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Abstract

The primary interest of this paper is in out-of-sample forecasting for the U.S. monthly
unemployment rate. Several linear unobserved components models are fitted and their
comparative forecasting accuracy is assessed by means of and extensive rolling-origin
procedure using a test period that covers the last two decades. An attempt is made to
link forecasting performance to the time domain properties of the models and the evidence
is that highly persistent models perform better. Deletion diagnostics and normality tests,
along with documenting possible departures from linearity and Gaussianity attributable to
business cycle and turning point asymmetries, foster the conclusion that these are mostly
concentrated in the fit period (1948-1980). It is also argued that seasonal adjustment is not
neutral with respect to these findings. A search is made for plausible non linear extensions
capable of accounting for dynamic asymmetries in unemployment rates, leading to the
specification of a cyclical trend model with smooth transition in the underlying parameters
that improves forecast accuracy at short lead times and at the end of the sample period.
Though significant, the gains are not exceptionally large, confirming our expectations.
The generalised impulse response function casts some light on the interpretation of the
results.
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1 Introduction
The U.S. unemployment rate represents a case study in nonlinear dynamics. Asymmetric
behaviour over the course of the business cycle has been documented in a variety of papers
including Neftçi (1984), DeLong and Summers (1986) and Rothman (1991), who deal
with the type of asymmetry named steepness, taking place when contractions are steeper
than expansions: this implies that unemployment rates rise faster than they decrease.
Sichel (1993) found evidence for deepness, which occurs when contractions are deeper
than expansions, so that the amplitude of peaks in unemployment rates exceeds that of
troughs; McQueen and Thorley (1993) detect turning point asymmetry (sharpness), such
that peaks are sharp and troughs are more rounded.

Needless to say, the series represents a testbed for nonlinear time series models; within
the class of regime switching models, threshold autoregressive models (TAR) are promi-
nent; references include Hansen (1997), Koop and Porter (1999), who focus on the monthly
unemployment rate for males aged 20 and over, and Montgomery et al. (1998). The latter
conduct a rolling forecast experiment for the rates, which shows that TAR and Markov-
switching models outperform the linear benchmark model during periods of rapidly in-
creasing unemployment, but not globally; moreover, they find that using monthly data
for forecasting quarterly rates improves the forecasting accuracy only in the short term.

Skalin and Terasvirta (1999) use a logistic smooth transition autoregressive model
(LSTAR) for the first differences of the unemployment rate of OECD countries including
a lagged level term and were unable to reject linearity for the U.S. quarterly seasonally
unadjusted series. Their specification assumes that the series is globally stationary, but
possibly nonlinear and locally nonstationary. Van Dijk et al. (2000) apply the model to
the seasonally unadjusted monthly series for males aged 20 and perform an out-of-sample
forecast accuracy analysis showing that the LSTAR model outperforms the linear AR
counterpart at long run forecast horizons during downturns and at short run horizons
during expansions.

Rothman (1998) compares the out-of-sample forecasting accuracy of six nonlinear mod-
els and finds that results are sensitive to the detrending issue. Parker and Rothman (1998)
model the quarterly adjusted rate by an AR(2) process including an explanatory variable
measuring the current depth of recession, and show with a rolling forecast experiment
that significant reductions of the forecast MSE are achieved.

The primary interest of this paper is in out-of-sample forecasting for the U.S. unem-
ployment rate. The series considered is the monthly seasonally adjusted series, defined as
the ratio of the seasonally adjusted unemployment level and the civilian labour force level
provided by the Bureau of Labor Statistics (BLS). This is plotted in figure 1, along with
the unadjusted series, that will also be dealt with at some stage. Prima facie the plot
confirms the presence of dynamic asymmetries in the form of steepness, which appears to
be the dominant feature of the cycle dynamics during the seventies and the mid-fifties;
the last two decades and some cyclical patterns at the beginning of the sample period
and around 1962 seem to be more characterised by deepness and sharpness, in combina-
tion with moderate steepness, since a period of fastly increasing rates is followed by fast
decreases. Perhaps a three phases characterisation is enforced here with the third phase
representing a more prolonged and moderate decline in unemployment rates. Another
feature of interest is the tendency of the series to remain on a level it has reached, with no
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apparent tendency to return to a stable underlying level; this is referred to as hysteresis
or persistence.

Our approach is much in the same spirit of Montgomery et al. (1998) in that it
focuses on an in-depth comparison of forecasting models (with an emphasis on short term
forecasting), aimed at providing an understanding of the strengths and weaknesses of
each. With respect to the above article we concentrate on monthly rather than quarterly
data, extend the out-of-sample forecast comparison and adopt an unobserved components
modelling approach.

The outline of the paper is as follows: section 2 introduces a few linear unobserved
components models for forecasting the U.S. unemployment rate and illustrates their basic
properties, along with the implied impulse response function. Forecasting accuracy is
validated in section 3 by a rolling forecast experiment conducted over the period 1980.1-
2000.12. A comparison is also made with the ARIMA benchmark adopted by Montgomery
et al. (1998). The best performance is provided by a trend plus irregular model with the
trend specified as an highly persistent ARIMA(1,1,0) process.

We then document departures from linearity and normality (section 4) using various
residuals and deletion diagnostic resulting from the linear model fit. The conclusion is
that these are most prominent in the test period. Section 5 raises two issues; the first is
whether the appropriate transformation (logistic) affects the results and whether seasonal
adjustment affects the findings about persistence and nonlinearity.

In section 6 nonlinear alternatives are specified to account for dynamic asymmetries
in unemployment rates. This is done by imposing smooth transition on the parameters of
the model. A new transition variable that is better behaved is introduced and the results
are discussed. In section 7 we deal with forecasting with nonlinear structural models
and report the outcome of the rolling forecast experiment; these show that a nonlinear
cyclical trend model outperforms the linear benchmark at short run forecast horizons.
Interestingly, the improvement is greater at the end of the sample period. To interpret
this finding and to gain a better understanding of the dynamic properties of the model
we find the generalised impulse response function (section 8) quite helpful. Section 9
concludes the paper.

2 Linear Structural Models
In this section we consider seven forecasting models for the levels of the unemployment
rate; the models entertained assume that hysteresis arises from the presence of a unit
root in the reduced form; stationarity tests and unit root tests, although the latter are
not directly relevant here due to the presence of moving average features, support this
assumption. Moreover, the argument that unemployment rates are stationary due to the
bounded nature of the measurement scale is flawed, since we can always view the series
as a nonlinear transformation of a nonstationary series (an appropriate scale for testing
stationarity and integratedness would be the logistic scale, see also section 5).

Although we have in mind a set of alternative that are more plausible than others, the
uncertainty lies in the characterisation of the persistence and in the modelling of the short
run dynamics; so the approach we take in this section and the next is that of exploring
the strengths and deficiencies of each forecasting model.
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2.1 Specification
The seven models are hereby described; for more details on their time and frequency
domain properties the reader is referred to Harvey (1989).

