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Abstract. A wide variety of problems in control system theory fall within the class

of parameterized Linear Matrix Inequalities (LMIs), that is, LMIs whose coe�cients are

functions of a parameter con�ned to a compact set. However, in contrast to LMIs, param-

eterized LMI (PLMIs) feasibility problems involve in�nitely many LMIs hence are very

hard to solve.

In this paper, we propose several e�ective relaxation techniques to replace PLMIs

by a �nite set of LMIs. The resulting relaxed feasibility problems thus become convex

and hence can be solved by very e�cient interior point methods. Applications of these

techniques to di�erent problems such as robustness analysis, or Linear Parameter-Varying

(LPV) control are then thoroughly discussed and illustrated by examples.

1 Introduction

Linear matrix inequalities (LMIs) have emerged as a very powerful tool in the analysis and

synthesis for robust control problems (see e.g. [6, 8, 12] and references therein). From a

computational point of view, LMIs are very attractive because they consist of convex con-

straints and therefore can be solved by very e�cient convex optimization interior points

methods with worst-case polynomial complexity [14, 22]. From the viewpoint of robust

control analysis and synthesis, LMI formulations o�er much more freedom and poten-

tial than the usual Riccati/Lyapunov algebraic machinery and thus provide additional

exibility in control applications.

In this paper we are concerned with parameterized LMIs (PLMIs), that is, LMIs

depending on a parameter � evolving in a compact set. The parameter � can be given

various control theory interpretations and can designate parameter uncertainties or system

operating conditions but virtually appears in other branches such as robust �ltering, or

robust matrix computation problems. Here, a special emphasis is put on PLMIs of the

form
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where z is the decision variable, M

i

(z), M

ij

(z), are a�ne symmetric matrix-valued func-

tions of z and � is a parameter con�ned to either the polytope

� 2 � := f� = (�

1

; �

2

; :::; �

L

) :

L

X

i=1

�

i

= 1; �

i

� 0; i = 1; 2; ::; Lg: (2)

or the parameter hyper-rectangle

� 2 [p; q]; p � 0; q > 0; p 2 R

L

; q 2 R

L

: (3)

As will be clari�ed later, such PLMIs arise quite naturally in important problems of

robust control theory such as Lyapunov-based robustness analysis, �-analysis, robust and

LPV (Linear Parameter-Varying) synthesis problems. In the light of this, the importance

and generality of PLMIs appear clearly for application purposes. Unfortunately, in con-

trast to LMIs, PLMIs involve in�nitely many LMIs, and therefore are very hard to solve.

They are known to be NP-hard [5]. As a consequence, the computational e�orts for �nding

feasible points are expected to be far much higher than those of LMIs. This motivates

the need for developing sensible and practical algorithms for solving PLMIs. Possible ap-

proaches for solving PLMIs are relaxation techniques where PLMIs are replaced by �nitely

many LMIs. Such approaches are potentially conservative but often provide practically

exploitable solutions of di�cult problems with a reasonable computational e�ort.

From our practical experience, such techniques appear to work pretty well in many

practical control problems. In a di�erent paper [2], we have developed a relaxation tech-

nique based on directional convexity concepts (DCC) for attacking PLMI problems. The

central idea of DCC is to enforce some directional convexity properties of the PLMI (1) so

that there is only need to check (1) at the vertices of the polytope (2) or (3). We therefore

end up with an easy to solve standard LMI feasibility problem.

In this paper, di�erent relaxation techniques for solving (1) are explored. Regarding

problem (1) as the optimization of an inde�nite quadratic function of �, we introduce

several convexi�cation techniques leading to LMI characterizations. Note that both DCC

in [2] and the present work are fundamentally di�erent from that of [1, 23, 24] which

exploits polytopic covering techniques to turn PLMI problems into LMIs. The present

work is also closely related to the work of Ben-Tal and Nemirovski in [4, 5] which lays the

foundations of robust convex programming and investigate its theoretical tractability, and

the work of Oustry, Elghaoui and Lebret in [15] who consider the regularity properties

of solutions to PLMIs using the S-procedure and discuss its implications for a variety of

topics.

This paper is splitted into six parts. Sections 2 and 3 discuss two di�erent techniques

for convexifying problem (1) while Section 4 gives extensions to PLMI problems of the

form
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used the shorthand

�

[�]

:= �

�

1

1

�

�

2

2

::::�

�

L

L

where � = (�

1

; �

2

; :::; �

L

); �

i

� 1, are L-tuples of partial degrees in the �nite set J .

2



Section 5 considers di�erent applications of the proposed techniques ranging from

robust analysis to LPV synthesis problems while Section 6 provides illustrative examples.

The notations in this paper are fairly standard. For instance, for a symmetric matrix

M , the notation M < 0 (M � 0, resp.) means M is negative de�nite (negative semide�-

nite, resp.), the set of all vertices of a polytope � is denoted by vert�. In (3), � 2 [p; q]

must be understood component-wise, that is, p

i

� �

i

� q

i

; i = 1; 2; :::L and similarly,

p � 0 (q > 0, resp.) means p

i

� 0 (q

i

> 0, resp.) for all 1 � i � L.

2 Separated convexi�cation method

Before considering the PLMI problem (1), we introduce some auxiliary results on convex

overbounding functions for polynomial functions that will be used in the sequel. It is

assumed throughout this subsection that x+ y � 1; x � 0; y � 0. All proofs for Lemmas

2.1-2.5 are given in the Appendix.
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In virtue of Lemmas 2.4-2.5, it is not di�cult to construct a convex upper bound for any

function �

L
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2.2 LMI characterization

Now, refocus of the PLMI problem (1). Obviously,
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For every �xed x and z, the right-hand side (RHS) of (6) is a quadratic function. Since the

sign of every x

0

M

ij

(z)x is inde�nite in general, checking (6) is equivalent to a non-convex

quadratic optimization problem.
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Since the left-hand side (LHS) of (9) is already convex in �, for every �xed (x; z) the

maximum of the LHS of (9) over � is attained on vert�. The following result formalizes

these facts.
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To see that (10) actually is an LMI characterization, take for instance, � = e

1
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Analogously, we can express (10) at any vertex e
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For instance with L = 2, and (16) in force, the PLMI problem (1), (14) becomes
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Using Lemmas 2.2 to 2.5, one can check that (19) is satis�ed if
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for all jjxjj = 1 and � in vert [0; 1]

3

. As before, these quadratic constraints are readily

recast as an LMI feasibility problem.

