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Measuring Residual Stresses by 
Hole-Drilling and Coherent Optics 
Techniques: A Numerical 
Calibration 
Hole-drilling is a widely accepted method for determining residual stresses from the 
relaxation data obtained by a strain-gage rosette. Several researchers have recently 
investigated the alternative of employing interferometric techniques to reveal the 
displacement field produced by hole-drilling. As in the case of the standardized hole-
drilling strain-gage method, proper calibration constants must be assessed so that 
this procedure can be effectively employed. This paper reports the displacement 
calibration constants derived from the results of an extensive numerical analysis. 
The constants proposed enable a uniform residual stress field to be determined, 
whatever the displacement component detected. The most commonly employed 
coherent optics techniques have been considered; computer-generated fringe pat­
terns are reported and criteria are suggested to derive the stress field from fringe 
readings taken around the edge of the hole. 

1 Introduction 

Hole-drilling is a widely employed technique for determin­
ing residual stresses near the surface of a material. The pro­
cedure involves measuring the change in strains or 
displacements produced by the hole; the quantities measured 
are then related to the residual stresses present in the material 
before drilling.The method can be considered semidestructive 
whenever the size of the hole is so small that the structural in­
tegrity of the part is not significantly affected. 

The standard implementation of the method [1] uses strain-
gages, in the form of a three-element rosette, to detect the 
change in radial strains. The empirical relationship, whereby 
the magnitudes and principal directions of the residual stresses 
can be derived from the strain-gage readings, differs from the 
theoretical Kirsch solution in that two constants must be deter­
mined by either a numerical or experimental calibration. Since 
these constants, which allow for both the finite gage area and 
finite hole depth, are material dependent, the calibration 
should be repeated for every particular material tested. As also 
suggested in the ASTM standards [1], this can be avoided by 
using the dimensionless and practically material independent 
constants obtained by Schajer from an extensive series of 
numerical calibrations [2]. Provided that the values of the 
dimensionless constants are given for the particular 
hole-rosette configuration, the calculation of the material-
dependent calibration constants only requires the elastic 
properties of the material (Young's modulus E and Poisson's 
ratio v) to be known. It must, however, be pointed out that er-
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rors due to imperfect hole execution can only be eliminated by 
an individual, experimental calibration test. 

Numerical solutions obtained for blind holes of varying 
depths [3] have also provided calibration constants enabling 
the incremental drilling technique to be used for determining 
variation of residual stresses with depth. Results indicate that 
stresses can be evaluated with reasonable accuracy to a depth 
of about one-half the hole diameter below the surface. 

During the last two decades coherent optics has provided 
several interferometric techniques which enable full-field sur­
face displacements to be determined with an accuracy of ap­
proximately one-half the wavelength of light without contact 
with the surface investigated. While the fringe patterns 
observed in both moire interferometry and speckle 
photography are directly related to the components in any in-
plane direction (defined a priori in the first case), holographic 
interferometry is particularly suitable for detecting the out-of-
plane displacements, although it can in fact be used to 
measure the displacement component along any non-in-plane 
direction; speckle interferometry, on the other hand, can be 
conveniently employed both for detecting in-plane or out-of-

, plane displacement components and eliminates the need for 
photographic processing. 

The feasibility of employing interferometric techniques to 
measure the change in displacements occurring in the vicinity 
of the hole has been recently investigated [4-8]. Besides 
eliminating the main source of inaccuracy in the hole-drilling 
strain-gage method, i.e., a possible misalignment between the 
hole and the rosette, use of interferometric techniques enables 
measurement to be made at the edge of the hole, or in its prox­
imity, where the maximum relaxation effect occurs. It must, 
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(a) (b) (c) 

Fig. 1 Application of superposition principle 

however, be pointed out that the sensitivity, defined as 
number of fringes over stress amplitude, cannot be considered 
satisfactory. In the more demanding applications it is 
therefore necessary either to employ experimental techniques 
enabling the fractional fringe order to be more accurately 
determined or else to carry out a numerical processing of 
multiple fringe readings. On the other hand, the full field 
representation of the displacement components can give a 
deeper insight into the whole stress field relieved by the 
removal of material. Although variations in residual stress 
distribution are not considered in this paper, the information 
carried by the whole fringe pattern around the hole might 
enable complex states of stress to be reconstructed. 

This paper reports the results of a boundary element 
analysis whereby it was possible to establish an empirical rela­
tionship between a uniform state of residual stress and the in-
plane and out-of-plane components of displacements at the 
edge of the hole. The calibration constants thus obtained 
allow residual stresses to be determined when the blind hole 
method is used in conjuction with different interferometric 
techniques. 