1. Local level model (LLM):

yt = µt + εt, t = 1, 2, . . . , T, εt ∼ NID(0, σ2
ε )

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η)

(1)

The series is decomposed into a trend component, µt, represented by a random
walk with IID disturbances, and an irregular component, εt; the reduced form is
IMA(1,1), with negative MA coefficient, and thus the model implies that persistence
is not greater that one.

2. Local linear trend model (LLTM):

yt = µt + εt, εt ∼ NID(0, σ2
ε ), t = 1, 2, . . . , T,

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ),

(2)

where ηt, ζt, εt are independent of one another. The trend is now given by an
IMA(2,1) process, with the Hodrick and Prescott (1997) trend arising as a special
case (σ2

η = 0, smoothing parameter λ = σ2
ε /σ2

ζ ). The reduced form is a restricted
IMA(2,2) model.

3. Trend plus cycle model (TpCM):

yt = µt + ψt + εt, µt+1 = µt + ηt;

the cyclical component, ψt, is specified by the stochastic difference equation:
[

ψt+1
ψ∗t+1

]

= ρ

[

cos λc sinλc
− sinλc cos λc

] [

ψt
ψ∗t

]

+

[

κt
κ∗t

]

, (3)

where κt ∼ NID(0, σ2
κ) and κ∗t ∼ NID(0, σ2

κ) are mutually independent and inde-
pendent of ηt, εt at all times; ρ ∈ [0, 1) is the damping factor and λ ∈ [0, π] is the
cycle frequency; ψt has univariate ARMA(2,1) representation such that the roots of
the AR polynomial are a pair of complex conjugates with modulus ρ−1 and phase
λc; correspondingly, the spectral density displays a peak at λc. The model thus
assumes that changes in unemployment can be decomposed into permanent changes
and transitory changes.

4. Cyclical trend model (CTM):

yt = µt + εt, µt+1 = µt + ψt + ηt,

where ψt is given in (3). The trend is an ARIMA(2,1,2) process with two sources
of variation, one represented by IID disturbances, ηt, and the other induced by ψt.
Thus, cyclical movements are integrated within the trend; the model is consistent
with an alternative definition of business cycle fluctuations, that are not considered in
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terms of deviations from the trend component. The reduced form is, as for TpCM,
an ARIMA(2,1,3) model, but the implications are quite different: TpCM implies
that the spectral density of the first differences is a minimum at zero, whereas this
restriction is not enforced by the CTM, which allows the innovations to be more
persistent than a random walk.

5. Cyclical trend model (CTM2):

yt = µt + εt, µt+1 = µt + ψt.

This is an alternative, more parsimonious, specification of the cyclical trend model,
with σ2

η = 0. With respect to LLM, the trend disturbances are serially correlated (a
stationary ARMA(2,1) process), which allows the clustering of positive and negative
disturbances during upswings and downswings.

6. Cyclical trend model with seasonal feature (CTM2s): the model differs from the
previous specification (CTM2) for the irregular component, which is formulated as
the seasonal ARMA(1,1) process: (1−ΦL12)εt = (1+ΘL12)ξt. This is introduced in
order to account for a nuisance feature that is a likely consequence of overadjustment
produced by X-11-ARIMA (see also section 5). As a matter of fact, the changes in the
seasonally adjusted unemployment rate display significant negative serial correlation
at seasonal lags.

7. Autoregressive trend model (ARTM):

yt = µt + εt, µt+1 = µt + ψt, ψt+1 = ρψt + κt

This is the same as CTM2 with λc = 0; the recursion for ψ∗t becomes redundant and
is dropped; the model is also referred to as a damped slope trend model.

The eventual forecast function is horizontal except for LLTM, for which it is a straight
line. Some of the representations are nested and some are not (for instance TpCM and
CTM); model selection and hypothesis testing constitute non standard issues and the
reader is referred to Harvey (1989, ch. 5) and Harvey (2000) for these topics. As stated
before the main interest of the paper is selecting a forecasting model according to its
post-sample performance.

2.2 Estimation
The reference framework for statistical treatment is the linear Gaussian state space rep-
resentation and likelihood inference is carried out by means of the Kalman filter (see
appendix A.1). Parameters estimates for the full sample (1948.1-2000.12), along with
some basic diagnostics and goodness of fit statistics computed on the KF standardised
innovations, are reported in table 11.

[Table 1 about here]
1All the computations were performed using the library of state space functions SsfPack 2.3 by Koopman et

al. (1999), linked to the object oriented matrix programming language Ox 2.1 of Doornik (1998). Computer
programmes are available from the author upon request.
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For the LLM the irregular variance was estimated to be zero, and therefore the model
reduces to a simple random walk and provides näıve ”no change” forecasts; in the rolling
forecast experiment of the next section it will thus be taken as the benchmark against
which the performance of the other models will be assessed. It suffers from various forms
of misspecification as highlighted by the Box-Ljung portmanteau statistics, Q(12), Q(24),
and by the normality test recommended by Doornik and Hansen (1994) based on Bowman
and Shenton (1975).

The additive cycle estimated by TpCM has a period of about 4 years and a half (54
months) and is characterised by a value of the damping factor which is close to one. Among
the various specifications of the cyclical trend model, the usual information criteria prefer
CTM2s. Also, the Box-Ljung statistics using 12 and 24 autocorrelations show that the
model quite effectively picks up the seasonal feature in the data. The issue that will be
investigated in the next section is whether this improved in-sample fit is associated to an
increased forecast accuracy. All models suffer from serious departure from normality2.

2.3 Impulse response function
The impulse response function (IRF) is a standard tool in illustrating the dynamic prop-
erties of the time series models we have entertained; namely, it examines the effect of an
innovation occurring at time t, νt = yt − E[yt|Yt−1], on the future pattern, yt+l, l ≥ 0, by
looking at the sequence of dynamic multipliers:

∂yt+l

∂νt
, l = 0, 1, . . . .

For the linear and time invariant models of this section the IRF is a function of l alone
(and the model parameters), and it is readily computed from the steady state KF (see
appendix A.1), being provided by the sequence {1, ZK,ZTK,ZT 2K, . . . , ZT l−1K, . . .}.

Figure 2 shows the IRF of a selection of models; for LLMT it diverges to infinity at
a linear rate. It should be noticed that for TpCM the IRF describes a damped wave
converging rather slowly to a value (persistence) below one; this is a consequence of the
orthogonal trend-cycle decomposition. Cyclical trend models imply high persistence, with
the ARTM yielding the highest profile. The figure also reports the IRF pattern for the
ARIMA model considered by Montgomery et al. (1998); this will be discussed in section
3.

[Figure 2 about here]

3 Comparitive Performance of Rolling Forecasts
for Linear Models
We use a rolling forecast experiment as an out-of-sample test of forecast accuracy. As
pointed out in Tashman (2000) a most crucial issue is how to split the series between the

2Two other models were entertained: the first is the LLTM with fixed slope, that is (2) with βt = β; the
second is the CTM2 with a fixed slope, that is with trend component µt+1 = µt + β + ψt. In both case the
estimated slope was not significantly different from zero and so the models reduce respectively to LLM and
CTM2.
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fit and the test period. Assuming that our interest lies in short run forecasting so that the
greatest lead time is 12 months, we have decided to use the sample period 1948.1-1979.12
as the fit period and to leave the last 21 years of monthly observations for evaluating and
comparing the out-of-sample forecast performance of the various alternative models. The
test period includes two full cycles in the unemployment rate and the long lasting expan-
sion of the last decade, so the different phases of the business cycle are well represented.
Of course, we will be mostly concerned with the performance at the end of the sample,
but we are also interested in assessing the sensitivity of the results to the state of the
business cycle.

