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Micro-electrode arrays implanted into the brain record the electrical potentials

corresponding to the activity of neurons and neural populations. These recordings can

be used to understand how a subject’s brain represents different conditions such as

external stimuli or movement intention. After learning this association, a subsequent

condition can be decoded solely from the neural signals, enabling the brain to directly

operate computers or machines, thereby creating a brain-machine interface.

Brain-machine interfaces have the potential to improve as new technology enables

concurrent recordings from an increasing number of signals throughout the brain. Neural

signals are recorded at multiple scales: the action potentials, or spikes, from individual

neurons, and the local field potentials corresponding to neural populations. On these

diverse and high-dimensional signals, it is a challenge to pinpoint the indicators of

different conditions. In addition, the neural responses have natural variability even for the

same condition. Furthermore, it is likely that a portion, or even a majority, of the neural

signals may pertain to other cognitive processes. To a naive decoder, this background

activity appears as inexplicable noise.

In this study, these challenges are addressed by proposing a set of methods that

learn new representations of the neural data. These representations are adapted to both

recurrent patterns in the neural signals and the decoding task. These methods include

clustering and dimensionality reduction, which label or group reoccurring spatiotemporal
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patterns without supervision. Similarly, generative models are used to parsimoniously

explain both the spatial and temporal patterns in neural potentials. In particular, models

are explored that can account for variability in amplitude, waveform shape, and timing,

and exploit spatial filters to separate different conditions. Finally, a new approach for

optimizing the distance metrics for population activity is used to exploit information jointly

represented across space and time and to highlight the most informative dimensions.

Throughout the study, these tools were applied to neural recordings of both spike

trains and local field potentials in different brain regions of animal models. The proposed

approaches improve data visualization and decoding performance, aiding researchers in

their quest to understand the brain from increasingly complex neural recordings.
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CHAPTER 1
INTRODUCTION

Systematic analysis of neural activity is used to investigate the brain’s representation

of different conditions such as stimuli, actions, intentions, cognitive states, or affective

states. The fundamental questions of the analysis is “How is this information represented

in the neural response?” and “How can this information be extracted from the neural

response?” These complementary questions correspond to the problems of neural

encoding and neural decoding.

Both of these questions are relevant to researchers designing brain-machine or

brain-computer interfaces (BMIs). Motor brain-machine interfaces attempt to decode

upper-limb movements from neural data (Carmena et al., 2003; Lebedev & Nicolelis,

2006; Wessberg et al., 2000). Novel applications of BMI include delivering lost sensation

back to the brain (Brockmeier et al., 2012a; Choi et al., 2012; Liu et al., 2010; O’Doherty

et al., 2011, 2012; Romo et al., 2000; Schmidt et al., 1996) or deriving the training signal

for motor decoders directly from the brain’s representation of reward (Mahmoudi &

Sanchez, 2011; Pohlmeyer et al., 2014). In these cases, the fundamental role of a BMI

is to decode motor intention, location of touch, or cognitive features such as anticipation

of reward solely from the recored neural signals.

Electrophysiological recordings use multiple electrodes and high-sampling rates

to accurately record neural signals as they vary across time and space. The neural

responses may be recorded either invasively or non-invasively. Surgically implanted

micro-electrode arrays allow invasive recordings to capture both the timing of action

potentials (spike trains) across many neurons, and local field potentials (LFPs) across

many electrodes. Only the action potential waveforms of neurons in the close vicinity of

the electrode are captured, providing a minute fraction of the neurons contributing in the

implanted region.
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Estimating the decoding models required by BMIs is difficult on this diverse,

high-dimensional data. In addition, there are multiple modalities by which the signal

characteristics differ between conditions. These include the energy at certain frequencies,

the spatial or temporal patterns of evoked potentials following a stimulus presentation,

and the rate or pattern of individual neuronal spiking patterns.

Instead of treating the representation of the neural response as given and

attempting to solve a very difficult classification or regression task, it is necessary to

explicitly optimize an alternative, possibly low-dimensional, representation of the neural

signals. Ideally, with this new representation it will be easier to perform the subsequent

classification or regression problem, investigate the important dimensions of the neural

response, or gauge the information content relevant to the experimental condition. In

this dissertation, a number of algorithms are proposed that learn useful representations

of neural signals based on their underlying statistics among responses from the same

condition and between responses from different conditions. These approaches are

specifically tailored to handle both the complexity and diversity of neural signals and the

high-dimensionality found in real neural recordings.

The rest of the introductory chapter is organized as follows: first, some general but

intrinsic characteristics of the neural signals of interest are introduced, then specific

challenges of decoding neural signals are covered, next a review of approaches for

learning alternative representations of neural signals is made, and the chapter is

concluded by the discussing the aims and contributions of the dissertation.

1.1 Neural Signals

In this section, some background on the electrophysiological recordings of neuronal

activity and neural electrical potentials is presented.

1.1.1 Neural Spiking Activity

Interneuronal communication is often characterized by series of action potentials, or

spikes. In very general terms, a relatively large and rapid change in a neuron’s potential

16



is generated by the dynamic activation of multiple types of ion channels (Hodgkin &

Huxley, 1952). Action potentials in the peripheral nerve carry information back to the

central nervous system via their timing and rate of generation (Adrian, 1926; Liddell

& Sherrington, 1924). In the central nervous system, the initial impulse is generated

near the neuron’s cell body, and the impulse travels along its axon toward where other

neurons are synaptically connected. As the relative amplitude of the spike carries less

information than the timing (Rieke, 1999), the amplitude of spikes is discarded, and only

the spike timing is recorded. Statistically, spike trains are modeled as a point process in

time.

1.1.1.1 Electrophysiological recordings

Micro-electrode arrays capture the time-varying extracellular potential at each

recording location. Single-unit action potential waveforms, referred to as spikes, are

relatively short and impulse-like, thus their contribution is spread over the spectrum;

however, spikes can be distinguished by their contribution to the high portion of the

spectrum (300Hz to 6 KHz). Spikes are isolated from the high frequency portion of the

voltage trace in two steps. Initially, the potential spike times are found by identifying the

times when the signal crosses a threshold. Then the spikes from each specific neuron

are discriminated based on the shape of the action potential wave-form. This second

process is called spike sorting. Sorting involves matching the waveforms surrounding

a threshold crossing to a set of shape templates. Defining the shape templates for the

different units can be done as either a supervised or unsupervised process. Since noise

can also cause a spurious threshold crossing, waveforms that do not sufficiently match

any of the templates are discarded. Whether sorted to separate the different units or not,

spiking activity no longer contains amplitude information and is encoded solely in the

sequence of times called a spike train.

In the last couple decades, it has become possible to sample from large numbers

of neurons. This is largely due to the development of multi-electrode arrays, better
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Figure 1-1. The preprocessing steps and signal flow for extracting spike trains and LFPs.
After initial amplifying, filtering, and sampling, the signal is low-pass filtered if
destined for LFP analysis and high-pass filtered for spike detection. To
resolve a spike train, the signal is thresholded and sorted. Using a histogram
in time to bin the spike train is an optional final step.

instrumentation, and faster computing that allows the simultaneous recording and

processing of multiple neurons. A neuron can spike multiple times in a second, so

recording from a large population can yield hundreds of thousands of action potential in

the course of 20 minute experiment. This amount of data requires intensive computing

for spike identification and spike sorting.

1.1.1.2 Spike train binning

A spike train is a set of real-valued times, but as the number of times may vary,

it cannot be directly used in many algorithms that assume fixed length vectors. To

use spike times as real-valued vectors, they are first transformed into a discrete-time

firing rate function by either smoothing, similar to kernel density estimation, or binning,

using a time histogram of non-overlapping windows with a pre-specified bin width, see

Figure 1-1. A bin width or kernel width in the hundreds of milliseconds is often used for a

smooth estimate of the firing rate.

1.1.2 Neural Electrical Potentials

Brain waves are measurements of the time-varying electrical currents occurring in

the brain. Since their discovery in humans (Berger, 1929), brain waves have intrigued

researchers as a window into the computation of the brain (Adrian & Matthews, 1934;

Buzsáki & Draguhn, 2004; Ciganek, 1961; Farwell & Donchin, 1988; Freeman, 2004;
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Sejnowski & Paulsen, 2006). The electrical potential produced by the combined electric

fields of neurons in the central nervous system can be measured at varying locations

and scales: the electroencephalography (EEG), the electrocorticography (ECoG), and

the local field potential (LFP). EEG measures the potentials across the scalp, and can

be used to analyze cortical processing. ECoG measures intracranial potentials, and

LFPs are a measure of the extracellular potential recorded from penetrating electrodes

implanted within brain tissue. These neural potentials are a combination of both local

and distributed neural activity. The meaningful frequency ranges for analysis are

less than one cycle per second up to hundreds of cycles per second (0.5 to 300Hz).

Classically, EEG has been studied in terms of event-locked evoked potentials or in terms

of power spectral density of the oscillations across the famous alphabetic frequency

bands (alpha, beta, gamma, delta, mu). Neural potentials offer a unique window into the

operation of the neural circuits of the brain (Buzsáki et al., 2012).

At each of these scales and recording locations, the electrical potential measurement

at each electrode is the superposition of electrical potential from multitudes of individual

current sources. For the case of EEG, the measurements are also subject to noise

from muscle activity and movement artifacts. To discern the underlying brain activity it

is necessary to first separate these sources. Consequently, analysis of the electrical

potentials relies heavily on signal processing to resolve the raw signals into usable

forms.

Freeman (1975) developed a theory of how masses of neurons generate oscillations

in the electric potential, using a series of hierarchical dynamical system models.

Essentially, the waveforms in evoked potentials are characterized by the synchronous

activity of large numbers of neurons with both excitatory and inhibitory connections

having different time constants.

Nunez & Srinivasan (2006) provide a comprehensive view of the physics of the

electric fields in the brain, the techniques for recording of electrical potentials, and the
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limitations of the technology. In principle, the electric fields of the brain can be described

by three-dimensional vector fields. However, recordings are limited to the placement of

electrodes and only provide measurement of the scalar electric potential. Nonetheless,

understanding the physics behind the generation of the recorded electric potential from

the ion currents is essential (Nunez & Srinivasan, 2006).

Due to the relatively slow speed of ion transport by neurons and through diffusion,

the magnetic and electric waves in the brain are decoupled. Also, electric fields

passively propagating through biological media (with possibly heterogeneous conductance)

will only experience linear filtering—that is, they will not experience any non-linear

distortion. Consequently, the power of a signal fades as it is recorded farther from its

source, with high-frequency experiencing more attenuation (Buzsáki et al., 2012). The

power at any frequency cannot increase, nor can it be distributed to other frequencies,

and as the distance between the sensors is fixed there is no chance of Doppler effects.

The LFP provides a measure of the electric potential in a localized area of the

brain. The LFP is closer to the origin of neural oscillations than either ECoG or EEG

measurements. The placement of ECoG electrodes above the cortex and EEG

electrodes on the scalp limit which signal sources are measured; the orientation of the

electric field means that the signals from some areas of the cortex are poorly captured

by these recordings. Often, LFPs are recorded internally with micro-electrode arrays

with headstage preamplifiers; consequently, the signals are less prone to movement

artifacts and external noise sources. Overall, LFPs offer a unique opportunity to study

neural electric potentials nearer their origins.

1.2 Challenges of Neural Decoding

Neural data analysis has many challenges associated with the size, complexity, and

unobservable nature of the central nervous system.

• Heterogeneity: The central nervous system in vertebrates is a complex system
composed of a richly structured and connected network of neurons and other
cells that are specialized in form, function, and location. Even within a specific
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cortical region, such as the motor or somatosensory cortex, it is difficult to
predict a priori how exactly a given neuron may behave to different stimuli or
conditions: information can be carried by the precise timing of some neurons’
action potentials, and for others, information is carried by their instantaneous firing
rate (Rieke, 1999).

• High-dimensionality: Multichannel neural recordings with high-sampling rates yield
high-dimensional datasets; yet, they correspond to an extreme subsampling of the
implanted area.

• Diversity of representations: The activity of a population of neurons can be
represented by a set of timings, locations, and shapes of action potentials;
whereas electrical potentials, such as local field potentials, are discretely-sampled,
multivariate time-series.

• Network complexity: Neural data analysis has inherent dependencies at different
scales and between different scales—e.g., the dependency between individual
neurons, between neurons and the local field potential, between the field potentials
in different brain regions, etc. There may exist many distinct neural ensembles
whose activity is associated with processing similar information; however, the
assignment of neurons to ensembles, or other dependencies, have to be inferred
solely from their activity without known connectivity.

• Variability: Unable to account for the activity of unobserved neural populations
nor the distributed nature of neural circuits, the neural response to repeated
conditions appears noisy and variable (de Ruyter van Steveninck et al., 1997). The
relative contribution of the background activity can mask the activity relevant to the
condition of interest. Mathematically, background activity can only be modeled if
it is stationary in some sense, but in the brain this activity may be non-stationary.
In addition, long term variability arises from the fact the central nervous system is
itself plastic, and adapts over time. This neural plasticity may occur rapidly over the
course of seconds or minutes (Fritz et al., 2003).

1.2.1 Neural Signal Variability

When analyzing neural data when there is known external information, such

as the timings of stimuli, it may be possible to identify a reliable response in the

time-locked average, but the neural response to repeated trials is never wholly

consistent. Consequently, computing the average response is the most basic offline

analysis approach. This average is referred to as a peristimulus or peri-event time

average, or in the case of binned spike trains, the peristimulus time histogram (PSTH).
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The average of the time-locked neural response discards much of the underlying

response. If there was high-frequency content in the signal that was not phase-locked,

or temporal patterns with various temporal alignments, then these patterns will not be

present in the average.

The signal itself may be the result of multiple unobserved sources impinging on

each recording sensor. Averaging does not provide a means to separate the contribution

of the other sources, and cannot be used to separate multiple sources for an individual

trial.

1.2.2 Disparity in the Information Rate

Another challenge is the disparity between the information rate of the external

information and the sampling rate of the data. The exact timing window in which the

neural response represents the condition of interest may be short compared to the

length of the recording. Additionally, the lag between stimulus and response may vary

(Woody, 1967). It is helpful to identify which time points in the response are important,

or the single-trial response time.

For example, in a binary classification task a single bit of external information

per trial is available; is it possible to learn the patterns that characterize the signal

corresponding to each class? Assume each trial consists of a 4 second window

of multichannel recordings sampled at 500Hz. Trying to classify each time point

independently is a naive approach. Alternatively, treating the whole segment as a

single observation provides only a few training examples in a sparse, high-dimensional

space. Thus, there is a need for methods that can extract information somewhere in

between these two extremes.

1.3 Decoding Neural Data

This dissertation is motivated by the particular challenges faced when training BMIs

(Brockmeier & Prı́ncipe, 2013). As the details of neural signals differ between subject

and recording location, a general ‘one size fits all’ BMI system cannot succeed. Portions
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of the complete system may use predefined signal processing blocks, but a subset

of system parameters need to be adjusted, through training, for a specific subject.

Often this training uses data from prior sessions where the desired responses are

known. The system parameters are trained such that the output matches as closely as

possible to this desired response. This form of adaptive training is known as supervised

learning. The system may remain adaptive with the system parameters adjusted so that

performance will be maintained as the underlying neural signals may change over time.

Neural decoders can be used to assess the amount of information the recorded

activity carries about the condition of interest. However, it is difficult to distinguish

whether poor performance is the result of lack of neural modulation or an inefficient

decoder. If the performance is high then it is clear that the neural response carries

information about the condition, but in the other case the poor performance may be

indicative of poor decoder selection. It is desirable to be able to assess the neural

response in a decoder-independent manner in order to understand the degree to which

the neural response varies among similar or repeated stimuli on a trial-to-trial basis.

With all of the previously mentioned challenges, it would appear that brains are an

enigma, and neural decoding should be impossible. Yet, brains are physical systems

with real constraints, redundancies, and dependency between dimensions. In particular,

brains are limited in terms of their power output, energy dissipation, and rate of change.

Additionally, neural signals must obey the laws of physics—unlike the quantities involved

with stock and energy markets. The choice of modeling techniques or processing

algorithms should be grounded by these considerations.

In addition, techniques should be chosen based on two considerations: first, the

goal of the analysis, whether it is distilling the information to a more interpretable form,

or extracting the relevant signals from a set or mixture; and second, the complexity

of the signals based on an understanding of the underlying neurophysiology and

generating process.
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1.4 Literature Review on Learning Representations for Neural Data

The challenges of neural data analysis and neural decoding necessitates well-chosen

methods. Ideally methods should do the following: qualitatively capture the intrinsic

relationship between the neural modulation and the variable to be decoded, highlight

important features or dimensions of the neural response, and improve the performance

of subsequent decoding.

While neural data has certain unique characteristics, the analysis is often based

on general pattern recognition methods. Figure 1-2 presents a number of pattern

recognition methods for classification, clustering, dimensionality reduction, and

modeling. Methods are oriented along two axes, organized along the horizontal axis

by the underlying complexity in terms of number of parameters and computation time

and along the vertical by the methods ability of algorithms to weight or separate specific

dimensions or features. Methods with higher decomposition ability are able to attenuate

irrelevant dimensions or demix the superpositions of multiple sources.
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Figure 1-2. Diagram of classification and dimensionality reduction methods organized by
their complexity and their ability to use information among dimensions. ⃝
indicates an unsupervised method, × indicates a classification method, and
∆ indicates a supervised dimensionality reduction approach.
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Moving from left to right, the complexity or number of parameters in the algorithms

increases. Methods on the right allow non-linear classification decision boundaries

or functional mappings. In addition, methods on the right typically require longer

computation. Moving from the bottom to the top, methods are able to isolate components

or dimensions relevant to a task using supervised information or show statistical

structure without supervision (Huber, 1985; Kruskal, 1969, 1972).

A variety of methods consider the formation of features from the dimensions.

Starting on the far left, feature selection is the simplest approach as it consists of an

inclusion or exclusion decision for each dimension. Although the relative importance

of a feature is assessed, this information is only used to select the features. On the

contrary, feature weighting explicitly optimizes the relative contribution of the individual

dimensions. In addition, feature weighting is applicable whenever there is a underlying

distance metric, as is discussed in Chapter 5.

When applicable, linear projections can be used to find linear combinations of

the dimensions. More generally, the correlation or dependence between dimensions

can also be used as features. Beyond linear projections, techniques for multilinear

processing exploit the intrinsic organization of dimensions along multiple modes. For

instance, features can be derived via bilinear projections for windows of multivariate

time-series (Christoforou et al., 2010; Dyrholm et al., 2007). Bilinear projections use a

linear transformation along time and another one across space.

Residing at the bottom of the diagram are methods that require a given similarity

measure. This similarity could be defined as inversely proportional to a intrinsic distance

function, such as Euclidean distance. Alternatively, the user may provide the distance

function, but in any case the methods do not attempt to modify this measure. Among

these methods, are ways to summarize data such as averaging and clustering.

Correspondingly, nearest-mean and nearest neighbor classifiers use the locations

of the samples in the training set without any optimization.
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The radial basis function (RBF) network is another method that learns a decision

boundary function without changing the underlying measure (Park & Sandberg, 1991).

Similarly, Kernel machines (Cristianini & Shawe-Taylor, 2000; Schölkopf & Smola,

2002) are learning algorithms that rely on positive definite, bivariate similarity measure.

Usually, the user must choose this function along with any of its hyper-parameters, e.g.,

the variance parameter of the Gaussian kernel.

Above and to the right of kernel machines, multiple kernel learning (Cortes et al.,

2012; Lanckriet et al., 2004; Yamada et al., 2013) provides a way to circumvent this

difficulty by automatically learning the optimal convex combination of kernels for a

given task. Even more flexibility can be achieved using kernel-based metric learning

(Brockmeier et al., 2013a; Fukumizu et al., 2004), which allows the kernel functions

themselves to be adapted.

In the top right quadrant are the most versatile and powerful methods, such as

artificial neural networks. Auto-encoders are one instance of artificial neural networks

that are designed to solve non-linear dimensionality reduction problems (Hinton &

Zemel, 1993). Although powerful, these methods require a priori selection of the

architecture. These models typically require extensive computation time to adapt

parameters and hyper-parameters using non-convex optimization techniques. In a

Bayesian modeling framework, certain models can be formulated that only require

convex optimization, particularly with certain choices in generalized linear models (Pillow

et al., 2011).

1.4.1 Low-dimensional Representations Are More Informative

Although neural recordings may be very high-dimensional, often stimuli are applied

or the behavior is performed in 2–D or 3–D space. This is especially true for motor and

tactile experiments. The similarity among the conditions may correspond to similarity

among behaviors or stimuli, such as spatial organization of the targets in a reaching

task or the location of touches in a somatosensory task. In these cases, it may be
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possible to find a low-dimensional representation of the neural responses. If this

representation preserves the relationships among the conditions, then there should be

natural correspondence between the low-dimensional representation and the conditions.

The representation can be used to assess the trial-to-trial variability (Churchland et al.,

2010) and the similarity between neural responses to similar conditions—without explicit

modeling. The neural response representation may be optimized in either a supervised

or unsupervised manner.

1.4.2 Unsupervised Dimensionality Reduction

A number of unsupervised methods have been used for the exploratory analysis

of neural data (Broome et al., 2006; Park et al., 2012; Stopfer et al., 2003). Principal

component analysis (PCA) can reveal patterns in neural data (Chapin & Nicolelis, 1999),

but the results from PCA on neural data may be unsatisfactory (Cowley et al., 2012),

as the directions of largest variance may not contain any useful information. Also in the

linear case, independent component analysis (ICA) (Comon, 1994) optimizes a linear

projection so the resulting vector has maximally independent elements. The activity

projected along each of these dimensions may be informative, but unlike the case for

PCA, there is not a natural ordering for independent components, and the user is left to

assess which components are meaningful.

Other non-linear approaches include distance embeddings (Sammon Jr, 1969),

kernel-based extension to PCA (Schölkopf et al., 1998), and manifold learning

algorithms that try to preserve the similarity structure between samples in a low-dimensional

representation. Such methods tend to concentrate on preserving either local (Roweis &

Saul, 2000) or structural-based (Tenenbaum et al., 2000) similarities. For any of these

objective functions, novel samples can be mapped to the representation space via

explicit mappings (Bunte et al., 2012).
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1.4.3 Dynamical Modeling

State-space models with low-dimensional states can be used to model the

temporal evolution and dependencies in neural responses. In a generative model, the

low-dimensional state corresponds to the latent process generating the high-dimensional

neural activity. After training, the state-space models provide a means to explore

the temporal evolution and variability of neural responses during single trials. The

low-dimensional or discrete state variables, as in hidden Markov models (HMMs), can

be visually depicted to track the dynamics of the neural response (Kemere et al., 2008;

Radons et al., 1994; Seidemann et al., 1996; Yu et al., 2009, July 2009). Petreska et al.

(2011) have shown how a combination of both temporal dynamics and a discrete state

can efficiently capture the dynamics in a neural response. Ideally, the estimated states

contain information regarding the experimental conditions. For instance, they may be

indicative of the start of movement or intention (Shenoy et al., 2003). However, these

state-space models are trained in an unsupervised manner and are not guaranteed to

capture the aspects of the neural data related to the experimental conditions.

1.4.4 Supervised Dimensionality Reduction

In the supervised case, Fisher discriminant analysis (FDA) and extensions

(Baudat & Anouar, 2000; Fukunaga, 1990) use sample covariances from each class

to form discriminative projections. The optimal projection is a solution to a generalized

eigenvalue problem that maximizes the spread between the means in different classes

while minimizing the spread of samples within the same class. Local estimates of the

class-covariance can also be used for multimodal distributions (De la Torre & Kanade,

2005; Sugiyama, 2007).

The dimensionality of the neural response can be reduced by feature selection (Kira

& Rendell, 1992). The simplest approach is to find how informative each feature is for

a given task and then select a set of informative, but not redundant features (Guyon
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& Elisseeff, 2003; Peng et al., 2005; Yamada et al., 2013), or a set of features may be

obtained by backward or forward-selection algorithms (Song et al., 2007, 2012).

1.4.5 Decompositions of Spatiotemporal Signals

Models of stimulus evoked potentials can be used to separate the signal of

interest from background activity (de Munck et al., 2004; Jaskowski & Verleger, 1999;

Karjalainen et al., 1999; Li et al., 2009; Pham et al., 1987; Rivet et al., 2009; Souloumiac

& Rivet, 2013; Truccolo et al., 2003; Weeda et al., 2012; Woody, 1967). Alternatively, the

tools developed for blind-source separation can identify and separate spatially distinct

sources (Delorme et al., 2012; Jung et al., 2000). Sources can also be identified by their

temporal patterns (Brockmeier et al., 2011b; Douglas et al., 2007; Jmail et al., 2011;

Koldovskỳ & Tichavskỳ, 2011; Mijović and et al., 2010). Furthermore, multiway or tensor

models of the neural potentials allow for both spatial and temporal factors (Cichocki

et al., 2008; Miwakeichi et al., 2004; Mørup et al., 2006).

1.4.6 Representations for Spike Trains

Spikes present a challenge to most processing algorithms that are designed for

fixed-length vectors, whereas spike trains are variable length sets. Probabilistically

a spike train is a realization of a temporal point process (Brown et al., 2002; Kass &

Ventura, 2001). Point process models are incredibly useful for building encoding models

of how stimuli affect neural spiking activity, and for decoding stimuli directly from the

spiking activity (Brown et al., 1998). Pillow et al. (2011) provide an excellent review and

new efficient algorithms for optimizing point process models.

Alternatively, decoding algorithms can be built directly off the geometric structure

of the spike trains, without explicit probabilistic modeling, by exploiting measures of

similarity and dissimilarity provided by spike train kernels and metrics, respectively.

The Victor-Purpura metric (Dubbs et al., 2010; Victor, 2005; Victor & Purpura, 1996) is

an edit distance between two spike trains. A key feature of the distance is its temporal

precision parameter that adjusts the cost associated with moving spikes in time to
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align them, versus simply adding or deleting spikes. The van Rossum distance is

the L2 distance between continuous rate functions (van Rossum, 2001), where the

rate functions are estimated by convolving the spike trains with an impulse function

consisting of a one-sided exponential decay. Population, also referred to as multi-unit,

versions of these single neuron metrics have also been proposed (Aronov, 2003;

Houghton & Sen, 2008). The computational neuroscience community is still developing

new metrics for spike trains (Rusu & Florian, 2013).

Following the success of kernel machines for machine learning (Cristianini &

Shawe-Taylor, 2000; Schölkopf & Smola, 2002), and the ability to define kernels on

general spaces, such as graphs (Gärtner et al., 2003), researchers have explored spike

train kernels (Paiva et al., 2009, 2010; Park et al., 2013, 2012). In the reproducing kernel

Hilbert space framework (Aronszajn, 1950), linear algorithms in the Hilbert-space can

implement non-linear processing in the input space (Principe, 2010). This is especially

important for spike trains where the input space does not permit linear operations.

However, after binning, spike trains are indeed vectors in Euclidean space and general

kernels or simple linear operations can be applied. Specialized kernels for binned spike

trains have also been developed: the alignment-based kernels (Eichhorn et al., 2004)

inspired by bioinformatics research on gene alignment and the spikernel (Shpigelman

et al., 2005) that efficiently uses population activity.

Although these metrics and kernels exploit the structure in individual neurons,

when it comes to population activity the multi-unit approaches are unsatisfactory. Joint

measures—such as the tensor product spike train kernel (Li et al., 2012; Park et al.,

2013)—use the contribution of all units equally. If only a few of the units are meaningful,

then their activity is diluted in the joint kernel. Thus, there is a need of methods which

can adapt joint measures for a specific task. Although suggested by Park et al. (2013),

there has not been an attempt to learn weighted combinations of spike-train kernels.
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1.5 Aims

The aim of this dissertation is to develop methodologies that can learn meaningful

representations from raw neural data. The underlying idea is that the raw recorded

signals, even with data-independent processing using filtering or other transformations,

are insufficient to understand neural activity and to perform neural decoding. Instead

the neural signals have to be processed in a data-dependent manner—exploiting the

inherent structure of the signals. These ideas are summarized by the following two

hypotheses:

The first hypothesis is that recurrent patterns in observed neural signals indicate

repeated instances of the same neural processing. By identifying the recurrent patterns,

their occurrence can be used for later decoding. There are two paradigms for pattern

recognition: summarizing the signal by a discrete or lower dimensional variable, and

extracting a component under the assumption that the signal is a linear combination of

components.

The second hypothesis is that, for multi-electrode recordings, only a subset of the

neural dimensions are relevant for a given decoding task. The relevant dimensions need

to be identified and combined in a manner that to maximizes the information relevant to

the task. The goal is to learn these new representations based on the statistics of the

data and possibly the decoding task. The new representation serves as an intermediate

descriptor that is better suited for neural decoding than the raw signals. Specifically,

intermediate descriptors should efficiently capture the characteristics of the signals or be

estimates of latent, unobserved sources that are combined in the observed signals. A

diagram depicting this processing is shown in Figure 1-3.

These hypotheses are matched to the type and complexity of the signals. For

populations of spiking neurons, clustering and dimensionality reduction techniques

are used to summarize and capture recurring spatiotemporal firing rate patterns of

populations of neurons (Brockmeier et al., 2011a, 2010). For local field potentials and
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Figure 1-3. Diagram of learning new representations for neural data. An intermediate
descriptor is extracted from the signals prior to the classification task.

EEG data, the signals are modeled as an additive combination of background activity

and relevant reoccurring patterns (Brockmeier et al., 2012b, 2011b). In the case of

spike trains and local field potentials, the important spatial and temporal dimensions are

identified (Brockmeier et al., 2014). Graphical representations of these approaches are

shown in Figure 1-4.

1.5.1 Unsupervised Learning for Neural Firing Rate Patterns

The first aim is to develop means to summarize multichannel neuron spike

rates with a low-dimensional or discrete variable. This representation should allow

the single-trial variability and cross-trial reliability to be assessed. Clustering and

dimensionality reduction-techniques are the obvious approaches towards this aim.

Clustering assigns labels to recurrent patterns during and across multiple task trials.

The sequence of labels is used to identify cognitive processing, specifically reward

expectation (Brockmeier et al., 2010). Using dimensionality reduction, the trajectories

of the high-dimensional neural data are visualized in two- or three-dimensional

representations—elucidating whether the neural data has consistent representations
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Figure 1-4. Diagram of four methods for the analysis of spatiotemporal data. A)
Clustering using spatiotemporal metrics. B) Single channel decomposition of
potentials. C)Tensor model for evoked potentials. D) Nonlinear
dimensionality reduction using optimized metrics.

across multiple trials of a behavioral task (Brockmeier et al., 2011a). The methods and

results for this aim are covered in Chapter 2.

1.5.2 Linear Models of Neural Electric Potentials

The second aim is to extract reoccurring spatiotemporal patterns from neural

electric potentials. This is accomplished by using linear synthesis models for the

multichannel time-varying signals. Two signal processing schemes are explored for

extracting information from local field potential data: the first finds multiple recurrent

patterns in continuous recordings, and the second assumes a single pattern per trial.

In the first scheme, the recurrent patterns in single-channel neural potential

signals are learned in a completely unsupervised manner on continuous segments.

This approach can be used to summarize the neural activity over time. The recurrent

waveforms are automatically tuned to characteristics of the particular signals. Specifically,

independent component analysis and methods for learning dictionaries for sparse
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coding are proposed to blindly estimate the recurrent waveforms of the underlying

sources. This expands on preliminary results (Brockmeier et al., 2011b), which

used only independent component analysis. Chapter 3 discusses the mathematical

framework, synthetic experiments, and results on single-channel LFPs and proposes a

simple extension for the multichannel case. Furthermore, the timing and amplitude of

the sources of these recurrent patterns is proposed as an natural representation space

that may prove useful for analysis of long-term recordings.

In the second scheme, novel models are proposed to explain the spatiotemporal

waveforms evoked after stimuli presentations. The techniques proposed in Chapter 4

naturally capture the patterns occurring at random time points and leverage the inherent

spatiotemporal aspects of the signals. The timing and amplitude of these waveforms can

be used to predict cognitive states. For these models, it is necessary to strike a balance

between using simple models to summarize the neural responses and maintaining the

diversity in the signal features. To find this balance model selection criteria (Schwarz,

1978; Stoica & Selen, 2004) are applied. The methods build from preliminary results

(Brockmeier et al., 2012b), which explored using predefined temporal waveforms and a

greedy approach to identify spatial amplitude patterns in EEG on a single-trial basis.

The second goal is more scientific: to use these models to identify coupling across

scales—i.e. between neuronal data (spike trains) and electrical potential data. This

hypothesis is motivated by the recent results linking the phase of LFP and spiking rate of

certain neuron populations Canolty et al. (2010). Instead of using the phase, the relative

temporal location of recurrent patterns in the LFP is shown to be more predictive then

the task timing for some neurons.

