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Abstract—We consider the problem of designing a virtual
topology to minimize electronic routing, that is, grooming traffic,
in wavelength routed optical rings. The full virtual topology design
problem is NP-hard even in the restricted case where the physical
topology is a ring, and various heuristics have been proposed in
the literature for obtaining good solutions, usually for different
classes of problem instances. We present a new framework which
can be used to evaluate the performance of heuristics and which
requires significantly less computation than evaluating the optimal
solution. This framework is based on a general formulation of the
virtual topology problem, and it consists of a sequence of bounds,
both upper and lower, in which each successive bound is at least
as strong as the previous one. The successive bounds take larger
amounts of computation to evaluate, and the number of bounds
to be evaluated for a given problem instance is only limited by
the computational power available. The bounds are based on
decomposing the ring into sets of nodes arranged in a path and
adopting the locally optimal topology within each set. While we
only consider the objective of minimizing electronic routing in this
paper, our approach to obtaining the sequence of bounds can be
applied to many virtual topology problems on rings. The upper
bounds we obtain also provide a useful series of heuristic solutions.

Index Terms—Bounds, electronic grooming, heuristics, light-
path, optical ring, SONET, traffic grooming, wavelength routing.

I. INTRODUCTION

I N recent years, wavelength routed optical networks have
been seen to be an attractive architecture for the next gen-

eration of backbone networks. This is due to the high band-
width in fibers withwavelength division multiplexing(WDM)
and the ability to tradeoff some of the bandwidth for elimina-
tion of electrooptic processing delays usingwavelength routing
[5]. Of late, two concerns have clearly emerged in the treatment
of optical ring networks using WDM and wavelength routing
[7], [8]. First, it has been recognized that the cost of network
components, specifically electrooptic equipment and SONET
add–drop multiplexers (ADMs), is a more meaningful metric
for the network or topology than the number of wavelengths.
Second, earlier studies of wavelength routed networks had as-
sumed that individual traffic demands are comparable to the
wavelength bandwidth [1], [4], [5], [10], [12]. However, it is
now evident that the individual traffic streams that wavelength
routed networks will carry are likely to have small bandwidth re-
quirements compared even to the bandwidth available in a single
wavelength of a WDM system. This assumption is further sup-
ported by the fact that the number of different traffic compo-
nents in a network is likely to be much larger than the number of
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wavelengths available. These two issues give rise to the concept
of traffic grooming, which refers to techniques used to combine
lower speed traffic components onto available wavelengths in
order to meet network design goals such as cost minimization.

The problem of designing logical topologies for rings that
minimize cost as measured by the amount of electrooptic equip-
ment has recently received much attention. In [11], the problem
of wavelength assignment to a given set of lightpaths is con-
sidered, and the focus is on how limited wavelength conver-
sion affects the capability of the network. Several different vir-
tual topologies for ring networks are discussed in [8] in light
of the twin issues of traffic grooming and network cost. The
study in [7] complements [8] by addressing only the wavelength
assignment issue, with the goal of minimizing the number of
SONET ADMs. The concept of lightpath splitting in designing
a virtual topology is discussed and heuristics for wavelength
assignment are developed based on this concept. In [14], the
problem of grooming traffic is considered both for unidirec-
tional and bidirectional rings, with a primary goal of either min-
imizing the number of SONET ADMs or the number of wave-
lengths. The strategy presented is to first construct circles from
the given traffic components and then to groom these circles.
Algorithms for exact solutions for uniform traffic and heuristics
for the NP-hard nonuniform traffic case are presented. A sim-
ilar approach of constructing circles first is taken in [15], but
now the resultant circles are scheduled in a sequence of virtual
topologies. Heuristic algorithms to minimize network cost by
grooming are presented in [3], for special traffic patterns such
as uniform, certain cases of cross-traffic, and hub. In [2], the
concept of a -allowable traffic pattern is discussed, in which
the traffic for each node-pair is constrained to be at most.
A bidirectional ring, but with symmetric traffic, is considered
for dynamic traffic. A heuristic algorithm based on a bipartite
matching formulation of the problem is presented, and blocking
characteristics of the result are discussed. In [9], a problem sim-
ilar to that in [7] is considered, but the problem of routing the
lightpaths is considered as well as the wavelength assignment
problem. An Euler-trail decomposition of the ring network is
presented, and a heuristic which uses one of the heuristics of
[7] and performs rerouting of lightpaths as well, based on the
Euler-trail decomposition, is presented.

The problem of logical topology design is NP-hard even for
a ring topology [5], [14], and obtaining an exact solution re-
quires significant amount of computation even for modest sized
rings. Heuristic approaches are needed for practical purposes
and have been reported in [3], [7], [9] [14], [15]. To evaluate the
performance of such heuristics when the optimal is not avail-
able, achievability bounds are useful.

In this paper, we present a new framework for computing
bounds for the problem of traffic grooming in ring topologies.
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Fig. 1. (a) AnN -node unidirectional ring and (b) detail of a node with a
WADM.

