
Survey on Multiclass Classification Methods

Mohamed Aly <malaa@caltech.edu>

November 2005

Abstract

Supervised classification algorithms aim at producing a learning model
from a labeled training set. Various successful techniques have been pro-
posed to solve the problem in the binary classification case. The multi-
class classification case is more delicate, as many of the algorithms were
introduced basically to solve binary classification problems. In this short
survey we investigate the various techniques for solving the multiclass
classification problem.

1 Introduction
Supervised multiclass classification algorithms aim at assigning a class label for
each input example. Given a training data set of the form (xi, yi), where xi ∈ Rn

is the ith example and yi ∈ {1, . . . ,K} is the ith class label, we aim at finding a
learning model H such that H(xi) = yi for new unseen examples. The problem
is simply formulated in the two class case, where the labels yi are just +1 or -1
for the two classes involved. Several algorithms have been proposed to solve this
problem in the two class case, some of which can be naturally extended to the
multiclass case, and some that need special formulations to be able to solve the
latter case. The first category of algorithms include decision trees [5, 16], neural
networks [3], k-Nearest Neighbor [2], Naive Bayes classifiers [19], and Support
Vector Machines [8]. The second category include approaches for converting the
multiclass classification problem into a set of binary classification problems that
are efficiently solved using binary classifiers e.g. Support Vector Machines [8, 6].
Another approach tries to pose a hierarchy on the output space, the available
classes, and performs a series of tests to detect the class label of new patterns.

2 Extensible algorithms
The multiclass classification problem can be solved by naturally extending the
binary classification technique for some algorithms. These include neural net-
works, decision trees, k-Nearest Neighbor, Naive Bayes, and Support Vector
Machines.

1



Table 1: One-per-class Coding

Class 1 1000
Class 2 0100
Class 3 0010
Class 4 0001

Table 2: Distributed coding

Class 1 00000
Class 2 00111
Class 3 11001
Class 4 11110

2.1 Neural Networks
MultiLayer Feedforward Neural Networks provide a natural extension to the
multiclass problem. Instead of just having one neuron in the output layer,
with binary output, we could haveN binary neurons. The output codeword
corresponding to each class can be chosen as follows: [10]:

• One-per-class coding: each output neuron is designated the task of iden-
tifying a given class. The output code for that class should be 1 at this
neuron, and 0 for the others. Therefore, we will need N = K neurons
in the output layer, where K is the number of classes. When testing an
unknown example, the neuron providing the maximum output is consid-
ered the class label for that example. For instance, consider a four class
problem, we will have output codes as shown in table 1.

• Distributed output coding: each class is assigned a unique binary code-
word from 0 to 2N − 1, where N is the number of output neurons. When
testing an unknown example, the output codeword is compared to the
codewords for the K classes, and the nearest codeword, according to some
distance measure, is considered the winning class. Usually the Hamming
distance is used in that case, which is the number of different bits between
the two codewords. For instance, for a 4 class problem, and using N = 5
bit codewords, the coding can be as shown in table 2. The hamming dis-
tance between each pair of classes is equal to 3 i.e. each two codes differ
in three bits. If we got a codeword for an unknown example as 11101, we
compute its distance from the four codewords shown above. The nearest
codeword is that for class 3 with a distance of 1, so the class label assigned
to that example will be class 3.

2



2.2 Decision Trees
Decision trees are a powerful classification technique. Two widely known al-
gorithms for building decision trees are Classification and Regression Trees [5]
and ID3/C4.5 [16]. The tree tries to infer a split of the training data based
on the values of the available features to produce a good generalization. The
split at each node is based on the feature that gives the maximum information
gain. Each leaf node corresponds to a class label. A new example is classified
by following a path from the root node to a leaf node, where at each node a
test is performed on some feature of that example. The leaf node reached is
considered the class label for that example. The algorithm can naturally handle
binary or multiclass classification problems. The leaf nodes can refer to either
of the K classes concerned.

2.3 k-Nearest Neighbors
kNN [2] is considered among the oldest non-parametric classification algorithms.
To classify an unknown example, the distance (using some distance measure
e.g. Eculidean) from that example to every other training example is mea-
sured. The k smallest distances are identified, and the most represented class in
these k classes is considered the output class label. The value of k is normally
determined using a validation set or using cross-validation.

