can be
defined as �;�W�dYZ���O	0��[]\," ���O	���[� h�
	0���i^����[�	�g3�O��j=2-�IjGga�k[ml
Pf[]� . If a vehicle reaches a customer ��� before 4-� , it needs to
wait until 4,� in order to service the customer. The sched-
ule duration of a route is the sum of waiting time, service
time and travel time. Depending on different contexts, the
problem consists of minimizing several objectives subject
to a variety of constraints. For transportation of goods,
the objective involves minimizing the number of vehicles,
travel costs and schedule duration. However, for dial-a-
ride problems, it’s preferable to minimize the inconvenience
caused by pickups or deliveries performed earlier or later
than desired time. In this paper, the objective of PDPTW
is to service all customers without violating vehicle capac-
ity, time window, precedence and coupling constraints with
a minimum number of vehicles and, for the same number
of routes with the minimum total travel distance, followed
by the minimum total schedule duration and the minimum
total waiting time.

Due to difficulty of PDPTW, most previous works fo-
cused on the single vehicle dial-a-ride problem with time
windows(1-PDPTW) with slightly different objectives. For
the objective to minimize the total customer inconvenience,
Psarafits [5] [6] developed a dynamic programming algo-
rithm with a no�S/qp-r�st time complexity which can solve
problems with only 10 or fewer requests. Sexton and
Bodin [9] [10] solved the same problem by breaking it into a
coordinating routing master problem formulated as an inte-
ger program, and a scheduling subproblem for a fixed route,
which was formulated as linear program. By using a heuris-
tic version of Benders’ decomposition, the routing master
problem and the scheduling subproblem were solved indi-



vidually. Results of real problems with sizes from 7 to 20
were reported. Sexton and Choi [11] used a similar ap-
proach to minimize a linear combination of total vehicle
operating time and total customer penalty due to the vio-
lation of the time windows for the single vehicle pickup
and delivery problem with soft time windows. For mini-
mizing the schedule duration, Van der Bruggen et al. [12]
developed a two-phase heuristic algorithm based on arc-
exchange procedures and an alternative algorithm based on
simulated annealing. Their approaches produced high qual-
ity solutions on real-life problems in reasonable computa-
tional time. Finally, for minimizing the total travel costs,
a forward dynamic programming approach was developed
by Desrosiers et al. [2]. The efficiency of the algorithm
was improved by eliminating states that were incompatible
with vehicle capacity, precedence and time window con-
straints. The multiple-vehicle pickup and delivery problem
with time windows has received little attention. The only
optimal algorithm developed by Dumas et al. [3] employed
a column generation scheme with a shortest path subprob-
lem with capacity, time window, precedence and coupling
constraints. The algorithm can solve 1-PDPTW problems
up to 55 paired requests and multiple-vehicle PDPTW with
small number of paired requests per vehicle. Recently,
Willian et al. [13] proposed a reactive tabu search approach
to minimize travel cost by using a penalty objective func-
tion in terms of travel time, penalty for violation of over-
load and time window constraints. The approach was tested
on instances with sizes of 25, 50 and 100 customers. These
test cases were constructed from Solomon’s

� & VRPTW
benchmark instances (Solomon [7]) which were solved op-
timally.

In this paper, we propose a tabu-embedded simulated
annealing approach to solve the general multiple-vehicle
PDPTW. In addition, test cases are generated from all of
the Solomon’s benchmark instances for VRPTW.

The paper is organized as follows. Section 2 describes
the local search structures. Section 3 presents the meta-
heuristic. The time complexity of the algorithms is ana-
lyzed in Section 4. Section 5 reports computational results
for 56 test cases we generated from Solomon’s benchmark
instances for VRPTW. Finally, we present our conclusion in
Section 6.

2 Local Search Structures

2.1 Notations

� 	�� : total number of customers, total number of vehicles
respectively.

��� ��� : max number of iterations without improvement in
annealing procedure.

�	� 2-g.�
�  : objective function of solution S of local search.

�
� ��� 2.g.�
�! : objective function of solution S in tabu-
embedded METROPOLIS PROCEDURE in the sim-
ulated annealing algorithm.