The framework is based on the idea of decomposing the ring
into path segments consisting of successively larger number of
nodes. The path segments are solved independently, and the in-
dividual results are appropriately combined to obtain bounds
on the optimal value of the objective function. In this manner,
we obtain a series of bounds, both lower and upper, in which
each bound is at least as strong as the previous one. The first
few bounds in the sequence require trivial computational effort.
Although subsequent bounds take successively larger computa-
tional efforts to determine, even several later bounds require sig-
nificantly less computational effort than the full solution does,
depending on the problem instance. We show that this result
is due to the fact that solving a path segment exactly takes an
amount of time which is orders of magnitude less than that re-
quired for solving a ring of the same number of nodes. The
problem we consider is very general, as we do not impose any
constraints on the traffic patterns. The upper bounds we derive
are based on actual feasible topologies, so our algorithm for ob-
taining the upper bounds is a heuristic for the problem of traffic
grooming. Finally, although we illustrate our approach using
a specific formulation of the problem, it is straightforward to
modify it to apply to a wide range of problem variants with dif-
ferent objective functions and/or constraints.

The rest of the paper is organized as follows. The problem of
designing a virtual topology that minimizes electronic routing in
a ring network is formulated as an integer linear program (ILP)
in Section II. In Section III we describe the decomposition of the
ring network into path segments, and we show how to obtain an
optimal solution to the path segments from a simplified version
of the ILP. Next, in Section IV we describe how to combine
efficiently the solutions to individual segments to yield a strong
sequence of lower and upper bounds for the original problem.
Section V contains numerical results and Section VI concludes
the paper.

II. PROBLEM FORMULATION

We consider a unidirectional ring with nodes,1 num-
bered from 0 to , as shown in Fig. 1(a). The fiber link

1We describe the working part of the ring. It is assumed that there is a protec-
tion part for self-healing or fault-tolerance as dictated by design or required by
standards, but our description does not include this.

between each pair of nodes can supportwavelengths and car-
ries traffic in the clockwise direction; in other words, data flows
from a node to the next node on the ring, where denotes
addition modulo- . (Similarly we use to denote subtraction
modulo- .) The links of are numbered from 0 to ,
such that the link from nodeto node is numbered. Each
node in the ring is equipped with a wavelength add–drop mul-
tiplexer (WADM) [see Fig. 1(b)]. A WADM can perform three
functions. It can optically switch some wavelengths from the in-
coming link of a node directly to its outgoing link. It can also ter-
minate (drop) some wavelengths from the incoming link to the
node; the data carried by the dropped wavelengths is converted
to electronic form and undergoes buffering, processing, and pos-
sibly, electronic switching at the node. Finally, the WADM can
also add some wavelengths to the outgoing link; these wave-
lengths may carry traffic originating at the node, or they may
carry traffic originating at previous nodes in the ring and elec-
tronically switched at this node. We assume that estimates of the
node-to-node traffic are available, requiring the design of avir-
tual or logical topology consisting of a set of static lightpaths.
In this paper we do not consider the dynamic scenario in which
requests for lightpaths or traffic components are received con-
tinuously during operation.

The traffic demands between pairs of nodes in the ring are
given in the traffic matrix . We assume that the net-
work supports traffic streams at rates that are a multiple of some
basic rate (e.g., OC-3). We let denote the capacity of each
wavelength expressed in units of this basic rate. Thus,denotes
the maximum number of traffic units that can be multiplexed on
a WDM channel (wavelength). For example, if each wavelength
runs at OC-48 rates and the basic rate is OC-3, then .
Each quantity is also expressed in terms
of the basic rate, and it denotes the number of traffic units that
originate at node and terminate at node.

Given the ring physical topology, alogical topology is de-
fined by establishinglightpathsbetween pairs of nodes. A light-
path is a direct optical connection on a certain wavelength. More
specifically, if a lightpath spans more than one physical link in
the ring, its wavelength is optically passed through by WADMs
at intermediate nodes, thus the traffic streams carried by the
lightpath travel in optical form throughout the path between the
endpoints of the lightpath. We assume that ring nodes are not
equipped with wavelength converters, therefore a lightpath must
be assigned the same wavelength on all physical links along its
path.

An important problem in this context is the design of log-
ical topologies that optimize a certain performance metric. The
metric of interest in this work is the amount of electronic for-
warding (routing) of traffic streams, since such forwarding in-
volves electrooptic conversion and added message delay and
processor load at the intermediate nodes. In a global sense, this
means that we want to reduce the number of logical hops taken
by traffic components, individually or as a whole. For each node,
it also means that we want to reduce the amount of traffic that
the node has to store and forward. Thus we have two alterna-
tive goals, one is to minimize the total traffic weighted logical
hops in the network, and the other is to minimize the maximum
number of traffic components electronically routed at a node. In
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this paper we have chosen to concentrate on the former. Another
possible quantity of interest is the number of wavelengths each
WADM is required to add or drop due to lightpath terminations.
This would correspond to minimizing of the number of SONET
ADMs as in [3], [7], [9], [14]. It should be noted that adding
and dropping more wavelengths will result in a larger number
of logical hops for traffic components and thus this concern is
to some extents incorporated in the electronic forwarding metric
we consider.

We let denote the aggregate traffic load on the physical
link (from node to node ) of the ring. The value of can
be easily computed from the traffic matrix. The component of
the traffic load due to the traffic from source nodeto des-
tination node is denoted by . If one or more lightpaths
exist from node to node in the virtual topology, the traffic car-
ried by those lightpaths is denoted by. The component of this
load due to traffic from source nodeto destination node is
denoted by . In our formulation, we forbid a traffic compo-
nent to be carried completely around the ring before being deliv-
ered at the destination, thus each traffic component can traverse
a given link at most once. Also, a single traffic unit may not be
bifurcated, but different traffic units for the same source-desti-
nation traffic component are considered as separate traffic and
may be assigned different logical routes.