2 Boundary Element Calculations 

All the calculations have been carried out by the boundary 
element code BEE [9] for three-dimensional elasto-static 
analysis. Eight-node isoparametric elements have been used. 

A square plate containing a center circular hole was con­
sidered in the analysis. In order to make the boundary effects 
negligible, the thickness and width of the plate were taken to 
be, respectively, 20 and 40 times the hole diameter D. Because 
of symmetry only one-fourth of the plate was considered. 

The plate was assumed to be subjected to a uniform uniaxial 
tensile stress a. In order to derive directly the displacement 
perturbation produced by hole-drilling, the loading was ap­
plied to the boundary of the hole as shown in Fig. 1(c). Since a 
linear elastic material was considered in the analysis, the 
superposition principle applies as illustrated in the same Fig. 1 
where the loading conditions represented in (a) and (b), 
respectively, correspond to the stress distribution which is 
present in the plate after and before the hole has been drilled. 

3 Residual-Stress/Displacement Relations for a 
Through Hole 

When assessing the hole-drilling strain-gage method, it is 
commonly assumed that the classical theoretical plane stress 
solution for an infinite plate with a circular hole can closely 
approximate the distribution of the radial strain components 
on the surface of a thick plate containing a through hole and 
hence that a proper analysis is only needed to account for a 
blind-hole situation. The present numerical investigation has 
been carried out to investigate whether this idealization can be 
extended to the tangential components of strain and displace­
ment which can as well be of interest when using an in­
terferometric technique. The analysis is also aimed at deriving 
an empirical relationship for the distribution of the out-of-
plane displacement, which obviously cannot be derived from a 
two-dimensional solution. 

• 

Fig. 2 Displacement components at the edge of a hole produced in a 
uniformly stressed body 

Referring to Fig. 2, the theoretical solution for the radial 
and tangential components of displacement, ur and ue, respec­
tively, on the border of a circular hole produced in a thin in­
finite plate under a biaxial state of stress {al ,a2) 

= =D( - + ! -cos20 
"<• V 4 E 4 E / 

(1) 

.-.-!»(-i?^H 
can be straightforwardly derived by subtracting the solution 
for the plate without the hole from the well-known Kirsch 
solution (cfr., Fig. 1). When the actual three-dimensional 
problem is considered the in-plane components exhibit the 
same dependence on the angle 6 

K,=Z?^4 r - i^- i + 5 r _ l _ J . cos2<?j 

(2) 
ue=Dy~Be— °2 smldj 

while the out-of-plane displacement uz can be expressed as 

UZ=D(AZ^ + BZ^COS26) (3) 

where coefficients Ar, Br, B0, Az, and Bz depend on the 
material constants only. 

Since the plane stress solution is the exact three-dimensional 
solution when a planar hydrostatic state of stress (a, = <j2) is 
assumed, it follows that: 
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Fig. 3 Variation of the cylindrical components of displacement along 
the edge of a through hole produced in a uniaxially stressed body 
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Fig. 4 Variation of the displacement calibration constants with 
Poisson's ratio for a through hole 

Ar=-
l + v 

A7=0 

(4«) 

(4b) 

Relation (4b) derives from the consideration that the axial 
component of the relieved strain resulting from the plane 
stress solution is null when a hydrostatic state of stress is pres­
ent (i.e., when the hole in Fig. 1(c) is subjected to a uniform 
internal pressure). 

In order to compare the theoretical displacement distribu­
tion with the numerical three-dimensional solution and to 
derive an empirical relationship between the various coeffi­
cients and Poisson's ratio, the analysis has been carried out 
for values of v ranging from 0.0 to 0.495. The value of 0.5 was 
avoided in the computation because of the larger numerical 
error. 

Denoting by Ur, Ug, and Uz the nondimensional com­
ponents of displacement computed for the case of uniaxial 
state of stress (ax =a, a2 = 0): 

Ur(d) = D 

ae(d) 
Ue(6) = ^ — -

UM = 

D 

D 

(5) 

the five coefficients can be calculated as: 

A,= 
Ur(d = 0)+Ur(d = ir/2) 

B = 
Ur(d = 0)-Ur(d = r/2) 

Be=-Ue(6 = ir/4) (6) 

Uz(d = 0)+Uz(e = ir/2) UZ(6 = Q>)-UZ(P = TT/2) 
A= B= 

Within the whole range of v, an excellent agreement was 
found between the numerical values of Ar (percentage error 
within 0.69), Az (highest absolute value lower than 0.5»10~2), 

and their exact values given in (4), thus confirming the ac­
curacy of the numerical solution. The coefficients could of 
course be derived from the whole set of nodal displacement 
along the edge of the hole by a best-fit procedure. This was, 
however, considered unnecessary because of the exceedingly 
close agreement (within 0.5 percent) between the displacement 
values computed using (2) and (3) and those obtained at the 
nodal points by boundary element analysis (see Fig. 3 for the 
case c = 0.3). 
_ Figure 4 plots the values calculated for coefficients Ar, Br, 