1.5.3 Optimized Representations

The last aim is to develop a general framework for learning better representations

of neural data. Metric learning (Fukumizu et al., 2004; Lowe, 1995; Xing et al., 2003)

is proposed as a general framework suitable for this task. Within this framework, new
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approaches for learning joint kernels are pursued that rely on the well-known connection

between metrics and reproducing kernel Hilbert spaces (Schoenberg, 1938). The kernel

framework is used not only for kernel machine implementations—to perform non-linear

classification and regression—but for its connection with dependency measures (Bach

& Jordan, 2003; Cristianini et al., 2002; Gretton et al., 2005) and information-theoretic

quantities (Principe, 2010). Recent work (Sanchez Giraldo & Principe, 2013; Sanchez

Giraldo et al., 2012) has shown how entropy and dependency measures could be

empirically evaluated from kernel matrices, without the need of explicit kernel density

estimation. This approach allows Mahalanobis metrics on real-valued vectors to be

optimized (Sanchez Giraldo & Principe, 2013). Preliminary work using this method were

applied to binned spike trains and LFPs (Brockmeier et al., 2013c). The approach was

generalized to learning weighted product kernels (Brockmeier et al., 2013a). Finally, in

Chapter 5, a computationally faster dependency measure (Cortes et al., 2012) is used

as the objective function to optimize the parameters of multi-unit spike train metrics

(Brockmeier et al., 2014). This allows and improves neural decoding algorithms that can

directly use spike trains from multiple neurons.

1.5.4 Matching the Neural Complexity

Throughout this dissertation the analysis methods are chosen such that the

complexity of the model is matched to the complexity of the neural signals. For instance,

if only a subset of neural signals are assumed to be important then a feature selection

approach is taken; alternatively, if the temporal alignment is variable between trials then

a shift-tolerant model should be employed. In certain cases, the modeling and post-hoc

model selection itself can be used to understand the complexity of the data. These last

discussion points are meant to emphasize the overarching goal of the dissertation—to

develop processing tools that extract information from and better understand neural

signals.
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CHAPTER 2
UNSUPERVISED ANALYSIS OF POPULATION FIRING RATES

In the analysis of concurrent recordings of multiple neurons, there is a need to

identify reoccurring patterns relevant to the behavior, stimulus, or cognitive state.

Visualizing the collective modulation of multiple neurons is useful for this exploratory

analysis, but visualizing the activity of a large number of neurons at once is challenging.

In general, it is difficult to represent the joint neural activity in a single trial basis, that is

both understandable and informative.

A common analysis tool, in the case of multiple stereotyped trials, is the peristimulus

time histogram (PSTH) (Gerstein & Kiang, 1960), but it only provides the average

for a discrete number of time-locked conditions. In addition, each neuron is treated

separately, providing little intuition on any dependence between neurons, and it is unable

to capture any variability that exists on a trial-to-trial basis (Radons et al., 1994).

One alternative approach is to estimate a low-dimensional latent state variable that

corresponds to the high dimensional data. Estimating a latent state from multi-electrode

neural data can be a general tool for characterizing the evolution of the population neural

activity through time. This can be used to pinpoint the times of reoccurring patterns.

Bayesian modeling is a natural approach for latent state stimation (Yu et al., 2006,

July 2009), which can handle both variability and high dimensionality. Other work on

state-estimation for multi-electrode recordings studies is based on dynamical models

such as hidden Markov models (HMMs), Kalman filters, or other dynamical models (Gat

Portions of this Chapter are published for in the following manuscripts: Brockmeier,
A.J., Park, I., Mahmoudi, B., Sanchez, J.C., and Principe, J.C. (2010). Spatio-temporal
clustering of firing rates for neural state estimation. In Engineering in Medicine and
Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pages
6023-6026; Brockmeier, A.J., Kriminger, E.G., Sanchez, J.C., and Principe, J.C. (2011).
Latent state visualization of neural firing rates. In Neural Engineering (NER), 2011 5th
International IEEE/EMBS Conference on, pages 144–147.
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et al., 1997; Kemere et al., 2008; Petreska et al., 2011; Radons et al., 1994; Seidemann

et al., 1996; Wu et al., 2004; Xydas et al., 2011; Yu et al., 2009, July 2009). State

estimation for brain-machine interfaces can be used to decode movement type (Shenoy

et al., 2003) or plan timing (Achtman et al., 2007). A review of methods is taken by

Churchland et al. (2007) and Paninski et al. (2010).

These approaches require explicit model formulation and estimation. Instead, we

propose to use data-driven approaches for discrete state estimation or continuous state

estimation where high-dimensional data are statically projected to a low-dimensional

space wherein trial-to-trial variability can be assessed visually.

First, we propose to perform neural state estimation via clustering of the neural

firing rates. We use a spatiotemporal representation of the neural firing rates: each

sample corresponds to a vector containing all of the sampled neurons’ firing rates at the

current time and some previous times. However, simply vectorizing the observations and

applying a Euclidean distance metric ignores the relative contributions of dimensions at

points in space (electrodes) or in time. We investigate a weighted distance metric for the

spatiotemporal space.

Next, we further investigate using static dimensionality reduction techniques

on neural firing rate data. The dimensionality reduction techniques are used to find

a two-dimensional embedding that can be visualized and preserves aspects of the

data in its original, high-dimensional space. The method is applied to neural data

recorded during a manual center-out reaching task. Meaningful visualization confirm

the underlying structure in data, and the lower-dimensional representation is shown to

be just as useful as the original data in predicting the reach target. This technique is a

straightforward way to extract a useful visualization of the dynamics in neural recordings.

2.1 Learning without Supervision

In this section we consider methods for statistical learning in the unsupervised

case where no external information is given to system besides the input. The goal of
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unsupervised learning is to learn a function whose output preserves or captures the

underlying distribution of the original data. For it to be considered learning, the function

should be dependent on the data. By this definition, preprocessing such as Fourier or

wavelet transforms are not learning.

Often observations are assumed to be drawn independently and identically

distributed from an underlying generative model. In reality this is not the case as

observations are taken from one continuous signals—e.g., windows drawn from

time-series.

Typical forms of unsupervised learning include clustering, auto-encoders,

dimensionality reduction, and sparse/non-negative/independent component analysis.

In a generative sense, unsupervised learning identifies latent variables that describe

the structure of observed data while conforming to a set of a priori constraints. Here we

explore clustering and non-linear dimensionality reduction.

2.1.1 Clustering

Clustering can be described as the unsupervised partitioning of the indices of the

observation vectors into a finite number of classes such that some form of similarity is

maximized among vectors assigned to a given class and/or the dissimilarity between

vectors of different classes is maximized.

For the case of real valued vectors, a single model vector can be used to approximate

all vectors assigned to the class. The similarity function used to assign a observation

to a class varies, but typically, a shift-invariant measure such as Euclidean distance

is used. Alternatively, for vector spaces a gain-invariant measure such as the angle

between vectors may be used. In the gain-invariant case the magnitude is discarded.

This is useful for waveforms, but is not as useful for neural firing rate vectors where the

magnitude may carry the information.

At its simplest, clustering amounts to learning a partition function such that each

observation is more similar to those assigned to the same class than those observations
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assigned to other classes. In the clustering literature, this similarity is assessed via

a linkage function, which can be thought of as a generalized distance function that

is defined between two sets of clusters, including singleton sets that correspond to

individual samples. For example, centroid linkage assesses the similarity between the

observation vector and the prototype vector, that is the average of all vectors already

assigned to that class. An alternative is the average linkage, which is the average

distance between the observation vector and all the observations assigned to that class.

In the case of Euclidean distance these two linkages are equivalent.

Let the assignments of samples to clusters be defined by S , a matrix with a single 1

per column:

sp,n =

1 f (n) = p

0 f (n) ̸= p
(2–1)

Alternatively, let f : [N] → [P]1 denote the partition function that maps the index of an

observation vector to a class index.

2.1.1.1 Vector quantization

In the case of real valued vector, all samples assigned to the same class can be

represented by a prototype vector. This is a way to compress the data. Let the set

of observation vectors be denoted X = {xn}Nn=1 and the set of prototype vectors be

denoted A = {ap}Pp=1,P ≪ N. The objective is to maximize the similarity between the

observations assigned to each class and their corresponding prototype vector.

The average distance, which for the Euclidean distance is equivalent to mean

squared error (MSE) over the observation set, can be used as a cost function:

JMSE(A, f ) =

N∑
n=1

∥xn − af (n)∥22 = tr((X − AS)(X − AS)T). (2–2)

1 For compactness, the subset of the positive integers {1, ... , n} is denoted as [n].
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The prototype vectors that minimize the mean squared error cost function are simply the

class centroids—i.e., the averages of the vectors assigned to that class Sp = {n ∈ [N] :

f (n) = p} = {n ∈ [N] : sp,n = 1}

ap =
∑
n∈Sp

1

|Sp|
xn p ∈ [P] (2–3)

ap =

∑
n∈[N] sp,nxn∑
n∈[N] sp,n

p ∈ [P] (2–4)

All that remains is to choose the partition function f , but for a given number of

clusters there are NP choices—an exhaustive search is out of the question. Once

candidate prototype vectors are available, the simplest partition function is to return the

index of the nearest prototype vector.

f (n) = argminp∈P∥xn − ap∥ n ∈ [N] (2–5)

Assignment and prototype vector update are the two underlying steps in the k-means

algorithm (Hartigan & Wong, 1979; Lloyd, 1982; MacQueen, 1967). The algorithm

alternates between adjusting the partition function by the current prototype vectors

and updating the prototype vectors based on the current partition function, and runs

until convergence. An initial set of prototype vectors can be chosen as a subset of the

observation vectors, and multiple initial sets can be tried and the best clustering, in

terms of the cost function, can be used.

2.1.1.2 Clustering via a soft assignment function

The use of a hard assignment function f : [N] 7→ [P] is not required for computing

the prototype vectors. For instance, probabilistic modeling assigns the value of sp,n

as the posterior probability that observation n is from the pth class. A fuzzy or soft

assignment provides another way of computing the prototypes. The prototypes are

computed by weighing the contribution of all observation vectors, with vectors nearby the

prototype receiving the largest weights. This avoids an explicit cluster assignment.
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Let h : RL 7→ R+ be a bivariate, positive definite function. If there is some function

g such that h(xi , xj) = g(xi − xj), then h is also a shift-invariant function of two variables.

Then the assignment matrix can be redefined as

sp,n = g(ap − xn). (2–6)

Gaussian Mean-shift (Cheng, 1995) algorithm is the special case where gσ(·) =

exp(−∥ · ∥22/(2σ)), the initial prototype vectors are some subset of the data vectors A ⊆ X

(often A = X ), and Equation (2–4) with Equation (2–6) is used to iteratively update the

prototype vectors. Interestingly, mean shift is a localized version of algorithms designed

to estimate the geometric median of a set of points (Chandrasekaran & Tamir, 1989).

As mentioned, in a probabilistic setting such as a Gaussian Mixture Model (Duda

et al., 2001), sp,n is the posterior probability of xn being in class cp—i.e.,

sp,n = p(cp|xn,A, θ) =
p(cp|A, θ)p(xn|cp,A, θ)

p(xn|A, θ)
(2–7)

where the prototype vectors A are the means and the remaining parameters, e.g.,

covariances and priors, are stored in θ. The Expectation Maximization algorithm for

Gaussian Mixture Model consists of alternating the update in Equation (2–7) with

the computation of Equation (2–4) for the means along side another update for the

covariances and priors p(cp|A, θ) = N−1∑
n∈[N] p(cp|xn,A, θ).

2.1.1.3 Graph-theoretic clustering

All three of the previously detailed algorithms rely on multiple iterations to

identify prototype vectors that minimize a similarity cost function. As opposed to the

aforementioned iterative methods, an analytic approach can be had by posing clustering

as equivalent to dividing a weighted graph into disconnected components. In this setting,

the edge weight corresponds to a pairwise measure of similarity between sample points.

An affinity matrix is a symmetric matrix with entries corresponding to all of the pairwise

similarities between sample points. An optimal solution is one that maximizes the sum
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of the edges in each separate component, while minimizing the weight of the cut edges.

Spectral clustering is a graph-theoretic approach that has yielded success in a variety of

domains (Spielman & Teng, 2007).

Any affinity matrix can be formed into a positive definite matrix by means of the

graph Laplacian. The affinity matrix is already positive definite if a positive definite kernel

g(·, ·) is used as the similarity measure. Letting A = X ,P = N, this affinity matrix

corresponds to the matrix S : sp,n = g(xn, ap) p, n ∈ [P] = [N], where g(xn, ap) denotes a

measure of similarity between xn and ap.

As the matrix S defines the weights of a graph (possibly disconnected), the aim

of spectral clustering is to cut the graph into k subgraphs such that each subgraph is

maximally connected (minimum edge distances). Finding the best cut is the same as

finding the best partition function f . Spectral clustering finds a cut, which is suboptimal,

but it is guaranteed to be an approximation of the optimal partition (Spielman & Teng,

2007). Essentially, spectral clustering finds a projection of the affinity matrix such that

the points representing vectors within the same cluster are closely packed whereas

those from distance clusters are separated. Running k-means in this space with P = k

will return the partition function f . Here the algorithm by Ng et al. (2002) is used.

2.1.2 Non-linear Dimensionality Reduction

Dimensionality reduction techniques are a class of unsupervised learning

algorithms that attempt to find a low dimensional embedding of high dimensional data

that preserves aspects of the structure of the original data such as clusters or manifolds.

The specific characteristics preserved vary by method such as local distances, local

neighborhoods, pseudo-geodesic, or global distances.

Here the goal is to preserve the relative location of sets of observation vectors in

the high-dimensional space by their location on a low-dimensional latent space. The

mapping from high-dimensional space to low-dimensional space can be an explicit
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function or it can implicitly defined. In either case, this mapping should be based on the

statistics of data, without any supervision.

Often the goal is to reduce the dimensionality such that the data can be visualized

in two or three dimensions. In practice, a variety of cost and objective functions

have been proposed that seek to quantify how well the high-dimensional topology

is represented in the low-dimensional projection. One of the earliest approaches is

Sammon projections (Sammon Jr, 1969). Kohonen’s self-organizing maps (SOMS) are

artificial neural network implementations that find non-linear mappings between units

on a two dimensional lattice and the original space (Kohonen, 1990). More recent static

dimensionality reduction techniques include local linear embedding (LLE) (Roweis &

Saul, 2000) and t-distributed Stochastic Neighborhood Embedding (t-SNE) algorithm

(van der Maaten & Hinton, 2008). The t-SNE algorithm has proven useful for visualizing

the aspects of high-dimensional datasets such as clusters and manifolds.

2.1.2.1 Stochastic neighborhood embedding

The t-SNE algorithm uses a probabilistic formulation with the Kullback-Leibler

divergence as the cost function. Specifically, all of the pairwise Euclidean distances

in both spaces, original and latent, are transformed to densities that represent the

probability of points i and j being in the same neighborhood.2

In the original space, the joint density is formed as the symmetric combination of

the conditional probability of finding j in the neighborhood of i and vice versa (2–9). The

conditional density is considered a Gaussian density centered around point i , (2–8),

where the scale parameter σi is automatically chosen such that the conditional density

has a user-defined perplexity, where the logarithm of the perplexity is the Shannon

entropy. The perplexity corresponds to a smoothed estimate of the number of neighbors

for each point in the original space (van der Maaten & Hinton, 2008).

2 The approach has been extended to other divergences by Bunte et al. (2012).
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In the low-dimensional latent space, the density function centered at each point

is the Student’s t-distribution with one degree of freedom, i.e., the Cauchy distribution

(2–10). Unlike the original space, the choice of scale is arbitrary, but the Cauchy

distribution provides a much larger tail than that of the Gaussian. This avoids a

“crowding” problem (van der Maaten & Hinton, 2008). In a high dimensional space,

many points can exist at the same distance and density, but in the low dimensional

space, the same number of points would have to crowd together to be at the same

density with a Gaussian distribution. However, with the Cauchy distribution the density

falls off much slower with increasing distance, thereby increasing the range of distances

that are within a given density range. The increase in range of distances allows the

points to spread out resulting in more useful visualizations.

Let {xi}Ni=1 be the points in the original space and {ai}Ni=1 be the points in the

embedded space. The original conditional densities are represented by

pj |i =
exp(−∥xj − xi∥2/2σ2i )∑
k ̸=i exp(−∥xk − xi∥2/2σ2i )

. (2–8)

Then the joint density is

pij = (pi |j + pj |i)/2N. (2–9)

The embedded space has joint density

qij =
(1 + ∥ai − aj∥2)−1∑

l

∑
k ̸=l(1 + ∥ak − al∥2)−1

. (2–10)

The cost function is the Kullback-Leibler Divergence,

C = DKL(P||Q) =
∑
i

∑
j ̸=i

pij log(pij/qij). (2–11)
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The algorithm initializes the latent space with a PCA projection, and proceeds to

minimize the KL divergence by gradient descent with a momentum term.3

2.2 Clustering for State Estimation in the Nucleus Accumbens

In this section, windows of spatiotemporal neural firing rats are clustered during a

reward deliver task. The sequence of estimated labels is used to investigate the neural

representation preceding reward delivery, and the differences between rewarding and

non-rewarding trials are compared.

2.2.1 Nucleus Accumbens Data

This data was collected by Babak Mahmoudi and Justin Sanchez (Mahmoudi

& Sanchez, 2011). A microwire electrode array recorded signals from the nucleus

accumbens of a rat. Before implantation, the rat was trained in a two-lever choice task.

By pressing the target lever, cued by LEDs, the rat received a water reward. Each trial

was initiated by the rat with a nose poke.

Here the rat is simply watching a robotic arm move toward one of two levers—the

lever on each trial is chosen pseudo-randomly; if the robotic arm moves toward the

target lever—indicated by a LED—the rat will receive the water reward, but if the robotic

arm moves to the wrong target no reward is given and the rat receives a negative tone.

The rat can learn to identify the upcoming reward based on the robot movement.

The data used in the analysis was from a single day’s recording where the same

target lever was always cued. We analyzed 102 trials; on 43 trials the robot moved to

the correct target lever, and the rat received reward; on 59 trials the robot moved to the

wrong lever, and the rat received the negative tone. After spike sorting, 43 neurons were

isolated. For each trial, we used 15 s of data surrounding the instance the robot stopped

moving when it reached the lever. A bin size of 100 ms was selected, which yielded 150

bins per trial.

3 The code is publicly available at http://homepage.tudelft.nl/19j49/t-SNE.html.
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2.2.2 Data Representation

Time embedding is used to define a spatiotemporal space for the clustering. At

each time step a vector is composed of the spike counts of all neurons over a window of

time

xi = [r1(i), r2(i), ... , rn(i), r1(i − 1), r2(i − 1), ... ,

rn(i − 1), rn(i − 2), ... , rn(i − L+ 1)] ∈ Zn·L+

where rv(i) is bin count for neuron v at time step i , n is the number of neurons, and L− 1

is the maximum lag of the time embedding. We analyze a set X = {x1, ... xN} of N such

vectors.

The goal is to assign a label corresponding to the state or cluster to the vector at

every time step. In order to cluster, we need a distance measure which works across

different neurons at different time steps. The simplest approach is to treat all dimensions

equally using the Euclidean distance. Another approach is to use smaller weights for the

dimensions of the temporal embedding with larger time lags. The intuition behind this

approach is that it will put emphasis on the recent data instead of treating all time lags in

the window equally, while still providing more information than instantaneous firing rate.

Using this idea, a weighted Euclidean distance is defined as

dw(xi , xj) =

(
L−1∑
k=0

wk

n∑
v=1

(rv(i − k)− rv(j − k))2
) 1
2

, (2–12)

where the weights for successive lags are decayed exponentially wk = e
−k
L−1 and the time

constant is set to the maximum lag of L− 1.

2.2.3 Clustering

K-means and spectral clustering (Ng et al., 2002) are compared for various

embedding dimensions and number of clusters. For spectral clustering, the affinity

matrix is formed using a Gaussian kernel Kτ(d) = 1/(
√
2πτ) exp(d2/(2τ 2)). The
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value of τ is found by doing a parameter sweep and use the value with the ‘tightest’

clusters (Ng et al., 2002) in terms of mean-square error. Both methods of clustering are

computationally straightforward, but still require a user-defined number of clusters.

To speed computation, only samples between the start cue and when the robot

stopped moving were used in clustering. The remaining samples are assigned to the

state corresponding to the nearest cluster center for visualization purposes. In summary,

the user-defined parameters for the clustering approach are the time embedding depth

L, number of clusters, the time constant for the weighting (here taken as L − 1), and the

distance measure (2–12).

2.2.4 Results

The state estimation consistently finds recurrent sequences associated with the task

timing Figure 2-1. These clusters can be used for single trial classification. Specifically,

a trial was classified by the distribution of the cluster labels during the last 2.4 s of robot

movement, as the robotic arm reached for the lever. For every trial, a histogram of the

labels was computed. Each bin in the histograms was normalized by the number of

times that cluster was assigned across all trials and time indexes. Linear discriminant

analysis was chosen as an off-the-shelf classification method. Across 1000 Monte

Carlo runs, the trials were divided into a training set with two-thirds the trials and the

remaining one-third were used for testing. The averages are reported in Table 2-1. The

best classification rate is obtained with 8 clusters and an embedding length of 5. In

addition, spectral clustering appears to perform better than k-means for all parameter

choices.

2.2.5 Discussion

The results presented demonstrate that the discrete state estimation can capture

trends in neural data using unsupervised clustering. Since spectral clustering operates

only on the affinity matrix, and does not require linear operations such as averaging,

it can be applied to data types (such as spike trains) that cannot be clustered with
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Figure 2-1. Clustering results for the reward expectation experiment. Results are for
spectral clustering with 8 classes and a time embedding of 5 samples.
Cluster labels are assigned for each time step across all trials and the
grayscale color corresponds to an arbitrary state label. A) Cluster
assignments during non-rewarding trials. B) Cluster assignments during
rewarding trials. C) The spatiotemporal mean for each cluster.

Table 2-1. Classifying rewarding versus non-rewarding trials using cluster labels.
Spectral clustering k-means

L k =4 k =6 k =8 k =10 k =16 k =4 k =6 k =8 k =10 k =16
1 44 52 47 45 47 45 48 47 44 50
5 44 57 58 57 52 45 51 57 51 48

10 50 46 51 52 52 45 50 52 48 45
20 44 48 51 55 53 42 49 45 49 48

Entries indicate the percent of trials correctly classified, averaged across Monte Carlo
runs. The maximum standard deviation across the runs is 7.8%. The time embedding
dimension is denoted L, which varies across the rows. The number of clusters is
denoted k and varies across the columns.

traditional methods. In addition, it is able to capture trends in data with a small number

of states. A predefined temporal weighting was used as for the distance metric, but

another consideration is how to weigh the contribution of each neurons, as currently they

are taken to be independent and equally important. Learning this weighting is explored

in Chapter 5.
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2.3 Nonlinear Dimensionality Reduction for Motor Cortex Representations
during Reaching Tasks

In this section, we use t-SNE to produce a two-dimensional visualization of a

subject’s neural data while the subject performed a manual reaching task. As the

underlying movement is in three-dimensions, it is a reasonable assumption that any

relevant dynamics can be preserved in a visualization with equal or smaller dimension.

We analyze how well the latent space preserves known external dynamics. Although

visualization is inherently qualitative, it is straightforward to quantify how well the

two-dimensional embedding can be used to predict the movement.

2.3.1 Data Collection

The data was provided by Pratik Chhatbar and Joseph Francis at SUNY Downstate

Medical Center and used with their permission. Brandi Marsh and Shaohua Xu helped

record the data. A female bonnet macaque was trained for a center-out reaching task

with its right arm in a Kinarm exoskeleton and visual feedback of hand position and

virtual targets provided by a computer display. The reaches to 8 virtual targets were

constrained to be in a two-dimensional. Every trial started at the center point, and the

distance from the center to each of the equally-spaced target was 4 cm. Each reach

trial consists of the following steps: center target presentation, subject returns to center

target and must hold for 300 ms; reach target presentation, the subject must remain on

center target for another 300 ms; center target vanishes, subject reaches to the target;

and liquid reward delivery. Successful reaches consist of a maximum duration with a

hold period on the target. The vanishing center target serves as the go cue.

After the subject attained about an 80% success rate, micro-electrode arrays were

implanted in motor cortex (M1), dorsal premotor (PMd), and somatosensory cortex (S1)

(Chhatbar et al., 2010). The M1 data was previously analyzed using other decoding

methods (Bae et al., 2011). Animal surgery was performed under the Institutional
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Animal Care and Use Committee (IACUC) regulations and assisted by the Division of

Laboratory Animal Resources (DLAR) at SUNY Downstate Medical Center.

The data from each spiking unit is a sequence action potential timings. Instead of

using the exact time of each action potential, we use a time histogram and count only

the spikes in contiguous non-overlapping fixed-width bins with a bin width in the tens to

hundreds of milliseconds. At each time step a vector is composed of the spike counts of

all neurons xi = [r1(i), r2(i), ... , rn(i)] ∈ Rn where rj(i) is the count for the j th neuron at

the i th time step, and n is the number of neurons.

One of the difficulties of using the time histogram is choosing a bin width that

captures the dynamics while reducing the variability. This problem is well-known and

possible solutions exist when all the trials belong to the same class (Shimazaki &

Shinomoto, 2007). For simplicity, we use a single choice of 100 ms bins and use a 3-tap

moving-average filter on each individual neural channel. In general, different choices of

bin size and filter order need consideration depending on the data.

2.3.2 Results

We use the t-distributed stochastic neighborhood embedding (t-SNE) algorithm, as

described in Section 2.1.2.1, for dimensionality reduction. For qualitative analysis we

use a 2-dimensional latent space mapped to a color-wheel. Thus, each point’s location

defines its color, and we color the corresponding point of the external dynamics with the

same color for easy visual analysis. The results are shown in Figure 2-2 and Figure 2-3.

For a quantitative analysis, we see how well the latent space representation can

be used for neural decoding versus the original data. The results in Table 2-2 show that

the highest classification rate is achieved by the new representation of motor cortex

data: outperforming the original representation by 6 percentage points. It appears that

the latent dimension removes some of the noise in the original signal, but for the other

areas, which have significantly lower decoding performance, the latent space embedding

lowers the performance further.
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Figure 2-2. Latent space embedding of samples during the movement portion of the
center-out task. Each point in the latent space represents a time window
during this portion of the task. The points are colored by the reach target.
Clear segmentation between left versus right targets and top versus bottom
targets is preserved in this mapping.

Figure 2-3. The movement trajectories colored by the corresponding neural state’s
location in the latent space. Similar colors for the same reach target indicate
a useful latent space embedding. Position in latent space defines the color
of the corresponding movement.

2.3.3 Discussion

The results highlight that similar reach movements have similar neural representation.

The visualization also maintains the neighborhoods of the original data, which is useful

for prediction. The method requires no explicit model or trial-based averaging. In

addition, it can be used with minimal preprocessing, only spike binning and low-pass

filtering of the rates. The t-SNE algorithm only requires a single user-defined parameter,

the perplexity of the original space. For the movement task, the visualization neatly

segmented the different portions of movement. Similar attempts for visualization were

made using PCA and ensemble averaging, but these methods were not successful

in capturing any distinction between the segments of the movements. Overall, this
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Table 2-2. Performance of reach target decoding for latent and original space across
time points.

Space Area Start cue Target cue During reach Target hold Reward
Original M1 9 15 51 54 53 49 44 20
Latent M1 11 18 31 50 60 52 50 28
Original PMd 8 11 36 30 25 23 19 7
Latent PMd 12 11 12 17 17 13 14 15
Original S1 15 14 23 26 30 27 18 20
Latent S1 14 12 17 18 22 17 19 18

Entries indicate the accuracy (% correct) for a nearest-neighbor classifier using
leave-one-trial-out cross-validation for the 54 trials. The classification rate is for 8
targets, and the chance rate is 12.5%.

technique is useful for exploratory analysis of neural recordings without assumptions

or model formulation. However, since the method is stochastic the user is left with no

explicit model for the embedding; thus, further modeling that captures the structure seen

in the visualization is still required.

2.4 Summary

In this study, we have demonstrated how clustering and non-linear dimensionality

reduction—two methods that are fundamental to unsupervised learning—can be used to

generate new representation spaces for neural data. The new representation spaces are

useful for exploratory data analysis, to generate new hypothesis about structure in the

date, and serve as intermediate descriptors for decoding. This approach is in contrast to

one-stage decoding where the raw signal is mapped directly to the output. Although the

unsupervised learning methods rely on the empirical distribution of the data, they need

a predefined and reasonable similarity metric and are unable to automatically determine

the relative importance or correlation among the dimensions. Because of this they are

equally influenced by all dimensions and cannot separate signals from background

noise. Here we have chosen a similarity metric that fits the spatiotemporal nature of the

data, but it may not be perfectly tuned. Nonetheless, as fundamental methods they can

be used in conjunction with methods that adjust the metric for a specific task.
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CHAPTER 3
LEARNING RECURRENT PATTERNS IN TIME SERIES

Sparsely-activated signals are evident in a number of natural signals: neural

spike trains (Roux et al., 2009), electrocardiograms (Mailhé et al., 2009), and seismic

recordings. Signals such as these have two key distinctions: they consist of the same

waveforms appearing repeatedly—but only occasionally—throughout the signal. These

time-series signals can be modeled as the sparse excitation of a single filter. A signal of

this form is known as shot noise. Mathematically, it corresponds to the convolution of a

train of Dirac delta functions, with possibly varying amplitude, with a filter representing

the system’s impulse response (Papoulis, 1990).

Even more real-world signals are approximated by a combination of shot-noise

processes—for example, recordings from an electrode in the brain near multiple

neurons. This summation of single-source signals forms a multiple-input single-output

(MISO) linear system. In this system, each component has a unique filter, and each

source is assumed to be independently and sparsely excited. This model can explain

signals such as sound or electromagnetic waves that are emitted in a passive physical

environment with a linear medium.

One goal of time-series analysis is to approximate a signal using a small ‘dictionary’

or basis of interpretable component waveforms, e.g., sinusoids, delta functions, etc.

Both Fourier and wavelet analysis are of this form, but they differ by the choice of

the basis used in the analysis. Using the correct basis allows both compression and

meaningful representations. A dictionary can also be used to decompose a signal into

multiple constituent components, which enables denoising and demixing (Bobin et al.,

2007; Elad et al., 2005).

The shot-noise model can be seen as a form of time-series analysis where the

energy is not only temporally localized and sparsely distributed, but also where the same

waveform is recurrent throughout the signal. By only recording the waveform index,
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amplitude, and timing—a so-called atomic1 decomposition (Chen et al., 1998)—this

approach provides significant compression. The atomic decomposition is only useful

if selected waveforms match the signal such that a good approximation of the whole

signal, or a relevant component, can be achieved with a limited number of atoms.

Certain wavelet families are perfectly amenable to the atomic decomposition.

However, a small number of coefficients will only be sufficient to approximate the signal

if the wavelet family is properly chosen. Instead of leaving the wavelet family as a design

choice, the waveforms, essentially the filters of the MISO model, can be learned directly

from the data.

There are two problems entwined in this learning problem: learning the dictionary—i.e.,

the set of filters—to represent the signal, and inferring the index, amplitude, and timing

for the train of Dirac deltas, corresponding to the unobserved sources. Together these

problems are known as blind deconvolution or blind system identification.

In principle, there are two regimes in which it is possible to identify the inputs to a

MISO system from a single output: spectrally disjoint filters (corresponding to sparsity in

the frequency domain) or sufficiently sparse input (corresponding to temporally disjoint

input). Even without noise and known filters, linear solutions fail in separating spectrally

overlapping components. Non-linear analysis techniques that explicitly exploit the

sparsity perform better. Matching-pursuit (Mallat & Zhang, 1993) provides an iterative

approach for non-linear analysis. Given estimates of the sparse sources, learning the

different filters is a system identification problem.

The study’s primary contribution is the coverage, comparison, and application of two

distinct approaches for blind system identification in the case of sparse sources. The

first approach is to assume a generative model for the signal, with constraints in the form

of sparse priors for the sources. Using a normal distribution for the noise, the optimal

1 Each instance of a waveform index, amplitude, and timing is known as an atom.
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model is the one that minimizes the least-squares reconstruction cost while complying

with the sparsity constraint. Based on prior work in computational neuroscience, this

approach is often referred to as sparse coding (Olshausen & Field, 1997). A number

of researchers have shown how filters which describe natural signals can be efficiently

estimated directly from data (Balcan et al., 2009; Ekanadham et al., 2011; Lewicki,

2002). In particular, using matching-pursuit as a proxy for a maximum a posterior

estimate, an efficient algorithm for learning sparse bases (Aharon et al., 2006) has been

extended to the time-series case (Mailhé et al., 2008).

