
The service creation environment: A telecom case study

Niels Joncheere
System and Software Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

njonchee@vub.ac.be

ABSTRACT
Composing web services using current web service composi-
tion languages (such as BPEL) requires a large amount of
in-depth knowledge. This paper introduces a service cre-
ation environment (SCE), which aims to facilitate web ser-
vice composition by providing a higher level of abstraction
and guiding developers in creating valid compositions. The
paper presents a case study that investigates how the SCE
can be used in a telecom setting, and illustrates the SCE’s
impact on two important software engineering properties.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design

Keywords
Web service composition, aspect-oriented programming, con-
cern-specific languages, quality-of-service

1. INTRODUCTION
Over the past years, web services [2] have gained much

acceptance, both in academics and in industry, as a means
of integrating existing software in new environments. Basic
web services can be created by exposing existing applica-
tions to a network using XML-based front-ends, which use
SOAP [6] for messaging and WSDL [13] for interface de-
scription. All of these applications can then be used in the
same way, no matter how heterogeneous their underlying
implementations may be. Furthermore, new web services
can be created by composing a number of basic web ser-
vices, thus providing more advanced functionality. Natu-
rally, these compound web services can be reused by other
web services as well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop SPLAT ’07, March 12-13, 2007 Vancouver, British Columbia,
Canada
Copyright 2007 ACM 1-59593-656-1/07/03 ...$5.00.

Originally, the only way to compose web services was by
invoking these web services and processing their results us-
ing general-purpose programming languages such as C or
Java. It quickly became clear, however, that a composi-
tion of web services is more naturally captured by dedicated
composition languages. Today, the most well-known web
service composition language is the Business Process Exe-
cution Language (BPEL) [3]. BPEL processes are platform-
and transport-independent, and are expressed using XML.

Although dedicated web service composition languages
such as BPEL are much better suited for web service com-
position than general-purpose programming languages, they
still require a large amount of in-depth technical knowledge
regarding the different language constructs that are avail-
able, the interfaces of the concrete web services that can
be used, etc. Our approach aims to provide a higher-level,
visual service creation environment (SCE), which abstracts
above this kind of low-level technical knowledge.

Another disadvantage of current web service composition
languages is a lack of support for modularization of cross-
cutting concerns [4]. Therefore, the SCE supports aspect-
oriented software development (AOSD) [16], a programming
paradigm which allows expressing crosscutting concerns in
separate aspects. The SCE also supports concern-specific
languages (CSLs), which are languages specifically designed
to express a single concern.

An initial version of the SCE has already been discussed
in previous work [8]. The goal of this paper is to present the
current state of the SCE, as well as the results of an exten-
sive case study, which was performed in collaboration with
our industrial partner. The case study is aimed at evaluat-
ing the advantages and disadvantages that may arise when
developing a web service composition in a telecom context.

The outline of the paper is as follows: Section 2 gives an
overview of the SCE by introducing its general architecture,
basic entities, and user interface. Section 3 introduces the
use case on which we based our case study, and describes
how this use case was designed, implemented, and deployed
using the SCE. Section 4 discusses the impact of the SCE
on two important software engineering properties. Section 5
provides an overview of related work, and Section 6 states
our conclusions and future work.

2. THE SERVICE CREATION ENVIRON-
MENT

The goal of the service creation environment (SCE) is to
provide a higher level of abstraction to web service compo-
sition than is currently provided by web service composition

Documented services

Service
Service

Documented
crosscutting

concerns
Aspect

Service execution

Service
Service

Service Service
Service

Service creation and
composition

Composition template

ServiceService

Aspect

Service

Documented
composition templates

Composition template
Composition template

Figure 1: The SCE architecture

languages. Figure 1 provides an overview of the SCE archi-
tecture. At the heart of the SCE, there are three reposito-
ries, which respectively contain a number of documented ser-
vices, documented composition templates, and documented
aspects. Each of these entities can then be dragged onto a
canvas in order to visually create a new composition. During
this phase, the user is supported in creating a valid compo-
sition: among others, the SCE performs interface and pro-
tocol compatibility checking, and computes basic quality-of-
service properties of the resulting composition based on the
properties of its composing elements. In the final phase of
the composition process, the visual composition specifica-
tion is translated to executable BPEL code, which can be
executed on a standard BPEL engine.