Hence, starting from January 1980, each of the models of the previous section is
estimated and 1 to 12 step-ahead forecasts are computed. Then, the forecast origin is
moved one step forward and the process is repeated until the end of sample is reached;
notice that we reestimate the model each time the forecast origin is updated, and so
parameter estimation will contribute as an additional source of forecast variability. The
experiment provides in total 252 one step ahead forecasts and 240 12-step-ahead forecasts.

As hinted before, our benchmark model will be LLM; as the irregular variance was
always estimated equal to zero, yt is simply a random walk and thus its forecasts will be
used as a reference for comparison. Furthermore, we also included in our comparison the
monthly ARIMA model considered by Montgomery et al. (1998); the latter is a seasonal
model with orders (2, 0, 1)×(1, 0, 1)12 and its estimation with the full sample gave the
following results:

(1− 1.88L+ 0.88L2)(1− 0.53L12)yt = 0.001 + (1− 0.74L)(1− 0.80L12)ξt

(.05) (.05) (.07) (.003) (.07) (.05)

where the sample variance of the innovation series ξt is 0.0364. This is virtually identical
to that reported in the referenced paper, apart from the constant term, which is not
significant; notice that the non seasonal AR polynomial contains a unit root. The IRF
is reported in figure 2; its pattern suggests that the model is capturing not solely the
residual seasonal effect, but it is boosting the impact of innovations at short lead times;
that the model is picking up something else is suggested by Montgomerty et al. in their
comment to the quarterly version at the beginning of section 3.1 of their paper. The
implied persistence is 0.92, but the IRF makes a long and abrupt swing before converging
to it.

Table 2 reports a few basic statistics upon which forecasting accuracy will be assessed.
Denoting the l-step-ahead forecast for model (j) by ỹ(j)

t+l|t, we present the average of

the forecast errors (mean error), yt+l − ỹ(j)
t+l|t; the symmetric mean absolute percentage

error (sMAPE), given by the average of 100|yt+l − ỹ(j)
t+l|t|/[0.5(yt+l + ỹ(j)

t+l|t)], a measure
which is featured in the M3-Competition (Makridakis and Hibon, 2000) and aims at
providing a symmetric treatment of underforecasts and overforecasts; the median relative
absolute error (mRAE, see Armstrong and Collopy, 1992), a robust comparative measure
of performance computing the median of the distribution of the ratios |yt+l− ỹ(j)

t+l|t|/|yt+l−
ỹ(1)

t+l|t|, where (1) indexes the benchmark model; finally, we report the mean square forecast
error (MSFE). For simplicity these statistics are reported only for 1, 3 (one quarter), 6
(two quarters), 9 (three quarters), and 12 (one year) step ahead.
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[Table 2 about here]

In terms of MSFE the greatest accuracy is provided by the ARIMA model for horizons
up to two quarters; then its performance rapidly deteriorates and the best forecasting
model turns out to be ARTM. The latter is ranked best in terms of mRAE and sMAPE,
immediately followed by CTM2. Therefore, on aggregate, a simple structural time series
model, such as ARTM, is capable of outperforming the benchmark ARIMA model in
Montgomery al. (1998).

Among the cyclical trend models, having σ2
η > 0, as in the original CTM formulation,

yields a poorer forecasting model; the performances of CTM2 and CTM2s are almost
indistinguishable, but the former is preferred in terms of mRAE and is more parsimonious.
This confirms that modelling the negative serial correlation at seasonal lags improves the
accuracy of the forecasts only at very short lead times. We also report in passing that
this is not a stable feature of the series: for instance, the autocorrelation at lag 12 of ∆yt
estimated using the full sample is -0.18 (with asymptotic standard error 0.04); in the test
period the estimate resulted -0.03, which is not significantly different from zero.

A piece of evidence that does not emerge from the table concerns the role of the irreg-
ular term; when the forecasting experiment is conducted imposing σ2

ε = 0 (no irregular)
on the cyclical and autoregressive trend models, this produces worse forecasts.

The empirical evidence speaks strongly against TpCM, which is outperformed by the
näıve model at all lead times. The table also tells that the forecasts are negatively biased;
the largest biases are found for the ARIMA model. LLTM presents a distinctive trade-
off between bias and forecast error variance; as the forecast function is highly adaptive,
assigning a large weight to the most recent observations, the bias is very small, but on
the other hand the forecasts’ variability is quite high (letting the changes in the trend be
non stationary inflates overly the variance).

The upper right panel of figure 3 displays the MSFE of the linear models relative
to that of the benchmark model for every lead time. Among the structural models, the
greatest accuracy is provided by ARTM; yielding a proportional reduction in MSFE above
20% for lead times greater than two months ahead. CTM2s improves over ARTM solely
for l = 1, 2, and overall CTM2 can be ranked as second best. In conclusion, our preferred
linear structural model is ARTM; this will also represent the benchmark against which
non linear models, dealt with in section 6, are evaluated.

In order to assess the cyclical sensitivity of its forecasting performance, we present in
the second panel the one-step-ahead relative MSFE for a rolling window of 60 consecutive
observations. The plot reveals that the forecasting accuracy deteriorates in periods of slow
decline in the unemployment rate and scores better in periods of fastly rising and declining
unemployment rates, during which the persistence of the innovations should be greater.
Similar behaviour characterises the relative MSFE of multistep forecasts. We mention in
closing this section that the end of sample performance of the ARIMA model is worse
than the näıve model, with a 10% increase in MSFE with respect to the benchmark.

4 Leave-k-out Diagnostics and Nonlinearity
Departure from normality was detected for the innovations of the ARTM; the breakdown
into the contribution of the two terms skewness and kurtosis reveal that the latter is
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mostly responsible for the recorded high value.
Asymmetric behaviour with respect to the business cycle phase would show up in a

skewed distribution for the auxiliary residuals (see Harvey and Koopman, 1992). These
are estimators of the disturbances associated with the components, conditional on the
entire information set, e.g. E(κt|YT ), and are computed from the output of the smoothing
filter, reviewed in appendix A.2, as indicated in Koopman (1992). Unlike the innovations,
they are autocorrelated even if the model is correctly specified, and Harvey and Koopman
(1992) show how they can be employed to form appropriate tests of normality, correct-
ing for serial correlation. The skewness test conducted on E[κt|YT ] is highly significant;
significant kurtosis was also detected.

Additional evidence can be gathered using leave-k-out diagnostics, arising from the
deletion of groups of observations (see e.g. Bruce and Martin, 1989); these aim at spotting
patches of observations that are not adequately fitted by a linear model; for linear state
space models they are easily computed using the KF based algorithm proposed in Proietti
(2000) and outlined in appendix A.2. The case for computing them is quite strong in our
application since dynamic asymmetries affect clusters of consecutive observations.

