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Probabilistic Horn abduction and Bayesian networks 21 IntroductionProbabilistic Horn Abduction [48, 47] is a framework for logic-based abduc-tion that incorporates probabilities with assumptions. This is being used asa framework for diagnosis [48] that incorporates both pure Prolog [30] andBayesian Networks [39] as special cases. This paper expands on [48, 47] anddevelops the formal underpinnings of probabilistic Horn abduction, showsthe strong relationships to other formalisms and argues that it is a goodrepresentation language in its own right. It can be motivated in a number ofdi�erent ways:Determining what is in a system from observations (diagnosis and recogni-tion) is an important part of AI. There have been many logic-based proposalsas to what is a diagnosis [17, 57, 13, 45, 12]. One problem with all of theseproposals is that for any diagnostic problem of a reasonable size there arefar too many logical possibilities to handle. For example, when consideringfault models [14, 45], there is almost always an exponential number of logicalpossibilities (e.g., each component could be in one of its normal states or inthe unknown state). For practical problems, many of the logically possiblediagnoses are so unlikely that it is not worth considering them. There is aproblem, however, in removing the unlikely possibilities a priori (those witha low prior probability): it may happen that the unlikely occurrence is theactual truth in the world. Analysis of the combinatorial explosions wouldhowever tend to suggest that we need to take into account probabilities ofthe diagnoses [13, 40, 34], and not even generate the unlikely diagnoses (i.e.,those with a low posterior probability).In a di�erent strand of research, Bayesian networks [39], have proven tobe a good representation for the sort of probabilistic independence foundin many domains. While the independence of Bayesian networks has beenexpressed in logic (e.g., [3]), there has not been a mapping between logicalspeci�cations of knowledge and Bayesian network representations, where thelogic is not at the meta-level to the probabilistic knowledge. This paperdescribes what could be termed as a logic of discrete Bayesian Networks,where the logic expresses the object level knowledge and the independence ofBayesian networks is an emergent property of the representation. In the un-certainty community there has also been a need to extend Bayesian networksto beyond a propositional language [5, 6, 22]. Probabilistic Horn abductionis naturally non-propositional, and provides a natural extension of Bayesian



Probabilistic Horn abduction and Bayesian networks 3networks to a non-propositional language.The work presented in this paper should be contrasted with other at-tempts to combine logic and probability in very powerful languages (e.g.,[3]). We are trying to �nd the simplest language that is useful for our pur-poses, rather than combine many di�erent features onto one framework. Ourgoal in this research is to investigate a simple yet powerful logic.The representation proposed in this paper is interesting in its own rightas a compromise between epistemic and heuristic adequacy [33]. It extendspure Prolog in a simple way to include probabilities. While all of the hy-potheses are independent, by inventing new hypotheses, we can representany probabilistic dependency. This simplicity allows us to experiment witha minimalist representation and only extend it when we need to. It is inter-esting to see how far we can go with a very simple representation language,only adding to it when it fails to do what we it want to do.1.1 A Motivating ExampleBefore we present the language and the assumptions behind the representa-tion, we �rst give an example to show what sorts of things we can represent.The example is based on the three cascaded inverters of [14]. Figure 1shows the connections of the inverters.
i1 i2 i3

out(i3)in(i1)Figure 1: Three cascaded inverters.The language is an extension of pure Prolog. We can write Prolog-likede�nite clauses to represent the general knowledge of the domain, and thespeci�c instances known about the particular con�guration:val(out(G); on; T ) ok(G) ^ val(in(G); o�; T ):



Probabilistic Horn abduction and Bayesian networks 4val(out(G); o�; T ) ok(G) ^ val(in(G); on; T ):val(out(G); V; T ) shorted(G) ^ val(in(G); V; T ):val(out(G); o�; T ) blown(G):val(in(G); V; T ) conn(G1; G) ^ val(out(G1); V; T ):conn(i1; i2):conn(i2; i3):Here val(P; V; T ) means that port P has value V at time T ; in(G) is theinput port of gate G and out(G) is the output port of gate G. ok(G) meansG is working properly; shorted(G) means that G is shorted and acts as awire; and blown(G) means that G always outputs the value o�.The language also has a \disjoint declaration" that de�nes a set of disjointand covering hypotheses that have probabilities associated with them:disjoint([ok(G) : 0:95; shorted(G) : 0:03; blown(G) : 0:02]):disjoint([val(in(i1); on; T ) : 0:5; val(in(i1); o�; T ) : 0:5]):The �rst gives the prior probabilities of the states of gates. The second givesthe prior probabilities of the inputs to the �rst gate. In our language, di�er-ent instances of disjoint declarations are probabilistically (unconditionally)independent, and so we have stated that the gates break independently, andthat the values of the input to gate i1 is independent of the states of thesystem.The sorts of things that we can ask, and for which we have given enoughinformation to compute include:� What is the probability that gate i2 is ok given that the input to i1 iso� and the output of i3 is o� at time t1?P (ok(i2)jval(in(i1); o�; t1) ^ val(out(i3); o�; t1))(The answer is 0.76).� If the input of i1 were on what is the probability that the output of i3will be o� ? P (val(out(i3); o�; t1)jval(in(i1); on; t1))(The answer is 0.899).



Probabilistic Horn abduction and Bayesian networks 5� What was the probability that the input to i1 was on at time t2 giventhat the output to i2 was o� at time t2 and given that the output of i3was o� and the input of i1 was o� at time t1?P (val(in(i1); on; t2)jval(out(i2); o�; t2)^val(out(i3); o�; t1)^val(in(i1); o�; t1))(the answer is 0.55).Each of these answers is computed in terms of explanations, namely argu-ments with premises from the possible hypotheses. We assume independenceamongst the hypotheses so that the prior probability of an explanation is ob-tained by multiplying the probabilities of the hypotheses in the explanation.For example, the explanations of the observation val(in(i1); o�; t1) ^val(out(i3); o�; t1), together with their prior probability are:Explanation: [val(in(i1); o�; t1); ok(i3); ok(i2); shorted(i1)]Prior = 0.01354Explanation: [val(in(i1); o�; t1); ok(i3); shorted(i2); ok(i1)]Prior = 0.01354Explanation: [val(in(i1); o�; t1); shorted(i3); ok(i2); ok(i1)]Prior = 0.01354Explanation: [val(in(i1); o�; t1); blown(i3)]Prior = 0.01000Explanation: [val(in(i1); o�; t1); ok(i3); ok(i2); blown(i1)]Prior = 0.009025Explanation: [val(in(i1); o�; t1); shorted(i3); blown(i2)]Prior = 0.0003000Explanation: [val(in(i1); o�; t1); shorted(i3); shorted(i2); shorted(i1)]Prior = 0.00001350Explanation: [val(in(i1); o�; t1); shorted(i3); shorted(i2); blown(i1)]Prior = 0.000009000



Probabilistic Horn abduction and Bayesian networks 6By the way the knowledge base was constructed, these explanations aredisjoint and covering, and so we can compute the prior probability ofval(in(i1); o�; t1) ^ val(out(i3); o�; t1))by summing the probabilities of these explanations, which here is 0.05996.2 Probabilistic Horn AbductionIn this section we develop the language, the assumptions behind it and a\semantics" of the language in terms of abduction. A more formal semanticsis provided in Appendix A. The language is designed to be usable and doesnot allow us to state what cannot be computed in a straight forward manner.The initial language is translated into an abductive framework with anumber of assumptions about the knowledge base. The appendix gives amore formal model-theoretic semantics and demonstrates the equivalencebetween the two.2.1 The Probabilistic Horn abduction languageOur language uses the Prolog conventions [64]:De�nition 2.1 A term is either a variable (starting with an upper case let-ter), a constant (starting with a lower case letter) or is of the form f(t1; � � � ; tn)where f is a function symbol (starting with a lower case letter) and each tiis a term. An atomic symbol (atom) is of the form p or p(t1; � � � ; tn) wherep is a predicate symbol (starting with a lower case letter) and each ti is aterm.De�nition 2.2 A de�nite clause is of the form: a: or a  a1 ^ ::: ^ an:where a and each ai are atomic symbols.De�nition 2.3 A disjoint declaration is of the formdisjoint([h1 : p1; � � � ; hn : pn]):where the hi are atoms, and the pi are real numbers 0 � pi � 1 such thatp1 + � � � + pn = 1. Any variable appearing in one hi must appear in all ofthe hj (i.e., the hi share the same variables). The hi will be referred to ashypotheses or assumables.



Probabilistic Horn abduction and Bayesian networks 7De�nition 2.4 A probabilistic Horn abduction theory (which will bereferred to as a \theory") is a collection of de�nite clauses and disjoint dec-larations such that if a ground atom h is an instance of a hypothesis in onedisjoint declaration, then it is not an instance of another hypothesis in anyof the disjoint declarations.Given theory T , we de�neFT the facts, is the set of de�nite clauses in T together with the clauses ofthe form false hi ^ hjwhere hi and hj both appear in the same disjoint declaration in T , andi 6= j. Let F 0T be the set of ground instances of elements of FT .HT the hypotheses, the set of hi that appears in some disjoint declarationin T . Let H 0T be the set of ground instances of elements of HT .PT is a function H 0T 7! [0; 1]. P (h0i) = pi where h0i is a ground instance ofhypothesis hi, and hi : pi is in a disjoint declaration in T . P (h0i) willbe the prior probability of h0i.Where T is understood from context, we omit the subscript.The disjoint declarations allow a very restricted form of integrity con-straints [25]. It allow binary integrity constraints (the conjunction of twohypotheses is false) such that the ground instances of hypotheses form mutu-ally exclusive and covering groupings that correspond to random variables.A theory will de�ne a set of represented atoms that are a subset of theatoms of T . The represented atoms will often be not listed explicitly, butwill be left implicit (they will typically be instances of hypotheses and headsof clauses). The represented atoms are those about which the theory cananswer questions. Questions about atoms not in the represented atoms willbe beyond the scope of the theory. The theory is not expected to be able toanswer queries outside of its scope.2.2 AbductionWe �rst give the language an abductive characterisation, using the normalde�nition of the de�nite clauses. This is used to make explicit our assump-tions and to build the theory in a natural manner. In Appendix A, we give



Probabilistic Horn abduction and Bayesian networks 8a model theoretic characterisation that incorporates our assumptions, andshow the equivalence of the formulations.The formulation of abduction used is a simpli�ed form [18] of Theorist[51, 43]. It is simpli�ed in being restricted to Horn clauses. This can alsobe seen as a generalisation of an ATMS (with prede�ned nogoods) [59] to benon-propositional1.An abductive scheme is a pair hF;Hi whereF is a set of Horn clauses. Variables in F are implicitly universally quanti-�ed. Let F 0 be the set of ground instances of elements of F .H is a set of (possibly open) atoms, called the \assumables" or the \possiblehypotheses". Let H 0 be the set of ground instances of elements of H.De�nition 2.5 [51, 42] If g is a closed formula, an explanation of g fromhF;Hi is a set D of elements of H 0 such that� F [D j= g and� F [D 6j= false.The �rst condition says that D is su�cient to imply g, and the second saysthat D is possible.De�nition 2.6 A minimal explanation of g is an explanation of g suchthat no strict subset is an explanation of g.2.3 Assumptions about the rule baseIn order to be able to simply interpret our rules probabilistically we makesome assumptions about the rules and some probabilistic independence as-sumptions about the hypotheses.The �rst assumption is syntactic, about the relationship between hy-potheses and rules:Assumption 2.7 There are no rules in F whose head uni�es with a memberof H.1A main di�erence is in the philosophy of use. We assume that the Horn clauses arerepresenting the object level knowledge, rather than, as in an ATMS, acting as a back endof a problem solver [11].



