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On Optimal Traffic Grooming in WDM Rings
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Abstract—We consider the problem of designing a virtual wavelengths available. These two issues give rise to the concept
topology to minimize electronic routing, that is, grooming traffic,  of traffic grooming which refers to techniques used to combine
in wavelength routed optical rings. The full virtual topology design lower speed traffic components onto available wavelengths in

problem is NP-hard even in the restricted case where the physical der t t network desi | h t minimizati
topology is a ring, and various heuristics have been proposed in order to meet network design goals such as cost minimization.

the literature for obtaining good solutions, usually for different The problem of designing logical topologies for rings that
classes of problem instances. We present a new framework which minimize cost as measured by the amount of electrooptic equip-
can be used to evaluate the performance of heuristics and which et has recently received much attention. In [11], the problem
requires significantly less computation than evaluating the optimal . - ; .
solution. This framework is based on a general formulation of the O,f wavelength aSS|gnm§nt toa g'V‘?” _set of lightpaths is con-
virtual topology problem, and it consists of a sequence of bounds, Sidered, and the focus is on how limited wavelength conver-
both upper and lower, in which each successive bound is at least sion affects the capability of the network. Several different vir-
as strong as the previous one. The successive bounds take largetual topologies for ring networks are discussed in [8] in light
amounts of computation to evaluate, and the number of bounds of the twin issues of traffic grooming and network cost. The

to be evaluated for a given problem instance is only limited by . .
the computational power available. The bounds are based on study in [7] complements [8] by addressing only the wavelength

decomposing the ring into sets of nodes arranged in a path and @ssignment issue, with the goal of minimizing the number of
adopting the locally optimal topology within each set. While we SONET ADMs. The concept of lightpath splitting in designing
only consider the objective of minimizing electronic routing inthis  a virtual topology is discussed and heuristics for wavelength
Zapﬁé‘ dotjor ;%Toi?rﬁut; ctht%ilnoing tr;gbsl'g%‘;egﬁeﬂ?]f 20‘%2‘251103”6:’6 assignment are developed based on this concept. In [14], the
bgﬂnds we obta¥n also prO\E)ide gﬁgeful series of he%ristic sollﬁ)tﬁ)ons. Pmb'em of .g.roorr.ung tr_aﬁ'c |s.conS|Qered both for.unldlrelc—

tional and bidirectional rings, with a primary goal of either min-
imizing the number of SONET ADMs or the number of wave-
lengths. The strategy presented is to first construct circles from
the given traffic components and then to groom these circles.
I. INTRODUCTION Algorithms for exact solutions for uniform traffic and heuristics

N recent years, wavelength routed optical networks haf@ the NP-hard nonuniform traffic case are presented. A sim-
been seen to be an attractive architecture for the next g#t @Pproach of constructing circles first is taken in [15], but
eration of backbone networks. This is due to the high ban@oW the resultant circles are scheduled in a sequence of virtual

width in fibers withwavelength division multiplexin¢/VDM) topologies. Heuristic algqrithms to minimize n_etwork cost by
and the ability to tradeoff some of the bandwidth for eliminadfooming are presented in [3], for special traffic patterns such
tion of electrooptic processing delays usimgvelength routing S uniform, certain cases of cross-traffic, and hub. In [2], the
[5]. Of late, two concerns have clearly emerged in the treatméincept of &-allowable traffic pattern is discussed, in which

of optical ring networks using WDM and wavelength routingh€ traffic for each node-pair is constrained to be at mtost
[7], [8]. First, it has been recognized that the cost of network bidirectional ring, but with symmetric traffic, is considered
components, specifically electrooptic equipment and SONE§" dynamic traffic. A heuristic algorithm based on a bipartite
add—drop multiplexers (ADMs), is a more meaningful metrighatching formulatlon of the probl_em is presented, and block|_ng
for the network or topology than the number of wavelengthSharaCter'St'Cs of the resylt are discussed. In[9], a prob!em sim-
Second, earlier studies of wavelength routed networks had 4af 1o that in [7] is considered, but the problem of routing the
sumed that individual traffic demands are comparable to tHghtpaths is considered as well as the wavelength assignment
wavelength bandwidth [1], [4], [5], [10], [12]. However, it is problem. An Euler-trall_ d_ecom_posmon of the ring netwprk is
now evident that the individual traffic streams that wavelengfif€sented, and a heuristic which uses one of the heuristics of
routed networks will carry are likely to have small bandwidth rd] and performs rerouting of lightpaths as well, based on the
quirements compared even to the bandwidth available in a sinfider-trail decomp05|.t|on, IS presenteq. '

wavelength of a WDM system. This assumption is further sup- The problem of logical topology design is NP-hard even for
ported by the fact that the number of different traffic compa? ring topology [5], [14], and obtaining an exact solution re-

nents in a network is likely to be much larger than the number @gires significant amount of computation even for modest sized
rings. Heuristic approaches are needed for practical purposes
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from i-1 between each pair of nodes can suppbrivavelengths and car-
e ries traffic in the clockwise direction; in other words, data flows

! from a node to the next nodés 1 on the ring, whered denotes
‘ addition modulo . (Similarly we uses to denote subtraction
-~ ‘ moduloV.) The links of R are numbered from 0 t&V — 1,
o such that the link from nodéto node: ¢ 1 is numbered. Each
node in the ring is equipped with a wavelength add—drop mul-
« tiplexer (WADM) [see Fig. 1(b)]. A WADM can perform three
Wi functions. It can optically switch some wavelengths from the in-
coming link of a node directly to its outgoing link. It can also ter-
minate (drop) some wavelengths from the incoming link to the
node; the data carried by the dropped wavelengths is converted
Fig. 1. () AnN-node unidirectional ring and (b) detail of a node with a0 electronic form and undergoes buffering, processing, and pos-
WADM. sibly, electronic switching at the node. Finally, the WADM can
also add some wavelengths to the outgoing link; these wave-

