
A General Approach for Partitioning Web Page Content Based on Geometric

and Style Information

Hui Guo Jalal Mahmud Yevgen Borodin Amanda Stent

I.V. Ramakrishnan

Computer Science Department, Stony Brook University

Stony Brook, NY 11794-4400

{huguo, jmahmud, borodin, stent, ram}@cs.sunysb.edu

Abstract

In this paper, we describe a general-purpose approach

for partitioning Web page content. The novelty of our ap-

proach lies in the use of detailed layout information from a

Web page renderer to determine spatial locality and identify

visual separators, and the use of relaxed matching over pre-

sentation style information to determine presentation style

similarity. We present several examples to illustrate the gen-

erality of our approach.

1. Introduction

Considerable research has been done on automatic par-

titioning of Web page content into semantically related

groups. This research has many applications, such as wrap-

per induction [12], information extraction [1, 5], support

for the Semantic Web [7], task learning [4] and accessibil-

ity [10]. A key problem in partitioning is determining how

to use layout and presentation information most effectively

to group content. In this paper, we present an approach to

partitioning of Web page content that is more general than

that in prior work. This approach is based on the obser-

vation that information about spatial locality is most often

used to cluster, or draw boundaries around groups of items

in a Web page, while information about presentation style

is used to segment, or draw boundaries between groups of

items. These two types of information are complementary.

By clustering items into large groups using spatial locality

first, and then by segmenting them within those groups us-

ing presentation style, we can reduce partitioning errors.

Consider the Amazon page shown in Figure 1. It con-

tains two navigation menus, one vertical and one horizon-

tal. It also contains several product descriptions in the main

part of the page. The page contains visual cues to help the

viewer find information quickly and easily. The alignment

of the two menus, and the images associated with them, help

them stand out from other content. Vertical and horizon-

tal spacing and font color, size and style differentiate the

sale items in the main part of the page and the submenus

in the vertical menu. Of course, a computer cannot see the

Web page as the user does. Instead, visual cues must be

mapped to features associated with the Web page markup,

and the human visual segmentation process into algorithms

that cluster and segment the Web page content.

Most prior work in this area uses the DOM tree for the

Web page as an approximation of the visual layout for the

page. Some of these techniques are domain [6] or site [13]

specific. Others are more general, but because DOM trees

contain only information about the location of Web page el-

ements relative to each other, they lose information about

the visual layout that is useful for partitioning [1, 3, 5, 15].

In addition to the DOM tree itself, some algorithms identify

HTML tags that serve as visual separators [2, 9] or groupers

[14]. Finally, some approaches require semantic informa-

tion such as ontologies [11].

The key novel features of our approach lie in how we

determine spatial locality, find presentation similarities, and

identify visual separators. In determining spatial locality

we do not rely on the DOM tree, where the only location

information is parent-child relationships between HTML

tags. Instead, we use the Mozilla frame tree [8] to get exact

coordinates for content elements. To find presentation simi-

larities, we permit relaxed matching on presentation styles:

presentation styles that are similar but not identical can form

parts of patterns for segmentation. In identifying visual sep-

arators, we do not restrict ourselves to HTML tags, but use

the content coordinates from the Mozilla frame tree to iden-

tify white space in the page. Our approach does not depend

on manually specified rules or any domain knowledge. In

comparison to other existing approaches to Web page par-

titioning, our approach can handle a wider variety of Web

pages with greater precision.



 

Figure 1. Block and partition finding in the Amazon home page

2. System Architecture

In our system, an input Web page passes through several

stages of processing, each of which makes use of different

information. The input HTML passes through the Mozilla

engine. The output from this stage is a frame tree [8], which

contains layout and style information sufficient for a visual

rendering of the Web page. The frame tree passes through

the Block Finder. This stage uses detailed visual layout

information from the frame tree to cluster the frames (Sec-

tion 3). The output is a block tree: a frame tree in which ge-

ometrically aligned blocks have been identified. The block

tree passes through the Partition Finder. This stage uses

presentation style information to segment each block into

one or more partitions (Section 4). The output is a partition

tree. Each block and partition is a frame subtree.

3. Clustering: The Block Finder

Semantically related pieces of content in a Web page

tend to be located near each other, often sharing the same

vertical and/or horizontal alignment. Consequently, geo-

metric alignment of frames in the Mozilla frame tree may

imply semantic relatedness. If all descendants of a frame

are consistently aligned either along X or Y axes, we call

such a frame consistent. A maximal semantic block, or sim-

ply block, is the largest of the consistent frames on the path

from a leaf to the root of a frame tree.