Probabilistic Horn abduction and Bayesian networks 9This does not seem to be a very severe restriction, in practice. It saysthat we do not want rules to imply a hypothesis. Presumably, if we had rulesfor h, the only reason that we would want to make h a hypothesis is if it waspossible that h just happens to be true (without any other \cause"). In thiscase we can replace h in H by the hypothesis h happens to be true and addthe rule h h happens to be trueAssumption 2.8 (acyclicity [1]) If F 0 is the set of ground instances of ele-ments of F , it is possible to assign a natural number to every ground atomsuch that for every rule in F 0 the atoms in the body of the rule are strictlyless than the atom in the head.This assumption is described as natural by Apt and Bezem [1]. It is ageneralisation of the hierarchical constraint of Clark [8]. It implies that thereare no in�nite chains when backchaining from any ground goal. This doesnot restrict recursion, but does mean that all recursion must be well founded.These assumptions are made implicitly in [43], are explicit in [9] (whomake the hierarchical constraint rather than the acyclic constraint), but arerelaxed in [24].When using abduction we often assume that the explanations are cover-ing. This can be a valid assumption if we have anticipated all eventualities,and the observations are within the domain of the expected observations(usually if this assumption is violated there are no explanations). This isalso supported by recent attempts at a completion semantics for abduction[43, 9, 24]. The results show how abduction can be considered as deductionon the \closure" of the knowledge base that includes statements that thegiven causes are the only causes. We make this assumption explicit here:Assumption 2.9 The rules in F 0 for every ground non-hypothesis repre-sented atom are covering.That is, if the rules for a in F 0 area B1a B2...a Bm



Probabilistic Horn abduction and Bayesian networks 10if a is true, one of the Bi is true. The completion of a isa � B1 _ � � � _BnThus the covering assumption 2.9 says that Clark's completion [8] is validfor every non-assumable.If the rules for a are not covering, we create a new hypothesisa is true for some other reason and add the rulea a is true for some other reason:Lemma 2.10 [9] Under assumptions 2.7, 2.8 and 2.9, if expl(g; T ) is theset of all minimal explanations of g from hFT ;HT i, and comp(T ) is F 0T aug-mented with the completion of every ground instance of every non-assumable(including Clark's equational theory [8]), thencomp(T ) j= 0@g � _ei2expl(g;T )ei1AThe next assumption has to do with the status of explanationsAssumption 2.11 The bodies of the rules in F 0 for an atom are mutuallyexclusive.Given the above rules for a this means that Bi^Bj is always false for eachi 6= j. To ensure that this assumption holds we can add extra conditions tothe rules. See section 5.Note that, whereas assumptions 2.7 and 2.8 are syntactic assumptionsabout the theory that can be automatically checked, assumptions 2.9 and2.11 are statements about the world, and not about the knowledge base2.We do not require FT j= :(Bi ^ Bj). The language is not powerful enoughto state such constraints. For example, it may be the case that the value2There is, however, a syntactic condition that can be used to check whether assumption2.11 has been violated. This is when we can derive the bodies of two rules for an atomfrom a set of assumptions that are not inconsistent. For example, if fa; nag and fb; nbg aredisjoint and covering sets of assumptions (and so a and b are independent by assumption2.14), and we have rules fc a; c bg, then we know the disjoint bodies assumption 2.11has been violated, as a and b cannot be both exclusive and independent.



Probabilistic Horn abduction and Bayesian networks 11on some wire is functional (the value cannot be both on and o� at the sametime). We cannot state this in our language. This is a deliberate designdecision to make the language as simple as possible. See section 2.5 for therationale behind the design decisions.N.B. The assumptions here are not intended to be enforced by the system.It is up to the user (or some other system) to enforce these constraints. Thestatus of these assumptions is that if you follow the constraints, then wemake claims about the interpretability of the system. If these assumptionsare violated then we make no guarantees.Lemma 2.12 Under assumptions 2.7 and 2.11, minimal explanations ofatoms or of conjunctions of atoms are mutually exclusive (no two expla-nations can both be true).Lemma 2.12 does not hold for arbitrary formulae. In particular, the minimalexplanations of a disjunction are not necessarily disjoint.2.4 ProbabilitiesAssociated with each possible hypothesis is a prior probability. We use thisprior probability to compute arbitrary probabilities.The following is a corollary of lemmata 2.10 and 2.12Lemma 2.13 Under assumptions 2.7, 2.8, 2.9 and 2.11, if expl(g; T ) is theset of minimal explanations of conjunction of atoms g from probabilistic Hornabduction theory T : P (g) = P ( _ei2expl(g;T ) ei)= Xei2expl(g;T )P (ei)Thus to compute the prior probability of any g we sum the probabilitiesof the explanations of g.To compute arbitrary conditional probabilities, we use the de�nition ofconditional probability: P (�j�) = P (� ^ �)P (�)



Probabilistic Horn abduction and Bayesian networks 12To �nd arbitrary conditional probabilities P (�j�), we �nd P (�), which isthe sum of the explanations of �. To compute the probability P (� ^ �), wesum over the explanations of � ^ �. Note that the explanations of � ^ � arealso explanations of �. We can �nd the explanations of � ^ � by explaining� from the explanations of �. Thus arbitrary conditional probabilities canbe computed from summing the prior probabilities of explanations.It remains only to compute the prior probability of an explanation D of g.We assume that logical dependencies impose the only statistical dependencieson the hypotheses. In particular we assume:Assumption 2.14 Ground instances of hypotheses that are consistent (withFT ) are probabilistically independent.N.B. We mean that the hypotheses are unconditionally independent.They may become dependent given observations (i.e., when conditioning onobservations).Example 2.15 If we have the disjoint declarationsdisjoint([p(X) : 0:4; q(X) : 0:6]):disjoint([r(Y ) : 0:01; s(Y ) : 0:99]):then p(t) is independent of r(u) for all ground terms t and u. p(t) is inde-pendent of q(u) for all di�erent ground terms u and t. p(t) is independent ofp(u) for all di�erent ground terms u and t.Thus p(a) is dependent on q(a) (they are exclusive), but p(a) is indepen-dent of q(b). p(a) is also independent of p(b).Under assumption 2.14, if D = fh1; :::; hng is a minimal explanation, thenP (h1 ^ ::: ^ hn) = nY1=1P (hi)To compute the prior of the minimal explanation we multiply the priors ofthe hypotheses.Assumption 2.14 implies the unique names assumption if there are parametrizedhypotheses. If h(X) is a parametrized hypothesis with each instance hav-ing probability p, and t1 and t2 are di�erent ground terms, assumption 2.14



Probabilistic Horn abduction and Bayesian networks 13implies P (h(t1) ^ h(t2)) = p2. If t1 = t2, then h(t1) ^ h(t2) � h(t1), butP (h(t1)) = p, a contradiction to the fact that probabilities are a measureover propositions, and that logically equivalent terms should have the sameprobability [39]. Thus, we are assuming that t1 6= t2 for di�erent terms t1and t2. This assumption is the unique names assumption [56]. Note thatit is for the probabilistic calculation that we are making the unique namesassumption.Appendix A gives the formal semantics for probabilistic Horn abduction,and justi�es, in another way, the results of this section.2.5 Rationale for the design choicesThe language presented so far is quite weak in some respects. In this sectionwe discuss why the language is as it is. The general theme is that the languageis a simple extension to pure Prolog that lets us consistently interpret thenumbers on hypotheses as probabilities. We have disallowed anything thatwill make this interpretation di�cult. For example, we have not allowed thelogic to be expressive enough to be able to prove that there is a dependencyamongst the hypotheses beyond the disjointness of our random variables.This simplicity makes the language semantically transparent, and allowsfor simple implementations. It is still powerful enough to express many ofthe causal and probabilistic interactions that we want to express. This workshould be seen as an exercise in minimalist representations | we try tounderstand the limitations of very restricted languages and only add extrapower if we can show we cannot do what we want with the tools available tous.2.5.1 Language for specifying random variablesThe �rst thing to notice is that we allow a very restricted and stylised formof integrity constraints to be speci�ed by the use of the disjoint declaration.This is in contrast to earlier versions [48, 47] where we allowed arbitraryintegrity constraints. The more expressive language in [48, 47] allows us torepresent what the current version allows, however it lets us represent whatwe cannot interpret probabilistically, and makes the proof procedures morecomplicated without providing visible advantage.



Probabilistic Horn abduction and Bayesian networks 14For example, if fa0; a1; a2g and fb; nbg each form a disjoint and coveringsets of propositions (random variables), then we cannot treat these as inde-pendent if we can state false a0^b. All we know here is that the variablesare not independent | there are only ad hoc methods to allow us to providethe joint distribution. The current formulation does not give the power tostate such constraints. The logical formulae provide no constraints on thehypotheses beyond the disjointedness of the values in the disjoint declaration.A second, but related, problem with general integrity constraints3 has todo with making implicit assumptions by the use of integrity constraints. Forexample, if we have false  a ^ b, when we are using a, we are implicitlyassuming the negation of b and should pay the cost (in terms of making anyexplanation containing a less likely). This occurs at an extreme level whenwe have fb; nbg disjoint hypotheses whose probability sums to 1, and havefalse  a ^ b and false  a ^ nb. Here it should follow that a cannotoccur (or at least with probability zero) and should be pruned from otherexplanations.We also made sure that all atoms in disjoint declarations share the samevariables. To see the problem with not requiring this, consider the (illegal)declaration disjoint([p : 0:7; q(X) : 0:3]):Given this declaration, p would be disjoint and covering with q(a) and pdisjoint and covering with q(b). This would then place a dependence betweenq(a) and q(b). Given that the hypotheses are disjoint and covering, if q(a) istrue, then p is false, and so q(b) is true. Similarly if q(a) is false, p is trueand q(b) is false. Thus all instances of q(X) would always have the sametruth value. Then we may as well remove the variable (as the truth doesnot depend on the value of the variable). We have restricted the variablesin disjoint assertions in order to avoid such tricky interactions that the userof the system may not be aware of, and so that an implementation does notneed to look for them.The language is also not powerful enough to state the constraints on thelegal input. When we wanted the bodies of the rules to be disjoint, we didnot require that we could prove the disjointedness of the bodies. We requiredthat they be disjoint in the domain under consideration. Similarly, we requirethe rules to be covering, but cannot check this. This should not be seen as a3This was pointed out to me by Mark Wallace of ECRC.