The framework is based on the idea of decomposing the ril‘?@gths may carry traffic originating at the node, or they may
into path segments consisting of successively larger numbecaf"Y traffic originating at previous nodes in the ring and elec-
nodes. The path segments are solved independently, and thdrpically switched at this node. We assume that estimates of the
dividual results are appropriately combined to obtain boun§9d€-to-node traffic are available, requiring the design\if-a

on the optimal value of the objective function. In this manne{U@! Or logical topology consisting of a set of static lightpaths.
we obtain a series of bounds, both lower and upper, in whilp this paper we do not cons@erthe dynamic scenario in which
each bound is at least as strong as the previous one. The firquests for lightpaths or traffic components are received con-

few bounds in the sequence require trivial computational effolf?uously during operation. _ _ _
Although subsequent bounds take successively larger computal € traffic demands between pairs of nodes in the ring are
[t>4)]. We assume that the net-

tional efforts to determine, even several later bounds require s%‘fen in the traffic matriXT = .
nificantly less computational effort than the full solution doed/0'K Supports traffic streams at rates that are a multiple of some

depending on the problem instance. We show that this respSIC rate (e.g., OC-3). We €t denote the capacity of each

is due to the fact that solving a path segment exactly takes 4gvelength expressed in units of this basic rate. Tatdgnotes

amount of time which is orders of magnitude less than that 1e maximum number of traffic units that can_be multiplexed on
quired for solving a ring of the same number of nodes. THWDM channel (wavelength). For example, if each wavelength

problem we consider is very general, as we do not impose gh'S at OC-48 r(:j\tes and the basic rate is OC-3, tliea 16.
constraints on the traffic patterns. The upper bounds we derﬁ@Ch quar_ltltyt(s ) € {_0’ 1,2,...} is also expressed_ In tgrms
are based on actual feasible topologies, so our algorithm for &.th€ basic rate, and it denotes the number of traffic units that
taining the upper bounds is a heuristic for the problem of trafff/'ginate at node and terminate at nodeé

grooming. Finally, although we illustrate our approach using GVen the ring physical topology, lagical topology is de-
a specific formulation of the problem, it is straightforward tdin€d Py establishingghtpathsbetween pairs of nodes. A light-

modify it to apply to a wide range of problem variants with difpath |s a dire_ct optical connection on a certain wavele_ngth_. M(_)re
ferent objective functions and/or constraints. specifically, if a lightpath spans more than one physical link in

The rest of the paper is organized as follows. The problem B 1N its wavelength is optically passed through by WADMs
designing a virtual topology that minimizes electronic routing ifit Ntérmediate nodes, thus the traffic streams carried by the
a ring network is formulated as an integer linear program (ILFH?htpa,th travel in thlcal form throughout the p_)ath between the
in Section I1. In Section Il we describe the decomposition of thg"dpoints of the lightpath. We assume that ring nodes are not
ring network into path segments, and we show how to obtain ﬁﬂwpp_ed with wavelength converters, therefor_e a Ilghtpath must
optimal solution to the path segments from a simplified versidif @ssigned the same wavelength on all physical links along its
of the ILP. Next, in Section IV we describe how to combin@ath- o . .
efficiently the solutions to individual segments to yield a strong A1 important problem in this context is the design of log-
sequence of lower and upper bounds for the original problelﬁ‘f’" topologies that optimize a certain performance metric. The

Section V contains numerical results and Section VI concludBiEtric of interestin this work is the amount of electronic for-
the paper. warding (routing) of traffic streams, since such forwarding in-

volves electrooptic conversion and added message delay and
processor load at the intermediate nodes. In a global sense, this
means that we want to reduce the number of logical hops taken
We consider a unidirectional rin@ with NV nodes, num- by traffic components, individually or as a whole. For each node,
bered from 0 taNV — 1, as shown in Fig. 1(a). The fiber link it also means that we want to reduce the amount of traffic that
the node has to store and forward. Thus we have two alterna-
Iwe describe the working part of the ring. Itis assumed that there is a prottlve goals, one is to minimize the total traffic weighted logical

tion part for self-healing or fault-tolerance as dictated by design or required %pps in the net_Workv and the other is t(_) minimize the maximum
standards, but our description does not include this. number of traffic components electronically routed at a node. In

to i+l

(a) (b)

Il. PROBLEM FORMULATION
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this paper we have chosen to concentrate on the former. Another tij = Z t(Sd) (4, 4) (4)
possible quantity of interest is the number of wavelengths each
WADM is required to add or drop due to lightpath terminations. ti; < b“C V(¢,5) (5)
This would correspond to minimizing of the number of SONET ted) g =
ADMs as in [3], [7], [9], [14]. It should be noted that adding t<5d> Zt(Sd) t(sd) d=7i Vi, (s, d).
and dropping more wavelengths will result in a larger number 0, s#id4i
of logical hops for traffic components and thus this concern |s (6)
to some extents incorporated in the electronic forwarding metric
we consider. Wavelength Constraints

We lett(!) denote the aggregate traffic load on the physical
link 7 (from nodel to node/@ 1) of the ring. The value of(7) can Z biy <W, Vi (1)
be easily computed from the traffic matflx The component of (i,j)EB(l)
the traffic loadt(!) due to the traffic from source nodeto des-
tination noded is denoted by *®)(). If one or more lightpaths Z ) (8)
exist from node to nodej in the virtual topology, the traffic car-
ried by those lightpaths is denoted&y. The component of this Z CZ(J’O <1, Vi k. (9)
load due to trafflc from source nodeto destination nod€ is G.)EB)
denoted byf . In our formulation, we forbid a traffic compo-
nentto be carried completely around the ring before being deli{@ minimize:
ered at the destination, thus each traffic component can traverse
a given link at most once. Also, a single traffic unit may not be Z e _ Z 1D
bifurcated, but different traffic units for the same source-desti- “
nation traffic component are considered as separate traffic and
may be assigned different logical routes. The traffic constraint (1) ensures that a lightpath can carry

