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Active front-steering control of a sport
utility vehicle using a robust linear
quadratic regulator method, with
emphasis on the roll dynamics

Naser Elmi1, Abdolreza Ohadi1 and Behzad Samadi2

Abstract
One of the well-known methods for improving the lateral stability of a vehicle is to utilize an active steering controller.
Common active steering systems use feedback signals from a yaw rate sensor and side-slip angle estimation. However, in
some driving conditions, skilled drivers can prevent vehicle rollover using the steering angle of the vehicle. Hence, the
effect of an active front-steering controller on the roll angle of the vehicle is studied in this paper. For this study, a three-
degree-of-freedom linear model of a vehicle which has the lateral motion, the yaw motion and the roll motion as the
degrees of freedom is derived. The effectiveness of the active steering controller on the roll stability of the vehicle is
examined by simulations in a wide range of longitudinal velocities of the vehicle using a linear quadratic regulator control-
ler. The results obtained indicate that the active steering controller increases the roll stability of the vehicle only at low
vehicle speeds and also that consideration of the roll degree of freedom in the design of the active steering controller is
not effective at high vehicle speeds. Therefore a two-degree-of-freedom bicycle model is sufficient for active steering
controller design. Another part of this paper is dedicated to designing a practical active steering controller for a vehicle
with time-varying and uncertain parameters. In fact, designing a controller which guarantees the stability of the vehicle
with simultaneous uncertainties in the cornering stiffnesses of the tyres and in the time-varying velocity is the main goal
of this paper. Another important advantage of the proposed controller is its simplicity and static structure. In fact, this
controller design is carried out offline and can be implemented for use in a real vehicle. This simple and powerful con-
troller is a robust linear quadratic regulator controller. For designing a robust linear quadratic regulator controller, a
polytopic model of the two-degree-of-freedom vehicle is obtained, which considers the uncertainty in the parameters.
In addition, a linear matrix inequality is used to design a linear quadratic regulator controller for an uncertain or
parameter-varying system. Finally, the performance of the designed robust linear quadratic regulator controller was stud-
ied by simulating the vehicle responses in some manoeuvres. A sport utility vehicle model is used for simulation pur-
poses. This non-linear vehicle model has eight degrees of freedom and its tyres are assumed to be both linear and non-
linear. The performance of the robust linear quadratic regulator controller was studied for vehicles with both linear and
non-linear Pacejka tyres. The proposed controller guarantees robust stability of the closed-loop system in the presence
of 50% variation in the vehicle speed and 20% uncertainty in the stiffnesses of the tyres.
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Introduction

The rollover and lateral instability of vehicles cause a
meaningful percentage of fatalities in all the road acci-
dent modes. One of the categories in vehicle rollover is
on-road rollover which is produced as a result of vio-
lent manoeuvres. This type of rollover is generally
called yaw-induced rollover. In the last two decades,
the usage of sport utility vehicles (SUVs) has progres-
sively increased and so the lateral stability and roll
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stability of these types of vehicle have attracted more
attention. As mentioned in the literature, there are four
different methods for controlling the roll stability of a
vehicle and these methods are categorized on the basis
of their actuators: active steering, active anti-roll bar,
active suspension and active differential braking. An
active steering system1 and differential braking2,3 con-
trol the yaw moment and the lateral stability of a vehi-
cle. These systems can be used to improve the roll
stability of a vehicle in some conditions. However, not
many studies have been performed on the application
of indirect roll control methods. To the best of our
knowledge, the investigation which has been carried out
by Shim et al.4 is the only work which studied the effect
of an active steering system in rollover recovery. In that
study, combined active steering and a differential brak-
ing system were used to control the tripped rollover of a
vehicle without considering the lateral stability. Indeed,
in that work a 14-degree-of-freedom vehicle model and
a model-free proportional–integral–derivative (PID)
controller for recovering the roll instability were used.
However, that article indicated that a steering system is
effective for only low-speed rollovers.

In the present work a three-degree-of-freedom
(3DOF) linear vehicle model is used to study the impor-
tance of roll dynamics in active steering controller
design. Using this model we investigated whether an
active steering controller can improve the roll stability.

This 3DOF model has the roll motion, the yaw
motion and the lateral motion as the degrees of free-
dom and is used in linear quadratic regulator (LQR)
controller design. The results of this study compare
the performance when using the 3DOF linear model
with that when using the two-degree-of-freedom
(2DOF) bicycle model in active steering controller
design.

As mentioned, the main goal of the active steering
controller is to improve the lateral stability and the
directional stability of the vehicle. Many methods of
controller design have been used for designing an active
steering controller. For example a model predictive
controller based on a 2DOF non-linear model of the
vehicle was designed and implemented on a Ford auto-
mobile by Falcone et al.5 Furthermore, quantitative
feedback theory (QFT) was used for designing an
active front steering controller.6 Another method,
which is used in this category, is feedback linearization.
Hsu and Gerdes7 designed this controller on the basis
of a 2DOF non-linear vehicle model. A gain-scheduled
robust controller for a parameter-varying vehicle which
has integrated active steering and a differential braking
system has been designed by Baslamisli et al.8 Also, a
driver steering assistance controller system for lane
departure avoidance was designed by Minoiu Enache
et al.9 using a linear matrix inequality (LMI) and a
Lyapunov function for time-varying adhesion and velo-
city conditions. The steering assistance system aims to
avoid unintended lane departure during normal driv-
ing; in that work a linear state feedback controller was

used for this purpose, based on a bicycle vehicle model.
Moreover, Goodarzi et al.10 used fuzzy controllers
to design an active steering system. Also, the
independence of the front wheels was considered in
their study.

