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Abstract

Despite the advances reached along the last 20 years, anomaly detection in network behavior is still an immature technology, and the

shortage of commercial tools thus corroborates it. Nevertheless, the benefits which could be obtained from a better understanding of the

problem itself as well as the improvement of these mechanisms, especially in network security, justify the demand for more research efforts

in this direction.

This article presents a survey on current anomaly detection methods for network intrusion detection in classical wired environments. After

introducing the problem and elucidating its interest, a taxonomy of current solutions is presented. The outlined scheme allows us to

systematically classify current detection methods as well as to study the different facets of the problem. The more relevant paradigms are

subsequently discussed and illustrated through several case studies of selected systems developed in the field. The problems addressed by

each of them as well as their weakest points are thus explained. Finally, this work concludes with an analysis of the problems that still remain

open. Based on this discussion, some research lines are identified.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The automatic identification of anomalies in the behavior

of network infrastructures is a concern that has aroused

interest since the increasingly greater complexity and speed

of operation of current technologies are complicating the

system monitoring functions until reach unmanageable

limits. Nowadays networks are complex systems, in which

tasks like correct configuration of components, control of

change over time, or the very verification of proper

operation are extremely arduous chores that require highly

skilled personnel as well as a large amount of time and

effort.

In the field of system management, network faults are

typically classified into two categories: hard and soft

failures [39]. Strictly speaking, the difference between
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them is not given by the nature of the phenomenon that

caused the malfunction (there are other classifications

according to this criterion), but by the level of seriousness

of the state reached. Thus, soft failures correspond to

performance degradation in any parameter of a network

element, like an increase in the delay of a service response,

or a reduction of the available bandwidth. Alternatively, the

term hard failure is commonly used to designate situations

in which the whole network or some of its elements cease

completely to work. Undoubtedly, in a typical work

environment any of the two types of situations commented

above conduce to an anomalous behavior of the network

that is sooner or later experienced by users. A variety of

methods have been proposed and developed to assist in the

process of recognizing this kind of situations, albeit current

best tools are almost all ad hoc and require qualified

administrators.

This challenging scene is aggravated by the immeasur-

able growth of security incidents in the last years. Reports

from CERTw Coordination Center on incidents, vulner-

abilities, security alerts, etc. [30] corroborate this fact.
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Thus, the number of incidents reported has evolved from

only 6 in 1988, to 82,094 in 2002 (and more than 42,000

during the first quarter of 2003). Regarding vulnerabilities,

171 alerts were pointed out in 1995, while in 2002 this

number growth until 4129. Furthermore, nobody calls into

question that these statistics do not comprise all the

incidents occurred, but merely those reported. Companies

have often their own reasons to keep secret the security

incidents suffered.

Within the context of network security, anomaly

detection is one of two fundamental approaches used in

intrusion detection (ID) technology [4,9], together with

misuse-based (also called signature-based) techniques.

Despite their proved benefits, one of the major limitations

of current misuse-based mechanisms consists in their

inability to detect patterns not previously added in the

attack signatures library. For instance, Fig. 1 illustrates the

best detection results for different intrusion types used in

the 1999 DARPA ID Evaluation performed at MIT Lincoln

Labs. In the case of Denial-of-Service (DOS) and Remote-

to-Local (R2L) attacks, the detection rate with not

previously seen attacks is quite poor. As in other fields

like that of virus/worm detection, to rely on a system whose

effectiveness is rooted on the knowledge of patterns is not a

bad approach, although it is obviously not expected a good

operation with unknown activities. Alternatively, the

anomaly detection approach has been typically conceived

as a more powerful method due to its theoretical potential

for addressing novel or unforeseen attacks.
1.1. Overview of the article

Methods of anomaly detection as a component of early

warning systems for network security are the focal point of

this article. Section 2 introduces the problem through the

presentation of several aspects: theoretical considerations,

general architecture of anomaly detection systems, and a

brief historical background. With the aim of facilitating the

reading as well as to provide a sound framework, a

taxonomy of network-based anomaly detection methods is
Fig. 1. Detection results of the top three IDS for the four different intrusion

classes used in the 1999 DARPA/MIT Lincoln Labs evaluation [18].
proposed and discussed in Section 3. This classification

scheme gathers the most relevant features related to both the

problem itself and the proposed solutions. With the help

provided by a taxonomy, it is possible to perform an

analysis in which a better understanding of the problem is

achieved and solutions are easily placed according to the

facets that they address.

In Sections 4–6, the main paradigms of traffic analysis for

anomaly detection are examined. Flows analysis is presented

and commented in Section 4, while Section 5 introduces and

illustrates by means of several examples systems based on

protocol analysis. Because of its special relevance, anomaly

detection at the application layer is treated separately in

Section 6. These sections do not intend to be an exhaustive

list of developed systems, but an exposition of different

paradigms and approaches to the problem. Nevertheless,

several case studies are commented in detail in each section,

providing thus examples of prototype designs as well as real

systems. Most of the techniques proposed and surveyed in

this work lacks of a term to designate them because their

authors have not chosen a name for them. In these cases, the

criterion followed has been that of referring to each model by

using the authors’ initials.

As was stated before, anomaly detection is still an

immature technology which does not end up implanting. In

Section 7, the main problems concerning the current state-

of-the-art of anomaly detection technology are discussed,

indicating by this way possible directions for future

research. Finally, Section 8 summarizes this work by

presenting the main conclusions.
2. Problem statement and scope

Evidently, to pose the problem of anomaly detection in

any system implies the existence of a subjacent concept of

normality. The notion of ‘normal’ is usually provided by a

formal model that expresses relations between the funda-

mental variables involved in the system dynamics. Conse-

quently, an event is catalogued as anomalous because its

degree of deviation in relation to the profile of characteristic

behavior of the system, specified by the model of normality,

is high enough.

Formally, an anomaly detection system l can be defined

as a pair lZhM,Di, where M is the model of normal

behavior of the system and D is a similarity measure that

allows obtaining, given an activity record, the degree of

deviation (or likeness) that such activities have with regard

to the model M. This similarity function, D, usually depends

strongly on the specific used model, in such a way that the

measure process (commonly referred to as detection), as

well as the very mechanisms used to monitor and register

activities, are highly related to the modeling technique.

Fig. 2 graphically illustrates the general architecture of

a network-based anomaly detection system. Although the

detection is basically an analysis process, every system



Fig. 2. Architecture of a generic anomaly detection system.
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relies upon a sensor net that continuously monitors the

supervised objects and records interesting activities. In the

case of a distributed capture of events, a module for mixing

them up is required (‘Event Fusion and Preprocessing’

block in the figure). Problems like deciding which activities

are interesting, where to place the sensors, or how to

properly manage and store the enormous amount of events

which could eventually be present in a system, are out of the

scope of this work.

The core of the system is constituted by two main

modules: the modeling subsystem and the detection

subsystem. The first of them works during a training stage

(module ‘T’ in Fig. 2), and performs an event processing in

order to obtain the model M of the normal behavior of the

system. It is drastically important the completeness of the

training data during this period, since the modeling

subsystem will infer what is normal from them. The

obtained model is subsequently used by the detection

engine to evaluate new events. As was stated before,

this evaluation is a measurement of the degree of deviation

that such events present in relation to the model of the

system.