Figure 4 is a plot of the indicator variable I(τ(I) > c), τ(I) being the statistic (11) in
appendix A.2 and c the 5% critical value of the reference distribution F (k, T − k). The
dimension of the set of deleted observations is 1, 5, and 11; when k=1 the statistic is a
test for the presence of an additive outlier at time t; for k = 5, 11, the indicator values
refer to the midpoint of the deletion interval.

[Figure 4 about here]

As concerns leave-1-out diagnostics (upper panel), quite a few isolated observations
are flagged in the first years of the sample period up to 1961, and in the years 1974-1985;
there is some clustering around turning points (especially noticeable around Oct. 1949),
in periods of fast rising unemployment (end of 1953, 1974). We suspect that some masking
has taken place, in that the effect of adjacent observations could be clouded, and that
joint deletion of consecutive observations can bring to the surface the masked outliers.

As a matter of fact, the central and lower panels point out more clearly that violation
of linearity and Gaussianity arises in economic downturns, that is in periods of rapidly
increasing unemployment, and around turning points. The other relevant piece of evidence
is these departures are concentrated in the fit period; only the beginning of the test period,
i.e. the slowdown at the beginning of the eighties appears problematic. We might therefore
anticipate that the gains of non linear models need not to be great in this situation.

It must be acknowledged that in interpreting these plots a balance has to made between
unmasking (which is likely to have taken place during the downturns taking place in the
second half of 1974 and in the first half of 1980) and smearing (probably occurring in
1949 and 1959) the effect of outliers on adjacent time points: moreover, use of critical
values from the F distribution would be correct only if we knew the exact timing of the
outlying effect. Nevertheless we find these plots quite informative as a descriptive device
for detecting groups of suspect observations.
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5 Transformations and Seasonal Adjustment
Linear Gaussian models of the untransformed unemployment rates are not strictly ade-
quate, since the series is bounded between 0 and 100. Theoretically, this implies a nonzero
probability, however small, of predicting negative unemployment rates; moreover, some
nonlinear features can be ascribed to the measurement scale itself, which imposes floors
and ceilings.

Wallis (1987) advocated for this case the logistic transformation, y∗t = ln[yt/(100−yt)],
and proposed an approximate method for forecasting yt; among the papers quoted in the
introduction, only Koop and Potter (1999) adopt it, whereas the most common strategy
(especially in forecast accuracy experiments) is to leave the data untransformed or to use
logarithms.

When applied to our series the logistic trasformation has basically the effect of ampli-
fying the troughs in 1951-53, 1968-69 (corresponding to the smallest rates observed) and
downscaling the data around the peak in 1982 (maximum rate), leaving the last decade
practically unaffected. Furthermore, ARTM applied to y∗t yielded very close parameter
estimates leaving persistence and the signal-noise ratio unaffected, reduced kurtosis and
skewness coefficients for the innovations, which remain highly significant (for the AR dis-
turbances these coefficients are virtually the same), and increased Box-Ljung statistics.

In conclusion, it appears that the nonlinear and nongaussian effects are more a dy-
namic feature of the series than only a scale property of the data and we feel that the
transformation issue is unlikely to affect our main findings.

Seasonal adjustment has left a clear mark on the series, although we have argued
that extending the model to account for seasonal features does not add much in terms of
forecast accuracy in our test period. The availability of unadjusted data (plotted in figure
1) raises two issues: firstly, does seasonal adjustment affect the stylised facts concerning
U.S. unemployment rates (nonlinearity, propagation of innovations)? Secondly, why do
the seasonally adjusted data display seasonal features?

To address the first we set off fitting the basic structural model with a cyclical trend
(BsmCT):

yt = µt + γt + εt,

where µt+1 = µt + ψt, ψt is given by (3), and the seasonal component, γt, is modelled
by the sum of six nonstationary cycles defined at the seasonal frequencies λj = 2πj/12,
j = 1, . . . , 6:

γt =
6

∑

j=1

γjt,

[

γj,t+1
γ∗j,t+1

]

=

[

cos λj sinλj
− sinλj cosλj

] [

γjt
γ∗jt

]

+

[

ωjt
ω∗jt

]

,

for j = 1, . . . , 5 and γ6,t+1 = −γ6,t + ω6,t. The disturbances ωjt and ω∗jt are assumed to
be normally and independently distributed with common variance σ2

ωj
.

Information criteria led to constrain σ2
ωj

to be constant across j for j = 2, . . . , 6. The
corresponding parameter estimates using the full sample were: σ2

ε = 0.0091; σ2
κ = 0.0201;

ρ = 0.62, λc = 0.01 σ2
ω1 = 12.64× 10−5; σ2

ωj = 1.78× 10−5. The Box-Ljung portmanteau
statistics resulted Q(12) = 13.65 and Q(24) = 28.50, which are not significant, and the DH
normality test took the value 44.08, which is significant, but quite small, in comparison
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to the value reported in table 1 for the models adapted to the seasonally adjusted series.
Hence, we find less evidence for departure from the maintained assumptions.

Given the estimated λc ' 0, the model for the trend reduces to an ARIMA(1,1,0),
with autoregressive parameter 0.62. Correspondingly, the persistence of the innovations
is reduced with respect to ARTM. That seasonal adjustment increases persistence is doc-
umented in Jaeger and Kunst (1990) and Pesaran and Samiei (1991). Additionally, that
seasonal adjustment may induce nonlinearity is documented in Ghysels et al. (1996).

To answer the second question, it should be noticed that the variance of the seasonal
cycle defined at the fundamental frequency is about seven times as great as that associ-
ated to the remaining frequencies. One likely occurrence is that the seasonal adjustment
procedure is unable to account for this kind of heteroscedastity, underadjusting the fun-
damental frequency and overadjusting the others. This point, however, has some caveats
and would require further investigation, since the BLS does not perform the adjustment
directly on the unemployment rate series, but proceeds to adjust the single elementary
series of unemployment and civilian labour force disaggregated for population groups,
and then computes the seasonally adjusted rate by taking the total seasonally adjusted
unemployment level as a percent of the total seasonally adjusted civilian labour force.

6 Nonlinear Cyclical Trend Models
In this section we consider four nonlinear trend models, derived from ARTM and CTM2,
that can account for dynamic asymmetries in unemployment rates. These belong to
the framework of smooth transition structural time series models (see Proietti, 1999),
according to which we let the fundamental parameters vary according to the state of the
system, as described by an appropriate transition variable.

6.1 Specification
In the ARTM case, for which the trend has the representation µt+1 = µt + ψt, with
ψt+1 = ρψt + κt, it appears a sensible option to allow the autoregressive coefficient ρ and
the variance of the disturbances κt to evolve over time; thus for a given measure of the
state of the economy, St, bounded between 0 and 1, we set

ρt = ρ0(1− St) + ρ1St, σ2
κt = σ2

κ0(1− St) + σ2
κ1St. (4)

The regime St is a function of a transition variable, zt, which is observable at time t;
its choice will be discussed in a moment. We will adopt a logistic transition mechanism
(see e.g. Granger and Teräsvirta, 1993), defining St = [1 + exp(−τ(zt − c))]−1 where τ
is a smoothness parameter determining the speed of the transition, and c is a threshold.
The resulting model is labelled ARTMSt.