The second approach avoids the explicit estimation of the sources and the

reconstruction of the signal. Instead the sparse sources’ statistical properties are used

in the filter estimation (Shalvi & Weinstein, 1990). Essentially, this approach for blind

estimation uses a matrix-based projection pursuit, where windows of the time series are

treated as vectors in independent component analysis (ICA) (Bell & Sejnowski, 1996).

In this way, the filters can be blindly estimated without estimating the sources or using a

reconstruction cost function. Other researchers (Davies & James, 2007; Lucena et al.,

2011) have demonstrated the ability of FastICA (Hyvarinen, 1999) to efficiently estimate

the filters. FastICA is particularly suited for this since its objective implicitly estimates the

sources through a non-linear function of the projected signals.

This study has three main aims: first, a systematic analysis of the subproblems

involved in blind system identification are covered; second, we make a direct comparison

of ICA-based and sparse-coding-based approaches for blind system identification; and

third, we apply these algorithms on neural potential data.

After a survey of sparse coding and ICA, we introduce matrix-based algebra used

for deconvolution and demixing. We consider blind deconvolution in the case of a

single source, and dictionary learning with sparse coding for the multiple source case.

Matching pursuit as a solution to sparse coding for time series is reviewed. System

identification is covered as a subproblem of system identification given the source
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estimates. Alternating optimization algorithms (Blumensath & Davies, 2006; Mailhé

et al., 2008; Smith & Lewicki, 2006) are introduced and compared with the ICA approach

(Bell & Sejnowski, 1996; Davies & James, 2007; Shalvi & Weinstein, 1990).

We contribute a systematic exploration of blind system identification on synthetic

data—considering the limiting case of a single source and single sensor in order to

understand the effect of sparsity on both the shift-invariant sparse coding and ICA.

The single-source case is an important subproblem in some alternating estimation

approaches (Mailhé et al., 2008) wherein the estimation of a single source is performed

assuming the contributions from all other sources have been removed. To ease the

computation, we propose a fast approximation of matching pursuit for time series.

We also introduce a greedy approach that learns each waveform from the residual

remaining after removing the previous waveform’s component.

Finally, these algorithms are applied to the analysis of neural potential signals,

specifically, local field potentials (LFPs) collected from the motor cortex of a non-human

primate. Time-frequency analysis, via short-term Fourier analysis or wavelet decompositions,

has been the standard tool to analyze neural potential signals. However, linear filtering

does not offer the best tradeoff for localizing both the timing and frequency of events.

Matching pursuit (Mallat & Zhang, 1993) offers an algorithmic, and thus non-linear, form

of analysis. Using a predefined and stochastic basis, matching pursuit has been shown

to be an effective, but underutilized tool, for neural signal analysis (Durka & Blinowska,

1995; Durka et al., 2001). Recently Kuś et al. (2013) have made efforts to provide

software for the matching-pursuit-based time-frequency analysis. Here we explicitly

learn the filters that are then used in the matching pursuit framework for decomposing

single-channel neural potentials. In addition, using principal component analysis (PCA)

we extend the approaches to multiple channels.
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3.1 Modeling Systems Excited by Sparse Signals

A sparse signal stands in stark contrast to both Wiener processes and their

discretely-sampled counterpart described by Gaussian distributions.2 Stochastically,

the distribution of source activation times is a point process—i.e., a realization of a

point process is a train of Dirac delta function. A train of delta functions with varying

amplitudes is a realization from a marked point process. The marked point process is

described by both the joint distribution of the timing and amplitude of the impulses.

Let y(t) be a time series created by the sparse excitation of a single filter. The

signal is formed by convolving a weighted train of delta functions s(t) =
∑
i αiδ(t − τi)

with a filter a(t).

y(t) =

∫ ∞

−∞
s(t − u)a(u)du (3–1)

Let x(t) be a combination of these component signals {yp(t)}p, p ∈ {1, ... ,P} observed

in the presence of noise. This signal is created by a multiple-input single-output (MISO)

linear system with sparse inputs. Each component, yp(t), has a unique filter ap(t):

x(t) = e(t) + x̂(t) = e(t) +

P∑
p=1

yp(t) (3–2)

yp(t) =

∫ ∞

−∞
sp(t − u)ap(u)du (3–3)

sp(t) =
∑
i

αp,iδ(t − τp,i) p = 1, ... ,P. (3–4)

The combination of the components is a noise-free model x̂(t).

The atomic representation of the model signal, x̂(t), consists of a set of source

indices, amplitudes, and timings {(pi ,αi , τi)}i . Using this set, and the model signal can

2 Indeed, this difference is exploited in later sections where blind estimation
approaches are introduced that rely on this non-Gaussianity as a projection pursuit
criterion (Hyvarinen, 1999).
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rewritten as:

x̂(t) =
∑
i

∫ ∞

−∞
αiδ(t − τi − u)api (u)du. (3–5)

Similarly, each component signals can be described by the impulse response of the filter

ap(t) and the set of excitation times and amplitudes {(αj , τj)}j∈Ip where Ip = {i : pi = p}.

Given the atomic representation {(pi ,αi , τi)}i or the sparse inputs {sp(t)}, p ∈

{1, ... ,P}, learning the filters is a system identification problem; however, estimating the

sources is the primary challenge.

3.1.1 Analysis: Estimating the Sources

For a single source with a known filter, estimating the source signal is called

deconvolution. The problem of deconvolution with sparse sources arises in many

physical processes, e.g., biomedical time-series analysis and imaging. For sparse

sources, the filtering spreads out the signal’s energy in time. Recovering the input

amounts to localizing this energy in time. For a low-pass filter, the goal of deconvolution

is to delineate the exact timing of the source excitations.

The analysis problem for the MISO system is estimating the full set of sources

{sp(t)}p. Even without noise and with known filters, estimating the sources is difficult.

Strictly linear solutions suffer from cross-talk between sources whose filters have

similar spectra. In general, it is not possible to identify the inputs to a MISO system

from a single output, but this is not the case when the filters are only sparsely active.

Essentially, sparsity allows estimation through disjoint representations (Georgiev et al.,

2005). This principle holds for a range of regimes in which it is possible to identify

the inputs from a smaller number of outputs (Zibulevsky & Pearlmutter, 2001). At the

extremes of this range are spectrally disjoint filters (corresponding to sparsity in the

frequency domain) or sufficiently sparse input (corresponding to temporally disjoint

inputs).

A linear solution fails because it only considers the second-order statistics of the

sources, which does not contain any information on the sparsity. Non-linear analysis
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techniques that explicitly exploit the sparsity perform better, but require many more

computations. Essentially, recovering the source as a train of Dirac deltas requires an

overcomplete basis of the signal: shifted versions of the underlying filters appearing

at each time-shift. With an overcomplete basis, linear analysis is not possible, and

non-linear optimization or iterative algorithms are necessary. However, these non-linear

approaches for MISO deconvolution require the set of filters A = {ap(t)}p to be known.

Thus, any solution for blind deconvolution must first identify the system, i.e., the set of

filters.

3.1.2 Discrete Time Synthesis and Analysis

For practical digital implementation, we consider the case when the time series

(3–2) is discretely sampled, and the convolution operators are replaced by finite

summations. The basis for the signal is assumed to be a set of filters {ap}Pp=1 excited by

the sparse sources {sp}Pp=1. Let x = [x1, ... , xT ]T denote the observed signal formed by

the moving average model

x =

P∑
p=1

sp ∗ ap + e. (3–6)

3.2 Matrix-based Deconvolution and Demixing

Consider a component signal y = s ∗ a formed from a single convolution. Assuming

a has a finite impulse response (FIR) with a length less than M, this convolution can be

written as

yt =

M∑
τ=1

st−τ+1aτ =

t∑
τ=0

sτat−τ+1 t = 1, ... ,N. (3–7)
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Let Y ∈ RN×M denote the Toeplitz matrix formed from the time-series vector y,

where M is the window size and N is the number of samples.

Y =



yM yM−1 · · · y1

yM+1 yM · · · y2
...

yN yN−1 · · · yN−M+1


(3–8)

Then the convolution can be expressed in matrix notation as

Y = SA =



sM sM−1 · · · 0 · · · 0

sM+1 sM · · · s1
. . . 0

...
... . . . ... . . .

s2M−1 s2M−2 · · · sM−1 · · · s1
...

...
...

...
...

sN sN−1 · · · sN−M · · · sN−2M+2





a1 0 · · · 0

a2 a1 · · · 0

...
... . . .

0 aM · · · a2
... . . . . . . ...

0 0 0 aM


, (3–9)

where Y ∈ RN×M , S ∈ RN×(2M−1), and A ∈ R(2M−1)×M . This representation is redundant

as the N ×M matrix Y is no more than an arrangement of the N distinct values in y.

The rows of A form the support for the rows of Y . Let M ′ be the actual extent of the

filter a. If M ′ = 1 then the filter is a Kronecker delta and A is a complete basis for Y . For

M ′ > 1 then A will have M + M ′ − 1 rows that are pairwise linearly independent. For

M ′ = M, A is an overcomplete basis for the rows of Y with support along 2M − 1 distinct

vectors.

3.2.1 Deconvolution

Only a single column of S needs to be estimated to determine a time-lagged version

of s. Let wτ denote a solution to the deconvolution problem such that

Ywτ = SAwτ ≈ Seτ = s(t − τ + 1). (3–10)
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where eτ is the τ th column of the (2M − 1) × (2M − 1) identity matrix, i.e., eτ is the

standard basis vector such that eτ is zero except having a 1 for the τ th element.

The set of deconvolution FIR filtersW = [w1, ... ,w2M−1] is found as the pseudoinverse

of A,W = A†. Let B be a matrix with linearly independent columns then B† =

(BTB)−1BT is its pseudo-inverse. Each column ofW resolves the source at a different

lag. The best lag in terms of least squares can be found as argminτ∥Awτ − eτ∥2.

3.2.2 Multiple Source, Matrix-based Formulation

Consider the signal x =
∑P
p=1 yp =

∑P
p=1 sp ∗ ap formed via a combination of sources

convolved with different filters. Let X ∈ RM×T denote the transpose of the Toeplitz matrix

formed from the time-series vector x, where M is the window size and N is the number

of samples. (The transposed version is used to match conventions used later on.)

X =



xM xM+1 · · · xN

xM−1 xM · · · xN−1
...

x1 x2 · · · xN−M+1


(3–11)

Assuming that the impulse response of all the filters is less than M, then the

convolution in the synthesis of x can be expressed as

XT =

P∑
p=1

Yp =

P∑
p=1

SpAp = [S1,S2, ... ,SP ]



A1

A2
...

AP


, (3–12)

where Sp ∈ RN×(2M−1),Ap ∈ R(2M−1)×M are Toeplitz matrices formed from s1, ... , sP and

a1, ... , aP as in Equation (3–9). This synthesis equation can be compactly written as

XT = S̄Ā where Ā = [AT1 |AT2 | · · · |ATP ]T and S̄ = [S1|S2| · · · |SP ].
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3.2.2.1 Deconvolution and demixing

In general, it is not possible to resolve the sources from a single channel of

observation even if all the filters are known. First due to the FIR synthesis, FIR analysis

is only an approximation. Second, there will be cross-talk between sources unless the

filters have disjoint spectral support, i.e., ∀t (ap ∗ aq)(t) = 0, but with FIR synthesis the

filters can only have approximately disjoint spectra.

Every block of 2M − 1 columns in S̄ = [s1, ... , sP(2M−1)] corresponds to lagged

versions of one source, sk(t) = sp(t − τ + 1) k = τ + (2M − 1) · (p − 1). Let wk be an

approximate solution to the demixing/demodulation problem that extracts the k th column

of S̄ , i.e.,

XTwk = S̄Āwk ≈ S̄ek = sk . (3–13)

The matrix of FIR filtersW = [w1, ... ,wP(2M−1)] is found as the pseudoinverse

of Ā. The matrixW is partitioned into 2M-1 blocks corresponding to each source. In

each block ofW , there is one column such that the corresponding column of ĀW

best approximates the corresponding standard basis vector. Choosing each of these

columns from all the blocks is the best linear solution—in the least-squares sense—to

the multiple source deconvolution problem (3–13).

Alternatively, component demixing problem can be performed without deconvolution.

Demixing the components attempts to separate the portions of the signal corresponding

to unique sources. Its success is dependent on the cross-correlation between the

source filters; if the filters have disjoint spectral support then perfect separation can be

achieved (but the FIR filters can never have completely disjoint spectral support).

Let Ȳ = [Y1|Y2| · · · |YP ] = [ȳ1, ... , ȳP(2M−1)] for compactness. Every block of 2M − 1

columns in Ȳ corresponds to lagged versions of one filtered source, i.e.,

ȳl(t) = (sp ∗ ap)(t − τ + 1) = yp(t − τ + 1) l = τ +M(p − 1). (3–14)

62



Let ẃk be an approximate solution to the demixing problem that extracts the k th column

of Ȳ , i.e.,

XTẃk = S̄Āẃk ≈ S̄ āk = ȳk (3–15)

The full demixing matrix is Ẃ = WÁ where Á is a block diagonal matrix with the

Toeplitz representations of the filters on the diagonal Á = blkdiag(A1,A2, ... ,AP) ∈

R(2M−1)·P×MP . The best lag for the pth source can be chosen as

argmin
τ

∥∥Āẃτ+M(p−1) − áτ+M(p−1)
∥∥
2
. (3–16)

The quality of the separation is dependent on how close the spectral representations

of the filter are. Cross-talk from one source to another occurs when the filters are similar,

and thus the separation filters will have similar frequency response. Two filters with

minimal cross-talk have (ap ∗ aq)(t) ≈ 0 ∀t.

3.3 Iterative Deconvolution and Demixing

Matching pursuit as an iterative approach that can be used to solve deconvolution

or demixing problems. In order to introduce the algorithm, we first consider a simple

least-squares problem:

min
s
∥x− As∥22, (3–17)

where x is the vector to approximate, A = [a1, a2, ... , aP ] is a matrix with possibly more

columns than rows, and s represents the coefficients that minimize the least-squares

cost. Matching pursuit is an iterative, and greedy, solution to the least-squares problem

(Mallat & Zhang, 1993). Often it is posed as having an explicit constraint on sparsity—in

terms of the number of non-zero elemetns in s. The l0-‘norm’ of a vector can be

considered the number of non-zero elements: ∥s∥0 = |{si : |si | > 0}|. In the simplest
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case,3 matching pursuit is an greedy approach to solve

min
s : ∥s∥0 = L

∥x− As∥22, (3–18)

where L is much less than the number of columns in A. Since the least-squares fit can

be solved analytically once the set of L columns of A are selected, the problem can

be reframed as the selection of the L column indices p1, p2, ... , pL that minimize the

least-squares cost:

min
Ã∈{[ap1 ,ap2 ,...,apL ]}

∥x− ÃÃ†x∥22. (3–19)

Matching pursuit is an iterative approach to select these columns and their

corresponding coefficients, s̃1, s̃2, ... , s̃L. The steps are detailed in Algorithm 3-1.

Algorithm 3-1. Matching pursuit (MP).

Input: x, {ap}Pp=1,L
r← x
For i = 1, ... ,L do
cq ← 1

∥aq∥
⟨aq, r⟩ q = 1, ... ,P

pi ← argmaxq = |cq|
s̃i ← cpi
r← r − s̃iapi

End for
Output: {(pi , s̃i)}Li=1

Orthogonal matching pursuit (OMP) (Pati et al., 1993) offers a theoretically better

solution because it does not rely on coefficients estimated early on, which could have

been biased. Thus, the optimal coefficients are re-estimated at each iteration. All that

needs to be stored at each iteration are the selected column indices, p1, p2, ... , pL, as is

detailed in Algorithm 3-2.

3 Alternatively, the constraint on matching pursuit can be posed as threshold on the
residual error. However, choosing this threshold depends on the dynamic range of the
signal and noise, and in practice it is simpler to predefine L.
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Algorithm 3-2. Orthogonal matching pursuit (OMP).

Input: x, {ap}Pp=1,L
x̂ = 0
For i = 1, ... ,L do
r← x− x̂
cq ← 1

∥aq∥
⟨aq, r⟩ q = 1, ... ,P

pi ← argmaxq = |cq|
Ã←

[
Ã, api

]
s̃← Ã†x
x̂← As̃

End for
Output: {(pi , s̃i)}Li=1

Returning to the time-series case, consider the following least-squares problem

min
{(pi ,αi ,τi )}Li=1

∫ ∞

−∞

(
x(t)−

L∑
i=1

αi

∫ ∞

−∞
δ(t − τi)api (u)du

)2
dt. (3–20)

The matching pursuit approach for time series is a greedy solution to this problem. At

each iteration the solution is chosen as if only one source is active at only one point

in time, and selects a single atom, consisting of the timing, amplitude, and waveform,

that explains the most energy remaining in the residual of the signal. This criterion

is equivalent to finding the filter with the highest normalized cross-correlation. At the

end of each iteration, the residual signal is updated by removing the single-atom

reconstruction. This updated residual is used as the input to the next iteration. The steps

are detailed in Algorithm 3-3.

Given the atomic decomposition {(pi ,αi , τi)}Li=1, either the sources (deconvolution)

or the individual components (demixing) can be computed easily via Equation (3–4) or

Equation (3–3), respectively.

In the naive implementation, matching pursuit requires the cross-correlation

between each filter and the signal to be computed for each iteration. Using the fast

Fourier transform on a N-length discretely sampled signal, the computational complexity

of time-series MP is O(LPN logN). As an approximation, we propose to perform only
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Algorithm 3-3. Time-series matching pursuit

Input: x(t), {ap(t)}Pp=1,L
r(t)← x(t)
For i = 1, ... ,L do
cq(t) =

1∫∞
−∞ a

2
q(u)du

(aq ⋆ r)(t) q = 1, ... ,P

pi ← argmaxqmaxt |cq(t)|
τi ← argmaxt |cpi (t)|
αi ← cpi (τi)
r(t)← r(t)−

∫∞
−∞ αiδ(t − τi − u)api (u)du

End for
Output: {(pi ,αi , τi)}Li=1

a single cross-correlation for each filter, and extract timings for each source excitation

that do not overlap with themselves (different filters are allowed to overlap). Given the

timings and filter indices, a matrix of individual excitation waveforms is constructed:

V = [v1, v2, ... , vL] where vi(t) = (δτi ∗ api )(t). Then the amplitudes are then solved

using a least-squares fit, [α1,α2, ... ,αL]T = V †x. The steps (for a filter length with length

C ) are outlined in Algorithm 3-4. To allow the filters to overlap this approximation can

Algorithm 3-4. Approximate time-series matching pursuit.

Input: x(t), {ap(t)}Pp=1,C
zq(t)← 1 ∀q, t
i ← 1
While i < L and ∃q, t : zq(t) = 1 do
i ← i + 1
cq(t) =

1∫∞
−∞ a

2
q(u)du

(aq ⋆ x)(t) q = 1, ... ,P

pi ← argmax
q
max
t
|cq(t)zq(t)|

τi ← argmax
t
|cpi (t)zpi (t)|

zpi (t)← 0 t ∈ (τi − C/2, τi + C/2)
vi ← δτi ∗ api

End while
L← i
[α1,α2, ... ,αL]

T ← [v1, v2, ... , vL]†x
Output: {(pi ,α1, τi)}Li=1

be run multiple times in sequence, using the remaining residual from the previous run.

Although this approach requires only P cross-correlation computations per run, the
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timings may not be optimal, since they are computed without considering the other

filters. Additionally, the size of V may be quite large, requiring extensive computation for

the least-squares solution. The computational complexity is O
(
L3
)
. This is better than

standard matching pursuit if L2 < PN logN.

3.4 System Identification

Assuming some estimates of the sources have been made, identifying the filters is a

system identification problem. Assuming the filters are all the same length, there are PM

coefficients to be estimated from the N observations in x.

In the sparse setting, the system identification problem poses a unique statistical

challenge. At extreme sparsity, the filters do not overlap, which makes estimation easier,

but since they appear very rarely any noise can cause large variance in the estimation

of the filters. As the rate of the sources increases, there are more realizations of the

sources but they overlap with each other more frequently.

Assuming the sources are stationary, the Wiener filter provides the optimal system

identification in a least-squares sense. The source estimates are the inputs and the

observed signal x(t) is treated as the desired signal.

The simplest solution comes from the extreme sparsity case, wherein the sources

are independent Poisson processes of very low rate. In this case the autocorrelation

matrix of the input can be approximated as a diagonal matrix. Ignoring the scale of each

filter (since it can never be determined unambiguously) the filter can be estimated solely

from the cross-correlation

âp(τ) = (sp ⋆ x)(τ − 1) =
∑
t

sp(t)x(t + τ − 1). (3–21)

If the sources are correlated in time or space, then ignoring the correlations can lead to

a biased estimate of the filters. Indeed by analysis, it easily be shown that the weighted

average estimate is a biased version of the Wiener filter. The bias decreases as the
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correlation matrix of the sources approaches a diagonal matrix. However, both the

Wiener filter and weighted average assume the sources are provided and noise-free.

3.5 Methods for Blind MISO System Identification

In the blind setting, the values of the sources are unknown and cannot be used for

system identification. In addition, the filters associated with the sources a1, a2, ... , aP are

also unknown and need to be estimated before any form of deconvolution can provide

estimates of the sources. Thus, an unsupervised approach is needed—one that can

pull itself up by the bootstraps—to estimate both the unknown sources and the unknown

filters.

Estimating the filters corresponds to finding one row of each block of Ā corresponding

to each unique filter. In the matrix formulation (3–12), it is clear that the inner dimension

of the matrix multiplication XT = ĀS̄ is greater the number of rows of X , even for one

source. Thus using a low-rank approximation, i.e., principal component analysis, will fail

to yield a useful channel estimation. Instead, the knowledge that the sources are sparse

should be used to guide the estimation of the filters.

When using the matrix notation, finding projections that result in sparse coefficients

is equivalent to identifying the filters that form the basis of the signal. One way to identity

sparsity is by evaluating the higher-order moments of a random variable; sparse random

variable have very different higher-order moments than than those of Gaussian random

variables.

As an alternative to the statistics of the sources, sufficiently sparse sources ensure

that any observation window can be approximated by a small number of the elements.

The optimization problem of minimizing the reconstruction error of the signal using

only a few activations of the filter can be used to estimate the underlying filters (Jost

et al., 2006; Mailhé et al., 2008). In the rest of the section, these two different estimation

paradigms are introduced.
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3.5.1 Independent Component Analysis

Using independent component analysis to solve the blind deconvolution problem is

motivated by the following reasoning: first, linear filtering induces temporal dependence

in the resulting signal; consequently, a deconvolution filter that minimizes this dependence

should produce the original signal—up to some indeterminacies. This is especially the

case when the source has independent, identically distributed entries. As long as

the source is not Gaussian, then higher-order statistics can be used to estimate the

dependence; whereas, if the source is Gaussian, then the deconvolution filter can at

best whiten the observed signal.

The deconvolution filter is a demixing vector applied to a delay line of the signal.

If it exists, the optimal deconvolution filter is the filter inverse or a lagged version of it.

Unlike the standard case for ICA, when there is single vector for each source, in the

time-series case there are many solutions to the single-channel deconvolution problem

corresponding to different shifts of the demixing vector. Each shift corresponds to a

minimum of the dependence measure (Shalvi & Weinstein, 1990) and a solution to

the deconvolution problem. At which shifts it appears is an ambiguity in most blind

deconvolution algorithms.

3.5.1.1 FastICA

In the FastICA algorithm (Hyvarinen, 1999), dependence is evaluated as an

approximation of negenetropy (Novey & Adali, 2008). Negentropy gauges the non-Gaussianity

of a random variable in terms of its higher-order statistics. Since a Gaussian random

variable only has second-order statistics these differences can be quantified by finding

the expectation of a non-quadratic function such that the moment expansion will contain

higher-order terms. The difference between these higher-order and those of a Gaussian

are used to assess the non-Gaussianity.

Approximately, the negentropy of the random variable u is proportional to E{G(u)}−

E{G(ν)} where G(·) is the contrast function and ν is a Gaussian random variable
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with the same mean and covariance as u. For random vectors, maximizing the sum

of the negentropies, under the constraint of decorrelation, minimizes the mutual

information between the elements. This is basic principle of contrast-function-based

ICA approaches.

Recall the signal x is stored in the M × N matrix X = [x1, x2, ... , xN ] where

N corresponds to the number of samples and M the size of the inverse filter, and

XT is Toeplitz. Let x denote a random vector corresponding to a patch of the signal,

then E{f (x)}, the expected value of a function of this random vector, is estimated as

1
N

∑
t f (xt), i.e, the columns of X are treated as realizations of this random vector.

ICA algorithms typically require the input signals to be first uncorrelated, before

evaluating any further dependence. To enforce this constraint, the estimation is usually

performed with whitened data. Eigendecompositions are used to whiten the data. The

eigendecomposition of the covariance matrix is E{xxT} = 1
T
XXT = UΣUT. Then

Ψ = Σ−1/2UT is the whitening matrix such that E{(Ψx)(Ψx)T} = 1
N
(ΨX )(ΨX )T = I,

where I is the identity matrix. After whitening, FastICA assumes the demixing vectors

are orthogonal.

Single-unit ICA uses one demixing vector, w, to estimate a single source, ŝ = wTx.

With a sign and magnitude ambiguity in ICA, the source is constrained to have unit

variance. This constraint is typically written as E{(wTx)2} = 1
N
wTXXTw = 1, but can be

written in terms of the whitening matrix as ∥wTΨ−1∥2 = 1 (using 1
N
XXT = Ψ−1Ψ−T). The

optimal w is one such that wTx has higher-order statistics far from those of a Gaussian

random variable of equal mean and variance.

The optimization problem for single-unit FastICA can be written as

argmax
∥wTΨ−1∥2=1

[
E
{
G(wTx)

}
− E {G(ν)}

]2
, (3–22)
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where G(·) is a suitably chosen contrast function. For sparse sources, the contrast

function is typically a symmetric sub-quadratic function such as G(u) = log cosh(u),

which has the tanh(u) as its first derivative.

While the vector w corresponds to a row of the demixing matrix, it also corresponds

to the inverse of the filter such that wTX = ŝTl is an estimate of the source signal as in

Equation (3–13). The corresponding column of the mixing matrix is denoted v and is

related by v = 1
N
XXTw = E{xŝ}. Clearly, v is nothing more than the weighted average

of windows of the signal where the weighting assigned to each vector corresponds to the

estimated source value.

Theoretically, the mixing vector corresponding to the correct demixing vector w

should be equal to one of the rows of V corresponding to a time-reversed and shifted

version of the R element FIR filter a, i.e., v = [0, · · · , 0, a(R), ... , a(1), 0, ... , 0]T. Note that

in terms of filters, w is not computed as the filter inverse as it was using the Toeplitz form

of a as in Equation (3–10).

In order to find a good demixing vector, an approximate solution to the single-unit

ICA problem (3–22) yields an iterative update for w (Hyvarinen, 1999):

w← ΨTΨE
{
xg
(
wTx

)}
− E

{
g′
(
wTx

)}
w, (3–23)

w← w√
E {wTxxTw}

, (3–24)

g(u) = ∂
∂u
G(u), and g′(u) = ∂

∂u
g(u). For G(u) = log cosh(u), g(u) = tanh(u) is a soft

activation function, and g′(u) = 1 − tanh2(u) is a symmetric function that peaks at 0. In

terms of the mixing vector this update is

v← E {xg (ŝ)− vg′(ŝ)} (3–25)

where wT = vTΨTΨ and ŝ = wTx. This matches the interpretation of v as a weighted

average, but gives an interpretation on its update. For a given realization, a large source

magnitude |ŝ | > 1 implies g(ŝ) ≈ sign(ŝ) and g(ŝ) ≈ 0, this yields v ≈ x. When the
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source coefficient is smaller such that g′(ŝ) dominates g(ŝ), the update moves the vector

away from its current direction. Thus, single-unit FastICA uses a weighted average to

estimate the filter, wherein the source estimates correspond to source that is maximally

non-Gaussian.

For the single-channel case there appears to be no need to estimate the full

demixing matrix. In practice, using a multiple-unit approach, with a constraint that

the sources are uncorrelated, can perform better than the single-unit approach. The

multiple-unit approach, which maximizes the sum of negentropies, estimates multiple

demixing vectors at once. Let the demixing matrix with K columns be denotedW =

[w1,w2, ... ,wK ]. The multiple-unit optimization problem is

argmax
E{(WTx)(WTx)T}=I

K∑
k=1

[
E
{
G
(
wTk x

)}
− E {G(ν)}

]2 (3–26)

where I is the identify matrix.

In the time-series setting, the true mixing matrix is overcomplete, and the optimal

vector for the single-unit case (3–22) will not necessarily correspond to a column of the

matrix obtained for the multi-unit case (3–26). When using the multiple-unit approach

for a single-source problem, a single vector should be selected to represent the filter. As

ICA does not give a natural order for ‘better’ components, we resort to using the mean

squared error as a cost function and choosing the filter that has the best reconstruction

of the signal when using matching pursuit to approximate the original signal.

3.5.1.2 Multiple source case

In the multiple source case, an independent component analysis must resolve

multiple demixing vectors simultaneously. The projections that yield sparse values

correspond to demixing vectors for each source at each permissible lag, as in Equation (3–13).

Estimating a set of demixing vectors at once, to extract all the sources, greatly increases

the dimensionality of the solution space. Since each source may have arbitrary lag,

there is a even greater number of solutions that maximize the measure of independence.
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This can lead to the redundant estimation of the same filter at different lags. The

constraint on correlation that avoids degenerate solutions in instantaneous ICA is

inadequate for the convolutive case as different lags of the same source may be

uncorrelated. For instance example, if the length of the demixing vectors is longer than

the filter extent, the ‘independence’ between filters can be found by simply lagging

the filters such that they do not overlap. Consequently, sets of demixing vectors often

include short filters at multiple shifts.

The independent component analysis problem for multisource convolutive mixtures

possesses a very complicated performance surface. An estimation can yield a set of

redundant shifts of a few unique filters and some spurious ones. The spurious filters are

often noisy and may correspond to local optima caused by the correlation constraints

(3–26). This does not prevent the estimation of some subset of the filters. After running

a multi-unit ICA, there is a need to select a subset of the unique and ‘useful’ filters.

3.5.1.3 Filter subset selection

In the blind estimation setting, it is unknown how many true sources there are. In

practice, ICA can estimate as many filters as there are taps in the embedding window.

However, as mentioned this may yield many spurious filters that need to be excluded by

a relevance criterion.

There is not a clear criterion for filter selection based on independence. It is easier

for the user to provide how many filters are desired and use the reconstruction error

to select a subset of the filters. Given the desired number of filters, the goal is to find

the optimal subset that minimizes the reconstruction cost. However, this problem has a

combinatorial number of solutions. In practice, a greedy optimization such as orthogonal

matching pursuit (OMP) (Pati et al., 1993), Algorithm 3-2, can be used to find which set

of filters best explains the signal.

The primary aim is to find the filters that are most correlated with the data, but

are not redundant copies of each other. To do this, an approximation of the signal
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is made with each individual filter using time-series MP (Algorithm 3-3). Then these

components are treated as the basis vectors, and OMP is used to select a subset of

these components to approximate the signal. This is a simpler optimization since only

the combination of components is optimized: the timing of the sources having already

been estimated. The steps are detailed in Algorithm 3-5.

Algorithm 3-5. OMP Select

Input: x, {vk}Kk=1,L
For k = 1, ... ,K do
{(αi , τi)}Li=1 ← MP(x, vk ,L)

yk ←
L∑
i=1

αiTτivk

End for
{qi}Pi=1 ← OMP

(
x, {yk}Kk=1,P

)
ṽi ← vpi ∀i = 1, ... ,P

Output: {ṽp}Pp=1

Using the greedy approach it is unlikely that two filters that are simply shifted

versions of each other will be selected, since their components will be approximately

the same. In addition, the greedy approach does not require performing MP using all of

the filters estimated by ICA at once. After selection, the remaining filters corresponding

to the selected components are used for performing a full atomic decomposition of the

signal.

3.5.2 Matching Pursuit with K-SVD

Assuming the signal plus noise model model in Equation (3–6), the blind deconvolution

and system identification problem can be posed as a non-linear least-squares problem.

The overall objective function can be written as

min
{vp}Pp=1,{(pi ,αi ,τi )}Li=1

N∑
t=1

(
x(t)−

L∑
i=1

αivpi (τi +M − t)

)2
(3–27)

where all the sources are assumed to be active exactly L times and vp is an estimate of

the time-reversed filter ap, i.e., vp(t) = âp(M + 1 − t). Because the source estimates,
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i.e., the atomic decomposition, are intrinsically linked to the filters, it is necessary to

perform an alternating optimization. Mailhé et al. (2008) proposed an extension of

K-SVD (Aharon et al., 2006) to the time-series case by using an alternating optimization

between matching pursuit and K-SVD. For conciseness, we call the combined algorithm

MP-SVD.

For clarity, we introduce the same notation as Mailhé et al. (2008). Let Tτ denote

the linear operator such that Tτv aligns the M-length filter v within a N length signal.

