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SUMMARY 
 
We formulate  control problems for linear systems with delays in input and output, 
and discuss possibility of finite-dimensional characterizations of solutions.  In the case 
when delay exists in control input and controlled output, first, we derive an output 
feedback  control formula of the central solution type, which is given by using 
solutions of finite- and infinite-dimensional Riccati matrix inequalities.  Second, we 
show that, if the controlled output is chosen such that it satisfies the “prediction 
condition”, the solution to the infinite-dimensional Riccati inequality can be calculated 
by solving a finite-dimensional Riccati inequality.  We provide a system theoretic 
interpretation for the prediction condition, and show that, if the prediction condition is 
satisfied, there is an equivalent  control problem for finite-dimensional linear 
systems with no delay.  Finally, the equivalence result is extended to the case when 
delay exists also in measurement output. 
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1. Introduction 
 
 

This paper is concerned itself with finite-dimensional characterizations of general 
state space solutions to  control problems for linear systems with delays in input 
and output.  The fact that the state space of systems with delay is infinite-dimensional 
leads generally to infinite-dimensional characterizations for analysis and synthesis in 
systems with delay.  Actually, the standard  control problem for linear systems 
with delay was solved, as a special case of  control problems for distributed 
parameter (infinite-dimensional) systems, in the state space form based on two Riccati 
operator (infinite-dimensional) equations (see, e.g. [1]).  Later, more explicit and 
feasible solutions, which are based on two algebraic Riccati equations and a differential 
or transcendential (still, infinite-dimensional in kind) equation, were presented by 
focusing the cases with delays in control input or measurement output [2-4].  The 
infinite-dimensional equations are hard obstacles in implementing the solutions.  To 
bypass or overcome this difficulty, a lot of approaches have been proposed:  The  
control synthesis via delay-independent linear matrix inequality (LMI) would be one of 
such approaches [5-7]; further, the delay-dependent LMI approach has been developed 
for the state feedback case [7-8] and the output feedback case [9].  In [10-11], the 
infinite-dimensional LMI characterization of the solutions together with a 
finite-dimensional LMI algorithm has been proposed.  The discretization technique of 
infinite-dimensional Lyapunov functional also should be mentioned [12]. 
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In this paper, we formulate an output feedback  control problem for linear 

systems with delays in control input and controlled output, and discuss possibility of 
finite-dimensional characterizations of the solution along the same line as developed in 
[13-14] where generalized controlled outputs are introduced so that the spectrum 
decomposition and/or prediction of the state variable can be exploited for 
finite-dimensional solutions to LQ control problems in linear systems with delays in 
state and control input.  First, we derive an output feedback  control formula of 
the central solution type constructed by using solutions to finite- and 
infinite-dimensional Riccati matrix inequalities.  Second, we show that, if the 
controlled output is chosen such that it satisfies the “prediction condition”, the solution 
to the infinite-dimensional Riccati inequality can be calculated by solving a 
finite-dimensional Riccati inequality and the  control formula is deduced to the 
finite-dimensional one.  We provide a system theoretic interpretation for the prediction 
condition, and discuss a relation between the prediction condition and the robust 
stabilization result of [15].  It is also shown that, if the prediction condition is satisfied, 
there is an equivalent  control problem for finite-dimensional linear systems with 
no delay.  Finally, the equivalence result is extended to the case when delay exists not 
only in control input and controlled output but also in measurement output. 
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2. System Description and Problem Statement 
 
 

Consider a linear system with delays in control input and controlled output.  The 
system is defined over the interval  and described by [ , )0 ∞
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with the initial condition such that  and .  Here,  
is the internal variable vector of the system;  is the disturbance vector;  is 
the control input vector;  is the controlled output vector;  is the measurement 
output vector.  The number h  denotes the length of time delay and h .  The 
parameters  are constant matrices with appropriate 
dimensions and the parameter  is a matrix function, whose elements are 
bounded continuous functions, with appropriate dimension.  It is noted that the future 
trajectory of the internal variable  is uniquely determined by the value  
and the function , where , if the future control input 

 and the future disturbance  are given.  From this 
viewpoint, the pair  is the state of the system (1), and the state space of the 
system (1) is infinite-dimensional.  Note also that the controlled output  is a 
general form of linear function of the state  and the control input .  
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At each time , the output  is measured and, in addition, the past history of the 