In our formulation we allow for multiple lightpaths with
the same source and destination nodes. We denote the
lightpath count from node to node by , taking its
value from . We also define thepotential
lightpath set for a link to be the set of lightpaths that
would pass through a given link and denote it by

lightpath if it existed, would pass through link .
Finally, we let be the lightpath wavelength indicator,

i.e., is 1 if a lightpath from node to node uses
wavelength otherwise.

We can now formulate the problem of designing a virtual
topology for a ring network such that the total amount of elec-
tronic routing at the ring nodes is minimized. The following for-
mulation as an ILP consists of constraints and

variables, where is the number of nodes in
the ring, and is the number of wavelengths.

Given:
The physical topology,a unidirectional ring of nodes.
The traffic matrix

.
The wavelength limit which is the number of distinct

wavelengths each link can carry.
Find:
Virtual topology, in terms of lightpath indicators , light-

path wavelength indicators , and traffic routing variables

.
Subject to:
Traffic Constraints

(1)

(2)

(3)

(4)

(5)

(6)

Wavelength Constraints

(7)

(8)

(9)

To minimize:

The traffic constraint (1) ensures that a lightpath can carry
traffic for a source-destination node pair only if it is in the phys-
ical route of the traffic component. Constraint (3) states that
the physical traffic on a link due to a source-destination node
pair must be equal to the sum of the traffic on all lightpaths
passing through that link due to that node pair. Constraints (4)
and (5) define the total traffic on a lightpath and relate it to the
lightpath count, respectively. Because of the definition of the
quantities , constraints (1) and (3) together ensure that
no traffic component can be routed completely around the ring
before being delivered at the destination node. Constraint (6) is
an expression of traffic flow conservation at lightpath endpoints.
Among the wavelength constraints, constraint (7) expresses the
bound imposed by the number of wavelengths available, (8) re-
lates the wavelength indicators to the lightpath counts, and (9)
ensures that no wavelength clash can occur.

The above problem can be thought of as consisting of the
following three subproblems [5].

1) Topology Subproblem: Determine the virtual topology
to be imposed on the physical topology, that is, deter-
mine the lightpaths in terms of their source and destina-
tion nodes.

2) Wavelength Assignment Subproblem:Assign a wave-
length to each lightpath in the virtual topology so that
wavelength restrictions are obeyed for each physical link.

3) Traffic Routing or Grooming Subproblem: Groom the
traffic components on the lightpaths, that is, route the
traffic streams over the virtual topology obtained.

The framework we present below is based on the above formu-
lation we have chosen, but this formulation is not essential for
it. The framework can be adapted to many variations that are
possible in the formulation. There may be multiple fiber links
between successive nodes, and the nodes may be equipped with
wavelength routers instead of WADMs. Hardware for wave-
length conversion may be available at the nodes [11]. A phys-
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Fig. 2. Ann-node decomposition: (a) original ringR and (b) a decomposition
P .

ical hop limit for lightpaths may be imposed. The ring may be
bidirectional, either with some simple routing strategy (such as
shortest path, as in [14] and [7]) that allows us to consider it as
two unidirectional rings, or the lightpath routing (either clock-
wise or counterclockwise) may be integrated as part of the opti-
mization process (as in [9]). In all these cases, the objective may
be to minimize electronic routing. The framework we present
may be extended, in a straightforward manner for some of these
cases, and with some enhancements in others. When the objec-
tive function is of a min–max type (e.g., minimize the maximum
electronic routing at any node) or a quantized version (e.g., min-
imize the number of SONET ADMs), our framework can also
be adapted to obtain bounds for the optimal value.

III. PATH DECOMPOSITION OF ARING NETWORK

A. Definition of Decomposition

We consider a ring with nodes and traffic matrix . We
define asegmentof length , starting at node

, as the part of the ring that includes theconsecutive
nodes , and the links between them. We
define adecomposition of ring around a segment of length

starting at node as a path that consists of nodes
and links as follows: the nodes and links of the
segment of length starting at node, a new node and a link
from to , and a new node and a link from node
to . We also refer to as an -node decomposition of ring

starting at node. Fig. 2 shows such a decomposition.
Associated with the decomposition is a new traffic ma-

trix ,
derived from , the original traffic matrix, as follows:

-

(10)

where - denotes the traffic of the original matrix
thatpasses throughthe segment of length starting at node

, i.e., traffic on ring that uses the links of the segment but
does not either originate or terminate at any of the nodes in that
segment. We call this thepass-through traffic. The amount of
this traffic can be readily obtained by inspection of traffic matrix

. We have used in the above expression to denote that
node precedes node in the decomposition and to
denote that node precedes and may be the same as nodein
the decomposition.

The traffic matrix for the decomposition is defined such that
the traffic flowing from a node to another node , in
the segment is the same as that in the original ring [first expres-
sion in (10)]. Thus any traffic component, the path of which is
entirely in the segment, is unchanged in the decomposition. The
decomposition is effected by the introduction of nodesand
together with the links connecting them to the segment. Node

acts as the source of all traffic components in matrixorig-
inated at a node outside the segment and destined to any node
in the segment [second expression in (10)]. Nodealso acts as
the source for all traffic components that pass through the seg-
ment, as the fourth expression in (10) indicates. Similarly, node

is the sink for traffic originating at any node in the segment
and terminating at a node outside the segment [third expression
in (10)], as well as for pass-through traffic. Finally, any traffic
components in matrix that do not traverse any links of the
segment are not included in the traffic matrix for the decompo-
sition. This is captured by the last two expressions in (10) where
it is shown that no traffic flows from node to node in the
decomposition.