B$, Az, Bz versus Poisson's ratio together with the 
corresponding plane stress values (where defined). A com­
parison between the two sets of values indicates that the two-
dimensional solution can only be considered acceptable for 
coefficient Br. Where Be is concerned, significant discrepan­
cies are in fact to be observed, the greatest deviations occur­
ring for the highest values of v. The values numerically 
calculated for Be appear, nevertheless, to be still linearly 
dependent on the value of Poisson's ratio. By applying a least-
square minimization-error procedure the following empirical 
relationship was derived 

Be(y) = 3/4 -0.636*- (7) 
which accurately fits (within 0.31 percent) the Be values 
calculated over the whole range of v. Note that, both in this 
and the following calculations carried out by the best-fit pro­
cedure, the value of the coefficient at v = 0 was derived from 
the exact plane stress solution. 

When the same procedure was applied to coefficient Br, the 
quadratic relationship 

Br(v) = 3/4 - 0 . 3 6 5 P + 0.348I>2 (8) 

was found to predict the numerical values with a 0.33 percent 
accuracy. When the above relation is compared with that 
derived from the plane stress solution, it can be observed that 
the difference which accounts for the three-dimensional effect 

Br(u)-
3-v 

= 0.115e + 0.348c2 (9) 

is lower than 5.22 percent in the whole range and null for a 
value of v slightly above 0.3, thus further validating the 
assumption commonly made in assessing the hole-drilling 
strain-gage method. 

When the best-fit procedure was employed to derive coeffi-
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Fig. 5 Variation of cylindrical components of displacement along the 
edge of a blind hole (p/D = 1) produced in a uniaxially stressed body 

cient Bz as a function of v, a quadratic relationship was again 
obtained 

Bz(y) = 0.110v + 0.221 v2 (10) 
The difference between the values obtained for Bz from the 
results of the boundary element analysis and those calculated 
by relation (10) was within 0.31 percent. 

By substituting the expressions given above for the coeffi­
cients appearing in equations (2) and (3), it is possible to 
predict the displacement distribution along the boundary of a 
through hole for any particular value of ». 

It must however be pointed out that the empirical relation­
ships previously proposed for coefficients Br, Be, and Bz can 
only be considered valid when the ratio of plate thickness to 
hole diameter is sufficiently high to establish a plane strain 
condition in the center layer of the plate. For lower ratios the 
displacement distribution is in fact dependent on the thickness 
to diameter ratio. 

4 Residual-Stress/Displacement Relations for a Blind 
Hole 

In order to derive calibration constants to be used in the 
hole-drilling technique, the analysis has been carried out for 
hole depths p ranging from 0.25 to 2.5 times the hole diameter 
D. The ratios of both plate width and plate thickness to hole 
diameter were the same as those assumed in the case of the 
through hole previously analyzed. 

The nondimensional nodal values of displacements Un Ug, 
and Uz, calculated for the case of uniaxial state of stress, 
p = 0.3 and p/D = 1.0, are plotted in Fig. 5 versus the angle d. 
The same figure also reports the displacements Ur, Ue, and Uz 
previously obtained for the through hole and the same value 
of Poisson's ratio. 

As to be expected, a comparison between the two sets of 
values clearly indicates that the three displacement com­
ponents, although they obviously exhibit the same in­
dependence, differ significantly from the through hole com­
ponents; in particular a constant term is now present in the ex­
pression for the normal component of displacement. 

Substituting the blind hole coefficients (A and B) for the 
through hole coefficients {A and B) in relations (1) and (2), the 
displacement variation along the edge of a blind hole can be 
given as: 
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Hole depth to diameter ratio, p/D 

Fig. 6 Variation of the displacement calibration constants with the 
ratio hole depth/hole diameter for a blind hole (>• = 0.3) 

Table 1 Numerical values of displacement calibration con­
stants f or v = 0.3 

p/D 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

2.00 

2.50 

A 
0.2197 

0.2890 

0.3160 

0.3270 

0.3315 

0.3331 

0.3332 

0.3319 

Br 

0.2961 

0.4396 

0.5198 

0.5678 

0.5982 

0.6183 

0.6415 

0.6533 

Be 
0.2666 

0.3775 

0.4397 

0.4771 

0.5006 

0.5161 

0.5337 

0.5426 

*z 
0.08788 

0.1057 

0.1030 

0.09479 

0.08561 

0.07696 

0.06242 

0.05122 

Bz 

0.09116 

0.1471 

0.1797 

0.2001 

0.2137 

0.2231 

0.2346 

0.2408 

ur=D(Ar^ + Br^cos2e) 

ug = D(-Be^p^sm2d) (11) 

uz=D(Az^ + B z ^ cos20) 

The coefficients, which in this case depend not only on 
Poisson's ratio but also on p/D, can be calculated from nodal 
displacements by relations (6) with U{6) replacing U(d). 