These two modes of operation (construction and

detection) are usually carried out separately. However, it

is important to note that systems evolve and, therefore, the

model should be reconstructed periodically in order to

provide a way of adaptation to the new environment.
2.1. The suspicion hypothesis and the anomaly detection

problem in network security

The key to the application of anomaly detection methods

to the field known as intrusion detection consists in a simple

but crucial hypothesis: to assume that anomalous events are

suspicious from a security point of view. The acceptance of

this conjecture, which can be designated as the Suspicion

Hypothesis, is supported by the analysis of a large amount

of network attacks. A careful study of hostile traffic reveals

the existence of peculiar characteristics that could differen-

tiate it from those usual communications across the

network. With the aim of clarifying the assumption of this

hypothesis, a few examples are mentioned below.
2.1.1. Example 1: denial of service (DoS) attacks

by network flooding

It is a well-known fact that certain variables related to the

amount of resources consumed by network traffic (for

instance, the total number of packets/bytes sent or received)

exhibit a regular waveform when they are considered as

temporal series. The specific behavior shown is character-

istic of each network system, and it depends on a large

number of factors like the number of network elements, the

user patterns of activity, the time of the day, and so on.

While the network configuration is not altered and the users

stay within their daily routine, these patterns of network

activity remain unaltered along time.

On the other hand, one of the unfortunately better known

forms of DoS attacks are those based on resource saturation.

In the case that occupy us, traffic flooding has been surely

the most used technique to carry out these kinds of actions.

During a DoS attack based on traffic flooding, the attacker

continuously sends a large amount of information to the

target system, consuming bandwidth and degrading thus the

performance of the victim. Several variants of this principle

can be mentioned, from the simple TCP/UDP flooding to the

devastating distributed DoS (DDoS) tools, which floods

simultaneously the target from many sources [28].

Other paradigmatic example is the case of the attack

known as Smurf. It is an old attack based on the use of forged

ICMP echo request packets. On IP networks, a packet can be

broadcasted to an entire network if routers allow to pass

along that traffic. This attack includes the unintentional

participation of an intermediary, to whom spoofed packets

are sent. When all the machines in the intermediary’s

network respond to the ICMP echo request, the replies are

sent to the target, which could potentially become unusable

due to the congestion produced by the flood [29].

In any case, the fundamental result of such attacks is

always a substantial change in the network typical pattern of

activity, providing thus a way for an early detection.
2.1.2. Example 2: protocol misuses in intelligence

gathering and other hostile processes

Far from being random, a network intrusion is used

to being a very structured operation, carefully planned
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and executed. These processes are usually comprised of a

series of well-identified steps. Nevertheless, in nearly all

cases the gathering of intelligence is at the basis of every

intrusion attempt, and its objective is seemly simple: to

acquire as much knowledge about the target as you can.

Information sought by an intruder concerns network, host

and user mapping. In the case of a host, to find out data like

the operating system or the services offered by the platform

is crucial for subsequent actions. In most of cases, this

information can be obtained through diverse protocol

usages that fall out of the official protocol description.

Although protocols are described by means of formal

specifications with the aim of dictating proper use, their

description is not always complete. Different implemen-

tations of the same protocol stack exhibit different behavior

facing certain situations, according to the particular

interpretation performed by the engineers who have

designed it. This fact generally allows to remotely identify

the operating system that is running in the platform, thus

facilitating the task of seeking exploitable vulnerabilities in

the potential target. Likewise, it is possible to reconstruct

part of the network topology by exploring it from the outside

through ‘especial’ probe packets. Knowledge concerning

the hosts reachable from a given point is extremely useful

for an attacker with the aim of propagating his/her activities

along the whole network infrastructure. As was stated

above, the mentioned activities are usually performed

through non-conventional protocol usages. Even when

TCP and UDP scans are one of the most primitive forms

of probing, it is easy to identify anomalous usages in several

techniques based on them. In the case of TCP, the presence

of rare combinations of flags as well as suspicious TTL

(Time To Live) field values are almost always indications of

scanning activity.

Regardless of their use for scanning purposes, protocol

misuses have been typically used for other kind of attacks.

An example is the usually referred to as land attack, in

which an IP packet is launched against the target with a

bogus source address, specifically with both destination and

source addresses equal [42]. Several protocol stacks

experienced serious troubles when such a packet was

processed, and the destination host was usually disabled.

These and other related anomalies were pointed out

during a study carried in 1993 by Bellovin [26]. Despite this

early work, nowadays more works still mention the presence

of malformed packets in networks as well as the increas-

ingly important need to detect them. For instance, in

Ref. [27] Bykova et al. identify several categories of

malformations observed in TCP/IP packets that include:
,
 Packets with low TTL values
,
 Packets with the same source and destination port

numbers
,
 Packets containing private IP addresses and/or other

address violations

Fig. 3. Possible cases when anomaly detection based on the Suspicion
,
 Packets with invalid TCP flags
,

Hyp
Packets containing zero port number
,
 Packets with strict source routing option
,
 Too short packets
Despite the two examples provided above, the Suspicion

Hypothesis is not always verified in the practice due to the

inherent differences between the notions of normal/anoma-

lous and harmless/attack event. This fact introduces as a

main implication the apparition of an interesting casuistry

according to the real nature of the event (from a security

point of view) and the classification performed by the

detector. Fig. 3 summarizes the four possible cases. True

negatives as well as true positives correspond to a correct

operation of the detector; that is, harmless events which are

successfully labeled as normal, and detected attacks,

respectively. False positives and negatives are the events

that undermine the detection performance when the

Suspicion Hypothesis is not verified. In fact, the false

positive rate (also known as false alarm rate) is the true

limiting factor in anomaly detectors. It is really easy to

construct a detector devoid of false negatives, i.e. a detector

that identify every anomaly: it only has to label every event

as anomalous. By using this approach, every anomaly will

be correctly detected, but its false alarm rate makes it

absolutely unfit for use.

Therefore, the main objective of anomaly detection

within this context is to detect all possible abnormal

activities, minimizing the number of false alarms produced.

2.2. Background: anomaly detection in host-based modeling

The problem of intrusion detection, and more specifically

that of anomaly detection, was historically first formulated
othesis is used for attack identification.
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and studied within the context of host-based analysis. This

circumstance can be easily understood if it is considered the

initial framework in which the necessity for such systems

was articulated: the attempt to establish an analogy between

the security-oriented monitoring tasks performed by human

administrators and the requirements of an automatic

detection system.

In nearly all cases, administrators carry out their analysis

by inspecting log files, which reflect those interesting events

recently happened in the system. These events are basically

related to activities in which users and applications make

use of system resources, like the time of the day when a user

logged in, the sequence of commands a user types, and so

on. The first and natural approach attempted to build

anomaly detectors that compared previously computed user

profiles to the current user activity. The earlier works of

Anderson [10] and Denning [11] followed this direction.