3 D.C. convexi�cation method

In section 2, we have presented techniques to convexify all non-convex terms in the left-

hand side of (6). Now, we present a method to convexify the left-hand side of (6) in one

step, that is, without making a separated treatment of the terms.

The idea of this method is to express the LHS of (6) as a d.c (di�erence of convex)

functions in the form
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0

(x)MA(x) (24)

and therefore (23) is enforced by

2

6

6

4

2(M

11

(z) + r

1

I) M

12

(z) :::: M

1L

(z)

M

12

(z) 2(M

22

(z) + r

2

I) :::: M

2L

(z)

::: :::: :::: :::

M

1L

(z) M

2L

(z) :::: 2(M

LL

(z) + r

L

I)

3

7

7

5

� 0 (25)

On the other hand, using Lemma 2.1, we have

�

L

X

i=1

r

i

�

2

i

� �

L

X

i=1

r

i

(�

i

� 0:25); (26)

where the RHS is trivially a convex function in �. The following theorem is an immediate

consequence of these results.

Theorem 3.1 The PLMI problem de�ned by (1) and (2) is feasible whenever the LMIs

(in �nite number) (25) together with

M

0

(z) +

L

X

i=1

�

i

M

i

(z) +

X

1�i�j�L

�

i

�

j

M

ij

(z) +

L

X

i=1

[r

i

�

2

i

I � r

i

(�

i

� 0:25)I] < 0;

(27)

where � runs over vert�, are feasible.
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As mentioned in Remark 2.2, for the more special PLMI problem (1), (14), there is no

need for convexifying terms x

0

M

ij

x�

i

�

j

, i < j. The following result provides solvability

conditions for this structurally simpler problem.

Theorem 3.2 The PLMI problem (1), (14) is feasible whenever the LMIs (27), where �

ranges over vert� = f0; 1g

L

, together with the LMIs

M

ii

(z) + r

i

I � 0; i = 1; 2; :::; L (28)

are feasible.

Proof: It su�ces to show that for every �xed x and z the maximum of the function

�

f

zx

(�) := x

0

[M

0

(z) +

L

X

i=1

�

i

M

i

(z) +

X

1�i�j�L

�

i

�

j

M

ij

(z) +

L

X

i=1

[r

i

�

2

i

I � r

i

(�

i

� 0:25)I]]x

= x

0

[M

0

(z) +

L

X

i=1

(�

i

M

i

(z)� r

i

(�

i

� 0:25)I) +

X

1�i<j�L

�

i

�

j

M

ij

]x

+

L

X

i=1

x

0

[�

2

i

M

ii

(z) + r

i

�

2

i

I ]x (29)

over � de�ned by (14) is achieved on vert�.

Let �̂ = (�̂

1

; �̂

2

; ::::; �̂

L

) 2 � be a maximizer of

�

f

zx

. Consider the function

�

f

L

from [0; 1]

to R de�ned as

�

f

L

zx

(�

L

) =

�

f

zx

(�̂

1

; :::; �̂

L�1

; �

L

):

From the representation (29) of

�

f

zx

and also (28), one can see that

�

f

L

zx

is convex on [0; 1]

and therefore its maximum is attained at some �

�

L

2 f0; 1g. But since �̂ is a maximizer

of

�

f

zx

over � we have that

�

f

zx

(�̂) =

�

f

L

zx

(�

�

L

) =

�

f

zx

(�̂

1

; : : : ; �̂

L�1

; �

�

L

). Analogously, the

maximum of the convex function

�

f

L�1

zx

(�

L�1

) :=

�

f

zx

(�̂

1

; :::; �̂

L�2

; �

L�1

; �

�

L

) is attained for

�

�

L�1

2 f0; 1g thus we have

�

f

zx

(�̂) =

�

f

zx

(�̂

1

; :::; �̂

L�2

; �

�

L�1

; �

�

L

). Continuing this process,

we can �nd �

�

= (�

�

1

; �

�

2

; :::; �

�

L

) 2 vert� such that

�

f

zx

(�̂) =

�

f

zx

(�

�

). This completes the

proof of Theorem 3.2.

2

4 Higher-order PLMIs

In this section, the focus is on more complicated PLMIs involving polynomial terms in the

parameter. As before, we shall use d. c. concepts to relax the PLMI problem into a �nite

number of LMIs.

First, for simplicity of description let us consider the following particular case of (4),

(14):

M

0

(z) + �

2

1

M

20

+ �

2

2

M

02

+ �

3

1

M

30

+ �

2

1

�

2

M

21

+ �

1

�

2

2

M

12

+ �

3

2

M

03

< 0

(�

1

; �

2

) 2 [0; 1]

2

;

(30)

i.e. (30) is (4), (14) with L = 2 and

J � f� 2 N

2

:

2

X

i=1

�

i

� 3; �

i

� 0; i = 1; 2g (31)
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Again, setting

f

zx

(�) = x

0

[M

0

(z) + �

2

1

M

20

+ �

2

2

M

02

+ �

3

1

M

30

+ �

2

1

�

2

M

21

+ �

1

�

2

2

M

12

+ �

3

2

M

03

]x

f

1zx

(�) = f

zx

(�) +

2

X

i=1

(r

i

x

0

Ix�

2

i

+ s

i

x

0

Ix�

3

i

)

then

f

zx

(�) = f

1zx

(�) �

2

X

i=1

(r

i

x

0

Ix�

2

i

+ s

i

x

0

Ix�

3

i

): (32)