input of , that is , is available at each time , because  is the control input. 
Thus, we consider the pair  as the measurement output, and define each 
admissible control input  as a bounded linear causal function of the measurement 
output .  The  control problem discussed in this paper is to find an 
admissible control  which controls the system (1) such that I) the closed loop 
system is asymptotically stable, and II) the closed loop system satisfies the inequality: 
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where “ T ” indicates transposition and  denotes the space of vector functions 
whose elements are square integrable over .  Here we note that the inequality 
(2) is equivalent to  
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where  denotes the transfer function of the system (1) from the disturbance  to 
the controlled output  and “

zwT w
z

2
i ” indicates the -norm.  An admissible control 

which satisfies I) and II) is called an  control. 
2L
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The  control problem formulated above is a special case of the standard  

control problem for distributed parameter systems, and the set of solutions can be 
characterized by two Riccati operator equations (see, e.g. [1]).  The operator equations 
are infinite-dimensional in general and so is this characterization.  The 
infinite-dimensional characterization would give us hard problems in computation and 
implementation.  Our concern is when finite-dimensional characterizations of the 
solutions are possible. 
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3. Riccati-Inequality-Based Solutions and Prediction Condition 
 
 

We start to present an infinite-dimensional solution which is suggested by a general 
characterization of solutions based on two Riccati operator equations.  To simplify 
presentation, we consider here a special case of the problem formulated in Section 2.  
Let the system (1) be given in the following form: 
 

1 20 21

0

0 1 21

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )
( ) ( ) ( )

h

x t Ax t Gw t B u t B u t h

F x t F B u t d
z t

u t
y t C x t w t

β β β
−

= + + + −

 + +=
  

= +

∫

�



T

}

                             (3) 

 
where  and  are sub-vectors of the disturbance vector  such that 

.  This special form assures so-called orthogonality not only 
between the system disturbance ( (  and the measurement disturbance 

 but also between the term of the state  and the term of the 
control input  in the controlled output equation. 
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Now we prepare a notation for defining a quadratic form of the state.  Denote by 

 a quintet of five matrices , , ,  and 
 with the same dimensions such that  and  are constant matrices, 
 and  are matrix functions whose elements are in  and 
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 is a matrix function whose elements are in .  A quintet 
 is called symmetric if  and .  

For a given symmetric quintet , a quadratic form associated with 
this quintet is defined as follows: 
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for constant vectors φ , 0 ψ  and a vector function φ  in .  A symmetric 
quintet  is called positive (negative) definite, denoted as 

, if there exists a positive number  such that 
1; R02 , R

0(> <
1
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for all .  For simplicity, a special quintet with  and  is 
written as a triplet { , , and its quadratic form is 
defined by .  
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3.1 Infinite-dimensional solution.  The central solution, which is given by two 
Riccati operator equations, is a general  control of infinite-dimension and plays a 
fundamental role in parameterizing all the solutions [1].  We present a new 
infinite-dimensional solution that is an extension of the central solution in such a way 
that the Riccati operator equations, which are equivalent to Riccati type partial 
differential equations for integral kernels, is relaxed into some Riccati inequalities.   

For a triplet  and a constant matrix , introduce a triplet , 
a constant matrix  and a matrix function  such that 
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Theorem 1.  If there exist a positive definite matrix  and a positive definite triplet 
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Proof.  For an admissible control input , consider the quadratic functional u
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along the trajectory  defined by the systems (3) and (7) where  is 
replaced with the admissible control .  Differentiating both sides of the quadratic 
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(Stability)  First note that, from the positive definiteness of  and { ,  in 
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Remark.  If a constant matrix  and a triplet { ,  satisfy the 
infinite-dimensional matrix inequality given by 
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where the elements of the matrix functions  and  is continuously differentiable, 
the matrix  and the triplet  satisfy the inequality (5).  Such a sufficient 
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condition based on infinite-dimensional matrix inequalities as above are developed for 
analysis and synthesis problems in linear time-delay systems by Azuma et al. [10] and 
Azuma et al. [11].  Moreover, they propose a technique reducing infinite-dimensional 
matrix inequalities to finite-dimensional ones, when the inequalities are rewritten in the 
linear form. 
 