Likewise, subsequent systems like NADIR [12], IDES [14],

NIDES [15], or Emerald [13] (built upon the two previous)

presented several interesting and novel techniques, and

improved the detection performance of user-based

modeling.

Although the analysis of user activity is a natural

approach to detect intrusions, experience has showed that

it is far from being accurate. The reason for this can be

found in the lack of strict patterns in the user behavior. It is

possible to identify several causes for these changes: new

programs are installed and users start to use them, the user

suddenly changes his/her working hours, the user constantly

improves his/her abilities learning new commands, etc. As a

consequence of such variability, user profiles are very

inaccurate and detection systems raise a large amount of

false alarms.

The results obtained under the approach of estimating

user dynamics allowed a more in deep reflection on the

features that defines the host behavior. Despite users

constitute essential pieces in the system, all the actions

carried out by them, like resource access (memory, files,

CPU), are finally done by using programs. Furthermore,

from certain perspective it is possible to divide the

application code into two kinds of instructions (at high

level, not assembly instructions): (1) those that compose the

program logic and structure, like assignation of values to

variables, condition evaluation, flow-control structures, and

so on; and (2) those that constitute the effective access to

system resources, such as process execution, file open/

read/write, etc. In current commercial operating systems

(OS) the final access to resources is limited to kernel and

other internal OS components. Programs obtain the required

services by executing the specific system call that provides

the needed function. The set of system calls can be thus

viewed as a set of available services offered by the OS to the

‘client’ applications to access system resources.

Therefore, and since the code of a given application

should not change, the sequence of system calls executed by

a program should be regular and predictive. On the other
hand, several attacks involve program misuses (even code

changes, like during a buffer overflows) which could be

certainly detected by observing deviations in relation to

normal executions. The analysis of system call sequences

was first proposed by Forrest [16]. The idea, briefly

commented before, is that of tracing the system calls that

processes issue during their execution. After learning this

behavior, it is possible to perform prediction of the next call

given the past sequence. When a considerable amount of

predictions fails to be correct, the detection system raises an

alarm.

Several approaches based on the modeling of system

calls executed by a program have been proposed to build

host-based intrusion detection systems. For instance, a

comparison of the use of several learning models for this

purpose is presented in Ref. [17].
3. Criteria to classify anomaly detection methods

in networks

In every field of science and technology, categorizing a

phenomenon allows to systematically study the most

relevant aspects involved in its investigation. In a remark-

able work related to taxonomies of computer security flaws,

Landwehr et al. [31] made a shrewd reflection which

deserves to be cited: “A taxonomy is not simply a neutral

structure for categorizing specimens. It implicitly embodies

a theory of the universe from which those specimens are

drawn. It defines what data are to be recorded and how like

and unlike specimens are to be distinguished.”

Current anomaly detection methods can be classified in

accordance with the organization provided by the scheme in

Fig. 4. These criteria allow not only to classify techniques,

but also to understand the main aspects of the problem

addressed by a given method. In what follows, each one of

the proposed criteria is described in detail.

3.1. Network feature analyzed

As many other systems, a network is a complex assembly

of components with non-trivial relationships that can be

studied from several points of view. To consider the notion

of ‘normal behavior’ of the network as a whole could

conduce to a clear failure. When the problem of anomaly

detection is posed within this context, it is necessary to

formulate explicitly which network features, or facets, the

model of normality refers to. Thus, detectors can be

classified according to the feature modeled.

Traditionally, traffic has been the unique network-related

aspect addressed by detection systems. Methods that obtain

models of normality by analyzing network traffic can be

divided into two groups, according to the way that the traffic

is inspected. Techniques termed ‘Flows Analysis’ (see

Fig. 4) are characterized by the study of the temporal

evolution of several measures related to traffic flows.



Fig. 4. Three proposed criteria to classify anomaly detection methods in networks.
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Such measures are often event counts over time. Typical

examples of event counts in a TCP/IP environment are

(these and other counts can be also computed for a network

segment instead of focusing on a given host):
,
 The number of bytes sent/received during a fixed time

interval by a given final system.
,
 The number of IP/TCP/UDP/ICMP packets sent/

received by a given final system during a fixed time

interval.
,
 The number of TCP/UDP connections initiated during a

fixed time interval.
,
 The number of requests received by an HTTP/DNS/

FTP/SSH/etc. server during a fixed time interval.
,
 Etc.
As was briefly commented in the first example provided

in Section 2.1, these event counts present a regular

waveform when they are plotted as temporal series. Several

methods based on their analysis have been proposed and

will be discussed subsequently.

On the other hand, protocols are an essential piece of

networking and, of course, they have been widely used

in attack technology. In order to detect protocol misuses,

several approaches have focused on the modeling of

protocol usages. From this point of view, it is possible

to classify systems according to the network layer

modeled:
,
 Data link (Ethernet, Token Ring, etc.)
,
 Network (IP in most of cases)
,
 Transport/Control (TCP, UDP, RTP, ICMP, etc.)
,
 Application (HTTP, DNS, Telnet, FTP, SSH, POP,

SMTP, etc.)
In contrast to the previous discussion, more facets

besides traffic can be considered in order to characterize a

network behavior. For instance, network topology can be an

interesting point to study. In a ‘classical’, wired environ-

ment (say, a local area network), the topology is a relatively

invariant feature and, therefore, irrelevant from certain

perspective. Nevertheless, this situation drastically changes

in ad hoc networks, in which patterns of connectivity

continuously evolve and can become a key point to study

the presence of hostile activities.

In spite of the two provided main criteria (network traffic

and topology), other network features can be easily added to

the proposed scheme.
3.2. Behavior model

As stated before, one of the essential components of any

anomaly detector is the model of normal behavior of the

system which serves as pattern of correctness In general

terms, there are two main approaches to the construction of

such a model. The first of them is based on the application of

machine learning techniques, in order to automatically

obtain a representation of normal behavior from the analysis

of system activity. On the other hand, the alternative is to

manually provide specifications of correct behavior. Any-

way, this criterion concerns the model construction itself

and, therefore, it is independent of whether the feature that
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is modeled is a network protocol, traffic flows, or any other

relevant characteristic.
3.2.1. Learnt models

The natural and historically first formulated approach

towards the construction of models of normal behavior of

a system consists in observing it while it is working under

normal conditions, and applying machine learning tech-

niques in order to obtain a model that: (a) explains, by

means of a reduced representation, the amount of data

observed; and (b) be able of extrapolate to other, non-

observed situations. Within this context, there could be so

many different types of models as existing learning

techniques. Classic examples are rule-based systems,

statistical algorithms (from simple estimators to Markov

Chains, or powerful Hidden Markov Models), and Artificial

Neural Networks.
3.2.2. Specification-based models

In specification-based detectors, the model is not

estimated by analyzing training data, but it is constructed

by an expert human. In this case, the model is usually

composed of a set of manually developed specifications that

capture legitimate system behavior. Note that, if specifica-

tions are complete enough, the system would be capable to

detect illegitimate patterns of behavior. In the best case, the

false alarm rate is minimized because this kind of models

avoids the problem of harmless activities that has not been

previously seen. This is an unavoidable problem in learning-

based approaches, in which the notion of normality is

obtained exclusively by analyzing training data.