In the CTM2 case it makes sense to allow variation also in the frequency of the cycle,
and we will write

λct = λc0(1− St) + λc1St, (5)

and denote the corresponding model CTM2St.
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Although including a drift term in the trend was not significant globally, it might be
the case that this plays a role locally. so we will also consider the trend model:

µt+1 = µt + βt + ψt, βt = β0(1− St) + β1St,

where the AR and cycle parameters follow (4) and (5). This will give rise respectively to
the ARTMStD and CTM2StD models.

The transition variable is usually based upon the differences ∆ryt = yt − yt−r, an
unweighted sum of current and past one-step changes in the unemployment rates; this has
two drawbacks: the transition is not necessarily smooth unless r is large; the differencing
filter induces a phase shift, affecting the timing of turning points. Another possibility
is to define zt in terms of the underlying trend, e.g. zt = E[∆rµt|Yt−1] = E[ψt + · · · +
ψt−r+1|Yt−1]; however, on the one hand we do not expect great gains for a relatively
smooth series such as the one considered here, and, on the other, inference would be
complicated computationally by the need to support the KF equations with a fixed interval
smoother in order to construct the transition variable; if the analysis were conducted on
seasonally unadjusted data, this would nevertheless be our preferred strategy.

Our definition of zt builds upon the truncated version of the current-depth-of-recession
variable, proposed originally Beaudry and Koop (1993) for U.S. GNP, exploited by Parker
and Rothman (1997) in a similar exercise referred to forecasting the U.S. unemployment
rate. The latter include (lagged values of) minj=0,...,r yt−j − yt as an explanatory variable
in an ARMA framework, measuring the distance of the current rate from its historical
local minimum; on the other hand maxj=0,...,r yt−j − yt would measure the depth of the
decrease in unemployment rates (an expansion in the economy).

We propose to combine the two into the variable:

zt = 2yt − min
j=0,...,r

yt−j − max
j=0,...,r

yt−j .

For monotonic patterns zt is coincident with ∆ryt, since either yt = minj=0,...,r yt−j or
yt = maxj=0,...,r yt−j . When yt−1 is a turning point, zt = ∆ryt + ∆yt = ∆(1 + Sr(L))yt,
so for instance after a peak has taken place, zt will be smaller than ∆ryt, as we add the
negative change from time t − 1 to time t; this results in an earlier recognition of the
change in regime and lessens the problem of phase shifts. The following table illustrates
the comparison for the case r = 5 with reference to the pattern of observations around
the turning point at Dec. 1982 (yt = 10.8):

yt 9.6 9.8 9.8 10.1 10.4 10.7 10.8 10.4 10.4
∆5yt 1.0 1.0 0.8 0.8 1.1 1.1 1.0 0.6 0.3
zt 1.0 1.0 0.8 0.8 1.1 1.1 1.0 0.1 -0.1

The plot of zt with r = 5 for the full sample is available at the bottom of the upper panel
of figure 5.

When zt is coupled with the logistic transition mechanism it yields the regime variable
St = [1 + exp(−τ(zt − c))]−1; this framework is suitable for modelling business cycle
asymmetries such as those arising when unemployment rates are characterised by steep
increases during recessions (St close or equal to one) and slower declines during expansions
(St close or equal to zero).
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6.2 Estimation and testing
A score test of linearity against smooth transition alternatives can be carried out for
unobserved components models using the same idea proposed by Luukkonen et al. (1988)
to circumvent the lack of identifiability under the alternative, which amounts to replacing
St by a first order Taylor approximation around τ = 0 (see Proietti, 1999). As suggested
by Teräsvirta (1994), r is chosen by computing the score test for a set of values and
selecting the one yielding the smallest p-value. When applied to our data the test is highly
significant and suggests r = 5; it must be stressed that, contrary to expectations, the
likelihood is also very informative on the choice of this parameter, displaying a distinctive
peak at r = 5.

As far as estimation is concerned, the resulting model is conditionally Gaussian (see
Harvey, 1989, sec. 3.7.1., and Lipster and Shiryaev, 1978, ch. 11), since the system
matrices Tt, dt,Ht, in the transition equation (see appendix A.1), depend solely on the
information available at time t; likelihood inference is thus made via the prediction er-
ror decomposition. Parameter estimates, along with standard errors and diagnostics are
reported in table 3.

[Table 3 about here]

The variance of the AR and cycle disturbances are much higher in an economic down-
turn; correspondingly the damping parameter is significantly lower for the models includ-
ing a drift term (ARTMStD and CTM2StD); for the latter the drift term is positive and
significantly different from zero. Moreover, for the cyclical trend models the estimated
frequency is zero.

Thus, the parameter estimates associated with the different regimes imply that peri-
ods of increasing unemployment are characterised by greater uncertainty and lower per-
sistence, although the trend disturbances are propagated with the addition of a positive
drift. This provides only a very preliminary description of the models’ dynamic properties,
hiding some of essential features, as will be argued later in section 8, where we provide a
more informative characterisation by means of the generalised impulse response function.
Notice that the in-sample goodness of fit statistics are generally better than the linear
case and that the normality statistic is drastically reduced.

The estimated transition function, St, for CTM2StD and the transition variable zt with
r = 5 are represented in figure 5.

[Figure 5 about here]

7 Forecasting with Nonlinear Structural Models
One-step-ahead forecasts are immediately available from the KF output at the end of the
fit period; multistep forecasts, conditional on the estimated parameters, are generated by
the Monte Carlo method (see Granger and Terasvirta, 1993, ch. 8) as:

ỹt+l|t =
1
M

M
∑

i=1

ỹ(i)
t+l|t,

which, for i = 1, . . . , M , requires the following steps:

13



1. draw y(i)
t+1 ∼ f(yt+1|Yt)

2. draw y(i)
t+2 ∼ f(yt+2|Yt, y

(i)
t+1)

...
...

...
l − 1. draw y(i)

t+l−1 ∼ f(yt+l−1|Yt, y
(i)
t+1, . . . , y

(i)
t+1)

l. evaluate ỹ(i)
t+l|t = E(yt+l|Yt, y

(i)
t+1, . . . , y

(i)
t+l−1)

These steps are easily carried out with the support of the Kalman filter. The first
draw is made from the normal distribution N(ỹt+1|t, σ2FT+1), where the moments are

obtained from the last run of the KF within the sample; then, conditional on z(i)
t+1 and

S(i)
t+1, one-step-ahead forecasts of the states and the observations are computed along with

their covariance matrices, which are in turn used to compute the next draw, y(i)
t+2, and so

forth.
The predictive distribution, f(yt+l|Yt), can be estimated by the method of composition

(see e.g. Tanner, 1996, sec. 3.3), giving:

f̂(yt+l|Yt) =
1
M

M
∑

i=1

f(yt+l|Yt, y
(i)
t+1, . . . , y

(i)
t+l−1),

where the densities on the right hand side are normal with mean Zt+la
(i)
t+l and variances

σ2Ft+l delivered by the KF.
The rolling forecast exercise is repeated for the four nonlinear models using M = 1000;

the results are reported in table 4, which for convenience reproduces those obtained for
the linear benchmark (ARTM).