In our formulation we allow for multiple lightpaths with traffic for a source-destination node pair only if it is in the phys-
the same source and destination nodes. We denote ¢ route of the traffic component. Constraint (3) states that
lightpath countfrom node: to node j by b;;, taking its the physical traffic on a link due to a source-destination node
value from {0,1,2,...,W}. We also define thepotential pair must be equal to the sum of the traffic on all lightpaths
lightpath set for a linkto be the set of lightpaths thatpassing through that link due to that node pair. Constraints (4)
would pass through a given link and denote it Byl) = and (5) define the total traffic on a lightpath and relate it to the
{(4,7) | lightpath(i, 5), if it existed, would pass through link. lightpath count, respectively. Because of the definition of the
Finally, we letc{;’ be thelightpath wavelength indicator quantitiest**)(1), constraints (1) and (3) together ensure that
ie. (5) is 1 if a lightpath from nodei to node j uses no traffic gomponent can be routgd cqmpletely around Fhe ring
wavelengthk, 0 otherwise. before being delivered at the destination node. Constraint (6) is

We can now formulate the problem of designing a virtu@n expression of traffic flow conservation at lightpath endpoints.
topology for a ring network such that the total amount of ele \mong the wavelength constraints, constraint (7) expresses the
tronic routing at the ring nodes is minimized. The following for- ound imposed by the number of wavelengths available, (8) re-
mulation as an ILP consists 6f(N'* + N2WW) constraints and lates the wavelength indicators to the lightpath counts, and (9)

O(N* + N2W) variables, whereV is the number of nodes in €"SUres that no wavelength clash can occur. .
the ring, and¥’ is the number of wavelengths. The above problem can be thought of as consisting of the

following three subproblems [5].

s,d,i,jC{0--(N-1)} 5,de{0---(N—-1)}

Given:
The physical topology,a unidirectional ring? of N nodes. 1) Topology Subproblem: Determine the virtual topology
The traffic matrix 7 = [t69],s,d € {0---(N — to be imposed on the physical topology, that is, deter-
D}, 6D € {0,1,2,...},t69) = 0,Vs. mine the lightpaths in terms of their source and destina-
The wavelength limit W which is the number of distinct tion nodes. _ _
wavelengths each link can carry. 2) Wavelength Assignment Subproblem:Assign a wave-
Find: length to each lightpath in the virtual topology so that
Virtual topology, in terms of lightpath indicators;;, light- Wave_length_restrictions are obeyed for each physical link.
path wavelength indicatoreéf), and traffic routing variables ~3) Traffic Routing or Grooming Subproblem: Groom the
t(Sd) traffic components on the lightpaths, that is, route the
traffic streams over the virtual topology obtained.
Subject to:

The framework we present below is based on the above formu-

Traffic Constraints . . S .
lation we have chosen, but this formulation is not essential for

t“d) < t<5d>(x) (i, 5), (s, d) (1) it. The framework can be adapted to many variations that are
gd) . possible in the formulation. There may be multiple fiber links
€{0,1,2,...}, ¥(j) (@) petween successive nodes, and the nodes may be equipped with
> tgj.d) = t<5d>(z), (s, d),l (3) wavelength routers instead of WADMs. Hardware for wave-

(i,/)CB() length conversion may be available at the nodes [11]. A phys-
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wheret,a.-tnru (4, 7) denotes the traffic of the original matrix
T thatpasses througthe segment of length starting at node
i, i.e., traffic on ringR that uses the links of the segment but
does not either originate or terminate at any of the nodes in that
segment. We call this theass-through trafficThe amount of
this traffic can be readily obtained by inspection of traffic matrix
T. We have used < d in the above expression to denote that
node s precedes nodé€ in the decomposition and < d to
denote that node precedes and may be the same as nbite
the decomposition.

The traffic matrix for the decomposition is defined such that
the traffic flowing from a nodes to another nodé, s < d, in
Fig.2. Ann-node decomposition: (a) original riffg and (b) a decomposition the segment is the same as that in the original ring [first expres-
P sion in (10)]. Thus any traffic component, the path of which is

entirely in the segment, is unchanged in the decomposition. The

ical hop limit for lightpaths may be imposed. The ring may bdecomposition is effected by the introduction of nodesndD
bidirectional, either with some simple routing strategy (such ésgether with the links connecting them to the segment. Node
shortest path, as in [14] and [7]) that allows us to consider it &sacts as the source of all traffic components in maffigrig-
two unidirectional rings, or the lightpath routing (either clockinated at a node outside the segment and destined to any node
wise or counterclockwise) may be integrated as part of the ogti-the segment [second expression in (10)]. NSd#so acts as
mization process (as in [9]). In all these cases, the objective nthg source for all traffic components that pass through the seg-
be to minimize electronic routing. The framework we presement, as the fourth expression in (10) indicates. Similarly, node
may be extended, in a straightforward manner for some of theldds the sink for traffic originating at any node in the segment
cases, and with some enhancements in others. When the objeet terminating at a node outside the segment [third expression
tive function is of a min—max type (e.g., minimize the maximurin (10)], as well as for pass-through traffic. Finally, any traffic
electronic routing at any node) or a quantized version (e.g., mgemponents in matri¥’ that do not traverse any links of the
imize the number of SONET ADMs), our framework can alssegment are not included in the traffic matrix for the decompo-

(b)

be adapted to obtain bounds for the optimal value. sition. This is captured by the last two expressions in (10) where
it is shown that no traffic flows from nod® to nodeS in the
I1l. PATH DECOMPOSITION OF ARING NETWORK decomposition.