The other and major contribution of this work is to
design a novel active steering controller which has the
advantages of both simplicity and robustness simulta-
neously. Because of the many sources of uncertainty
such as the variable vehicle speed and the parameter-
dependent cornering stiffnesses of the tyres, the active
steering controller should be robust with respect to
these uncertainties and time-varying parameters.
Furthermore, an LQR controller is a well-known con-
troller that is designed and implemented simply. If an
LQR controller with a constant gain is designed for all
the possible uncertain parameters of vehicle, then the
resulting controller will be a robust LQR controller.
The LMI can be used to express the problem when the
dynamics of the system are polytopic. The main goal of
this study is to represent the uncertain dynamics of the
vehicle in polytopic form and to design a robust LQR
controller for a vehicle which has uncertainties in the
cornering stiffnesses of the tyres and the vehicle speed
simultaneously. The robust LQR controller is a novel
idea in the lateral stability control of a vehicle but has
been used in controlling pulse-width-modulated
(PWM) converters11 and in voltage control of wind
farms12 in recent years. In PWM converters, the system
dynamics change using a switch and, in wind farms, the
system dynamics are a function of the parameters;
therefore, the system dynamics in both cases are para-
meter dependent.

The remaining sections of this paper are organized
as follows: in the second section, the vehicle models for
simulation purposes and controller design are derived.
In the third section, the roll dynamics and the advan-
tages in active steering controller design are studied;
consequently, in the fourth section, the controller
design problem using an LMI representation is given,
and also the polytopic modelling of the 2DOF vehicle
is presented in this section. The fifth section presents
design example results for a vehicle with a harmonic
steering input and a constant longitudinal velocity.
Finally, the conclusions of the paper are presented in
the sixth section.

Vehicle models

In this section, three different vehicle models are pre-
sented for different purposes: the first model is the
eight-degree-of-freedom (8DOF) non-linear vehicle
model which is used for simulation purposes; the sec-
ond model is the 3DOF linear vehicle model which is
applied for the first time for considering the effect of
the roll dynamics in active steering controller design;
the third model is the common 2DOF linear model for
controller design.
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Non-linear eight-degree-of-freedom vehicle model

This 8DOF vehicle model is used for simulation pur-
poses and includes three planar motions of a vehicle
chassis (the longitudinal motion, the lateral motion and
the yaw motion) and also a degree of freedom for the
sprung-mass roll motion about its roll axis and four
degrees of freedom for the rotation of each wheel.
Generally, in the handling analysis it is assumed that
there is no hard braking and accelerating and that the
vehicle moves on a smooth flat road; therefore, the
body pitch and vertical motions of the vehicle are
ignored. Furthermore, the dynamics of the steering
actuator, the driving actuator and the braking actuator
are neglected for simplicity.

Figure 1 indicates the vehicle model, its coordinate
system, the degrees of freedom and also the external
forces. The equations of motion for this model are
defined as13

m( _Vx � Vyr)�msh _ru=
X

Fx ð1Þ

m( _Vy +Vxr)+msh€u=
X

Fy ð2Þ

Izz _r� Ixz €u=
X

Mz ð3Þ

Ixx €u+msh( _Vy +Vxr)� Ixz _r=
X

Mx ð4Þ

Iw _vi = �RwFxwi+Ti, i=1, . . . , 4 ð5Þ

where Vx, Vy, r, u and vi are the longitudinal velocity,
the lateral velocity, the yaw rate, the roll angle and the
angular velocity of the ith wheel respectively; also m,
ms, Izz, Ixx, Ixz, Iw, Rw and Ti are the total mass, the
sprung mass, the moment of inertia about the yaw axis,
the sprung-mass moment of inertia about the roll axis,
the sprung-mass product of the inertia about the roll
and yaw axes, the moment of inertia of the wheel, the
radius of the wheel and the braking torque on each
wheel respectively. The other terms are the total forces

and moments which are exerted on the vehicle in the
centre-of-mass coordinate system and are defined asX

Fx =Fx1 +Fx2 +Fx3 +Fx4 ð6ÞX
Fy =Fy1 +Fy2 +Fy3 +Fy4 ð7ÞX
Mz =Lf(Fy1 +Fy2)� Lr(Fy3 +Fy4) ð8ÞX
Mx = ½msgh� (Kuf +Kur)�u� (Cuf +Cur)u ð9Þ

m=ms +muf +mur ð10Þ

where h, Kuf and Kur are the distance from the sprung-
mass centre of gravity to the roll axis, the front-
suspension roll stiffness and the rear-suspension roll
stiffness respectively. Also Cuf and Cur are the front-
suspension damping coefficient and the rear-suspension
damping coefficient respectively. In the presented equa-
tions, the longitudinal and lateral forces of the tyres
along the wheel axes should be presented in the vehi-
cle’s fixed-coordinate system. The equations which
translate the force axes of the ith wheel to the global
fixed axes are given by

Fxi

Fyi

� �
=

cos di � sin di

sin di cos di

� �
Fxwi

Fywi

� �
, i=1, . . . , 4

ð11Þ

In the above equation, Fxi and Fyiare the forces gener-
ated by the ith wheel, which are presented in the global
coordinate system. Furthermore, Fxwi, Fywi and di are
the longitudinal force, the lateral force and the steering
angle respectively generated by the ith wheel.