Specifications are provided by using any kind of formal

tool. For example, FSMs (Finite State Machines) seem to be

appropriate to model network protocols, while mere

descriptions in a specific language could be useful to

establish other types of legitimate behavior.

The main drawback of this approach is that development

of high-quality and useful specifications is often difficult

and time-consuming [32]. Nevertheless, the amount of

efforts devoted to develop specifications should be con-

ceived as a task comparable to others existing in the security

field, e.g. configuration of filters in a firewall, or construc-

tion of attack signatures in misuse-based ID systems. Even

if the development of specifications could be a more

arduous task, its main advantage is that, theoretically, it has

to be done only once.
3.3. The notion of analysis scale

Although it is not always well identified, the notion of

scale of analysis is implicit in every anomaly detection

method proposed until the date. In order to achieve our

objective of obtaining accurate models of normality of a

network, a deep comprehension of the phenomena involved

in its dynamics is required. Nevertheless, there are several
points of view, or dimensions, from which to carry out such

a study.

From a mere functional perspective, the elements

involved in a network can be taken into consideration.

Within a simple scheme, a service could be identified as an

atomic entity. A host is composed by several services, and a

network by several hosts. Although very simplistic, this

classification allows us to distinguish between those

methods that try to obtain models of normality for a given

service, from those that perform this task by modeling a

complete host, or even the whole network.

On the other hand, if the problem is focused from the

point of view of network traffic analysis, a similar notion

concerning the time dimension arises. The behavior of a

traffic variable over time (for instance, the number of

TCP/UDP connections initiated, or the number of IP packets

sent/received) can be studied in several time scales. It is a

well-known fact that these traffic-related measures exhibit,

under normal conditions of operation, periodic patterns that

can be easily visualized. For example, if we count the

number of packets received by a service during time

intervals of 1 h and we plot the obtained series, a

characteristic pattern of activity will be displayed. It is

possible to identify diurnal and nocturne regimes in such a

plot, or even more fine-grain divisions as well as weekly and

seasonal profiles. In any case, the traffic model used to

measure normality is related to this behavior at one or

several time scales.

Finally, the notion of scale can be also identified when

protocol analysis is used for anomaly detection. The

inspection of individual packets can be viewed as a low-

scale analysis, in contrast to the study of packet streams

(medium scale), or even the simultaneous evaluation of

different connections within the whole network (high scale).

The importance of the scale of analysis in anomaly

detection methods lies in the fact that certain anomalies/

attacks are only observable at certain scales. For instance,

the old attack known as ‘land’ is characterized simply by an

IP packet in which both source and destination addresses are

equal [42]. This attack can be easily detected by inspecting

each packet separately. On the other hand, detection of

certain forms of DDoS attacks usually requires some kind of

correlation or aggregation mechanism among different

sources and connections, since the inspection of individual

packets does not reveal any sign of anomaly.

Based on this discussion, several analysis levels, or

scales, can be proposed to classify anomaly detection

methods and, hence, the kind of anomalies/attacks that they

are capable to detect. A simple scheme, in which three

scales are considered, is the following:
,
 Microscale (m-models). Methods based on the analysis

of low-level features. According to the feature modeled,

examples of low scales of analysis are:
† Analysis of individual packets, in the case of

protocol analysis.
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† Traffic analysis during short periods of time (e.g.

!1 s).

† Traffic analysis destined to a specific service within a

host.
,
 Mesoscale (m-models). Methods based on the

analysis of medium-level features. According to the

feature modeled, examples of medium scales of

analysis are:
† Analysis of connections or packet streams.

† Traffic analysis from several seconds to minutes.

† Analysis of traffic destined to a specific host within

the network.
,
 Macroscale (M-models). Methods based on the analysis

of high-level features. According to the feature

modeled, examples of high scales of analysis are:
† Simultaneous analysis of several connections and

event correlation within the whole network.

† Traffic analysis during hours, days, months, and so

on.

† Traffic analysis across all the hosts within the whole

network
4. Methods based on the analysis of traffic flows

Within the context of network management, recog-

nition and identification of anomalous behavior in a

network under surveillance is often based on the

experience acquired from years of work in such issues.

Currently, there exists a broad spectrum of tools to help

in this process, albeit the human factor is not completely

removed in none of them. As defined in Ref. [38], an IP

flow level data is a unidirectional series of IP packets of

a given protocol traveling between a source and a

destination IP/port pair within a certain period of time.

Observed properties in traffic flows have enabled the

chance of developing methods to detect anomalies

present in them. The detection is carried out by

identifying statistical deviations from regular patterns of

activity. Despite anomaly detection for management

purposes is not the focal point of this work, several

works related to failure detection have been successfully

applied to detect certain attacks whose result is, in

particular, to produce a network failure (DoS is a typical

example).

Since flows are essentially temporal series that exhibit

regular patterns, methods based on stochastic processes

and signal analysis have been applied in order to

characterize them and, therefore, detect anomalous

behavior. Until now, these methods have demonstrated

efficacy to identify those attacks that generate anomalies

in the patterns of normal flows, for example, due to the

generation of an unusual amount of packets. The

examples discussed below illustrate these techniques

more deeply.
4.1. Case study I: CRM model (Cabrera–Ravichandran–

Mehra)

The work of Cabrera et al. in Ref. [8] intends, according

to the authors, not to construct a classifier of network traffic

but to evaluate the discriminating capabilities provided by

certain statistical measures to classify traffic flows. The

motivation for this approach comes from the following

observation: certain attacks, like DoS and port scans, cause

an increase in the total number of connections initiated

during a given time interval.

Let us suppose that T is a time scale factor (for example

TZ1 h, or TZ1 min), and let us consider the following

definitions:
,
 XT
NðkÞ : Total number of normal connections which were

initiated in the interval [kT, (kC1)T].
,
 XT
A ðkÞ : Total number of attack connections which were

initiated in the interval [kT, (kC1)T].
Several works, like those of Paxson and Floyd [23–25],

have revealed the presence of regular patterns in the behavior

of services like telnet or ftp. For example, connection arrivals

can be well-modeled by Poisson processes. On the other

hand, and as was pointed out in Section 1.1, there exists a

large amount of network attacks that produce anomalies in

certain network invariants. Based on these and other studies,

authors analyze the evolution of the two previously exposed

measures applied to the dataset used during the DARPA

Intrusion Detection Evaluation Program [18,19]. The main

conclusions can be summarized in two observations:
(1)
 The normal connections ðXT
NðkÞÞ follow three operating

regimes: a day regime, an evening regime, and a night

regime. Moreover, the day and night regimes seems to

adjust to Poisson processes.
(2)
 Attack connections ðXT
A ðkÞÞ present heterogeneous

behavior. The DoS and scan attacks appear in bursts,

while other forms of attack appear on a single

connection.
Based on these experimental results, the authors empiri-

cally explore the discriminating power of the total number of

initiated connections with the aim of detecting attacks.