Because of the way the traffic matrix for the decomposition is
defined in (10), from the point of view of any node

, in the segment, the traffic pattern in the new path
is exactly the sameas in the original ring. The new nodes

and are introduced in the decomposition to abstract the
interaction of traffic components between nodes in and outside
the segment. Specifically, the new nodehides the details of
how traffic sourced at ring nodes outside the segment and using
the links in the segment actually flows over the rest of the ring,
by providing a single aggregation point for this traffic. Similarly,
the new node provides a single aggregation point for traffic
using the links of the segment and destined to nodes outside the
segment, hiding the details of how this traffic flows in the rest
of the ring. Finally, the fact that is a path (i.e., that there is
no link from node to node ) means that the details of traffic
in the original ring that does not involve any nodes or links of
the segment are hidden in the decomposition.

B. Solving Path Segments in Isolation

Consider the matrix of the decomposition

of a segment of length starting at node in the ring , as
given in (10). This matrix can be thought of as representing the
traffic in a ring network consisting of nodes

, where there is simply no traffic flowing over the link from
to . Consequently, the ILP formulation in Section II can

be used to obtain a virtual topology that minimizes electronic
routing for this “ring.” Since the formulation disallows routing
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that carries a traffic component beyond its destination and all
around the ring, no lightpaths can be formed to carry traffic over
the link from to that is absent in the decomposition. Thus,
the topology obtained in this manner can be directly applied to
the path . When we use the ILP to find an optimal topology
for path we will say that we solve the-node segmentin
isolation.

The topology obtained by solving an-node segment in iso-
lation does not take into account the details of the original ring
outside of the segment. Such a topology will only be optimal
with respect to this segment, in the sense that it will minimize
the amount of electronic routing within the segment, but without
considering the effects that doing so would have on the amount
of electronic routing at nodes of ring outside the segment. In
fact, this topology may not be optimal for the ring as a whole. In
other words, it is possible that, for any optimal topology for the
ring as a whole, the subtopology corresponding to the-node
segment will be different than the topology obtained by solving
the ILP for in isolation. Thus it may not be possible to com-
bine optimal solutions to different segments in isolation into a
(near-)optimal topology for the ring . Our contribution is in
proving a weaker result: that it is possible to combine optimal
solutions to different segments in isolation to obtain lower and
upper bounds on the optimal solution to the ringas a whole.

As the number of nodes in a path segment increases, the re-
sulting decomposition will more closely approximate the orig-
inal ring and the bounds will be tighter. More importantly, a path
decomposition significantly alleviates the problem of exponen-
tial growth in computational requirements for solving the ILP.
This result is a direct consequence of the following lemma.

Lemma III.1: Consider a virtual topology on a unidirectional
path, in which the maximum number of lightpaths on any link
is . A wavelength assignment for the virtual topology that uses
exactly wavelengths can be obtained in time linear inand
the number of links of the path.

For the proof, see [13, Sec. 8.5.2].

In solving the decomposed problem, we are merely interested
in the optimum value of the objective, since this is the value
from which we will obtain the bounds. Since we know that a
wavelength assignment is always possible and we are not in-
terested in the details of the wavelength assignment, we can
eliminate the wavelength assignment from our formulation alto-
gether. This implies that we can eliminate subproblem (3), the
wavelength assignment subproblem, from the list of subprob-
lems we enumerated in Section II. Thus, we eliminate the wave-
length variables and the constraints (8) and (9). The number
of variables in the formulation remains , but vari-
ables are eliminated, and the number of wavelength constraints
is reduced from to , though the total number of
constraints remains . This creates a formulation that is
smaller and requires dramatically less computation to solve. In
practice, we have found that eliminating the wavelength assign-
ment subproblem can result in a reduction in computation time
by several orders of magnitude. For instance, the LINGO sci-
entific computation package takes between 60 and 90 minutes
on a Sun Ultra-10 workstation to solve a six-node ring using the
original formulation (with wavelength assignment). However,

Fig. 3. A single node decomposition of a ring: (a) original ring, and (b) single
node decompositionP around nodei.

solving a six-node network using the simplified formulation (no
wavelength assignment) requires only a few seconds.

We denote the optimal objective value for the decomposition
by . The two additional nodes and , by the con-

struction of the decomposition, do not have any traffic passing
through them at all, and hence they do not contribute any elec-
tronic routing. Since the traffic pattern seen by thenodes ab-
stracted from the ring is the same as when they are included in
the ring, also represents the locally best (lowest) amount of
electronic routing at this set of nodes when considered as part
of the ring. That is, the electronic routing at this set of nodes
is minimized, irrespective of how much routing has to be per-
formed at other nodes of the original ring as a result.

We note that, because we convert the ring to a path, some in-
formation is not taken into account at the point where we “open
up” the ring even when considering an-node path. As a result,
solving an -node decomposition does not provide the optimal
solution for the -node ring.