[Table 4 about here]

The evidence is rather mixed; in terms of MSFE the linear benchmark is clearly outper-
formed only by CTM2StD, especially at short horizons; the best performance in terms
of mRAE is provided by ARTMSt, instead. The latter and CTM2St tend to produce
positively biased forecasts and their overall performance is quite similar, as expected.
Somewhat unexpected is the poor performance of ARTMStD, compared to CTM2StD;
as a matter of fact, the latter proves rather unstable at the beginning of the fit period,
yielding negative estimates of ρ1. This results in more volatile forecasts, especially at the
beginning of the eighties, which are responsible for its poor comparative performance in
terms of MSFE.

The last panel of the table reports the p-values of the Meese-Regoff test of comparative
forecast accuracy (Meese-Regoff, 1988, see also Diebold and Mariano, 1995, and Clements
and Hendry, 1999, ch. 13, for further discussion). In brief, its rationale is the following:
the null hypothesis of equal forecast accuracy (in the MSFE sense) implies a covariance
of zero between the sum (st) and the difference (dt) of the forecast errors produced by
the maintained and the benchmark models; under the null the estimated covariance is
asymptotically normally distributed with zero mean and standard error that depends on
the auto and cross covariances of st and dt; the latter can be consistently estimated by
e.g. a Bartlett window and used to build a statistic for H0 : Cov(st, dt) = 0 with standard
normal distribution. The results clearly indicate that only CTM2StD shows significant
improvements up until 6 step ahead.
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The right panel of figure 6 plots the MSFE of the four nonlinear forecasting models
relative to that of the benchmark against lead time; the percentage reduction achieved by
CTM2StD is around 8% for short leads and converges to zero as l increases. The panel on
the left is a plot of the 3-step ahead relative MSFE for this model calculated over spans
of 5 years, with the original series reproduced in the background; the plot is meant to
provide some insight on how the comparative forecast accuracy of this model varies with
time. It is noticeable that CTM2StD yields the most significant improvements towards
the end of the test period (20% MSFE reduction for the span including the last 5 years in
the sample), during a phase of slowly declining unemployment rates. It is also remarkable
that the performance is rather weak in the early nineties, in connection to the last upswing
and successive decline, which corresponds to the period when the benchmark yields the
best results.

[Figure 6 about here]

To corroborate the finding that CTM2StD provides better forecasts at the end of the
sample period, figure 7 presents the l-step-ahead (l = 1, . . . , 12) forecasts from the origin
1999.12 using M = 5000 replicates, along with the 95% highest density region, HDR0.05 =
{yt+l|t : f(yt+l|Yt) ≥ f0.05}, where f0.05 is chosen such that p(yt+l ∈ HDR0.05|Yt) = 0.95.
The latter is the smallest of all possible 95% forecast regions and is particularly helpful in
revealing asymmetry and multimodality in the forecast densities; see Hindman (1996) for
more details. Even though at the forecast origin the system is in an expansionary state,
there is a possibility that it enters and gets stuck in a recessionary pattern; this shows up
in the multistep forecast densities as a secondary mode. The figure also reports the upper
and lower 95% confidence bounds for the ARTM forecasts, showing that the nonlinear
model has reduced forecast uncertainty.

[Figure 7 about here]

8 Generalised Impulse Response Function
The notion of a generalised impulse response function (GIRF) provides further insight on
the dynamic properties of CTM2StD. The underlying idea is that in a nonlinear system
the impact of an innovation occurring at time t on the future path of the process depends
crucially upon the history of the process and the size of the innovation.

According to the definition by Koop et al. (1996),

GIRF(l, νt, Yt−1) = E[yt+l|νt, Yt−1]− E[yt+l|Yt−1],

where the notation stresses the dependence on the lead time l, the size of the innovation
and the history of the process. The GIRF is evaluated by the same stochastic simulation
techniques illustrated in the previous section; basically, for a given lead time, innovation νt,
and history, we evaluate the two components E[yt+l|Yt−1] and E[yt+l|νt, Yt−1], averaging
out intermediate innovations and subtracting out the results; it is crucial that in the
simulations we use common random numbers for drawing the intermediate shocks.

The GIRF was computed for the empirical innovations yt − E(yt|Yt−1) resulting from
CTM2StD, and using the observed history for l equal to a large number, l = 60; GIRF(60, νt, Yt−1)
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can be taken as a measure of the long run impact, or persistence, of the observed shock.
We notice in passing that the cumulation of the persistence values is an approximation of
the Beveridge-Nelson (1981) trend in the series.

Figure 8 is a plot of GIRF(60, νt, Yt−1) versus the innovation νt conditional on the
state of the economy as described by the variable St: during a period of increasing un-
employment (left panel) innovations tend to be positive and highly persistent; there is
also a small subset of very persistent large innovations. In periods of decreasing unem-
ployment (right panel) we find a cluster of highly persistent shocks, which occur after a
turning point, when unemployment rates are more rapidly declining. Another group of
small shocks displays low persistence and is gathered around the unit line; these occur in
periods of low decreasing unemployment. This fundamental asymmetry in the dynamics
of the system could not be anticipated by a simple characterisation based on the param-
eter estimates in the two regimes, but is a quite natural consequence of nonlinearity and
of the basic fact that the response of the system depends on its position at the time of a
shock and the size of the latter.

[Figure 8 about here]

These dynamic features also cast some light on the interpretation of the forecasting
performance of the CTM2StD model. In this case we would be interested in estimating
the GIRF at lead times not greater than 12; for this purpose we set l = 3, define positive
and negative shock equal to twice the standard deviation of the innovations, and compute
GIRF(3,±2σ, Yt−1) for all t starting from 1949; as before we condition on the observed
histories Yt−1. The upper panel of figure 9 plots the normalised GIRF for both positive
and negative shocks, where the normalisation is made dividing for the initial shock. A
noticeable feature is that positive shocks have a larger impact in a recession, a finding
which is consistent with that of Koop and Potter (1999); both positive and negative shocks
have larger impact immediately after a peak, when the system moves out of a recession.
Moreover, during periods of slowly declining unemployment rates the impact is damped
out and it is less than the original size.

A quick assessment on some of this properties can also be made from the innovation
form of the model provided by the Kalman filter (see appendix A.1): writing yt+l =
Zt+lat+l + νt+l, at+l+1 = Tt+lat+l + dt+l + Kt+lνt+l and substituting recursively from the
second equation, we have

∂yt+l

∂νt
= Zt+l

l+1
∏

j=1

Tt+l−jKt; (6)

this represent a straightforward empirical measure of the impact of an unit innovation
on the observed level of the series l step ahead, conditional also on the future state of
the system. Naturally, the above discussion implies that (6) is not a GIRF; nevertheless,
the plot of its values for l = 3, given in the bottom panel of figure 9, points out the
same stylised facts: namely that the impact of shocks varies greatly in expansions, being
far greater after a turning point has taken place and lately declining quite rapidly when
unemployment decreases more slowly; then it jumps to a higher stable value as a downturn
is entered. Finally, the model tend to behave like a random walk with a positive drift in
recessions.