Probabilistic Horn abduction and Bayesian networks 15defect in this language | there will always be true things that the languageis too weak to state (e.g., the �niteness of integers cannot be stated in the�rst order predicate calculus). This restriction was a conscious decision toallow us to build e�cient implementations, and to avoid di�cult to interpretstatements as described above.2.5.2 Assumptions concerning the knowledge baseAssumption 2.7 that says that hypotheses cannot form the head of rules isimportant to ensure that we can treat the hypotheses as independent. Ifwe could prove some hypothesis (based on other assumptions) it would notbe consistent that the hypotheses are independent. It is also important toensure minimal explanations are disjoint. If we have a and b as hypotheses,and have b a as well as c b. There are two minimal explanations of c,namely fag and fbg. These cannot be disjoint as one implies the other (andare equivalent under the Covering Assumption 2.9).To see the importance of the acyclicity assumption 2.8 consider the factsF = fa  d ^ b; a  c; d  ag, and possible hypotheses H = fb; cg.Assumption 2.8 is violated in this example. Here there is one explanationfor a, namely c, but under assumption 2.9, we can prove a) b _ c, and nota) c. This violates the conclusion of Lemma 2.10.Assumptions 2.9 and 2.11 are needed so that we can have disjoint andcovering hypotheses. This means that we just sum the probabilities of thehypotheses.2.5.3 NegationThe language provided does not have explicit negation. It does, however,give us an implicit negation.For example, suppose we have the theorya h1:b h2:disjoint([h1 : p1; h2 : 1� p1]):Under the covering assumption 2.9, we have a � h1 and b � h2. The disjointdeclaration essentially tells us that h1 � :h2. Thus we have a � :b.



Probabilistic Horn abduction and Bayesian networks 16Thus, although we cannot state negation, we can interpret one atom asbeing the negation of another. The reason that we don't want to have explicitnegation is that this would allow the logic to imply a dependence amongstvariables that violates the independence assumption 2.14. Once this occurs,it is more di�cult to interpret the probabilities. For example, a  h1 and:a h3 places a dependence on h1 and h3.For each atom we can create its negation. For each atom a, a is anotheratom which we interpret as the negation of a. Syntactically, a is just anotheratom.If we have a disjoint declarationdisjoint([h1 : p1; h2 : p2; � � � ; hn : pn]):we can create the negation of any hypothesis, say h1, by usingh1  h2...h1  hnThe other hypotheses can be negated analogously.If we have rules for a a  b11 ^ � � � ^ b1n1:...a  bk1 ^ � � � ^ bknk :we can de�ne atom ri to correspond to the i-th body, and have rules a r1through a rk. There are also k rules of the form ri  bi1 ^ � � � ^ bini.We can de�ne the atom a that is the negative of a asa r1 ^ � � � ^ rkri is de�ned as ri  bi1:ri  bi1 ^ bi2:...ri  bi1 ^ � � � ^ bi(ni�1) ^ bini:



Probabilistic Horn abduction and Bayesian networks 17These de�nitions will be well grounded by the acyclicity of the rule base.We have added bij to all of the rules after the j-th to ensure the rules aredisjoint (see Section 5.1).Note that just because some atom a is represented, it does not mean thatthe negation of a need be represented. There are however, some cases forwhich it is useful to create the negation of atoms (see Section 5.1).This negation is an extension to a simple form of the negation of Barbutiet. al. [4], which is used for negation as failure.3 Representing Bayesian networksIn this section we give the relationship between Bayesian networks and ourprobabilistic Horn abduction. We show how any probabilistic knowledgethat can be represented in a discrete (and �nite) Bayesian network, can berepresented in our formalism. We also demonstrate the alternate, namelythat any propositional probabilistic Horn abduction theory is equivalent toa Bayesian network.A Bayesian network [39] is a directed acyclic network where the nodesrepresent random variables, and the arcs represent a directly inuencing re-lation. We will use the term \RV" to mean random variable so as to avoidconfusion with the Prolog-style variable. If there is arc from RV b to RV athen b is said to be a parent of a.Suppose we have a discrete4 Bayesian network with random variablesa1; :::; an, such that random variable ai can have values vi;1; :::; vi;ri. We rep-resent random variable ai having value vi;j as the proposition ai(vi;j).Suppose RV ai has parents �ai = fai1; � � � ; ainig in a Bayesian network.The independence assumption embedded in a Bayesian Network [39] is thata RV is independent of its non-descendents given its parents. That is,P (aij�ai ^ v) = P (aij�ai)where v is a RV (or conjunction of RVs) such that ai is not an ancestor of v(or any conjunct in v).4I.e., all the random variables have a discrete and �nite set of values. ProbabilisticHorn abduction cannot handle random variables with in�nite domains. General Bayesiannetworks have no such restriction.



Probabilistic Horn abduction and Bayesian networks 18The formal de�nition of a Bayesian network is often given in terms of thejoint distribution of all of the RVs:P (a1; � � � ; an) = nYi=1P (aij�ai)A discrete Bayesian network is represented by Probabilistic Horn abduc-tion rules that relates a RV with its parents:ai(V ) ai1(V1) ^ ::: ^ aini (Vni) ^ c ai(V; V1; :::; Vni)The intended interpretation of c ai(V; V1; :::; Vni) is that ai has value V be-cause ai1 has value V1,..., and aini has value Vni .Associated with the Bayesian network is a conditional probability tablewhich gives the conditional probabilities of the values of a depending on thevalues of �ai = fai1; � � � ; ainig. This will consist of probabilities of the formP (ai = vi;jjai1 = v1; � � � ; aini = vni) = pjsuch that8v1; � � � ; vni 0@ riXj=1P (ai = vi;jjai1 = v1; � � � ; aini = vni)1A = 1where vi;1; :::; vi;ri are the possible values for RV ai This is translated intoassertionsdisjoint([c a(vi;1; v1; v2; :::; vni) : p1; � � � ; c a(vi;ri; v1; v2; :::; vni) : pri ])Example 3.1 Consider a representation of the Bayesian network of Figure3.1, with the following conditional probability distributions:P (fire) = 0:01P (smokejfire) = 0:9P (smokej:fire) = 0:01P (tampering) = 0:02P (alarmjfire ^ tampering) = 0:5



Probabilistic Horn abduction and Bayesian networks 19P (alarmjfire^ :tampering) = 0:99P (alarmj:fire ^ tampering) = 0:85P (alarmj:fire ^ :tampering) = 0:0001P (leavingjalarm) = 0:88P (leavingj:alarm) = 0:001P (reportjleaving) = 0:75P (reportj:leaving) = 0:01
?�� ��? QQQQQQQs�������+QQQQQQQstampering�� ���� �� �� ���� ��fire

leaving smokealarm �� ��
reportFigure 2: A Bayesian network for a smoking alarm.The following is a probabilistic Horn abduction representation of thisBayesian network:disjoint([fire(yes) : 0:01; fire(no) : 0:99]):smoke(Sm) fire(Fi) ^ c smoke(Sm;F i):disjoint([c smoke(yes; yes) : 0:9; c smoke(no; yes) : 0:1]):disjoint([c smoke(yes; no) : 0:01; c smoke(no; no) : 0:99]):



Probabilistic Horn abduction and Bayesian networks 20disjoint([tampering(yes) : 0:02; tampering(no) : 0:98]):alarm(Al) fire(Fi) ^ tampering(Ta)^ c alarm(Al; F i; Ta):disjoint([c alarm(yes; yes; yes) : 0:50; c alarm(no; yes; yes) : 0:50]):disjoint([c alarm(yes; yes; no) : 0:99; c alarm(no; yes; no) : 0:01]):disjoint([c alarm(yes; no; yes) : 0:85; c alarm(no; no; yes) : 0:15]):disjoint([c alarm(yes; no; no) : 0:0001; c alarm(no; no; no) : 0:9999]):leaving(Le) alarm(Al)^ c leaving(Le;Al):disjoint([c leaving(yes; yes) : 0:88; c leaving(no; yes) : 0:12]):disjoint([c leaving(yes; no) : 0:001; c leaving(no; no) : 0:999]):report(Le) leaving(Al)^ c report(Le;Al):disjoint([c report(yes; yes) : 0:75; c report(no; yes) : 0:25]):disjoint([c report(yes; no) : 0:01; c report(no; no) : 0:99]):Note that here instead of creating c fire and making it equivalent tofire, we just made fire a hypothesis.3.1 Equivalence ResultsThe basic equivalence result is the equivalence between joint distributionsand explanations of the RVs having particular values:Let P be the probability function sanctioned by a Bayesian network. LetT be the corresponding probabilistic Horn abduction theory. Let PT be theprobability function de�ned by the translation of a Bayesian network intothe probabilistic Horn abduction framework. The aim is to show that P andPT are the same.The de�nition of the Bayesian network distribution is using the jointprobability for all values in the network. This corresponds to a conjunctionof values for all RVs.Lemma 3.2 Suppose a1; � � � ; an are all of the RVs in a Bayesian network,with T as the corresponding probabilistic Horn abduction theory, thenP (a1 = v1 ^ � � � ^ an = vn) = PT (a1(v1) ^ � � � ^ an(vn))



Probabilistic Horn abduction and Bayesian networks 21Proof: By de�nition of a Bayesian network:P (a1 = v1 ^ � � � ^ an = vn) = nYi=1P (ai = vijai1 = vi1; � � � ; aini = vini )By de�nition of c ai in the translationP (ai = vijai1 = vi1; � � � ; aini = vini ) = PT (c ai(vi; vi1; � � � ; vini ))There is only one explanation of a1(v1) ^ � � � ^ an(vn), namelyfc ai(vi; vi1; � � � ; vini )) : i = 1::ng. Thus we haveP (a1 = v1 ^ � � � ^ an = vn) = YP (ai = vijai1 = vi1; � � � ; aini = vini )= YPT (c ai(vi; vi1; � � � ; vini ))= PT (a1(v1) ^ � � � ^ an(vn))2The equivalence between P and PT now follows directly. These two mea-sures agree on all of the combinations of values for all of the RVs, they bothobey the probability axioms (Theorem A.13 shows PT obeys the probabil-ity axioms), and so they agree on all formulae. Thus we have the followingtheorem:Theorem 3.3 If H is a set of assignments to random variables in a BayesianNetwork, and H� is the analogous propositions to H in the correspondingprobabilistic Horn abduction theory T , thenP (H) = PT (H�):This should not be too surprising as the set of explanations of any for-mula correspond to an assignment of values for the ancestors in the Bayesiannetwork. We can compute the values of any hypothesis by summing over thevalues of the ancestors of the hypothesis.