Because of the way the traffic matrix for the decomposition is
defined in (10), from the point of view of any node: < %k <

We consider a rin@k with N nodes and traffic matri¥”. We ; ¢ (n — 1), in the segment, the traffic pattern in the new path
define asegmenof lengthn, 1 < < N, startingatnodé 0 < p{) js exactly the samas in the original ring. The new nodes
i < N, as the part of the ring that includes theconsecutive g and D are introduced in the decomposition to abstract the
nodesi, i@ 1,...,i® (n—1), and the links between them. Wejnteraction of traffic components between nodes in and outside
define adecomposition of ring{ around a segment of lengththe segment. Specifically, the new naflenides the details of
n starting at node as a pati,,” that consists of, + 2 nodes how traffic sourced at ring nodes outside the segment and using
andn + 1 links as follows: then nodes and: — 1 links of the  the links in the segment actually flows over the rest of the ring,
segment of length starting at node, a new nodes and a link by providing a single aggregation point for this traffic. Similarly,
from 5to, and anew nod® and alink fromnodé & (n —1)  the new nodeD provides a single aggregation point for traffic
to D. We also refer t&PS” as ann-node decomposition of ring using the links of the segment and destined to nodes outside the

A. Definition of Decomposition

R starting at node. Fig. 2 shows such a decomposition. segment, hiding the details of how this traffic flows in the rest
Associated with the decompositid?,” is a new traffic ma-  of the ring. Finally, the fact thab{’ is a path (i.e., that there is

trix pr = [t;j(‘fg], s,d e {i,idl,....i®(n—1),D,5F nolink from nodeD to nodeS) means that the details of traffic

derived fromT’, the original traffic matrix, as follows: in the original ring that does not involve any nodes or links of

4 the segment are hidden in the decomposition.
0D 46D i <s<d=i@(n—1)

2

tgi(j)) _ Z 100, i<d<ie(n—1) B. Solving Path Segments in Isolation
" et} Consider the matrid’, ) = [t(;(‘fZ] of the decomposition

t(;g) = Z ) i< s=<id (n—1) 73,(,?) of a segment of length starting at node in the ringR, as

FE{s61,...,i0(n—1)} given in (10). This matrix can be thought of as representing the
£SD) _ 4 tealiy ) traffic in a ring network consisting of node& s, ...,¢ ¢ (n —

Py passTiAmuAT 1), D, where there is simply no traffic flowing over the link from
0 =D — 40P — o s, d D to S. Consequently, the ILP formulation in Section Il can

P — tpm Pl : _ L .
" " " be used to obtain a virtual topology that minimizes electronic

sd . .
# <7-2 =0, ixd<s=zid(n—1) (10) routing for this “ring.” Since the formulation disallows routing

n
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that carries a traffic component beyond its destination and ¢ .7 N
around the ring, no lightpaths can be formed to carry traffic ove : !
the link from D to S that is absent in the decomposition. Thus

the topology obtained in this manner can be directly applied f

the patfﬂ’,(f). When we use the ILP to find an optimal topology

for pathPr(f) we will say that we solve the-node segmerit

isolation

The topology obtained by solving arrnode segment in iso-
lation does not take into account the details of the original rin
outside of the segment. Such a topology will only be optime
with respect to this segment, in the sense that it will minimiz @ (b)
the amount of electronic routing within the segment, but without
considering the effects that doing so would have on the amouif 3. A single node decomposition of a ring: (a) original ring, and (b) single
of electronic routing at nodes of rirfg outside the segment. In node decompositiof}” around node.
fact, this topology may not be optimal for the ring as a whole. In

other words, itis possible that, for any optimal topology for thegying a six-node network using the simplified formulation (no
ring as a whole, the subtopology corresponding tortheode \yavelength assignment) requires only a few seconds.
segment will be different than the topology obtained by solving e denote the optimal objective value for the decomposition
the ILP forPy” inisolation. Thus it may not be possible to com-p () by ¢¢. The two additional nodeS and D, by the con-
bine optimal solutions to different segments in isolation into &,ction of the decomposition, do not have any traffic passing
(near-)optimal topology for the rin. Our contribution is i {hrough them at all, and hence they do not contribute any elec-
proving a weaker result: that it is possible to combine optimglnic routing. Since the traffic pattern seen by theodes ab-
solutions to different segments in isolation to obtain lower angracted from the ring is the same as when they are included in
upper bounds on the optimal solution to the riRgs awhole. e ring 4" also represents the locally best (lowest) amount of
As the number, of nodes in a path segmentincreases, the I cironic routing at this set of nodes when considered as part

sulting decomposition will more closely approximate the origst the ring. That is, the electronic routing at this set of nodes
inal ring and the bounds will be tighter. More importantly, a patfy minimized, irrespective of how much routing has to be per-

decomposition significantly alleviates the problem of exponefs,med at other nodes of the original ring as a resuit.

tial_ growth ?n computational requirements for 5(_)Iving the ILP. \ne note that, because we convert the ring to a path, some in-
Thisresultis a dlrect_conseq_uence of the fO”OW'”Q I_emrr_la. formation is not taken into account at the point where we “open
Lemmalll.1: Consider a virtual topology on a un|d|rect|ona|up” the ring even when considering Aknode path. As a result,

path, in which the maximum number of lightpaths on any linkq|\ing an’-node decomposition does not provide the optimal
is L. A wavelength assignment for the virtual topology that Uses,| tion for the/N-node fing.

exactly L wavelengths can be obtained in time lineafirand
the number of links of the path.

For the proof, see [13, Sec. 8.5.2]. ) _ :
. . We now describe how to combine tlijéz) values we get from
_ Insolving the decomposed problem, we are merely interesteq, ,jo jecompositions to obtain lower as well as upper bounds
in the optimum value of the objective, since this is the valug, we total amount of electronic routing performed in the op-
from which we will obtain the bounds. Since we know that g5 case by a virtual topology on the original ring. We first
wavelength assignment is always possible and we are not dicuss the case where we only consider single-node decompo-

terested in the details of the wavelength assignment, we @flons, then move on to the general case where larger decom-
eliminate the wavelength assignment from our formulation aItB'ositions are available

gether. This implies that we can eliminate subproblem (3), the
wavelength assignment subproblem, from the list of subproR-
lems we enumerated in Section Il. Thus, we eliminate the wave- ‘
length variablesﬁf) and the constraints (8) and (9). The number 1) Lower Bound: Recall thap{” represents the locally best

of variables in the formulation remai& N*), but N2W vari- amount of electronic routing at the nodes in the segment of
ables are eliminated, and the number of wavelength constrailegthn starting at node. In particular,¢{” represents the lo-

is reduced fronO(N2W) to O(V), though the total number of cally best amount of electronic routing that can be achieved at
constraints remain®(NN*). This creates a formulation that isnodei considered in isolation (see Fig. 3). There may or may
smaller and requires dramatically less computation to solve.nat be an optimal (or even feasible) virtual topology for the ring
practice, we have found that eliminating the wavelength assigR-that achieves this value of electronic routing at nedeut
ment subproblem can result in a reduction in computation tinleere can be no topology which achieves an even lower value.
by several orders of magnitude. For instance, the LINGO sdihus,dﬁz) is a lower bound on the amount of electronic routing
entific computation package takes between 60 and 90 minupgsformed at node for any virtual topology.