Tτ is a N × M matrix with the M × M identity matrix as a submatrix starting at row τ .

The transpose of this operator is denoted T ∗
τ and is defined such that T ∗

τ x extracts the

M-length window from x starting at time τ . Using the alignment operator Tτ the objective

function can be written in terms of vectors as

min
{vp}Pp=1,{(pi ,αi ,τi )}Li=1

∥∥∥∥∥x−
L∑
i=1

αiTτivpi

∥∥∥∥∥
2

2

. (3–28)

To update the filters, we first assume we have an estimate of the components using the

current filters. Let x(p) denote the signal consisting only of the pth component and any

error

x(p) = e+ yp = x−
∑

q∈{1,...,P}\p

yq (3–29)

where yp =
∑
j∈Ip αjTτjvp and Ip = {i : pi = p}. This single-filter signal is used

to update each filter, but because of the sparsity in time, only patches of the signal

corresponding to source timings are used. These patches are collected into a matrix.

The updated filter is selected as the singular vector of this matrix corresponding to the

largest singular value. Assuming these were the correct timings, and none of the other

filters changed, this update minimizes the reconstruction cost for these patches. All of

the steps are detailed in Algorithm 3-6. In the rest of the work we use this algorithm

with the non-overlapping approximation of time-series matching pursuit. In addition, we

explore two alternative approximations to ameliorate the computational complexity.
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Algorithm 3-6. MP-SVD
vp ← randn(M, 1) ∀p = 1, ... ,P
Repeat
{(pi ,αi , τi)}Li=1 ← MP

(
x, {vp}Pp=1,L

)
e← x−

L∑
i=1

αiTτivpi

For p = 1, ... ,P do
Ip ← {i : pi = p}
x(p) ← e+

∑
j∈Ip

αjTτjvp

X̆p ←
[
T ∗

τj
x(p)
]
j∈Ip

vp ← argmax
w

wTX̆pX̆
T
p w

wTw
End for

Until convergence of the filters or other stopping criterion is met

3.5.2.1 Block-based approximation

MoTIF (Jost et al., 2006) is a block-based approximation to running MP on the

full signal. The input signal is partitioned into non-overlapping blocks, and the best

alignment of the filter is restricted to each block. As only a single alignment is identified

in each patch the method works well for sparse sources that are only active at most

once per patch. For a filter of length M the length of a patch Q should be chosen such

that Q ≥ 2M − 1.

The unconstrained optimization problem for the single-unit MoTIF can be written as

max
∥v∥2=1

⌊N/Q⌋∑
n=1

max
τ∈Pn

(
vTxτ

)2 (3–30)

where Pn = {1 + Q(n − 1), ... ,Qn}, n = 1, ... , ⌊N/Q⌋. Given the best alignment of the

filter within each patch, the objective is to minimize the reconstruction cost. Essentially,

the block-based approximation for MP-SVD is solved by alternating between finding the

windows’ alignments within the blocks based on the current filter, and updating the filter

using SVD. Computationally, this is a fast proxy since it finds N occurrences in parallel.

In the single filter case, it performs very well. In the multiple filter case, Jost et al. (2006)
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propose to use a generalized eigenvalue problem to ensure that the correlation in the

filters is minimized. Alternatively, the block-based approximation can also be used with

MP-SVD. In either case, the method essentially assumes each filter is active exactly

once in each block. This is a very strong assumption. We found that it yields extremely

poor results for multiple filter estimation except in the case of extreme sparsity.

3.5.2.2 Greedy approach

A greedy approach for blind system identification is to learn a single filter using

MP-SVD and then remove a set number of excitations of this filter from the input signal.

The remaining residual is used as the input to estimate the next filter, and this process

continues until the desired number of filters are estimated. After learning the filters, this

same greedy approach can be used for approximation as it avoids the joint search over

both the best filter and best lag. However, the ability of this approach to learn the true

source filters is highly limited: on the first iteration it is more likely to learn a filter that

best approximates the signal on average, rather than any specific filter.

Algorithm 3-7. Greedy MP-SVD
Input: x,L
r← x
For p = 1, ... ,P do
vp ← randn(M, 1)
Repeat
{(αi , τi)}Li=1 ← MP(r, vp,L)
R̆ ←

[
T ∗

τi
r
]L
i=1

vp ← argmax
w

wTR̆R̆Tw

wTw
Until convergence of the filter or other stopping criterion is met
{(αi , τi)}Li=1 ← MP(r, vp,L)

r← r −
L∑
i=1

αiTτivp

End for
Output: {vp}Pp=1,L
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3.6 Synthetic Experiments

Experiments are conducted to compare the performance of algorithms for both

for single-source filter estimation, corresponding to a SISO system, and multiple

source filter estimation, corresponding to a MISO system. In both cases the true

underlying filters are chosen as a set of Daubechies 4 (db4) wavelet packets. This

ensures the synthetic filters cover a range of frequency space with varying temporal

characteristics. The goal of the experiment is to compare two basic methodologies for

system identification: shift-invariant decomposition with mean-square error cost, and

single-channel independent component analysis.

The source signals are independent, marked point processes with a homogeneous

Poisson point process for the timing and a bimodal excitation amplitude distribution.

The excitation amplitude distribution is a mixture of a Gaussian distributions with mean

and variance of (1, 1
9
) and (−1, 1

9
) and equiprobable Bernoulli mixing. The shape of the

resulting source distribution is shown in Figure 3-1. In the experiments, the rate of the

Poisson process controls the sparsity of the sources.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

Figure 3-1. Source-excitation amplitude distribution, i.e., the amplitude distribution when
a source is active.

For each run, a signal with 10,000 time points was created by convolving the

source realizations with the selected filters and combining the results. The wavelet

packets were chosen at a scale such that they were 226 elements long, and each

filter was windowed to be 180 time points long. To create a signal with reasonable

signal-to-noise ratio (SNR), the filters were scaled to have a norm of 180/2, and

zero-mean, unit-variance white noise was added.

For the synthesis-based approach, the filters are learned using matching pursuit

(MP) for source estimation, and K-SVD on the aligned windows for filter estimation
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(Algorithm 3-6). Two different computationally tractable approximations are used

to speed up the matching pursuit: the first is the matching pursuit with no overlap

(Algorithm 3-4), the second consists of block-based approximation of matching

pursuit, e.g. MoTif (Jost et al., 2006). For conciseness, these are referred to as

MP(no overlap)-SVD and MP(block)-SVD. In the multiple input case, the greedy

one-source-at-a-time approach is also applied (Algorithm 3-7). The greedy method

uses the no-overlap method for a single run of MP for each iteration update of the

particular filter.

For independent component analysis approach, both FastICA with 40-unit

symmetric estimation and single-unit FastICA were used. The tanh(·) activation function

(non-linearity) is used for both instances of FastICA. In practice, most of the filters in the

40-unit estimation are meaningless so the OMP-based filter selection (Algorithm 3-5) is

used to select a predefined number of filters.

3.6.1 Single Source, Blind System Identification

For a single source, the following source excitation rates were tested: 50%, 30%,

25%, 20%, 15%, 7%, 5%, 3%, 2%, 1%, 0.5%, and 0.1%. At a rate of 0.55% each filter

is, on average, excited every 180 samples, the same as its length. This rate turns out to

be close to the change point in the estimation performance.

At the given signal and noise characteristics, the SNR is 36.5 dB for 50% excitation

and 9.4 dB for 0.1% excitation. Thus, the signal-to-noise ratio is not a useful indicator

because a signal with more overlap may prove more difficult to estimate. An example

signal at a source rate of 1% and SNR of 19.4 dB is shown in Figure 3-2.

For each run, the filter estimation performance is quantified as the maximum

correlation coefficient, across alignments, between the estimated filter and the true

filter. This quantity is averaged across all 32 filters and the results are collected across 8

Monte Carlo generations of source and noise activity. The average computation time for

the estimation is also recorded. These results are shown in Figure 3-3.
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Figure 3-2. Example of a single-source signal corresponding to W1, the scaling function,
of Daubechies 4 wavelet packets.

At high and low excitation rates, MP-SVD achieves the best performance. At

extremely low rates <1% it estimates filters that match the true filters, with a correlation

coefficient of nearly 1. Across sparsities, the 40-unit symmetric ICA estimation followed

by the filter selection outperforms the single-unit ICA estimation. The ICA approaches

exhibit a sharp increase in performance at 10%. In the range of rates between 3% and

10% multi-unit ICA outperforms the MP-SVD approach. At rates of 1% and below, the

block-based MP-SVD approach performs at nearly the same level of performance with a

much shorter computation time.

3.6.2 Multiple Source, Blind System Identification

A subset of 11 filters was chosen for the multiple source case. The individual

source excitation rate was sequentially varied as 10%, 7%, 5%, 3%, 2%, 1%, 0.5%,

0.1%, 0.05%, and 0.025%. This corresponds to an overall rate of excitation of 110%,

77%, 55%, 33%, 22%, 11%, 5.5%, 1.1%, 0.55%, and 0.275%. For the highest rate,

the system is continually excited, and the average SNR of a single component in this

mixture is -10 dB! As the source excitation rates are equal, the SNR remain constant

across all rates.

For each run, the filter estimation performance is quantified using two indices:

the first is the average of the correlation coefficient of each estimated filter to its

best-matched true filter, and the second is the percentage of the true filters estimated

with a correlation coefficient greater than 0.9. The first measure penalizes spurious
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Figure 3-3. Single-source blind waveform estimation performance. A) The average
correlation coefficient across the 32 waveforms for each method is recorded
across 8 Monte Carlo runs. B) The average run time to estimate one
waveform for each method. C) The 32 true filters, Daubechies 4 (db4)
wavelet packets.

filters that are not matched to any source. The second measure does not penalize

spurious filters and allows an overcomplete system identification because the maximum

is taken across all estimated filters. In addition, the computation time is recorded for

each method. These results are shown in Figure 3-4.

The MP-SVD approaches achieves the highest performance at select rates, with

an average correlation above 0.7 for rates below 1%. The matching performance is
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Figure 3-4. Multiple waveform, single-channel blind estimation performance. For each
performance criterion, the average and standard-deviation across 8 Monte
Carlo runs is shown as error-bars. A) Average correlation coefficient of
estimated filters to their best-matched true filter. B) Percentage of the true
filters matched, with correlation coefficient greater than 0.9. C) Run time to
estimate, and if necessary, select the group of filters. D) The 11 true filters: a
subset of the Daubechies 4 (db4) wavelet packets.

more sensitive to the rate, with a peak above 80%, but dropping to zero above 1%. ICA

consistently matches 60% of the filters at rates below 3%. The average best-matched

correlation coefficient is lower than MP-SVD at low rates, but is consistent across a

range of sparsity levels. At extreme sparsity, the block-based approximation for MP-SVD

is able to perform as well as ICA in terms of average correlation coefficient, but is still

more computationally expensive than ICA. The greedy approximation is the fastest
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MP-SVD-based approach but its performance is extremely poor. The ICA-based

approach appears to have the best tradeoff in terms of speed and consistent accuracy,

with a run time of nearly 100 times less than MP-SVD.

3.6.3 Discussion

For cases of sparse sources, MP-SVD is the most accurate for blind system

identification for both SISO and MISO systems. One hypothesis for why the ICA

approach performs better at higher rates is its avoidance of explicit modeling. The

MP-SVD algorithm updates the filters based on the assumption that the other filters are

perfectly represented. However, early on in the high rate case this is very unlikely, and

the filter estimates become entrapped at local minima of the overall objective function.

Here we have used matching pursuit that restricts overlaps of the same filter. This

approximation may be another reason that MP-SVD is not able to perform as well as ICA

for higher rate sources. However, running the full matching pursuit algorithm requires

much longer computation time and, furthermore, increases the convergence time. Often,

the filters do not converge at high rates. This is most likely the same issue discussed

in the previous paragraph, compounded by the overlap of a filter with itself. Indeed,

because of the overlap the original SVD update is biased optimal and Mailhé et al.

(2008) proposed an unbiased alternative.

These results confirm that both single-channel ICA and shift-invariant sparse

coding are able to blindly estimate the underlying filters in a multiple-input single output

system. Both approaches are limited to reasonable rates for the source excitations. At

high excitation rates, the sparse model is not meaningful as it would require as many

parameters as samples in the original signal.

For higher rates, continual excitation of the sources can be used to estimate

auto-regressive and moving average models. These models would be able to describe

the signals in terms of their time-varying spectral quantities. Thus, an analyst must

choose the correct model based on a hypothesis of the underlying source excitations.
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3.7 Decomposing Local Field Potentials

In this section, multichannel local field potentials recorded from the motor cortex of

a bonnet macaque through a chronically implanted cortical micro-electrode array are

analyzed. These signals were recorded as the subject passively observed a monitor

that displayed cursor movements and colors that indicated upcoming reward delivery.

The details of the task are further described in Section 4.9. Herein, decompositions of

a single channel and of multiple channels are performed on 15 minutes of the signal,

divided into 60 s segments. The relationship with task timings and behavior is not

analyzed.

This data is from a single day’s recording collected in Joseph Francis’s laboratory at

SUNY-Downstate by Brandi Marsh. LFPs were collected on 32 electrodes implanted in

M1. On this dataset, 8 of the LFP electrodes were excluded because of artifacts, which

were associated with high impedance. The remaining 24 channel signal was high-pass

filtered with a cutoff of 4 Hz and notch filtered at 60, 120, 180, 240, and 300 Hz with a

quality factor of 69. The data was down-sampled by a factor of 3, such that the effective

sampling rate is 666.67 Hz. At this rate, each 60 s window of data corresponds to

40,001 time points.

3.7.1 Single Channel Decomposition

For preliminary investigations, the single-channel blind system identification

algorithms were applied to a select signal. After learning the filters on a single

60 s segment, multiple iterations of the approximation algorithms were applied to

that segment and the other 14 segments. The non-overlapping convolution-based

orthogonal matching pursuit algorithm is used to obtain the atomic decomposition. The

greedy single-filter approximation is performed successively with each filter in the same

order that they were estimated.

The number of filters to estimate was set to 4. The learned filters, and the

magnitude of their frequency response, for the MP-SVD, FastICA-based, and greedy
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MP-SVD algorithms are shown in Figure 3-5. MP-SVD yields filters with wavelet-like

or evoked-potential-shaped impulse responses. The frequency content of the filters is

mainly below 35 Hz peaking, with one filter peaking around 10 Hz. For ICA, the first

two components resemble narrow-band waveforms with frequency content between

10 and 20 Hz. The other two components appear as high-frequency ripples. The

greedy MP-SVD approximation yielded another sinusoidal-like component along with

increasingly high-frequency waveforms. This progression makes sense as the greedy

decomposition tries to explain as much as possible with each waveform—naturally

following the skewed, 1/f power-spectral density for neural potentials (Bedard et al.,

2006; Pritchard, 1992).
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Figure 3-5. Filters estimated from the single-channel of motor cortex LFP using three
algorithms: A) MP-SVD; B) FastICA; and C) Greedy MP-SVD.

The signal approximation error when using the estimated filters is calculated as

proportion of variance explained (PVE). PVE is equal to one minus the normalized

mean squared error. The PVE for the complete approximation and for each component

individually are recorded in Table 3-1. The greedy MP-SVD approach yielded the

best approximation, followed by MP-SVD, and finally ICA. For MP-SVD and ICA, the

distribution of variance explained across components is nearly uniform; whereas, greedy

MP-SVD has a highly skewed energy distribution with the first component explaining

the majority of the variance. The computation times for both learning the filters and

performing the approximation are recorded in Table 3-2.
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Table 3-1. Single-channel approximation performance as proportion of variance
explained.

Training PVE (%) Testing PVE (%)
Method 1a 2 3 4 Totalb 1 2 3 4 Total
MP-SVD 24 45 21 22 89 25±4 35±4 24±2 24±1 86±2
FastICA 37 34 16 15 84 29±4 32±1 19±1 16±1 82±1
Greedy 60 27 10 2 92 52±3 34±2 11±1 3±1 90±1

aIndividual component. bUsing all components at once.

Table 3-2. Computation time for single-channel filter estimation and approximation on
60 s of data sampled at 666.67 Hz.

Method Learning time (s) Approximation time (s)
MP-SVD 243 64±5
FastICA 12 52±3
Greedy 60 5±0.03

Note: The learning time is averaged across 2 runs. For the approximation time, the
average and standard deviation are taken across 15 segments.

The temporal and spectral aspects of the approximations are shown in Figure 3-6.

For the total approximation and each component, PVE is calculated at different

frequencies using the Welch spectrogram with 270 ms Hamming windows and 150 ms

overlap of consecutive windows. For the MP-SVD algorithm, the total approximation

achieves nearly perfect reconstruction up to 25 Hz, and above 35 Hz the PVE rapidly

diminishes. The first component, which has an evoked potential shape, explains most

of the low-frequency response; the second component accounts for most of the

variance around 15 Hz; and the fourth component is limited to 20 to 35 Hz. For ICA,

the total PVE is not as uniform, but the method is able to account for over 40% of the

variance between 35 and 80 Hz, corresponding to the third and fourth components.

The greedy approximation has the best coverage of the spectrum, tapering off above

80 Hz. In addition, the individual components neatly tile the frequency space, with the

low-frequency components being estimated first.

The extracted sources can also be visualized to understand how the atomic

decomposition of the LFP segment. The atomic decomposition corresponds to

waveform index, amplitude, and timing, and can be represented by a sparse time
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Figure 3-6. Analysis of single-channel decomposition of motor cortex LFP. The
decomposition of the signal in a 3.5 s window is shown along with the
approximation performance across frequency for the three algorithms: A)
MP-SVD; B) FastICA; and C) Greedy MP-SVD.

series of the amplitude and timing for each component. For aid of visualization, we

select only the atoms corresponding to the top 10th percentile of magnitude for each

waveform and filter the sparse time series. The resulting plots are shown in Figure 3-7

along with the corresponding components.

From the source excitation images it is clear that the temporal distribution of

excitation differs among the filters. The sources for filters estimated by MP-SVD appear

to be the most uniform in time, those from the greedy approach are the most localized,
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Figure 3-7. Atomic decomposition of a motor cortex LFP. Significant source activity,
corresponding to the 90th percentile of magnitudes for each filter is shown in
terms of color intensity, normalized to maximum amplitude across the
segment. For visualization, the source activity is filtered with a linearly
decreasing impulse response the length of the waveform. The images show
both the onset and amplitude of the sources in two windows of the segment,
component-wise approximation of the shorter window is shown in bottom
row. The sources extracted using waveforms estimated by the three
algorithms: A) MP-SVD; B) FastICA; and C) Greedy MP-SVD.

and those from ICA appear at more regular intervals. However, a more systematic

analysis using marked point process theory is needed to understand the joint distribution

of intervals and amplitudes.

3.7.2 Model Complexity

In the previous analysis, the model complexity, in terms of the number of filters

and number of atoms in the decomposition, was fixed a priori. The approximation

performance varies across both of these parameters. The number of atoms in the

decomposition is determined by the number of iterations of the orthogonal matching

pursuit approximation. A small experiment was conducted on the initial 60 s segment of

the single-channel LFP.
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The proportion of variance explained are calculated for up to 10 components

for both MP-SVD and ICA. The results are displayed in Figure 3-8. For the MP-SVD,

learning 5 components appears to yield nearly the best performance, above 5

components there is marginal improvement. For ICA, the performance is not necessarily

monotonic function of the number of components, with 4 components appearing to

perform the best across a range of atoms.
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Figure 3-8. Proportion of variance explained versus number of atoms for various number
of filters, denoted by P in the legend. A) Filters learned using the MP-SVD
algorithm. B) Filters learned using single-channel FastICA.

In the non-overlapping approximation for matching pursuit, the number of atoms is

a function of both the number of iterations and the number of bases. The performance

across the number of iterations of the approximation is shown in Figure 3-9. The

MP-SVD algorithm clearly outperforms ICA in terms of the variance-based measure.

For the MP-SVD algorithm, above 5 components and 2 iterations there is only marginal

increases in performance.

3.7.3 Multichannel Decomposition

Using PCA across space, all of the methods are extended to the multichannel

case. For MP-SVD, the first principal component is estimated at each step of the

learning process at the same time that SVD is performed to update the filters. For the

greedy approach the same is done, but as only a single filter is updated for each greedy
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Figure 3-9. Proportion of variance explained across approximation iterations versus the
number of filters.

decomposition the spatial factor is allowed to vary between components. Finally, for ICA

it is difficult to combine the multiway aspect directly into the optimization. Instead, the

first principal component of the raw signal is provided to single-channel ICA. This is a

suboptimal solution as the other approaches are able to tune the spatial component for

the temporal filters.

The filters estimated with three approaches are shown in Figure 3-10. In the

multichannel case, all the filters have their peak frequency content at lower frequencies.

The ICA filters appear as a mixture of the high-frequency and low-frequency oscillations,

which were distinct components when applied to a raw single channel.

The fact that the components and approximations correspond to lower frequencies

for the multichannel case is also apparent in the PVE across the spectrum, as shown

in Figure 3-11. All of the variance explained is in the frequency range below 40 Hz;

whereas in the single-channel case, ICA and the greedy MP-SVD are able to explain

variance up to 80 Hz. This implies that the linear model across space is not a good

model at frequencies above 40 Hz. At these frequencies, signals are unlikely to be

phase-locked across the array.

The PVE across each component and across all channels are recorded in

Table 3-3. Interestingly, MP-SVD performed best for the select single-channel, but

greedy MP-SVD, which has a separate spatial factor for each component, was able
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Figure 3-10. Temporal and spatial filters estimated from multi-channel LFP recording of
motor cortex from the three PCA-based spatial extensions of the
algorithms: A) MP-SVD; B) FastICA; and C) Greedy MP-SVD.

to account for an additional 4% of the variance. Again, MP-SVD and ICA yielded

nearly equivariant components; whereas, greedy MP-SVD has a highly skewed energy

distribution with the first component explaining the majority of the variance.

3.8 Summary

This study brings together approaches for blindly estimating MISO systems with

sparse inputs. This study highlighted the key aspects of the problem, compared existing
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Figure 3-11. Analysis of a select channel of the multichannel decomposition of motor
cortex LFPs. The decompositions are shown for a 3.5 s window of the data
along with the approximation performance across the full segment across
frequency for the three PCA-based spatial extensions of the algorithms: A)
MP-SVD; B) FastICA; C) Greedy MP-SVD.

algorithms on a synthetic test with varying sparsity, and explored applications in the

decomposition of neural potentials.

A variety of time-series analysis and machine learning tools were used: deconvolution

(Shalvi & Weinstein, 1990), sparse coding (Aharon et al., 2006; Mailhé et al., 2008),

iterative approximation algorithms (Mallat & Zhang, 1993) and atomic decomposition

(Chen et al., 1998), alternating optimization (Stoica & Selén, 2004), and FastICA
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Table 3-3. Multichannel approximation performance as proportion of variance explained
on a select channel and across all channels.
Training PVE (%) Testing PVE (%)

Method 1a 2 3 4 Totalb Allc 1 2 3 4 Total All
MP-SVD 18 18 16 18 66 53 18±4 15±2 12±4 19±2 61±4 48±4
FastICA 25 22 21 18 61 49 23±1 17±2 19±1 17±3 56±3 44±3
Greedy 52 15 0 0 64 60 45±4 18±2 0±0 0±0 59±4 56±3

aIndividual component on select channel. bUsing all components on select channel.
cAcross all channels.

(Hyvarinen, 1999). Nonetheless, it is still possible to incorporate other ideas from

signal processing and machine learning. The blind system identification is essentially a

modeling problem. In this framework, it is natural to add additional priors or constraints

on either the sources or the filters. The most common adjustment is forcing the sources

to be strictly positive (Roux et al., 2009), or constraining both the sources and filters to

be positive (Smaragdis et al., 2008). These approaches are important since in some

applications the unconstrained models lead to uninterpretable components.

Here an approximation of matching pursuit was used to obtain the source estimates,

and the number of atoms extracted corresponds to the sparsity of the sources. From the

results on real data, this leads to components which uniformly contribute to the variance

explained. Alternatives for matching pursuit can provide better sparse coding accuracy

(Chalasani et al., 2013; Kavukcuoglu et al., 2010). These algorithms do not enforce

the hard, zero or non-zero, constraint on the source amplitudes that greedy algorithms

such as matching pursuit enforce. The loosening of this constraint allows the filters to be

optimized without assuming the exact timing was correctly estimated, a poor assumption

at the early learning stages. In addition, these alternative methods allow adaptive priors

on the source distributions, which may lead to the extraction of different components.

For instance, the greedy method proposed finds components with decreasing energy,

but localized at increasingly higher frequencies. This sort of decomposition resembles

the empirical mode decomposition (EMD), a model free time-series analysis technique

(Huang et al., 1998). The benefit of the greedy method is that it learns an underlying set
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of filters that can be used on novel segments of the signal. For future work along these

lines, explicit comparisons to wavelet and empirical mode decompositions should be

made.

In terms of the neural potentials, the applied approaches match the underlying

generating process: reoccurring waveforms that appear transiently in time (Brockmeier

et al., 2011b). With classic time-frequency analysis it is difficult to separate the

contribution of unique sources in the local field potential. Using the blind system

identification both lower frequency components and high-frequency waveforms, even

action potential waveforms (Ekanadham et al., 2011), could be learned and matching

pursuit can be applied to separate their contributions.

On the segments of LFP analyzed, MP-SVD and the greedy approach for MP-SVD

performed better than ICA in terms of reconstruction cost. Even with increasing number

of approximation iterations ICA was not able to match the reconstruction accuracy of

MP-SVD. This is reasonable because MP-SVD is tuned to explain the signal in terms of

mean squared error; whereas, ICA is only searching for ‘independent’ sources. Indeed,

ICA choose filters at higher frequencies that may indeed be independent of the lower

frequency sources MP-SVD estimated.

Additionally, we used SVD across space to extend the single-channel algorithms

to the multichannel case. The resulting filters for the multiple channel case were

lower frequency waveforms. This relates to the spatial localization of high-frequency

components in the LFP (Buzsáki et al., 2012). However, spatial ICA could be substituted

for SVD in the multichannel extensions; this may lower the approximation performance,

but the spatial components may be more meaningful (Delorme et al., 2012).

The importance of the atomic decomposition is not only its compression and

reconstruction ability. The individually extracted components can be useful for the

exploratory analysis of neural potentials. Alternatively, a complimentary analysis of

the statistics of the sources, in terms of their atomic decompositions, could also be
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performed as the atomic decomposition corresponds to a realization of a marked point

process. This process is defined by the joint distribution over the timing, amplitude, and

indices of the source excitations.

This alternative representation of sparsely excited sources may prove advantageous

over classical time-frequency descriptors. For instance, it is natural to consider the

dependence between an external stimuli or known cognitive state and the timing and

amplitude of a particular source. Preliminary results have indicated that this sparse

representation, which is non-linearly extracted from the signal, is more informative than

using classical frequency bank approaches. In particular, this approach is used in the

single-trial decomposition of evoked potentials in Chapter 4. The marked point process

representation is a natural analog to the point process modeling used for neural spike

trains.
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CHAPTER 4
TRIAL-WISE DECOMPOSITIONS FOR NEURAL POTENTIALS

Electrical potentials in the brain are a combination of spatiotemporal oscillations,

indicative of the communication between neural assemblies (Freeman, 2004), intermixed

with a broadband component of unsynchronized activity. Brain waves are often

associated with rhythmic activity but can take the form of a transient response following

a specific cognitive or sensory event, such as brief flash of light (Adrian & Matthews,

1934). The transient responses is a spatiotemporal pattern and can be localized due

to the brief involvement of the same neural circuits (Freeman, 2004). The responses

following presentation of a specific stimulus or condition are referred to as evoked

potentials (Ciganek, 1961), and they are indicative of neural processing.1

The recurrent characteristics of the evoked potentials to different stimuli or

conditions can be represented by a spatiotemporal model (Freeman, 1979). Then the

stimuli or conditions can be compared using these models (Emery & Freeman, 1969).

This approach is particularly useful for investigating sensory and cognitive processing

on a single-trial basis, and is used by brain computer interfaces that determine a user’s

attention solely from changes in their evoked potentials to various stimuli (Farwell &

Donchin, 1988). To achieve this, methods are needed that readily differentiate between

neural responses corresponding to different conditions.

The simplest model for the evoked potential under a specific condition is that

the neural response is a combination of the same spatiotemporal waveform plus

independent background activity and noise. Under this assumption, the model can be

estimated by averaging across multiple trials; however, much of the trial-to-trial variability

cannot be explained by a simple average.

1 However, not all neural activity is related to processing; alpha waves (∼10 Hz)
(Adrian & Matthews, 1934; Berger, 1929) are indicative of the deactivation of the visual
cortex, and are not present during visual activity.
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For instance, the time between stimulus presentation and neural response may vary

or the amplitude may vary across trials (Ciganek, 1969). Sometimes this variation stems

from physiological effects such as habituation (Megela & Teyler, 1979). Additional free

parameters can be added to the model to account for these trial-wise variations. For

instance, one model of evoked potentials is a reoccurring temporal waveforms whose

exact temporal location may shift and whose amplitude may vary across the trials. On

any given trial, both the amplitude and time may be estimated and used for further

analysis.

The scope of this study is to review, extend, and compare models for evoked

potentials. The multichannel case is explicitly addressed, and clear connections

are made with recent advances in tensor decompositions. An analysis of the model

performance using model selection criteria is proposed as a consistent methodology to

compare models based on different assumptions and with various degrees of freedom

varies. However, model selection is the not the ultimate goal and is only considered for

post-hoc assessment. Alternatively, this study considers the trial-varying parameters in

the models as features for single-trial classification between conditions. In this way, the

model fitting performance can be used to guide the model, prior to any classification.

The use of the condition or stimulus class information during model estimation is

also considered. Model estimation is typically performed in an unsupervised manner

across all trials, or in the partially supervised case where only examples relating to a

single class are used. In these cases, the resulting features may not perform well for

classification and full supervision may be needed, where the labels are used to form

a discriminative model. In addition, varying forms of supervision may be used when

fitting different modes of the model. For instance, we explore cases where the spatial

factors are trained in a supervised manner at the same time that the temporal factors are

trained without supervision.
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The proposed methodology is applied to datasets consisting of local field potentials

recorded from non-human primates during variable-reward experiments, where trials

have the possibility of being rewarding or non-rewarding. The models are used to

analyze differences in the evoked potentials between the rewarding and non-rewarding

trials, and gauge the models’ performance by their single-trial classification between

the two conditions. In addition, on one dataset the relationship between the timing of

evoked potentials and the neural firing rates is assessed. Overall, the study highlights

a comprehensive methodology for using shift-varying models for the analysis and

classification of evoked potentials on a single-trial basis.

4.1 Previous Work

The first method to compensate for variations in the temporal alignment of evoked

potentials was proposed by Woody (1967). Woody’s model is for the single-channel

case and corresponds to a temporal waveform whose alignment shifts among the

trials, but has fixed amplitude throughout. The method learns the waveform across

multiple iterations of the correlation-guided averaging. This basic alternation between

optimization and estimation converges and can be used with minimal assumptions: that

the background noise is white. The estimation of multiple waveforms per trial is also

considered, and it was demonstrated that the quality of the estimated waveforms is

inversely proportional to the maximum cross-correlation between pairs waveforms.

Pham et al. (1987) propose the same signal plus noise model, but assume colored

noise. The estimation is done in the frequency domain using maximum-likelihood

approach. For simplification of the estimation, the shift in alignment is assumed to be

small and the template is assumed to be low frequency. Jaskowski & Verleger (1999)

add a trial-varying amplitudes to this model. Both models require more parameters to

capture the power spectral density of the noise. Based on empirical evidence, both sets
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of authors claimed superiority over Woody’s algorithm yet they only performed a few

iteration of Woody’s alternating optimization: not letting it converge. 2

Weeda et al. (2012) use a predefined basis to estimate a fixed waveform with

trial-varying amplitude and alignment; however, in their model, shifts in alignment

are limited to those that can be realized by the sum of the waveform and its first

derivative, which can only be accurate for a single frequency, or small shifts at relatively

low-frequencies: limiting assumptions common to the estimation proposed by Pham

et al. (1987).

The aforementioned methods are extensible to having multiple evoked potentials

occurring on each trials, yet they concentrated on single component aspect. Truccolo

et al. (2003) propose to estimate multiple differentially variable components. The

differentially variable components analysis (dVCA) allows waveforms to have independent

shifts and amplitudes. Estimation is done in a Bayesian framework, and the waveforms

are estimated using a weighted average of the residual. This is an approach that is also

used for shift-invariant modeling of audio (Mailhé et al., 2008). This optimization does

not always converge: Truccolo et al. (2003) perform only two iterations instead of using

a convergence criterion. In the single component case, dVCA generalizes Woody’s

method to varying amplitudes.