IV. BOUNDS

We now describe how to combine the values we get from
-node decompositions to obtain lower as well as upper bounds

on the total amount of electronic routing performed in the op-
timal case by a virtual topology on the original ring. We first
discuss the case where we only consider single-node decompo-
sitions, then move on to the general case where larger decom-
positions are available.

A. Bounds Based on Single-Node Decompositions

1) Lower Bound: Recall that represents the locally best
amount of electronic routing at the nodes in the segment of
length starting at node. In particular, represents the lo-
cally best amount of electronic routing that can be achieved at
node considered in isolation (see Fig. 3). There may or may
not be an optimal (or even feasible) virtual topology for the ring

that achieves this value of electronic routing at node, but
there can be no topology which achieves an even lower value.
Thus, is a lower bound on the amount of electronic routing
performed at nodefor any virtual topology.

Since represents contribution to the electronic routing
only by node , we can add the contributions together for each
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node to obtain a lower bound on the total electronic routing per-
formed in any virtual topology. We call this lower bound

(11)

2) Upper Bound: We first consider an upper bound we can
obtain directly from the traffic matrix, without recourse to de-
compositions. This bound corresponds to the virtual topology
consisting only of single-hop lightpaths. Consider node. In
this topology, single-hop lightpaths from node carrying
all traffic to node and beyond terminate at node. Node
electronically switches all traffic for which it is not the desti-
nation, combines it with its own outgoing traffic, and sources
a number of single-hop lightpaths (up to ) that carry this
traffic to node . We will call this theno-wavelength-routing
topology, since no wavelengths are optically routed at any node.
In such a topology, each nodeperforms the maximum possible
amount of electronic routing, which we denote by . Quan-
tities , can be readily obtained from the
traffic matrix . We let denote the total electronic routing
performed under the no-wavelength-routing topology

(12)

Since this is a feasible topology, is an upper bound on the
optimal electronic routing.

In general, is a rather loose upper bound. We now show
how to utilize single-node decompositions to improve upon the
no-wavelength-routing topology to obtain a tighter bound. Let
us refer to Fig. 3(b) which shows a decomposition around node
. Recall now that, in deriving the best local electronic routing

at node , we made the assumption that all traffic passing
through node is originated at and terminated at . Let us
call concentrator nodesthose nodes which do not perform any
optical forwarding (i.e., they terminate and originate all light-
paths). In the no-wavelength-routing topology, every node is a
concentrator node. In the single node decomposition nodes
and can be viewed as concentrator nodes. Thus, we are led
to consider a virtual topology such that every other node is a
concentrator node (performing the maximum electronic routing
possible, ) while the remaining nodes perform the minimum
electronic routing possible, . This topology is illustrated in
Fig. 4, where even-numbered nodes are concentrator nodes.

Depending on which nodes in the ring we select to be the
concentrator nodes, we obtain different virtual topologies which
yield potentially different values for the total amount of elec-
tronic routing. If the number of nodes in the ring is even, we
have two possible topologies, depending on whether even-num-
bered or odd-numbered nodes are concentrators. Ifis odd,
any virtual topology constructed in the manner described above

Fig. 4. Virtual topology with alternating single-node decompositions and
concentrator nodes.

will have two concentrator nodes next to each other at one po-
sition in the ring, as illustrated in Fig. 4(b). Since there are
ways of selecting the position of these two concentrator nodes,
there are possible virtual topologies when is odd. We take
the smallest value of total electronic routing we can obtain from
these topologies as the upper bound. This bound is indicated by

, and in the general case, it can be expressed as (13), shown
at the bottom of the page. Since this is a feasible topology which
incurs the maximum electronic routing only at the concentrator
nodes while it incurs less at the others, the upper bound set by
the objective value of this topology must be at least as strong as

; thus we also have that .

B. Bounds Based on Larger Decompositions

1) Lower Bound: In obtaining the bound above, we re-
marked that we can add the various quantities together since
they each represented electronic routing at nodeonly. Consider
the quantity ; it represents the minimum possible amount of
electronic routing (best case) at nodeand node taken
together. We cannot add or to this quantity and still
have something that is guaranteed to be a lower bound on the
amount of electronic routing these nodes together perform in
any feasible topology, because we are potentially counting the
traffic routed by a single node twice. However, we can add
and , since the two quantities involve sets of nodes that are
disjoint, and, therefore, there is no potential double counting of
electronic routing. Generalizing this notion, we can add the
values for any set of decompositions that involve disjoint seg-
ments, and we are still guaranteed to obtain a lower bound on
the objective value for any feasible topology. We formalize this
in the following lemma. The proof follows obviously from the
arguments above.

Lemma IV.1: Let be a set of segments of ring which
partition the nodes of the ring in segments of lengthor smaller.

(13)
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Fig. 5. Partitions of the nodes of a ring into (a) segments of no more than two
nodes and (b) segments of no more than three nodes.

Let denote the length (number of nodes) of segment
, and let denote its starting node. The quan-

tity

(14)

is a lower bound on the objective value for any feasible virtual
topology on the ring and therefore on the optimal objective
value.

We now define as

(15)

where the maximum is taken over all partitions of the ring which
contain segments with or less nodes. Fig. 5 shows two parti-
tions of the same ring, the first containing only 1- and 2-node
segments, and the second containing only 1-, 2-, and 3-node seg-
ments.