on a Sun Ultra-10 workstation to solve a six-node ring using the Since ¢§Z> represents contribution to the electronic routing
original formulation (with wavelength assignment). Howevennly by nodei, we can add the contributions together for each

IV. BOUNDS

Bounds Based on Single-Node Decompositions
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node to obtain a lower bound on the total electronic routing pe
formed in any virtual topology. We call this lower bourd

N-1 ‘

o =Y ot (1) -

=0

2) Upper Bound: We first consider an upper bound we can:-
obtain directly from the traffic matrix, without recourse to de-
compositions. This bound corresponds to the virtual topolog
consisting only of single-hop lightpaths. Consider naédén
this topology, single-hop lightpaths from node> 1 carrying (a) N even (b) N odd
all traffic to nodei and beyond terminate at nodeNode
electronically switches all traffic for which it is not the desti-
nation, combines it with its own outgoing traffic, and source. O min electronic routing (single-node decompositions)

a m.jmber of .smgle—hop' Ilghtpgths (up ) that carry thls Fig. 4. Virtual topology with alternating single-node decompositions and
traffic to nodei ¢ 1. We will call this theno-wavelength-routing ¢gncentrator nodes.
topology, since no wavelengths are optically routed at any node.

In such a topology, each nodperforms the maXimUF)“ possibleyyi have two concentrator nodes next to each other at one po-
amount of electronic routing, which we denote®$. Quan- gjtion in the ring, as illustrated in Fig. 4(b). Since there Afe

titiesz/;@), i =0,...,N —1, can be readily obtained from the, 5y s of selecting the position of these two concentrator nodes,
traffic matrix 7. We let¥, denote the total electronic routingihere arelV possible virtual topologies wheN is odd. We take

@ max electronic routing (concentrator nodes)

performed under the no-wavelength-routing topology the smallest value of total electronic routing we can obtain from
N-1 these topologies as the upper bound. This bound is indicated by
=Yy (12) ¥y, and in the general case, it can be expressed as (13), shown

i=0 at the bottom of the page. Since this is a feasible topology which

Since this is a feasible topolog¥, is an upper bound on theincurs the maximum electronic routing only at the concentrator
0 nodes while it incurs less at the others, the upper bound set by

optimal electronic routing. L i
In general, ¥ is a rather loose upper bound. We now ShO\}\pe ?Eic\tl:l\ée;lzgjﬁ;Jéht's;fpzlogy must be at least as strong as
1 = 0-

how to utilize single-node decompositions to improve upon tr%o’
no-wavelength-routing topology to obtain a tighter bound. L
us refer to Fig. 3(b) which shows a decomposition around no
i. Recall now that, in deriving the best local electronic routing 1) Lower Bound: In obtaining the boune; above, we re-
¢§i) at nodei, we made the assumption that all traffic passingtarked thatwe canadd the vari_thQ q_uantities together_since
through nodei is originated atS and terminated ab. Let us they each represented electronic routing at naxdy. Consider
call concentrator nodethose nodes which do not perform anyhe quantityps”; it represents the minimum possible amount of
optical forwarding (i.e., they terminate and originate all lightelectronic routing (best case) at nodand node: & 1 taken
paths). In the no-wavelength-routing topology, every node isiegether. We cannot adet” or ¢{"“" to this quantity and still
concentrator node. In the single node decomposition nédediave something that is guaranteed to be a lower bound on the
and D can be viewed as concentrator nodes. Thus, we are R@ount of electronic routing these nodes together perform in
to consider a virtual topology such that every other node is2&y feasible topology, because we are potentially counting the
concentrator node (performing the maximum electronic routirigaffic routed by a single node twice. However, we can affd
possibley) ) while the remaining nodes perform the minimumand¢§”®2), since the two quantities involve sets of nodes that are
electronic routing possible/;gz). This topology is illustrated in disjoint, and, therefore, there is no potential double counting of
Fig. 4, where even-numbered nodes are concentrator nodeselectronic routing. Generalizing this notion, we can addzﬁﬁé
Depending on which nodes in the ring we select to be tivalues for any set of decompositions that involve disjoint seg-
concentrator nodes, we obtain different virtual topologies whichents, and we are still guaranteed to obtain a lower bound on
yield potentially different values for the total amount of electhe objective value for any feasible topology. We formalize this
tronic routing. If the number of node€ in the ring is even, we in the following lemma. The proof follows obviously from the
have two possible topologies, depending on whether even-niemguments above.
bered or odd-numbered nodes are concentratotd. i odd, Lemma IV.1: Let ¢,, be a set of segments of rin@ which
any virtual topology constructed in the manner described abgvartition the nodes of the ring in segments of lengtr smaller.

A Bounds Based on Larger Decompositions

¥ = min Z ¢§j+k) + Z z/)(j+k) (13)

LN k0,24, 201N —2)/2))) k(0,24 2(L(N—2)/2)))
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(a) () (a) (b)

Fig. 5. Partitions of the nodes of a ring into (a) segments of no more than twiy. 6. Two partitions of a ring into alternating concentrator nodes and
nodes and (b) segments of no more than three nodes. segments of no more than three nodes.