3.2. Prediction condition and finite-dimensional solution.  The most hard problem in 
implementing the  control (6) is to find the solution of the infinite-dimensional 
Riccati inequality (5).  Here, we consider a particular case when this 
infinite-dimensional inequality is reduced to a finite-dimensional one.  To the 
controlled output equation in the system (3), we introduce a structural assumption 
described as 
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satisfy the infinite-dimensional Riccati inequality (5).  Moreover, in this case, the  
control (6) is rewritten as 
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Proof.  The former half of this theorem is shown by direct substitution of the formula 
(11) with (10) into the inequality (5) on the assumption of (C1).  The form of (12) and 
(13) is derived from the original form (6) and (7) by substituting the formula (11) into 
(6) and (7) on the assumption of (C1) and setting 
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Q.E.D. 

 
Here we present a system theoretic interpretation of the condition.  When the condition 
(C1) is satisfied, the controlled output in the system (3) is reduced to the form: 
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From the formula (16), we can see that  (more precisely, e p ) corresponds to 
the predictive value  of the internal variable .  Thus, if the condition 
(C1) is satisfied, the problem becomes to control the predictive value of the internal 
variable, and we call (C1) the “prediction condition”.  It is also noted that  
defined by (11) satisfies a finite-dimensional linear system given as 
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Then, comparing our solution given by (12) and (13) with the central solution for 
lumped parameter systems, we see that the corresponding measurement output should 
be given in the following form 
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As discussed in the next section, the finite-dimensional characterizations presented in 
Theorem 2 come from the resultant descriptions of (15), (17) and (18). 
 
 
 
 
 
 

4. Prediction Condition and Finite-Dimensional Problem 
 
 

We come back to the general  control problem formulated in Section 2.  In the 
general case, the condition corresponding to the condition (C1) in the special case is  
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The implication of the condition (C2) is the same to that of the condition (C1).  So we 
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call (C2) also the prediction condition.  On the condition (C2), we show a stronger 
result in finite-dimensional characterizations of solutions without using Riccati 
equations or inequalities. 
 
 
Theorem 3.  Suppose that the condition (C2) is satisfied.  Then, the  control 
problem described by the criterion (2) and the system (1) is equivalent to the  
control problem described by the criterion (2) and the following finite-dimensional 
system: 

H∞

H∞

 
� ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

p t Ap t B w t B u t
z t C p t D u t
q t C p t D w t

h= + +
= +
= +

1

10 1

2 2

                                      (19) 

 
where  is the internal variable with ,  is the measurement output  
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u t t q u( ) ( , ( ), )= ⋅ ⋅Γ H∞

 

x t p t e B u t d
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= − +

= − +
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−

z
z

β

β

β β

β β

21

0

2 21

0
                              (20) 

 
and using (C2), we can show from (19) that  and  defined above obey the 

system (1) and the control  is an 

solution to the  control problem described by (2) and (1).  Conversely, let 
 be a solution to the  control problem described by (2) and (1).  

Defining 

x t( )

C( )

y t( )
A h( )− +βu t t y e B u d u

h
( ) ( , ( ) , )= ⋅ + ⋅+

− ⋅zΓ 2 21

0
β β

H∞
H∞

)⋅u t t y u( ) ( , ( ),= ⋅∆

 

p t x t e B u t d

q t y t C e B u t d

A h

h

A h

h

( ): ( ) ( )

( ): ( ) ( )

( )

( )

= + +

= + +

− +

−

− +

−

z
z

β

β

β β

β β

21

0

2 21

0
                  (21) 

 
and using (C2), we can show from (1) that  and  defined above obey the 

system (19) and the control  is an 

solution to the finite-dimensional  control problem described by (2) and (19).  
Thus, we obtain the conclusion of Theorem 3.                            Q.E.D. 

p t( )

q( )= ⋅

q t( )

e A h− +βu t t C B u u
h

( ) ( , ( ) , )( )− ⋅+
− ⋅z∆ 2 21

0
β β

H∞

 
Controlled outputs are chosen correspondingly to purposes of control design.  We 

comment briefly on meanings of the prediction condition (C2) (or (C1)) from the 
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viewpoint of control design.  If it is required to control the predictive value of the 
internal variable, the prediction condition will be satisfied automatically.  In the 
previous work [15], the authors proved the same equivalence as in Theorem 3 under the 
assumption that the condition 
 
(C3)  C B  h C A B ii

11 21 10 210 0 0 0 1( ) , , , , , ,β β= − ≤ ≤ = = ⋅ ⋅ ⋅2
 
and showed that the framework of  control problems for input delayed systems 
satisfying (C3) includes the robust stabilization problems against additive or 
multiplicative perturbations (including uncertain delay case).  We can verify 
immediately that the condition (C3) is a sufficient condition for the prediction condition 
(C2) to hold, and therefore see that such robust stabilization problems can be handled 
also in the framework of this paper.  To clarify more general meanings of the 
prediction condition from the viewpoint of control design is still an open problem of 
interest.  