The values of the five coefficients obtained for a Poisson's 
ratio of 0.3 are plotted versus the p/D ratio in Fig. 6. The 
same figure also shows the asymptotic values (p/D=oo), 
which can either be derived from the graph in Fig. 4 or 
calculated by the analytical expressions given in the previous 
paragraph. In order that relations (11) be more effectively 
employed the numerical values of the coefficients calculated 
are reported in Table 1. 

As to be expected, the blind hole coefficients introduced 
above depend significantly on the material constant v. In order 
to eliminate the need to repeat the calibration whenever the 
value of Poisson's ratio of the material tested differs from 0.3, 
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Table 2 Correction factors for deriving displacement calibra­
tion constants from the values given in Table 1 for Poisson's 
ratios different from 0.3 
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Fig. 7 Plots of the maximum percentage errors in the values of calibra­
tion constants obtained by relations (12) versus p/D ratio: (a) in the range 
0.2 <<<< 0.495; (b) in the range 0.25 <c<0.35 

a similar approach was attempted to that proposed by Schajer 
[2] and reported in the ASTM standard for the radial strain 
coefficients used in the hole-drilling strain-gage method. The 
approach is based on the assumption that the blind hole coef­
ficients exhibit the same dependence on v as the through hole 
coefficients, whatever the value of p/D. Although this 
assumption is obviously only correct for p/D=<x>, it does, 
however, permit to calculate approximate values of the blind 
hole coefficients for any value of v: 

A'r(v,p/D) = Ar(p0 ,p/D)Ar(p)/Ar(p0) 

B'r(p,p/D) = Br(v0 ,p/D)Br(p)/Br(p0) 

B^(p,p/D) = B9(p0,p/D)Be(p)/Be(p0) (12) 

Az'(p,p/D)=Az(p0,p/D)Az(V,p/D = \)/AZ(P0,P/D = 1) 

B'Z(P,P/D) = BZ(P0,P/D)BZ(P)/BZ(P0) 

The analytical relations given in the previous paragraph can be 
employed to calculate Ar,Br,B9, and Bz whereas, taking p0 to 
be 0.3, the values of Ar, Br, Be, Az, Bz can be found in Table 
1. 

Since the constant term in the expression for normal 
displacement variation around a through hole is equal to zero 
(see previous paragraph), the normalization factor for coeffi­
cient Az cannot be defined as AZ(P)/AZ(P0). An alternative 
factor Az(p,p/D=l)/Az(p0,p/D=l) is proposed where 
Az(p,p/D = 1) is given by the analytical relationship: 

Az(p,p/D = 1) = 0.071 + 0.089P - 0.036r2 (13) 

which has been derived by applying a best-fit procedure to the 
numerical results obtained from analyses carried out for 
p/D=\ and values of p ranging from 0.0 to 0.495. 

Unfortunately ratios Ar/An Br/Br, etc., far from being 
functions of p/D only, still exhibit a significant dependence on 
p. As a consequence, relations (12) can only be employed to 
estimate the blind hole coefficients for values of p in a small 
range around 0.3 or for high values of p/D ratio (cf. Figs. 7(a) 
and 1(b) which show the percentage differences between the 

p/D A* 

0.25 0.0390 

0.50 0.1420 

0.75 0.2010 

1.00 0.2330 

1.25 0.2490 

1.50 0.2570 

2.00 0.2620 

2.50 0.2620 

0 1-0 

2 0.8 
0 
•£ 0.6 
0 
O 
0 0.4 
Q. 

2 0-2 

2 

-

. 0 ' — — ' 
.0 

B*r 

0.0200 
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0.0090 
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m A; BZ 

-0 .0590 0.0170 0.3029 
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-0 .3770 0.0768 0.7660 
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Fig. 8 Plots of the maximum percentage errors in the values of calibra­
tion constants obtained by relations (14) versus p/D ratio, in the range 
0.25 £»« = 0.35 

values of the coefficients obtained from the approximate rela­
tions (12) and those derived from a proper numerical 
analysis). Figure 1(a) plots the largest percentage difference 
observed in the range 0.2<c<0.495 versus p/D ratio 
(0.25 <p/D< 2.50). The significantly lower percentage values 
plotted in Fig. 1(b) represent the maximum error encountered 
in the smaller range 0.25<y<0.35. As to be expected the er­
rors in A r, Br, Be, and Bz decrease as p/D increases, whereas, 
because of the normalization factor assumed, the error in Az 

is minimum for p/D— 1. By further reducing the range of p to 
0.28-0.33, i.e., to the range wherein the calibration constants 
given by Schajer for the blind hole strain-gage method can be 
considered material independent, the error keeps below 2 per­
cent for p/D>0.5 and below 1 percent for p/D>\. 