Letly,l; < n denote the length (number of nodes) of segmefdr ¥, ; but for &,, the value ofz is not restricted to 1 as fab,
kk=1,...,|on|, andlet; denote its starting node. The quaninstead it can take on any value from 1stoFig. 6 shows two
tity ways we can partition a ring using no larger than three-node seg-
ments, thus creating two topologies among the ones we would
i consider in computing’s.
O(on) = Z ¢§kk) (14) We note that the boundB, and¥; we obtained in Section
k=1 IV-A.2 are consistent with this framework. As before, the set of

is a lower bound on the objective value for any feasible virtu#@pologies we consider in obtaining,, is a superset of the
topology on the ringR and therefore on the optimal objectiveset of topologies considered i, therefore we have a strong
value. sequence of upper bounds

We now define®,, as

|°'n|

Upy1 <V, Vne{0,...,N—2} (17)
®,, = max{®(0,)} (15) . .
Because the bounddl,,} are based on feasible topologies,
where the maximum is taken over all partitions of the ring whictiey also provide us with a useful series of heuristic solutions
contain segments with or less nodes. F|g 5 shows two parti_to the ring. In the next section we derive a result which shows
tions of the same ring, the first containing only 1- and 2-nod&e tightness of the bounds and thus the goodness of the heuris-
SegmentS, and the second Containing 0n|y 1-,2-, and 3-node gé—é" and we see in Section V that even the first few solutions of
ments. the series can outperform a simplistic heuristic. The later solu-
Because of (15), in computing bouig; we must consider tions in the series can compare favorably with some heuristics
all partitions (and bounds derived therefrom) considered to cofgPorted in literature. Specifically v, must be as good or
pute ®,,, and, additionally, all partitions which include one oPetter than aingle-hubarchitecture [8], [3], [2] because it con-
more(n + 1)-node segments. Specifically, the set of partitiongders all topologies with a single concentrator (hub) node. For
on+1 We consider ford,,,; is a proper superset of the set oft Similar reasond/x,, k > [V/2] must be as good or better than
partitionss,, we consider forb,,. Since we draw the maximum & double hub design, if the hubs are constrained to be diametri-

bound from each set as per the definition in (15), we have th&®lly opposite in the ring. ‘ ‘
3) Tightness of BoundsConsider the value® — ¢{” for

T, 20, VYne{l,...,N—-1}. (16) each node of a ring, which is the difference between the min-
_ imum and maximum traffic the node can route in any virtual
As aresult, the sequende, @, .. ., v is a strong sequence oftopology. Let the node for which this difference is minimum be

bounds. We also note that the definitiondaf in Section IV-A.1  nodej, and let the corresponding difference@@, so that
is consistent with the definition above.

2) Upper Bound: Itis now straightforward to obtain a strong ) = fn;ﬁ (z/}(i) _ d)(i)) . (18)
sequence of upper bounds along the same lines. We d&fine i=0 !

as the lowest objective value we obtain for all topologies WhiGF'he final upper and lower bounds are guaranteed to be no further

are created by alternating concentrator nodes with segments,aa .+ 1han this quantity. We state this in the following lemma, the
larger tham nodes in size. We can once again consider this oof of which is omitted here and can be found in [6]

light of partitions of the nodes of a ring. Now, however, the par- Lemma IV.2: The guarantee on the final values in the se-
titions are constrained not only to use segments-abdes or ences of upper and lower bounds is

less, but every alternate segment must contain exactly one node.

These alternate single-node segments are used as concentrator Uy 1 —By_q < (O, (19)
nodes in the topology we create, rather than as single-node de-

compositions. Once again, the form of this upper bound is an4) Computational ConsiderationsThe bounds®,, (and
alternate sum ch>§f) andy () values, similar to expression (13)¥,,) for successive values af incorporate progressively more
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information about the problem and as such require progres-Corollary IV.1: An z-node decomposition yields at least as
sively more computational effort to determine. This increase large an objective value as the sum of objective values of any
computational effort manifests itself in two ways: combination of smaller decompoasitions it can be partitioned

. ; . _ into. That is (/)(i) > (/)’(i) + (/)’(i-l-yl) + ¢’(i+y1+y2) 4ot
1) the calculation of th $f) values required for a given mi RTINS DA Y2 Y3
) &n q 9 (hotyettym) ey Ly

bound; Un

2) the evaluation of all partitions of the ring in segments of | N€ corollary follows immediately from the lemma by re-
length at most by an appropriate combination oftbéi) peated application within the same decomposition and allows
values us to discard partitions in which a small segment follows an-

other. Specifically, if we are computing,., we can discard a
In the discussion that follows we focus on the sequefieg}  partition in which ay;-node segment is followed bya-node
of the lower bounds, but the observations we make are equalgment ify; + y2 < x, since the partition we obtain by re-
applicable to the sequence of upper bounds. placing these segments by + y2)-node segment must yield

The computation of a bound utilizing a certain size of decong-higher bound, and we are interested in the maximum bound.
positions requires knowledge of decompositions of all lower The above methods allow us to compute {Hg, } bounds by
sizes as well. Thus, computing, would require us to com- combiningtheﬁﬁf) values in an insignificant fraction of the time
pute¢§f) for all values ofi € {0,...,N — 1} and all values of taken to compute th@ﬁf) values themselves. In practice, we
n € {1,...,2}. However, thancrementalcomputation of de- have found that computing th;éf) values takes minutes (even
compositions required to determidg, consists only of deter- hours) for increasing, while combining them to form thgd,, }
mining d)ﬁf) for all nodesi, since¢$f) for n < x would already bounds takes milliseconds. We conclude that the limiting factor
have been computed when determinidg_;. Naturally, asz  in determining how many bounds can be computed in a reason-
increases, this incremental effort required also increases; asakée amount of time is the effort required to solve the ILP for
have noted before the number of variables and constraints innode decomposition in order to compute each ofAhéZ’)
creases a®(n*). Thus the maximum value of for which we values.
can determine the corresponding bound is limited by this com-
putational effort. V. NUMERICAL RESULTS

Regarding the second factor that affects the computation tim

ere 0 obtane, wenoe it  sigtorwar sproacy [ SEELOr, 1 resert e esuts o s o e
would require us to enumerate all partitions of/&rmnode ring '

into segments of length at mast While evaluatingeach parti- tweensymmetri@ndasymmetridraffic patterns. The term sym-