[Figure 9 about here]
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The fact that CTM2StD produces better forecasts at the end of the sample period can
be ascribed to this feature of the model, which in periods of slowly declining rates has a
reduced persistence (recall that ARTM, implying large persistence, did not out perform
better than the random walk model at the end of the sample, see the second panel of
figure 3).

9 Conclusive Remarks
This paper has investigated the out-of-sample performance of linear and nonlinear struc-
tural time series models of the U.S. unemployment rate by means of an extensive rolling
forecast experiment using a test period made up of the last two decades.

One conclusion is that our study corroborates the hysteresis hypothesis, as we found
that linear models characterised by higher persistence perform significantly better. Per-
sistence is not a stable property, however, and a nonlinear specification, implying that this
feature changes over the phases of the business cycle, outperforms the best linear models
at least at short lead times. In particular, the model produces more accurate forecasts
in periods of slowly decreasing unemployment rate, which is the regime prevailing at the
end of the sample period.

The accuracy gains, though significant, are not overwhelmingly great. This could be
anticipated by simple diagnostics immediately available from the linear fit, revealing that
nonlinear and nongaussian features are more prominent in the fit period (1948-1979).

The general conclusion is that structural time series models prove a very useful fore-
casting tool: they are parsimonious and are formulated in terms of core parameters and
components with direct interpretation, which renders them easily extensible to account
for nonlinearity and for dealing with seasonally unadjusted series.
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A Algorithms

A.1 The Kalman filter
The models considered in the paper admit the state space representation:

yt = Ztαt + Gtεt, t = 1, 2, . . . , T,
αt+1 = Ttαt + dt + Htεt,

(7)

with εt ∼ NID(0, σ2I) and α1 ∼ N(a1, σ2P1) independent of εt,∀t. The model is time
invariant if the system matrices Zt, Gt, Tt, dt,Ht, do not depend on t.

The Kalman filter (KF) (Anderson and Moore, 1979), is a well-known recursive al-
gorithm for computing the minimum mean square estimator of αt and its mean square
error (MSE) matrix conditional on Yt−1 = {y1, y2, . . . , yt−1}. Defining at = E(αt|Yt−1),
MSE(at) = σ2Pt = E[(αt − at)(αt − at)′|Yt−1], it is given by the set of recursions:

νt = yt − Ztat, Ft = ZtPtZ ′t + GtG′
t

qt = qt−1 + ν ′tF
−1
t νt, Kt = (TtPtZ ′t + HtG′

t)F
−1
t

at+1 = Ttat + dt + Ktνt, Pt+1 = TtPtT ′t + HtH ′
t −KtFtK ′

t

(8)

with q0 = 0, νt = yt − E(yt|Yt−1) are the filter innovations or one-step-ahead prediction
errors, with MSE matrix σ2Ft. Initialisation of the state vector when nonstationary state
components are present is discussed in Koopman (1997). In SsfPack the diagonal elements
of P1 corresponding to nonstationary components are set equal to a large number (107).

The Kalman filter is said to have reached a steady state if, for some t, Pt = P .
The conditions under which limt→∞ Pt = P are given in Harvey (1989, sec. 3.3.3 and
3.3.4), and, when they are met, the matrix P is the solution of the Riccati equation
P = TPT ′ + HH ′ −KFK ′, with K = (TPZ ′ + HG′)F−1 and F = ZPZ ′ + GG′.

A.2 Leave-k-out diagnostics
Leave-k-out diagnostics are based upon the output of the smoothing filter (De Jong, 1988,
1989, Kohn and Ansley, 1989):

ut = F−1
t vt −K ′

trt, Mt = F−1
t + K ′

tNtKt,
rt−1 = Z ′tF

−1
t νt + L′trt, Nt−1 = Z ′tF

−1
t Zt + L′tNtLt,

(9)

Lt = Tt −KtZt, started with rT = 0 and NT = 0; ut is termed a smoothing error.
Assuming that observations yi−k+1, . . . , yi are deleted, let us denote the stack of

the deleted observations by y(I) and the vector of deletion residuals by d(I) = y(I) −
E[y(I) |y1, . . . , yi−k, yi+1, . . . , yT ]; let also y = (y1, . . . , yT )′ ∼ N(0, σ2V ), so that qT =
y′V −1y.

The statistic

τ̂(I) =
d′

(I)
[Cov(d(I))]

−1d(I)

qT − d′
(I)

[Cov(d(I))]−1d(I)

· T − k
k

.

provides a test that the observations are jointly outlying. Under normality the exact
distribution of τ̂(I) is F(k, T − k). It can be computed by running backwards the Kalman
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filter on the pseudo-model made up of the measurement equation ut = F−1
t νt −K ′

trt and
transition equation rt−1 = Z ′tF

−1
t νt +L′trt , where F−1/2

t νt act as disturbances, ut are the
observations and rt the states. This produces:

u∗t = ut + K ′
tr
∗
t , M∗

t = F−1
t + K ′

tN
∗
t Kt,

q∗t−1 = q∗t + u∗
′

t M∗−1
t u∗t , K∗

t = (Z ′tF
−1
t − L′tN

∗
t Kt)M∗−1

t ,
r∗t−1 = L′tr

∗
t + K∗

t u∗t , N∗
t−1 = Z ′tF

−1
t Zt + L′tN

∗
t Lt −K∗

t M∗
t K∗′

t ,
(10)

for t = i, i − 1, . . . , i − k + 1. The filter is initialised by the unconditional mean and
covariance matrix of ri, that is r∗i = 0 and N∗

i = Ni.
In Proietti (2000) it is shown that q∗i−k+1 = d′

(I)
[Cov(d(I))]

−1d(I) so the statistic can be
computed as

τ̂(I) =
q∗i−k+1

qT − q∗i−k+1

T − k
k

. (11)

Notice that, once the filter (10 is run for the maximum k desired, leave-j-out diagnostics
for j < k are immediately available.
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Table 1: Parameter estimates and diagnostics for linear structural models of US unemployment
LLM LLTM TpCM CTM CTM2 CTM2s ARTM

σ2
η 0.0469 0.0110 0.0213 0.0088

σ2
ζ 0.0041

σ2
κ 0.0186 0.0029 0.0050 0.0042 0.0085
ρ 0.9825 0.9119 0.8723 0.8886 0.7853
λc 0.1159 0.1866 0.1846 0.1872
σ2

ε 0.0000 0.0093 0.0000 0.0103 0.0135 0.0128 0.0122
Φ 0.6209
Θ -0.8694

loglik 69.38 89.42 94.86 121.25 119.47 134.36 115.75
Q(12) 170.74 42.25 74.30 19.58 23.03 8.78 30.18
Q(24) 205.28 65.93 90.14 44.88 48.34 29.87 51.56

Normality 348.63 417.24 499.91 405.72 359.57 346.55 436.07

Table 2: Linear models: comparison of forecast performance in the test period 1980.1-2000.12.