2.1 Basic SCE entities
Services are the basic building blocks of the SCE. They

correspond to concrete web services that are accessible over
the network. The SCE does not impose any requirements
on these web services, except that their interfaces should be
available as a WSDL documents. WSDL (Web Services De-
scription Language) [13] is an extensible XML-based stan-
dard that allows describing the interface of a web service,
i.e. the available operations and their parameters (includ-
ing type information). We have specified an extension to
the WSDL specification that allows describing basic quality-
of-service properties (e.g. mean response time) of services’
operations.

A WSDL document only specifies a service’s interface: it
does not specify the service’s protocol (i.e. the order in which
these operations need to be invoked in order to achieve the
service’s expected behaviour). Therefore, the SCE allows
specifying the protocol of a service in a separate document,
as an abstract BPEL process.

Composition templates are used to compose services. They
correspond to previously implemented web service compo-
sitions that have not yet been bound to concrete services.

They contain a number of placeholders that represent ab-
stract services. By dragging a concrete service onto a place-
holder, the abstract service is bound to the concrete service.
A composition template is described using an executable
BPEL process; the composition template’s placeholders cor-
respond to the BPEL process’s partner links. Optionally,
composition templates can be augmented with quality-of-
service constraints.

Aspects are used to encapsulate crosscutting concerns.
They are expressed using our aspect-oriented programming
language for BPEL, which is called Padus [9]. Similar to
composition templates, aspects may contain abstract ser-
vices.

Padus is an XML-based language, which allows adding
advice before, after, or around any activity in a BPEL pro-
cess. The pointcut language is based on Prolog, and defines
a number of built-in predicates that allow selecting any ac-
tivity or set of activities of a BPEL process. Listing 1 pro-
vides an example for a basic logging aspect in Padus, which
logs a message before and after any invocation. The using

element allows adding namespaces, partner links and vari-
ables to a BPEL process. These can then be used in the
aspect’s advice. The pointcut element allows defining new
pointcuts. The built-in invoking predicate selects invoca-
tions; its parameters allow specifying the service, port type
and operation names of the invocations to be selected. Be-
cause none of these parameters are bound to a value in our
example, all invocations in the base process will be selected.
The before and after elements define a before and after ad-
vice by referring to the generic log_message advice, which
is parametrized with the message that should be logged.

The SCE defines a basic framework for implementing con-
cern-specific languages on top of Padus. As a proof of con-
cept, we implemented a concern-specific language for bill-
ing [7], which uses Padus pointcuts, but introduces advice
specifically tailored for billing.

2.2 The SCE graphical user interface
The SCE is implemented as a plug-in for the Eclipse plat-

form.1 Figure 2 provides an overview of its user interface.
The core of the plug-in is the composition editor, which
consists of a canvas and a palette. The palette shows all
available composition templates, services, and aspects; by
dragging these entities on the canvas and onto each other,
one can visually create and modify web service compositions.
At the right of the composition editor, there is an outline
view which shows a hierarchical overview of the composition
that is currently being edited. At the bottom of the screen,
the properties view shows the properties of the entity that
is currently selected in the editor. If the selected entity is an
aspect, the properties view also allows modifying its point-
cuts (by allowing the developer to textually modify them).

While he/she is editing a composition, the SCE guides the
user in creating valid compositions by automatically verify-
ing the compatibility of services with the composition tem-
plates and/or aspects to which they are added. If a service
is found to be incompatible, an error dialog is displayed.
The SCE also allows executing guidelines, which are objects
that verify certain properties of a composition. The SCE
contains a number of built-in guidelines (e.g. with regard to
real-time behavior, parallelism, and quality-of-service), but
new guidelines can be implemented straightforwardly if the

1http://www.eclipse.org/

http://www.eclipse.org/

1 <padus:aspect name=" Logging"
2 xmlns:log="http :// ssel.vub.ac.be/logging"
3 xmlns:padus ="http :// ssel.vub.ac.be/padus">
4
5 <padus:using >
6 <namespace name="log" uri="http :// ssel.vub.ac.be/logging" />
7 <partnerLink name=" loggingPL" partnerRole =" logging" partnerLinkType ="tns:loggingPLT" />
8 <variable name=" loggingRequest" messageType ="log:Logging_logMessage_Request_Soap" />
9 <variable name=" loggingResponse" messageType ="log:Logging_logMessage_Response_Soap" />