L . : : : .metric applies to the ring, rather than the traffic matrix itself.
tion (i.e., computing the lower bound for it) takes time linear IVNe call a traffic pattern svmmetric if the traffic pattern from
the number of segments of the partition (assuming that the in- P y P

dividual ¢§f),a: € {1,...,n}, values are available), the nurnbeany node to the others is repeated for all the nodes. This type of

of possible partitions increases very rapidly withWe show traffic pattern is of interest since the traffic pattern looks sim-

in [6] that the incremental number of partitions to consider fOfIlaar from different nodes on the ring. In the general case, traffic

sOz,dOx) R
given value of: is exponential inV. Thus, a straightforward ap- Eomponents of the forir for every givens andd, and

. o : for all values ofz, are all drawn from the same distribution.
proach to combine decompositions into bounds would sever . AR :
- : ! . he variance of this distribution is zero, we call the resulting
limit the maximum value ofV for which we can determine the

; traffic patternstrictly symmetricotherwise, we call istatisti-
corresponding bounds. o . .
- . .y cally symmetric With respect to what traffic looks like from
However, by exploiting the particular characteristicsfif, 5 given node, we consider three simple cases. First, the traffic
we have developed a polynomial-time algorithm to comgyte  from a given nodé to all other nodes may be the same, we refer
assuming that the appropriaté’ values are available. The al-to this asuniformtraffic. When the traffic components to all the
gorithm is based on incrementally building the best sumBf other nodes are not the same, we can speakfalling traffic
around the ring and following only the best partial sum at an ifattern in which the traffic from nodeto nodes & z decreases
termediate node. This algorithm is presented as a dynamic pfearly asz increases. Similarly, we speak ofiaing pattern.
gramming problem in Appendix A and requir€§n”N) time  Again, we introduce the concept of statistical variation so that
to find ®,, given aII</>§Z> values forr = 1,. .., n. Forthe largest actual matrix elements vary from these patterns statistically and
number of total partitions in the case= N, this corresponds do not vary strictly linearly as described above.
to O(N?) instead ofO(2") time, and in fact becomes linearin  In order to have a good basis for comparison for the above
N for a small given value of.. three types of traffic patterns, we focus on the concephaf-
We can achieve an additional constant factor of improvemediteristic physical loadf the traffic matrix. For the problem
by using the properties dﬁ’) values formalized in the following instance to be feasible, the traffic flowing over each physical
lemma,; its proof is omitted but can be found in [6]. link must be less than or equal W C'. If the matrix is statisti-
Lemma IV.3: An (x + y)-node decomposition yields at leastally symmetric, the loads on the links will all be close to some
as large an objective value for the decomposed network as ta¢ue, because the traffic pattern is the same looking from any
sum of objective values of the-node andy-node decomposi- node or link. We call this value the characteristic physical load
tions it exactly contains. That i$§f}ry > d)gf) +</)$+“”), if zand of the matrix and obtain it by taking the average of the physical
y are positive and: +y < N. load on each link and express it as a percentad® 6f For the
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Fig. 7. N = 8, statistically uniform, 50% load. Fig. 8. N = 8, statistically uniform, 90% load.
same pattern, the characteristic load scales with the matrix el ' ' ' e

e lbn
-+ Lightpath Endpoint
~  Node-specifc Lightpath Endpoint | |
— - 2-hop lower bound

ments. For example, by multiplying each element of a matrixo
characteristic load 50% by a factor of 1.5, it is converted into i st
matrix of characteristic load 75% but of the same pattern. 0sk
We present results pertaining to 8-node and 16-node ring |
For most of our results, the value Bf was taken to be between
16 and 20 and the value ¢f was 48. We used randomly gen- £
erated statistically symmetric traffic matrices for all the runs. A os
discrete uniform probability distribution was used for all traffic § 04F o o N e e ,
generation. We focus on characteristic physical load values «© ,|
50% and 90%. Only a sampling of the results obtained are pr ol \

06

iveness

cli

sented here.
Because of different traffic patterns and different character °'f i

istic load values, the absolute values of the different bounc o ==
plotted are not easy to compare. It is necessary to express thi ; ; - . . . . )
in terms of some characteristic of the problem that makes Decomposttion Size n

sensible to compare them. Recall thas denotes the amount . o )
of electronic routing performed by a topology that does not erid: & v = 8, statistically falling, 5
ploy optical forwarding at all and correspondstm grooming
The other extreme (not necessarily achievablegasplete characteristic load, respectively. Figs. 9 and 10 similarly show
grooming in which all traffic is groomed into lightpaths andthe results for statistically falling traffic, 50% load, and rising
no electronic routing is performed. The actual amount afaffic, 90% load, respectively. Figs. 11 and 12 both show de-
electronic routing performed by any feasible topology fall&iled results for 16-node rings with falling data and 90% load;
between these limits and may be expressed as a fractitng ofin the first case the traffic from a given node falls to zero at the
to indicate theeffectiveness of groominghus, 1 indicates that furthest destination node along the ring, while in the second case
all the traffic has been left ungroomed, while O corresponds itdfalls to zero at a destination node halfway around the ring and
the best situation in which no traffic is left to be groomed. This zero for all nodes further along the ring. The latter pattern
values{V,,} expressed as such ratios indicate the upper bourmsild be of interest if a bidirectional ring is decomposed into
on the optimal grooming effectiveness, while the val§®s} two unidirectional rings by adopting shortest path routing for
represent lower bounds on the grooming effectiveness that edirtraffic components priori.
be reached in the optimal case. In our plots, we normalize eachWe observe that all the figures look similar. There is a sharp
set of results to the corresponding valuelaf and plot the decrease fron¥, to ¥'; and more moderate decrease thereafter.
grooming effectiveness ratios as above. Other quantities in tneall cases of eight-node rings, there is a marked decrease for
plot which we discuss below are similarly normalized. W1, and the grooming effectiveness fbr,_; is between 0.1