Although the approximate relations given above can be 
employed to predict with rather good accuracy the coefficient 
values within a small range of p, the approach cannot be con­
sidered completely successful. A different and somewhat 
simpler approach is therefore proposed which enables calibra­
tion constants to be computed with considerably higher ac­
curacy in a range of p (say, 0.25 < e < 0.35) which includes the 
values of Poisson's ratio for most metallic materials. In such a 
range, in fact, the variation with p of the blind hole coeffi­
cients numerically calculated appears almost linear. By 
retaining only the linear term in the power series by which 
coefficients An Bn etc, can be expressed, approximate values 
for the same coefficients can be obtained as 

A'r(v,p/D) = Ar(v0,p/D) + A*(P0>P/D)(P - va) 

(14) 

B'z(v,p/D) = Bz(p0,p/D) + B*(p0,p/D)(v - P0) 

where the values for Ar, Br, etc (c0 = 0.3) are given in Table 1. 
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The terms A*, B*, etc, which are reported in Table 2, have 
been computed from the respective coefficients Ar, Br, etc, 
derived from the numerical analyses carried out for 
vx = i>0 -Ay = 0.25 and v2 = v0 + Av = 0.35, as 

A%v0,p/D) = [Ar(v2,p/D)-Ar(Vl ,p/D)]/2Ap 

(15) 

B*z(v0 ,p/D) = [Bz(„2 ,p/D) - Bz(vx ,p/D) ] /2Av 

Figure 8 shows the maximum absolute values of the percent­
age differences between the coefficients derived from 
numerical analysis and those obtained from relations (14). A 
comparison between the percentage errors plotted in Fig. 8 
and those given in Fig. 1(b) for the same range of v, clearly 
confirms that a noticeably higher accuracy can be achieved by 
this latter approach. 

5 Determining Residual Stresses 

5.1 Measuring Displacements by Coherent Optics Tech­
niques. The coherent optics techniques which are currently 
used in experimental stress analysis enable one or more fringe 
patterns to be displayed over the full field investigated, with 
each pattern depicting the contours of a specific displacement 
component. 

Without entering into the details of any particular tech­
nique, the equation for predicting, and hence interpreting, 
fringe generation can be quite generally written as: 

k-u(P) 
n(P) = N—-^ (16) 

Except for factor N, the fringe order n at point P (maximum 
fringe brightness for integer values: n = 0, ± 1 , ± 2 ) is 
given by the projection, along the direction defined by the unit 
vector k = [ kx, ky, kz}, of the vectorial displacement u, at the 
same point P, divided by the wavelength X of the coherent 
radiation. 

The sensitivity factor N is determined by the governing 
angles adopted in the optical setup. N can usually reach the 
optimal value of 2 fringes per wavelength, i.e., the increment 
between two adjacent fringes can be made as small as one half 
the wavelength of the coherent light source employed. 

The direction of the unit vector k is also defined by the op­
tical setup; each technique does however possess quite distinc­
tive features which make it more suitable for detecting specific 
displacement components (holographic interferometry, nor­
mal, or quasi normal, displacements; moire interferometry, 
in-plane displacements, etc.). If the surface investigated is 
planar and the direction of vector k does not significantly vary 
over the whole area of interest (that is, it does not depend on 
the position of point P), the interpretation of the fringe pat­
tern is quite straightforward, since each fringe represents the 
locus of points of equal displacement in the k direction. 

When coherent optics techniques are employed to detect the 
displacements produced by hole-drilling in a stressed body, 
whichever displacement component is observed, it is possible 
to deduce the state of stress from the fringe pattern, provided 
appropriate calibration constants are available. The five coef­
ficients appearing in relations (11) can be employed as calibra­
tion constants in determining residual stresses by carrying out 
fringe readings at the edge of the hole; as will be shown later, 
the magnitude and orientation of the principal stresses can be 
derived from the fractional fringe order estimated at three 
points, or even two in some particular cases. 

The following illustrates some procedures which can be 
employed to derive the state of stress from the displacements 
measured along the edge of the hole. Different approaches can 
be followed depending on the particular displacement compo­
nent displayed by the fringe pattern. 