H∞

 
 
 
 
 
 

5. Delay in Measurement Output and Prediction Condition 
 
 

We finally discuss a possibility of applying the idea of prediction condition to the 
case with delay in measurement output.  Consider a linear system with delays not only 
in control input and controlled output but also in measurement output, which is 
described by 
 

1 20 21
0

10 11 21 1

0

20 21 22 1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

h

r

x t Ax t B w t B u t B u t h

z t C x t C B u t d D u t

y t C x t C x t r C B w t d D w t

β β β

β β β

−

−

= + + + −

= + + +

= + − + + +

∫
∫

�

              (22) 

 
Here ( )y t

)

 is the measurement output and, except for the measurement equations, the 
system (22) and the system (1) is the same.  In addition to the assumption for the 
system (1), we assume that  and , where  is the 
measurement delay,  are constant matrices with appropriate dimensions and 

 is a matrix function, whose elements are bounded continuous functions, with 
appropriate dimension.  For the measurement output in the system (22), consider the 
following condition: 

( ) 0x β = ( ) 0, 0w rβ = − ≤ ≤β

≤ ≤

0r >

20 21,C C

22 (C β

 
(C4)  C B  ( )

22 1 21 1( ) , 0A rC e B rββ β− += −
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From the role of this condition in predicting the internal variable, as we will see in the 
proof of the next theorem, we call also this condition (C4) the prediction condition. 
 
 
Theorem 4.  Suppose that the condition (C4) is satisfied.  Then, the  control 
problem described by the criterion (2) and the system (22) is equivalent to the  
control problem described by the criterion (2) and the system (1) where  in the 
measurement output equation is replaced with  such that 

H∞

2C
H∞

20 21: Ar
rC C C e−= +

 
2( ) ( ) ( )ry t C x t D w t= +  

 
 
Proof.  This theorem is proved along the same line as in the proof of Theorem 3, if we 
can show that the measurement data ( ( ), )ty t u  in (22) is equivalent to the measurement 
data  in (1).  First note the formula: ( ( ), )ty t u
 

0 ( )
1

0 ( )
20 21

( ) ( ) ( )

( ( ) ( ))

Ar A r

r

A r

r

e x t x t r e B w t d

e B u t B u t r

β

β

β β

β β

− − +

−
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−

= − + +

+ + + +

∫
∫ dβ−

 

 
Using this formula and the condition (C4), we can see that 
 

0 ( )
2 21 20 21

0 ( )
21 20 21

( ) ( ) ( ) ( ( ) ( ))

( ) ( ( ) ( ))

A r
r r

A r

r
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β

β

β β

β β β

− +

−

− +

−

= + − + + + −

= − + + + −

∫
∫

β
 

 
Thus, the equivalence follows.                                        Q.E.D. 
 

Differently from the case of controlled output, the form of the measurement output 
equation in system (22) satisfying the prediction condition (C4) is rather restrictive, 
because measurement outputs are generally determined a priori, e.g. by physical 
constraints and not chosen purposely by designers.  On the other hand, if the 
disturbance  can be measured, so that the past history of the disturbance 

 is available at each time , we can always obtain the form of 
measurement output equation in (22) satisfying the prediction condition (C4) from the 
measurement output equation of the form 

1 ( )B w t
}s t≤ ≤1{ ( ), 0B w s t

 
20 21 2( ) ( ) ( ) ( )y t C x t C x t r D w t= + − +  
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6. Conclusion 
 
 
We discussed the output feedback  control problem for linear systems with delays 
in control input, controlled output and measurement output, and showed that the 
finite-dimensional characterization of the solution is possible if the prediction condition 
on the controlled output and/or the measurement output is satisfied.  We also discussed 
the meaning of the prediction condition from the viewpoint of control design. 

H∞
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