One limitation of all of the aforementioned models is that they assume a fixed

shape of the temporal waveform for a given component of the evoked potential. The

fixed waveform assumption can be lifted by estimating each component as a linear

combination of a set of waveforms, which form a subspace. Whereas a subspace

model with a large enough subspace may account for both variability in waveform

2 One could consider a time-domain method for extending Pham’s method to include
colored noise by estimating the noise correlation and re-estimating the waveform after
pre-whitening.
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and variability in alignment; an explicit temporal alignment cannot be derived from the

subspace model.

Assuming fixed alignment, Karjalainen et al. (1999) estimate a temporal subspace

to explain the evoked potential. Each individual trial is described by the subspace

coefficients, the weights of the linear combination of waveforms. These coefficients are

estimated with an added regularization constraint.

None of the models introduced so far explicitly consider multiple channels. In

the multichannel case, a spatiotemporal model is needed to explain both the spatial

variation and temporal pattern. If each channel is allowed a separate waveform, the

number of coefficients in the model rapidly increases.

Assume the evoked potential is discretely sampled and represented by a matrix,

with M time points and N channels. A full rank model has M · N coefficients; whereas, a

rank-1 spatiotemporal model assumes the shape of the temporal waveform is common

across channels and the amplitude varies between channels; the rank-1 model has

M + N coefficients. The use of a single spatial factor corresponds to a single source of

the neural activity.

de Munck et al. (2004) consider the multichannel case: proposing a maximum-likelihood

estimator for a full-rank spatiotemporal waveform with trial-varying amplitude, time-locked

alignment (no shifts), and a rank-1 spatiotemporal noise model. A rank-1 model of noise

assumes that there is a single spatial source with a fixed temporal covariance matrix.

Brockmeier et al. (2012b) propose a simple model for the multichannel case

consisting of a predefined waveform, chosen from gamma-tone functions,3 with

trial-varying temporal alignments and trial-varying spatial amplitude vectors. This

model only constrains the temporal aspects, and has a much larger number of free

3 Gamma-tones are amplitude modulated sinusoids with gamma-function-shaped
envelopes.
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parameters. The waveforms are allowed to shift and the amplitude is allowed to vary

across space. However, after model estimation, only the first two singular vectors of the

spatial amplitudes are sufficient for classification. Similarly, Li et al. (2009) propose an

extended estimation process with a single spatial factor that asks as a spatial filtering.

The filter is estimated by taking the average across trials of the spatial amplitudes,

and using this average as a spatial filter. The single-trial temporal alignments and

spatial amplitudes are estimated again with the new filter. This process changes the

norm, used across the channels, thus the selection of the best temporal alignment and

spatial amplitudes are affected. The process is repeated until convergence, but the

temporal waveform is still a predefined waveform—the authors used a specific gamma

function—and is never adjusted.

Rivet et al. (2009) propose learning a fixed amplitude bilinear model, composed of

spatial and temporal factors, where the spatial factors are made to discriminate from

background activity. The authors also allow for the case that the trials partially overlap.

The computation is efficiently computed using QR decompositions. Most recently,

Souloumiac & Rivet (2013) show improved estimation of the temporal waveform when

trial-varying alignment was combined with spatial enhancing filters. Their model consists

of single spatiotemporal waveform with fixed amplitude whose alignment is allowed to

vary between trials.

Herein we consider estimating a spatiotemporal model with trial-varying amplitude

and alignment. Specifically, we propose a new model with a single, fixed spatial factor,

varying temporal alignment, and also temporal waveform shape. The waveform on any

given trial is formed from a learned subspace. This effectively combines previously

proposed models (Karjalainen et al., 1999; Souloumiac & Rivet, 2013). We explore

training the spatial factor in both a discriminative and non-discriminative fashion.

As the above models are defined across space, time, and trials it is natural to

consider tensor models (Carroll & Chang, 1970; Harshman, 1970; Hitchcock, 1927;
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Kolda & Bader, 2009). Tensor decompositions have been shown to be useful for

analyzing EEG (Acar et al., 2007; Cichocki et al., 2008). As a space by time by trials

data arrangement is still in three dimensions, the important aspects of the tensor

decompositions can be illustrated by three-dimensional diagrams.

Another benefit of treating the evoked potential modeling as a tensor decomposition

problem is the common framework for model selection. Model selection for tensors has

been extensively studied (Bro & Kiers, 2003; Brockmeier et al., 2013b; Ceulemans &

Kiers, 2006, 2009; He et al., 2009; Mørup & Hansen, 2009; Timmerman & Kiers, 2000).

For instance, identifying an optimal model can be used to answer whether or not the

data requires a shift-tolerant model or how many components are needed. Even for

the matrix case, there is a full range of models where increasing rank corresponds to

a better fit of the average Eckart & Young (1936). We explore using model selection

criteria to choose the best model without cross-validation.

4.2 Mathematical Modeling Framework

We explore two levels of model parameter fitting: at the bottom level, parameters

are fit for each trial, and at the top level, the parameters are fit across the trials.

Borrowing nomenclature from signal processing, we use the term ‘analysis’ to indicate

the extraction of trial-varying coefficients for a given input. Analysis is done on each

trial independently; whereas, ‘estimation’ refers to adjusting the model coefficients

that are fixed across trials. In both cases, the coefficients are adjusted to minimize the

cost function, for which we use the mean squared error. The coefficients that are fixed

across trials are referred to as ‘factors’. For clarity, coefficients that vary per trial will be

indicated by a star superscript (a⋆), or, when necessary to distinguish specific trials, with

a trial indexing variable as a subscript (ai ).

4.2.1 Tensor Representation

We assume a discrete sampling in time and space, and organize the evoked

potential for a single trial into a matrix . Let X = [x1, ... , xM ] ∈ RL×M denote a sample
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of the M channels in an L-length window. Let a set of n trials be denoted X = {Xi}ni=1.

Assuming all of the trials have the same dimensions, it is natural to treat this set of

spatiotemporal evoked potentials as a three-way matrix, or tensor. Let X correspond to

the tensor representation of the set of trials in X ; organized into trials by time by space

with dimensions n × L×M.

Then X is a third-order (or order-3) tensor with 3 modes. A second-order tensor is

a matrix; a first-order tensor is a vector; and a scalar can be considered a zeroth-order

tensor. Any tensor can be converted to a column vector by simply concatenating all of

the entries; this operation is denoted x = vec(X ). Correspondingly, unfolding refers to

the operation that converts a order-3 or higher tensor into a matrix—the order along only

one mode is retained. After unfolding, matrix operations to be applied to the tensor, and

if appropriate the matrix can be folded back into a tensor. For the third-order tensor X

there are three possible unfoldings:

1. The 1-mode unfolding is an n×(M ·L) matrix X (1) = [vec(X1), vec(X2), ... , vec(Xn)]T.
2. The 2-mode unfolding is an L× (n ·M) matrix X (2) = [X1,X2,X3, · · · ,Xn].
3. The 3-mode unfolding is an M × (n · L) matrix X (3) = [XT1 ,XT2 , ... ,XTn ].

Tensors can be built out of lower-order vectors, matrices, or tensors using an outer

product. Given an order-N tensor A and an order-P tensor B, the outer product of A

and B is the order-(N + P) tensor C = A ⊗ B, with entries such that C i1,i2,...,iN ,j1,...,jP =

Ai1,i2,...,iNBj1,j2,...,jP . The tensors in the outer products are referred to as factors, and

tensors in a linear combinations of tensors are referred to as components.

Consider a series of outer products when each factor is a vector. An order-N tensor

X is considered to be rank-1 if it is formed from the outer product of N vectors, i.e., it

can written as X = a1⊗a2⊗· · ·⊗aN . Otherwise, the rank is R and is equal to the minimal

number of rank-1 tensors needed as components such that X =
∑R
r=1 a

1
r ⊗ · · · ⊗ aNr

(Kruskal, 1977). The set of factors {air}i ,r form the canonical polyadic decomposition

(CPD) (Hitchcock, 1927)—which is also called CANDECOMP (Carroll & Chang, 1970)

or PARAFAC (Harshman, 1970).
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Increasing the rank of the CPD introduces a new factor along each mode.

Sometimes it may be desired to increase the number of factors only along certain

modes. The Tucker model (Tucker, 1966) allows a different rank along each mode.

Unlike the CPD, where a factor from each mode are associated with a single component,

the Tucker decompositions relates the interaction between modes using a core tensor.

The core tensor has the same number of modes and has dimensions equal to the

ranks. The third-order Tucker model with core G and factors A, B, and C is written

X = G ×1 A ×2 ×3C , where ×k denotes tensor multiplication along the k th mode, which

can be performed by appropriate unfolding, matrix multiplication, and folding operations

(Kolda & Bader, 2009). The CPD is the case of a Tucker model with equal ranks and a

super-diagonal core.4

De Lathauwer (2008) introduced block term decompositions that share the benefits

of the CPD with the added flexibility of the Tucker models. The decompositions consider

more general ranks, an order-3 tensor is rank-(L,L, 1) if it can be written as an outer

product between a rank-L matrix A and a vector a, i.e., X = A ⊗ a. (The rank-1 term

could be assigned to any mode by reordering the modes.) An order-3 tensor can be

decomposed into a set of rank-(Lr ,Lr , 1) tensors as X =
∑R
r=1 Ar ⊗ ar . Under certain

conditions this is unique decomposition (De Lathauwer, 2008).

For real-valued third-order tensors, it is simple to consider the inner-product, norm,

and Euclidean distance. The inner product of two tensors of the same size is

⟨A,B⟩F = vec(A)T vec(B) =
∑
i ,j ,k

Ai ,j ,kBi ,j ,k . (4–1)

4 A tensor is super-diagonal if all entries that do not have the same index on each
mode are non-zero, i.e., Ai ,j ,k = 0 if i ̸= j ̸= k .
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The inner-product induces the Frobenius norm, which can be computed as

∥A∥F =
√
⟨A,A⟩F =

√∑
i ,j ,k

A2i ,j ,k . (4–2)

The squared Euclidean distance between two tensors is

∥A − B∥2F =
∑
i ,j ,k

(
Ai ,j ,k − Bi ,j ,k

)2
. (4–3)

Assuming B is an approximation of A this is proportional to the mean squared error.

Normalizing the squared Euclidean distance by the total number of entries N, yields the

mean squared error:
1

N
∥A − B∥2F =

∑
i ,j ,k

1

N

(
Ai ,j ,k − Bi ,j ,k

)2
. (4–4)

Returning to the evoked potentials case, consider bilinear models of a spatiotemporal

waveform. A rank-1 model is the outer product between a single pair of vectors, i.e.,

A = u ⊗ w = uwT, where ⊗ denotes the outer product. The factor u is the temporal

component and w is the spatial component. To allow the amplitude to vary across trials,

an additional scaling term may be added. The trial-varying amplitude is denoted s⋆ so

that the approximation for a given trial is s⋆A = s⋆u⊗ w. Considering the full set of trials,

the model is a rank-1 CPD, X̂ = s ⊗ u ⊗ w. A diagram of a rank-1 CPD is shown in

Figure 4-1.
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Figure 4-1. Diagrams of third-order tensor models for sets of evoked potentials. A) A
rank-1 canonical polyadic decomposition (CPD) corresponds to the outer
product between a spatial factor, temporal factor, and trial-varying
amplitudes. B) A rank-(3,3,1) block term decomposition that allows each trial
to be the linear combination of three waveforms, but a single spatial factor.
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Instead of having a single temporal waveform to represent all the trials, a more

general model assumes the temporal waveform on a given trial exists in some

subspace. Consider the subspace spanned by the columns of B, a individual trial

may have temporal aspect u⋆ = Ba⋆, where the subspace coefficients are stored in a⋆.

The resulting model is u⋆ ⊗ w = Ba⋆ ⊗ w, which is still rank-1 across time and space,

but has more degrees of freedom to describe the temporal aspects. In terms of a tensor

model, the models is formed by first concatenating the subspace coefficients across all

of the trials A = [a1, a2, ... , an]T into a matrix. Then if B is rank-D the model is a block

term decomposition with rank-(D,D, 1) (De Lathauwer, 2008), X̂ = AB ⊗ u. A diagram

of this model is shown in Figure 4-1.

For model estimation, a unique parameterization is important. Models involving

multiple factors are not uniquely defined if the norms of the factors are allowed to vary

independently. Therefore, any models that use both scalar amplitudes and vectors

or matrices fixed across trials are constrained such that their factors have unit norm

∥u∥2 = ∥w∥2 = ∥A∥2 = 1. This constraint also simplifies the mathematical analysis.

4.3 Models with Variable Temporal Alignment

In this section we propose models in which the time-series waveform is modeled

as a single waveform or a linear combination of multiple waveforms whose temporal

alignment and scaling may vary on a given trial. We restrict our attention to models

where all of the waveforms have the same temporal alignment per trial.

Let x ∈ RL×1 and g ∈ RN×1,N ≤ L denote a discretely-sampled time series and

a waveform, respectively. Define Tτ to be the linear operator such that Tτg temporally

aligns a waveform g such that it starts at time τ (Mailhé et al., 2008). Then τ − 1 is the

number of zeros that need to be pre-padded to g; if τ < 1 the initial 1 − τ elements of g

are truncated, and if τ > L−N+1 the final τ−(L−N+1) elements are truncated. Fig. 4-2

shows the range of alignments for g, x. Tτ is an N by L matrix with the N × N identity

matrix as a submatrix starting at row τ . Let T ∗
τ denote the adjoint of this operator such
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Figure 4-2. The range of alignments between the temporal waveform and the signal.
The possible alignment ranges for τ ∈ {−N+2, ... , 1, ... ,L} of a waveform g
of length N to the L-length signal x.

that ⟨x,Tτg⟩ = ⟨T ∗
τ x,g⟩. The adjoint selects N-length window of time-series starting at

time τ , and T ∗
τ = T

T
τ .

The best lag in terms of least squares can be found as:

argmin
τ
∥x− Tτg∥2. (4–5)

Squaring and expanding the norm yields:

∥x− Tτg∥22 = ⟨x− Tτg, x− Tτg⟩ (4–6)

= ⟨x, x⟩+ ⟨Tτg,Tτg⟩ − 2⟨x,Tτg⟩. (4–7)

When g is aligned completely within x, the solution to Equation (4–5) is equivalent to the

solution to argmaxτ ⟨x,Tτg⟩. This is useful since ⟨x,Tτg⟩ = (x ⋆ g)(1− τ) =
∑
n xngn−τ+1,

where ⋆ denotes the cross-correlation—i.e., convolution with the time-reversed

filter—which can be computed across all lags using the fast Fourier transform.

4.3.1 Windowed Tensor Representation

Given a set of timings for all the trials {τi}ni=1, let X̆ = {X̆i}ni=1 denote the set of

matrices corresponding to the realigned potentials, X̆i = T ∗
τi
Xi , i = 1, ... , n. This set

of windows can also be organized as a tensor X̆ . The approximation of this tensor is

denoted X̃ .
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4.3.2 First Model

Consider a model characterized by a fixed spatial vector w ∈ RM×1, a fixed temporal

waveform g ∈ RN×1,N ≤ L, a variable temporal alignment τ ⋆ ∈ Z, and a variable scalar

amplitude s⋆. For a set of n trials this model has 2n + N − 1 + M free parameters.

The single-trial approximation is given by X̂ = s⋆Tτ⋆g ⊗ w. The approximation of the

windowed tensor is a rank-1 CPD: X̃ = s ⊗ g ⊗ w, where s is the vector of amplitudes

across the trials.

The analysis for this model consists of a static spatial projection of the spatiotemporal

window u =
∑M
m=1 wmxm = w

TX , followed by finding the alignment that maximizes the

norm of the coefficient. The temporal alignment τ ⋆ is found as

τ ⋆ = argmaxτ |⟨u,Tτg⟩|, (4–8)

and the amplitude s⋆ is found as s⋆ = ⟨u,Tτ⋆g⟩.

4.3.3 Second Model

Consider a model similar to the first model but characterized by a fixed set of

D linearly independent temporal waveforms G = [g1,g2, ... ,gD ] ∈ RN×D ,N ≤ L.

This set spans the subspace for the modeled temporal waveform.5 The model is still

characterized by a variable temporal alignment τ ⋆ ∈ Z, but now a variable vector of

subspace coefficients a⋆ = [s⋆1 , ... , s⋆D ]
T ∈ RD×1 is used. For a set of n trials this model

has n+ n ·D+N ·D−D2+M free parameters. The single-trial approximation is given by

X̂ = Tτ⋆Ga
⋆ ⊗ w. The approximation of the windowed tensor is rank-(D,D,1) block term

decomposition: X̃ = AG ⊗w, where A = [a1, a2, ... , an].

5 The previous model is a special case of this model when D = 1.
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The analysis of this model requires the pseudo-inverse6 of TτG . Again, the

alignment that maximizes the norm of the subspace coefficient vector, and minimizes

the reconstruction cost, is found as

τ ⋆ = argmaxτ∥(TτG)
†u∥2 (4–9)

and a⋆ = (Tτ⋆G)
†u, respectively.

4.4 Spatial Covariance-based Models

In this section we propose models with fixed spatial covariance, but with a temporal

waveform that is allowed to vary per trial. In terms of neurophysiology, a model with a

single fixed spatial factor corresponds to a single source. It assumes the relevant portion

of the neural response corresponds to a specific neural population. The product with the

spatial vector acts as a simple weighted average, reducing the signal to a univariate time

series. In general, spatial factors project the signal to a lower dimensional subspace.

4.4.1 Single Source

Consider a model characterized only by the fixed spatial waveform w ∈ RM×1 and

variable temporal waveform u⋆ = [u⋆1, ... , u⋆L]
T ∈ RL×1. Given n trials, this model has

n · L+M − 1 free parameters. The single-trial approximation is given by X̂ = u⋆⊗w. The

approximation of the full tensor is a rank-1 Tucker-1 decomposition: X̂ = U ⊗ w, where

U = [u1,u2, ... ,un]. The analysis for this model consists of a static spatial projection of

the spatiotemporal window u⋆ =
∑M
m=1 wmxm = w

TX .

4.4.2 Spatial Subspace

Consider a model similar to the previous model but characterized by a fixed

set of E linearly independent spatial vectorsW = [w1,w2, ... ,wE ] ∈ RM×E , which

form a subspace for the spatial pattern. The model is characterized by a multivariate

6 Let B be a matrix with linearly independent columns, then B† = (BTB)−1BT ∈ RD×N
is its pseudo-inverse.
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time-series U⋆ = [u⋆1, ... ,u
⋆
E ]
T ∈ RL×E . For a set of n trials this model has n ·L ·E+M ·E−

E 2 free parameters. The single-trial approximation is given by X̂ = U⋆W T. The previous

model is a special case of this model when E = 1. The approximation of the full tensor is

a rank-E Tucker-1 decomposition: X̂ = U ×3W , where U is the tensor representation of

the set of multivariate time-series across all trials {U1}ni=1. The analysis of this model is

given by U⋆ =W †X .

4.5 Fitting the Spatiotemporal Models

Model fitting is performed in an alternating process where the analysis equations

for each model provide an estimate of the coefficients on a given trial, and the model

is updated to best explain—in terms of minimizing the mean squared error—the data

given these coefficients. For the temporal factors, we use only non-discriminative model

fitting, but the model is fit using only trials of one condition. This partial supervisory

information does not consider trials of other conditions. For the spatial factors, we do

consider discriminative models based on the spatial covariance. Overall, the spatial and

temporal factors are alternatively updated.

For the models allowing temporal shift, only the windowed portion of the signal,

corresponding to the alignment of the waveform on a particular trial, is used to update

the model. For the first two models discussed, this window is found after the signal

has been projected to a single channel via the spatial factor. The window alignment is

selected for each trial given the current model.

4.5.1 Updating the Temporal Factors

After alignment each spatiotemporal matrix is multiplied by the spatial factors

W and the resulting products are concatenated across trials into another matrix

U = [X̆1W , X̆2W , ... , X̆nW ] = X̆
(2)W , where X̆ (1) is the mode-2 unfolding of X̆ .7

7 Recall that X̆ denotes the tensor corresponding to the realigned potentials, X̆i =
TτiXi , i = 1, ... , n.
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The waveforms are updated to be the D singular vectors corresponding to the D

largest singular values of this matrix, which is the solution to the following optimization

consisting of the ratio of the determinants:

G = argmax
V

|V TUUTV |
|V TV |

. (4–10)

Choosing the updated filters in this way minimizes the mean squared error of the model,

as the singular value decomposition is the best approximation of matrix (Eckart & Young,

1936).

4.5.2 Updating the Spatial Factors

The spatial projection is also updated from the covariance of the aligned windows

of X̆ . The spatial covariance, without removing the mean, is computed as R0 =∑n
i
1
n
X̆TX̆ = 1

n
X̆ (3)X̆ (3)T, where X̆ (3) is the mode-3 unfolding of X̆ . For discrimination,

we consider having an auxiliary matrix R1, which is the spatial covariance during

background or different conditions. This can be used to find projections which maximize

a ratio of the variance between the conditions; replacing this auxiliary matrix with an

identity matrix will minimize the error. The spatial projection is found as the matrix that

maximizes the following ratio of determinants:

W = argmax
V

|V TRT0 V |
|V TR1V |

. (4–11)

The solution to this optimization is chosen from the solutions {(λj , vj)} for the generalized

eigenvalue problem R0vj = λjR1vj . The columns ofW should be chosen as the E

eigenvectors vj corresponding to the E largest generalized eigenvalues λj . In the pattern

recognition literature this is known as the Fukunaga-Koontz transform (Fukunaga &

Koontz, 1970; Zhang & Sim, 2007), in the EEG analysis literature it has became popular

for extracting features for motor imagery classification and is known as common spatial

patterns (CSP) (Ramoser et al., 2000).
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4.5.3 An Alternating Optimization Algorithm

Given the updated model, the spatial factors and any trial-varying coefficients,

alignment and amplitude coefficients, are re-estimated. One iteration cycle of the full

optimization computes the following steps:

1. Alignment via Equation (4–8) or Equation (4–9)—Input: X ,W ,G , Output: X̆
2. Temporal factor update via Equation (4–10)—Input: X̆ ,W ,D, Output: G
3. Spatial factor update via Equation (4–11)—Input: X̆ ,R1,E , Output: W

Ideally, after multiple iterations the factors and coefficients will converge. In practice,

this is not always the case, and the process should be stopped after a fixed number of

iterations. A diagram illustrating an overview of the algorithm is shown in Figure 4-3.

≈
Alignment

Data tensor

Model

Aligned model

Windowed tensor

Model

Optimization iteration

sp
ace

time

tr
ia

ls

single-trial aligned waveforms

temporal factor

≈

trial amplitudes

spatial factor

Figure 4-3. Diagram of the optimization process consisting of temporal alignment and
tensor decomposition. Here the model of the aligned tensor is a canonical
polyadic decomposition (CPD). Although, the windows are approximated
using the CPD, the aligned model cannot be considered a CPD, instead it is
considered a “Tucker-1” model (Kolda & Bader, 2009; Tucker, 1966) with
specific structure.

4.6 Model Selection

The performance trade-off between different model structures or model orders can

be quantitatively assessed using a model selection criterion. Depending on the sizes of

the waveform and the fit of each model, a model that allows shifts may be more or less

efficient than a fixed alignment model.
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The most straightforward approach to select a model is to test its ability to predict

novel data. Cross-validation can be used to test this using multiple divisions of the trials

into training and validation sets. A simple model would perform poorly; whereas, an

overly complex model that over-fits—i.e., a model that is tuned to the particulars of the

noise in the training samples not the general structure—would also perform poorly on

novel data. However, with complex models that already involve alternating optimizations,

this approach will require excessive computation. Alternatively, model selection criteria

can be used to select a model that balances the approximation performance and the

model complexity. As fitting error decreases with model complexity, criteria penalize the

number of degrees of freedom in the model (Stoica & Selen, 2004).

The Bayesian Information Criterion (BIC) Schwarz (1978) is a consistent way to

compare tensor models of different structure (Brockmeier et al., 2013b). Whereas

Akaike Information Criterion (Akaike, 1974) is often used, it is only applicable to nested

models—models built by adding parameters to parent models, and should not be used

to select among non-nested models (Murata et al., 1994).

BIC is formulated in terms of the log-likelihood, but for a signal plus noise model,

where the noise is assumed to be i.i.d. zero-mean and Gaussian distributed, only the

mean squared error is needed. In this case, the following optimization problem selects

the optimal model from a set of modelsM:

argmin
X̂∈M

BIC(X̂ ) = M ln
(
1

M
∥X − X̂∥2F

)
+ k

(
X̂
)
ln(M) + C (4–12)

where X denotes a tensor with M elements, X̂ is the tensor model with k
(
X̂
)

degrees

of freedom, and C is a constant that is a function of the noise variance and is independent

of X̂ .

4.7 Using the Models for Classification

To quantify the information captured by the model we investigate single-trial

classification. We specifically consider the binary case for two classes of conditions. In
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the classification setting, the dataset is divided into the training and testing set and only

the training set is used to fit the factors of the spatiotemporal model. We use two model

fitting paradigms:

1. Partially supervised modeling: model is trained using only one condition

2. Supervised modeling: spatial factors are trained to be discriminative between
conditions, but temporal factors are trained using only one condition

The spatial and temporal factors constrain the waveform of the evoked potential. The

amplitude, power, and/or alignment of this waveform is extracted on all trials, both

training and testing, and used as features for classification. Standard classifiers, such

as nearest-neighbor, linear discriminant analysis, or support vector machines can then

employ the training set examples of these trial-varying parameters to form classification

decision boundaries.

4.8 Reward Representation in Striatal LFPs during a Reach Task

Using data from a reward expectation experiments, we test the method’s ability to

model the neural response during two different stimulus conditions—presentation of

rewarding and non-rewarding objects—and discriminate between them.

4.8.1 Data Collection and Experimental Setup

All surgical and animal care procedures were consistent with the National Research

Council Guide for the Care and Use of Laboratory Animals and were approved by the

University of Miami Institutional Animal Care and Use Committee.

A marmoset monkey, Callithrix jacchus, was trained to sit and reach for food items.

After training, the subject underwent a craniotomy surgery while under isoflurane

anesthesia. A 16-channel tungsten microelectrode array (Tucker-Davis Technologies,

Alachua, FL) was implanted in both the motor cortex (M1) and the striatum, targeting

the nucleus accumbens of the ventral striatum. Local field potentials (LFPs) were

processed by a RZ2 processor (Tucker-Davis Technologies, Alachua, FL) and filtered

through a cascaded of a 1 Hz high-pass and a 500 Hz low-pass, first-order, biquad
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filters with 12 dB/octave roll-off and stored sampled at 1017.3 Hz. The common average

reference was used to improve the signal-to-noise ratio. Only the LFPs from the array

in the stratium were used in the analysis. LFPs were digitally filtered with a 3rd-order

Butterworth high-pass filter (cutoff of 0.1 Hz) to remove low-frequency content. To

maintain zero-phase, filtering was done both forward and backward resulting in a

6th-order high-pass filter. The data was further filtered with a Gaussian window with

length of 40 samples and standard deviation of 8 samples. This corresponds to a

low-pass filter with a cutoff of 33.8 Hz.

The experiment consisted of revealing objects held behind a door within reach

and directly in front of the restrained subject. As the objects were either a mushroom

piece, a rewarding object for which the subject would reach and eat, or a wooden

bead, a non-rewarding target for which the subject would not reach, the set-up could

alternatively be considered a go-no/go task or a variable reward task. Each trial began

with the subject resting its hand on a touch pad for a random hold period. At the end of

the hold period, the door would open revealing either a mushroom piece or a wooden

bead in one of four boxed locations: top, bottom, left, and right. Once the door opens the

subject sees the object and make a decision to reach or not. Here we analyze a dataset

for a single session. There were 83 trials in total; 40 trials with mushrooms and 43 trials

with beads. We use only the LFPs in the 1 second window after the door opens.

4.8.2 Model Design

For this experiment, we anticipated strong modulation for the non-rewarding tasks.

Because of this, the model of the temporal waveforms was trained using only the

non-rewarding trial. Based on this partial supervision, the model should be well-suited to

explain the non-rewarding trials. Alternatively, we compare using discriminative spatial

projections trained using both conditions, rewarding and non-rewarding.

Three different spatiotemporal models are estimated using the training set. The

first model uses a single temporal waveform and spatial factor, a rank-1 model, and it is
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trained using partial supervision. The second model is also rank-1 but the spatial factor

is discriminatively trained. The third model uses a subspace of 4 temporal waveforms

to approximate each response, and the model is trained using only the non-rewarding

condition trials.

4.8.3 Results

We illustrate the processing of LFPs using the spatial and temporal factors in

spatiotemporal models. First we compare the temporal aspects of the LFP components

after spatial projections, one trained in the semi-supervised manner and one trained

discriminately, the signals for each trial are shown in Figure 4-4. In addition, in order

to quantify the differential variation between the two conditions, we compute the

root-mean-squared (RMS) power of the projected signal for each trial. The temporal

and spatial factors for the 3 spatiotemporal models are estimated from the training set

and are shown in Figure 4-5.
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Figure 4-4. LFPs are projected to a one-dimensional time series and the
root-mean-squared, RMS, power is computed for each trial. A) Spatial filter
that explain the maximum energy during the non-rewarding trials. B) Spatial
filter that discriminates the two reward conditions.

To illustrate the single-atom decomposition, the approximations across select trials

for each model are shown in Figure 4-6. The non-rewarding trials have larger amplitude

oscillations, and more consistent timing. This fact can also be seen by examining the

processing stages during the temporal subspace decomposition; shown in Figure 4-7.

When using the waveform magnitude and alignment as features, there is a consistent
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Figure 4-5. Spatial and temporal filters of the spatiotemporal decompositions with
different ranks objectives. A) Model trained to explain the maximum energy
during the non-rewarding trials. B) Model trained to be spatially
discriminative; whereas the spatial filter is the projection that discriminates
the conditions in terms of variance. C) Model uses a temporal subspace to
explain the maximum energy during the non-rewarding trials. C) A set of
temporal filters are trained to span the subspace with the maximum energy
during the non-rewarding trials.

pattern under the non-rewarding conditions as shown in Figure 4-8. The concentrated

points in the scatter plot indicate a clear mode in the temporal alignment of the

waveform under the non-rewarding condition; whereas, in the rewarding condition the

temporal alignment of the waveform is inconsistent with an almost uniform distribution

for the alignments. The conditions are clearly separated by their single-trial amplitude.

Similar separation is evident in the power of the signals as shown in Figure 4-4.

We tested the classification performance when using the various models’ trial-varying

parameters as features. Specifically we compared 4 sets of 3 features:

1. Time alignment of the temporal waveform
2. Scalar magnitude of temporal waveform (log-transformed)
3. Time-series RMS power after spatial projection (log-transformed)
4. A combination of (1) and (2)

For classifiers we used both a non-parametric and a parametric classifier: nearest

neighbor (1NN) and linear discriminant analysis (LDA), respectively. For each we
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Figure 4-6. Multichannel LFPs from the straitum and rank-1, single-atom model
approximations of four example trials, two from each reward condition. A)
Model trained to explain the maximum energy during the non-rewarding
trials. B) Model trained to be spatially discriminative. C) Model uses a
temporal subspace to explain the maximum energy during the non-rewarding
trials.

adjusted the number of training examples used for fitting the model and training the

classifier, and performed 20 Monte Carlo divisions of the samples into training and

testing sets. The 1NN classifier shows much higher performance, which increases with

the number of training examples; whereas, LDA’s performance did not increase with

more training samples. The classification accuracy across training set sizes is shown in

Figure 4-9. It appears that a minimum of 20 training examples is needed for consistent

performance. Subsequently, we focus on this number of examples.

Given the classifier type and training set size, we compare the performance using

the different features and models. In Table 4-1 we report the average and standard

deviation in the classification accuracy (% correct) using the 1NN classifier and a

training size of 20. Across the models, using both time and amplitude as features
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Figure 4-7. Illustration of the processing stages for the model using a temporal
subspace. For each condition, 5 example trials are shown. A) The
one-dimensional signals after applying the spatial projection. B) The
windowed signal, where the timing is found by maximum energy in the
subspace. C) Approximation of the windowed signal using the 4 filters in the
subspace. D) Atomic representation, timing and amplitude coefficients,
across all trials, separated by reward condition.

performs the best. Across all features except the time alignment, the model with a

discriminative spatial performs the best. The temporal subspace model most benefits

from using both the temporal alignment in conjunction with the amplitude. Throughout

the models, using only the timing does not perform as well, but still is significantly

above chance. For higher training set samples, as shown in Figure 4-9, using the timing

extracted from the subspace model as the sole feature achieves a classification rate

of above 90%. This means that the timing (delay) of the evoked potential is better

estimated using the subspace model versus a single waveform.