2.4 Naive Bayes
Naive Bayes [19] is a successful classifier based upon the principle of Maximum A
Posteriori (MAP). Given a problem with K classes {C1, . . . , CK} with so-called
prior probabilities P (C1), . . . , P (CK), we can assign the class label c to an un-
known example with features x = (x1, . . . , xN ) such that c = argmaxcP (C =
c‖x1, . . . , xN ), that is choose the class with the maximum a posterior probability
given the observed data. This aposterior probability can be formulated, using
Bayes theorem, as follows: P (C = c‖x1, . . . , xN ) = P (C=c)P (x1,...,xN‖C=c)

P (x1,...,xN ) . As
the denominator is the same for all clases, it can be dropped from the compari-
son. Now, we should compute the so-called class conditional probabilities of the
features given the available classes. This can be quite difficult taking into ac-
count the dependencies between features. The naive bayes approach is to assume
class conditional independence i.e. x1, . . . , xN are independent given the class.
This simplifies the numerator to be P (C = c)P (x1‖C = c) . . . P (xN‖C = c),
and then choosing the class c that maximizes this value over all the classes
c = 1, . . . ,K. Clearly this approach is naturally extensible to the case of having
more than two classes, and was shown to perform well inspite of the underlying
simplifying assumption of conditional independence.

3



2.5 Support Vector Machines
Support Vector Machines are among the most robust and successful classification
algorithms [8, 6]. They are based upon the idea of maximizing the margin i.e.
maximizing the minimum distance from the separating hyperplane to the nearest
example. The basic SVM supports only binary classification, but extensions
[21, 4, 9, 15] have been proposed to handle the multiclass classification case as
well. In these extensions, additional parameters and constraints are added to
the optimization problem to handle the separation of the different classes. The
formulation of [22, 4] can result in a large optimization problem, which may be
impractical for a large number of classes. On the other hand, [9] reported a
better formulation with a more efficient implementation.

3 Decomposing into binary classification
The multiclass classification problem can be decomposed into several binary
classification tasks that can be solved efficiently using binary classifiers. The
most successful and widely used binary classifers are the Support Vector Ma-
chines [8, 6]. The idea is similar to that of using codewords for each class and
then using a number binary classifiers in solving several binary classification
problems, whose results can determine the class label for new data. Several
methods have been proposed for such a decomposition [1, 10, 11, 13].

3.1 One-versus-all (OVA)
The simplest approach is to reduce the problem of classifying among K classes
into K binary problems, where each problem discriminates a given class from the
other K−1 classes [18]. For this approach, we require N = K binary classifiers,
where the kth classifier is trained with positive examples belonging to class k
and negative examples belonging to the other K − 1 classes. When testing an
unknown example, the classifier producing the maximum ouput is considered
the winner, and this class label is assigned to that example. Rifkin and Klautau
[18] state that this approach, although simple, provides performance that is
comparable to other more complicated approaches when the binary classifier is
tuned well.

3.2 All-versus-all (AVA)
In this approach, each class is compared to each other class [11, 12]. A binary
classifier is built to discriminate between each pair of classes, while discarding
the rest of the classes. This requires building K(K−1)

2 binary classifiers. When
testing a new example, a voting is performed among the classifiers and the class
with the maximum number of votes wins. Results [1, 13]show that this approach
is in general better than the one-versus-all approach.

4



Table 3: ECOC example

f1 f2 f3 f4 f5 f6 f7

Class 1 0 0 0 0 0 0 0
Class 2 0 1 1 0 0 1 1
Class 3 0 1 1 1 1 0 0
Class 4 1 0 1 1 0 1 0
Class 5 1 1 0 1 0 0 1

3.3 Error-Correcting Output-Coding (ECOC)
This approach incorporates the idea of error-correcting codes discussed above
for neural networks [10]. It works by training N binary classifiers to distinguish
between the K different classes. Each class is given a codeword of length N
according to a binary matrix M . Each row of M corresponds to a certain class.
Table 3 shows an example for K = 5 classes and N = 7 bit codewords. Each
class is given a row of the matrix. Each column is used to train a distinct binary
classifier. When testing an unseen example, the output codeword from the N
classifiers is compared to the given K codewords, and the one with the minimum
hamming distance is considered the class label for that example. Diettrich and
Bakiri [10] report improved generalization ability of this method over the above
two techniques.