Algorithm FindBlocks

Input: Frame: node of a frame tree

Output: Blocks: set of maximal semantic blocks

1. Identify all children C1, C2, . . . , Cm of Frame

2. Frame.IsConsistent←true

3. for j ← 1 to m

4. do if Cj .IsLeaf = false

5. then FindBlocks(Cj)

6. if Cj .Alignment = NONE

7. then Frame.IsConsistent←false

8. if Frame.IsConsistent = false

9. then for j ← 1 to m

10. do if Cj .Alignment 6= NONE

11. then Blocks←Blocks ∪ {Cj}
12. else Frame.Alignment

←GetAlignment(Frame)

13. if Frame.Alignment = NONE

14. then for j ← 1 to m

15. do if Cj .Alignment 6= NONE

16. then Blocks ←Blocks ∪
{Cj}

17. return Blocks



The FindBlocks algorithm is used to find the blocks in a

frame tree. The algorithm runs a depth-first search over the

frame tree and recursively determines whether the frames

are consistent, ignoring the alignment of leaf frames. A

frame is consistently X-aligned if all of its non-leaf descen-

dants are X-aligned. Similarly, a frame is consistently Y-

aligned if all of its non-leaf descendants are Y-aligned. Oth-

erwise, the frame is not considered to be consistent. In this

case, all of its children are marked as blocks.

The FindBlocks algorithm uses the GetAlignment algo-

rithm to check whether the children of a frame have match-

ing alignment. The GetAlignment algorithm determines that

a frame is X-aligned if all of its children are aligned on the

left, right, or center of the X-axis. Y-alignment of a frame

is computed in a similar fashion.

Algorithm GetAlignment

Input: Frame: node of a frame tree

Output: Alignment : alignment of Frame’s descendants

1. Identify all children C1, C2, . . . , Cm of Frame

2. XFirst←C1.X; Y First←C1.Y

3. XAlignedDescends←true

4. Y AlignedDescends←true

5. Alignment←NONE

6. for j ← 2 to m

7. do if Cj .IsLeaf = false

8. then XCord←Cj .X

9. Y Cord←Cj .Y

10. if XCord 6= XFirst

11. then XAlignedDescends←false

12. if Y Cord 6= Y First

13. then Y AlignedDescends←false

14. if Cj .Alignment 6= XAlign

15. then XAlignedDescends←false

16. if Cj .Alignment 6= Y Align

17. then Y AlignedDescends←false

18. if XAlignedDescends = true

19. then Alignment←XAlign

20. if Y AlignedDescends = true

21. then Alignment←Y Align

22. return Alignment

4. Segmenting: The Partition Finder

In web page content, geometric alignment is generally a

strong indicator of semantic relatedness. However, content

that is geometrically aligned can frequently be segmented

into smaller content-related groups using presentation style

information. For example, on the NY Times home page

in Figure 2 the headline story items all have the same Y-

alignment, but they form several individual stories, each

composed of: an article title in a large blue font, a byline

in a small grey font, a short abstract in a small black font,

and (optionally) related links in a small blue font. If we

can find these patterns of presentation styles, then we can

segment content into semantically related partitions.

The Partition algorithm finds partitions in a block tree.

It runs bottom-up over the frame subtree formed by each

block. For each node N , it finds the maximal repeating

pattern(s) in presentation style in N ’s children.

Two issues complicate this process. First, the patterns

may not be exact; for example, there may be no list of re-

lated items for a news story. We use separators to determine

how much content a pattern should cover and choose be-

tween multiple possible patterns [2]. We define a separator

as follows: A separator is either one of the HTML tags HR

or P, or is white space (horizontal or vertical) between two

adjacent nodes that is greater than the mean amount of white

space between adjacent nodes in this node list.

Second, the elements of the pattern may not be exact

matches; for example, on the NY Times page the first head-

line has a slightly larger font size than the other headlines

but they all have the same color and font. We use relaxed

matching to deal with slight variations in presentation style.

The presentation style of a node is a tuple formed of the font

type, font size and font style (color, bold face, italics etc.) of

text in the node. Two nodes have similar presentation style

if the font type and font style of the two nodes is identical,

and the font sizes are within two points of each other.

The PartitionList algorithm finds maximal repeating pat-

terns in a list of nodes. The GetF irstSequence and

GetNextSequence methods return a sequence of nodes

bounded by separators. The SimilarSequence method

computes the longest common subsequence of two node se-

quences. If this subsequence covers at least 60% of each of

the node sequences, then they are considered to be similar.