In summary, we have used spatiotemporal models of evoked potentials to extract

features from LFPs useful for discriminating between two different conditions. These

methods are more computationally expensive than using the power of the signal, but

beyond the classification rate improvement they are able to provide clearer insight into
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Figure 4-8. Timing and magnitude scatter plots for atomic decompositions of test set
examples and normal distributions fitted to the training set. A) Model trained
to explain the maximum energy during the non-rewarding trials. B) Model
trained to be spatially discriminative. C) Model uses a temporal subspace to
explain the maximum energy during the non-rewarding trials.

the single-trial evoked potentials, in terms of both the variability of the timing and of

waveform shape. In particular, the timing information was found to be most informative

when using the subspace model.

4.9 Reward Expectation in the Motor Cortex during an Observation Task

In this section, we analyze an experiment involving a variable reward task.

The motivation of using the shift-varying decompositions on this task is to identify

characteristics that consistently distinguish the evoked potentials of rewarding and
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Figure 4-9. Nearest-neighbor classifier performance using different features while
varying training set size. The error-bars correspond to the average, 5th
percentile, and 95th percentile across 20 Monte Carlo divisions of the
samples into testing and training sets. A) Model trained to explain the
maximum energy during the non-rewarding trials. B) Model trained to be
spatially discriminative. C) Model uses a temporal subspace to explain the
maximum energy during the non-rewarding trials.

Table 4-1. Classification performance for decoding object type across features and
models.

Model Time Amplitude Power Time and amplitude
A 71.7±4.7 94.0±2.8 93.5±2.4 94.1±3.3
B 73.5±4.0 95.7±1.8 94.0±4.0 96.6±2.0
C 75.4±3.5 92.8±2.8 93.6±2.5 95.8±1.8

Entries indicate the mean and standard deviation of accuracy (% correct) computed
across 20 Monte Carlo divisions of the trials into 20 for training and 63 for testing, using
nearest-neighbor for classification. Chance rate is 52%. Model A is trained to explain
the maximum energy during the non-rewarding trials. Model B is trained to be spatially
discriminative. Model C uses a temporal subspace to explain the maximum energy
during the non-rewarding trials.

non-rewarding trials. In addition, for dataset both LFPs and action potential timings were

collected, and we investigate any corresponding between the timing extracted from the

LFPs and the action potentials.

4.9.1 Data Collection

This data is from a single day’s recording collected in Joseph Francis’s laboratory

at SUNY-Downstate by Brandi Marsh. There were 96 channels of neural data collected
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from a macaque monkey. The spiking units were identified on the 96 channels. LFPs

were collected on 32 electrodes implanted in M1.

On this dataset, 8 of the LFP electrodes were excluded because of artifacts, which

were associated with high impedance. The remaining 24 channel signal was high-pass

filtered with a cutoff of 4 Hz and notch filtered at 60, 120, 180, 240, and 300 Hz with a

quality factor of 69. The data was further filtered with a Gaussian window with a length

of 40 samples and standard deviation of 8 samples. This corresponds to a low-pass filter

with a cutoff of 66.4 Hz.

During the experiment, the subject manually performed right-handed center-out

reaching tasks using a Kinarm exoskeleton (BKIN Technologies) in a two-dimensional

plane, while the left arm was restrained with a cuff. Visual feedback was provided by

cursors representing the position of the tip of the subject’s middle finger and targets

were displayed to the subject. Targets were 4-5 cm from the center target and the

targets were 1 cm in diameter. The experiment consisted of watching the center target

for 300 ms until the peripheral target appeared and center target disappeared.

During certain sessions, only the target to the right of the center is cued. In addition,

reward variability was introduced: only a subset of successful trials would end in a liquid

reward—the unsuccessful reach trials never resulted in reward. Both center and reach

targets changed color during the hold period to indicate whether the trial outcome would

be rewarding or non-rewarding. The subject could learn to associate this color cue with

the expected reward outcome. Unsuccessful trials were repeated, so the subject was

motivated to complete all trials. The presentation of reward outcomes were randomized.

The hypothesis is that the expected reward, which the subject determined by the color

cue, could be determined solely from the neural response.

This task was further abstracted by automating the cursor movement to the right

target at a speed of 1 cm/s, such that subject had to only observe the movement. Eye

tracking was performed using an IR sensitive camera and trials were aborted if gaze
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was not maintained. During this modified task, the subject’s right arm, its reaching

arm, was locked in place by securing the Kinarm exoskeleton and the left arm was still

secured in a cuff.

Here we analyze a dataset for a single session. There were 289 trials in total;

145 rewarding trials and 144 non-rewarding trials. We use the LFPs in the 2 s window

following reach target appearance, and spike data 2.5 s before and 3 s after this cue.

4.9.2 Spatiotemporal Model
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Figure 4-10. Spatiotemporal models trained during reward expectation. A set of 4
temporal filters are trained to span the subspace with the maximum energy
during the non-rewarding trials. A single spatial filter is trained to be
discriminative using the spatial covariance under both conditions.

A single spatiotemporal model was estimated using two-thirds of the trials. The

model uses a subspace of 4 temporal waveforms to approximate each non-rewarding

trial and the spatial factor is discriminatively trained with the spatial covariance estimated

during rewarding trials. The resulting filters corresponding to the temporal and spatial

factors are shown in Figure 4-10. Example trials and the models approximations are

shown in Figure 4-11. The distribution of the subspace magnitude and the temporal

alignment for the training and testing sets are shown in Figure 4-12. The two conditions

are separable by their magnitude, with larger amplitude during the non-rewarding trials

(as is intended by the modeling). The timing does not show a clear pattern; however,

we explore using the timing extracted from the LFP event as a timing event for aligning

histograms of the neural spike trains.
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Figure 4-11. Multichannel LFPs from the motor cortex and rank-1, single-atom
approximations of 4 example trials, 2 from each reward condition.
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Figure 4-12. Parameter distribution during reward expectation. Timing and magnitude
scatter plot for atomic decompositions of test set examples and normal
distributions fitted to the training set.

4.9.3 Peristimulus Time Histograms Aligned to LFP Events

The peristimulus time histogram (Gerstein & Kiang, 1960) is an estimator for the

time-varying firing rate during trials. The use of histogram assumes a time-locked,

inhomogeneous Poisson point process (Brown et al., 2002) where spike timings in a

given trial are independent. We seek to test the hypothesis that the timings aligned to

the endogeneous LFP-event are a better model for individual neural firing rate than

the original cue timing. We form two models: one that realigns the spike-times to the

LFP-event and another that uses the original timings relative to the cue. Alternatively, we
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could form a nested model using both timings (Park et al., 2011), but here the disparate

models with separate dependent variables has a clearer understanding.

We extracted the spike data 2.5 s before and 3 s after the reach target cue. Under

the first model we form a fixed width histogram for the spikes in the 2 s window following

the cue, and under the second model we form a fixed width histogram for the spikes 1 s

before and 1 s after the LFP event. For either model, any spikes that fall before these 2 s

windows are pooled into a single bin, a separate bin is used for any spikes that follow

after the window. The number of bins in the 2 s window is selected for each neuron and

condition based on minimizing a cost function based on the mean and variance of the

histogram counts (Shimazaki & Shinomoto, 2007). Specifically, for each spiking unit and

condition the bin size is selected as the minimum of the optimal bin size across both

models. The actual search is performed on the number of bins, ranging from 1 to 200,

and the bin width is chosen to equally divide the 2 s window. If the optimal bin size was

more than 250 ms that condition/unit was excluded from further analysis. This yielded

50 units under non-rewarding and 57 units under rewarding.

Given the binning time structure, the spike train recorded on a given trial are

converted into a vector of non-negative integers. The elements of this vector are

assumed to be independent but Poisson distributed with a time-varying mean. To

compare the two time alignments, we perform leave-one-out cross validation of

goodness-of-fit using log-likelihood and check for a significantly better fit under one

of the two time-structure models using Vuong’s test (Vuong, 1989). The test is simply

a t-test on the paired log-likelihood values across all trials for the two models. For each

condition, Bonferroni’s correction was applied to the p-values to account for the multiple

tests across neurons. A significance level was chosen at 1%.

There were a total of 7 units—all under the rewarding condition—for which the

original cue-time aligned model provides a significantly better fit (Vuong’s test, p < 10−5).

There was a total of 3 units—2 under the non-rewarding condition and 1 under the
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rewarding condition for which the LFP-event aligned model provides a significantly better

fit. One of these units fit significantly better to the cue-time aligned model for rewarding

conditions and the LFP-event aligned model for non-rewarding trials, and the unit’s spike

trains and time histograms are shown in Figure 4-14. The remaining units’ spike trains

and histograms which had significantly better fit under the LFP-event aligned PSTH

are shown in Figure 4-13. Table 4-2 summarizes the number of units assigned to each

model per condition.
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Figure 4-13. Spike trains and histograms for spiking units for which the LFP-event
aligned provides a significantly better fit (Vuong’s test, p < 10−5). A total of
3 units were identified—2 under the non-rewarding condition and 1 under
the rewarding condition—2 units are shown here and the remaining unit is
shown in Figure 4-14.

Table 4-2. Number of units per condition with statistically better fits for each model
Condition Number of units below LFP-event aligned Cue aligned

bin width threshold model model
Non-Rewarding 50 3 0
Rewarding 57 1 7

The results of the statistical test appears consistent with the modeling structure, as

the LFP-event is based on a model of the non-rewarding conditions. It is interesting that

the two units assigned to the LFP-event model under the non-rewarding condition have
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Figure 4-14. A unit that fit significantly better to the cue-time aligned model for rewarding
conditions and the LFP-event aligned model for non-rewarding trials
(Vuong’s test, p < 10−5).

spike rates that increase preceding the LFP-event. This points to the fact that the spiking

may be an indication of the upcoming LFP-event.

4.9.4 Discussion

Whether Vuong’s test is the best approach for comparing models of spike trains

is doubtful since the log-likelihood values are not normally distributed for low-spike

counts. For instance on trials without spikes the log-likelihood is exactly the same. We

explored other tests for non-nested models such as using a non-parametric sign-test on

the paired log-likelihood values (Clarke, 2007). Using different tests there were a larger

number of significant units; however, on inspection many were very low firing rate (less

than 1 Hz), and the models fitting appeared tenuous. This invites the opportunities for

future investigation into the best way to compare non-nested models for spike trains.

4.10 Model Selection

In the previous result sections, the model architecture for the evoked potentials were

chosen a priori ; the optimality of the model and model order were not considered. In this

section, model selection is considered for the previously analyzed datasets along with

the data from two subjects in the publicly available BCI Competition III (Blankertz et al.,
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2006) dataset II provided by the Wadsworth Center, NYS Department of Health, and

collected by Jonathan R. Wolpaw, Gerwin Schalk, and Dean Krusienski. Specifically, the

two human subjects were using a P300 speller interface within the BCI2000 software

(Schalk et al., 2004).

The aim of this analysis is to compare models with different underlying assumptions

regarding the complexity of the structure in the neural response set. The following

models were compared using different sizes of shiftable temporal waveforms and

different ranks or number of components:

• A bilinear approximation of the spatiotemporal average, i.e., the average across
trials is approximated using the singular value decomposition with different ranks.

• Woody’s method for estimating an average temporal waveform that is allowed to
shift between trials (Woody, 1967).

• A shift-varying subspace approach proposed here: this is an extension of an
amplitude and shift-varying waveform (Jaskowski & Verleger, 1999; Truccolo et al.,
2003).

• The differentially variable component analysis (dVCA) (Truccolo et al., 2003) with a
single spatial factor and run for a fixed number of iterations (11 full cycles).

• A greedy version of dVCA, (gVCA), that we implemented is also used. The
original version of dVCA used an alternating optimization across components
which does not always converge. Here we replaced this with a stage-wise greedy
approximation wherein a component is completely learned before moving on to
the next component. In the proposed greedy version, an explicit spatial factors for
each component can be naturally added; whereas, only a single spatial factor is
used in the alternating version.

• The canonical polyadic decomposition (CPD) with varying ranks that models
the trial-varying spatiotemporal waveforms, but does not account for any shifts.
The CPD is learned using a fast damped Gauss-Newton (Levenberg-Marquad)
algorithm (Phan et al., 2013a) using publically available implementation (Phan
et al., 2013b), which utilizes the MATLAB Tensor Toolbox (Bader et al., 2012).

• The raw spatiotemporal average, or trial-wise principal component analysis,
where the spatiotemporal waveform is vectorized, have orders of magnitude more
parameters are not considered because of their inefficiency.
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The Bayesian information criterion (BIC) (4–12) is used to compare the different

models and model orders in terms of mean squared error and degrees of freedom.

For each model, different lengths were used for the temporal waveform and different

number of components or ranks were used for the spatial and trial-varying components.

The number of degrees of freedom used in calculating BIC takes into account both the

number of trial-varying parameters (e.g., the trial amplitude, temporal alignment) along

with the number of trial-invariant parameters (e.g., the number of spatial factors and the

length of the temporal waveform).

A comparison of the models was performed on three datasets:

• LFPs recorded from the ventral striatum in a marmoset for the non-rewarding
object trials (Section 4.8)

• LFPs recorded from the motor cortex in a macaque for a subset (the first 48 trials)
of the non-rewarding passive observation trials (Section 4.9)

• EEGs recorded across the scalp for two human subjects (subject A and B) during
a P300 evoked potentials experiment, the first 4 highlighted responses to the
desired character across all 85 character presentations in the BCI Competition III
Wadsworth BCI dataset (Blankertz et al., 2006)

For each model and dataset, the following values were calculated: the normalized

mean squared error, the degrees of freedom, the BIC value, and the computation

time. The results across all models are shown in Figure 4-15 for the LFP datasets and

Figure 4-16 for the EEG datasets. For the models compared, the overall trend is that

increasing parameters yields better performance. The fact that BIC has not reached a

minimum for any model type indicates that the data supports a more complex structure

than the simple models are able to provide.

To better understand the model performance with a interpretable number of

components, a subset of the models with a fixed number of components are compared.

For the shift-varying model the length of the temporal waveform that yields the lowest

BIC (closer to optimal) is chosen. The results for 2 and 8 components are presented in

Table 4-3 and Table 4-4, respectively.
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Figure 4-15. Model performance across local field potential datasets. For each model
type, models with various number of parameters are compared. A) LFPs in
ventral striatum for non-rewarding object trials. B) LFPs in motor cortex for
non-rewarding passive observation trials.

The dVCA model, under both optimization methods, offers the optimal model, in

terms of BIC, for a fixed number of components: outperforming the tensor model and the

single component with a temporal subspace. For 2 components, the original alternating

optimization performed best on 3 out of the 4 subjects, and the greedy optimization was

the best for other dataset. For 8 components, the greedy optimization performed best

on 3 out of the 4 subjects and the original alternating optimization was the best for other

dataset. This switch may have been due to the fact that the alternating optimization

was ran for a fixed number of iterations, and with a larger number of components the

number of iterations needs to increase. However, it should be noted that even with a

fixed number of iterations the run time for the dVCA models was substantially greater

than the shift-varying subspace or tensor decompositions.

The results indicate there is a clear trade-off between performance and computation

time. In addition, the dVCA model is more difficult to interpret since multiple temporal
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Figure 4-16. Model performance on P300 EEG data on two subjects in the BCI
competition III Wadsworth dataset. For each model type, models with
various number of parameters are compared. A) Subject A. B) Subject B.

shifts are estimated for each trial. Whether or not the increased explanatory power of

dVCA would translate into discrimination as was seen in the shift-varying subspace is

yet to be determined.

4.11 Summary

The models for evoked potentials have been guided by hypothesis of the neural

responses, and have been constrained to trial-varying parameters that are easy to

understand such as amplitude and temporal alignment. This single-trial extraction of

these parameters allows testing for trends across trials. Here we have used existing

models and proposed new models for which the trial-varying parameters are treated

as features for single-trial classification. The models follow the lines of previous

research for varying temporal alignment (Jaskowski & Verleger, 1999; Truccolo et al.,

2003; Woody, 1967), and included spatial factors (Li et al., 2009; Rivet et al., 2009;

Souloumiac & Rivet, 2013). In addition, in one instance the spatial factor was trained to

act as a filter that explicitly discriminates between the conditions (Ramoser et al., 2000).
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Table 4-3. Model performance using 2 components for each dataset.
Dataseta Dimension Modelb Waveform length BIC×106 SNR (dB) Run time (s)
A 16×1017×43

CPD 1017 -14.88 6.36 0.32
SVS 512 -14.80 5.06 2.66
dVCA 512 -14.84 5.69 2.47
gVCA 512 ⋆-14.89 6.36 7.77

B 24×400×48
CPD 400 -1.76 1.62 0.32
SVS 128 -1.80 2.40 1.21
dVCA 64 ⋆-1.83 3.00 1.79
gVCA 128 -1.83 2.95 2.49

C 64×240×340
CPD 240 24.21 2.88 1.57
SVS 12 23.99 3.29 12.77
dVCA 64 ⋆23.74 3.77 37.63
gVCA 64 23.87 3.54 28.09

D 64×240×340
CPD 240 22.74 1.68 1.60
SVS 64 22.15 2.80 22.04
dVCA 64 ⋆21.80 3.48 50.12
gVCA 64 21.84 3.40 62.62

⋆ Indicates best model with 2 components in terms of BIC.
aDatasets: A) LFPs in ventral striatum during non-rewarding object trials. B) LFPs in
motor cortex for non-rewarding passive observation trials. C) Scalp EEGs for subject A
during BCI operation. D) Scalp EEGs for subject B during BCI operation.
bModels consist of the canonical polyadic decomposition (CPD), shift-varying subspace
(SVS) with a single spatial factor, differentially variable component analysis (dVCA) with
a single spatial factor, and the greedy version (gVCA) that has a unique spatial factor for
each component.

As opposed to the majority of the existing literature, we have explicitly considered the

spatiotemporal neural signals across the trials as a tensor.

Tensor decompositions are a natural model for evoked potentials (Acar et al., 2007;

Cichocki et al., 2008; Dauwels et al., 2011). Here the use of shift-varying models has

been combined with the tensor models using explicit estimation of shifts. This does

not require approximations restricted to low-frequency signals (Mørup et al., 2008):

an approximation that is used by shift-varying models for evoked potential models

(Jaskowski & Verleger, 1999; Pham et al., 1987; Weeda et al., 2012). We introduced

a shift-varying model that does not require this approximation, and uses a temporal

132



Table 4-4. Model performance using 8 components for each dataset.
Dataseta Dimension Modelb Waveform length BIC×106 SNR (dB) Run time (s)
A 16×1017×43

CPD 1017 -15.06 10.29 1.41
SVS 512 -14.79 5.63 4.97
dVCA 128 -14.93 7.05 28.32
gVCA 512 ⋆-15.16 10.93 35.18

B 24×400×48
CPD 400 -1.86 4.66 0.61
SVS 256 -1.87 4.52 1.76
dVCA 64 ⋆-2.00 6.90 17.87
gVCA 64 -1.98 6.56 18.53

C 64×240×340
CPD 240 22.06 7.10 3.94
SVS 64 22.35 6.53 28.47
dVCA 64 21.43 8.33 513.62
gVCA 64 ⋆21.40 8.41 180.36

D 64×240×340
CPD 240 21.36 4.43 4.37
SVS 200 21.12 4.88 24.70
dVCA 64 20.32 6.44 480.10
gVCA 64 ⋆20.03 7.02 338.37

⋆ Indicates best model with 8 components in terms of BIC.
aDatasets: A) LFPs in ventral striatum during non-rewarding object trials. B) LFPs in
motor cortex for non-rewarding passive observation trials. C) Scalp EEGs for subject A
during BCI operation. D) Scalp EEGs for subject B during BCI operation.
bModels consist of the canonical polyadic decomposition (CPD), shift-varying subspace
(SVS) with a single spatial factor, differentially variable component analysis (dVCA) with
a single spatial factor, and the greedy version (gVCA) that has a unique spatial factor for
each component.

subspace to explain each single-trial waveform. After alignment of each trial, the model

is a block term decomposition (De Lathauwer, 2008).

The tensor treatment also allows standard tensor decompositions to be compared

to the shift-varying methods using standard model selection criterion. Through this

analysis, it was confirmed that the additional computational cost of shift-varying

decompositions is offset by increased model flexibility. From the results, it is clear

that the shift-varying models are able to more parsimoniously explain the data: they

have fewer coefficients, better fit, and are still more interpretable than standard tensor

decompositions.
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The single-trial modeling and classification was applied to two reward expectation

datasets. For the dataset with both neural action potentials and LFPs, we were able to

evaluate the coupling between these scales. Specifically, models of the neural firing rate

aligned to the experimental timing are compared to models aligned to the endogenous

timing of the evoked potential. Cross-validation is used to select which time events

better explain the neural activity in terms of a simple peristimulus time histograms

(PSTH) model for the firing rate (Gerstein & Kiang, 1960).

This study serves to bring together a number of current trends in the evoked

potential research. Throughout, we have used real datasets to motivate the methodology

for shift-tolerant tensor models. The shift-tolerant models use the explicit timing and

amplitude distribution of spatiotemporal waveforms that reoccur across trials. Overall,

these efforts attempt to form better instantaneous measures of the characteristics of the

brain: from which can hope to capture and understand the ongoing processing involved

in cognition.
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CHAPTER 5
NEURAL DECODING WITH KERNEL-BASED METRIC LEARNING

When studying the nervous system, the choice of metric for the neural responses

is a pivotal assumption. For instance, a well-suited distance metric enables us to

gauge the similarity of neural responses to various stimuli and assess the variability of

responses to a repeated stimulus—exploratory steps in understanding how the stimuli

are encoded neurally. Here we introduce an approach where the metric is tuned for

a particular neural decoding task. In particular, neural spike train metrics have been

used to quantify the information content carried by the timing of action potentials.

While a number of metrics for individual neurons exist, a method to optimally combine

single-neuron metrics into multi-neuron, or population-based, metrics is lacking.

Metric-learning algorithms change the metric in the original space to achieve

some specific objective, usually exploiting supervisory information (Fukumizu et al.,

2004; Lowe, 1995; Xing et al., 2003). When the original space is composed of multiple

independent dimensions, some possible ways to change the metric are by removing

dimensions, scaling dimensions, or rotating the axes of the space by using linear

combinations of dimensions. A linear projection of the dimensions is optimized by a

number of supervised learning methods. Removing or weighting features corresponds to

feature selection.

Metric learning is used as an intelligent preprocessing for classification methods

that depend on a measure of similarity or dissimilarity to determine if two samples are of

the same class. For instance, kernel machines or nearest-neighbor-based approaches

compare novel samples relative to already observed samples but rely on a predefined

similarity measure. These classifiers are highly dependent on the preprocessing and

Portions of this Chapter were submitted for publication in the following manuscript:
Brockmeier, A. J., Choi, J. S., Kriminger, E. G., Francis, J. T., and Principe, J. C. (2014).
Neural decoding with kernel-based metric learning. Neural Computation, 26(6), in press.
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offer little insight into the importance of individual feature dimensions. Metric learning

can improve the classification performance by adjusting the importance of individual

features for the task (Lowe, 1995; Takeuchi & Sugiyama, 2011), and these weights can

be used to highlight the features or dimensions relevant for the objective. Furthermore,

metric learning approaches can also improve kernel regression (Fukumizu et al., 2004;

Navot et al., 2006; Weinberger & Tesauro, 2007).

We investigate classes of metrics that are parametrized along spatiotemporal

dimensions of neural responses. For instance, it is natural to consider which channels or

time points in the neural response are most useful for distinguishing among conditions.

Unlike previous metric-learning approaches that have concentrated on learning

projections and weightings for scalar-valued variables, here we also explore using

metric learning where the weights correspond to different neurons in multiunit spike train

metrics or vectors of spatial amplitudes from multichannel LFPs.

With vector-valued data each individual metric is defined over a vector space.

Using a weighted combination of these metrics we can form strictly spatial or temporal

weightings for multivariate time series. In addition, we propose to optimize multi-neuron

spike train metrics (Aronov, 2003; Houghton & Sen, 2008) formed as combinations

of spike train metrics defined for individual neurons (Paiva et al., 2009; van Rossum,

2001; Victor & Purpura, 1996). To our knowledge, ours is the first attempt to explicitly

optimize the parameters of multi-neuron spike train metrics, instead of using pre-defined

weightings.

Given the form of the projections or weightings, one must consider their optimization.

A number of metric-learning cost functions have been posed in the literature, but we

propose using a kernel-based measure of dependence known as centered alignment

(Cortes et al., 2012). Centered alignment was shown to be a useful measure for

kernel-learning (Cortes et al., 2012), and a similar but unnormalized kernel dependence

measure, Hilbert Schmidt information criterion (HSIC), has been used for feature
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selection (Song et al., 2012). Another kernel-based dependence measure formulated

based on conditional entropy (Sanchez Giraldo & Principe, 2013) has also been

shown to be useful for learning a Mahalanobis distance (Brockmeier et al., 2013c;

Sanchez Giraldo & Principe, 2013) and a weighted product kernel (Brockmeier et al.,

2013a). The objective and optimization techniques used here are most similar to those

proposed by Fukumizu et al. (2004), but by replacing the kernel-based canonical

correlation measure (Bach & Jordan, 2003) with centered kernel alignment we avoid

both matrix inversion and regularization.

Using the kernel-based objective, we highlight the connection between optimizing

weighted tensor-product kernels and metric learning. Optimizing a metric in a kernel-based

framework has the added benefit that it naturally optimizes the kernel itself for use in

support vector machines. This eliminates the need for the user to choose a kernel size

through cross-validation or trial-and-error. Kernels also provide a straightforward way to

form metrics corresponding to nonlinear projections. This is done by retrieving a metric

from a unweighted sum of optimized kernels—an approach distinct from optimizing

a convex sum of kernels (Lanckriet et al., 2004). Ultimately, this leads us to propose

optimized multi-neuron spike train kernels formed as the product and the sum of product

of single-unit spike train kernels (Paiva et al., 2009; Park et al., 2013, 2012).

Using the kernel-based dependence measure we optimize multi-neuron metrics

and metrics on local field potentials (LFPs). The approach is demonstrated on invasively

recorded neural data consisting of both spike trains and LFPs. The experimental

paradigm consists of decoding the location of tactile stimulation on the forepaws of

anesthetized rats. We show that the optimized metrics highlight the distinguishing

dimensions of the neural response, significantly increase the decoding accuracy, and

improve non-linear dimensionality reduction methods for exploratory neural analysis.

The rest of the chapter is organized as follows: we first introduce the mathematical

representation of the neural response and different metrics that use linear projections
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or weightings; from the metrics we form kernel-based similarity measures; from the

kernels we introduce the dependence measure (Cortes et al., 2012); and from these we

form metric-learning optimization problems. We verify the classification performance of

the proposed approach on benchmark datasets, and show results on the experimental

datasets. We conclude with a discussion of the results, the connection of metric-learning

to neural encoding, and future applications.

5.1 Metrics and Similarity Functions

5.1.1 Neural Data Representation and Metrics

For the trial-wise classification of different conditions, a sample from each trial is

the concatenation of the neural response across all selected time samples, electrode

channels, or neural spiking units. Let x = [x(1) ... x(P)] denote the P-dimensional

neural response to a given trial, where parenthetical subscripts denote the response

dimension: x(i) may be a scalar, vector, or set (in the case of spike trains). Let xj denote

the neural response for the j th trial, j ∈ {1, ... , n}, and let lj ∈ {1, ... ,m} denote the

discrete class label corresponding to a certain class condition for the j th trial. The set

{zj = (xj , lj)}nj=1 represents a joint sample of the neural responses and labels.

A bivariate function d(·, ·) is a distance metric with domain X × X , if it satisfies the

following requirements:

1. d(x , x ′) ≥ 0 ∀x , x ′ ∈ X
2. d(x , x ′) = d(x ′, x) ∀x , x ′ ∈ X
3. d(x , x ′) = 0 if and only if x = x ′

4. d(x , x+) ≤ d(x , x ′) + d(x ′, x+) ∀x , x ′, x+ ∈ X

Functions that satisfy all but the third requirement are considered pseudo-metrics. In

metric learning, achieving a pseudo-metrics may be useful since it allows points to be

considered equivalent even if they differ on certain, hopefully irrelevant, aspects.

Consider the distances between pairs of neural responses along each dimension:

the distance between samples x , x ′ on the i th dimension is denoted di(x(i), x ′(i)). For
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instance, this may be the Euclidean metric for scalars or vectors or a metric on spike

trains (Dubbs et al., 2010; Paiva et al., 2009; van Rossum, 2001).

A metric for the joint neural response is formed by combining these individual

distances using a feature weighting (Lowe, 1995; Takeuchi & Sugiyama, 2011), where

the weights control the importance of the distance along each dimension. Let w denote

a nonnegative P-dimensional weighting vector, such that ∀i ,wi ≥ 0. The metric using

this weighting is formed as

dγw(x , x
′) =

P∑
i=1

wid
γ
i (x(i), x

′
(i)), (5–1)

where the exponent γ ≥ 1 controls how relatively large distances on individual

dimensions contribute to the total distance. This is a weighted Euclidean metric if

γ = 2 and the metric for each dimension is the Euclidean or L2 metric.

If wi = 0 then the metric is actually a pseudo-metric since it does not satisfy the

property that d(x , x ′) = 0 if and only if x = x ′. However, this invariance to certain

dimensions is a goal of metric learning. For vector-valued data the weighting is a special

case of a linear transformation that is equivalent to globally scaling the input dimensions:

wid
γ
i (x(i), x

′
(i)) = d

γ
i (w

1/γ
i x(i),w

1/γ
i x

′
(i)).

If each neural response is a vector of scalars, we can define a more general

Euclidean metric parametrized by a matrix A ∈ RP×Q using a linear projection of the

samples y = ATx , y(j) =
∑
i Ai ,jx(i), j = 1, ... ,Q. The Euclidean distance in the

Q-dimensional feature space d2(y , y ′) =
∑Q
j=1∥y(j)−y ′(j)∥22 is equivalent to a Mahalanobis

distance in the original space, with the inverse covariance matrix replaced by the

symmetric positive definite matrix AAT:

d2A(x , x
′) = d2

(
ATx ,ATx ′

)
=
∥∥ATx − ATx ′∥∥2

2
= (x − x ′)TAAT(x − x ′). (5–2)

139



As A has P · Q coefficients there are more degrees of freedom to distort the space

according to this metric. This matrix is strictly positive definite if P = Q and AAT is full

rank; otherwise, the metric is actually a pseudo-metric.

The special case of a weighted metric (5–1) appears if A is diagonal and square,

with P diagonal entries Ai ,i =
√
wi . More generally, a Mahalanobis distance can be seen

as a weighting over a squared distance matrix between all dimensions. Using properties

of the trace,

d2A(x , x
′) = tr

[
AAT(x − x ′)(x − x ′)T

]
= tr

[
AATD

]
=
∑
i ,j

[AAT]i ,jDi ,j (5–3)

where Di ,j = ∥x(i) − x(j)∥22 = ⟨x(i), x(j)⟩ − ⟨x(i), x ′(j)⟩ − ⟨x ′(i), x(j)⟩ + ⟨x ′(i), x ′(j)⟩. Unless A

is diagonal this metric exploits the inner-product between different dimensions. Written

in this form, it is clear how a Mahalanobis-type metric can be formed whenever all

the dimensions of the neural response correspond, or can be mapped, to the same

Hilbert space. Specifically, let ϕ : X → H define a mapping from any element x(i) ∈ X

to an element in the Hilbert space ϕ(x(i)) ∈ H. The Mahalanobis-type metric in this

space is defined by Equation (5–3) where Di ,j = ⟨ϕ(x(i)),ϕ(x(j))⟩ − ⟨ϕ(x(i)),ϕ(x ′(j))⟩ −

⟨ϕ(x ′(i)),ϕ(x(j))⟩ + ⟨ϕ(x ′(i)),ϕ(x ′(j))⟩. As long as the inner-product can be defined between

the dimensions, for instance by using the spike-train kernels discussed in Section 5.1.3,

one can form metrics that use the distance between different spiking units. This would

replicate the interaction between spikes on different units intrinsic to some multi-unit

metrics (Aronov, 2003). However, evaluating the inner-product between each pair

of dimensions for every pair of samples is computationally demanding, and is not

investigated here.

5.1.2 Kernels

Kernel functions are bivariate measures of similarity based on the inner-product

between samples embedded in a Hilbert space. Let the domain of the neural response

be denoted X and consider a kernel κ : X × X → R. If κ is positive definite then there is
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an implicit mapping ϕ : X → H that maps any element x ∈ X to an element in the Hilbert

space ϕ(x) ∈ H such that κ(x , x ′) = ⟨ϕ(x),ϕ(x ′)⟩.

As we want to explore the similarity across the individual dimensions of the

data, we compose a joint similarity measure from the marginal similarity on each

dimension. Let Xi denote the neural response domain of the i th dimension and consider

a positive-definite kernel κi : Xi × Xi → R and corresponding mapping ϕi : Xi → Hi for

this dimension. The similarity between a pair of samples x and x ′ on the i th dimension is

κi(x(i), x
′
(i)) = ⟨ϕi(x(i)),ϕi(x ′(i))⟩.