3.4 Generalized Coding
Allwein et al. [1] generalized the idea of ECOC to apply general coding tech-
niques, where the coding matrix M is allowed to take values {−1, 0,+1}. The
value of +1 in the entry M(k, n) means that examples belonging to class k are
considered as positive examples to classifier n. A value of -1 denotes that these
examples are considered negative examples. A value of 0 instructs the classifier
to ignore that class altogether. Clearly this scheme is the general case of the
above three coding strategies. The OVA approach has a matrix M such that
each comlumn contains exactly one +1 value with the rest filled with -1. The
AVA scheme has columns with exactly one +1 value and one -1 value with the
rest set to zero’s. The ECOC has the matrix M filled with +1 and -1 values.

When testing an unknown example, the codeword “closest” to the out-
put corresponding to that example is chosen as the class label. There is the
usual hamming distance between the two codewords. In addition, Allwein
et al. propose another approach for margin-based classifiers, where the out-
put of each binary classifier is real valued and denotes the “confidence” in
classification. The distance function is a certain loss function of the margin
d(M(k), f(x)) =

∑N
i=1 L(M(k, i)fi(x)) where M(k) is the kthrow in the matrix

M , M(k, i) is the ithentry in the kthrow, fi(x) is the output of the ithclassifier,
and L(.) is a specific loss function. The class having the minimum of such

5



distances is consifered the chosen class label.
Allwein et al. propose two methods for generating the matrix M . The first,

called the dense method, generates codewords of length d10 log2 Ke. Each el-
ement is generated randomly from {+1,−1}. A code matrix is generated by
randomly generating 10,000 matrices and choosing the one with the highest
minimum hamming distance among its rows. The second method, called the
sparse method, has codewords of length d15 log2 Ke. Each entry in the matrix
M is generated randomly to get the value of 0 with probability 1

2 and {-1,+1}
with probablility of 1

4 each. As before, the matrix with the highest minimum
hamming distance is chosen among 10,000 randomly generated matrices. Exper-
iments performed show that the OVA scheme is generally inferior to the other
approaches, while no one approach generally outperforms the others. This sug-
gests that the best coding strategy is problem dependent.

4 Hierarchical Classification
Yet another approach for tackling the multiclass classification problem utilizes a
hierarchical division of the output space i.e. the classes are arranged into a tree.
The tree is created such that the classes at each parent node are divided into a
number of clusters, one for each child node. The process continues until the leaf
nodes contain only a single class. At each node of the tree, a simple classifier,
usually a binary classifier, makes the discrimination between the different child
class clusters. Following a path from the root node to a leaf node leads to
a classification of a new pattern. Several methods have been proposed for this
hierarchical classification. Figure 1 shows an example tree for a 5-class problem.

Kumar et al. [14] propose a method called Binary Hierarchical Classifier
(BHS). The method uses K−1 binary classifiiers to classifiy a K-class problem.
The binary classifiers are arranged in a binary tree with K leaf nodes, each
corresponding to a given class. The binary class is recursively built top-down
starting from the root node, where at each node the cluster of classes available
at that node is split into two clusters. The binary split of clusters is done
via a simulated-annealing like process, where the final split is the one that
best discriminates the two sub-clusters according to the Fisher Discriminant.
This approach was applied to various classification datasets [17], and reported
comparable performance to ECOC, with the added advantage of using fewer
classifiers.

Chen et al. [7] use a similar approach of clustering the classes into a binary
tree called Hierarchical SVM (HSVM). However, the clustering is performed
via arranging classes into an undirected graph, with edge weights representing
the Kullback-Leibler distances between the classes, and employing a max-cut
algorithm to split the classes into two sub-clusters that are most distant from
each other. SVMs are used as the binary classifier at each node of the tree. They
reported improved performance versus bagged classifiers using remote sensing
data.