The Hessian r

2

f

1zx

(�) of f

1zx

(�) is

2

6

6

4

x

0

[2M

20

(z) + 6�

1

M

30

(z)

+2�

2

M

21

(z) + (2r

1

+ 6s

1

�

1

)I ]x

x

0

[2�

1

M

21

(z) + 2�

2

M

12

(z)]x

x

0

[2�

1

M

21

(z) + 2�

2

M

12

(z)]x

x

0

[M

02

(z) + 6�

2

M

03

(z)

+2�

1

M

12

(z) + (2r

2

+ 6s

2

�

2

)I ]x

3

7

7

5

(33)

Therefore, using a relation similar to (24), it can be shown that f

1zx

is convex on � if

2

6

6

4

2M

20

(z) + 6�

1

M

30

(z)

+2�

2

M

21

(z) + (2r

1

+ 6s

1

�

1

)I

2�

1

M

21

(z) + 2�

2

M

12

(z)

2�

1

M

21

(z) + 2�

2

M

12

(z)

M

02

(z) + 6�

2

M

03

(z)

+2�

1

M

12

(z) + (2r

2

+ 6s

2

�

2

)I

3

7

7

5

� 0

8� 2 [0; 1]

2

:

(34)

Now, it is already seen that as the LHS of (34) is a�ne in �, (34) is equivalent to the

following LMI

2

6

6

4

2M

20

(z) + 6�

1

M

30

(z)

+2�

2

M

21

(z) + (2r

1

+ 6s

1

�

1

)I

2�

1

M

21

(z) + 2�

2

M

12

(z)

2�

1

M

21

(z) + 2�

2

M

12

(z)

M

02

(z) + 6�

2

M

03

(z)

+2�

1

M

12

(z) + (2r

2

+ 6s

2

�

2

)I

3

7

7

5

� 0

8� 2 vert[0; 1]

2

:

(35)

with the decision variables z; r; s.

By Lemma 2.1

�

2

X

i=1

s

i

�

3

i

� �

2

X

i=1

s

i

(0:75�

i

� 0:25) (36)

Using (26), (36) we have

Proposition 4.1 PLMI (30) is feasible if LMIs (35) and

M

0

(z) + �

2

1

M

20

+ �

2

2

M

02

+ �

3

1

M

30

+ �

2

1

�

2

M

21

+ �

1

�

2

2

M

12

+�

3

2

M

03

+

2

X

i=1

[(r

i

�

2

i

+ s

3

i

�

3

i

)I � (r

i

+ 0:75s

i

)�

i

I + 0:5I] < 0; 8� 2 vert [0; 1]

2

;

r

i

� 0; s

i

� 0; i = 1; 2;

(37)

are feasible.
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Clearly, PLMI (30) with � belonging to (2) instead of (14) can be treated in a similar

manner and moreover, the above method can be generalized for the general case of PLMI

(4), (14) as follows.

Obviously, for every J in (4) there is k > 0 integer such that

J � f� 2 R

L

:

L

X

i=1

�

i

� k; �

i

� 0; i = 1; 2; :::; Lg: (38)

The minimum of such k will be called the order of J and J itself will be called the index

set of (4). Then the d.c. convexi�cation process for solving (4), (2) is as follows.

Step 1. Using a d.c representation like (32) to relax the feasibility problem for PLMI (4),

(2) to the feasibility problem for PLMI (37) and (34). PLMI (34) belongs to class (4) but

the order of its index set decreases to k � 2.

Step 2. Do the d.c. relaxation process for PLMI (34) until get a PLMI like (4) with the

order of the index set less than or equal 1. This last PLMI is already equivalent to an

LMIs system.

To illustrate the above steps let us consider more the following PLMI

6

X

i=0

�

i

M

i

(z) < 0 8� 2 [0; 1]: (39)

First, expressing the LHS of (39) in the form

[

6

X

i=0

�

i

M

i

(z) +

6

X

i=2

r

i

�

i

I]�

6

X

i=2

r

i

�

i

I

and using

�

6

X

i=2

r

i

�

i

I � �

6

X

i=2

r

i

(

i

2

i�1

� �

i� 1

2

i

)I

by Lemma 2.1 we see by d.c. convexi�cation process that (39) holds true whenever there

are r

i

� 0; i = 2; 3; 4; 5; 6 such that

[

6

X

i=0

�

i

M

i

(z) +

6

X

i=2

r

i

�

i

I ]�

6

X

i=2

r

i

(

i

2

i�1

� �

i� 1

2

i

) < 0 8� 2 f0; 1g; (40)

6

X

i=2

i(i� 1)�

i�2

(M

i

(z) + r

i

I) � 0 8� 2 [0; 1] ,

�

6

X

i=2

i(i� 1)�

i�2

(M

i

(z) + r

i

I) � 0 8� 2 [0; 1]: (41)

Rewrite (40) in the form of LMIs as

M

0

(z) +

6

X

i=2

r

i

i� 1

2

i

I < 0 (42)

6

X

i=0

M

i

(z) +

6

X

i=2

r

i

(1�

i

2

i�1

+

i� 1

2

i

)I < 0 (43)
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It remains to do the d.c. convexi�cation for (41). Again expressing LHS of (41) in the

form

[�

6

X

i=2

i(i� 1)�

i�2

(M

i

(z) + r

i

I) + (s

2

�

2

+ s

3

�

3

+ s

4

�

4

)I ]� (s

2

�

2

+ s

3

�

3

+ s

4

�

4

)I

and using

�(s

2

�

2

+ s

3

�

3

+ s

4

�

4

) � �s

2

(� � 0:25)I � s

3

(0:75� � 0:25)I � s

4

(0:5� � 0:1875)I

one can see that (41) is implied by the following

[�

6

X

i=2

i(i� 1)�

i�2

(M

i

(z) + r

i

I) + (s

2

�

2

+ s

3

�

3

+ s

4

�

4

)I]

�s

2

(� � 0:25)I � s

3

(0:75� � 0:25)I � s

4

(0:5� � 0:1875)I � 0 8� 2 f0; 1g (44)

�

6

X

i=4

i!