� $32-g.�
�  , ��m�
�  , ��m�
�  : total travel distance, total
schedule time and total waiting time of solution S
respectively.

������� �
� I	 ������� �
� I	 ������� �
�  : neighborhood of solu-
tion S obtained by PD-Shift operator, PD-Exchange
operator and PD-Rearrange operator respectively.

��� : local optimal solution.

�
: the maximum number of children in a K-ary tree.

�
: the depth of a K-ary tree.

 ��	� : initial and global annealing temperature respec-
tively.

 
: cooling ratio of T.

! 	#" 	%$F	'& : penalty factor for M, Dist(S), ScheTime(S),
Dist(S) respectively.

2.2 Route Construction Heuristics

Insertion Heuristic by Solomon [7] is modified to con-
struct the initial solution. During the insertion procedure,
all PDPTW constraints must be satisfied. The procedure
first initializes a route with a pickup-delivery(PD) paired
customers, using criteria of maximal combined farthest dis-
tances to depot, minimal combined latest bound of time
windows and minimal combined period of time windows.
Then for each of the unrouted PD-pairs, their best feasible
insertion positions in the current partially-constructed route
are computed. The PD-pair which causes minimal incre-
ment in travel cost is selected and inserted into the route.
Thus after all the PD-pairs are inserted, a feasible solution
is obtained.

2.3 Neighborhood Structures

In our method, three PD-pair swapping operators are
used to define local search neighborhoods. These opera-
tors are PD-Shift operator, PD-Exchange operator and PD-
Rearrange operator. The first two operators are used for
generating neighborhoods for metaheuristic guided local
search procedure, while the PD-Rearrange operator is only
used for post-optimization purpose.
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Figure 1. PD-Shift Operator

Figure 2. PD-Exchange Operator

2.3.1 PD-Shift Operator

The PD-Shift operator moves PD-pairs from one route to
another, subject to all the constraints imposed on PDPTW.
For each pair of selected routes, say, Route1 and Route2,
the PD-Shift operator is used twice, for shifting PD-pairs
from Route1 to Route2 and from Route2 to Route1. We have
denoted the neighborhood of solution S obtained by the PD-
Shift operator as

� ����� �
�  . In Figure 1, locations P and D
are originally a PD-pair in Route1. The PD-Shift operator
first removes the PD-pair from Route1 and then inserts them
into a feasible position-pair in Route2. Infeasible shifts are
forbidden with regards to the PDPTW constraints.

2.3.2 PD-Exchange Operator

The PD-Exchange operator swaps PD-pairs of two routes,
subject to all the constraints imposed on PDPTW. We have
denoted the neighborhood of solution S obtained by the PD-
Exchange operator as

� ����� �
�  . In Figure 2, locations
P1 and D1 are originally a PD-pair in Route1, while lo-
cations P2 and D2 are originally a PD-pair in Route2. The
PD-Exchange operator first removes the two PD-pairs from
Route1 and Route2 respectively, then insert P1-D1 into a
feasible position-pair in Route2, while insert P2-D2 into
a feasible position-pair in Route1. Again, infeasible ex-
changes are forbidden with regards to the PDPTW con-
straints.

Figure 3. PD-Rearrange Operator

2.3.3 PD-Rearrange Operator

Within the same route, the PD-Rearrange operator rear-
ranges PD-pairs to the best positions that maximally reduce
the value of the objective function. We have denoted the
neighborhood of solution S obtained by the PD-Rearrange
operator as

������� �
�! . In Figure 3, locations P and D are
a PD-pair in Route. The PD-Rearrange operator removes
the PD-pair from Route, then inserts them into a new fea-
sible position-pair within the same route. Infeasible rear-
rangements are also forbidden with regards to the PDPTW
constraints.