10 </padus:using >
11
12 <padus:pointcut name=" all_invocations(Jp, Operation)"
13 pointcut =" invoking(Jp, Service , PortType , Operation)" />
14
15 <padus:advice name=" log_message(Message)">
16 <sequence >
17 <assign >
18 <copy >
19 <from expression =" string(‘$Message ’)" />
20 <to variable =" loggingRequest" part=" parameters" query ="/ log:logMessage/log:p0" />
21 </copy >
22 </assign >
23 <invoke partnerLink =" loggingPL"
24 portType ="log:loggingPT"
25 operation =" logMessage"
26 inputVariable =" loggingRequest"
27 outputVariable =" loggingResponse" />
28 </sequence >
29 </padus:advice >
30
31 <padus:before joinpoint ="Jp" pointcut =" all_invocations(Jp , Operation)">
32 <padus:advice name=" log_message(‘Invoking $Operation ...’)" />
33 </padus:before >
34
35 <padus:after joinpoint ="Jp" pointcut =" all_invocations(Jp, Operation)">
36 <padus:advice name=" log_message(‘Invoked $Operation .’)" />
37 </padus:after >
38 </padus:aspect >

Listing 1: A basic logging aspect in Padus

Palette Canvas Outline

Properties and verification report

Figure 2: The SCE graphical user interface

SmartPhone
Service

Notification Process

WhoIsWho
Service

IPTV
Notification

Service

Enterprise
Service

Bus

1

2

3 4

5

Figure 3: The IPTV notification use case

need arises. The results of guideline verification are shown
at the bottom of the screen, in the problems view.

When the user is satisfied with the composition, the visual
composition specification can be translated to executable
BPEL code, which can then be deployed on any standard
BPEL engine.

3. CASE STUDY
The case study we present in this paper is based on a use

case which was developed in collaboration with our indus-
trial partner. This use case is illustrated by Figure 3. In the
first step of the use case, a smartphone is used to make a
call to another smartphone. Before connecting the call, the
smartphone service invokes the notification process (step 2).
This process will then invoke the who-is-who service (step 3)
in order to retrieve the details of the person placing the call
based on his/her telephone number, and will instruct the no-
tification service to display a notification on the television
of the person being called (steps 4 and 5).

The typical way in which such a use case is developed
using the SCE is as follows:

1. The BPEL process that will form the basis of the com-
position is implemented using the Eclipse BPEL edi-
tor,2 which is integrated into the SCE. This process
invokes a who-is-who service and a notification service.

2. The BPEL process is published as a composition tem-
plate named “WhoiswhoNotification”, which can be
annotated with quality-of-service constraints.

3. A new composition is created by dragging the “Whois-
whoNotification” composition template onto the can-

2http://www.eclipse.org/bpel/

vas. If necessary, the composition template’s underly-
ing BPEL process (which we specified in step 1) can
be customized for this composition by editing it using
the BPEL editor.

4. The placeholders of the composition template are filled
in with concrete services.

5. The composition is augmented with crosscutting con-
cerns, such as authorization or billing.

6. The code for the composition is generated and de-
ployed on a BPEL process engine.

Each of these phases is explained in more detail below.

3.1 Creating the base process
When creating a new composition, the user has two op-

tions: either he/she can reuse a predefined composition tem-
plate (see phase 3 below), or he/she can start from scratch,
creating a new composition template by specifying its BPEL
process. Such a process can be specified using the BPEL ed-
itor, which allows creating and editing BPEL processes in
a visual way. It should be noted that specifying a BPEL
process, even if it is done in a visual way, occurs at a lower
level of abstraction than when creating a composition using
existing composition templates. Hence, composition tem-
plates will typically be created by users with more technical
knowledge than the average SCE user. The BPEL process
for our use case can easily be created using a sequence of
assignments and invocations.

3.2 Publishing the process as a composition
template

After creating a new BPEL process, the user can pub-
lish it as a composition template. Optionally, the composi-
tion template can be annotated with quality-of-service con-
straints. The publishing function will copy the annotated
BPEL process to the composition template repository and
reload the palette. The new composition template will ap-
pear in the palette and can then be used to create new com-
positions.