(i� 4)!

�

i�4

(M

i

(z) + r

i

I) + (2s

2

+ 6s

3

� + 12s

4

�

2

)I � 0 8� 2 [0; 1]: (45)

It can be easily shown that (45) is ful�lled if there is q � 0 such that

[

6

X

i=4

i!

(i � 4)!

�

i�4

(M

i

(z) + r

i

I)� (2s

2

+ 6s

3

� + 12s

4

�

2

)I + q�

2

I ]

�q(� � 0:25)I � 0 8� 2 f0; 1g;

(46)

6!(M

6

+ r

6

I)� 24s

4

I + 2qI � 0 (47)

Rewriting (44), (46) in the LMIs form

�2M

2

(z)� 2r

2

I + (0:25s

2

+ 0:25s

3

+ 0:1875s

4

)I � 0 (48)

�

6

X

i=2

i(i� 1)(M

i

(z) + r

i

I) + (0:25s

2

+ 0:5s

3

+ 0:6875s

4

)I � 0 (49)

24(M

4

+ r

4

)I � 2s

2

I + 0:25qI � 0 (50)

6

X

i=4

i!

(i� 4)!

(M

i

(z) + r

i

I)� (2s

2

+ 6s

3

+ 12s

4

+ 0:25q)I � 0 (51)

we �nally obtain the following

Proposition 4.2 PLMI (39) is feasible if the LMIs

r

i

� 0; i = 2; 3; 4; 5; 6; s

2

� 0; s

3

� 0; s

4

� 0; q � 0

and (42), (43), (48), (47){(51) with the decision variables z; r

2

; r

3

; r

4

; r

5

; r

6

; s

2

; s

3

; s

4

; q

are feasible

Remark 4.1. One can modify (22) in the form

x

0

M

0

(z)x+

L

X

i=1

x

0

M

i

(z)x�

i

+(

X

1�i�j�L

x

0

M

ij

x�

i

�

j

+

M

X

i=1

r

i

�

2

i

x

0

Ix)�

M

X

i=1

r

i

x

0

Ix�

2

i

< 0 (52)
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for some M < L. Then, imposing the convexity for

x

0

M

0

(z)x+

L

X

i=1

x

0

M

i

(z)x�

i

+ (

X

1�i�j�L

x

0

M

ij

x�

i

�

j

+

M

X

i=1

r

i

�

2

i

x

0

Ix)

it remains to convexify �

P

M

i=1

�

2

i

instead of �

P

L

i=1

�

2

i

.

Remark 4.2. One can use a hybrid convexi�cation for (4), (2). For instance at Step 2,

one can use the separated convexi�cation method to relax (34) or DCC [2].

5 Applications

The techniques and tools presented in Sections 2-4 are applicable to

� Lyapunov-based stability and performance robustness analysis,

� � analysis, see [7, 2] for a detailed discussion,

� LPV synthesis.

For brevity, we only report applications to the �rst and third issue. The reader is referred

to reference [2] for other applications and a detailed discussion.

5.1 Robust stability

We consider the linear uncertain system

_x = A(�)x; A(�) := �

1

A

1

+ : : : + �

L

A

L

; (53)

where � is a �xed uncertain parameter evolving in the unit simplex (2). It follows that

the uncertain matrix A(�) ranges over a matrix polytope

A(�) 2 conv fA

1

; : : : ;A

L

g

We are seeking a quadratic parameter-dependent Lyapunov function with similar structure

V (x; �) := x

0

(�

1

X

1

+ : : :+ �

L

X

L

)x

establishing stability of the uncertain system for all admissible dynamics.

Working out the condition

d

dt

V (x; �) < 0, and exploiting Theorems 2.6 and 3.1 to con-

vert the problem into a �nite number of LMI feasibility conditions, the following su�cient

tests for robust stability is obtained.

Proposition 5.1 Assume one of the A

i

's is stable. Then, the uncertain system (53) is

stable whenever there exist symmetric matrices X

1

, ... , X

L

such that either

a) (10) holds for z := (X

1

;X

2

; :::;X

L

) and the de�nitions

M

i

(z) = 0; i = 0; 1; :::; L;

M

ij

(z) = A

0

i

X

j

+X

j

A

0

i

+A

0

j

X

i

+X

i

A

j

; i < j;

M

ii

(z) = A

0

i

X

i

+X

i

A

i

; i = 1; 2; :::; L;

(54)
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or

b) (25) and (27) hold for M

i

;M

ij

de�ned by (54).

In such case the Lyapunov function V (x; �) establishes stability of the uncertain system

53.

Proof: For V (x;�) as a Lyapunov function candidate, the uncertain system (53) is

stable if

(

L

X

i=1

�

i

A

i

)

0

(

L

X

i=1

�

i

P

i

) + (

L

X

i=1

�

i

P

i

)(

L

X

i=1

�

i

A

i

) < 0 8� 2 � (55)

L

X

i=1

�

i

P

i

> 0 8� 2 �: (56)

The proof is obtained by identifying the terms in (55) with those of (1) and by direct

application of Theorems 2.6 or 3.1. Note for completeness that, (56) follows by continuity

from inequality (55) and the fact that one of the A

i

's is stable.

2

5.2 Linear Parameter-Varying Control

In this section, we more thoroughly investigate how the concepts and tools introduced can

be utilized in the context of LPV control. For clarity, we recall the general statement of

the problem.