We present two broad sets of data. In the first, or detail@hd 0.2 in all cases. For 16-node casles(which is no longer
section, we present,, and ¥,, for values ofn up to 7, for the final value¥ _,) is again between 0.1 and 0.2. Thus we
N = 8,16, for loads of 50% and 90%, and statistically unigenerally observe that we get good grooming effectiveness and
form, rising and falling patterns. Figs. 7 and 8 show the resulisat the lower bounds are comparatively small in magnitude.
for eight-node rings, statistically uniform traffic, 50% and 90% his indicates that a high value of electronic routing for some

0% load.
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Fig. 11. N = 16, statistically falling to end, 90% load. Fig.13. Ensembley = 8, statistically uniform, 90% load, electronic routing.

feasible topology is more likely to result from lack of groomingn > 2. We call this bound thévo-hop lower boundSince¥
(and can be corrected by proper grooming) than being the amdW¥; are obtained from topologies that contain no lightpaths
evitable consequence of a high optimal value. longer than two hops, the objective value of the optimal two-hop
In all the above graphs, we also plot three other quantitiegpology will by definition be equal to or less than these. This
(these do not vary with the number of nodesdas and ¥,, is borne out by the results. However, in each case we see that all
do). The first is a lower bound computed after the fashion d@f,, values forn > 1 are lower than the two-hop lower bound.
the Moore bound [12], while the second is based on a per-notieus, even the first few solutions of our framework can outper-
consideration of the lightpath endpoints, derived in [12]. Boundisrm simplistic heuristics such as the two-hop optimal topology.
of this type have been developed by consideration of generaln the second set of data, we present different runs in each
topologies and it is expected that our bounds, derived for théwhich results are plotted for 30 traffic matrices of the same
special case of the ring, will be tighter. In fact we see that, egattern and same value &f (either 8 or 16). Fig. 13 presents
ceptin Fig. 11, we obtain only the trivial value of zero for thesthe results for an ensemble of eight-node statistically uniform
bounds. We also plot an easy to compute lower bound on the pteaffic matrices with characteristic load around 90%; the ac-
formance of a heuristic which is based on solving the probletmal values of electronic routing are plotted. Fig. 14 presents an
optimally but using only single-hop and two-hop lightpaths. F@nsemble of 16-node statistically uniform traffic matrices with
even values ofV, this heuristic is especially attractive since &haracteristics load around 50%; the normalized grooming ef-
wavelength assignment is always possible and thus need nofdmtiveness values as described above are plotted. Only,the
performed, a result for which we omit the proof here. A lowevalues which produce appreciable improvements over the pre-
bound on the performance of such a heuristic is easy to obtainkigus ones are labeled for improved readability. Similarly, only
considering that a traffic component from nod® nodes & m  the highest®,, value obtained is plotted. The two-hop lower
must be electronically routed at ledgtn — 1)/2] times, for bound is also plotted.
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from the subsegments and usg(7, k) to denote the maximum
of these over all the partitions we consider. The first subsegment
is constrained to start with the nogeand the last subsegment
is constrained to end with the nodes k © 1. For any value of
4, valid values fork arel,2,..., N, and in addition we define
D,(j,0) = 0 for notational convenience. Thus, (j, k) are
partial best sums 075&7) values. We obtain a total bound by ex-
tending these partial sums completely around the ring as below.
By definiton, D,(5,1) = ¢%). We now show
how to obtain D,(j,k + 1) given all the values
D, (4,1),D,(4,2),...,D,(j,k). All the partitions we need
to consider to obtainD,(j,k + 1) end with a segment
which itself must end with the nodg® k. This last segment
can have only between 1 and nodes, giving us: classes
: . . - = = . of partit?ons we have to consider. The numb_er of classes is
Diin Bt smaller ift < (n — 1), because we are constrained to start our
partition from nodei. For each class, we need only consider
the partition yielding the best sum @ﬁf) values and add a
single ¢§;> value to it to extend the partition to nodes k.
The ensemble results confirm the detailed results we obtainggis allows us to write the recurrence relation
earlier. Because we have obtained bound values up to a smaller
value ofn, we do not see the low values of grooming effectivel’» (j, & + 1)
ness we encountered in the detailed results, but the values of the  _ max ( DG ko) + d)g{?f@ﬂ) . (20)
earlier bounds indicate that the same characteristic are likely to 0<r<min{n—1,k}

emerge. We note from the normalized graphs thais likely to Now D, (j, V') denotes the maximum bound that can be ob-

achieve a grooming effectiveness of around 0.5, and this is liklyt\o 4 from all partitions of the ring that are constrained to have
to be the case irrespective of the characteristic load or traffic pﬁBdej as the first node of a segment. To consider other parti-
tern at least in the range we have varied them. Létlevalues ;o' which nodej is not the first of a segment, we note that

produce decreasing benefits. We note both from the detaile%%%ej can only be the second, third,, nth node of a segment
well as ensemble results that sevebgl values before (but not ance it suffices to consider thesumsD (j, N) for n suc-

including) Wy, are likely to produce little incremental ben-coqqjye values gfto ensure that all partitions have been consid-

efit. The ensemble resuI.tS also confirm tltleg is_ likely to out- ered. Anyn successive nodes can be used, we assume without
perform the two-hop optimal topology heuristic. loss of generality that the nod&—n, N —n+1,...,N — 1

are used, thus

Geomming #Fcin e
i

Fig. 14. Ensemblel = 16, statistically uniform, 50% load, (normalized).

VI. CONCLUDING REMARKS
We have considered the problem of grooming traffic in vir- O = ic [olfl%,l} DN —n+1,N). (1)
tual topology design for wavelength-routed optical networks. .
We have created a framework of bounds, both upper and Iowe_r!:rom (20), to computd,.(j, k + 1) we need at most ad-

on the optimal value of the amount of traffic electronicallf!ions andn comparisons. To obtaid,,(j, V) for any given
routed in the network. The bounds are obtained based on Y€ 0/ thus needs a total @(n.V) time. Finally, we n<92ed to
idea of decomposing the ring network a few nodes at a tinfgP€2t this: times as per (21), thus needing a totatfn” V)
We specify the decomposition method and derive a resfli"e for this algorithm.
showing that solving the decompositions is a considerably
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