Several models are studied by estimating the probability

density functions for each regime and setting thresholds as

basic detection mechanism. The well-known Kolmogorov–

Smirnov test is used to achieve this purpose. The results

obtained are between 60 and 85% of correct detections for

day regime with no false alarms, and inferior in the case of

night regime. The design of detection techniques for the

evening regime is not addressed in that work.

These measures, called network models by the authors,

are complemented with application models, in which

several variables for each connection are studied with the

aim of detecting attacks different in behavior from those
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exposed. These variables include the number of bytes

interchanged during the connection (number of bytes from

the originator and number of bytes from the responder), the

connection duration, the status flag, etc. for the case of the

telnet service. After several empirical studies and statistical

comparisons, the authors conclude that there is a strong

evidence that attack and normal connections corresponds to

different underlying processes. The detection rates obtained

show that certain measures provide about the same

discrimination capabilities as the best results in the

DARPA Evaluation.
4.2. Case study II: signal analysis of network traffic

In the work of Barford et al. [20], results concerning

signal analysis of several classes of network anomalies are

reported. The approach, based on the use of wavelet filters,

is applied to datasets consisting of six months of IP flows

and SNMP measurements collected on a large university

network. In an earlier work, authors identified several

similarities and differences within a number of anomalies

[21]. Their objective was not merely to cluster anomalies

but to try to characterize common properties exhibited by

each group. Identification of such invariants attributes is an

important milestone in order to subsequently detect

anomaly behavior by using automated methods.

After a visual analysis, three broad categories of

anomalies were pointed out by authors:
,
 Network Operation Anomalies, which includes devices

outages, modifications in network behavior caused by

configuration changes, etc.
,
 Flash Crowd Anomalies: rapid rise in traffic flows of a

particular type or to a well known destination. They are

caused by a sudden interest in a specific service (for

instance, a new software patch in a repository server or a

highly interesting content in a Web site).
,
 Network Abuse Anomalies, mainly DoS flood attacks

and port scans. In some forms, they are different from

the former two in that they are not always detectable by

inspecting bit or packet flows. Particularly, port scans

usually generates many distinct address/port pairs and,

therefore, many flows.
Even though the two first classes of anomalies have an

undoubted interest, from the point of view of this work only

the last will be commented. The nature of DoS flooding

attacks has been widely studied and, besides the work of

Barford et al., other like that of Moore et al. [22] has shown

that flow data can be effective for identifying them.

As was mentioned above, the proposed method is based

on the application of wavelet analysis to the measurement

string, treating it as a signal and ignoring any semantics

(such as packet headers). At this point, we forgo explaining

the theoretical foundations of wavelet analysis, and

interested readers can seek advices directly from
the original work in Ref. [20]. The key to the detection of

anomalies by using this mathematical tool lies in its inherent

time–frequency analysis. This property allows dividing the

signal into different components at several frequencies. In

the case of traffic flow, low frequency-part corresponds to

patterns of very long duration, like several days. Mid

frequency-part captures daily variations in the data, and

high frequency-part consists of short-term variations. In

order to obtain these three components, wavelet coefficients

are grouped into three intervals and signals are subsequently

synthesizing from them.

Once obtained the long-term, medium-term and short-

term patterns of behavior, an algorithm termed deviation

score is proposed to automatically identify regularities in

data. By the very nature of short-term anomalies, such as

several forms of DoS attacks and port scans, they are

detected within mid-band and high-band components. By

separating these parts from long-term behavior, the

decomposition facilitates to easily visualize these anomalies

as isolated peaks in the upper bands. Subsequently,

detection by setting thresholds can be performed.

Without the intention to unfavorably compare this work,

its application to anomaly detection methods in network

security is limited to only some types of attacks. Despite the

attractive approach proposed and the high-quality results

obtained, this and other related methods seem more accurate

for fault detection than attack identification. DoS flooding

and certain forms of port scans are detected due to the

inherent anomalous alterations generated in patterns of

activity. Nevertheless, low-frequency scans and other forms

of DoS attacks do not generate such patterns, albeit their

behavior is obviously anomalous. In these cases, other

methods should be employed to detect them.
5. Anomaly detection based on protocol analysis

Network protocols are one of the fundamental pieces of

networking since they are involved in every information

interchange throughout the network. Each protocol is

carefully designed to support a specific facet of the

communication process, so that devices and applications

use it according to an established set of formal rules.

Nevertheless, protocol specifications usually suffer ambi-

guities that enable its use in several ways that go beyond

those for which it was thought up. Some of these uses

include communications that carry out malicious activities,

from powerful intelligence gathering techniques to the most

destroyer denial of service attacks. In addition to this,

several implementations are not fully conformant with the

recommendations and might introduce malformed packets

in the network (for example, a list of common implemen-

tation problems in TCP is provided in RFC 2525 [37]).

Misuse in protocol utilization is certainly one of the most

significant characteristics of several forms of hostile traffic,

and its detection is crucial in any network-based anomaly
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detector. Among the broad spectrum of methods proposed to

achieve this purpose, in the following sections several

representative examples are commented. Because of their

special interest, application-layer protocols are treated

separately in Section 5.1.
5.1. Case study III: SPADE/SPICE

SPADE (Statistical Packet Anomaly Detection Engine)

was initially developed as a module included in SPICE

(Stealthy Portscan and Intrusion Correlation Engine) [1]

detection system. Since 2001, it is also available for Snorte

system [35,36]. It was the first approach that proposed the

idea of assigning to each single packet an anomaly score, in

contrast to previous approaches based on analysis of traffic

windows or complete sessions.

The anomaly score of a packet is a number which

measures its degree of strangeness based on the recent history

of the network. The scheme is conceptually simple and

consists in a frequency-based mechanism: the fewer times a

particular packet has been observed, the higher its anomaly

score will be. In order to do this, the core of the model is

composed by a probability table that maintains the occur-

rences of different kinds of packets along history. Classifi-

cation of packets into different kinds is carried out by using

their joint occurrence of certain packet header field values. In

addition to this, the network history is weighted with the aim

of providing more importance to more recent events.

Within this context, functions of SPADE are basically

three:
,
 To upgrade periodically the model (probability of

occurrence table) as new traffic circulate across the

network.
,
 To compute the anomaly score for each packet.
,
 Packets that receive an anomaly score higher than a

fixed defined threshold are forwarded to SPICE. In its

origin, SPICE was designed to detect port scans. This

task is achieved by a correlation module which

combines packets assumed to belong to the same scan.
5.2. Case study IV: PHAD, ALAD, LERAD, and NETAD

The work of Mahoney et al. in Refs. [2,3,5,40,41]

presents several methods that address the problem of

detecting anomalies in the usage of network protocols by

inspecting packet headers. The common denominator of

them all is the systematic application of learning techniques

to automatically obtain profiles of normal behavior for

protocols at different layers. These works constitute a

remarkable effort in the study of anomaly-based systems.