We are considering an LPV plant with state-space realization

_x = A(�)x+B

1

(�)w +B

2

(�)u

z = C

1

(�)x+D

11

(�)w +D

12

(�)u

y = C

2

(�)x+D

21

(�)w;

(57)

where

A 2 R

n�n

; D

12

2 R

p

1

�m

2

; and D

21

2 R

p

2

�m

1

de�ne the problem dimension. It is assumed that

(A1) the state-space data A(�), B

1

(�), ... are bounded continuous functions of �,

(A2) the time-varying parameter �(t) := [�

1

(t); � � � ; �

N

(t)]

0

and its rate of variation

_

�(t),

de�ned at all times and continuous, evolve in hyper-rectangles H and H

d

, that is,

H : �

i

(t) 2 [�

i

;

�

�

i

]; 8t � 0; (58)

H

d

:

_

�

i

(t) 2 [�

i

; ��

i

]; 8t � 0 : (59)

The assumptions (A1) and (A2) are general. They secure existence and uniqueness of

the solutions to (57) for given initial conditions and also specify the parameter trajectories

under consideration.

13



With these assumptions in place, the general LPV control problem with guaranteed L

2

-

gain performance consists of �nding a dynamic LPV controller with state-space equations

_x

K

= A

K

(�;

_

�)x

K

+B

K

(�;

_

�)y

u = C

K

(�;

_

�)x

K

+D

K

(�;

_

�)y

(60)

which ensures internal stability and a guaranteed L

2

-gain bound  for the closed-loop

operator (57)-(60) from the disturbance signal w to the error signal z, that is,

Z

T

0

z

0

z d� � 

2

Z

T

0

w

0

wd�; 8T � 0;

for all admissible parameter trajectories �(t).

Su�cient solvability conditions for this problem can be derived using a suitable exten-

sion of the Bounded Real Lemma [25], and by con�ning the search of (Lyapunov) variables

to some �nite-dimensional subspace of functions of �. The next theorem provides such a

set of conditions for the general LPV control problem. An alternative approach, based on

polytopic covering techniques, is proposed in [23]. We also assume, see [2], that

(A3) the matrices [B

0

2

(�) D

0

12

(�) ] ; [C

2

(�) D

21

(�) ] have full row-rank over H.

Note that the dependence of data and variables on �, or

_

� is generally dropped for simplicity

in the sequel. A proof of the following theorem can be found in [2].

Theorem 5.2 With the assumptions (A1)-(A3) in force, the following conditions are

equivalent:

(i) The Bounded Real Lemma conditions with L

2

-gain performance level  hold for some

quadratic Lyapunov function

V (x; x

K

; �) :=

�

x

x

K

�

0

P (�)

�

x

x

K

�

;

where P (�) is continuously di�erentiable, and for some LPV controller (60).

(ii) There exist continuously di�erentiable parameter-dependent symmetric matricesX(�)

and Y (�) and a scalar � solving the PLMI problem:

2

4

_

X +XA+A

0

X XB

1

C

0

1

B

0

1

X �I D

0

11

C

1

D

11

�I

3

5

� �

2

4

C

0

2

D

0

21

0

3

5

[C

2

D

21

0 ] < 0 (61)

2

4

�

_

Y + Y A

0

+AY Y C

0

1

B

1

C

1

Y �I D

11

B

0

1

D

0

11

�I

3

5

� �

2

4

B

2

D

12

0

3

5

[B

0

2

D

0

12

0 ] < 0 (62)

�

X I

I Y

�

> 0: (63)

for all (�;

_

�) on H �H

d

.

For simplicity of the presentation, it is �rst assumed the the state-space data in (57)

and the Lyapunov variables are a�ne functions of the parameter �, that is,
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(A4) A(�) := A

0

+

N

X

i=1

�

i

A

i

; B

1

(�) := B

10

+

N

X

i=1

�

i

B

1i

::::

The following Theorem is a direct consequence of Theorem 5.2 and Theorems 2.6, 3.2 with

X(�) =

N

X

i=0

�

i

X

i

; Y (�) =

M

X

i=0

�

i

Y

i

in (61)-(63).

Theorem 5.3 With the assumptions (A1)-(A4) above, there exists an LPV controller

(60) solution to the LPV control problem with guaranteed L

2

-gain performance with level

 whenever there exist symmetric matrices X

0

, X

1

, ... ,X

N

and Y

0

, Y

1

, ...,Y

N

and scalars

 and � such that

2

6

6

6

6

4

X

0

+

N

X

i=1

�

i

X

i

I

I Y

0

+

N

X

i=1

�

i

Y

i

3

7

7

7

7

5

> 0; 8 � 2 vertH (64)

and either

a) (10) holds true simultaneously for z, M

i

(z), and M

ij

(z) de�ned in the items 1) and 2)

below:

1) z = (X

0

;X

1

; :::;X

N

; �; ), � = (�;

_

�), � = H �H

d

, L = 2N,

M

0

(z) =

2

4

X

0

A

0

+A

0

0

X

0

X

0

B

10

C

10

B

0

10

X

0

�I D

0

110

C

0

10

D

110

�I

3

5

(65)

��

2

4

C

0

20

D

0

210

0

3

5

[C

20

D

210

0 ] ; (66)

M

i

(z) =

2

4

X

i

A

0

+A

0

0

X

i

+X

0

A

i

+A

0

i

X

0

X

i

B

10

+X

0

B

1i

C

0

1i

B

0

1i

X

0

+B

0

10

X

i

0 D

0

11i

C

1i

D

11i

0

3

5

��

0

@

2

4

C

0

2i

D

0

21i

0

3

5

[C

20

D

210

0 ] +

2

4

C

0

20

D

0

210

0

3

5

[C

2i

D

21i

0 ]

1

A

;

1 � i � N; (67)

M

i

(z) =

2

4

X

i�N

0 0

0 0 0

0 0 0

3

5

; N + 1 � i � 2N; (68)

M

ij

(z) =

2

4

X

i

A

j

+A

0

j

X

i

+X

j

A

i

+A

0

i

X

j

X

i

B

1j

+X

i

B

1j

0

B

0

1i

X

j

+B

0

1j

X

i

0 0

0 0 0

3

5
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��

0

@

2

4

C

0

2i

D

0

21i

0

3

5

[C

2j

D

21j

0 ] +

2

4

C

0

2j

D

0

21j

0

3

5

[C

2i

D

21i

0 ]

1

A

;

1 � i < j � N; (69)