In this study it is assumed that the front wheels of
the vehicle can be steered and that the steering angles
of the rear wheels are zero; therefore, the steering angle
of each wheel has the relations

d1 = d2 = d, d3 = d4 =0 ð12Þ

The side-slip angle for each wheel can be defined as

Figure 1. Degrees of freedom and coordinate system of the vehicle.13
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a1 = arctan
Vy +Lfr

Vx +Tr=2

� �
� d

a2 = arctan
Vy � Lrr

Vx +Tr=2

� �

a3 = arctan
Vy +Lfr

Vx � Tr=2

� �
� d

a4 = arctan
Vy � Lrr

Vx � Tr=2

� �
ð13Þ

Also, the side-slip angle b of the vehicle is defined as

b ’
Vy

Vx
ð14Þ

The linear tyre model is used in the major part of this
study. However, in a few cases a non-linear Pacejka
model is used. This model depends on the side-slip
angle of each wheel. However, the cornering stiffness
depends on the tyre pressure, the normal force on tyre
and the coefficient of friction in the real world, and so
there is uncertainty in the cornering stiffnesses of the
tyres. The equation of the lateral force of a linear tyre is
given by

Fywi =Cai
ai, i=1, . . . , 4 ð15Þ

with

Caf =Ca1
+Ca3

Car =Ca2
+Ca4

The reference model is used to calculate the desired
yaw rate, which should be generated by the active steer-
ing system. The goal of the active steering controller is
to track the desired yaw rate signal and to guarantee
the stability of the side-slip angle. In fact, the driver’s
steering input is changed to the desired yaw rate, which
is dependent on the longitudinal velocity Vx of the vehi-
cle, the coefficient m of friction of the road, the steering
input d of the driver and the vehicle parameters such as
the mass m, the lateral stiffness Caf of the front tyres,
the lateral stiffness Car of the rear tyres, the distance Lf

from the centre of gravity to the front axle and the dis-
tance Lr from the centre of gravity to the rear axle. This
model was derived on the basis of steady-state steering
on a circular path. The equation of reference model has
been defined as14

rref=
Vx

(Lf +Lr)+mV2
x(LrCar � LfCaf)

�
2CarCaf(Lf +Lr)

d

rupperbound =0:85
mg

Vx

rd =
rref, jrrefj4rupper bound

rupper bound sgn(rupper bound), jrrefj. rupper bound

�
bd ’ 0

ð16Þ

The goal of the active steering controller is to track the
reference signals in equation (16), and the performance
of designed controller is analysed on the basis of this
reference model.

Three-degree-of-freedom linear vehicle model

As mentioned before, the purposes of the active steering
controller are to track the desired yaw rate and also to
regulate the side-slip and the roll motion. In this regard,
we considered in our study the effect of the coupling
terms between the roll motion and the lateral motion in
controller design. In addition, the performance of the
active steering controller as an anti-roll system is inves-
tigated here. For this study a 3DOF linear model of
vehicle is derived. The degrees of freedom of this model
are the lateral velocity, the yaw rate and the roll angle.
Therefore, the model has the ability to illustrate the
coupling effects between the lateral motion and roll
motion of the vehicle and the performance of the active
steering controller as an anti-roll system. As mentioned
before, there have not been many studies about the
effect of active steering control on the roll dynamics
and the effect of the roll dynamics in designing active
steering controllers. Hence, in this study, the 3DOF lin-
ear model of a vehicle is used in active steering control-
ler design.

For deriving the dynamics of the 3DOF vehicle
model, it is assumed that the effect of the unsprung
masses can be neglected. Using the Newton–Euler
method, the dynamic equations for this model are given
by

X4
i=1

Fyi=m _Vy �msh€u+mrVxX
Mz = Izz _rX
Mxs= Ixxs €u�msh( _Vy � h€u+ rVx)

ð17Þ

By assuming that jVxj � jTrj in equation (13), the
side-slip angle of each wheel can be expressed as

a1 =a3 =b+
Lf

Vx
r� d

a2 =a4 =b� Lr

Vx
r

ð18Þ

With replacement of the forces and the moments due
to interaction of the tyres with the road in the linear
range, the 3DOF linear dynamic model of a vehicle is
expressed as

_b

_r

_u

€u

2
6664

3
7775=

G11

Vx

G12

Vx

G13

Vx

G14

Vx

G21 G22 0 0

0 0 0 1

G41 G42 G43 G44

2
6664

3
7775

b

r

u

_u

2
6664

3
7775+

A11Caf

Vx

LfCaf

Izz

0

B12Caf

2
66664

3
77775d

ð19Þ
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In equation (19) the dynamic matrix elements Gij are
defined in Appendix 1.

Two-degree-of-freedom linear vehicle model (bicycle
model)

Another vehicle model which is used in active steering
controller design is the common 2DOF linear model.
This model does not consider the effect of roll dynamics
in designing an active steering controller. Therefore the
results of the controller designed on the basis of this
model can be compared with the corresponding results
of the 3DOF linear vehicle model presented in the
above section. The governing equations of this model
are presented as15

_b

_r

" #
=

f11 f12

f21 f22

� �
b

r

� �
+

Caf

mVx

LfCaf

m

" #
d

f11 = � Ca1
+Ca2

+Ca3
+Ca4

mVx

f12 =
�Ca1

Lf � Ca3
Lf +Ca2

Lr +Ca4
Lr

mV2
x

� 1

f21 =
�LfCa1

� LfCa3
+LrCa2

+LrCa4

Izz

f22 = �
L2
f Ca1

+L2
f Ca3

+L2
rCa2

+L2
rCa4

IzzVx

ð20Þ

In the next section, the effect of considering the roll
dynamics in designing an active steering controller and
the conditions by which the controller improves the roll
stability are studied via simulations. The well-known
LQR controller is used in all the studies.