PHAD (Packet Header Anomaly Detector, [2]) is a

system that learns the normal ranges of values for packets

header field at the data link (Ethernet), network (IP), and

transport/control layers (TCP, UDP, and ICMP). During
the training period, if a packet field is observed n times with

r distinct values, then there must have been r ‘anomalies’.

Thus, if this behavior continues, the probability that the next

observation will be anomalous is estimated by using r/n. In

addition to this, to take into consideration the dynamic

nature of real-time traffic, PHAD weights the probability of

occurrence of an event by the last time it occurred. Put

simply, if an event last occurred t time units ago, then the

probability that it will occur in the next time unit is

approximated by 1/t. Thus, each packet header field

containing an anomalous value (i.e. a value not previously

seen during the training stage) receives a score given by tn/r.

Likewise, the scores of individual fields are added up to

obtain the total packet score.

As stated, only anomalous fields receive a score. The

notion of normal value of a field is obtained during the

training stage by constructing lists of observed values for

each of the 33 fields examined by PHAD. Since storing all

the different observed values is prohibitive due to memory

costs, an approach based on storing ranges instead of

isolated values is proposed. A maximum limit, C, for lists of

ranges is fixed, in such a way that if C is exceeded, then the

method finds the two closest ranges and merges them. On

the 1999 DARPA ID Evaluation, authors obtain a detection

ratio of 72 over 201 attack instances with a rate of 10 false

alarms per day. Additionally to this, several variants of the

proposed method are in-depth studied and commented by

authors in the same work.

ALAD (Application Layer Anomaly Detection, [3]) is a

system designed to assign an anomaly score to TCP incoming

connections to well known server ports. After a testing of a

number of attributes and combinations of them, authors

select five as those which provide the best performance:
,
 P(source IP address/destination IP address). Note that

there is a separate model for each local IP address. Only

models for TCP ports !1024 are considered.
,
 P(source IP address/destination IP address, destination

TCP port). This is similar to the previous, but it

distinguishes among different servers within the same

host.
,
 P(destination IP address, destination TCP port). It

models the set of local servers which usually receive

requests.
,
 P(TCP flags/destination TCP port). It models the set of

normal TCP flags for the first, next to last, and last packet

of a connection. Note that it is a separate model for each

service.
,
 P(keyword/destination TCP port). This is an attempt to

include application-layer information into the model.

Thus, ‘keyword’ corresponds to the first word in the

payload (i.e. the text between a linefeed and the

following space).
These probabilities are estimated during the training

stage and used in detection mode to obtain the anomaly



J.M. Estevez-Tapiador et al. / Computer Communications 27 (2004) 1569–1584 1579
score of packets and connections. After a joint evaluation of

PHAD and ALAD, authors reach the conclusion that the

detection coverage of both systems has practically no

overlap. This fact means that anomalies (i.e. attacks) are

present at different network layers and, therefore, its

detection is successfully performed if the corresponding

layer is modeled. The idea that classifying network attacks

according to the network layer they exploit could be a more

useful taxonomy than that used in the 1999 DARPA/MIT

Lincoln Labs ID Evaluation was previously pointed out in

Ref. [6], and these results confirm it.

LERAD (LEarning Rules for Anomaly Detection, [3])

constitutes an improvement of the two previous approaches

by using a rule-learning algorithm. Two key ideas present in

PHAD and ALAD are maintained: inclusion of a large

number of attributes related to packet header, and the use of

a non-stationary model, in which the probability of a field

having some value depends on the time of its most recent

occurrence, and not on its average frequency.

The idea behind the introduction of rules is to take into

consideration the joint probability of occurrence of values

within a packet header; that is, general rules that assign a

probability to a set of attributes given that another set has

certain values. LERAD monitors the same type of TCP

connections than ALAD. Nevertheless, LERAD uses a

learning algorithm to obtain rules, and also monitors an

extended set of attributes.

Finally, NETAD (NEtwork Traffic Anomaly Detector,

[40]) is another approach based on the consideration of each

byte within the packet as an attribute with 256 possible

values. The first 48 bytes of the packet starting with the IP

header are modeled. To be precise, this system identifies

nine common packet types and a different model is

estimated for each of them. Examples of these packet

types are: TCP SYN packets, TCP ACK packets to port 21

(FTP), TCP ACK packets to port 80 (HTTP), all IP packets,

etc. Of course, a packet may belong to more than one type.

In addition to this, several improvements are introduced

concerning the calculation of the anomaly score for each

packet. Although it can seem a very rudimentary method,

the evaluation carried out by authors point out that NETAD

performs quite well.

Interested readers can find in Ref. [5] an evaluation of the

four methods commented before. Again, the 1999 DAR-

PA/MIT Lincoln Labs ID Evaluation data sets are used as

benchmarking framework and, among others conclusions,

authors suggests the presence of artifacts, as was previously

stated by McHugh in the critique presented in Ref. [6].

5.3. Case study V: specification-based protocol

anomaly detection

Contrary to the previous approaches commented until

now, anomaly detection is neither strictly linked with

statistical notions of normality nor models learnt by

using machine learning techniques or any other kind of
estimation algorithms. An alternative approach is that

known as ‘specification-based models’, and whose basic

foundations were briefly described in Section 3.2.

According to the criterion ‘behavior model’ provided in

the taxonomy used along this work, in specification-

based detectors the model is not estimated by analyzing

training data, but it is constructed by an expert human. In

this case, the model is usually composed of a set of

manually developed specifications that capture legitimate

system behavior.

In Ref. [32], Sekar et al. present this approach as well as a

prototype with excellent detection performance. The model

proposed by authors consists of developing protocol

specifications by using Extended Finite State Automata

(EFSA). An EFSA is basically a finite-state automaton

extended to support two added functions: (a) transitions on

events that may have arguments; and (b) state variables in

which values can be stored. The specification is done

through a special language designed for that purpose.

The aim of each specification is to monitor protocol

behavior, like IP or TCP. For each initial protocol instance

received, a new state machine is created an added to a list

of active monitors. When a machine reaches the final state,

it is deleted from the list. The monitoring task itself is

performed by associating each received packet to a

transition between states and verifying that conditions for

such a transition are fulfilled. Thus, every communication

leaves a trace along the machine, characterized by the

sequence of states (remember that each state includes as

well the values of state variables). These traces are

subsequently used to acquire statistical properties of the

protocol stream in terms of the frequency that a given

transition has and the distribution of values of each state

variable. Based on these learnt statistical properties,

several kinds of attacks supported by protocol misuses

can be detected.

Specifications for IP and TCP are provided by authors and

tested with datasets from 1999 DARPA Intrusion Detection

Evaluation Program [18,19]. It is showed how the most

relevant attacks are detected within this approach: three

attacks in the case of IP machine, and eight with TCP. An

important point here is that while one machine detects a

subset of attacks, the other detects another, disjoint subset.

This corroborates the well-known fact that misuses are

frequently protocol-specific and, therefore, a complete

supervision of each protocol used in the networking

environment is required.