Probabilistic Horn abduction and Bayesian networks 223.2 Propositional Abduction in Bayesian NetworksThe preceding section showed how any Bayesian network can be representeddirectly in terms of (propositional) probabilistic Horn abduction.The opposite is also true. Every propositional probabilistic Horn abduc-tion theory corresponds directly to a Bayesian network. Here we give themapping.Each disjoint declaration maps to a random variable. These form roots(they have no ancestors) of the Bayesian network.Every atom de�ned by rules also corresponds to a random variable.If we have rules for a a  b11 ^ � � � b1n1:...a  bk1 ^ � � � bknk :we can de�ne atom ri to correspond to the i-th body, and have rules a r1:through a rk as well as k rules of the form ri  bi1 ^ � � � bini .We also create nodes for the ri (we don't have to but it makes the condi-tional probability tables simpler).We make arcs between going from the bij to ri, and give the conditionalprobability table for a conjunction. We make arcs going from the ri to a,giving the conditional probability table for a disjunction.When we do this mapping and then use the translation of the previoussection to get back from the Bayesian network to a probabilistic Horn abduc-tion theory, we get essentially the same probabilistic Horn abduction theory.This new theory has many new atoms (corresponding to negations, whichmay not have existed in the original theory, but must exist in the Bayesiannetwork) which can be ignored. There also will be many more disjoint dec-larations, but these will correspond to extreme distributions (one value hasprobability 1), and can also be ignored (or partially evaluated away).



Probabilistic Horn abduction and Bayesian networks 234 Discussion4.1 Independence and dependenceIt may seem at �rst that only allowing independent hypotheses places a re-striction on what we can represent. People claim that there are dependenciesamongst hypotheses in the world. The claim in this paper is that the worldcan be represented so that all of the hypotheses are independent. This appar-ent conict can be resolved by noticing that the world does not determinewhat the hypotheses are. Just as, when de�ning n-dimensional Euclideanspaces, we can de�ne the space with non-orthogonal axes, we can also de�nethe space with orthogonal axes. When we do so everything becomes simpler.Just because we can axiomatise a world using dependent hypotheses doesnot mean that we cannot de�ne the world using independent hypotheses.The justi�cation for this claim is based on noticing that Bayesian networks(that can represent arbitrary probabilistic interaction) can be representedin our framework that uses only independent hypotheses. Note howeverthat, as there can be an exponential number of independent values given nprobabilistic hypotheses, we may have to create an exponential number ofindependent hypotheses in the probabilistic Horn abduction framework. Weare not claiming that we are getting something for nothing.Note that others have also noticed the universality of just having inde-pendent hypotheses. For example, consider Reichenbach's principle of thecommon cause:\If coincidences of two events A and B occur more frequentlythan their independent occurrence, ... then there exists a commoncause for these events ..." [55, p. 163].When there is a dependency amongst random variables, we invent a hy-pothesis to explain that dependence. Thus the assumption of independence,while it gives a restriction on the knowledge bases that are legal, really givesno restriction on the domains that can be represented.While we have the ability invent hypotheses, we don't need to considernon-independent hypotheses. I would argue that it is much simpler and morenatural to invent new hypotheses to explain dependence rather than havingto worry about dependence in the language.



Probabilistic Horn abduction and Bayesian networks 244.2 Abduction and PredictionWhen computing the prior probability of a hypothesis, we �nd the explana-tions for that hypothesis. This corresponds to the use of \abduction" [44].If we consider conditional probability, as we normally do, we haveP (�j�) = P (� ^ �)P (�)= Pei2expl(�^�;T )P (ei)Pei2expl(�;T )P (ei)We can generate expl(� ^ �; T ) by explaining � from the elements ofexpl(�; T ). This corresponds to the combination of abducing to causes anddefault reasoning to predictions from these causes [44, 46, 62]. The results ofthis paper, give extra evidence that this forms the \right" characterisation ofcausal reasoning. Abducing the causes and then assumption-based reasoningfrom causes to predicting what should follow, is the common feature of bothBayesian networks (see also, for example, Shachter and Heckerman [61]) andrecent assumption-based logical schemes [44, 46, 62].There is another close similarity between the abductive approaches andthe network propagation scheme of Pearl [39]. Finding the explanations ofsome g conceptually corresponds to working \up" the Bayesian network fromg. Given evidence �, we �rst �nd expl(�; T ). This conceptually involvessearching up (�nding ancestors) the tree from �. The next step involves�nding expl(� ^ �; T ). This can be obtained from explaining � from theexplanations of �. If we want to compute this for all �, we can do thisby working down (�nding descendents) the tree from the explanations of �.This 2-phase approach is analogous to Pearl's network propagation scheme,with the initial moving up the tree corresponding to � messages, and thesecond phase of moving down the tree from the explanations corresponds tothe � messages of Pearl [39]. Given this analogy, it is also easy to see whythe upward � messages result in both � and � messages (as we need to carryout both phases of the computation of the conditional probability), while the� messages only result in other � messages (we are in the second phase ofcomputing the conditional probability, namely �nding the explanations fromthose explanations of the observations). It is not clear, however, how far thisanalogy can be pushed.



Probabilistic Horn abduction and Bayesian networks 254.3 CausationThere have been problems associated with logical formulations of causation[38]. There have been claims that Bayesian networks provide the right inde-pendencies for causation [39]. This paper provides evidence that abducingto causes and making assumptions as to what to predict from those assump-tions [44, 46] is the right logical analogue of the independence in Bayesiannetworks (as described in section 4.2).One of the problems in causal reasoning that Bayesian networks overcome[39] is in preventing reasoning such as \if c1 is a cause for a and c2 is a causefor :a, then from c1 we can infer :c2". This is the problem that occurs, forexample, in the Yale shooting problem [19]. Our embedding says that thisdoes not occur in Bayesian networks as c1 and c2 must already be known tobe disjoint.Figure 3 gives a Bayesian network for the Yale shooting problem5
holds(alive,do(shoot,do(wait,do(load,0))))

holds(alive,do(wait,do(load,0)))holds(loaded,do(wait,do(load,0)))

holds(alive,do(load,0))holds(loaded,do(load,0))

holds(alive,0)

Figure 3: Bayesian network for the Yale shooting problem.The following is translation of the above diagram into a probabilistic Horn5Pearl [39] has a similar graphical representation, although it was not explicitly aBayesian network. Here we have used a situation calculus type representation.



Probabilistic Horn abduction and Bayesian networks 26abduction theory6:holds(alive; do(shoot; S)) holds(alive; S)^ holds(loaded; S):holds(alive; do(shoot; S)) holds(alive; S):holds(alive; do(shoot; S)) holds(alive; S); holds(loaded; S):holds(X; do(wait; S)) holds(X;S):holds(loaded; do(load; S)):holds(alive; do(load; S)) holds(alive; S):holds(alive; do(load; S)) holds(alive; S):holds(alive; 0):holds(loaded; 0):The following formula can be proved:holds(alive; do(shoot; do(wait; do(load; 0)))):The solution that is derived from the Bayesian network representationis very similar to logic programming solutions to the frame problem (seee.g., [62, 1]) using the equivalence of our negation to negation as failure foracyclic theories [4] and, considering the completion of the program, to therecent deductive solutions to the frame problem proposed by Reiter [58] andElkan [16].The probabilistic Horn abduction representation allows us to consistentlyadd probability to the temporal representations. For example, we could addthat there is a 0:01 probability of the person dying, and a 0:03 probability ofthe gun becoming unloaded during a wait operation, and a 0:002 probabilityof the gun becoming spontaneously loaded while waiting (this is why it isdangerous to play with guns):holds(alive; do(wait; S)) holds(alive; S)^ alive persists(S):holds(alive; do(wait; S)) holds(alive; S):holds(alive; 0):holds(alive; do(wait; S)) holds(alive; S)^ dies(S):6The atom holds(�; �) represents the negation of holds(�; �). Here we have explicitlyadded the rules for the negations of the atoms (see Section 2.5.3). The rules have beengeneralised where appropriate.



Probabilistic Horn abduction and Bayesian networks 27disjoint([alive persists(S) : 0:99; dies(S) : 0:01])holds(loaded; do(wait; S)) holds(loaded; S) ^ loaded persists(S):holds(loaded; do(wait; S)) holds(loaded; S) ^ spontaneously loads(S):holds(loaded; do(wait; S)) holds(loaded; S) ^ becomes unloaded(S):holds(loaded; do(wait; S)) holds(loaded; S) ^ unloaded persists(S):disjoint([loaded persists(S) : 0:97; becomes unloaded(S) : 0:03]):disjoint([unloaded persists(S) : 0:998; spontaneously loads(S) : 0:002]):This formulation gets other persistence problems right. For example, ifwe happened to observe that the person is alive after the shooting, then thegun must have become unloaded. If there were a number of wait operations,the unloading could have occurred at any of them.5 Representational MethodologyOnce we have a tool, it is important to know how to use it. The problemof a representational methodology [46] is an important and much overlookedpart of automated reasoning research.It may seem that the assumptions used in designing probabilistic Hornabduction were so restrictive that the system would be useless for real prob-lems. In this section, I argue that this is not the case.The general idea is to use de�nite clauses to write a simulation (in the\causal" direction [61]) based on di�erent possible hypotheses. This ax-iomatisation must follow the assumptions about the rule base and about theindependence of hypotheses, but we argue in this section that this is not toodi�cult.Indeed it is arguable, that rather than stiing the imagination of theaxiomatiser to write \what is true" in their domain, placing restrictions onthe representation language provides guidance to how to go about thinkingabout the domain. One of the aims of restricting the language is to make iteasier to write and understand an axiomatisation of the world. Whether thisis true in practice, however, remains to be seen.