M

ii

(z) =

2

4

X

i

A

i

+ A

0

i

X

i

X

i

B

1i

0

B

0

1i

X

i

0 0

0 0 0

3

5

� �

2

4

C

0

2i

D

0

21i

0

3

5

[C

2i

D

21i

0 ] ;

1 � i � N; (70)

M

ij

(z) = 0; for i > N or j > N (71)

2) z = (Y

0

; Y

1

; :::; Y

N

; �; ), � = (�;

_

�), � = H �H

d

, L = 2N ,

M

0

(z) =

2

4

Y

0

A

0

0

+ A

0

X

0

Y

0

C

0

10

B

10

C

10

Y

0

�I D

110

B

10

D

110

�I

3

5

(72)

��

2

4

B

20

D

120

0

3

5

[B

0

20

D

0

120

0 ] ; (73)

M

i

(z) =

2

4

Y

i

A

0

0

+A

0

Y

i

+ Y

0

A

0

i

+A

i

Y

0

Y

i

C

0

10

+ Y

0

C

0

1i

B

1i

C

1i

Y

0

+ C

10

Y

i

0 D

11i

B

0

1i

D

0

11i

0

3

5

��

0

@

2

4

B

2i

D

12i

0

3

5

[B

0

20

D

0

120

0 ] +

2

4

B

20

D

120

0

3

5

[B

0

2i

D

0

12i

0 ]

1

A

;

1 � i � N; (74)

M

i

(z) =

2

4

Y

i�N

0 0

0 0 0

0 0 0

3

5

; N + 1 � i � 2N; (75)

M

ij

(z) =

2

4

Y

i

A

0

j

+A

j

Y

i

+ Y

j

A

0

i

+A

i

Y

j

Y

i

C

0

1j

+ Y

i

C

0

1j

0

C

1i

Y

j

+ C

1j

Y

i

0 0

0 0 0

3

5

��

0

@

2

4

B

2i

D

12i

0

3

5

[B

0

2j

D

0

12j

0 ] +

2

4

B

2j

D

12j

0

3

5

[B

0

2i

D

0

11i

0 ]

1

A

;

1 � i < j � N; (76)

M

ii

(z) =

2

4

Y

i

A

0

i

+A

i

X

i

X

i

C

0

1i

0

C

1i

Y

i

0 0

0 0 0

3

5

� �

2

4

B

2i

D

12i

0

3

5

[B

0

2i

D

0

12i

0 ] ;

1 � i � N; (77)

M

ij

(z) = 0; for i > N or j > N (78)

or alternatively,

b) The LMIs (25) and (27) are jointly feasible with M

i

;M

ij

de�ned by (66)-(71) and

(73)-(78).
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The conditions in Theorem 5.3 constitute a standard semi-de�nite programming prob-

lem. The linear objective  should be minimized subject to a �nite number of LMI

constraints, and a number of e�cient softwares are available for this purpose (see e.g. [9]).

Given a solution z to the LMI problems in Theorem 5.3, the LPV controller state-space

data are easily constructed for any value of (�;

_

�) in H�H

d

using a simple scheme detailed

in [2, Subsection 5.4.1].

6 Illustrative Examples

6.1 Stability analysis

We consider the following example from [20]. The A matrix of the uncertain system is

given in the form:

A(�

1

; �

2

) =

2

4

�2 + �

1

0 �1 + �

1

0 �3 + �

2

0

�1 + �

1

�1 + �

2

�4 + �

1

3

5

We are seeking the maximum rectangle in the (�

1

; �

2

)- space for which stability is guar-

anteed. In this context, Proposition 5.1 is directly applicable to the polytope of extreme

values of the parameters �

1

and �

2

. By both the separated and d.c. convexi�cation meth-

ods of Sections 2 and 3, the uncertain system is found stable for all values of �

1

and �

2

in

the rectangle

�1e6 � �

1

� 1:7499; �1e6 � �

2

� 2:99 :

This result is consistent with the true domain of stability (�

1

< 1:75, �

2

< 3), and outper-

forms existing results [20].

6.2 LPV synthesis example

The following example provides an illustration of the LPV control synthesis techniques

proposed in Theorem 5.3. The discussion emphasizes the complexity and cost associated

with various LPV synthesis strategies. The problem setup comes from [18]. It has been

slightly complicated to incorporate two time-varying parameters for illustration purpose,

while retaining the same design speci�cations.

The LPV model of the longitudinal dynamics of the missile are given as:

�

_�

_q

�

=

�

�0:89 1

�142:6 0

� �

�

q

�

+

�

0 �0:89

178:25 0

� �

w

�

1

w

�

2

�

+

�

�0:119

�130:8

�

�

�n

�

w

�

1

w

�

2

�

=

�

�

1

0

0 �

2

� �

�1 0

1 0

� �

�

q

�

�

�

z

q

�

=

�

�1:52 0

0 1

� �

�

q

�

where �, q, �

z

and �

�n

denote the angle of attack, the pitch rate, the vertical accelerometer

measurement, the �n deection, respectively; and �

1

, �

2

are two time-varying parameters,

measured in real time, resulting from changes in missile aerodynamic conditions (angle of
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attack from 0 up to 20 degrees). The synthesis structure used in this problem is depicted

in Figure 1

K0

We Wu

δ
fin

2+0.06 s
s

η
c

θ
θ

1

2

0
0

missile

e u

--

- G

q

η

[
Figure 1: Synthesis interconnection

The problem speci�cations are as follows:

� A settling time of 0:2 second with minimal overshoot and zero steady-state error for

the vertical acceleration �

z

in response to a step command �

c

.

� The controller must achieve an adequate high-frequency roll-o� for noise attenuation

and withstand neglected dynamics and exible modes. Magnitude constraints of 2

are also imposed to the control signal �

�n

.