Fig. 9 Normal displacement 

5.2 Determining Residual Stresses From Normal 
Displacements. Let us first analyze the case when normal 
components are detected (e.g., by holographic in­
terferometry); relation (16) simplifies in this case to: 

n(P) = N-
uJP) 

(17) 

since k = (0,0,1). 
Figure 9 reports a computer-generated fringe pattern which 

depicts the normal displacements occurring around a blind 
hole produced in a uniaxially stressed body (al=a, o2=Q). 
Dotted lines represent maximum fringe brightness (n = 0, ± 1, 
±2 , ....) while continuous lines represent dark fringes 
(« = ±0.5, ±1.5, ±2.5, . . . .) . The zero order fringe and the 
sign of the displacements are also indicated. 

This plot, like the ones to be shown later, has been derived 
from the nodal displacements obtained by boundary element 
analysis of a blind hole with a depth to diameter ratio p/D = 1 
and a Poisson's ratio y = 0.3; fringe spacing is consistent with 
N(<j/E)(D/\)=8. The above conditions could, for example, 
correspond to a case where: 

elastic properties of the material: E = 206 GPa, v = 0.3; 

state of stress: a, = 206 MPa, a2 = 0; 

drilled hole: D = 2 mm, p/D = 1; 

displacement sensitivity: N/\ = 4 fringes/^m. 

The principal directions are clearly indicated by the sym­
metry of the fringe pattern; the direction of the higher prin­
cipal stress coincides with that of the diameter which intersects 
the edge at the points where the largest algebraic displacement 
occurs. It could be shown easily that the above considerations 
can be fully extended to the more general case of a biaxial state 
of stress. Two independent fringe readings at the edge of the 
hole are then sufficient to determine the values of the principal 
stresses. By substituting the last of relations (11) into (17), the 
fringe order variation along the border can in fact be given as: 

nz(.6) = N—(Az-±w+ + Bz-^-2- cos 20) (18) 
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+ or2=E-
X n(Pt) + n(.P2) 

(b) 
Fig. 10 Oblique displacement: (a) in the xz plane; (b) in the yz plane 

When, in particular, the measurements are taken at the two 
points where the fringe order is respectively maximum and 
minimum (P{ and P2 in Fig. 9), the following two equations 
are obtained: 

„ (p,,-»,(0)=N-f(^,^+i . ,^i) 

which, solved for (a, + a2) and (<j\ - a2), lead to: 

(19) 

D 

X 
-°2: 

N(1AZ) 

«(/>,)-«(P2) 
(20) 

D N(2BZ) 

conditions given Under the testing conditions given above, the ratio 
(ci\ + a2)l'[niPx) + n(P2)], which is an indication of the sen­
sitivity to the sum of the principal stresses, is equal to 135.83 
MPa/fringe, whereas the ratio (c^ -a2)/[n{P{)-n(P2)}, 
related to the sensitivity to the difference between the principal 
stresses, is equal to 64.34 MPa/fringe. 

It is worth pointing out that, in the case of a blind hole only, 
it is possible to determine both the sum and difference of the 
stresses, and hence to separate the stress components; the 
coefficient Az is in fact equal to zero for a through hole and, 
consequently, n{P2)= - M ^ ) . Where the depth of the blind 
hole is concerned, note that the plot given in Fig. 6 indicates 
that the maximum sensitivity to (ol + a2) is achieved when the 
hole depth is about one half of the diameter. On the other 
hand, the maximum sensitivity to (a, - a2) is reached for a 
through hole. 

An experimental verification of the procedure given above 
can be found in [8]. 

5.3 Determining Residual Stresses from Oblique 
Displacements. Although the procedures previously 
described for deriving the stress field from the normal 
displacements are particularly straightforward, it must be con­
sidered that normal displacements, being essentially due to 
Poisson's effect, are considerably lower than in-plane 
displacements; by measuring the latter a higher accuracy can 
thus generally be achieved. 

By using holographic interferometry, it is possible to reveal 
in-plane displacements by simply changing the viewpoint of 
the observer. When two displacements are detected which lie 
on two principal planes, the fringe order variation along the 
edge of the hole can be, respectively, written as: 

n„W = N-
kxux(6) + kzuz(6) 

nzM^Nk^e):k^d) 

(21) 

where the in-plane components, ux and uy, of the 
displacements observed can be expressed as: 

(22) 
ux(6) = ur(6) cos 6 - u„(d) sin 6 

uy(ff) = urifi) sin 8 + ue{9) cos 0 

The corresponding fringe patterns are reported in Fig. 10(a) 
and Fig. 10(b), respectively, for the testing conditions given 
above and for values for both kx/kz and ky/kz equal to 1/3. 