5.1.2.1 Tensor-product kernel

The joint similarity over both dimensions i and j is computed by taking the product

between the kernel evaluations κ[ij ](x(i ,j), x ′(i ,j)) = κi(x(i), x
′
(i)) · κj(x(j), x ′(j)). The new kernel

κ[ij ] is called a tensor-product kernel since it corresponds to using a mapping function

that is the tensor product between the individual mapping functions ϕ[ij ] = ϕi ⊗ ϕj where

ϕ[ij ](x(i ,j)) ∈ H[ij ]. The product of positive-definite kernels is positive definite, and taking

the product over all dimensions returns a positive-definite kernel over the joint space:

κ(x , x ′) =
∏
i κi(x(i), x

′
(i)).

Due to the product, if for one dimension κi(x(i), x ′(i)) ≈ 0 then κ(x , x ′) ≈ 0. If some

of the dimensions are noisy with respect to the task, then they will have a deleterious

effect on the joint similarity measure. In order to separately weight the contribution of

each dimension in the product, consider taking the kernel for the i th dimension to the

θi ≥ 0 power [κi(x(i), x ′(i))]
θi . As θi → 0 the influence of i th dimension decreases, and

θi = 0 =⇒ (κi(x(i), x
′
(i)))

θi = 1, thereby removing its effect altogether. Taking the product

over all dimensions results in a weighted product kernel over the joint space:

κθ(x , x
′) =

∏
i

[
κi(x(i), x

′
(i))
]θi , (5–4)

where θ = [θi ... θP ] denotes the nonnegative parameter vector. However, not all

positive-definite kernels can be taken to an arbitrary power and still be positive definite.
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Only the class of positive-definite kernels that are infinitely divisible (Horn, 1967) can be

taken to arbitrary powers such that the resulting kernel κθ is positive definite.

5.1.2.2 Infinitely divisible kernels

There are many infinitely divisible kernels, but our interest in metric learning

leads us to the special case of kernels that are functions of distances κ(x , x ′) =

f (d(x , x ′)) = f (u). Here we rely on the work of Schoenberg (1938) who explored the

connection between distance metrics and positive-definite kernel functions: a kernel

that is a function of distance metric is only positive definite if the metric space can be

isometrically embedded in Hilbert space. From Schoenberg (1938) Theorem 4, the

most general function f (u) which is bound away from zero and whose positive powers

[f (u)]λ,λ > 0 are positive definite is of the form f (u) = exp(c + ψ(u)) where ψ(u) is

positive definite and c is a constant. For kernels of this form, positive powers simply

scale the constant and function [f (u)]λ = [exp{c + ψ(u)}]λ = exp{c ′ + λψ(u)},λ > 0.

Thus, a class of kernels whose positive powers are all positive definite are of the

form κ(x , x ′) = f (d(x , x ′)) = exp(c + h(x , x ′)) where h(x , x ′) is positive definite. Given a

metric d(x , x ′), κ(x , x ′) = exp(0 + h(x , x ′)) = exp{−g(d(x , x ′)} is positive definite for only

certain choices of g(·). In particular if dp(x , x ′) corresponds to a p-norm or an Lp metric

then κ(x , x ′) = exp(−dpp (x , x ′)) is positive definite for 0 < p ≤ 2 (Schoenberg, 1938).

Furthermore, the kernel κ(x , x ′) = exp(−dγp (x , x ′)) is positive definite for 0 < p ≤ 2 and

0 < γ ≤ p (Schoenberg, 1938). For p < 1, dp is not actually a metric since it violates the

triangle inequality; nonetheless, dγp is embeddable in a vector space for 0 < γ ≤ p.

Clearly, the Gaussian kernel κ(x , x ′) = exp(−θd2(x , x ′)) is positive definite if and

only if d(x , x ′) is a Euclidean or L2 metric; whereas, the Laplacian kernel κ(x , x ′) =

exp(−θd(x , x ′)) is positive definite for an Lp metric with 1 ≤ p ≤ 2.
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5.1.2.3 Weighted product kernels

For kernels of this form, κθii (x(i), x
′
(i)) = exp(−θidγ(x(i), x ′(i))), and substituting this

equation into the weighted product kernel (5–4) yields

κθ(x , x
′) =

P∏
i=1

exp
(
−θidγ(x(i), x ′(i))

)
= exp

(
−

P∑
i=1

θid
γ(x(i), x

′
(i))

)
, (5–5)

where θi can now be regarded as a parameter of kernel κi . Letting θ = w we have

κθ(x , x
′) = exp (−dγw(x , x ′)); this shows the equivalence between the weighted

metric (5–1) and parametrized product kernel (5–4).

5.1.2.4 Multivariate Gaussian kernel

Similarly, using the Mahalanobis metric (5–2) on scalar-valued data, a multivariate

Gaussian kernel can be defined as the product of Q Gaussian kernels:

κA(x , x
′) = exp

(
−d2A(x , x ′)

)
=

Q∏
j=1

exp
(
−d2

(
y(j), y

′
(j)

))
, (5–6)

where y(j) =
∑
i Ai ,jx(i).

5.1.2.5 Sum of product kernels

For scalar-valued data the weighted and Mahalanobis metrics correspond to linear

projections. A nonlinear metric can be formed from the direct sum of kernels—as

the sum of positive-definite functions is itself a positive-definite function. Let Θ =

[θ1, θ2, ... , θQ ] denote a matrix of different weighting vectors corresponding to a set of

product kernels {κθj}Qj=1. Define κΘ as an unweighted sum of Q product kernels:

κΘ(x , x
′) =

Q∑
j=1

κθj (x , x
′) =

Q∑
j=1

P∏
i=1

exp
(
−θjid

γ(x(i), x
′
(i))
)
. (5–7)

Let ϕΘ denote the implicit mapping defined by the sum kernel. This mapping defines a

metric between x and x ′ that corresponds to the L2 distance in the Hilbert space

dΘ(x , x
′) = ∥ϕΘ(x)− ϕΘ(x ′)∥2 =

√
κΘ(x , x)− 2κΘ(x , x ′) + κΘ(x ′, x ′). (5–8)
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5.1.2.6 Kernel matrices

In terms of a group of samples, the γ power of the distance matrix for the i th

dimension is denoted D◦γ
i where [D◦γ

i ]j ,k = d
γ(xj(i), xk(i)) j , k ∈ {1, ... , n}. The notation

D◦2 denotes that each element is squared D◦2 = D ◦ D where ◦ denotes the entry-wise

(Hadamard) product, as opposed to the matrix product D2 = DD.

The kernel matrix for the i th dimension is Ki = exp(−θiD◦γ
i ). The kernel matrix for

the product and sum kernels are computed as Kθ = K1 ◦ K2 ◦ · · · ◦ KP = e−
∑
i θiD

◦γ
i and

KΘ = Kθ1 + Kθ2 + · · ·KθQ . The labels of the trials can also be represented by a kernel

matrix L, where each entry Lj ,k = δ(lj , lk) use the 0-1 kernel, δ(l , l ′) = 1 if l = l ′ and

δ(l , l ′) = 0 if l ̸= l ′.

5.1.3 Neural Metrics

Out of the many possible neural response metrics, we consider the following

metrics:

• Temporal metrics for multivariate time-series: Each individual distance is the
Euclidean distance between the vectors of instantaneous amplitudes across the
channels. Each weight corresponds to a particular time lag. The weight adjusts the
importance of the distance between the spatial patterns of the two samples at that
particular time.

• Spatiotemporal projections: A linear projection matrix is used to form a Mahalanobis
distance.

• Spike train metrics: Each individual distance is between spike trains on the same
unit at different temporal precisions. The weight adjusts the importance of each
unit at a particular temporal precision value. There are a number of spike train
metrics, but we consider two different metrics:

– Spike train alignment metric. The metric is the L1 or L2 version of the
Victor-Purpura (VP) spike train distance (Dubbs et al., 2010; Victor & Purpura,
1996).

– Kernel-based spike metric. The metric is defined by the mapping ϕ induced
by a spike train kernel (Park et al., 2013, 2012). We use the memoryless
cross-intensity (mCI) spike train kernel (Paiva et al., 2009). Let x = T and
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x = T ′ be two sets of spike times, the kernel is defined as

κ(x , x ′) = ⟨ϕ(x),ϕ(x ′)⟩ =
∑
t∈T

∑
t′∈T ′

exp(−q|t − t ′|).

Then ∥ϕ(x) − ϕ(x ′)∥2 =
√
κ(x , x)− 2κ(x , x ′) + κ(x ′, x ′) is an L2 metric (Paiva

et al., 2009).

Alternatively, multichannel spike trains can be transformed to vectors in Euclidean

space. First the spike timings for each unit, are quantized into fixed-width, contiguous,

and non-overlapping bins. Then the binned spike count vectors for each neuron are

concatenated and a spatiotemporal projection can be applied.

Based on these metrics we use kernel functions as measures of similarity. On

each individual dimensions we use either the Gaussian kernel for the Euclidean and

L2 distances or the Laplacian for L1 metrics such as the original Victor-Purpura metric.

The kernels for individual dimensions are combined using the tensor-product kernel in

Equation (5–5). The sum of product kernels (5–7) consists of an unweighted sum of the

weighted product kernels with different weightings. For the Mahalanobis metric (5–2) a

multivariate Gaussian kernel is used (5–6).

5.2 Kernel-based Metric Learing

We introduce a kernel-based measure to quantify the joint information between

neural responses and labels corresponding to stimuli or condition. The measures can

be used as an objective function to optimize the metric used to evaluate the similarity

among neural responses.

5.2.1 A Kernel-based Measures of Dependence

Kernel target alignment measures the similarity between two kernel functions using

their normalized inner-product (Cristianini et al., 2002). For jointly sampled data, the

inner-product of kernel functions defines a measure of dependence between random

variables (Gretton et al., 2005). Unlike Pearson’s correlation-coefficient which uses

the values of the random variables, kernel-based dependence assesses the degree to

which the similarity of example pairs, as defined by each kernel function, matches or
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aligns. In terms of distance-based kernel functions, the dependence could be posed

as, “Do nearby examples, as defined by the first random variable, correspond to nearby

examples in the second random variable?”

Consider the statistical alignment of two kernel functions. Let z ∈ Z denote a

random variable and z ′ be an independent and identically distributed random variable.

Let κ1 and κ2 be two kernel functions with implicit mappings ϕi : Z → Hi . A natural

measure of similarity between these kernel functions is the expected value of their

normalized inner product across pairs of realizations

A(κ1,κ2) =
Ez ,z ′[κ1(z , z

′)κ2(z , z
′)]√

Ez ,z ′[κ21(z , z
′)]Ez ,z ′[κ22(z , z

′)]
. (5–9)

Now, consider when z = (x , y) represents a joint sample of x ∈ X and y ∈ Y

and κ1,κ2 only depend on x and y , respectively: κ1(z , z ′) = κx(x , x
′) and κ2(z , z ′) =

κy(y , y
′). The marginal behavior of the kernels can be expressed in terms of their

mapping functions:

ϕ1(z) = (ϕx ⊗ 1y)(x , y), where ϕx : X → Hx , and ∀y 1y(y) = 1 (5–10)

ϕ2(z) = (1x ⊗ ϕy)(x , y), where ϕy : Y → Hy , and ∀x 1x(x) = 1. (5–11)

Then A(κ1,κ2) =
Ex ,yEx ′,y ′[κx(x , x

′)κy(y , y
′)]√

ExEx ′[κ2x(x , x
′)]EyEy ′[κ2y(y , y

′)]
. (5–12)

is a measure of statistical dependence between x and y , since it is higher when similar

pairs of one variable correspond to similar pairs in the other variable. However, the

measure performs poorly in practice without centering the kernels first (Cortes et al.,

2012).

Centering plays the same role as removing the mean when computing the

correlation coefficient between scalar-valued random variables. The centered kernel
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alignment is defined by Cortes et al. (2012) as

ρ(κ1,κ2) = A(κ̃1, κ̃2) (5–13)

κ̃i(z , z
′) = ⟨ϕ̃i(z), ϕ̃i(z ′)⟩ = ⟨ϕi(z)− Ez [ϕi(z)],ϕi(z ′)− Ez ′[ϕi(z ′)]⟩ (5–14)

= κi(z , z
′)− Ez ′[κi(z , z ′)]− Ez [κi(z , z ′)] + Ez ,z ′[κi(z , z ′)].

Centering the mapping functions is key to a useful measure of dependence. The

role of centering can be seen by expanding the numerator of the kernel target alignment

in tensor-product form:

Ez ,z ′[κ1(z , z
′)κ2(z , z

′)] = Ez ,z ′⟨(ϕ1 ⊗ ϕ2)(z , z), (ϕ1 ⊗ ϕ2)(z ′, z ′)⟩

= ⟨Ez [(ϕ1 ◦ ϕ2)(z)], Ez ′[(ϕ1 ◦ ϕ2)(z ′)]⟩

= ∥Ez [(ϕ1 ◦ ϕ2)(z)]∥22 (5–15)

Writing the original kernel in terms of the centered kernel (5–14) yields

Ez(ϕ1 ◦ ϕ2)(z) = Ez(ϕ̃1 + Ez ′[ϕ1(z ′)]) ◦ (ϕ̃2 + Ez ′[ϕ2(z ′)])(z)

= Ez(ϕ̃1 ◦ ϕ̃2)(z) + µ1 ◦ µ2 + µ2 ◦ ϕ̃1(z) + µ1 ◦ ϕ̃2(z)

= Ez(ϕ̃1 ◦ ϕ̃2)(z) + µ1 ◦ µ2

where µi = Ez(ϕi(z)) and Ez(ϕ̃i(z)) = 0. In terms of the marginal kernels

µ1 ◦ µ2 = Ex ,y [(ϕx ⊗ 1y)(x , y)] ◦ Ex ,y [(1x ⊗ ϕy)(x , y)] = (Exϕx(x))⊗ (Eyϕy(y)) = µx ⊗ µy ,

which is only a measure of the marginals—not of their joint distribution—thus its biases

the norm in Equation (5–15) regardless of the dependence between x and y .

Again if z = (x , y) and κ1(z , z ′) = κx(x , x
′) and κ2(z , z ′) = κy(y , y

′), then

ρ(κ1,κ2) = ρκx ,κy (x , y) is a measure of statistical dependence between x and y :

ρκx ,κy (x , y) =
Ex ,yEx ′,y ′[κ̃x(x , x

′)κ̃y(y , y
′)]√

ExEx ′[κ̃2x(x , x
′)]EyEy ′[κ̃2y(y , y

′)]
. (5–16)
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For positive-definite-symmetric kernels, ρκx ,κy ∈ [0, 1] (Cortes et al., 2012). Centered

alignment is essentially a normalized version of the Hilbert-Schmidt Information Criterion

(Gretton et al., 2005).

5.2.1.1 Correntropy coefficient

Additionally, centered alignment is related to the localized similarity measure known

as correntropy (Liu et al., 2007). Specifically, if x and y are in the same domain then a

single shift-invariant kernel κ can be used to define the correntropy coefficient ηκ(x , y)

(Rao et al., 2011):

ηκ(x , y) =
Ex ,y [κ̃(x − y)]√

Ex ,x ′[κ̃(x − x ′)]Ey ,y ′[κ̃(y − y ′)]

When κ(x − y) = Ex ′,y ′[κx(x , x ′)κy(y , y ′)] then ρκx ,κy (x , y) = ηκ(x , y). For instance, this

is the case if κx and κy are Gaussian kernels and (x , y) is normally distributed. However,

this approach is not applicable for metric learning where x and y correspond to two

different domains, i.e., labels and neural responses.

5.2.1.2 Empirical estimation

An empirical estimate of the centered alignment can be computed directly from the

kernel matrices K and L where [K ]i ,j = κx(xi , xj) and [L]i ,j = κy(yi , yj):

ρ̂(K ,L) =
⟨K̃ , L̃⟩√
⟨K̃ , K̃ ⟩⟨L̃, L̃⟩

=
⟨K̃ , L̃⟩
∥K̃∥2∥L̃∥2

(5–17)

where K̃ and L̃ are the centered kernel matrices. The centered kernel is computed as

[K̃ ]i ,j = [K ]i ,j −
1

n

n∑
i=1

[K ]i ,j −
1

n

n∑
j=1

[K ]i ,j +
1

n2

n∑
i=1

n∑
j=1

[K ]i ,j . (5–18)

Using matrix multiplication, K̃ = HKH, where H = I − 1
n
1⃗1⃗T is the empirical centering

matrix, I is the n × n identity matrix, and 1⃗ is a vector of ones. The computational

complexity of centered alignment between two n × n kernel matrices is O(n2).
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5.2.2 Metric Learning Optimization Using Centered Alignment as an Objective

Our objective for metric learning is to maximize the dependence between the neural

data representation and the class label. Centered alignment is used to evaluate the

dependence in terms of the kernel representations. The 0-1 kernel on the labels is fixed,

and the parameters of a metric-based kernel defined in Section 5.1.2 are optimized in

order to maximize the centered alignment.

For convenience, we use the logarithm of the centered alignment as the objective.

With or without the logarithm the kernel-based objective is a nonlinear functions of

the parameters, and we propose to use approximate inverse Hessian and stochastic

gradient methods for optimization. We detail the gradients below.

First, we consider optimizing the sum and product kernels. As the product kernel

(5–5) is the trivial case of the sum kernel (5–7), we consider only the optimization of the

sum kernel parameters Θ = [θji ]
P,Q
i=1,j=1 in the following problem:

max
Θ≥0

log(ρκΘ,δ(x , l)). (5–19)

When the empirical estimate of centered alignment is substituted the explicit objective

function is

f (Θ) = log(ρ̂(KΘ,L)) = log(tr(KΘHLH))− log(
√
tr(KΘHKΘH)) + k (5–20)

where KΘ is the kernel matrix of the responses, L is the 0-1 kernel matrix of the labels,

H is the centering matrix, and k is a constant that does not depend on Θ. The gradient

of the objective function with respect to the kernel matrix is

G = ∇KΘf (Θ) =
HLH

tr(KΘHLH)
− HKΘH

tr(KΘHKΘH)
. (5–21)
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The gradient kernel with respect to the kernel parameter θji is ∂KΘ
∂θji
= −Kθj ◦ D◦γ

i . Then

the gradient of the objective is

∂f (Θ)

∂θji
= tr ((−Kθj ◦D◦γ

i )G) . (5–22)

The non-negativity constraint on Θ can be removed by performing the optimization

in terms of u where θji = 10
uji . The gradients can be made in terms of unconstrained

optimization variables ui by ∂f (Θ)

∂uji
= θi log(10)

∂f (Θ)

∂θji
. This yields an unconstrained

optimization.

For the case of scalar-valued data we explore learning a Mahalanobis metric (5–6)

using the logarithm of the empirical centered alignment as the objective:

max
A
f (A) = log(ρ̂(KA,L)) (5–23)

The gradient of the objective function with respect to A is

∇Af (A) = −4XT
(
(G ◦ KA)− diag((G ◦ KA)1⃗)

)
XA (5–24)

where X is a n × P matrix of the data, G is the gradient of the objective function with

respect to the kernel matrix (5–21), and 1⃗ is a vector of ones.

For the approximate inverse Hessian optimization we use minFunc (Schmidt, 2012),

using the default limited memory BFGS update. For the sum and product kernels, prior

to optimization the individual matrices D◦γ
i are all normalized such that the average

across all elements is 1. For the product kernel all the weights are initialized to be

10−3 and for the sum of product kernels they are uniformly distributed in 10−3 ± 10−4.

For the Mahalanobis distance, the optimization of A yields varying results depending

on the initial value of A, but using the projection from Fisher discriminant analysis for

initialization performs well in practice.

As an alternative optimization that can handle large sample sizes, we use a

stochastic gradient over small batches. Specifically, we use a paradigm commonly used
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in feature selection: at each iteration, one example is sampled and then a pre-specified

number of examples of the same class and from differing classes are sampled to form

the batch (Kira & Rendell, 1992). For each batch, the weights are updated based on the

gradient of the objective. Very small batches—even just four examples—are sufficient for

learning the parameters of the product kernel, but to learn a Mahalanobis distance we

found larges batches, in the hundreds, are necessary.

5.3 Benchmark Comparison

Using publicly available datasets, we contrast the classification performance using

centered alignment metric learning against using optimize a weighted metric to a feature

weighting method (Takeuchi & Sugiyama, 2011). The feature weighting is explicitly

optimized to improve the k-nearest neighbor classification; this serves as a benchmark

for centered alignment metric learning, which is not tuned to any particular classifier.

The method was shown to consistently outperform other feature weighting methods.

For a valid comparison the specifics of the benchmark comparison by Takeuchi &

Sugiyama (2011) are replicated; we use the same UCI machine learning datasets

(Bache & Lichman, 2013; Cortez et al., 2009; Little et al., 2007) and classification

scenario (one-third for training, one-third to choose k , number of nearest neighbors,

through cross-validation, and one-third for testing). However, we increase the Monte

Carlo divisions to 200 for statistical comparison. As a sanity check, Euclidean distance

after normalizing the variance of the features is also used. We tested both the L-BFGS

optimization and the mini-batch with 4 sample batches, 10,000 batches, and a step size

of 0.01. We did not rerun the sequential quadratic program-based feature weighting

(Takeuchi & Sugiyama, 2011), but instead list the value they report for the mean error

rate across 10 Monte Carlos divisions.

The results are displayed in Table 5-1. On these small scale problems—maximum

dimensions is 57—none of the compared methods consistently outperforms the best.
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Considering the best of the two proposed optimization methods, centered alignment

metric learning performs best on half of the datasets.

Table 5-1. Benchmark comparison across UCI datasets using different feature
weightings.

Dataset C P n FWa Euclid.B CAMLc ∼CAMLd

Pen-Based Recog. 10 16 10992 1.1 ⋆1.0±0.2 N/A 1.2±0.2
Breast Wisc. (Diag.) 2 30 569 ⋆4.0 4.8±1.7 4.4±1.5 4.3±1.4
Page Blocks 5 10 5473 4.6 ⋆4.1±0.5 4.6±0.5 4.3±0.5
Image Segmentation 7 18 2310 5.2 6.2±1.0 ⋆3.3±0.8 4.6±0.8
Ionosphere 2 33 351 12.2 16.3±3.9 ⋆10.7±4.9 13.7±3.5
Parkinsons 2 22 195 ⋆10.2 12.1±4.3 13.6±4.7 11.5±3.9
Spambase 2 57 4601 ⋆10.4 11.0±0.9 14.6±4.7 ⋆10.4±0.8
Waveform (ver. 1) 3 21 5000 18.4 19.0±0.9 ⋆17.9±0.9 18.5±0.8
Connectionist (Sonar) 2 60 208 22.1 ⋆20.8±5.4 27.5±4.9 22.4±5.4
Wine Quality 7 11 6497 46.3 46.3±1.0 48.9±1.2 ⋆46.0±1.0

Entries are classification error as percent incorrect, average and standard deviation
taken across Monte Carlo runs, using a k-nearest neighbor classifier. Columns denoted
|C |, P, and n indicate the number of classes, features, and samples, respectively.
aSequential quadratic program-based feature weighting (Takeuchi & Sugiyama, 2011)
bUnweighted normalized Euclidean distance
cCentered alignment metric learning optimizing a product kernel
dCentered alignment metric learning with mini-batch approximation
⋆Indicates best performing methods, which were not significantly different, p-value
greater than 0.05, for either a one-sample t-test versus SQPFW, or a two-sample t-test
between other methods.

5.4 Decoding Forepaw Touch Location from Rat Somatosensory Cortex

In this section,multi-unit spike train metrics and temporally-weighted and spatiotemporal

metrics on local field potentials are used to decode the location of touch on the forepaw

of a rat. The spike trains and local field potentials from the forepaw region of the

somatosensory cortex (S1) are used.

5.4.1 Data Collection

All animal procedures were approved by the SUNY Downstate Medical Center

IACUC and conformed to National Institutes of Health guidelines. Cortical local field

potentials and action potentials were recorded during natural tactile stimulation of

forepaw digits and palm of 4 female Long-Evans rats under anesthesia. After induction

using isoflurane, urethane was used to maintain anesthetic depth. A 32-channel
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microelectrode array (Blackrock Microsystems) was inserted into the hand region of the

primary somatosensory cortex (S1). The array was arranged in a 6×6 grid (excluding

the four corners) with 400 µm spacing between neighboring electrodes. Another array

was inserted into the VPL region of the thalamus, but the signals are not used here.

Using a motorized probe, the right forepaw was touched 225 times at up to 9

sites—4 digits and 5 sites on the palm. For each touch site, the probe was positioned

4 mm above the surface of the skin and momentarily pressed down for 150 ms, as seen

in Figure 5-1; this was repeated 25 times at random intervals. The 4 datasets had 3, 8,

9, and 9 touch sites resulting in 75, 200, 225, and 225 samples, respectively.

Figure 5-1. Experimental setup showing motorized lever touching digit 1 on the forepaw.

The LFPs were band-pass filtered with cutoffs (5 Hz, 300 Hz) and sampled at a rate

of 1220.7 Hz. Then the LFPs were digitally filtered using a 3rd-order Butterworth

high-pass filter with cutoff of 4 Hz and notch filters at 60 Hz and harmonics. For

analysis, the neural response in a 270 ms window following each touch onset was

used, which corresponds to 330 discrete time samples. For 32 channels, this results in

330×32=10,560 dimensions.

Across the 4 datasets, automatic spike-sorting selected 95, 64, 64, and 38

multi-neuron units from the 32 channels. Of these, only 68, 62, 36, and 24 units were

used, whose average firing rate was below 30 Hz in the 270 ms window following touch

onset.
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5.4.2 Results

We explored centered alignment metric learning (CAML) for both spike trains

and local field potentials (LFPs) using the cases listed in Section 5.1.3. For LFPs and

binned spike trains we compared with multi-class Fisher discriminant analysis (FDA)

(Fukunaga, 1990) and large-margin nearest neighbor (LMNN) (Weinberger et al.,

2006; Weinberger & Saul, 2009). For the linear projections, PCA was used to reduce

the dimensionality to 1/2 of the number of samples in the dataset. The FDA solution

is the set of eigenvectors corresponding to a generalized eigenvalue problem. The

dimensions can be chosen as the maximum number of non-zero eigenvalues, which

is one less than the number of classes (Fukunaga, 1990). The FDA solution was used

as the initial projection for LMNN and CAML Mahalanobis metric. An efficient MATLAB

implementation of LMNN is publicly available, and besides the initialization (which

greatly increased the performance) default parameters were used.

To compare classification performance, 20 Monte Carlo divisions of the datasets

into training and testing sets were made. For training, two-thirds of the samples in each

class were used, the remainder of the samples were used in testing. On each Monte

Carlo run, the metrics were optimized on the training set. Testing set samples were

labeled by either a one-nearest-neighbor (1-NN) or a support vector machine (SVM)

classifier. SVM training and testing was performed using the libsvm (ver. 3.17) (Chang

& Lin, 2011) implementation with the user-provided kernel matrix. The regularization

parameter was chosen through 5-fold cross-validation. For CAML the kernel is directly

optimized as part of the metric learning, but for FDA, LMNN, and the unweighted metrics

a Gaussian kernel was used with the kernel size chosen from a discrete set using 5-fold

cross-validation.

The set of the highest performing methods for each dataset was found by selecting

the best performing method and finding those that were not significantly different using a

two-sample Welch test with significance of 0.05.
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5.4.2.1 Learning multi-unit spike train metrics

Multiunit spike-train metrics using the single-unit Victor-Purpura (VP) and kernel-based

(mCI) metrics were optimized for touch location classification. For each unit the distance

is computed with different values for the temporal precision value q (higher values of

q require more precise alignment): for the Victor-Purpura distance the set (0.01, 0.1,

1.0) s-1 was used, and for the spike train kernel-based metrics (mCI) the set (10-9, 0.01,

0.1, 1, 10, 100) s-1 was used. For the Victor-Purpura distance, the L2 version (Dubbs

et al., 2010) was used.1 The classification rates for the weighted spike-train metrics are

in Table 5-2. With the CAML-optimized product kernel the average classification rate

increased by at least 8 percentage points for both metrics and both classifiers. For the

sum kernel with 5 product kernels the accuracy was further increased.

For binned spike trains a Mahalanobis metric was optimized using FDA, CAML, and

LMNN. The results across a range of different bin sizes are shown in Figure 5-2.

On three datasets the best binned metrics performed worse than the optimized

spike-train metrics. For each dataset and method the performance using the bin size

with the highest average accuracy is shown in Table 5-3. On three of the datasets the

Mahalanobis metric optimized with CAML tied or outperformed the FDA solution, and on

all datasets using LMNN decreased performance.

We used classical multidimensional scaling (MDS) (Torgerson, 1952) and

t-distributed stochastic neighborhood embedding (t-SNE) (van der Maaten & Hinton,

2008) to find a two-dimensional embedding of the distance matrices before and

after training the metric. The embedding is formed without knowledge of the class

labels. From Figure 5-3 it is clear that metric learning with the product kernel increases

distances among the different classes while decreasing the distances among samples

1 Experiments with the original L1 version (Victor & Purpura, 1996) with a Laplacian
kernel were also performed, but there was no significant difference.

155



Table 5-2. Comparison of touch site classification accuracy using multi-unit spike train
metrics.
VP metric mCI metric VP metric mCI metric
unweighted unweighted θ θ Θ θ θ Θ

Dataset 1-NN SVM 1-NN SVM 1-NN SVM SVM 1-NN SVM SVM
1 53±9 69±9 60±9 59±8 86±6 87±5 85±9 85±4 ⋆90±6 ⋆92±5
2 35±4 80±5 70±5 78±5 77±5 87±5 ⋆91±4 78±4 87±5 ⋆89±3
3 28±5 50±4 43±4 50±6 44±6 53±4 ⋆59±5 48±5 58±6 ⋆61±4
4 22±4 28±6 25±4 27±5 22±5 ⋆38±5 ⋆38±5 22±4 29±9 34±4

Entries indicate the mean and standard deviation of percent correct computed across 20
Monte Carlo runs. Victor-Purpura (VP) and kernel-based (mCI) metrics in unweighted
combinations are compared alongside of using centered alignment metric learning
(CAML) to optimize a product kernel (θ) or sum of 5 weighted product kernels (Θ).
Nearest-neighbor (1-NN) and support vector machine (SVM) were used as classifiers.
⋆Indicates methods with highest accuracy with or without binning, see Table 5-3.
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Figure 5-2. Comparison between multi-unit spike train metrics and binned spike count
metrics with varying bin sizes. The SVM-based classification rate is shown
for the unweighted Victor-Purpura (VP) and kernel-based (mCI) metrics,
centered alignment metric learning optimized spike train metrics (CA-VP,
CA-mCI), and Mahalanobis metrics on binned spike trains optimized with
Fisher discriminant analysis (FDA), centered alignment (CA), and large
margin nearest neighbor (LMNN).

within the same class. In Figure 5-4, we show how the optimized spike-train metric can

be used to identify both the temporal precision and spiking units most useful for the

decoding task.

5.4.2.2 Learning local field potential metrics

The classification rates for learning spatiotemporal metrics on LFP are tabulated

in Table 5-4. Using CAML to optimize just a single temporal weighting improves the

accuracy by 21 and 14.7 percentage points for 1-NN and SVM, respectively. Using a
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Table 5-3. Comparison of touch site classification accuracy using binned spike trains
and Euclidean or Mahalanobis-based metrics.
Euclidean A-FDA A-CA A-LMNN

Dataset 1-NN SVM 1-NN SVM 1-NN SVM 1-NN SVM
1 58±10 73±9 ⋆91±8 ⋆92±14 ⋆92±9 ⋆92±10 ⋆91±12 ⋆89±14
2 66±6 76±7 80±8 80±9 82±6 82±7 77±8 78±10
3 42±5 46±8 47±6 51±6 51±6 51±7 46±7 48±10
4 24±5 28±6 30±6 34±7 29±6 29±6 29±6 31±6

Entries indicate the mean and standard deviation of percent correct computed across
20 Monte Carlo runs. Mahalanobis-based metrics are parametrized by matrix A and
optimized using either Fisher discriminant analysis (FDA), centered alignment (CA), or
large margin nearest neighbor (LMNN). For each dataset and method the bin size with
the maximum performance was selected.
⋆Indicates highest performing methods for each dataset with or without binning see
Table 5-2.

sum kernel composed of 5 product kernels further increased the performance by 2.2

and 4 percentage points. The optimized weights for a single product kernel are shown

in Figure 5-5. Overall, using FDA to optimize a linear projection was able to achieve the

highest classification rates with average improvement over Euclidean distance by 33.5

and 23.4 percentage points for 1-NN and SVM.