3.3 Creating a new composition
A new composition can be created by dragging a compo-

sition template on the canvas and filling in its placeholders
with concrete services. For example, as illustrated in Fig-
ure 2, the “WhoiswhoNotification” composition template
contains two placeholders: “whoiswho” and “notification-
controller”. We can either drag services from the palette
to these placeholders, in which case the compatibility of
the current service with the composition template will be
checked, or we can double-click the placeholders, in which
case a dialog will show the names and descriptions of the ser-
vices that are compatible with that placeholder, and allow
selecting a service to be added to the placeholder. The “Di-
rectory” service is compatible with the “whoiswho” place-
holder, and the “NotificationController” service is compati-
ble with the “notificationcontroller” placeholder.

While the composition is being created, a number of guide-
lines are used to verify whether the composition is valid.
Guidelines are objects that verify a composition and pro-
vide feedback concerning this verification process. The SCE
provides a basic framework for defining such guidelines, as

http://www.eclipse.org/bpel/

well as a number of predefined guidelines. For example, the
quality-of-service guideline will verify whether the quality-
of-service constraints we defined on the composition tem-
plate are satisfied with respect to the concrete services we
added.

3.4 Adding crosscutting concerns
The SCE allows adding aspects to compositions by drag-

ging them from the palette to the canvas and connecting
them to a composition template. There are two kinds of
aspects: Padus aspects and CSL aspects. Padus aspects are
previously implemented and stored in the aspect repository;
the SCE user can only (textually) modify the aspects’ point-
cuts. CSL aspects have a structure specified using the SCE’s
CSL framework; all of the CSL aspects’ properties can be
modified using the SCE’s user interface. In our example,
we add a Padus aspects which performs logging and a CSL
aspect (that implements the Billing CSL) which performs
billing. At the end of this phase, the composition for our
use case would look like the one in Figure 2.

3.5 Code generation and deployment
The SCE’s code generation and deployment process trans-

lates the composition that was visually specified into an exe-
cutable BPEL file that can be deployed on a standard BPEL
engine.

First, the billing aspect is translated to Padus using the
CSL framework’s compilation class for the Billing CSL. Sec-
ond, a Padus deployment file is generated for the billing and
logging aspects. Based on the aspects’ pointcuts and on the
composition template to which they are attached, this de-
ployment file specifies where each aspect should be woven
into the base process. Next, the aspects are woven into the
base process by the Padus weaver, which results in a single
executable BPEL file. Finally, this file is deployed on the
BPEL engine (by default, the SCE uses the ActiveBPEL
engine3 — in this case a deployment descriptor is gener-
ated, which is packaged together with the BPEL file and
the WSDL files of the who-is-who, notification, charging and
logging services, and copied to the ActiveBPEL deployment
directory).

4. IMPACT ON SOFTWARE ENGINEER-
ING PROPERTIES

4.1 Comprehensibility
One of the advantages of the SCE is that it improves the

comprehensibility of web service compositions by allowing
compositions to be edited on several levels of abstraction.
Developers who are not experts in BPEL programming can
easily create and modify compositions in the SCE editor,
while being supported by the SCE’s automatic verification
features. Adding crosscutting concerns to compositions can
be accomplished straightforwardly by dragging existing as-
pects to a new composition. Aspects are presented in a way
that can easily be grasped by people who are not familiar
with aspect-oriented software development.

Developers who desire more control of the compositions
they create are not limited to the SCE editor’s high-level
view on the current composition: by double-clicking a com-
position template the underlying BPEL processes can be

3http://www.activebpel.org/

opened in a BPEL editor, which provides a graphical rep-
resentation of the actual BPEL workflow and allows editing
all low-level properties of the current BPEL process. Devel-
opers who are even more knowledgeable can edit the BPEL
process in a standard text-editor if they want to.

4.2 Reusability
The web services technology in itself aims to improve

reusability by exposing heterogeneous software applications
in a standardized way. The SCE improves on this by not
only allowing reuse of the services that are used in web ser-
vice compositions, but also allowing reuse of the composition
logic itself (through the use of composition templates), and
of the concerns that crosscut compositions (through the use
of aspects). Note that when reusing an aspect in a new
composition, the developer may need to modify the aspect’s
pointcut (which can easily be done in the SCE’s properties
view).