2.3.4 Objectives and Cost Function in Local Search

In our research, we prefer the priority order of PDPTW’s
objectives as follows: i) to minimize the number of vehi-
cles; ii) to minimize the total travel cost; iii) to minimize
the total schedule duration; iv) to minimize the drivers’ total
waiting time to start service. To reflect this order of priority,
we adopt the following cost function:

�	� 2-g.�
� 
� ! �?j " � $32-g.�
�  j $���m�
�  j & ��m�
�  (1)

The penalty weight factors are set to be ! � " � $ � & .
Under this setting, even if the initial solutions obtained by
the construction heuristic contains large number of vehicles,
the number of vehicles will be reduced during the search
procedure.

2.3.5 Descent Local Search

As an extension of local search, descent local search(DSL)
starts from an initial solution. All the solutions in the
neighborhoods are checked. The best solution with the
minimum objective cost assessed by (1) will act as the
initial solution for repeating this DSL procedure. This is
repeated until no improvement is found.

INPUT: a solution S;
OUTPUT: a local optimal solution ���
DLS(Solution S)

1. ����� �
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2. Select the best solution � �� with minimum objective cost
within a defined neighborhood of ���

3. IF
�	� 2-g.�
� �� CX �	� 2-g.�
���) THEN

3.1 ��� � � �� ; GOTO Step 2

4. ELSE RETURN ���

3 Our Metaheuristic

Metaheuristics are strategies that guide local search pro-
cedures. In this section, we present a metaheuristic that
guides the DSL procedure.

3.1 Tabu Structure

We define the following eigenvalue structure to represent
a solution:

Struct Eigenvalue{
Number of vehicles (NV);
Total travel cost (TC);
Total schedule duration (SD);
Total waiting time (WT);

}
� � ,  � , � � and �� will be used as table fields in later
sections.

Since the probability that two different solutions having
the same eigenvalue is very small, it’s reasonable to regard
two solutions as the same if they share the same eigenvalue.
We record the eigenvalues of the solutions into a tabu set
which differs from previous works that use edge-moves in
their tabu structure.

3.2
�

-Restarts Strategy

In our algorithm, we use a simulated annealing algorithm
which differs from its traditional implementation. Instead of
performing the simulated annealing procedure on the proba-
bilistically accepted solution repeatedly until the procedure
terminates, we compel the simulated annealing procedure to
restart from the current best solution after several simulated
annealing iterations without any improvement (the constant
��� ��� can be set to 3 or 4 to produce good results). The
algorithm terminates after

�
restarts without improvement.

This acts like a rightist
�

-ary tree.
In addition to this

�
-restarts strategy, the visited

solutions are recorded into a tabu set to avoid cycling. The
hybrid metaheuristic is given below:

INPUT: a solution S;
OUTPUT: a local optimal solution ���
TABU EMBEDDED SA(Solution S)

1. Obtain a solution ��� from DSL within
� ����� �
� G������ � �
� 

2. ����� Perform a DSL within
������� �
� 

3.
� � �������

� K
4. � � ���
5. WHILE

� � ������� X � � ��� DO

5.1 Use METROPOLIS PROC(S) to obtain a fea-
sible solution S’ which was not recorded in
tabu set, from the neighborhood

� ����� �
� m������ � �
�  , record the two routes on which PD-
Shift/PD-Exchange operator performed.

5.2 Reduce number of vehicles by moving PD-pairs
out from one route and insert them into other
routes based on criteria of minimal increment in
objective cost.

5.3 Use Solomon’s Insertion Procedure to respectively
re-order the two recorded routes of S’ in step 5.1.

5.4 � �� � Perform a DSL within
������� �
�
	Z_������ � �
�
	Z

5.5 � �� � Perform a DSL within
������� �
� �� 

5.6 IF
��� 2-g.�
� �� CX �	� 2-g.�
���) THEN

5.6.1 ����� � �� ; � � �������
� K

5.7 ELSE
� � �������

�
� � ������� j�&

5.8 � � � ��
6. RETURN ���
METROPOLIS PROC(Solution S)

1. WHILE NOT yet accept an neighboring solution of S
DO

1.1 � 	 � get a random neighbor of S which is not in
tabu set, within

� ����� �
�
	 q� ������� �
��	 
1.2  � �
� ��� 2-g.�
�
	Q
� �
� ��� 2-g.�
� 
1.3 IF Ll K THEN