Roll dynamics effects

In this section the coupling effect of the roll dynamics
and the lateral dynamics of the vehicle and also the
effect of the active steering system in improving the roll
stability are studied. For this purpose, two different
vehicle models for controller design are considered. In
the first model, the active steering controller is designed
on the basis of the 2DOF vehicle model (see the section
on the 2DOF linear vehicle model (bicycle model));
therefore, the coupling effect of the roll dynamics and
the lateral dynamics is ignored and also the roll stability
does not play a role in controller design. In the second

model, the active steering controller is designed on the
basis of a 3DOF vehicle model (see the section on the
3DOF linear vehicle model). The LQR controllers
based on the 2DOF model and the 3DOF model are
designed for oversteer and understeer vehicles by con-
sidering the effect of the vehicle speed. The designed
LQR controllers are implemented using the 8DOF non-
linear simulation model of an SUV (see Appendix 2). In
this section, two different manoeuvres are used to study
the performances of the controllers. The first man-
oeuvre consists of a harmonic steering input with an
amplitude of 10� and a frequency of 5 rad/s. Also the
second manoeuvre is the well-known J-turn test
designed by the National Highway Transport Safety
Administration (NHTSA).16

Note that the LQR controller is selected for this pur-
pose because this controller is the simplest model-based
controller which can illustrate the effect of considering
the roll motion in active steering controller design. The
weight matrix Q of the states in this section is designed
on the basis of two different ideas. In the first design,
our main purpose is the lateral stability of vehicle but
the roll stability has just as much importance as the
yaw rate; therefore, the roll angle and the yaw rate of
the weight matrix have the same weights. In the second
case, the roll stability is more important and so has a
greater weight. By a trial-and-error procedure the
weight matrix of the 3DOF LQR controller in the first
case was designed as Q=diag(100, 500, 500, 1). In the
second case the roll stability is very important; there-
fore, its weight is increased 20 times, and the weight
matrix is selected as Q=diag(100, 500, 10, 000, 1).
Finally, the weight matrix for the 2DOF controller is
Q=diag(100, 500).

In the first part of this section, the performances of
these LQR controllers are studied using the harmonic
steering input. The performances of the controllers for
understeer and oversteer vehicles at different velocities
are studied, and the steady-state maximum values of
the outputs are presented in the following tables. In
Table 1 and Table 2 the controller weight matrix has
equal weights for the roll angle and the yaw rate. Note
that the understeer gradients of the vehicle for Table 1
and Table 2 have the same magnitudes but different
signs; in fact, only the stiffnesses of the tyres and the
location of the centre of mass are reversed. Note that,
with the parameters in Table 4 in Appendix 2, an overs-
teer vehicle is considered. In Table 3 a controller with a

Table 1. Oversteer vehicle with Q = diag(100, 500, 500, 1) with a steering input of 0.1745 sin(5t).

V(m/s) LQR 2DOF model LQR 3DOF model

er (rad/s) b (rad) u (deg) er (rad/s) b (rad) u (deg)

10 0.071 0.070 11.08 0.096 0.068 10.77
20 0.033 0.079 9.55 0.044 0.079 9.37
30 0.023 0.093 8.79 0.035 0.094 8.79

LQR: linear quadratic regulator; 2DOF: two-degree-of-freedom; 3DOF: three-degree-of-freedom.
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roll stability which has a greater weight is used at two
different speeds.

Table 1 indicates the variations in the yaw rate
tracking error er (rad/s), the side-slip angle b (rad) and
the roll angle u (deg) versus the vehicle speed. Also, in
this table, a comparison between the performances of
the two controllers which are designed on the basis of
the 2DOF and 3DOF models are presented. With refer-
ence to this table, it is obvious that an active steering
controller, which is designed on the basis of the 3DOF
model, has slightly more improvement in controlling the
roll angle at low speeds, but at V = 30 m/s they are the
same. Also, the yaw rate tracking errors for the 2DOF
and 3DOF controllers indicate that the 2DOF controller
has less tracking error in all the conditions. This result is
predictable because both controllers have the same
weights for the yaw rate and the side-slip but the 3DOF
controller has two more states, namely the roll angle
and the roll rate. Moreover, the yaw rate tracking errors
for both the controllers are very small; note that the
magnitude of the desired yaw rate is 1 rad/s.

Table 2 indicates the same result for the understeer
vehicle, as seen also in Table 1 and Table 2; i.e. it is
obvious that the roll angle for the understeer vehicle is
smaller than for the oversteer vehicle. Finally, Table 3
indicates that the active steering controller performance
with more importance on the roll stability is effective
only at low speeds such as V = 10 m/s. At high veloci-
ties, the results for the 3DOF controller and the 2DOF
controller are very close. Moreover, at low speeds such
as V = 10 m/s, the yaw rate tracking error is very poor.
Considering all these results, an active steering control-
ler is not very effective in roll control; also the 2DOF
vehicle model for controller design seems to be
sufficient.

The second test is the J-turn manoeuvre on an overs-
teer vehicle at a velocity of 30 m/s. Figure 2 displays the

steering angle for an open-loop system and a closed-
loop system. Figure 3, Figure 4 and Figure 5 show the
yaw rate signal, the side-slip angle and the roll angle
respectively.