Moreover, those speci�cations must be met for all parameter values:

j�

1

j � 1; j�

2

j � 1:

An integrator has been introduced on the acceleration channel to ensure zero steady-

state error. It turns out that the resulting LPV controllerK is obtained as the composition

of the operators K

0

and

�

2+0:06 s

s

0

0 1

�

:

The weighting functions W

e

and W

u

were chosen to be

W

e

= 0:8; W

u

=

0:001s

3

+ 0:03s

2

+ 0:3s+ 1

1e� 5s

3

+ 3e� 2s

2

+ 30s+ 10000

:

It is not di�cult to rewrite this example in the form (57) with A(�

1

; �

2

) = A

0

+�

1

A

1

+�

2

A

2

,

where the other state-space data do not depend on (�

1

; �

2

).

The design synthesis consists in the computation of a parameter-dependent controller,

K

0

(�

1

; �

2

) such that all speci�cations above are met. For simplicity of the discussion, we
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method achieved perf. level  cputime

DCC in [2] 0.1290 170.71 sec.

separated convexi�cation 0.1284 256.00 sec.

d.c. convexi�cation 0.1290 273.3600 sec.

Table 1: Numerical results of LPV synthesis techniques

assume that the LPV model can be considered as a parameterized family of linear time-

invariant systems. Similar conclusions can be drawn with time-varying parameters with

bounded rates of variation. Using the techniques in Theorem 5.3, the following results are

obtained on a PC with with CPU Pentium II 330 Mhz.

Table 1 displays the achieved performance level  for three di�erent techniques. It

appears that all our methods provide almost the same performance level. Also important

is the fact that the number of LMIs associated with the separated convexi�cation method

is signi�cantly larger than that of DCC and d.c. convexi�cation methods in this example.

However, cputime for the separated convexi�cation method in this example is less than

that for d.c. convexi�cation method because LMI solver [9] for the former requires less

iterations than that for the later.

Figures 6.2 and 6.2 show the time-domain simulations, corresponding for each derived

LPV controller, to parameter values at the vertices of the (�

1

; �

2

)-range. The roll-o�

properties of the controllers obtained at \frozen" values of the parameters �

1

and �

2

have

been checked to be satisfactory for each technique.

As the DCC-based LPV synthesis in [2], the d. c. LPV synthesis technique considered

in this section turns out to be less conservative than LFT (Linear Fractional Transforma-

tion) gain-scheduling techniques [16, 3, 11, 19] which disregard the parameter variation

rates. About 10 percents degradation of the performance level has been observed in this

application. This result is encouraging and gives motivations for the practical use of the

proposed techniques.

6.3 Larger problems and complexity issues

To illustrate the proposed techniques for higher-order polynomial dependences, we consider

the system (57) where A(�) now reads

A(�) = A

0

+ �A

1

+ �

2

A

2

+ �

3

A

3
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Figure 2: Time domain responses - LPV controller

designed with separated convexi�cation

with the data

A

1

=

2

6

6

6

4

2:0 1:0 3:0 0:0 5:0 �1:0

0:0 3:0 0:0 5:0 2:0 1:0

0:0 0:0 1:0 0:0 1:0 �1:0

0:0 0:0 7:0 0:0 0:54 0:0

1:0 1:0 0:0 0:0 1:0 �1:0

�1:0 2:0 0:0 0:0 0:0 0:0

3

7

7

7

5

; A

2

=

2

6

6

6

4

2:0 0:5 3:0 0:0 5:0 �2:0

0:0 3:0 0:0 5:0 2:0 1:0

0:0 0:0 1:0 0:0 1:0 �1:0

0:0 0:0 7:0 0:0 �0:42 0:0

1:0 1:0 0:0 0:0 1:0 �1:0

�0:5 2:0 0:0 0:0 0:0 0:0

3

7

7

7

5

;

A

3

=

2

6

6

6

4

�19:80 �3:30 �29:70 0:0 �49:50 29:70

0:0 �29:70 0:0 �49:50 �19:80 �9:90

0:0 0:0 �9:90 0:0 �9:90 9:90

0:0 0:0 �69:30 0:0 9:80 0:0

�99:0 �9:90 0:0 0:0 �9:90 9:90

3:30 �19:80 0:0 0:0 0:0 0:0

3

7

7

7

5

and other data are the same as in the LPV missile example.

The matrices X(�); Y (�) in (61){(63) are sought using one of the following more or

less complex parametrizations

X(�) = X

0

; Y (�) = Y

0

(79)

X(�) = X

0

+ �X

1

; Y (�) = Y

0

+ �Y

1

(80)

X(�) = X

0

+ �X

1

+ �

2

X

2

; Y (�) = Y

0

+ �Y

1

+ �

2

Y

2

; (81)

X(�) = X

0

+ �X

1

+ �

2

X

2

+ �

3

X

3

; Y (�) = Y

0

+ �Y

1

+ �

2

Y

2

+ �

3

Y

3

: (82)

With these functions, one can see from Theorem 5.3 that we shall obtain PLMIs of order

from 3 to 6 with respect to variable �. The methods of Sections 2 and 4 are immediately

applicable. The numerical results are given in Table 2. The bene�ts of utilizing higher-

order parameter-dependent Lyapunov functions appear clearly. The achieved performance

is signi�cantly improved for the parametrizations (79) to (82). This also implies that

traditional �xed quadratic Lyapunov functions (79) are very conservative.

Let us consider one more complicated example where the system (57) is given as

A(�

1

; �

2

; �

3

) = A

0

+ �

1

A

1

+ �

2

A

2

+ �

3

A

3
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Figure 3: Time domain responses - LPV controller

designed with D. C. convexi�cation

Lyapunov function achieved perf. level  cputime in Pentium II 330Mhz

(79) 19.7147 80.20 sec.

(80) 16.2512 89.25 sec.

(81) 6.5355 239.75 sec.

(82) 1.5705 484.999 sec.