Probabilistic Horn abduction and Bayesian networks 285.1 Disjoint and Covering ExplanationsFor our probabilistic analysis (section 2.4), we assumed that the explanationswere disjoint and covering. If we want our probabilities to be correct, we mustensure that the rules for an atom are disjoint and covering.If the rules for an atom a are not covering, we can invent another causefor the goal representing \all the other possible causes" of the atom [14, 45],and add a a true for some other reason.and make a true for some other reason into a hypothesis.Although disjointedness of rules places a restriction on the knowledgebase, it does not place a restriction on the sorts of knowledge that we canrepresent. In general, suppose we have rules:a  b1:...a  bn:Create bi as the proposition that is the negation of bi (see Section 2.5.3), wecan make sure the rules are disjoint by transforming them intoa  b1:a  b1 ^ b2:a  b1 ^ b2 ^ b3:...a  b1 ^ � � � ^ bn�1 ^ bn:Thus we make the rules disjoint, by ordering the rules and making surethat the bodies of rules are false if the bodies of preceding rules are true.Syntactically, this seems to increase the complexity of n rules to haven(n+1)2 atoms in the body. While this is true, there are only 2n � 1 di�erentatoms that need to be explained. Thus, in practice, the complexity need onlyincrease linearly not as a square.Example 5.1 Suppose we want to represent an \and-gate" that should havevalue 0 if either of the inputs are zero. Suppose we represent the proposition



Probabilistic Horn abduction and Bayesian networks 29that port G has output V at time T as val(G;V; T ). We can ensure that theexplanations are disjoint locally by ensuring that only one body can ever betrue: val(out(G); off; T )  and gate(G) ^ ok(G)^val(input(1; G); off; T ):val(out(G); off; T )  and gate(G) ^ ok(G)^val(input(1; G); on; T )^val(input(2; G); off; T ):val(out(G); on; T )  and gate(G) ^ ok(G)^val(input(on;G); 1; T )^val(input(2; G); on; T ):Note that the third conjunct in body of the second rule (the \val(input(1; G); on; T )")is there to ensure that the bodies are disjoint.This has repercussions in biasing the most likely explanation to the �rstrule, which is more general than the others. This problem of the most likelydiagnosis depending on the representation seems endemic to approaches thattry to �nd the diagnosis (either explanation or interpretation) that is \mostlikely" [39, 52]. We avoid this problem by not placing importance in themost likely explanations, but only in how they contribute to the probabilityof propositions.5.2 Causation EventsWhen representing knowledge for abduction [45, 46], we have to be able tomake sure that we can imply the observations. In general a fault or diseasedoesn't imply a particular observation. For example, having a cold does notimply sneezing, but could cause sneezing. A gate being in an unknown statedoes not imply any particular value for the output of the gate. To solve thisproblem we introduce another hypothesis that the cold caused the sneezing.In the other example, we have to hypothesise that the gate is producing aparticular value. This idea is analogous to the notion of a \causation event"of Peng and Reggia [40].The cold causing sneezing could be written assneeze cold ^ cold caused sneeze



Probabilistic Horn abduction and Bayesian networks 30Following Peng and Reggia [40], one way to implement the causationevents, is to use the relations has disease(D) to mean that the patient hasdisease D; actually causes(D;M) to mean that disease D \actually caused"manifestation M ; and has manifestation(M) to mean that the patient hasmanifestation M .We can say that a manifestation is caused by the disease that actuallycauses it by:has manifestation(M)  has disease(D)^actually causes(D;M):The conjunctionhas disease(D) ^ actually causes(D;M)corresponds to Peng and Reggia's [40] causation eventM : D.We have the disjoint declarations for each i; j:disjoint([actually causes(di;mj) : pij ; didnt actually cause(di;mj) : qij])where pij corresponds to the the \conditional causal probability" (\causalstrength") of [40], and qij = 1 � pij . pij can be seen as the fraction of thecases where di is true that di \actually causes" mj.We also have the possible hypothesesdisjoint([has disease(di) : pi; doesnt have disease(di) : qi])where pi is the prior probability of the disease di, and qi = 1 � pi.To implement this we still have to worry about making the rules disjoint.This is done in the same way as in section 5.1. If manifestationm has possiblecauses d1; � � � ; dk, we write:has manifestation(m)  has disease(d1)^actually causes(d1;m):has manifestation(m)  has disease(d2) ^ doesnt have disease(d1)^actually causes(d2;m):...



Probabilistic Horn abduction and Bayesian networks 31has manifestation(m)  has disease(dk)^doesnt have disease(d1) ^ � � �^doesnt have disease(dk�1)^actually causes(dk;m):The advantage of making these disjoint is that we are now able to interpret\actually causing" observationally for the cases where there are two possiblecauses. Here we arbitrarily assign the \actual cause" to the �rst disease.It is now easy to interpret the notion of \actually causing", as there is noambiguity in any data. This makes the concept of \actual cause" into anobservational notion for which we can collect statistics and do not need atheory of causation that is deeper than the theory we want to represent.5.2.1 Hypotheses with indeterminate outputThere is one case where we have to be concerned about causation events aswell as the problem of parametrizing possible hypotheses and the interactionwith the independence assumption. I have argued elsewhere [45, 46] thatthere is much power obtainable and subtlety involved in parametrizing hy-potheses appropriately. In this section we expand on previous analysis [46],and show how probabilities a�ect parametrization considerations when usingcausation events by considering some case studies.As an example, suppose we have a gate G that takes two values as input,and outputs a value that can be in the range 1 to n. Suppose we want torepresent the gate being in an unknown state7 (this is applicable whetheror not we have fault models [14, 45]). Suppose we represent the propositionthat gate G has output V at time T as val(G;V; T ).We cannot represent the hypothesis that the gate is in the unknown stateby using the hypothesis u(G) and the factval(out(G); V; T ) u(G):The problem is that the above fact states that a gate in the unknown stateproduces all values of output, rather than saying that it produces some out-7The unknown state is a state that we do not know anything about. This state isdi�erent to the ok state and other fault states. It does not mean that the gate is in somestate, but we do not know what state it is in.



Probabilistic Horn abduction and Bayesian networks 32put. Knowing a gate is in an unknown state does not imply any value forthe output.When there are no probabilities involved [46, 45] we parametrize the hy-pothesis by the values on which it depends. This could be done by having thehypothesis produces(G;V; T ) (interpreted as \gate G is faulty and producesvalue V at time T") and the ruleval(out(G); V; T ) produces(G;V; T ):We would say that a port has only one value at a time by having the disjointdeclaration8:disjoint([ok(P ) : p0; produces(P; v1; T ) : p1; � � � ; produces(P; vr; T ) : pr]):Suppose we know that gate g1 has probability � of being in the unknownstate. Then p0 = 1 � �. If we assume that each possible output value hasequal chance, and that there are r possible output values, then pi, the priorprobability that it produces output value vi is �=r for 1 � i � r.When we have more than one observation, there is another problem. Forthe probabilities we assumed that the hypotheses were independent. Wewould not expect thatP (produces(g1; 1; t2)jproduces(g1; 1; t1)) = P (produces(g1; 1; t2))Once we know that the gate is in an unknown state at time t1 it should notbe so unlikely that it is in an unknown state at time t2. The fact that thegate is in an unknown state is independent of the time. We would not expectthat the gate has probability �k of being in the unknown state for k periodsof time, rather we would expect that the gate has probability � of being inan unknown state9.To work in general, we need a mixture of the above two ideas. Suppose agate G has probability of � of being in the unknown state, and that there arer possible output values, each of which has an equal prior chance of beingproduced by a gate in the unknown state. This can be represented as the8Here we have assumed that there are no fault states other than the unknown state.These could be added to this declaration without changing the point of the discussion.9Of course, probabilistic Horn abduction can represent either alternative.



Probabilistic Horn abduction and Bayesian networks 33hypotheses10disjoint([produces(P; v1; T ) : 1r ; � � � ; produces(P; vr; T ) : 1r ]):disjoint([ok(G) : p0; � � � ; u(G) : �]):and the rule val(out(G); V; T ) u(G) ^ produces(G;V; T ):u(G) means G is in the unknown state, and produces(G;V; T ) means thatgiven gate G is broken, it produces value V at time T . The system assumesonce that the gate is broken, and then makes other assumptions of whatvalues it is producing at di�erent times.The atom produces(G;V; T ) can be seen as a \causation event", that weinvent because being in an unknown fault state does not imply any particularvalue.5.2.2 Intermittent versus non-intermittent faultsBecause of the way we parametrized the hypotheses, the above representationof faults says that the output is a function of only the time. The hypothesisproduces(G;V; T ) and the above rules places no constraints on the values ofthe outputs at di�erent times. This is a way to represent the fact that the gatecan have an intermittent fault (it depends only on the time of observation).There is no constraint that says the gate produces the same output whengiven the same inputs at di�erent times.We can give the non-intermittency assumption by saying that the faultdepends only on the input and not on the time. This can be done instead byhaving the hypothesis prod(G;V; I1; I2) (meaning gate G produces output Vwhen given I1 and I2 as input) and a ruleval(out(G); V; T )  u(G) ^ prod(G;V; I1; I2)^val(input(1; G); I1; T )^val(input(2; G); I2; T ):10Here we assume a uniform distribution of values. Any other distribution could begiven.
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xor1(N)

xor2(N)

and1(N)

and2(N)

or1(N)

input(1,adder(N))

input(2,adder(N))

input(3,adder(N))

output(1,adder(N))

output(2,adder(N))Figure 4: One bit adder, adder(N).5.3 Two ExamplesIn this section we show the complete theories for two non-trivial examples.Example 5.2 This �rst example is an implementation of cascaded one bitadders (Figures 4 and 5), to form a ripple adder.The axiomatisation is adapted from the consistency-based axiomatisationof Genesereth [17].
off

adder(1) adder(s(1)) adder(s(s(1)))Figure 5: Three cascaded adders



Probabilistic Horn abduction and Bayesian networks 35val(P; V; T ) means that port P has value V at time T . We use as simplea representation of time as is needed. In this case we need to be able tohave di�erent observations at di�erent times, and use constants to denotedi�erent times.We �rst axiomatise how gates work. We must axiomatise how normalgates as well as faulty gates work [43, 45].Each of the gates can be in one of four states (ok, stuck on, stuck o� orunknown). When the gate is in the unknown u state it can produce eithervalue with equal probability. We also used the intermittency assumption.val(output(G); off; T ) gate(G; and) ^ ok(G) ^ val(input(1; G); off; T ):val(output(G); off; T ) gate(G; and); ok(G) ^ val(input(1; G); on; T )^val(input(2; G); off; T ):val(output(G); on; T ) gate(G; and) ^ ok(G) ^ val(input(1; G); on; T ) ^val(input(2; G); on; T ):val(output(G); on; T ) gate(G; or) ^ ok(G) ^ val(input(1; G); on; T ):val(output(G); off; T ) gate(G; or) ^ ok(G) ^ val(input(1; G); off; T )^val(input(2; G); off; T ):val(output(G); on; T ) gate(G; or) ^ ok(G) ^ val(input(1; G); off; T )^val(input(2; G); on; T ):val(output(G); off; T ) gate(G;xor) ^ ok(G) ^ val(input(1; G); off; T )^val(input(2; G); off; T ):val(output(G); on; T ) gate(G;xor) ^ ok(G) ^ val(input(1; G); off; T )^val(input(2; G); on; T ):val(output(G); on; T ) gate(G;xor) ^ ok(G) ^ val(input(1; G); on; T )^val(input(2; G); off; T ):