Figure 2 displays the input signal shape for a J-turn
test; also the closed-loop input signals indicate the
oversteer nature of vehicle, because closed-loop signals
are larger than open-loop signals in the constant part
of the input. Figure 3 shows that the best tracking per-
formance belongs to the LQR controller based on the
2DOF vehicle model. Also, Figure 5 indicates that the
LQR controller based on the 2DOF model and the
LQR controller based on the 3DOF model do not have
a significant difference in regulating the roll angle.
Finally, Figure 4 indicates the side-slip angle stability
of the designed controllers and insignificant difference
between the two controllers. Considering all this, it is
reasonable to use the 2DOF model of a vehicle in active
steering controller design. Although an active steering
controller may be useful at very low speeds to control
the roll angle, the main application of an active steering
system is at high speeds. These results agree with the
results obtained by Shim et al.4

As a summary, an active steering controller is not
able to control the vehicle rollover or the roll stability
at high longitudinal velocities, and this controller
should be used for roll stability control only at low
speeds. Also the results of this study show that in a wide
range of velocities the effect of the roll dynamics on
active steering controller design is negligible and that
the 2DOF bicycle model is sufficient for this purpose.
These results expand the results obtained by Shim et
al.4 who used a model-free PID controller for improv-
ing the roll stability by an active steering controller.

Because of the results obtained in this section, in the
next section a 2DOF vehicle model is used to design an
LQR active steering controller.

Table 2. Understeer vehicle with Q = diag(100, 500, 500, 1) with a steering input of 0.1745 sin(5t).

V(m/s) LQR 2DOF model LQR 3DOF model

er (rad/s) b (rad) u (deg) er (rad/s) b (rad) u (deg)

10 0.051 0.065 4.27 0.056 0.068 4.24
20 0.035 0.090 8.81 0.047 0.090 8.35
30 0.026 0.101 13.32 0.034 0.100 13.17

LQR: linear quadratic regulator; 2DOF: two-degree-of-freedom; 3DOF: three-degree-of-freedom.

Table 3. Oversteer vehicle with Q = diag(100, 500, 10,000, 1) with a steering input of 0.1745 sin(5t).

V(m/s) LQR 2DOF model LQR 3DOF model

er (rad/s) b (rad) u (deg) er (rad/s) b (rad) u (deg)

10 0.071 0.070 11.08 0.385 0.047 7.04
30 0.023 0.093 8.79 0.042 0.092 8.67

LQR: linear quadratic regulator; 2DOF: two-degree-of-freedom; 3DOF: three-degree-of-freedom.
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Controller design

In this section to design a robust LQR controller the
LMI representation of this problem is presented; also
the polytopic model of vehicle with simultaneous uncer-
tainties in the cornering stiffnesses of the tyres and the
speed of the vehicle is derived.

LMI representation of the LQR problem

This section presents an advanced LMI representation
of the LQR problem as a framework for designing a
robust LQR controller. We consider the linear time-
invariant multiple systems17

_X=AjX+Bju, j=1, . . . ,N

y=FjX+Hju
ð21Þ

where N is the total number of multiple systems. In this
equation the number of states and the number of inputs

are n and p respectively. In the LQR problem, the cost
function and the stability constraint with a state feed-
back control law u= �KX are defined as18

J=

ðt=‘

t=0

(XTQX+ uTRu) dt

J�= min(J)

ð22Þ

(Aj � BjK)
TP+P(Aj � BjK)+Q+KTRK\ 0

P 2 Rn3n . 0

j=1, . . . ,N ð23Þ

In equation (23), P is the Lyapunov matrix which
should be positive definite. Also K, Q and R are the
controller gain, the weight matrix for the states and the
weight matrix for the inputs respectively. When the
state feedback control action u= �KX is substituted
in equation (22), this gives

Figure 2. Steering angle (input signal) for a J-turn test with V = 30 m/s for various models.
LQR: linear quadratic regulator; 2DOF: two-degree-of-freedom; 3DOF: three-degree-of-freedom.

Figure 3. Yaw rate for a J-turn test with V = 30 m/s for various models.
LQR: linear quadratic regulator; 2DOF: two-degree-of-freedom; 3DOF: three-degree-of-freedom.
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J=

ð‘
0

XT(Q+KTRK)X
	 


dt ð24Þ

Using the trace operator, equation (24) can be
expressed as11

J=

ð‘
0

Tr (Q+KTRK)XXT
	 


dt

=Tr (Q+KTRK)Y
	 


Y=

ð‘
0

(XXT) dt

ð25Þ

Because of the linearity of the trace operator, equation
(25) can be represented as

J=Tr(QY)+Tr R1=2KYKT(R1=2)
T

h i
J�= min

(K,Y)
Tr(QY)+Tr R1=2KYKT(R1=2)

T
h in o ð26Þ

Note that the existence of the KY term in equation (26)
changes its nature to a non-linear form. Hence, a
change in the variable is used to solve this problem as18

X̂.R1=2KYKT(R1=2)T ð27Þ

The new variable X̂ is an upper bound for the non-
linear term in equation (26) and, with this change in
the variable, the optimal magnitude of the cost function
is defined as

J�= min Tr(QY)+Tr(X̂)
	 


ð28Þ

The presence of the KY term in equation (27) makes
this constraint non-linear. To present this non-linear
constraint in the LMI form, the changes in the
variables

K=LY�1, K 2 Rp3n, L 2 Rp3n

P=Y�1

Y. 0

ð29Þ

Figure 4. Side-slip angle for a J-turn test with V = 30 m/s for various models.
LQR: linear quadratic regulator; 2DOF: two-degree-of-freedom; 3DOF: three-degree-of-freedom.