��� ���
� &

1.4 ELSE
��� ���

� 4 < � �

1.5 IF
��� / e � � �JKd	�&�!l ��� ��� THEN

1.5.1 Accept S’

1.5.2 Update global annealing temperature:
 �  

1.5.3 Record S’ into tabu set

2. RETURN S’
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In METROPOLIS PROC, the cost function SACost(S) is
defined as:

�B� �	� 2-g.�
� 
� � $32-g.�
�  j ��� ��m�
�  (2)

Here, � � K6+ K & � � $32-g.�
�  . In procedure
TABU EMBEDDED SA, from the viewpoint of tabu
search, the METROPOLIS PROC in step 5.1 acts as an
annealing-probabilistic diversification strategy to escape
from local optima. In addition, Step 5.3 and S tep 5.5 act as
intensification strategies. In fact, the best-based

�
-restarts

strategy in the following overall algorithm itself acts as an
intensification strategy.

INPUT: problem data;
OUTPUT: a best solution found ��� found
OVERALL ALGORITHMS

1. Input problem data

2. ��� � the better solution produced from Modified
Solomon’s Insertion Algorithm

3. Configure parameters:
�

,  � ,  ,
 

and � � ���

4. Set tabu set to be empty

5. � � � ������� � � K
6. WHILE � � � ������� � X �

DO

6.1 � � ���
6.2 � �� � i����� � �	�
� � � � � �
� �
� 
6.3 IF

�	� 2-g.�
� �� CX �	� 2-g.�
���) THEN

6.3.1 ��� � � �� ; � � � ������� � � K
6.4 ELSE � � � ������� � ��� � � ������� � j>&

7. OUTPUT ���

4 Analysis of the Algorithms

In the above overall algorithm, K determines the stop-
ping condition of the overall algorithm. The total number
of iterations of local search guided by the tabu-embedded
simulated annealing procedure will be n1� � �  , where

�
is

the depth of the rightist K-ary tree due to
�

restarts.
In each iteration, the time complexity of the overall al-

gorithm is mainly determined by the time complexity of
local searches in the neighborhoods that we defined. Let
m� � 	0/F be the overall time complexity of local searches
in the neighborhoods. The ti me complexity of the whole
algorithm is n1� � �  � m� � 	0/F .

On average, each vehicle will serve � s�� customers,
that is, � sp �� PD- pairs. For the PD-Shift Operator, once
a pickup location P in Route 1 is selected for swapping,

it takes no��� s��  time to locate its delivery counterpart D
within the same rou te. Similarly, once a insertion position
in Route 2 is determined for P, it also take n1��� s��  time
to determine another insertion position in Route 2 for D. In
addition, there are n1� � p, route-pair combinations. There-
fore, the time complexity for local search in

� ����� �
�  is
n1� s�� �

� � p,B�;n1� s���� 
Repeating similar analysis for

� ����� �
�  , the time com-
plexity of a local search in

� ����� �
�  defined by PD- Ex-
change operator is n1� s�� �

� � p�
�;no� s�� �  .The rearrange operator is only used for post-optimization
in the procedure of TABU EMBEDDED SA. In addition,
it is only applied to the affected routes which the PD-
Shift operator or PD-Exchange operator were applied. As
the a bove analysis, time complexity of a local search in������� �
�  is no� s�� �

� (MB�;n1� s�� �  . Therefore, m� � 	0/F
�� ��� N n1� s���� I	In1� s�� � I	)n1� s�� � �R , since m will never be larger

than n, we get m� � 	�/F � n1� s�� �  . It follows that the time

complexity of the whole algorithm is no� � � s�� �  . As long
as
�

is kept to a small number, our running time is reason-
able.