Table 2: Numerical results of high order PLMIs

and

A

0

= [A

01

A

02

]; A

1

(5; 4) = �356:5; A

2

(4; 4) = �1:78; A

3

(6; 6) = �0:76:

with all other entries of A

1

, A

2

and A

3

being zero and

A

01

=

2

6

6

6

6

6

6

6

6

6

4

�100:001 �99:9 0 0 0 0 0

0 �100:0010 0 0 0 0 0

0 0 �100:001 �99:9 0 0 0

0 0 0 �99:111 0 0 0

0 0 0 178:2500 �0:0010 0

0 0 0 0 0 �0:0010 0

0 0 0 0 0 0 �0:0010

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 427:0980

3

7

7

7

7

7

7

7

7

7

5

;
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method achieved perf. level  cputime in Pentium II 330Mhz

separated convexi�cation 0.8022 1.623e+004 sec.

d.c. convexi�cation 0.8229 9.273e+003 sec.

Table 3: Numerical results of a large dimensional PLMI

A

02

=

2

6

6

6

6

6

6

6

6

6

4

0 0 0

0 0 0

0 0 0

0 0 0

0 1:0 0

0 0 1:0

0 0 0

�0:0010 0 0

�46:8341 �0:0010 0

232:0679 120:4649 0 �0:001

3

7

7

7

7

7

7

7

7

7

5

; B

1

=

2

6

6

6

6

6

6

6

6

6

4

0 �0:001

0 �0:001

0 0

0 0

0 0

0 0

0 0

0 0

0:1787 0:0003

�0:8364 0:0001

3

7

7

7

7

7

7

7

7

7

5

; B

2

=

2

6

6

6

6

6

6

6

6

6

4

�9:9950

�9:9950

0

0

0

0

0

0

2:6773

1:4274

3

7

7

7

7

7

7

7

7

7

5

;

C

1

=

h

0 0 0 0 0 0 0 0 0 �0:4743

0 0 0 0 0 0 0 0 0 0

i

; D

11

= 0; D

12

= 0;

C

2

=

h

0 0 0 0 0 �0:3162 0 0 0 0

0 0 0 0 0 0 0 �0:3162 0 �0:1000

i

; D

21

= 0;

Note that we choose data B

1

; B

2

; ::: independent on (�

1

; �

2

; �

3

) and also simple A

1

;A

2

;A

3

to save a space. Obviously, the performance of our methods does not change with ad-

ditional dependences. The numerical results for this example are given in Table 3. The

achieved performance level by the separated convexi�cation is less conservative than that

of the d.c. convexi�cation. Note that cputime for this examples is much higher since the

LMI solver [9] requires about 400 iterations for each methods.

From Tables 2 and 3, we observe that the cputime is more sensitive to the system sizes

(number of states and inputs/outputs) rather than the number of the parameters. Prac-

tical experience shows that both relaxation methods can work well up to 4 parameters in

(2) or (3). The d.c. convexi�cation method can work well for larger numbers L since the

polytope (2) has L vertices whereas the hyper-rectangle (3) has 2

L

vertices. Moreover,

since LMI solvers are improving very quickly, our methods are expected to be practical

for signi�cantly more complex system representations in the nearest future. Certainly,

by virtue of the in�nite-dimensional nature of PLMI problems the proposed techniques

introduce some degree of conservatism that can only be reduced at the price of heavy

computations. The tradeo� accuracy/cost thus appears to be essential for the tractability

of these techniques. There is however some exibility to monitor this tradeo� by selecting

more or less complicated design variables. The designer, however, should keep in mind

that perfect accuracy is generally out of reach whatever technique is used.

7 Conclusion

Two general techniques for relaxing PLMIs into a �nite number of LMIs have been intro-

duced. These techniques are applicable to PLMIs with polynomial parameter-dependence

where the parameter ranges in a polytope. In the light of the proposed examples, these
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techniques reveal of practical interest in Lyapunov-based stability analysis, � analysis and

LPV synthesis where they provide less conservative re�nements of earlier techniques. This

list is however non-exhaustive and other relevant applications such as robust �ltering or

robust least square problems can be handled similarly.

APPENDIX

Proof of lemma 2.1. It is obvious since �

i

2

i�1

x +

i�1

2

i

is the tangent to the curve

y = �x

�

at point x = 1=2.

2

Proof of Lemma 2.2. From Lemma 2.1

�xy =

x

2

+ y

2

2

�

1

2

(x+ y)

2

�

x

2

+ y

2

2

+

1

2

(�x� y + 0:25)

and the Lemma follows.

2

Proof of Lemma 2.4. By Lemma 2.2 we have

�x

�

1

y

�

2

�

1

2

(x

2�

1

+ y

2�

2

)�

1

2

(x

�

1

+ y

�

2

) + 0:125:

Since 2

��

1

(1� �

1

) + �

1

2

1��

1

x (2

��

2

(1� �

2

) + �

1

2

1��

2

y, resp.) is the tangent to the curve

x

�

1

(y

�

2

, resp.) at x = 2

�1

(y = 2

�1

, resp.) we have

�x

�

1

� �[2

��

1

(1� �

1

) + �

1

2

1��

1

x] (83)

�y

�

2

� �[2

��

2

(1� �

2

) + �

2

2

1��

2

y]

and then the lemma follows.

2

Proof Lemma 2.5. Applying Lemma 2.2 we have

�x

�

1

1

x

�

2

2

x

�

3

3

�

x

2�

1

1

+ x

2�

2

2

x

2�

3

3

2

�

x

�

1

1

+ x

�

2

2

x

�

3

3

2

+ 0:125

Now, by Lemmas 2.3 and (83) we have

x

2�

2

2

x

2�

3

3

�

 

x

2�

2

2

+ x

2�

3

3

2

!

2

�x

�

1

1

� �[2

��

1

(1� �

1

) + �

1

2

1��

1

x

1

]

�x

�

2

2

x

�

3

3

�

1

2

(x

2�

2

2

+ x

2�

3

3

)�

1

2

[2

��

2

(1� �

2

) + 2

��

3

(1� �

3

) + �

2

2

1��

2

x

2

+ �

3

2

1��

3

x

3

] + 0:125

and (5) follows.

2
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