Because of (15), in computing bound we must consider
all partitions (and bounds derived therefrom) considered to com-
pute , and, additionally, all partitions which include one or
more -node segments. Specifically, the set of partitions

we consider for is a proper superset of the set of
partitions we consider for . Since we draw the maximum
bound from each set as per the definition in (15), we have that

(16)

As a result, the sequence is a strong sequence of
bounds. We also note that the definition of in Section IV-A.1
is consistent with the definition above.

2) Upper Bound: It is now straightforward to obtain a strong
sequence of upper bounds along the same lines. We define
as the lowest objective value we obtain for all topologies which
are created by alternating concentrator nodes with segments no
larger than nodes in size. We can once again consider this in
light of partitions of the nodes of a ring. Now, however, the par-
titions are constrained not only to use segments of-nodes or
less, but every alternate segment must contain exactly one node.
These alternate single-node segments are used as concentrator
nodes in the topology we create, rather than as single-node de-
compositions. Once again, the form of this upper bound is an
alternate sum of and values, similar to expression (13)

Fig. 6. Two partitions of a ring into alternating concentrator nodes and
segments of no more than three nodes.

for ; but for the value of is not restricted to 1 as for ,
instead it can take on any value from 1 to. Fig. 6 shows two
ways we can partition a ring using no larger than three-node seg-
ments, thus creating two topologies among the ones we would
consider in computing .

We note that the bounds and we obtained in Section
IV-A.2 are consistent with this framework. As before, the set of
topologies we consider in obtaining is a superset of the
set of topologies considered in , therefore we have a strong
sequence of upper bounds

(17)

Because the bounds are based on feasible topologies,
they also provide us with a useful series of heuristic solutions
to the ring. In the next section we derive a result which shows
the tightness of the bounds and thus the goodness of the heuris-
tics, and we see in Section V that even the first few solutions of
the series can outperform a simplistic heuristic. The later solu-
tions in the series can compare favorably with some heuristics
reported in literature. Specifically, must be as good or
better than asingle-hubarchitecture [8], [3], [2] because it con-
siders all topologies with a single concentrator (hub) node. For
a similar reason, must be as good or better than
a double hub design, if the hubs are constrained to be diametri-
cally opposite in the ring.

3) Tightness of Bounds:Consider the value for
each node of a ring, which is the difference between the min-
imum and maximum traffic the node can route in any virtual
topology. Let the node for which this difference is minimum be
node , and let the corresponding difference be , so that

(18)

The final upper and lower bounds are guaranteed to be no further
apart than this quantity. We state this in the following lemma, the
proof of which is omitted here and can be found in [6].

Lemma IV.2: The guarantee on the final values in the se-
quences of upper and lower bounds is

(19)

4) Computational Considerations:The bounds (and
) for successive values of incorporate progressively more
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information about the problem and as such require progres-
sively more computational effort to determine. This increase in
computational effort manifests itself in two ways:

1) the calculation of the values required for a given
bound;

2) the evaluation of all partitions of the ring in segments of
length at most by an appropriate combination of the
values.

In the discussion that follows we focus on the sequence
of the lower bounds, but the observations we make are equally
applicable to the sequence of upper bounds.

The computation of a bound utilizing a certain size of decom-
positions requires knowledge of decompositions of all lower
sizes as well. Thus, computing would require us to com-
pute for all values of and all values of

. However, theincrementalcomputation of de-
compositions required to determine consists only of deter-
mining for all nodes , since for would already
have been computed when determining . Naturally, as
increases, this incremental effort required also increases; as we
have noted before the number of variables and constraints in-
creases as . Thus the maximum value of for which we
can determine the corresponding bound is limited by this com-
putational effort.

Regarding the second factor that affects the computation time
required to obtain , we note that a straightforward approach
would require us to enumerate all partitions of an-node ring
into segments of length at most. While evaluatingeach parti-
tion (i.e., computing the lower bound for it) takes time linear in
the number of segments of the partition (assuming that the in-
dividual , values are available), the number
of possible partitions increases very rapidly with. We show
in [6] that the incremental number of partitions to consider for a
given value of is exponential in . Thus, a straightforward ap-
proach to combine decompositions into bounds would severely
limit the maximum value of for which we can determine the
corresponding bounds.

However, by exploiting the particular characteristics of ,
we have developed a polynomial-time algorithm to compute,
assuming that the appropriate values are available. The al-
gorithm is based on incrementally building the best sum of
around the ring and following only the best partial sum at an in-
termediate node. This algorithm is presented as a dynamic pro-
gramming problem in Appendix A and requires time
to find given all values for . For the largest
number of total partitions in the case , this corresponds
to instead of time, and in fact becomes linear in

for a small given value of .
We can achieve an additional constant factor of improvement

by using the properties of values formalized in the following
lemma; its proof is omitted but can be found in [6].

Lemma IV.3: An -node decomposition yields at least
as large an objective value for the decomposed network as the
sum of objective values of the-node and -node decomposi-
tions it exactly contains. That is, , if and

are positive and .

Corollary IV.1: An -node decomposition yields at least as
large an objective value as the sum of objective values of any
combination of smaller decompositions it can be partitioned
into. That is,

, if .
The corollary follows immediately from the lemma by re-

peated application within the same decomposition and allows
us to discard partitions in which a small segment follows an-
other. Specifically, if we are computing , we can discard a
partition in which a -node segment is followed by a-node
segment if , since the partition we obtain by re-
placing these segments by a -node segment must yield
a higher bound, and we are interested in the maximum bound.