5 Experimental Results

5.1 Benchmark Problem Instances

We generated from Solomon’s 56 benchmark problem
instances (See Solomon [7]), by randomly pairing up the
customer locations within routes in solutions obtained by
our heuristic approach for the vehicle routing problem with
time windows (See Li et al. [4]). This is different from the
way that William et al. [13] just paired up customers ap-
pearing in the routes of the optimal solutions one by one.
In addition, we were not restricted to generating data sets
using only optimal solutions. One reason is that most of
the Solomon’s instances have not yet been optimally solved.
Another reason is that the PD-pairs may be much more ran-
domly distributed in real life problems, so they may not nec-
essarily be paired up within the same route of VRPTW so-
lutions. Corresponding to Solomon’s classification of

� & ,� ( , � & , ��( , � � & and � � ( , our data sets were also gen-
erated in six classes: � � & , � � ( , ��� & , ����( , ��� � & and
��� � ( . All problems have 100 real customers with sev-
eral additional dummy nodes for coupling purpose if nec-
essary, a central depot, capacity constraints, time window
constraints, precedence constraints together with coupling
constraints. The customers in � � problems are clustered.
In ��� problems the customers are randomly distributed. In
��� � problems, customers are partially clustered and par-
tially randomly distributed. The � � & , ���=& and ��� � &
problems have short scheduling horizon, while � � ( , ���G(
and ��� � ( have longer scheduling horizon.
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Prob. NV TC SD CT WV WSD
NC101 10 828.9 9828.9 35 10 9827.3
NC102 10 828.9 9828.9 130 10 9827.3
NC103 10 831.9 10065.1 156 10 9829.9
NC104 9 869.5 10166.7 1539 10 9834.7
NC105 10 828.9 9828.9 25 10 9827.3
NC106 10 828.9 9828.9 31 10 9827.3
NC107 10 827.8 9921.8 22 10 9826.1
NC108 10 827.8 9904.8 39 10 9826.1
NC109 10 827.8 9831.8 85 10 9827.3

Table 1. Results Obtained for
� � & Instances

5.2 Computational Results

Our experimental environment is the Linux Kernel
2.2.14-5.0 smp on i686. The algorithms were coded in C++
with Standard Template Library. The values of the parame-
ters used are  � � � Kd	  �;Kd+�� � 	 � � � p ���� � 	'� � � � ��� .

5.2.1 Results for 9
� � & problem instances

Table 1 shows the results obtained by our algorithms and by
reactive tabu search method of William et al. [13] on the 9� � & problems. Although our objective functions are dif-
ferent, a rough comparison table is given. Here,

�  means
CPU time in seconds, while �'� and ��� � represent

� �
and � � obtained by William et al. [13]. William et al. [13]
obtained 7 optimal solutions out of the 9 instances except� � &,KMr and

� � &,K�� , by their reactive tabu search heuristic.
These are very good solutions. As far as we know, Chiang et
al. [14] also solved VRPTW using the same approach, but
they did not reach optimal solutions for any

� & instances.
In addition, no heuristic has ever reported optimal solutions
for

� & test cases. For
� � &,K�� , our solution has a smaller

number of vehicles. By comparison, our schedule durations
are slightly larger than those of William et al. [13].

5.2.2 Results for the newly-generated 56 problem in-
stances

It’s true that William et al. [13] is the first to solve 100-
customer instances, however, their experiments were con-
fined within only 9 instances with clustered distribution
property. Because of this reason, we conduct more expe-
riences on 56 newly-generated instances with various dis-
tribution properties. Table 2 shows the best results obtained
by our algorithms. The table lists all the 4 objective values
in order of their priorities togther with computational times.