Probabilistic Horn abduction and Bayesian networks 36val(output(G); off; T ) gate(G;xor) ^ ok(G) ^ val(input(1; G); on; T )^val(input(2; G); on; T ):val(output(G); on; T ) stuck1(G):val(output(G); off; T ) stuck0(G):val(output(G); V; T ) u(G) ^ produced(G;V; T ):val(P; V; T ) conn(Q;P ) ^ val(Q;V; T ):Note how we have made the rules disjoint, by adding extra conditions.For example, the second rule includes the condition val(input(1; G); on; T )that is there just to make sure the rules are disjoint. Treated as a de�niteclause in isolation this rule is true without this second condition.We also specify the random variables as outlined in the preceding section.Note that this implies that the gates fail independently.disjoint([ok(X) : 0:999; u(X) : 0:0000001; stuck1(X) : 0:0004999; stuck0(X) : 0:0005]):disjoint([produced(X; on; T ) : 0:5; produced(X; off; T ) : 0:5]):We axiomatise how the gates in an adder are connected, and what gatesthere are in an adder.conn(input(1; adder(N)); input(1; xor1(N))):conn(input(1; adder(N)); input(1; and1(N))):conn(input(2; adder(N)); input(2; xor1(N))):conn(input(2; adder(N)); input(2; and1(N))):conn(input(3; adder(N)); input(2; xor2(N))):conn(input(3; adder(N)); input(1; and2(N))):conn(output(xor1(N)); input(1; xor2(N))):conn(output(xor1(N)); input(2; and2(N))):conn(output(and1(N)); input(2; or1(N))):conn(output(and2(N)); input(1; or1(N))):conn(output(xor2(N)); output(1; adder(N))):conn(output(or1(N)); output(2; adder(N))):



Probabilistic Horn abduction and Bayesian networks 37conn(output(2; adder(N)); input(3; adder(N1))) succ(N;N1):val(input(3; adder(1)); off; T ):gate(xor1(N); xor):gate(xor2(N); xor):gate(and1(N); and):gate(and2(N); and):gate(or1(N); or):succ(N; s(N)):The relation succ(N;N1) is used to state when one gate is next to another.This allows us to observe arbitrarily large cascaded adders.In order for us to be able to observe inputs and to be able to predictexpected values from unknown inputs we can make the inputs to the gatesto be random variables. (The alternative is to write as facts what the inputsto the gates are [45]).disjoint([val(input(1; adder(N)); on; T ) : 0:5; val(input(1; adder(N)); off; T ) : 0:5]):disjoint([val(input(2; adder(N)); on; T ) : 0:5; val(input(2; adder(N)); off; T ) : 0:5]):We can specify an observation such as that 10 + 11 gave 001, asval(input(1; adder(1)); off; t1)^ val(input(1; adder(s(1))); on; t1)^ val(input(2; adder(1)); on; t1)^ val(input(2; adder(s(1))); on; t1)^ val(output(1; adder(1)); on; t1);^ val(output(1; adder(s(1))); off; t1)^ val(output(2; adder(s(1))); off; t1)Example 5.3 The second example is of the framework for depiction andimage interpretation of Reiter and Mackworth [60]. Here we interpret simpleline drawings of a map. These consist of lines and areas that depict roads,rivers, shores, lakes and land. Our axiomatisation is based on the abductiverepresentation of [46].



Probabilistic Horn abduction and Bayesian networks 38scene imagelinear(�(X); road) chain(X)linear(�(X); river)linear(�(X); shore)area(�(X); land) region(X)area(�(X); water)joins(�(X); �(Y ); E) tee(X;Y;E)flowsto(�(X); �(Y ))docross(�(X); �(Y )) chi(X;Y )source(�(X); N) open(X;N)petersout(�(X); N)linear(�(X); shore) closed(X)roadloop(�(X))beside(�(X); �(Y )) bounds(X;Y )inside(�(X); �(Y )) ^ outside(�(X); �(Z)) encloses(Y;X;Z)Figure 6: Image{scene predicates.We axiomatise how scene objects could have produced image objects.Given an image we conjecture scene elements that could have produced thatimage.The main di�erence between this axiomatisation and those of [60, 46] isthat we have to make constructive derivations of the image. Rather thanstarting with all interpretations, and use consistency to prune those that areimpossible, we make sure that we can only generate possible explanations.This follows the methodology given earlier in this section.Following Reiter and Mackworth [60], for each image object I we assumea scene object �(I) which it depicts.Figure 6 gives the correspondences between image and scene predicates.We �rst allow one to write the building blocks of explanations. area(S; land)means that the scene object S is land, given that it is a region. The proba-bilities reect that in our (made-up) domain, 70% of the areas are water and30% are land.region(I) area(�(I); T ):



Probabilistic Horn abduction and Bayesian networks 39disjoint([area(S; land) : 0:3; area(S;water) : 0:7]):Similarly linear(S; T ) means that linear scene object S is of type T , whereT is one of road, river or shore. Linear scene objects are depicted as chainsin the image.chain(I) linear(�(I); T ):disjoint([linear(S; road) : 0:2; linear(S; river) : 0:5; linear(S; shore) : 0:3]):We now have axioms that describe how structured image objects (joinsof chains and boundaries between chains and regions) could be produced interms of scene objects.tee(X;Y;E) means that end E of chain X ends at chain Y . This caneither be because X depicts a road that joins Y , or X depicts a river thatstarts at Y , or X depicts a river that ows into (river or shore) Y . Wearbitrarily number ends of chains with a 0 or a 1, and one end of a riverneeds to be a mouth and one a source of the river.tee(X;Y;E) joins(�(X); �(Y ); E) ^ linear(�(X); road):tee(X;Y;E) joins(�(X); �(Y ); E) ^ linear(�(X); river)^linear(�(Y ); road) ^ source(�(X); E):tee(X;Y;E) linear(�(X); river)^ canflowto(�(Y )) ^flowsto(�(X); Y ) ^mouth(�(X); E):canflowto(S) linear(S; river):canflowto(S) linear(S; shore):disjoint([joins(S; T;E) : 0:05; notjoins(S; T;E) : 0:95]):disjoint([mouth(S; 0) : 0:5;mouth(S; 1) : 0:5]):disjoint([flowsto(R;S) : 0:1; notflowsto(R;S) : 0:9]):disjoint([source(R; 1) : 0:5; source(R; 0) : 0:5]):Similarly we can handle two chains crossing (a \chi" | �) in the image.Here again we just use the notion of a causal event to make the implicationalways true. Here we arbitrarily decided that all types of crossing are equallylikely.chi(X;Y ) crossable(�(X); �(Y )) ^ docross(�(X); �(Y )):



Probabilistic Horn abduction and Bayesian networks 40crossable(X;Y ) linear(X;XT ) ^ linear(Y; Y T ) ^ crosstype(XT; Y T ):crosstype(road; road):crosstype(road; river):crosstype(river; road):crosstype(road; shore):crosstype(shore; road):disjoint([docross(X;Y ) : 0:2; dontcross(X;Y ) : 0:8]):We can also have a chain being open or closed. Note here that the prob-abilities tell us that all shores form closed loops, and some, but very fewroads form loops. It is also more likely that a river ends nowhere than aroad does (to have a road ending we have to hypothesise that the road petersout, whereas for a river we have to hypothesis that the end is a source of theriver).open(X;N) linear(�(X); river)^ source(�(X); N):open(X;N) linear(�(X); road) ^ petersout(�(X); N):disjoint([petersout(X;E) : 0:1; doesntpeterout(X;E) : 0:9]):closed(X) linear(�(X); shore):closed(X) linear(�(X); road) ^ roadloop(�(X)):disjoint([roadloop(X) : 0:01; notloop(X) : 0:99]):We can also have a chain bounding an area, and reason about what areascan be inside or outside loops. Image predicate encloses(Y;X;Z) means thatregion Y is interior to chain X, and region Z is exterior to chain X.bounds(X;Y ) linear(�(X);XT ) ^ area(�(Y ); Y T ) ^beside(�(X); �(Y )) ^ possbeside(XT; Y T ):possbeside(road; land):possbeside(river; land):possbeside(shore; land):possbeside(shore;water):disjoint([beside(X;Y ) : 0:1; notbeside(X;Y ) : 0:9]):disjoint([inside(X;Y ) : 0:1; outside(X;Y ) : 0:1; noside(X;Y ) : 0:8]):encloses(Y;X;Z) outside(�(X); �(Z)) ^ inside(�(X); �(Y )) ^ linear(�(X);XT )^area(�(Y ); Y T ) ^ area(�(Z); ZT )^ possreg(Y T;XT;ZT ):possreg(land; road; land):possreg(land; shore;water):possreg(water; shore; land):



Probabilistic Horn abduction and Bayesian networks 41An image becomes an observation that we condition on. For example,the image of �gure 7 is represented as the observationchain(c1) ^ chain(c2) ^ chain(c3) ^ region(r1) ^ region(r2) ^tee(c2, c1; 1) ^ bounds(c2; r2) ^ bounds(c1; r1) ^ bounds(c1; r2)^ encloses(r1; c1; r2); open(c2; 0) ^ closed(c1) ^ open(c3; 0) ^tee(c3; c2; 1) ^ bounds(c3; r2)
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Figure 7: A simple image.There are four explanations of this observation. These are given here withtheir corresponding prior probability:Explanation: flinear(�(c1); shore), linear(�(c2); river), linear(�(c3); river),area(�(r1); water), area(�(r2); land), flowsto(�(c2); �(c1)),mouth(�(c2); 1),



Probabilistic Horn abduction and Bayesian networks 42beside(�(c2); �(r2)), beside(�(c1); �(r1)), beside(�(c1); �(r2)), outside(�(c1); �(r2)),inside(�(c1); �(r1)), source(�(c2); 0), source(�(c3); 0), flowsto(�(c3); �(c2)),mouth(�(c3); 1), beside(�(c3); �(r2))gPrior = 9:8438 � 10�12Explanation: flinear(�(c1); shore), linear(�(c2); river), linear(�(c3); road),area(�(r1); water), area(�(r2); land), flowsto(�(c2); �(c1)),mouth(�(c2); 1),beside(�(c2); �(r2)), beside(�(c1); �(r1)), beside(�(c1); �(r2)), outside(�(c1); �(r2)),inside(�(c1); �(r1)), source(�(c2); 0), petersout(�(c3); 0), joins(�(c3); �(c2); 1),beside(�(c3); �(r2))gPrior = 7:875 � 10�13Explanation: flinear(�(c1); shore), linear(�(c2); road), linear(�(c3); road),area(�(r1); water), area(�(r2); land), joins(�(c2); �(c1); 1), beside(�(c2); �(r2)),beside(�(c1); �(r1)), beside(�(c1); �(r2)), outside(�(c1); �(r2)),inside(�(c1); �(r1)), petersout(�(c2); 0), petersout(�(c3); 0), joins(�(c3); �(c2); 1),beside(�(c3); �(r2))gPrior = 6:3 � 10�14Explanation: flinear(�(c1); road), linear(�(c2); road), linear(�(c3); road),area(�(r1); land), area(�(r2); land), joins(�(c2); �(c1); 1), beside(�(c2); �(r2)),beside(�(c1); �(r1)), beside(�(c1); �(r2)), outside(�(c1); �(r2)),inside(�(c1); �(r1)), petersout(�(c2); 0), roadloop(�(c1)), petersout(�(c3); 0),joins(�(c3); �(c2); 1), beside(�(c3); �(r2))gPrior = 1:8 � 10�16The prior probability of the image is the sum of the prior probabilities ofthese four explanations, namely 1:0694 � 10�11. We can use these explana-tions to compute arbitrary conditional probabilities. For example,P (linear(�(c2); river)jimage) = 9:8438 � 10�12 + 7:875 � 10�131:0694 � 10�11 = 0:994195.4 Arbitrary IndividualsOne of the problems considered in [22], is that of when there can be arbi-trary individuals that a�ect a value, and the individuals present can only bedetermined at run time.As an example, consider the problem of a �re alarm going o�, where itgoes o� if it was set o� by one of the individuals present. All of the individuals