As can be easily viewed, the proposed approach

combines both specifications of correct patterns of

behavior together with learning statistical notions of

regularity. This technique seems to provide accurate

detection of certain attacks while the false alarm rate is

contained at a low level (5.5 per day on the average).

Readers who wish to go more deeply into specific details

are encouraged to inspect the original work in Ref. [32].
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6. Application-layer anomaly detection:

payload inspection

The vast majority of the research carried out in anomaly-

based network IDSs through protocol analysis has been

focused on the inspection of packet header information at the

data link (Ethernet, for example), network (IP), and

transport/control layers (TCP, UCP, ICMP, etc.). The basic

idea behind the notion of application-layer anomaly detec-

tion is to extend these models of normality from analyzing

only packet header data at network and transport/control

layer to include application-layer payload as well [7].

Justification for this approach comes from the inability of

the previous approaches to detect attacks on servers, like

DNS, HTTP, FTP, or SMTP. Although still immature,

traffic modeling and protocol analysis technologies have

proved their capability to detect several forms of anomalies

when DoS attacks, port scans and other malicious network

traffic is launched against the monitored system. Never-

theless, this situation dramatically varies when other kinds

of attacks are considered, especially those known as

Remote-to-Local (R2L). This term was coined during the

DARPA Intrusion Detection Evaluation Program developed

at MIT Lincoln Labs [18,19], and it is generally defined as

intrusion attempts from remote users with the aim of getting

unauthorized local access to the target host. During the 1999

evaluation, less than 10% of not previously seen R2L

attacks were detected by ID systems.

In order to understand the reason for this inaccuracy, the

nature of R2L attack must be examined. These intrusion

attempts are usually achieved by exploiting vulnerabilities

in services offered by the destination host (e.g. buffer

overflows). The basic characteristic of such attacks, which

make almost impossible that formerly exposed systems

were able to detect them, is the fact that anomalies are

located in the packet payload, i.e. information destined to

the server. Low-level packet features are usually normal and

correct from a security point of view, in such a way that an

analysis of network or transport layer contents does not

reveal any sign of anomaly in traffic.

In an earlier work, Krügel et al. [7] established the

necessity of separately analyzing the payload of IP packets

according to the application that has created or that will

receive them. This service specific approach, which also

implies a different notion of normal traffic for each different

service, seems to be a basic assumption in application-layer

anomaly detection due to the diverse nature of payload

structure depending on the particular service the data is

destined to. Due to this reason, specific knowledge of the

monitored service is required for the construction of

accurate models of behavior.

6.1. Case study VI: KTK model (Krügel–Toth–Kirda)

As the majority of proposed systems in anomaly

detection, this model operates in two separate modes:
training and detection. The analyzed data from which the

normal behavior is obtained is, however, novel in relation to

previous approaches. The technique proposed in Ref. [7]

performs the detection of anomalies by learning the normal

behavior of application-layer protocol instances, i.e. pay-

loads. To be precise, HTTP and DNS services are studied in

the mentioned work.

Due to the nature of lower layer protocols in our

networking context (mainly IP and TCP/UDP), data destined

to a server can be fragmented into a series of pieces that travel

separately across the network. An attacker can distribute a

malicious payload over several datagrams, in such a way that

a system that operates by examining isolated packets could

not be able of detect it. Because of this reason, and since the

purpose is to analyze complete requests to a service, authors

include a module termed PPU (Packet Processing Unit). Its

main function is to read the network traffic and reassemble

packets containing the same request to a service offered by a

server. At this point, authors distinguish among different

types of available services in a server. For example, in the

case of HTTP it is possible to mention GET, POST or HEAD

as frequently used type of services.

The second module of the proposed system is the SPU

(Statistical Processing Unit). It processes groups of normal

requests with similar statistical properties and obtains a

model of normal behavior for each group. In the case of

HTTP, GET requests are very similar and could be grouped

intro a unique cluster. Nevertheless, POST requests may

present significant differences due to the nature of the

HTML form and the data typed by the user. Currently, those

groups are done manually by an expert.

The model of normal behavior for a given group is

constructed by analyzing three features of the requests

contained in it: the likelihood of the type of request, the

length of the request and the payload distribution. The

choice of these features is justified by an analysis of

the properties of several R2L attacks. Thus, the type of

request is included because several exploits based on buffer

overflows and other input validation errors use a network

service that is rarely used. In the case of the length of the

request, most of the payloads carrying inputs to overflow a

buffer in the target service present a considerable longer

request (it has to include the shell-code itself and additional

padding). On the other hand, the lengths of normal requests

are often quite similar. Finally, experiments carried out by

the authors prove that normal requests have a very similar

PDF (Probability Density Function). This fact is easily

explained if two reasons are considered: (a) HTTP and DNS

requests mainly contain characters and human readable

strings, i.e. a small subset of all 256 possibilities in the

ASCII code; and (b) characters are not uniformly

distributed.

In the scheme proposed, a model of normality is obtained

for each of the above mentioned features. During the

detection stage, an anomaly score is computed for the

evaluated request. This number measures the amount of



J.M. Estevez-Tapiador et al. / Computer Communications 27 (2004) 1569–1584 1581
variability found between the analyzed request and the

normal behavior. For this purpose, several statistical

techniques are used. The interested reader can consult

them in the original work [7].

Regardless of the specific, formal background used to

measure normality and anomaly, the most important

contribution of this work is surely the problem statement

(i.e. service-specific anomaly detection) together with

the accurate identification of request features that remain

statistically invariant except in the presence of certain forms

of hostile traffic.
7. Some notes on the state of the art

Despite the wide list of methods carefully developed and

proposed during the last twenty years, the fact is that

anomaly detection is still an immature technology The lack

of consolidated commercial tools based on it is surely the

most convincing evidence for realizing that more research

efforts are required. The purpose of this closing section is

not to provide an exhaustive list of current open problems,

but only to point out several research lines that deserve

attention because of their relevance.

Some issues concerning performance limitations are not

addressed here, although they have an undoubted import-

ance. High-speed networks introduce non-trivial problems

for monitoring tasks, and efficiency is a key point of every

method that hopes to work in a real environment.

7.1. Evaluation methodologies

Along this paper, the 1999 DARPA Intrusion Detection

evaluation performed at Lincoln Labs (MIT) has been cited

several times In Ref. [6], McHugh carried out a critique of

that evaluation with the aim of identifying its major

shortcomings. For example, the methods employed to

generate the data used for the evaluation seem to be

inadequate, since synthetic data are not appropriate to

simulate real environments.

In 2000, the Lincoln Adaptable Real-Time Information

Assurance Test-bed (LARIAT) program was initiated with

the aim of providing a benchmarking environment [34].

Unfortunately, this platform is not available for use to the

general public. In any case, the common methodology used

by researchers to test and evaluate ID methods in general, and

anomaly detection techniques in particular, is to create a

simulated network with background traffic interlaced with

malicious activity. Nevertheless, and as was pointed out in

Ref. [33], this ad-hoc methodology suffers from several

limitations. For instance, questions as the network architec-

ture, its complexity or capabilities are totally unspecified,

although it is nevertheless true that no recommendations

appear to exist.