The above methods allow us to compute the bounds by
combining the values in an insignificant fraction of the time
taken to compute the values themselves. In practice, we
have found that computing the values takes minutes (even
hours) for increasing, while combining them to form the
bounds takes milliseconds. We conclude that the limiting factor
in determining how many bounds can be computed in a reason-
able amount of time is the effort required to solve the ILP for

-node decomposition in order to compute each of the
values.

V. NUMERICAL RESULTS

In this section, we present the results of using our framework
for different traffic matrices. We first create the distinction be-
tweensymmetricandasymmetrictraffic patterns. The term sym-
metric applies to the ring, rather than the traffic matrix itself.
We call a traffic pattern symmetric if the traffic pattern from
any node to the others is repeated for all the nodes. This type of
traffic pattern is of interest since the traffic pattern looks sim-
ilar from different nodes on the ring. In the general case, traffic
components of the form for every given and , and
for all values of , are all drawn from the same distribution.
If the variance of this distribution is zero, we call the resulting
traffic patternstrictly symmetric; otherwise, we call itstatisti-
cally symmetric. With respect to what traffic looks like from
a given node, we consider three simple cases. First, the traffic
from a given node to all other nodes may be the same, we refer
to this asuniformtraffic. When the traffic components to all the
other nodes are not the same, we can speak of afalling traffic
pattern in which the traffic from nodeto node decreases
linearly as increases. Similarly, we speak of arising pattern.
Again, we introduce the concept of statistical variation so that
actual matrix elements vary from these patterns statistically and
do not vary strictly linearly as described above.

In order to have a good basis for comparison for the above
three types of traffic patterns, we focus on the concept ofchar-
acteristic physical loadof the traffic matrix. For the problem
instance to be feasible, the traffic flowing over each physical
link must be less than or equal to . If the matrix is statisti-
cally symmetric, the loads on the links will all be close to some
value, because the traffic pattern is the same looking from any
node or link. We call this value the characteristic physical load
of the matrix and obtain it by taking the average of the physical
load on each link and express it as a percentage of. For the
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Fig. 7. N = 8, statistically uniform, 50% load.

same pattern, the characteristic load scales with the matrix ele-
ments. For example, by multiplying each element of a matrix of
characteristic load 50% by a factor of 1.5, it is converted into a
matrix of characteristic load 75% but of the same pattern.

We present results pertaining to 8-node and 16-node rings.
For most of our results, the value of was taken to be between
16 and 20 and the value of was 48. We used randomly gen-
erated statistically symmetric traffic matrices for all the runs. A
discrete uniform probability distribution was used for all traffic
generation. We focus on characteristic physical load values of
50% and 90%. Only a sampling of the results obtained are pre-
sented here.

Because of different traffic patterns and different character-
istic load values, the absolute values of the different bounds
plotted are not easy to compare. It is necessary to express them
in terms of some characteristic of the problem that makes it
sensible to compare them. Recall that denotes the amount
of electronic routing performed by a topology that does not em-
ploy optical forwarding at all and corresponds tono grooming.
The other extreme (not necessarily achievable) iscomplete
grooming, in which all traffic is groomed into lightpaths and
no electronic routing is performed. The actual amount of
electronic routing performed by any feasible topology falls
between these limits and may be expressed as a fraction of
to indicate theeffectiveness of grooming. Thus, 1 indicates that
all the traffic has been left ungroomed, while 0 corresponds to
the best situation in which no traffic is left to be groomed. The
values expressed as such ratios indicate the upper bounds
on the optimal grooming effectiveness, while the values
represent lower bounds on the grooming effectiveness that can
be reached in the optimal case. In our plots, we normalize each
set of results to the corresponding value of and plot the
grooming effectiveness ratios as above. Other quantities in the
plot which we discuss below are similarly normalized.

We present two broad sets of data. In the first, or detailed
section, we present and for values of up to 7, for

, for loads of 50% and 90%, and statistically uni-
form, rising and falling patterns. Figs. 7 and 8 show the results
for eight-node rings, statistically uniform traffic, 50% and 90%

Fig. 8. N = 8, statistically uniform, 90% load.

Fig. 9. N = 8, statistically falling, 50% load.

characteristic load, respectively. Figs. 9 and 10 similarly show
the results for statistically falling traffic, 50% load, and rising
traffic, 90% load, respectively. Figs. 11 and 12 both show de-
tailed results for 16-node rings with falling data and 90% load;
in the first case the traffic from a given node falls to zero at the
furthest destination node along the ring, while in the second case
it falls to zero at a destination node halfway around the ring and
is zero for all nodes further along the ring. The latter pattern
could be of interest if a bidirectional ring is decomposed into
two unidirectional rings by adopting shortest path routing for
all traffic componentsa priori.

We observe that all the figures look similar. There is a sharp
decrease from to and more moderate decrease thereafter.
In all cases of eight-node rings, there is a marked decrease for

, and the grooming effectiveness for is between 0.1
and 0.2 in all cases. For 16-node cases,(which is no longer
the final value ) is again between 0.1 and 0.2. Thus we
generally observe that we get good grooming effectiveness and
that the lower bounds are comparatively small in magnitude.
This indicates that a high value of electronic routing for some
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Fig. 10. N = 8, statistically rising, 90% load.