Figure 5. Roll angle for a J-turn test with V = 30 m/s for various models.
LQR: linear quadratic regulator; 2DOF: two-degree-of-freedom; 3DOF: three-degree-of-freedom.
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should be made.11,12 Note that in equation (29) the con-
straint Y. 0 is added to guarantee that theP matrix has
positive definiteness. Using equation (29) and Schur’s
complement, equation (27) can be presented in the LMI
form as

X̂ R1=2L

LTR1=2 Y

� �
. 0 ð30Þ

By using the same changes in the variables and Schur’s
complement, equation (23) is presented in the LMI for-
mat as

(AjY+YTAj
T � BjL� LTBj

T) LT YT

L �R�1 0

0 �Q�1

2
64

3
75\ 0

Y. 0

ð31Þ

Finally, the LMI representation of the LQR prob-
lem can be presented as the cost function (28) with the
constraints in equations (30) and (31). In the next part
of this section, polytopic modelling of uncertain vehicle
dynamics is presented.

Polytopic modelling of two-degree-of-freedom
uncertain vehicle dynamics

Previous studies indicate that linear vehicle models are
sensitive to the system’s parameters. The longitudinal
velocity of the vehicle, the cornering stiffness or the
uncertainty in the vehicle mass may significantly change
the responses of the model. It is essential for the con-
troller to have the ability to treat these uncertainties
correctly. Therefore in this section the polytopic repre-
sentation of the uncertain vehicle model is expressed.

As mentioned before, the uncertainties which are
assumed in this paper are the time-varying longitudinal
velocity of the vehicle and parametric uncertainty in the
cornering stiffnesses of the front tyres and the rear tyres.
In fact, the vehicle speed is a time-varying parameter;
also the stiffnesses of the tyres are non-linear functions
of the friction coefficient, the normal force, the side-slip
and other parameters. Therefore, in this study, the tyre
forces are modelled by linear and uncertain models.

Because of the presence of uncertain and time-
varying parameters in the vehicle dynamics, the
matrices A and Bdepend on these uncertain or time-
varying terms. Hence equation (21) can be defined as a
function of these parameters according to

_X(t)=A(p)X(t)+B(p)u(t) ð32Þ

In equation (32), p is the vector of the uncertain or
time-varying parameters. This vector consists of np
uncertain terms: p=(p1, p2, . . . , pnp). Each uncertain
parameter pi is bounded between its minimum value pi
and its maximum value �pi according to

pi 2 ½pi pi� ð33Þ

The acceptable values of the vector p are constrained
in a polytope in the parameter space R

np with N=2np

vertices fv1, v2, . . . , vNg. It is assumed that the set
C= fC1,C2, . . . ,CNg is the projection of the matrix
½A(p),B(p)� for each vertex vi. Therefore, the elements
of the set C are the extreme of a convex polytope,
which contains the images for all admissible values ofp.
If the matrix ½A(p),B(p)� depends linearly on p, then
½A(p),B(p)� will be a subset of the convex hull of the set
C= fC1,C2, . . . ,CNg according to11

½A(p),B(p)� 2 CofC1,C2, . . . ,CNg

:¼
XN
i=1

aiCi, ai50,
XN
i=1

ai =1

( )
ð34Þ

For more explanation of the polytopic modelling of
uncertain systems see the papers by Boyd et al.18 and
Bernussou et al.19 In fact, the set C in this model is equiv-
alent to multiple systems. Also the convex structure of
the polytopic model of a system helps us to use the equa-
tions given in the previous section in controller design.

As mentioned before, the vehicle speed and the cor-
nering stiffnesses of the tyres are the only sources of
uncertainty in the present study. Consideration of these
parameters as vehicle uncertainties makes the 2DOF
vehicle model a non-linear model, and so changes in
the variables as given by

p1 =
Caf

Vx
, p1 2

Ca fmin

Vxmax

,
Ca fmax

Vxmin

� �

p2 =
Car

Vx
, p2 2

Ca rmin

Vxmax

,
Ca rmax

Vxmin

� �

p3 =
Caf

2
, p3 2

Ca fmin

2
,
Ca fmax

2

� �
p4 =Vx, p4 2 ½Vxmin,Vxmax�

ð35Þ

Thus, for this problem, np =4 and N=16, and so
the dynamic equations of the 2DOF vehicle model
(equation (20)) can be represented by the polytopic
model using equation (35) and the assumptions

Ca1
=Ca3

=
Caf

2
, Ca2

=Ca4
=

Car

2

Vy =Vxb, Vx =constant
ð36Þ

The governing dynamics equations of the 2DOF
vehicle can be represented by

_Vy

_r

" #
=

� p1 + p2
m

�p1Lf + p2Lr

m � p4

�Lfp1 +Lrp2
Izz

� L2
f
p1 +L2

r p2

Izz

2
4

3
5 Vy

r

� �

+

p3
m

Lfp3
m

" #
d

ð37Þ

Equation (37) gives the system matrices A and B
which linearly depend on the vector of the uncertain
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parameters; hence a polytope with N=16 vertices can
be defined such that it contains all the possible values
of the uncertain matrices of the system.