LLM LLTM TpCM CTM CTM2 CTM2s ARTM ARIMA
Lead time Mean Error
1 month -0.0091 -0.0014 -0.0117 -0.0061 -0.0054 -0.0055 -0.0046 -0.0144
1 quarter -0.0279 -0.0054 -0.0371 -0.0206 -0.0184 -0.0188 -0.0161 -0.0497
2 quarters -0.0684 -0.0229 -0.0904 -0.0611 -0.0565 -0.0569 -0.0500 -0.1239
3 quarters -0.1146 -0.0472 -0.1515 -0.1129 -0.1050 -0.1065 -0.0932 -0.2147
1 year -0.1579 -0.0698 -0.2101 -0.1638 -0.1518 -0.1545 -0.1351 -0.3090
Lead time Symmetric Mean Absolute Percentage Error
1 month 1.87 1.84 1.96 1.81 1.83 1.79 1.79 1.76
1 quarter 3.44 3.26 3.89 3.22 3.20 3.15 3.09 3.14
2 quarters 5.83 5.91 7.33 5.73 5.56 5.56 5.09 5.57
3 quarters 8.00 8.95 10.95 8.26 7.83 7.93 6.93 8.13
1 year 10.24 12.57 14.50 10.95 10.29 10.53 9.09 11.02
Lead time Median Relative Absolute Error
1 month 1.00 1.00 1.11 0.99 1.00 1.00 0.97 0.93
1 quarter 1.00 0.86 1.30 1.01 0.98 0.97 0.90 0.94
2 quarters 1.00 0.90 1.52 1.02 0.94 1.00 0.85 0.95
3 quarters 1.00 1.02 1.69 1.04 0.97 1.00 0.85 1.10
1 year 1.00 1.07 1.76 1.08 0.99 1.01 0.87 1.21
Lead time Mean Square Forecast Error
1 month 0.0265 0.0247 0.0264 0.0236 0.0237 0.0224 0.0233 0.0221
1 quarter 0.1062 0.0928 0.1105 0.0810 0.0811 0.0794 0.0779 0.0747
2 quarters 0.3040 0.3276 0.3736 0.2456 0.2416 0.2399 0.2265 0.2247
3 quarters 0.5694 0.7868 0.8060 0.5090 0.4887 0.4923 0.4553 0.4789
1 year 0.8943 1.5627 1.3825 0.8735 0.8266 0.8444 0.7710 0.8393
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Table 3: Parameter estimates (Est.), standard errors (S.E.) and diagnostics for nonlinear struc-
tural models of US unemployment (”conc” denotes that the parameter is concentrated out of
the likelihood function).

ARTMSt ARTMStD CTM2St CTM2StD
Est. S.E. Est. S.E. Est. S.E. Est. S.E.

σ2
κ0 0.0029 0.10 0.0026 0.10 0.0009 0.04 0.0004 0.02

σ2
κ1 0.0643 2.24 0.0668 1.59 0.0550 1.91 0.0639 1.32
ρ0 0.8148 0.01 0.7867 0.01 0.8981 0.06 0.8957 0.03
ρ1 0.4978 0.07 0.2289 0.03 0.5494 0.08 0.2095 0.05
λc0 0.1419 0.02 0.1571 0.02
λc1 0.0000 - 0.0000 -
β0 -0.0160 0.03 -0.0193 0.01
β1 0.1025 0.02 0.1172 0.02
τ 33.85 30.61 50.85 34.18 39.94 30.61 52.67 25.94
c 0.3436 0.05 0.3204 0.02 0.3122 0.05 0.3127 0.02
σ2

ε 0.0097 conc 0.0099 conc 0.0109 conc 0.0116 conc
loglik 165.98 172.31 172.13 181.26
Q(12) 25.51 23.59 19.70 21.36
Q(24) 44.53 42.10 36.92 37.26

Normality 125.78 86.17 122.02 62.48
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Table 4: Nonlinear models: comparison of forecast performance in the test period 1980.1-
2000.12.

ARTM ARTMSt ARTMStD CTM2St CTM2StD
Lead time Mean Error
1 month -0.0046 0.0018 -0.0074 -0.0018 -0.0104
1 quarter -0.0161 0.0146 -0.0208 0.0082 -0.0254
2 quarters -0.0500 0.0346 -0.0565 0.0240 -0.0614
3 quarters -0.0932 0.0618 -0.0961 0.0469 -0.1027
1 year -0.1351 0.1028 -0.1270 0.0820 -0.1408
Lead time Symmetric Mean Absolute Percentage Error
1 month 1.79 1.79 1.77 1.78 1.76
1 quarter 3.09 3.07 3.05 3.02 2.91
2 quarters 5.09 5.15 5.11 5.11 4.91
3 quarters 6.93 6.90 6.92 6.92 6.78
1 year 9.09 8.82 9.03 8.82 8.98
Lead time Median Relative Absolute Error
1 month 1.00 1.00 0.97 1.00 0.99
1 quarter 1.00 0.97 0.94 0.95 0.91
2 quarters 1.00 0.97 1.00 0.99 0.97
3 quarters 1.00 0.94 0.99 0.96 1.00
1 year 1.00 0.87 0.99 0.89 1.01
Lead time Mean Square Forecast Error
1 month 0.0233 0.0228 0.0226 0.0223 0.0217
1 quarter 0.0779 0.0821 0.0794 0.0793 0.0715
2 quarters 0.2265 0.2544 0.2385 0.2476 0.2134
3 quarters 0.4553 0.5045 0.4780 0.5005 0.4454
1 year 0.7710 0.8198 0.7931 0.8233 0.7675
Lead time Meese-Rogoff Test (p-values)
1 month 0.24 0.15 0.15 0.05
1 quarter 0.82 0.70 0.62 0.03
2 quarters 0.94 0.95 0.86 0.08
3 quarters 0.91 0.94 0.85 0.29
1 year 0.82 0.85 0.78 0.44
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Figure 1: U.S. unemployment rate, Jan. 1948 - Dec. 2000; seasonally adjusted and unadjusted
series.
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Figure 2: Impulse response function for linear models of US unemployment rate (ARIMA refers
to the model fitted by Montgomery et al. (1998), see section 3).
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Figure 3: Rolling forecast comparison of linear models: mean square forecast error relative to
benchmark (LLM).
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Figure 4: Leave-k-out diagnostics for ARTM.
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Figure 5: Transition variable zt and estimated transition function, St = [1+exp(−τ(zt− c))]−1

for the model CTM2StD.
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Figure 6: Rolling forecast comparison of nonlinear models: mean square forecast error relative
to benchmark (ARTM).
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Figure 7: CTM2StD model forecasts, 2000.1-2000.12, highest density regions, observed values
and upper and lower 95% confidence limits for the linear benchmark ARTM.
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Figure 8: Generalised impulse response function. Plot of GIRF(60, νt, Yt−1) (persistence) versus
νt (innovation) for the model CTM2StD during an economic downturn (increasing unemploy-
ment rates, left panel) and during expansions (decreasing unemployment rates, right panel).
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Figure 9: Normalised GIRF(3,±2σ, Yt−1) (upper panel) and ∂yt+3/∂νt (lower panel) for the non
linear model CTM2StD; the index plot in the background displays the values of the transition
function St.
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