6



Figure 1: Example tree for 5-class problem

Vural and Dy [20] work on a similar approach of building a binary tree of
K−1 binary classifiers, which they call Divide-By-2 (DB2). The split of classes
into two clusters at each step is performed by either using k-means algorithm for
clustering the class means into two groups or by using the classes grand mean
as a threshold and putting classes with means smaller to the grand mean in one
cluster and those with larger mean into the other. At each node in the tree,
a binary SVM was used to distinguish between the two child clusters. When
testing a new pattern, a path is followed from root to a leaf node, indicating
the winning class label. They reported learning time to AVA approach, while
testing time was superior. Moreover, DB2 exhibited better performance than
OVA and AVA schemese.

5 Summary
This survey presented the different approaches employed to solve the problem
of multiclass classification. The first approach relied on extending binary clas-
sification problems to handle the multiclass case directly. This included neural
networks, decision trees, support vector machines, naive bayes, and k-nearest
neighbors. The second approach decomposes the problem into several binary
classification tasks. Several methods are used for this decomposition: one-
versus-all, all-versus-all, erorr-correcting output coding, and generalized coding.
The third one relied on arranging the classes in a tree, usually a binary tree,

7



and utilizing a number of binary classifiers at the nodes of the tree till a leaf
node is reached.

References
[1] Erin Allwein, Robert Shapire, and Yoram Singer. Reducing multiclass to

binary: A unifying approach for margin classifiers. Journal of Machine
Learning Research, pages 113–141, 2000.

[2] Stephen D. Bay. Combining nearest neighbor classifiers through multiple
feature subsets. In Proceedings of the 17th International Conference on
Machine Learning, pages 37–45, Madison, WI, 1998.

[3] Christopher M. Bishop, editor. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[4] Erin J. Bredensteiner and Kristin P. Bennett. Multicategory classification
by support vector machines. Computational Optimization and Applications,
12:53–79, January 1999.

[5] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Chapman and Hall, 1984.

[6] C. J. Burges. A tutorial on support vector machines for pattern recognition.
In Data Mining and Knowledge Discovery, pages 1–47, 1998.

[7] Yangchi Chen, M. Crawford, and J. Ghosh. Integrating support vector
machines in a hierarchical output space decomposition framework. In Pro-
ceedings of Geoscience and Remote Sensing Symposium, volume 2, pages
949–952, 2004.

[8] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, pages 273–297, 1995.

[9] Koby Crammer and Yoram Singer. On the algorithmic implementation
of multiclass kernel-based vector machines. Journal of Machine Learning
Research, pages 265–292, 2001.

[10] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via
error correcting output codes. Journal of Artificial Intelligence Research,
39:1–38, 1995.

[11] J. Friedman. Another approach to polychotomous classification. Technical
report, Stanford University, 1996.

[12] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In
Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances
in Neural Information Processing Systems, volume 10. The MIT Press,
1998.

8



[13] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass
support vector machines. In IEEE TRANSACTIONS ON NEURAL NET-
WORKS, volume 13, pages 415–425, March 2002.

[14] Shailesh Kumar, Joydeep Ghosh, and Melba M. Crawford. Hierarchical fu-
sion of multiple classifiers for hyperspectral data analysis. Pattern Analysis
and Applications, 5:210–220, 2002.

[15] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector
machines: Theory and application to the classification of microarray data
and satellite radiance data. Journal of the American Statistical Association,
99(465):67–81, March 2004.

[16] J. R. Quinlan. C4.5: Programs for Mahine Learning. Morgan Kaufmann,
1993.

[17] Suju Rajan and Joydeep Ghosh. An empirical comparison of hierarchical vs.
two-level approaches to multiclass problems. In Multiple Classifier Systems,
pages 283–292, 2004.

[18] Ryan Rifkin and Aldebaro Klautau. Parallel networks that learn to pro-
nounce english text. Journal of Machine Learning Research, pages 101–141,
2004.

[19] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI
Workshop on Empirical Methods in Artificial Intelligence, 2001.

[20] Volkan Vural and Jennifer G. Dy. A hierarchical method for multi-class
support vector machines. In Proceedings of the twenty-first international
conference on Machine learning, pages 105–112, 2004.

[21] J. Weston and C. Watkins. Multi-class support vector machines. Technical
Report CSD-TR-98-04, Department of Computer Science, Royal Holloway,
University of London, 1998.

[22] J. Weston and C. Watkins. Support vector machines for multiclass pat-
tern recognition. In Proceedings of the Seventh European Symposium On
Artificial Neural Networks, 4 1999.

9