Since the vehicle dynamics model does not have an
integral state, in tracking applications a zero steady-
state error cannot be guaranteed. The auxiliary state
z(t)is added to the system dynamics to provide an inte-
gral action which guarantees zero steady-state error.
This state is the integral of the tracking error. In this
study, the goal of the controller is to track the desired
yaw rate, so that the augmented system dynamics which
are used in the controller design are defined as

z(t)=

ð‘
0

½r(t)� y(t)� dt

~X=
X

z(t)

� �
! _~X= ~Aj

~X+ ~Bju

~Aj =
Aj 0

�Cj 0

� �

~Bj =
Bj

�Dj

� �
Cj = ½0 1�
Dj = ½0 0�
j=1, ::, 16 ð38Þ

Finally by using the LMI representation of the LQR
problem which is presented by equations (28), (31) and
(32) and the polytopic modelling of the 2DOF vehicle
dynamics in equations (37) and (38), the robust LQR
controller can be designed. The CVX tool box which
has been created in recent years20 was used to solve this
LMI problem.

Robust LQR controller performance

As mentioned before, in this section a robust LQR con-
troller is designed on the basis of a 2DOF linear model
of vehicle to improve its lateral stability, and the per-
formance of the controller is studied using simulation
results. The vehicle model which is used for simulation
purposes is the 8DOF non-linear vehicle model. To
clarify the advantages of the proposed controller versus
the classic LQR controller, both a linear model and a
non-linear model of the tyres are used in the 8DOF
simulation model. The non-linear tyre model which is
used in this paper is the well-known Pacejka non-linear
tyre model.21 Furthermore, the linear model is the line-
arized version of the non-linear Pacejka model; there-
fore these two different models have equivalent small
side-slip angles. First, a robust LQR controller with the
following specifications is designed.

The robustness of the designed controller to the stiff-
nesses of the front and rear tyres is 20%, and the
robustness to the time-varying speed of the vehicle is
50%. The nominal velocity of the vehicle in designing
the controller is assumed to be 20 m/s.

In order to illustrate the advantages of the presented
controller, the results of the robust LQR controller are
compared with the corresponding results of the classical
LQR controller which is designed for the nominal vehi-
cle parameters. The weight matrices which are used in
controller design are

Q=diag(100, 500, 500)

R=diag(10, 10)
ð39Þ

Also the gain of the classical LQR controller and the-
gain of the robust LQR controller are

Krobust=
0:0899 4:8466 �2:706
0:0899 4:8466 �2:706

� �
ð40aÞ

and

KLQR=
0:0051 2:1940 �5
0:0051 2:1940 �5

� �
ð40bÞ

respectively.
The controller gains are achieved using a trial-and-

error procedure to find the solvable and best lateral sta-
bility performance for our vehicle model.

Simulation of the non-linear eight-degree-of-freedom
model of vehicle with linear tyres

In this part, the non-linear 8DOF vehicle model with
linear tyres is used as a simulation model. Two harmo-
nic steering inputs with different longitudinal velocities
(10 m/s and 30 m/s) are considered. In the first simula-
tion the longitudinal velocity of the vehicle is assumed
to be 10 m/s with –20% uncertainties in the stiffness of
the front wheels and +20% uncertainties in the stiff-
ness of the rear wheels. In the second simulation vehicle
the speed is 30 m/s and the other parameters are the
same as for the first manoeuvre. All the results are
shown in Figure 6. It should be noted that saturation
of the actuator is considered in this study. Note that
the dynamics of the actuators are not considered in this
study, and the saturation is caused by mechanical lim-
itation of the steering angle.

The results obtained indicate the improved perfor-
mance of the presented robust LQR controller in com-
parison with that of the LQR controller. In Figure 6(a)
and (b), the better performance of the robust LQR con-
troller in tracking the desired yaw rate is shown. For
example, in Figure 6(b), the robust LQR controller is
an ideal tracker but the LQR controller has a 10%
steady-state error. The control action signals, which are
presented in Figure 6(e) and (f), show that the signal of
the robust LQR controller is smaller than the corre-
sponding signal of the LQR controller. Even in Figure
6(f) the controller action signal was saturated owing to
mechanical limitation of the the steering angle of the
wheels. Because of Figure 6(c) and (d), the side-slip
angle of the vehicle for both controllers is stable.
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Another important advantage of the presented robust
LQR controller is the guaranteed stability of the uncer-
tain system by the simple state feedback controller. In
fact, it is possible to have an unstable closed-loop sys-
tem when the LQR controller is used for a parameter-
varying or uncertain system.

Another important property of this controller is its
feasibility for real-time application, because the con-
troller gain computation is performed offline and the
structure of the controller is a state feedback type;
hence this simple state feedback controller can guaran-
tee the closed-loop stability of an actual vehicle in the
presence of a large magnitude of the uncertainties and
the time-varying speed.

In the next part of this section, the performance of
the proposed controller in the presence of non-linearity
of the wheels is studied.

Simulation of the non-linear eight-degree-of-freedom
model of a vehicle with non-linear Pacejka tyres

In this section, the performance of the controller on a
vehicle with non-linear tyres is studied. The cornering

force is a non-linear function of the side-slip angle and
also has saturation. Therefore, it could show the advan-
tages of the proposed controller better than the linear
tyre model does. In this section a harmonic steering
input and also a J-turn manoeuvre are studied. In both
cases, the longitudinal velocity of the vehicle is 30 m/s,
and the magnitude and shape of the steering input are
exactly the same as in the previous section. Figure 7(a)
and (b) shows the yaw rate and the side-slip angle
respectively in a harmonic manoeuvre. These para-
meters in the J-turn manoeuvre are indicated in Figure
7(c) and (d).