Algorithm PartitionList

Input: L←(C1, C2, . . . , Cm): children of block root N

Output: P : A partitioning of these C1, C2, . . . , Cm

1. for j ←1 to m

2. do Replace(Cj , Partition(Cj), L)
3. Current←GetF irstSequence(L)
4. if Equal(Current, L)
5. then return L

6. Replace(Current, PartitionList(Current), L)
7. while NotEmpty(Current)
8. Next←GetNextSequence(L,Current)
9. Replace(Next, PartitionList(Next), L)
10. if SimilarSequence(Current,Next)
11. then addToGroupNode(Current,Next, L)
12. Current←Next

13. return L



 

Figure 2. Block and partition finding in the NY Times home page

5. Examples

In this section, we show example output from our system

for a range of Web pages. For each example, a part of the

page is shown, along with the block tree (top) and partition

tree (bottom). Nodes marked “Group Node” and “Pattern

Node” are created by the Partition Finder. Nodes marked

with box icons are created by the Block Finder. All other

nodes are from the frame tree. Arrows connect content in

the page to elements in the block and partition trees.

Figure 3 shows part of a Blackboard user page that gives

a list of system functionalities. Clustering groups each sub-

list into a block, including its title and related image. Seg-

menting merely adds a grouping of the elements of the sub-

list. This example shows the power of having exact visual

layout information.

Figure 1 shows part of the Amazon home page. The

structure of this part of this page may seem similar to that

of Blackboard. However, because the menu items are all

vertically aligned links, clustering groups all of them into a

single block. Segmenting gives one partition for each sub-

menu. Partitions are found even though some submenus

have more items than others, because the separators and

presentation style information identify patterns.

Figure 2 shows part of the NY Times home page. Clus-

 

Figure 3. Block and partition finding in the

Blackboard system



 

Figure 4. Block and partition finding in a per-

sonal home page

tering groups all the headline news stories into a single

block. Segmenting gives a partition for each headline news

story. Even though the font size for the first headline is a

little larger than the font size for the others, the first head-

line news story is also a partition because segmenting uses

relaxed matching for presentation style information.

Figure 4 shows part of a personal home page, including

a table. There are two ways for items to be grouped in a

table: as a set of rows (horizontal alignment) and as a set

of columns (vertical alignment). Clustering currently prior-

itizes horizontal alignment, so blocks and partitions for this

table are incorrect. In the future, the Block Finder may also

use separators – because the white space between columns

in this table is greater than that between rows, white space

would help to disambiguate in this case.

6. Conclusions and Future Work

In this paper, we have presented a novel approach to par-

titioning Web page content. This approach uses visual lay-

out and presentation style information in a two-stage pro-

cess that gives good results for a range of Web pages from

different domains. Our system is in use in the HearSay ac-

cessible Web browser [10].

We are conducting an evaluation of our system. We are

also experimenting with parallel/iterative use of the Block-

Finder and the PartitionFinder to improve system perfor-

mance. Finally, we are extending the system to automati-

cally label topics in blocks and partitions.

References

[1] A. Arasu and H. Garcia-Molina. Extracting structured data

from web pages. In Proceedings of SIGMOD 2003, 2003.

[2] D. Cai et al. VIPS: A vision-based page segmentation algo-

rithm. Technical Report MSR-TR-2003-79, Microsoft Re-

search, 2003.

[3] S. Chakrabarti. Integrating the document object model with

hyperlinks for enhanced topic distillation and information

extraction. In Proceedings of WWW 2001, 2001.

[4] N. Chambers et al. Using semantics to identify web objects.

In Proceedings of AAAI 2006, 2006.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: To-

wards automatic data extraction from large web sites. In

Proceedings of VLDB 2001, 2001.

[6] D. Embley and L. Xu. Record location and reconfiguration

in unstructured multiple-record web documents. In Proceed-

ings of WebDB 2000, 2000.

[7] O. Etzioni et al. Web-scale information extraction in Know-

ItAll. In Proceedings of WWW 2004, 2004.

[8] Gecko:key Gecko structures and invariants.

http://wiki.mozilla.org/Gecko. Viewed on June 7,

2007.

[9] H. Guo and A. Stent. Taxonomy based data extraction from

multi-item web pages. In Proceedings of the Workshop on

Web Content Mining with Human Language Technologies at

ISWC 2006, 2006.

[10] J. Mahmud, Y. Borodin, and I. Ramakrishnan. CSurf: A

context-driven non-visual web-browser. In Proceedings of

WWW 2007, 2007.

[11] S. Mukherjee, G. Yang, and I. Ramakrishnan. Automatic an-

notation of content-rich HTML documents: Structural and

semantic analysis. In Proceedings of ISWC 2003, 2003.

[12] I. Muslea, S. Minton, and C. Knoblock. Active learning with

strong and weak views: A case study on wrapper induction.

In Proceedings of ICJAI 2003, 2003.

[13] H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda. Site-wide

annotation: Reconstructing existing pages to be accessible.

In Proceedings of ASSETS 2002, 2002.

[14] Y. Yang and H. Zhang. HTML page analysis based on visual

cues. In Proceedings of ICDAR 2001, 2001.

[15] Y. Zhai and B. Liu. Web data extraction based on partial tree

alignment. In Proceedings of WWW 2005, 2005.