5. RELATED WORK
Several visual composition environments already exist in

the context of component-based software development, which
advocates plug-and-play composition of loosely-coupled, re-
usable, off-the-shelf components [23]. The main difference
with our approach, apart from the focus on components in-
stead of services, is that these composition environments
do not support reusable encapsulation of composition logic.
Furthermore, there is no support for verifying whether a cer-
tain composition is possible apart from syntactically check-
ing messages and arguments. Another disadvantage is that
they do not support modularizing crosscutting concerns.

Documenting components with protocol documentation is
already well investigated in literature [11, 24, 17]. Similar
to Yellin and Strom [26], Reussner [20], and Wydaeghe [25],
our approach employs automata to document services.

In [19], the Component Workbench is presented. Com-
ponents from different component models can be composed
and combined with web services. The resulting composi-
tion can be exposed as a web service. The workbench sup-
ports multi-party connectors, however there is no support
for modularizing crosscutting concerns.

In [1], an integrated, end-to-end service creation envi-
ronment is presented. This environment allows for service
matching, composition and deployment. As in our approach,
common quality-of-service attributes are verified on the ser-
vice composition. However, crosscutting concerns such as
billing, access control, etc. are still tangled throughout the
main composition logic, making it hard to add, modify or
remove such concerns.

The Taverna workbench [15] allows the construction of
complex workflows with focus on the bioinformatics domain.
It can also be used to create web services. Their verification
is focused on input and output compatibility, and they do
not support modularizing crosscutting concerns.

The METEOR-S approach developed a quality-of-service
model that allows for the description of non-functional as-
pects of web services [12].

Sirin et al. [21] report on an interactive, goal-oriented ap-
proach for web service composition. The composition relies
on semantic annotation of web services using OWL-S.

6. CONCLUSIONS AND FUTURE WORK

http://www.activebpel.org/

In this paper, we present a high-level service creation
environment. Our approach guides users in creating valid
web service compositions by verifying both hard constraints
such as service compatibility and softer constraints such as
quality-of-service guidelines. Our approach supports the
modularization of crosscutting concerns using the Padus
aspect-oriented programming language, and provides a frame-
work for developing concern-specific languages on top of
Padus. We describe a case study of the service composition
environment based on a simplified use case from the telecom
applicability domain, and discuss our approach’s impact on
two important software engineering properties.

Work on our approach is still in progress, and as such a
number of improvements are worth investigating:

• Our approach supports the visual deployment of as-
pects on web service compositions. The pointcuts for
these aspects, however, need to be defined using the
Padus language. Describing pointcuts at a higher level
of abstraction would be an improvement. We are cur-
rently experimenting with several existing pointcut vi-
sualizations [18, 14, 22].

• The support for developing concern-specific languages
for the SCE is currently limited: apart from a frame-
work consisting of a set of common tools and visual-
izations, defining and implementing a new concern-
specific language still largely happens in an ad-hoc
manner. A more in-depth solution based on existing
research [5, 10] is subject to future work.

Acknowledgments
This research is partly funded by Alcatel Belgium and the
Institute for the Promotion of Innovation by Science and
Technology in Flanders (IWT-Vlaanderen) through the WIT-
CASE project — a project which is performed in collabo-
ration with the DistriNet research group of the Katholieke
Universiteit Leuven.

7. REFERENCES
[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar,

A. Kundu, S. Mittal, and B. Srivastava. A service
creation environment based on end to end composition
of web services. In Proceedings of the 14th
International World Wide Web Conference (WWW
2005), pages 128–137. ACM Press, 2005.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,
editors. Web Services: Concepts, Architectures and
Applications. Springer-Verlag, Heidelberg, Germany,
2004.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services, version
1.1, May 2003. http:
//www.ibm.com/developerworks/library/ws-bpel/.

[4] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr.
Web services: Promises and compromises. Queue,
1(1):48–58, 2003.

[5] D. Batory, V. Singhal, J. Thomas, S. Dasari,
B. Geraci, and M. Sirkin. The GenVoca model of
software-system generators. IEEE Software,
11(5):89–94, 1994.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. Frystyk Nielsen, S. Thatte, and
D. Winer. Simple Object Access Protocol, version 1.1.
W3C Note 08 May 2000, World Wide Web
Consortium, May 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

[7] M. Braem, N. Joncheere, W. Vanderperren, R. Van
Der Straeten, and V. Jonckers. Concern-specific
languages in a service creation environment. In
Proceedings of the 2nd International Workshop on
Aspect-Based and Model-Based Separation of
Concerns in Software Systems (ABMB 2006), Bilbao,
Spain, July 2006. Elsevier.