As shown in Figure 7(a) and (c), the performance of
the robust LQR controller is clearly better than the cor-
responding performances of the LQR controller and of
the open-loop system. Also, it can be seen that the
LQR controller, which is designed for a nominal linear
system, could not improve the yaw rate tracking per-
formance and that the open-loop system has a better
response. Moreover, the presence of an overshoot and
an undershoot in Figure 7(c) are due to the high non-
linearity of the non-linear Pacejka model; in fact,
the uncertainty in the tyres is more than an

Figure 6. Comparison between the performances of the two controllers (the LQR controller and the robust LQR controller) at
two different vehicle speeds and in the presence of uncertainties for a linear tyre model: (a) yaw rate tracking, V = 10 m/s; (b) yaw
rate tracking, V = 30 m/s; (c) side-slip angle, V = 10 m/s; (d) side-slip angle, V = 30 m/s; (e) control action, V = 10 m/s; (f) control
action, V = 30 m/s.
LQR: linear quadratic regulator.
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over-assumption in the robust controller design.
However, the proposed controller can handle the non-
linearity of the tyre models and shows its benefits and
advantages in these simulations.

Figure 7(b) and (d) shows the lateral stability of the
vehicle in these simulations.

Conclusions

In this paper a robust LQR active steering controller
was designed on the basis of an LMI and polytopic
modelling of the vehicle dynamics. This controller has
good robustness due to the simultaneous presence of
significant uncertainties in the longitudinal velocity of
the vehicle and also the cornering stiffnesses of the
tyres; also this controller is very simple to implement on
an actual vehicle. Because the main difficulty of this
controller is its calculation, and this part is carried out
offline, thus the controller has the structure of a state
feedback controller and can be implemented simply.
The designed controller improves the lateral stability of
the vehicle in the presence of 50% variation in the long-
itudinal velocity of the vehicle and 20% uncertainty in
the cornering stiffnesses of the tyres. Also the effect of
considering the roll dynamics in designing an active
steering controller was studied. These investigations
show that active steering can be used for vehicle roll
control only at low speeds such as 10 m/s and that the
roll dynamics effect is negligible in active steering con-
troller design. In addition, simulations of the harmonic
input and the J-turn results indicate that the robust

LQR controller has a better performance than the LQR
controller does.
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Appendix 1

Terms used in the three-degree-of-freedom linear
model of the vehicle (equation (19))

The terms used in equation (19) are

G11 = � A11(Ca1
+Ca2

+Ca3
+Ca4

)

G12 = � Ca1
LfA11

Vx
� Ca3

LfA11

Vx
+

Ca2
LrA11

Vx

+
Ca4

LrA11

Vx
+A13

G13 = � KufA12 � KurA12

G14 = � A12Cuf � A12Cur

G21 =
�Ca1

Lf � Ca3
Lf +Ca2

Lr +Ca4
Lr

Izz

G22 =
�Ca1

L2
f � Ca3

L2
f � Ca2

L2
r +Ca4

L2
r

IzzVx

G41 = � B12(Ca1
+Ca2

+Ca3
+C

a4
)

G42 =B13 �
B12Ca1

Lf

Vx
� B12Ca3

Lf

Vx
+

B12Ca2
Lr

Vx

+
B12Ca4

Lr

Vx

G43 = � KufB11 � KurB11

G44 = � CufB11 � CurB11

A11 = a11 + a16

A12 = a12

A13 = a13 + a14 + a15

B11 =
1+A12msh

Ixxs+msh2

B12 =
A11msh

Ixxs+msh2

B13 =
A13 +mshu

Ixxs+msh2

a11 =
Ixxs

mIxxs+mmsh2 �m2
s h

2

a12 =
msh

mIxxs+mmsh2 �m2
s h

2

a13 =
m2

s h
2u

mIxxs+mmsh2 �m2
s h

2

a14 = � muIxxs
mIxxs+mmsh2 �m2

s h
2

a15 = � mmsIxxsh
2

mIxxs+mmsh2 �m2
s h

2

a16 =
msh

2

mIxxs+mmsh2 �m2
s h

2
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Appendix 2

The parameters for the SUV are given in Table 4.

Table 4 Parameters for the SUV.

Parameter symbol and value Definition of the parameter

Izz = 2000 kg m2 Yaw moment of inertia
Ixxs = 900 kg m2 Roll moment of inertia
ms = 1440 kg Sprung mass
muf = 40 kg Front unsprung mass
mur = 40 kg Rear unsprung mass
Lf = 1:016 m Distance from the centre of

gravity to the front axle
Lr = 1:524 m Distance from the centre of

gravity to the rear axle
Kuf = 30, 000 Nm=rad Stiffness of the front suspension
Kur = 20, 000 Nm=rad Stiffness of the rear suspension
Cuf = 1897 Nm=rads Damping coefficient of the front

suspension
Cur = 1265 Nm=rads Damping coefficient of the rear

suspension
T = 1:5 m Width of the track
R = 0:334 m Radius of the wheel
Iw = 1:2 kgm2 Moment of inertia of the wheel
h = 0:75 m Height of the centre of gravity
Caf = 57, 296 N=rad Cornering stiffness of the front

axle
Car = 52, 712 N=rad Cornering stiffness of the rear

axle
Cai (N/rad) Cornering stiffness of the ith

tyre
Vx (m/s) Longitudinal speed of the vehicle
Vy (m/s) Lateral speed of the vehicle
b (rad) Centre-of-mass side-slip angle of

the vehicle
r (rad/s) Yaw rate of the vehicle
u (deg) Roll angle of the vehicle
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