The fringe orders at point Px in Fig. 10(a) and at point P2 in 
Fig. 10(6) are now given by: 

n(Pl) = nzx(0) = N-f[<M, + M*> 
<j, +a2 

(23) 
"2 

+ (kxBr + kzBz)-^\ 

n(P2) = n„ (-^-) =N~ [(kyAr + M * ) ^ 

-(kyBr + kzBzA^-] 

By solving the above two equations, for (at + a2) and (a{ — a2), 
we obtain: 
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(a) 

(b) 
Fig. 11 In-plane displacement: (a) in the x direction; (b) in the y 
direction 

CTj + <72 = E " 
n{P,) + n{P2) 

O, - f f , = E -

D N[{kx + ky)Ar + 2kzAz] 

X n(P,)-«(i>2) 
(24) 

I? ^ [ ( ^ + ^ ^ + 2 ^ 5 J 
For the case exemplified in Fig. 10, the ratio 

(ai +o2)/[n(Pl) + n(P2)] is equal to 66.60 MPa/fringe while 
the ratio (al-a2)/[n{Pl)-n(P2)] is 34.86 MPa/fringe. 

5.4 Determining Residual Stresses from In-Plane 
Displacements. Accuracy in determining the values of stress 
components can be further improved by employing a techni­

que which enables the in-plane displacement components to be 
directly observed. In this case the fringe variation along the 
edge of the hole can be simply written as: 

ux(6) 

nJd) = N-
11,(0) 

(25) 

where the coordinate axes still define the directions of the 
displacements detected. 

Figures 11(a) and U(b) illustrate the fringe patterns which, 
respectively, depict the ux and uy in-plane displacement com­
ponents. In this case the x- and j'-directions coincide with the 
principal axes as is clearly indicated by the symmetry of both 
the patterns and by the presence of a zero-order fringe at the 
edge points lying on the .y-axis in Fig. 11 (a) and on the x-axis in 
Fig. 11(6). 

The fringe orders at point P , in Fig. 11(a) and P2 in Fig. 
11(b) can be expressed in terms of the principal stresses as: 

D / a, + ff2 „ °\ ~ °2 \ 
#!(/>,) = nx(0) = N~ {A,-^- + Br^~-) 

/ 7T \ D / or, + o2 „ a, - a2 \ 

which solved for (a{ + a2) and (ax - a2) lead to: 

X n(i>,) + ii(Pj) 

(26) 

+ or2 = E-

ff,-ff2 = E-

D N(2Ar) 

X »(P t ) -« (P 2 ) 

D N(2Br) 

(27) 

It can be noticed that equations (27) are exactly equivalent to 
equations (20) where radial displacement (and related calibra­
tion constants) substitute for normal displacement. 

When the same testing conditions are assumed to hold, the 
ratio (ffi+<r2)/[n(Pi) + n(P2)] is now 39.37 MPa/fringe 
whereas the ratio (.ai-a2)/[n(Pi)-n(P2)] is 22.68 MPa/ 
fringe, confirming the expected improvement in sensitivity. 

An alternative procedure can be adopted which only re­
quires a single fringe pattern. A second independent fringe 
measurement can in fact be taken on the same pattern. Assum­
ing the second reading to be at 45 deg, the fringe orders at 
points P 3 in Fig. 11(a) is given by: 

«(P3) -.{•T> -•N-
D V2 

( ^ 
"2 

+ B„ -<v (28) 

The values of the principal stresses can thus be determined by 
solving for (CT, + a2) and (a, - <s2) equation (28) together with 
the first of (26); because of the relatively small difference be­
tween Br and Be, the accuracy is however lower than that 
yielded by using relations (27). 

Whatever the procedure adopted, it must be pointed out 
that the possibility of detecting the components of displace­
ment along particular directions not known in advance (cf., 
the patterns in Figs. 10 and 11), requires the use of an ex­
perimental technique enabling the direction of the component 
observed to be chosen and modified after the recording is 
made and the hole drilled. Single beam speckle photography 
with spatial filtering and holographic interferometry with nor­
mal illumination and multiple viewing directions enable the in-
plane and oblique components, respectively detected, to be 
rotated all around the z-axis. 

Referring once again to pure in-plane components, it should 
be noted that, although techniques like speckle interferometry 
or moire interferometry can be rendered more sensitive than 
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Fig. 13 Radial variation of the calibration constants for p/D = 1 and 
^ = 0.3 

those reported in Fig. 12(a) and 12(6), where the principal 
directions no longer coincide with the directions of the 
displacements detected. 