Probabilistic Horn abduction and Bayesian networks 43can independently set o� the alarm. We cannot write rules such asalarm(sounds) present(P ) ^ set o� alarm(P ):as the disjoint rules condition is violated. This is related to the problem in�rst order logic of being able to count the number of people present givenjust a database of relations of the form present(P ). We cannot prove thereare 5 people present just because we have present(P ) true for 5 instances ofP , unless we have stated that everyone else is not present. Like �rst-orderlogic, we cannot represent such knowledge.We can however encode the problem so that we can count the number ofpeople present. This is by forcing us to write present(L) where L is a list ofthe people present.We can now represent the problem by11:alarm(sounds)  present(L) ^ one set o� alarm(L):alarm(quiet)  present(L) ^ none set o� alarm(L):one set o� alarm([HjT ])  set o� alarm(H):one set o� alarm([HjT ])  didnt set o� alarm(H)^one set o� alarm(T ):none set o� alarm([HjT ])  didnt set o� alarm(H)^none set o� alarm(T ):none set o� alarm([]):disjoint([set o� alarm(P ) : p1; didnt set o� alarm(P) : p2]):Here p1 is the probability that a person would have set o� an alarm giventhat no one before them had already set o� the alarm. p2 = 1� p1.6 Comparison with Other SystemsBefore comparing the work in this paper with other proposals, we shouldnote that in this paper we have described a representation, and not a way11Here we use the Prolog syntactic sugar for lists [64]. [j] is just a binary functionsymbol, [] is a constant. We use the notational convention that [�j[�]] is written as [�; �]for any sequence of symbols � and �.



Probabilistic Horn abduction and Bayesian networks 44to compute posterior probabilities. There are many ways that could be usedto compute posterior probabilities, we could use some form of stochasticsimulation (e.g., [20]), search (e.g., [49, 50]), or even using the mapping toBayesian networks to translate ground instances of the theory into somesecondary structure for propagating evidence (e.g., [27, 23]). We thus onlycompare the representation to other proposals, and not any implementations.6.1 Other logic-based abductive schemesThere are many other proposals for logic-based abduction schemes (e.g., [53,10, 18]). These however consider that we have to �nd all of the diagnoses.In practice there are prohibitively many of these. It is also not clear whatto do with all of the explanations; there are too many to give to a user, andthe costs of tests to determine which of the diagnoses is the \real" diagnosisis usually not outweighed by the advantages of �nding the real diagnosis(see Ledley and Lusted [28] for an early description of the importance ofprobabilistic and value information in diagnosis). We provide an answer tothe problem of what to do with the explanations: we use them to computeposterior probabilities that can be used for making decisions.The closest version of abduction to that presented here is that of Goebelet. al. [18], where there is also the simple abductive scheme where we do notneed to do any chaining in order to determine inconsistency. Essentially wehave added probabilities to that scheme under certain assumptions about theknowledge base and independence.6.2 Probability and diagnosisde Kleer and Williams [13, 14] and Peng and Reggia [40] both incorporateprobabilistic knowledge to �nd the most likely diagnoses, but do not provideas exible and simple a representation language as the one here.de Kleer and Williams [13, 14] have explored the idea of using probabilis-tic information in consistency-based diagnosis (see [43, 45] for comparisonsbetween abductive and consistency-based diagnoses).The major di�erences between their approach and the one presented inthis paper is that they di�er in what they want to �nd the probability of. deKleer and Williams �nd the most likely interpretations (assignment of valuesto all hypotheses). This is the same as the diagnoses of Peng and Reggia



Probabilistic Horn abduction and Bayesian networks 45[40] and the composite beliefs of Pearl [37], but is di�erent from the diag-noses of de Kleer, Mackworth and Reiter [12]. We �nd the probabilities ofexplanations; we remain agnostic about the value of \irrelevant" hypotheses.de Kleer and Williams cannot distinguish between diagnoses that di�er insubstantial ways from those that di�er only in varying values that are irrel-evant to the diagnosis. In our system, hypotheses that are not part of anexplanation are irrelevant and are ignored. We do not place such an impor-tance on the explanations, but rather on using the explanations to computeprobabilities (see [52] for some of the issues involved in considering what wewant to compute the probability of).Peng and Reggia [40] also consider an abductive de�nition of diagnosisand incorporate probabilities, and best-�rst search. One di�erence is thatthey are trying to �nd probabilities of interpretations, but we are using ex-planations to �nd the probabilities of atoms. The main di�erence is in theunderlying language. They use the notion of \hyper-bipartite" graphs madeup of causation relations on sets of manifestations (can be observed), disor-ders (can be hypothesised), and pathological states.One way to look at what they are doing is to consider it as a restrictionof the system presented here where the language is propositional and allowsonly one element in the body of a clause. It is, however, not expressed in alogical language.Hobbs et. al. [21] have devised a \cost-based abduction" for interpre-tation of natural language. Their scheme is similar to the one presentedhere, but they use costs associated with assumptions rather than probabil-ities. These costs can be seen as -log probabilities [7]. One can view thecurrent work as extending Hobbs et. al.'s to derive posterior probabilities ina consistent manner.6.3 Logic and Bayesian networksThe representation of Bayesian networks is related to the work by Charniakand Shimony [7, 63]. Instead of considering abduction, they consider modelsthat consist of an assignment of values to each random variable. The labelof [63] plays an analogous role to our hypotheses. They however, do not usetheir system for computing posterior probabilities. It is also not so obvioushow to extend their formalism to more powerful logics.Horsch and Poole [22], Breese [5] have de�ned systems that incorporate



Probabilistic Horn abduction and Bayesian networks 46Prolog style rules and Bayesian networks. These were designed to allow fordynamic construction of Bayesian networks. The rules of [22] cannot be in-terpreted logically but are macros that map into Bayesian network structure.The rules of Breese [5] are Prolog-style rules that are used to build a net-work. The output of the Prolog is a Bayesian network (or more generallyis an inuence diagram) that can be passed to a Bayesian network solver.Ours di�ers in that the Prolog like rules form the Bayesian network them-selves. We would need another, meta-level, program to transform our Prologrules into Bayesian networks for a traditional Bayesian network interpreterto solve.6.4 Horn abduction and Dempster-ShaferThis work is also closely related to recent embeddings of Dempster-Shafertheory in ATMS [26, 54]. One di�erence between our embedding of Bayesiannetworks and Dempster-Shafer is in the independence assumptions used.Dempster-Shafer theory assumes that di�erent rules are independent. Weassume they are exclusive. Another di�erence is that these embeddings donot do evidential reasoning (by doing abduction), determining probability ofhypotheses given evidence, but rather only determine the \belief" of propo-sitions from forward chaining.6.5 Argument systemsDoyle [15] and Loui [32] have argued that decisions can be best seen interms of arguments for and against some propositions. Other have viewednonmonotonic reasoning in terms of arguments [42, 29, 31, 41]. The ex-planations that we use can be seen as premises for logical arguments. Wedetermine the probability of some proposition by coming up with argumentsfor the proposition. Rather than treating argument-based systems as an al-ternative to probabilistic reasoning, we treat the argument-based system asa representation for probabilistic reasoning.6.6 Logic programming and uncertaintyThere have been other attempts to incorporate uncertainty into logic pro-gramming. These have typically not considered probability, but other uncer-



Probabilistic Horn abduction and Bayesian networks 47tainty calculi such as certainty factors [65]. Ng and Subrahmanian [35] havecombined logic programming and probability by allowing us to axiomatiseprobability in logic, and then use Prolog-style rules to give the probabilisticinformation. The Prolog rules reason about the probability, at much moreof a meta-level than that proposed here. They can write down any inde-pendence assumptions and any conditional probability statements with thesystem giving no guidance as to what to write. In other work, Ng and Sub-rahmanian [36] have considered how to incorporate statistical probability [3]into logic programming. This should be seen as complementary to the workin this paper.7 ConclusionThis paper has presented a pragmatically-motivated simple logic formula-tion that includes de�nite clauses and probabilities over hypotheses. Thiswas designed to be a compromise between representational adequacy, ease tointerpret semantically what the knowledge means, and ease of implementa-tion. It is suggested that this simple tool provides a good representation formany evidential reasoning tasks.This is supported by the demonstration that probabilistic Horn abduc-tion forms a logic of discrete Bayesian networks. There is a direct mappingbetween the knowledge in a Bayesian network and the knowledge in a prob-abilistic Horn abduction theory.This is also interesting because it provides a link to earlier work on the useof assumption-based reasoning for default reasoning [42, 44, 46]. One of theways of viewing default reasoning is where an adversary chooses the assump-tions. One way of viewing the probabilistic Horn abduction is as an instanceof assumption-based reasoning, but where nature chooses the assumptions.This paper also demonstrates the correspondence between the observationsthat need to be explained in abduction [45], and what is conditioned on inBayesian probability.



Probabilistic Horn abduction and Bayesian networks 48A Formal SemanticsIn this section we give the formal semantics for our language. As the lan-guage is very simple, the semantics will be correspondingly simple. Thesemantics will basically be that of Bacchus [3], restricted to our language,and incorporating our assumptions.The logical statements will restrict the possible worlds, and the probabili-ties will provide measures over the possible worlds. The language is speciallydesigned so that the logical facts neither implies a hypothesis nor implies thenegation of a hypothesis. This means that we can treat the logic part andthe probabilistic part of our semantics independently.The tricky thing we have to worry about is that there are potentiallyin�nitely many independent hypotheses, with non-extreme (i.e., not equal to0 or 1) probabilities. If we have one function symbol and one parametrizedhypothesis h(X) with non extreme probability, we have in�nitely many inde-pendent hypotheses of the form h(t) for each ground term t. Once we havethis, the probability of each possible world will be zero. Thus, we cannot justsum over the possible worlds to determine the probability of a proposition(as is done in [3]). We instead provide a measure over sentences that canbe described in our language (as in [2]). As we have made sure that thelogic provides no constraints on the probabilities, we only need to considersentences made of hypotheses in order to de�ne the probability space.As discussed in section 2.4, we make the unique names assumption. Thisis speci�ed formally by making the domain we consider be the set of groundterms in the language (similar the Herbrand Universe [30]).De�nition A.1 A semantic structure is a tuple hW;D;�; �; P �i, whereW is a non-empty set. Elements of W are called possible worlds.D is a non-empty set (of individuals). D here is the set of ground terms inthe language.� is a function that maps each n-ary function symbol to an element ofDn 7! D (in particular � maps each constant to an element of D).We can extend � to ground terms, by the use of the recursive scheme�(f(t1; � � � ; tn)) = �(f)(�(t1); � � � ; �(tn)). In particular � is the identityfunction so that �(t) = t for any term t. Because the mapping doesnot depend on the world, these form \rigid designators".