In a profound revision of the field of testing and

benchmarking methodologies for ID, Athanasiades et al.
[33] concludes that it is clear that present approaches are

inadequate. In spite of the great contributions of efforts like

the above mentioned, new common frameworks and

methodologies are required to improve the existing

practices employed in the field. More capable tools are

needed, which be able to generate adequate network

background traffic as well as launch appropriate attacks.

7.2. The cryptographic challenge

One of the most worrisome points in anomaly detection

is the clash of interests between two seemly opposite

mainstays of network security: the tend to add more and

more ciphering to network traffic in order to provide privacy

to communications, and the increasing requirement to

capture and access traffic content with the aim of analyzing

it in search of security violations In fact, this challenge is

neither new nor specific of the anomaly detection approach.

It underlies in all mechanisms which require plain access to

certain packet fields that are carried throughout the network,

secured under the protection provided by cryptographic

codes. For example, all signature-based ID systems are also

subject to this constraint.

The naive solution to this strong drawback is to move

the analysis location into the protocol stack, specifically

above the layer responsible for deciphering the content.

This approach does not allow performing the analysis of

traffic before it has reached the destination host, for

example, at a border gateway or router, being thus a very

poor solution. On the other hand, the use of local,

intermediary elements to manage keys arises as an

alternative approach. Thus, this component (let us say, a

kind of key server) will carry out all the tasks concerning

key management for applications inside the monitored

network. By using authentication mechanisms, traffic

inspectors could retrieve appropriate keys from it and use

them to decipher each packet and analyze its contents.

This approach presents several drawbacks that limit its

application. For instance, it disables the end-to-end

nature of nearly all existing privacy solutions, like

IPSec. Furthermore, and regardless of performance

considerations, such an approach will require that every

application that uses any type of cryptographic protection

shares the involved keys with the server. This last is far

from being a trivial problem.

7.3. Inherent limitations of the anomaly detection approach

Despite the discussion presented along this paper, it is

important to note two main subjects regarding the

relationship between anomalies and attacks First, the

fact that most hostile traffic could be labeled as

anomalous events does not imply that all attacks belong

to that category. The existence of normal traffic which

can carry out malicious actions from a security point of

view limits the application of this kind of methods.
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On the other hand, the very definition of ‘anomaly’

implies several consequences when its role in network

management and supervision is considered. Addition of new

services, or in more general terms, changes in the network

configuration will produce that the anomaly detector raise

alarms unless the model of normality is adapted and new

events are recognized as normal. Although this limitation is

inherent to the very nature of the anomaly detection

problem, administrators have to deal with it, which can

become a serious constraint in constant evolving

environments.
7.4. On the nature of attacks and anomalies in networks

Anomaly detection has been typically related to

statistical notions of normality. Put simply, ‘normal’ has

been conceived as ‘frequent’. Even though more powerful

statistical methods could not have been explored yet,

formulation of alternative notions of normality could

provide great benefits. The question here can be easily

formulated as: should ‘normal’ behavior be always

conceived as ‘frequent’ behavior? From a security point

of view, it is not difficult to imagine scenarios in which both

concepts are not strictly linked; that is, correct operations

that are rarely observed (simply because users/systems do

not carry out them), and also frequent security violations,

for example, due to the administrator’s permissiveness or

the lack of security policies.

The ideal solution would be the discovery of what can

be termed attack invariants. An attack invariant can be

defined as a property of some network facet (e.g. traffic

volume) which is always verified, except in the presence of

an attack. Evidently, a better understanding of the nature of

anomalies, and especially those related with network

attacks, is undoubtedly required in order to improve

current detection mechanisms in such direction. This

requirement is especially relevant since the most important

challenge in anomaly detection is the choosing of features

to be modeled. Such features must accurately characterize

the service, system or network utilization patterns in order

to obtain a precise model of the normal behavior. But at the

same time, they must suffer a strong enough change when

the observed activity is completely different from those

behaviors labeled as normal. Even if it would be possible

to identify every parameter involved in their behavior,

complexity of current networks hinders a brute-force

analysis. Furthermore, the detection of anomalies which

could have security implications is increasingly complex

since anomalous behavior seems to exist in networks by

default.
7.5. Recommendations toward improved methods

Based on the methods surveyed along this work, this

analysis concludes by identifying a list of desirable
properties which could considerably improve the detection

quality of current methods.
,
 Analysis at several scales. Concerning the scale of

analysis, several methods based on protocol analysis

(e.g. some of the previously commented) perform the

detection by analyzing the fields within each protocol

instance. Instead, the approach here proposed is focused

mainly on properties of packet sequences. Since there

exist attacks that exploit both features, it would

desirable to develop methods capable to simultaneously

work in both scales. Otherwise, the spectrum of

successfully detected attacks will be biased.
,
 Hybrid models: inclusion of specifications and specific

knowledge. From specification-based approaches to

application-layer detectors, more and more knowledge

is included in each new method proposed with the aim

of reducing the false alarm rate. ‘Blind’, isolated

methods (e.g. pure statistical analysis or data mining

techniques) do not seem to work well because probably

there is not enough information in data to infer what

normal is. Additional knowledge, like that explicitly

provided by specifications or implicitly included within

the detection method, is required to capture the essential

nature of normal, correct behavior.
,
 Anomaly-specific detectors. It seems clear that it is

possible to classify a large amount of the existing

attacks according to the network traffic feature which

exploits, or on which is based. Thus, several attacks are

well detected with flows analysis because they cause a

visible change in patterns of normal behavior. Methods

based on protocol analysis have proven their accuracy

dealing with attacks based on malformed packets and

related misuses. Surely, a tool based on the existence of

several, heterogeneous detectors will obtain better

results than each of them working separately.
8. Conclusions

Networks are becoming increasingly complex at the same

time that security concerns do not cease to grow and require

more and more attention and resources. With the aim of

ensuring that a network system works appropriately, constant

monitoring is essential. But performing a suitable, manual

inspection of activities has turned into an unachievable task

since several years ago. Among the broad spectrum of

methods and tools available to support this necessity,

anomaly detection has proven to be a very valuable approach

for network management as well as network security.

In this work, an analysis of the state of the art in the field of

anomaly detection for network intrusion detection has been

presented. Far from being a mere, commented list of

developed systems, the exposition has been articulated

upon a proposed taxonomy in which the most relevant

features of current solutions are included. Thus, the network
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feature analyzed, the type of behavior model, and the scale of

analysis have been proposed as basic criteria to classify

current methods as well as key notions to the problem itself.

Subsequently, representative prototypes of each paradigm

have been briefly discussed. Albeit many distinguished

systems have not been mentioned here due to space reasons,

the case studies carried out provide a sound picture of the

state of the art.

To conclude the survey, several recommendations with

the aim of improving current anomaly detection methods

have been pointed out. In any case, anomaly detection is

still a hard problem in several domains. Regardless of the

current needs, a deeper knowledge is required until this

technology achieves a solid maturity for its implantation in

environments increasingly changeable at the same time that

strongly threatened.
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