Fig. 11. N = 16, statistically falling to end, 90% load.

feasible topology is more likely to result from lack of grooming
(and can be corrected by proper grooming) than being the in-
evitable consequence of a high optimal value.

In all the above graphs, we also plot three other quantities
(these do not vary with the number of nodes as and
do). The first is a lower bound computed after the fashion of
the Moore bound [12], while the second is based on a per-node
consideration of the lightpath endpoints, derived in [12]. Bounds
of this type have been developed by consideration of general
topologies and it is expected that our bounds, derived for the
special case of the ring, will be tighter. In fact we see that, ex-
cept in Fig. 11, we obtain only the trivial value of zero for these
bounds. We also plot an easy to compute lower bound on the per-
formance of a heuristic which is based on solving the problem
optimally but using only single-hop and two-hop lightpaths. For
even values of , this heuristic is especially attractive since a
wavelength assignment is always possible and thus need not be
performed, a result for which we omit the proof here. A lower
bound on the performance of such a heuristic is easy to obtain by
considering that a traffic component from nodeto node
must be electronically routed at least times, for

Fig. 12. N = 16, statistically falling toN=2, 90% load.

Fig. 13. Ensemble,N = 8, statistically uniform, 90% load, electronic routing.

. We call this bound thetwo-hop lower bound. Since
and are obtained from topologies that contain no lightpaths
longer than two hops, the objective value of the optimal two-hop
topology will by definition be equal to or less than these. This
is borne out by the results. However, in each case we see that all

values for are lower than the two-hop lower bound.
Thus, even the first few solutions of our framework can outper-
form simplistic heuristics such as the two-hop optimal topology.

In the second set of data, we present different runs in each
of which results are plotted for 30 traffic matrices of the same
pattern and same value of (either 8 or 16). Fig. 13 presents
the results for an ensemble of eight-node statistically uniform
traffic matrices with characteristic load around 90%; the ac-
tual values of electronic routing are plotted. Fig. 14 presents an
ensemble of 16-node statistically uniform traffic matrices with
characteristics load around 50%; the normalized grooming ef-
fectiveness values as described above are plotted. Only the
values which produce appreciable improvements over the pre-
vious ones are labeled for improved readability. Similarly, only
the highest value obtained is plotted. The two-hop lower
bound is also plotted.
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Fig. 14. Ensemble,N = 16, statistically uniform, 50% load, (normalized).

The ensemble results confirm the detailed results we obtained
earlier. Because we have obtained bound values up to a smaller
value of , we do not see the low values of grooming effective-
ness we encountered in the detailed results, but the values of the
earlier bounds indicate that the same characteristic are likely to
emerge. We note from the normalized graphs thatis likely to
achieve a grooming effectiveness of around 0.5, and this is likely
to be the case irrespective of the characteristic load or traffic pat-
tern at least in the range we have varied them. Latervalues
produce decreasing benefits. We note both from the detailed as
well as ensemble results that several values before (but not
including) are likely to produce little incremental ben-
efit. The ensemble results also confirm that is likely to out-
perform the two-hop optimal topology heuristic.

VI. CONCLUDING REMARKS

We have considered the problem of grooming traffic in vir-
tual topology design for wavelength-routed optical networks.
We have created a framework of bounds, both upper and lower,
on the optimal value of the amount of traffic electronically
routed in the network. The bounds are obtained based on the
idea of decomposing the ring network a few nodes at a time.
We specify the decomposition method and derive a result
showing that solving the decompositions is a considerably
more tractable problem than solving the complete problem.
We present a method of combining these partial solutions into
a sequence of bounds, both upper and lower, in which every
successive bound is at least as strong as the last one.

APPENDIX I
DYNAMIC PROGRAMMING ALGORITHM FOR

Let denote the largest sum of values obtained by
partitioning the segment of the ring comprised by the nodes

into smaller segments no larger than
nodes, which we refer to as subsegments. That is, we consider
the set of partitions of the nodes fromto inclusive of
the ring into subsegments no larger thannodes. For each parti-
tion we sum the objective values of the decompositions obtained

from the subsegments and use to denote the maximum
of these over all the partitions we consider. The first subsegment
is constrained to start with the nodeand the last subsegment
is constrained to end with the node . For any value of
, valid values for are , and in addition we define

for notational convenience. Thus are
partial best sums of values. We obtain a total bound by ex-
tending these partial sums completely around the ring as below.

By definition, . We now show
how to obtain given all the values

. All the partitions we need
to consider to obtain end with a segment
which itself must end with the node . This last segment
can have only between 1 and nodes, giving us classes
of partitions we have to consider. The number of classes is
smaller if , because we are constrained to start our
partition from node . For each class, we need only consider
the partition yielding the best sum of values and add a
single value to it to extend the partition to node .
This allows us to write the recurrence relation

(20)

Now denotes the maximum bound that can be ob-
tained from all partitions of the ring that are constrained to have
node as the first node of a segment. To consider other parti-
tions in which node is not the first of a segment, we note that
node can only be the second, third,, th node of a segment.
Hence, it suffices to consider thesums for suc-
cessive values ofto ensure that all partitions have been consid-
ered. Any successive nodes can be used, we assume without
loss of generality that the nodes
are used, thus

(21)

From (20), to compute we need at most ad-
ditions and comparisons. To obtain for any given
value of thus needs a total of time. Finally, we need to
repeat this times as per (21), thus needing a total of
time for this algorithm.
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