Probabilistic Horn abduction and Bayesian networks 49� is a 1-1 function such that �(w) maps each n-ary predicate symbol into asubset of Dn.P � is a function from H 7! [0; 1].De�nition A.2 We de�ne the semantic relation j=hW;D;�;�;P �i between pos-sible worlds and formulae:The �rst case is for atomsw j=hW;D;�;�;P �i p(t1; � � � ; tn) if h�(t1); � � � ; �(tn)i 2 �(w)(p):The second is for conjunctions between atoms in the bodies of rules, aswell as for conjunctions of de�nitions in our theory:w j=hW;D;�;�;P �i b1 ^ b2 i� w j=hW;D;�;�;P �i b1 and w j=hW;D;�;�;P �i b2The third rule de�nes the truth of de�nitions, and incorporates the as-sumptions about disjointedness and coveringness:If b1; � � � ; bn are all the bodies de�ning aw j=hW;D;�;�;P �i (a b1) ^ � � � ^ (a bn)if �w j=hW;D;�;�;P �i a and 9i (w j=hW;D;�;�;P �i bi) and 8j 6= i (w 6j=hW;D;�;�;P �i bj)�or �w 6j=hW;D;�;�;P �i a and 8j (w 6j=hW;D;�;�;P �i bj)�The fourth rule de�nes the \disjoint" assertion.w j=hW;D;�;�;P �i disjoint([h1 : p1; � � � ; hm : pm])if 9i (w j=hW;D;�;�;P �i hi) and 8j 6= i (w 6j=hW;D;�;�;P �i hj)and 8i P �(hi) = piDe�nition A.3 The set of possible worlds given theory T , denoted WT isde�ned as WT = fw 2 W : w j=hW;D;�;�;P �i T 0gwhere T 0 is the set of ground instances of elements of T .In order to interpret the probabilities of possible worlds, we create thealgebra of subsets ofWT that can be described by �nite formulae of instancesof hypotheses.



Probabilistic Horn abduction and Bayesian networks 50De�nition A.4
hW;D;�;�;P �i = f! � WT : 9formula f!;8w 2 ! w j=hW;D;�;�;P �i f!gBy formula we mean a �nite formula make up of conjunctions and disjunc-tions of elements of H 0.The elements of 
hW;D;�;�;P �i form a sample space [2]. Elements of 
hW;D;�;�;P �iare closed under �nite union, and complementation (given that we can com-plement any hypothesis by using the disjunct of the remaining hypotheses).Like Bacchus [2], we do not require sigma-additivity of our sample space.Because our language is so weak, we do not need countable unions.De�nition A.5 An interpretable DNF formula of hypotheses is a for-mula of the form n_i=1 kîj=1 hijwhere hij is a ground instance of a hypothesis such that:1. for each i, there is no j1 6= j2 such that fhij1; hij2g is a subset of aninstance of a disjoint declaration in T (i.e., fhij1; hij2g does not formpart of an integrity constraint).2. for each i1 6= i2 there exists j1; j2 such that fhi1j1; hi2j2g are in aninstance of a disjoint declaration in T (i.e., the disjuncts are disjoint).3. For no i1 6= i2 is it the case that fhi11; � � � ; hi1ki1g � fhi21; � � � ; hi2ki2g.Lemma A.6 Every �nite formula make up of conjunctions and disjunctionsof elements of H 0 is equivalent, given T (i.e. they describe the same subsetof WT ) to an interpretable DNF formula.Proof: To satisfy the �rst and third conditions we can removeinconsistent conjuncts and any supersets of other formulae. Theresulting formula is equivalent to the original.Suppose C1 and C2 are conjuncts that do not satisfy the secondcondition. Suppose, without loss of generality that C1 = Vk1j=1 h1j.Each h1j is in a disjoint declaration. Let Dj be the disjunct of



Probabilistic Horn abduction and Bayesian networks 51the hypotheses in the instance of a disjoint declaration in whichh1j appears. Each Dj is true in all elements of WT . Thus, C2 ^Vk1j=1Dj is equivalent to C2 given T . Distribute C2^Vk1j=1Dj intoDNF, remove the conjunct that is a superset of C1, replace C2by this disjunct. We now have removed a violation of the secondcondition and have an equivalent formula. This can be done forall violations of the second formula. 2We can de�ne a measure over the syntactic formulae as follows:De�nition A.7 If Wni=1 Vkij=1 hij is an interpretable DNF formula, hij 2 Hand P � is a function from H 7! [0; 1], then de�ne the function �P � by�P � 0@ n_i=1 kîj=1 hij1A =Xi Yj P �(hij)The following lemma shows that equivalent formulae will always have thesame measure.Lemma A.8 If f1 and f2 are interpretable DNF formulae such that f1 � f2then �P �(f1) = �P �(f2).Proof: Consider the set of all instances of hypotheses that ap-pear in either f1 or f2. This subset ofH 0 is �nite. Each hypothesesin this set appears in a ground instance of a disjoint declaration.Let D be the set of all such disjoint declarations. Each disjointdeclaration corresponds to a disjunct of the hypotheses of the dis-junct declaration. Each conjunct in f1 and f2 has elements from asubset D. We can extend each conjunct to coverD, by conjoiningto each hypothesis the disjunct of each disjoint declaration that isnot represented in the conjunction. We then distribute to DNF.This procedure does not change the probability of any conjunct(as the probabilities of the disjunct of each disjoint declarationsum to one, and we can distribute multiplication over addition).Once this procedure is carried to the two equivalent formulae,they will be syntactically identical (up to commutativity and as-sociativity), as any di�erence can be extended into a possible



Probabilistic Horn abduction and Bayesian networks 52world in which they have a di�erent value. This cannot happenas they are equivalent.Thus they must have the same measure. 2We can use this measure over formulae to induce a measure over theelements of 
hW;D;�;�;P �i:De�nition A.9 Suppose ! 2 
hW;D;�;�;P �i and ! can be described by for-mula f!. Suppose f! is equivalent to interpretable DNF formula Wi Vj hij,then de�ne �hW;D;�;�;P �i(!) =Xi Yj P �(hij)The following lemma can be easily proven given Lemma A.8 showed thatthat above function is well de�ned.Lemma A.10 �hW;D;�;�;P �i is a well-de�ned probability function, obeyingthe axioms of probability:1. �hW;D;�;�;P �i(!) � 0 for all ! 2 
hW;D;�;�;P �i2. �hW;D;�;�;P �i(WT ) = 1.3. If !1\!2 = fg then �hW;D;�;�;P �i(!1[!2) = �hW;D;�;�;P �i(!1)+�hW;D;�;�;P �i(!2),for all !1; !2 2 
hW;D;�;�;P �iDe�nition A.11 If T is a probabilistic Horn abduction theory, and a is aformula, the probability of a given T , written PT (a) is de�ned as:PT (a) = �hW;D;�;�;P �i(fw 2 WT : w j=hW;D;�;�;P i ag)The following lemma shows that PT does indeed coincide with P �.Lemma A.12 If h is a ground hypothesis de�ned in T then PT (h) = P �(h).Proof:PT (h) = �hW;D;�;�;P �i(fw 2 WT : w j=hW;D;�;�;P i hg)fw 2 WT : w j=hW;D;�;�;P i hg is described by h, and so, by de�ni-tion of �hW;D;�;�;P �i, PT (h) = P �(h). 2



Probabilistic Horn abduction and Bayesian networks 53Theorem A.13 If A is a ground atom or conjunction of ground atoms,PT (A) = Xei2expl(A;T ) Yhij2ei P (hij)where expl(A;T ) is the set of minimal explanations of A from theory T .In other words, the semantics justi�es our use of summing the explana-tions to �nd the prior probability of a proposition.Proof: For this proof we treat A as a set of atoms as well asthe conjunction of these elements. What is meant should be clearfrom context.Based on the acyclicity of T , we de�ne a well founded orderingover sets of occurrences of atoms in T 0. Because T 0 is acyclic(assumption 2.8), there is an assignment of natural number tooccurrences atoms in T 0 such that the elements of the body of arule are less than the head of the rule. Call this number the depthof the rule. Because there are no rules with a hypothesis as head(assumption 2.7), we can consistently assume that all hypotheseshave depth zero.The induction ordering is based on the lexicographic ordering ofpairs hd; ni where d is the depth of the element of the set withmaximal depth, and n is the number of elements of this depth.Each time through the recursion either d is reduced or d is keptthe same and n is reduced. This is well founded as both d and nare non-negative integers.For the base case, where d = 0, A is a conjunction of hypothe-ses. If A is inconsistent then there are no explanations, and themodels of WT can be described by false, the empty disjunct,and so PT (A) = 0. If A is consistent, then there is one minimalexplanation for A, namely A itself, soXei2expl(A;T ) Yhij2ei P (hij) = Yh2AP (A)Because the space de�ned by A has A as its interpretable DNFformula, we have PT (A) = Yh2AP (A):



Probabilistic Horn abduction and Bayesian networks 54For the inductive case, suppose d > 0 and a is a proposition inA with greatest depth. Let R = Anfag. As d > 0, a is not ahypothesis. Suppose there are m rules de�ning a:a B1a B2...a BmUnder the ordering above Bi [R < d, and so we can inductivelyassume the lemma for Bi [ R. ThusPT (Bi [R) = Xei2expl(Bi[R;T ) Yhij2ei P (hij)Now the minimal explanations of a are obtained from the minimalexplanations of the Bi; in particularexpl(fag [R;T ) = m[i=1 expl(Bi [R;T )Also, as far as the semantics are concerned a � WiBi. Thus, byadditivity (lemma A.10), and the fact that the Bi are disjointPT (fag [ R) = mXi=1PT (Bi [R)= mXi=1 Xei2expl(Bi[R;T ) Yhij2ei P (hij)= Xei2Smi=1 expl(Bi[R;T ) Yhij2ei P (hij)= Xei2expl(fag[R;T) Yhij2ei P (hij)As A = fag [R the theorem is proved. 2
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