Interpreting these fringe patterns is somewhat more 
cumbersome, since three unknowns must be determined in 
order to resolve the state of stress. For this purpose, it is con­
venient to rewrite the radial and tangential components of 
displacement as: 

U0=D{-

^cos20-Br% 
E r E 

sin 28 

°-~°> - - - « - 2 T ^ c o s 2 e N ) 

(29) 

sin 26 - B„ 

where the angle 8 is now measured from the x axis of the coor­
dinate system. 

By substituting relations (29) into relations (22), fringe 
orders at points P , and P3 in Fig. 12(a) can be written as: 

Fig. 12 In-plane displacement for a case where the x- and /-directions 
do not coincide with the principal axes: (a) in the x direction; (b) in the y 
direction 

speckle photography (i.e., N=2), they are only capable of 
detecting displacements along one direction (or even two but 
usually no more than three) which is defined once and for all 
when the optical setup is assessed or the moire grating is at­
tached to the specimen. Therefore, if the principal directions 
are not known in advance, it is obviously most improbable to 
obtain fringe patterns like those shown in Fig. 11; it would in­
deed be far more likely to observe fringe patterns similar to 

n{Pl) = »,(0) = N— \Ar-±^- + Br^~^) 

*,,>-.,(-f.)-*|-(-*^) 
and fringe orders at points P2 and P4 in Fig. 12(6) as: 

D / 2T„V\ 
n(P2) = ny(0) = TV— ( - B0^L) 

/ it \ D / ar + av ar — av\ 

(30) 

(31) 

The second of equations (30), or equivalently the first of 
(31), can be solved for 2rxy, while the first of (30) together 
with the second of (31) can be solved for (ax + ay) and 
(ax — ay). Equations (30) and (31) reduce obviously to equa­
tions (26) when rxy = 0. 

Should only one fringe pattern be available, a third fringe 
measurement can be taken on the same pattern (say that in 
Fig. 12(a), at 45 deg). The equation giving the fringe order at 
point P5 
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„ o\. — o"v „ 2TVV \ 
+ Be-^-^- -Br-rf-) (32) 

can, in fact, be used in conjunction with equations (30) to give 
a linear system of independent equations which can be solved 
for the three unknowns. 

It could be easily shown that the above approach enables the 
stress field to be derived from the fringe pattern representing 
any component of displacement; the accuracy achieved will 
depend on the displacement component observed and on the 
orientation of the principal stresses. 

For the sake of completeness, Fig. 13 shows the radial varia­
tion of the calibration constants for the test case reported 
(p/D = 1, v = 0.3). By introducing the proper values of the con­
stants into equations (11), it is possible to calculate displace­
ment variation along circles of any radius. 

6 Conclusions 

The displacement calibration constants introduced in the 
present paper enable a uniform residual stress field to be 
evaluated from any displacement component measured at the 
edge of a blind hole produced in the stressed body. 

The classical hole-drilling technique can thus be applied in 
conjunction with any coherent optics technique which is 
capable of measuring the displacement field around the hole. 

Significant test cases have been reported for the full field ex­
perimental methods most commonly employed and criteria 
have been suggested for interpreting the corresponding fringe 
patterns. Although pointwise techniques can also be applied, 
they have not been considered in the paper. 

The approaches proposed for deriving the state of stress are 
particularly straightforward since they require the minimum 
number of fringe readings. Whenever the fractional fringe 
order cannot be estimated with sufficient precision, a poor ac­
curacy is attained which can however be improved by applying 
best-fit procedures to multiple measurements. 

It must be pointed out that reading the fringe order at the 
edge of the hole could prove unreliable whenever the drilling 
technique employed is not capable to produce a neat hole, i.e., 
a hole with no burr or plastic deformation in the neighboring 
material. The problem can however be easily circumvented by 

reading fringe orders at a certain distance from the border of 
the hole. All the procedures previously suggested for deriving 
the state of stress can be applied, provided proper calibration 
constants are employed in the calculations; charts plotting the 
radial variation of the constants (cf., Fig. 13) should obviously 
be available. 

As a concluding remark, it is worth noting that the calibra­
tion constants given in the paper have been derived for a 
uniform stress field; unacceptable errors could therefore arise 
whenever the same constants are used in a case where stresses 
vary significantly either on the surface or through the 
thickness. On the other hand, full field techniques yield infor­
mation on the degree of uniformity of the stress field, thus 
enabling the results obtained to be either confirmed or re­
jected. The analysis of the distortion introduced in the fringe 
patterns by the stress gradients might, moreover, permit 
evaluation of a not uniform residual stress field. In order to 
investigate the feasibility of this approach, the authors have 
undertaken an extensive program of numerical analyses. 
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