[8] M. Braem, N. Joncheere, W. Vanderperren, R. Van
Der Straeten, and V. Jonckers. Guiding service
composition in a visual service creation environment.
In Proceedings of the 4th European Conference on Web
Services (ECOWS 2006), Zürich, Switzerland,
December 2006. IEEE Computer Society.

[9] M. Braem, K. Verlaenen, N. Joncheere,
W. Vanderperren, R. Van Der Straeten, E. Truyen,
W. Joosen, and V. Jonckers. Isolating process-level
concerns using Padus. In Proceedings of the 4th
International Conference on Business Process
Management (BPM 2006), Vienna, Austria,
September 2006. Springer-Verlag.

[10] J. Brichau. Integrative Composition of Program
Generators. PhD thesis, Programming Technology
Lab (PROG), Vrije Universiteit Brussel, Brussels,
Belgium, September 2005.

[11] R. Campbell and A. Habermann. The specification of
process synchronisation by path expressions. In
Proceedings of an International Symposium on
Operating Systems, pages 89–102, April 1974.

[12] J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and
K. Kochut. Quality of service for workflows and web
service processes. Journal of Web Semantics,
1(3):281–308, 2004.

[13] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language,
version 1.1. W3C Note 15 March 2001, World Wide
Web Consortium, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[14] S. Clarke and E. Baniassad. Aspect-Oriented Analysis
and Design — The Theme Approach. Addison-Wesley,
2005.

[15] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R.
Pocock, P. Li, and T. Oinn. Taverna: A tool for
building and running workflows of services. Nucleic
Acids Research, 34, 2006.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. Technical Report
SPL97-008 P9710042, Xerox PARC, February 1997.

[17] D. Luckham, J. Kenney, L. Augustin, D. Vera,
D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, 21, 1995.

[18] M. Mahoney, A. Bader, T. Elrad, and O. Aldawud.
Using aspects to abstract and modularize statecharts.
In O. Aldawud, G. Booch, J. Gray, J. Kienzle,
D. Stein, M. Kandé, F. Akkawi, and T. Elrad, editors,

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

The 5th Aspect-Oriented Modeling Workshop In
Conjunction with UML 2004, October 2004.

[19] J. Oberleitner and S. Dustdar. Constructing web
services out of generic component compositions. In
Proceedings of the 1st International Conference on
Web Services — Europe (ICWS-Europe 2003), pages
37–48. Springer-Verlag, 2003.

[20] R. H. Reussner. Automatic component protocol
adaptation with the CoCoNut tool suite. Future
Generation Computer Systems, 19(5):627–639, 2003.

[21] E. Sirin, B. Parsia, and J. Hendler. Filtering and
selecting semantic web services with interactive
composition techniques. IEEE Intelligent Systems,
19(4):42–49, 2004.

[22] D. Stein, S. Hanenberg, and R. Unland. Expressing
different conceptual models of join point selections in
aspect-oriented design. In Proceedings of the 5th
International Conference on Aspect-Oriented Software
Development (AOSD 2006), Bonn, Germany, 2006.
ACM Press.

[23] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, USA, 1998.

[24] J. van den Bos and C. Laffra. PROCOL: A concurrent
object-oriented language with protocols delegation and
constraints. Acta Informatica, 28:511–538, June 1991.

[25] B. Wydaeghe. PacoSuite: Component Composition
Based on Composition Patterns and Usage Scenarios.
PhD thesis, System & Software Engineering Lab, Vrije
Universiteit Brussel, Brussels, Belgium, November
2001.

[26] D. M. Yellin and R. E. Strom. Protocol specifications
and component adaptors. ACM Transactions on
Programming Languages and Systems, 19(2):292–333,
March 1997.

	Introduction
	The service creation environment
	Basic SCE entities
	The SCE graphical user interface

	Case study
	Creating the base process
	Publishing the process as a composition template
	Creating a new composition
	Adding crosscutting concerns
	Code generation and deployment

	Impact on software engineering properties
	Comprehensibility
	Reusability

	Related work
	Conclusions and future work
	References