Prob. NV TC SD WT CT
LC101 10 828.94 9828.94 0 33
LC102 10 828.94 9828.94 0 71
LC103 10 827.86 10058.03 230.17 191
LC104 9 861.95 10006.90 144.95 1254
LC105 10 828.94 9828.94 0 47
LC106 10 828.94 9828.94 0 43
LC107 10 828.94 9828.94 0 54
LC108 10 826.44 9826.44 0 82
LC109 10 827.82 9831.78 3.96 255
LC201 3 591.56 9591.56 0 27
LC202 3 591.56 9591.56 0 94
LC203 3 585.56 9521.66 26.09 145
LC204 3 591.17 9591.17 0 746
LC205 3 588.88 9588.88 0 190
LC206 3 588.49 9588.49 0 88
LC207 3 588.29 9660.40 72.12 102
LC208 3 588.32 9744.23 155.91 178
LR101 19 1650.78 3599.45 948.65 87
LR102 17 1487.57 3202.46 714.89 1168
LR103 13 1292.68 2729.15 436.48 169
LR104 9 1013.39 2050.85 37.46 459
LR105 14 1377.11 2631.56 254.45 69
LR106 12 1252.62 2412.11 159.49 87
LR107 10 1111.31 2220.27 108.96 287
LR108 9 968.97 2029.93 60.96 415
LR109 11 1239.96 2311.37 71.42 348
LR110 10 1159.35 2222.99 63.64 547
LR111 10 1108.90 2189.53 80.63 179
LR112 9 1003.77 2013.17 9.41 638
LR201 4 1263.84 3495.81 1231.97 193
LR202 3 1197.67 2749.39 551.73 885
LR203 3 949.40 2762.80 813.40 1950
LR204 2 849.05 1988.57 139.52 2655
LR205 3 1054.02 2550.13 496.11 585
LR206 3 931.63 2502.46 570.84 747
LR207 2 903.056 1936.44 33.38 1594
LR208 2 734.85 1858.36 123.51 3572
LR209 3 937.05 2432.61 459.56 2773
LR210 3 964.22 2782.06 817.83 1482
LR211 2 927.80 1954.57 26.77 4204
LRC101 14 1708.80 2956.32 247.52 119
LRC102 13 1563.55 2764.14 200.59 152
LRC103 11 1258.74 2443.68 184.95 175
LRC104 10 1128.40 2238.17 109.77 202
LRC105 13 1637.62 2830.16 192.54 179
LRC106 11 1425.53 2475.01 49.48 459
LRC107 11 1230.15 2344.94 114.80 154
LRC108 10 1147.97 2245.30 97.34 650
LRC201 4 1468.96 3358.41 889.45 266
LRC202 3 1374.27 2657.14 282.87 987
LRC203 3 1089.07 2700.30 611.23 1605
LRC204 3 827.78 2537.83 710.05 3634
LRC205 4 1302.20 3464.61 1162.41 639
LRC206 3 1162.91 2444.87 281.96 445
LRC207 3 1424.60 2461.42 36.82 607
LRC208 3 852.76 2271.19 418.44 4106

Table 2. Solutions for the new instances
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Data Sets MNV MTC MSD MWT
NC1 9.89 833.40 9911.77 78.37
LC1 9.89 832.08 9874.20 42.12
LC2 3.00 589.23 9609.74 31.77
LR1 11.92 1222.20 2467.74 245.54
LR2 2.73 977.14 2455.75 478.60
LRC1 11.63 1387.59 2537.22 149.62
LRC2 3.25 1187.82 2736.97 549.15

Table 3. Statistical summary for the data sets

5.2.3 Statistical summary for the data sets

The statistical computational results are shown in Ta-
ble 3. Here, � � �
	'�� � 	'��� � and � �� represents
the mean values of

� � ,  � , � � and �� respectively.

5.2.4 Route details for several selected instances

Table 4 and Table 5 show the route details for several se-
lected instances. The node indices larger than 100 indi-
cate that these are dummy nodes for pairing purposes.

� �
means number of customers in the route of a vehicle.

6 Conclusion

In this paper, we proposed a metaheuristic with an-
nealing like restart strategy to guide the local search in
three neighborhoods that we defined to solve the general
multiple-vehicle PDPTW. This is combined with an effec-
tive metaheuristic based on a

�
restarts annealing proce-

dure with tabu-list to avoid cycling in the search process. In
addition, we generated 56 100-customer problem instances
from Solomon’s benchmark instances for the vehicle rout-
ing problem with time windows. The experimental results
on the six different data sets marked our algorithms as the
first efficient approach to solve practical sized multiple-
vehicle PDPTW problem instances with various distribu-
tion properties. Furthermore, our algorithm can be easily
adapted to solve further generalizations of PDPTW.
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