Table 5-4. Comparison of touch site classification accuracy using LFPs.
Dataset Euclidean θ-CAML Θ-CAML A-CA A-FDA A-LMNN
1 89±4.4 94±3.7 97±2.2 ⋆98±2.0 ⋆98±2.0 97±2.4
2 75±5.0 84±3.0 89±2.4 95±2.6 ⋆97±1.9 94±5.0
3 61±5.4 79±4.9 83±4.0 ⋆91±4.7 ⋆92±3.5 87±2.9
4 54±5.1 81±4.2 ⋆85±3.8 ⋆86±3.8 ⋆86±4.5 80±5.9

Entries indicate the mean and standard deviation of percent correct computed across
20 Monte Carlo runs. SVM is used as classifier. Centered alignment metric learning
(CAML) is used to optimize a single temporal weight vector θ or a sum kernel with
multiple temporal weightings Θ Mahalanobis-based metrics (parametrized by a matrix A)
optimized using Fisher discriminant analysis (FDA), centered alignment (CA), and large
margin nearest neighbor (LMNN).
⋆ indicates highest performing methods for each dataset.

Finally, a multiscale metric was learned as the weighted combination of the

optimized spike distance and optimized LFP distance. On these datasets the combination

of spiking and LFPs did not increase the classification rate versus using only LFPs, and

the weight assigned to the spiking metric was insignificant compared to the weight
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Figure 5-3. Comparison of metric-based dimensionality reduction before and after using
centered alignment metric learning (CAML) to optimize a weighted
combination of Victor-Purpura spike train distances. A two-dimensional
embedding is found with t-distributed stochastic neighborhood embedding
(t-SNE) and multidimensional scaling (MDS) before and after learning. For
the t-SNE algorithm, the perplexity parameter was fixed at 10.

assigned to the LFP metric. The average classification accuracy across the datasets

was slightly lower than using just the LFP metric.

5.4.2.3 Discussion

From the results it is clear that metric learning achieves three goals: increases

the decoding accuracy, identifies important dimensions of the neural response,

and improves the ability of manifold learning techniques to visualize the data in a

low-dimensional space.

For spike trains, the average performance of the optimized multi-unit spike train

metrics exceeded those based on binning. To our knowledge this is the first work
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Figure 5-5. Learned temporal weighting of the optimized local field potential metric for
decoding touch site across all datasets.

on optimizing a multi-neuron metric that is non-parametric and does not require

binning. In the framework of the kernel-based dependence measure, this optimization

explicitly optimizes the contribution of each dimension using tensor-product kernels for

multi-neuron spike trains.

On all the datasets the performance from using the unweighted multi-neuron spike

train metrics was lower than using the optimized Mahalanobis metrics on the binned

representation. In essence, a simple linear projection of binned spike trains performs

better than binless metrics that are not optimized. The precision offered by binless

methods is only realized after optimization. This highlights the importance of metric

learning versus naively combining the single-unit metrics.

FDA achieved the best performance for this touch decoding task using the

time-locked evoked LFPs. FDA is well-suited for this setting since the class conditional
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LFP responses are approximately normally distributed—an underlying assumption for

FDA. In addition, the FDA solution is also the fastest solution; consequently, FDA should

always be the baseline for discrete decoding of sensory evoked LFPs. Alternatively,

for binned spikes using CAML to further optimize the FDA projection marginally

increased the classification performance. Overall, FDA and CAML outperformed LMNN

in optimizing a Mahalanobis metric.

One drawback of the Mahalanobis metric is the ability to analyze the projection

matrices themselves, i.e, it is difficult to match and compare linear projections learned

across multiple subjects or tasks, especially for high-rank projections. In this case

using a weighted metric, which has lower accuracy but far fewer parameters, is more

easily interpretable. From Figure 5-5 it is clear that the weighted metrics can be used to

identify dimensions, in this case time lags, that are useful for discrimination. In addition,

it appears that the optimization leads to a very sparse set of weights.

In terms of neural decoding, we compared the classification rate, as a proxy for the

information content, of the neural responses. We have also highlighted how changing

the underlying metric of the neural response space can improve the visualization

results from unsupervised manifold learning algorithms. Indeed from Figure 5-3 a

user can immediately judge which classes are more similar or indistinguishable. The

non-linear embeddings preserve some features of the stimulus space’s topology, e.g.,

the separation between digit responses and palm responses in dataset 3 and the

preservation of the relative arrangement of the three touch sites in dataset 2.

5.5 Decoding Reach Target from Monkey Premotor Cortex

In this section, we used spike trains recorded from the dorsal premotor cortex

(PMd) cortex of a female bonnet macaque through chronically implanted cortical

microelectrode arrays as the subject performed center-out reaching task. The data was

provided by Pratik Chhatbar and Joseph Francis at SUNY Downstate Medical Center

and used with their permission. Brandi Marsh and Shaohua Xu helped record the data.
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The details of the task, microelectrode implantation, and behavioral recordings were

described in Section 2.3.1. PMd is an area known to encode premeditation of movement

(Santhanam et al., 2006). Only units whose average firing rates was greater than 2 Hz

and less than 30 Hz during the reach trials are used for analysis; 38 units met this

requirement. There were 150 trials among the 8 targets.

5.5.1 Results

The goal is to decode the intended reach target during a 300 ms hold period

where the subject is shown the location of the goal target but before the reach has

begun; during the hold period subject’s hand must remain at the center target or the

trial aborts and no reward is delivered. For comparison, the window of activity for the

first 300 ms of the reach and a control window consisting of the 300 ms hold period

before the reach target are used. Decoding performance is gauged using metric and

kernel-based classifiers. The mCI spike train kernel is used for the single-unit kernels

and the corresponding metric; the temporal precision is set to 100 ms. Unweighted

multi-unit metrics and kernels are compared to metrics optimized using CAML.

5.5.1.1 Classification across windows of each trial

The classification accuracy in three disjoint windows—pre-cue (control), cued

with hold, and movement—of each trial is calculated across 80 Monte Carlo divisions

using two-thirds of the trials for testing and the remaining for testing. The statistics of

the classification accuracy (in percent correct) are shown in Table 5-5; the optimized

multi-unit metrics and kernels outperform the unweighted versions.

5.5.1.2 Visualization using metric-based embedding

Again, classical multidimensional scaling (MDS) (Torgerson, 1952) is used to

compare how well the unweighted and optimized metrics capture intrinsic relationship

between the neural activity and the reach movements. The visualization in Figure 5-6

helps elucidate why the classification performance saturated around 55%: the neural

responses are very similar for two distinct sets of reaches. The two groups are reaches
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Table 5-5. Comparison of multi-unit metrics for reach target decoding.
Window 3NN unweighted 3NN CAML SVM unweighted SVM CAML
pre-cue (control) 15.5±3.9 13.8±3.3 16.6±4.4 15.1±4.6
cued and hold 43.1±5.2 47.1±5.5 55.8±5.9 57.2±5.7
reach 47.4±5.2 53.1±6.0 63.0±5.7 64.0±5.4

Entries indicate the mean and standard deviation of percent correct computed across
80 Monte Carlo runs. For each unit, the spike train kernel induced distance is computed,
then an unweighted combination of these distances is compared to using centered
alignment metric learning (CAML) to optimize a weighted distance. Results for the third
nearest neighbor (3NN) and support vector machine (SVM) are reported.

between 9 o’clock and 2 o’clock and reaches between 3 o’clock to 8 o’clock, where the

clock is in the horizontal plane with 12 o’clock corresponding to a ventral movement

along the subject’s midline.

This analysis could have been done manually by analyzing the confusion matrix

of the classifiers, but the visualization provides simple confirmation. This illustrates

how dimensionality reduction can enable visualizations that are predictive of the

classification performance. In some cases, a classifier may be able to perform better in a

higher-dimensional space, yet the separation seen in the visualization suggests a lower

bound on the classification accuracy.

5.5.1.3 Effect of training set cardinality on performance of metric learning

The effect of training set size on both the metric-learning optimization and the

classifiers is studied using more Monte Carlo experiments. The initial batch of samples

given to CAML is varied along with the number of samples provided to the classifier.

For each case, 80 Monte Carlo divisions are made and the averages are shown in

Figure 5-7. The results indicate that the metric learning optimization outperforms the

unweighted distance only when there is least as many samples in its batch as there

are optimized parameters. In this dataset there are 38 weights corresponding to the 38

units, so an initial batch of 40 samples was sufficient for 1NN, but for SVM, 60 training

samples (34% of the dataset) were needed.
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Figure 5-6. Metric-based dimensionality reduction on the premotor cortex data: before
and after using centered alignment metric learning. Two-dimensional
embedding is formed using multidimensional scaling (MDS) on different
windows and different metrics: A) Using unweighted distance during the hold
period. B) Using unweighted distance during the reach. C) Using the
optimized distance during the hold period. D) Using the optimized distance
during the reach.

5.5.1.4 Analysis of spike train unit weights

A regression analysis was performed between the optimized unit weights and

measures of the single-unit firing rate and spike train distances. Besides the firing

rates, the average of the log-normalized distances was computed for each unit between

samples within the same class and samples of different classes. The log was used

since single-trial distances are positive and right skewed. Since the weights should

be indicative of the utility of a unit for discrimination, not the absolute value of the

distances, the ratio of the interclass to intraclass log-normalized distances was also

computed. Four different independent variables were tested: a unit’s firing rate, unit’s
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Figure 5-7. Reach target decoding performance across different sizes of training sets.
The unweighted multi-unit metric is compared to the weighted metric
optimized by centered alignment metric learning: using different sizes of
initial batches. A) First nearest neighbor (1NN) classifier. B) Third nearest
neighbor (3NN) classifier. C) Support vector machine (SVM) classifier.

average log-transformed distances between samples in the same class, a unit’s average

log-transformed distances between samples in different classes, and the ratio of a unit’s

average log-transformed interclass distances to intraclass distance. There are n = 38

feature weights corresponding to the single-units from PMd. The scatter plots and

correlation coefficients are reported in Figure 5-8. Only for the distance ratio was there a
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statistically significant correlation (p < 10−11), which is well below the significance level

of 5/4=1.25%, adjusted via Bonferroni’s correction.
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Figure 5-8. Regression analysis between the optimized weights and different
independent variables derived from the spike trains and metric. The
correlation coefficient is denoted above each scatter plot. Each subplot
shows a different dependent variable: A) Firing rate. B) Average
log-transformed distances between samples in the same class, using the
single-unit spike train distance. C) Average log-transformed distances
between samples in different classes. D) Ratio between the average
log-transformed distances for interclass versus intraclass.

This analysis shows, that in this dataset, the weights optimized with CAML indicate

the single-units ability to discriminate between classes. This is a common aspect of

all feature selection algorithms, beyond this relative ordering, CAML was able to find
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the absolute value necessary for improving kernel classification—without separately

optimizing the kernel size.

5.6 Metric Learning for Neural Encoding

We have concentrated on the problem of neural decoding, but the proposed

algorithms are also applicable to the neural encoding problem, wherein, the role of the

stimulus and neural response are reversed. More specifically, for neural encoding, the

metric on the neural response is fixed, the neural activity, e.g., the spiking of a single

neuron, is treated as the target or label variable and a metric on the stimulus is adjusted.

For instance, if the neuron is assumed to be a simple cell with a linear receptive field,

then learning the receptive field is equivalent to learning a Mahalanobis distance on the

stimulus space.

The ideas that have been developed for metric-learning/supervised dimensionality

reduction in the machine learning community are fundamentally similar to the algorithms

for inferring the linear receptive fields of neurons in the computational neuroscience

community, but the nomenclature and domain has differentiated them. Recently,

researchers have begun to bridge this gap using kernel-based measures of dependence

(Sinz et al., 2013). To further highlight this connection, we replicated an experiment used

to explain the maximally informative directions algorithm (Sharpee et al., 2004), using

centered alignment metric learning to learn the neural encoding model.

The underlying model corresponds to a predefined filter consisting of 3 Gaussian

bumps with equal covariance, see Figure 5-9. This resembled the shape of the filter

used by Sharpee et al. (2004), but here the Gaussian bumps are offset instead of

being centered. This filter corresponds to the linear weights of a model simple cell,

a stochastic neuron. The value of the inner product between an input image and the

filter, denoted s, is proportional to the probability of the neuron spiking/firing or not.

Specifically, a zero-mean Gaussian random variable e with variance a is added to the

inner-product, if this sum is greater than the threshold b then a spike is generated.

166



As input, we use patches from a database of natural images (van Hateren & van der

Schaaf, 1998) consisting of buildings, parks, trees, etc.

Square patches of 30 by 30 pixels were randomly sampled from the images. The

simulated cells parameters a and b are set relative to the standard deviation of s.

Specifically a = 0.31σ(s) and b = 1.8σ(s), using the same values as Sharpee et al.

(2004). The absence or presence of spike for a given patch is treated as a label. A

set of 40,000 patches and the corresponding labels were given to the metric learning

algorithm. Mini-batch optimization was run and the results are displayed in Figure 5-9

for the Mahalanobis-based metric and a weighted metric. To our knowledge, this was

the first attempt to use a weighted metric algorithm to infer the importance of individual

pixels on a simulated simple cell.

A B C

Figure 5-9. Using metric learning to estimate the filter for a simple cell model. A) True
filter. B) Learned projection using 100 sample batches and 2000 batches. C)
Learned weighting using 100 sample batch and 2000 batches.

Interestingly, most neural encoding models have concentrated on linear projections

corresponding to Mahalanobis-based distances, whereas recent work has shown that

the stimulus metric corresponding to a neural population can be highly non-Euclidean

Tkačik et al. (2013). Thus, future work can investigate how non-Euclidean metrics can

be learned. Additionally, the joint optimization of the metrics on both the neural response

and the stimulus is worth investigating in future work.
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5.7 Summary

We have introduced kernels applicable to metric learning allowing us to use

a kernel-based dependence measure to optimize metrics. In the kernel-learning

framework, changing the metric corresponds to changing the kernel. This leads

to non-convex optimization, which we solve using first-order methods. Adjusting

the kernels is a distinct approach from multiple kernel learning Cortes et al. (2012);

Lanckriet et al. (2004); Yamada et al. (2013), where there is an explicit weight associated

with each kernel in the sum and each summand kernel is chosen a priori (i.e., in the

case of Gaussian kernel, the kernel size is not optimized and must be preselected). The

main benefit of multiple kernel learning is that a convex optimization problem can be

posed to optimize the weights. Alternatively, weighted product kernels and the sum of

weighted product kernels constitute a much richer family of kernel functions than the

weighted sum of kernels. We only need to select the number of summand kernels; fully

exploring how to choose this number is left for future work.

Linear projections and weighted metrics are two special cases of metric learning

that have received the most study. Indeed, the weighted combination of metrics was

used in some of the earliest work on metric learning (Lowe, 1995). We have gone

beyond this by using a sum of weighted product kernels, which computes distances

in the Hilbert space that correspond to nonlinear transformations of the data samples.

The sum of weighted product kernels still has interpretable parameters, quite unlike

kernelized projections (Baudat & Anouar, 2000), where the transformations are only

defined in terms of the samples instead of the original dimensions.

These metrics were optimized on neural datasets consisting of both spike trains

and local field potentials, for which metric learning improves both nearest neighbor

and SVM classification accuracy over unweighted alternatives. Within the proposed

framework, the optimized multi-unit spike train metrics, which avoid binning, outperform

both unweighted multiunit metrics and metrics optimized for the binned spike trains.
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In addition, metric learning improves the quality of the visualizations—obtained

via metric-based dimensionality reduction—for analyzing the relationship between

high-dimensional neural data and target variables. The optimized weights themselves

indicate the relative relevancy of different dimensions of the neural response. This can

be used to explore how the weights of specific channels or neurons change for different

tasks. Overall, optimizing metrics is a worthwhile approach for investigating neural

representations.

169



CHAPTER 6
CONCLUSION

This dissertation highlights several specific applications of how learning new

representations from neural signals is useful for exploratory analysis and improving

decoding. The approaches naturally lead to data-dependent processing tuned to the

particular structure of the signals. The methods developed and tested in this study are

either unsupervised, as in Chapter 2, or semi-supervised, i.e., where knowledge of the

variable of interest is used to learn the relative importance of specific dimensions of

neural signals, as in Chapter 5. For neural potential signals, a linear synthesis model is

applicable, and the methods proposed in Chapter 3 and Chapter 4 provide the means to

decompose and extract meaningful features from neural potentials when linear filtering

is inadequate. These decompositions exploit structure in both time and across space.

6.1 Applications to Electroencephalography

Throughout this dissertation, the majority of the analysis has been performed on

invasive neural recordings of non-human subjects. Non-invasive recordings from human

subjects offers the ability to use electroencephalography for brain-computer interfaces

(Farwell & Donchin, 1988), attention monitoring (Davidson et al., 2007; Jung et al.,

1997; Ray & Cole, 1985), pathological diagnosis (Jeong, 2004), and even entertainment

purposes. The methodology developed in this dissertation could certainly impact these

avenues of research.

6.2 Sparse Decompositions of Long-term Recordings

One area for future work is the application of the recurrent waveform decompositions

to continuous, long-term neural recordings. The goal would be to train a generative

model that can explain the structure seen across hours or even days of behavior using

the atomic decomposition—consisting of the timing, waveform index, and amplitude.

These factors reveal the reoccurring patterns in neural data, which then can be applied

to the task of decoding.
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The atomic decomposition was applied for segments of LFPs in Chapter 3, but the

relationship of the aspects of this decomposition (timing, index, and amplitude of the

sources) with the experimental cues, conditions, or neural spike train activity was not

assessed. In Chapter 4, this relationship was assessed using a restricted form of the

decomposition, which was limited to exactly one single activation per trial per filter. Can

the unconstrained decomposition be useful for the same purpose?

Preliminary evidence indicates that this is the case. The simplest approach is to

locally summarize the atomic decomposition in terms of the energy of each filter in short

time segments. An alternative is to treat the atomic decomposition as a realization of a

marked point process. Then, marked extensions of point process analysis methods can

be applied. In particular, it may be interesting to consider extending the multi-unit spike

train kernels and metrics discussed in Chapter 5 to the marked case. A trivial extension

simply uses the amplitude as another dimension. An elegant approach to balance the

importance of both timing and amplitude—across all the filters—will require further

research.

6.3 Extensions of the Spatiotemporal Models

In Chapter 4, we considered a range of tensor decompositions and evoked-potential

models previously proposed in the literature including the differentially variable

component analysis (dVCA) (Truccolo et al., 2003) with multiple components. The

dVCA algorithm is in reality a block-based version of the MP-SVD algorithm (Mailhé

et al., 2008) most resembling MoTIF (Jost et al., 2006). As in Chapter 3, we introduced

a greedy version of this approach. In certain cases, the greedy approach was faster and

had better approximation performance. The main benefit is that the greedy approach

always converges and naturally allows a different spatial factor for each component;

future work should analyze whether these spatial factors indicate unique sources.

These greedy approaches come with the caveat that they may increase the rank of the
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underlying model—a fact established for tensor decompositions (Stegeman & Comon,

2010)—resulting in a higher-order model being estimated than necessary.

For evoked potentials, the time-locked model and the shift-varying model are both

relevant. Instead of choosing one or the other, one could investigate a heterogenous

tensor model (Brockmeier et al., 2013b) that consists of both a time-locked tensor model

and a shift-varying model. This may be more interpretable than having two differentially

variable models.

The models were optimized in terms of the mean squared error of the approximation

assuming white noise. This cost function guided the estimation of factors along all the

modes. Alternatively, prior knowledge or assumptions about the structure along the

spatial mode could have been exploited. For instance, each channel may be modeled

as the linear combination of a set of independent sources. If this is the case, then

blind-source separation techniques, specifically independent component analysis (ICA),

can be used to resolve the spatial mode’s factors (Zhou & Cichocki, 2012). If these

are the correct factors for the tensor model, then they can be used to demix the signal.

Then each demixed signal is approximated by a rank-1 tensor, which is a much easier

problem (Zhou & Cichocki, 2012). However, the model will not be correct if the the

temporal waveforms are allowed to shift. Thus, future work can explore combining the

approaches of BSS for tensor estimation with the shift-varying approaches discussed

here.

Along different lines, Niknazar et al. (2014) proposed using a cost function very

similar to correntropy cost (Liu et al., 2006) as another alternative for mean squared

error. In the same work, the authors also proposed a smoothing estimator for the

single-trial potential using the extended Kalman filter, which further decreases the noise.
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6.4 Kernel-based Metric Learning

From the results in Chapter 5, it is apparent that the kernel-based metric learning is

a powerful and flexible tool for neural decoding. The foremost advantage is its ability to

be applied to spike trains and even heterogeneous activity via weighted product kernels.

Many metric-learning algorithms optimize a Mahalanobis metric, which is equivalent

to taking a linear transformation of the data—projecting the data onto a lower dimensional

subspace. In contrast, the weighted product kernel does not require the data space to

be endowed with linear operations and allows the full joint information across the

dimensions to be used. In addition, avoiding the projection decreases the computational

cost when all of the distances can be pre-computed. Another benefit of the weighted

product kernel is the straight-forward interpretation of its weights. It is much more

difficult to interpret high-rank linear projections of a Mahalanobis-based metric. From

the results it appears that the weighted product optimization often returns a very sparse

set of weights. Thus, it is able to both select a subset of important dimensions and

weight their contribution appropriately to maximize the mutual information with the target

variable.

The use of a weighted product kernel for neural decoding builds from previous

work using joint kernels (Li et al., 2012), particularly the tensor-product and direct-sum

kernels. The main benefit of the weighted product kernel over a tensor-product is its

ability to minimize the contribution of noisy dimensions. It should be noted that the

weighted product can only be applied when using infinitely divisible kernel functions.

For instance, the weighted product kernel cannot be used to combine multiple direct

sum kernels. Nonetheless, a direct sum of weighted product kernels is always positive

definite and was shown to improve performance. The optimal choice of the number

of weighted product kernels in the summation still needs to be investigated. One

interesting approach would be to choose different subsets of the inputs for each

weighted product kernel. A group of subsets could be chosen a priori or randomly,
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and the weights for each set of inputs could be optimized within the kernel-based

framework. Future work should investigate the performance of the framework for

continuous regression problems.

6.5 One-stage Does Not Fit All

The methods explored in this dissertation are in stark contrast with one-stage

decoding where the raw signal is mapped directly to the output. For instance, non-parametric

classifiers or regression algorithms such as k-nearest neighbor (kNN) and support

vector machines (SVM) rely on the underlying distribution of the data, and a reasonable

similarity metric. These methods do not learn the relative importance nor exploit any

correlation of the dimensions; they are equally influenced by all dimensions and cannot

separate signals from background noise.

In the case of kNN classifiers, every sample in the training set gets equal weight

and a good metric is essential; whereas, in the case of support vector machines,

samples themselves are weighted, for low-dimensional problems the similarity metric

does not need to be perfectly tuned. Interestingly, tuning a metric for improving the kNN

classification rate does not increase the SVM performance (Xu et al., 2012); however,

the dimensionality of the samples may not have been considered. In small-scale

benchmarks (with less than a hundred variables) found in the UCI dataset (Bache &

Lichman, 2013), a Gaussian kernel with cross-validated kernel size outperforms k-NN

performance with a tuned metric. However, we have shown, in Chapter 5, that this is not

the case for high-dimensional neural data.

One-stage learning works well if the data is already in a reasonable representation.

In the early days of face recognition, it was accepted to preprocess the images to the

point that faces were aligned to the same size and nearly the same viewing angle,

much like a passport photo. However, modern face recognition systems are expected

to identify faces in candid photos, in a variety of poses. The more robust classification

systems have benefited from the deep neural networks paradigms (Bengio, 2009;

174



Bengio et al., 2007; Hinton et al., 2006; Larochelle et al., 2009; Lee et al., 2009; Ranzato

et al., 2007). Fundamentally, face recognition benefits from the ubiquity of examples and

our innate ability to identify faces—providing a sanity check on the recognition results. In

addition, face recognition is essentially an object recognition problem: the head itself is

in physical space and the problem is to be learn a representation invariant to the pose

and lighting.

However, these aspects are not the case in neural data. Signals are indicators of

dynamics of the electrochemical reactions of the cells. The goal is not invariance, except

it terms of time delays, as the signals are not simply a representation of some fixed

form. In addition, for neural data there is a limited number of trials of any experiment, the

brain is constantly adapting, and the correct classification of neural signals is not visually

obvious. With these limitations, can the recent successes of deep learning be translated

to neural data analysis, and will it have a transformative impact?

Perhaps, but for the broader neuroscience community, neural data analysis should

provide an opportunity to better analyze the intrinsic structure of neural signals, rather

than simply differentiating specific conditions. For many applications, it is necessary

to understand what exactly delineated the conditions. In this view, the intermediate

descriptors proposed in this dissertation are progress in the right direction.
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Koldovskỳ, Z., & Tichavskỳ, P. (2011). Time-domain blind separation of audio sources on
the basis of a complete ICA decomposition of an observation space. Audio, Speech,
and Language Processing, IEEE Transactions on, 19(2), 406–416.

Kruskal, J. B. (1969). Toward a practical method which helps uncover the structure of
a set of multivariate observations by finding the linear transformation which optimizes
a new index of condensation. In Statistical Computation, (pp. 427–440). Academic
Press, New York.

Kruskal, J. B. (1972). Linear transformation of multivariate data to reveal clustering.
Multidimensional Scaling: Theory and Applications in the Behavioural Sciences, 1,
179–191.

Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics. Linear
Algebra and its Applications, 18(2), 95–138.

Kuś, R., Różański, P. T., & Durka, P. J. (2013). Multivariate matching pursuit in optimal
Gabor dictionaries: Theory and software with interface for EEG/MEG via Svarog.
Biomedical Engineering Online, 12(1), 94.

Lanckriet, G. R., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004).
Learning the kernel matrix with semidefinite programming. The Journal of Machine
Learning Research, 5, 27–72.

Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies for
training deep neural networks. The Journal of Machine Learning Research, 10, 1–40.

185



Lebedev, M. A., & Nicolelis, M. A. (2006). Brain-machine interfaces: Past, present and
future. Trends in Neurosciences, 29(9), 536–546.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In
Proceedings of the 26th Annual International Conference on Machine Learning, (pp.
609–616). ACM.

Lewicki, M. (2002). Efficient coding of natural sounds. Nature Neuroscience, 5(4),
356–363.

Li, L., Choi, J. S., Francis, J. T., Sanchez, J. C., & Prı́ncipe, J. C. (2012). Decoding
stimuli from multi-source neural responses. In Engineering in Medicine and Biology
Society (EMBC), 2012 Annual International Conference of the IEEE , (pp. 1331–1334).
IEEE.

Li, R., Principe, J. C., Bradley, M., & Ferrari, V. (2009). A spatiotemporal filtering
methodology for single-trial ERP component estimation. Biomedical Engineering,
IEEE Transactions on, 56(1), 83–92.

Liddell, E. G. T., & Sherrington, C. (1924). Reflexes in response to stretch (myotatic
reflexes). Proceedings of the Royal Society of London. Series B, Containing Papers of
a Biological Character , 96(675), 212–242.

Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A., & Moroz, I. M. (2007).
Exploiting nonlinear recurrence and fractal scaling properties for voice disorder
detection. Biomedical Engineering Online, 6(1), 23.

Liu, J., Oweiss, K., & Khalil, H. (2010). Feedback control of the spatiotemporal firing
patterns of neural microcircuits. In Decision and Control (CDC), 2010 49th IEEE
Conference on, (pp. 4679–4684).

Liu, W., Pokharel, P., & Principe, J. (2006). Correntropy: A localized similarity measure.
In Neural Networks, 2006. IJCNN ’06. International Joint Conference on, (pp.
4919–4924).

Liu, W., Pokharel, P., & Principe, J. (2007). Correntropy: Properties and applications in
non-Gaussian signal processing. Signal Processing, IEEE Transactions on, 55(11),
5286–5298.

Lloyd, S. (1982). Least squares quantization in PCM. Information Theory, IEEE
Transactions on, 28(2), 129–137.

Lowe, D. G. (1995). Similarity metric learning for a variable-kernel classifier. Neural
Computation, 7 (1), 72–85.

Lucena, F., Barros, A., Prı́ncipe, J., & Ohnishi, N. (2011). Statistical coding and decoding
of heartbeat intervals. PLoS ONE , 6(6), e20227.

186



MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability , vol. 1, (pp. 281–297). California, USA.

Mahmoudi, B., & Sanchez, J. C. (2011). A symbiotic brain-machine interface through
value-based decision making. PLoS ONE , 6(3), e14760.
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Roux, J. L., Cheveigné, A. D., & Parra, L. C. (2009). Adaptive template matching with
shift-invariant semi-NMF. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.)
Advances in Neural Information Processing Systems 21, (pp. 921–928).

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500), 2323–2326.

Rusu, C. V., & Florian, R. V. (2013). A new class of metrics for spike trains. Neural
Computation, 26(2), 306–348.

Sammon Jr, J. (1969). A nonlinear mapping for data structure analysis. Computers,
IEEE Transactions on, 100(5), 401–409.

Sanchez Giraldo, L. G., & Principe, J. C. (2013). Information theoretic learning with
infinitely divisible kernels. In International Conference on Learning Representations.
arXiv:1301.3551v6.

Sanchez Giraldo, L. G., Rao, M., & Principe, J. C. (2012). Measures of entropy from
data using infinitely divisible kernels. arXiv:1211.2459.

Santhanam, G., Ryu, S., Yu, B., Afshar, A., & Shenoy, K. (2006). A high-performance
brain–computer interface. Nature, 442(7099), 195–198.

190



Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., & Wolpaw, J. (2004).
BCI2000: a general-purpose brain-computer interface (BCI) system. Biomedical
Engineering, IEEE Transactions on, 51(6), 1034–1043.

Schmidt, E. M., Bak, M. J., Hambrecht, F. T., Kufta, C. V., O’Rourke, D. K., &
Vallabhanath, P. (1996). Feasibility of a visual prosthesis for the blind based on
intracortical microstimulation of the visual cortex. Brain, 119(2), 507–522.

Schmidt, M. (2012). minFunc. Software available at http://www.di.ens.fr/~mschmidt/
Software/minFunc.html.

Schoenberg, I. J. (1938). Metric spaces and positive definite functions. Transactions of
the American Mathematical Society , 44(3), 522–536.

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. The MIT Press.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),
461–464.

Seidemann, E., Meilijson, I., Abeles, M., Bergman, H., & Vaadia, E. (1996).
Simultaneously recorded single units in the frontal cortex go through sequences
of discrete and stable states in monkeys performing a delayed localization task.
Journal of Neuroscience, 16(2), 752–768.

Sejnowski, T., & Paulsen, O. (2006). Network oscillations: Emerging computational
principles. The Journal of Neuroscience, 26(6), 1673–1676.

Shalvi, O., & Weinstein, E. (1990). New criteria for blind deconvolution of nonminimum
phase systems (channels). Information Theory, IEEE Transactions on, 36(2),
312–321.

Sharpee, T., Rust, N. C., & Bialek, W. (2004). Analyzing neural responses to natural
signals: Maximally informative dimensions. Neural Computation, 16(2), 223–250.

Shenoy, K. V., Meeker, D., Cao, S., Kureshi, S. A., Pesaran, B., Buneo, C. A., Batista,
A. P., Mitra, P. P., Burdick, J. W., & Andersen, R. A. (2003). Neural prosthetic control
signals from plan activity. Neuroreport , 14(4), 591–596.

Shimazaki, H., & Shinomoto, S. (2007). A method for selecting the bin size of a time
histogram. Neural Computation, 19(6), 1503–1527.

Shpigelman, L., Singer, Y., Paz, R., & Vaadia, E. (2005). Spikernels: Predicting arm
movements by embedding population spike rate patterns in inner-product spaces.
Neural Computation, 17 (3), 671–690.

191

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://www.di.ens.fr/~mschmidt/Software/minFunc.html


Sinz, F., Stockl, A., Grewe, J., & Benda, J. (2013). Least informative dimensions. In
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Weinberger (Eds.) Advances in
Neural Information Processing Systems 26, (pp. 413–421).

Smaragdis, P., Raj, B., & Shashanka, M. (2008). Sparse and shift-invariant feature
extraction from non-negative data. In Acoustics, Speech and Signal Processing, IEEE
International Conference on, (pp. 2069–2072).

Smith, E., & Lewicki, M. (2006). Efficient auditory coding. Nature, 439(7079), 978–982.

Song, L., Bedo, J., Borgwardt, K. M., Gretton, A., & Smola, A. (2007). Gene selection via
the BAHSIC family of algorithms. Bioinformatics, 23(13), i490–i498.

Song, L., Smola, A., Gretton, A., Bedo, J., & Borgwardt, K. (2012). Feature selection
via dependence maximization. The Journal of Machine Learning Research, 13,
1393–1434.

Souloumiac, A., & Rivet, B. (2013). Improved estimation of EEG evoked potentials by
jitter compensation and enhancing spatial filters. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, (pp. 1222–1226).
IEEE.

Spielman, D. A., & Teng, S.-H. (2007). Spectral partitioning works: Planar graphs and
finite element meshes. Linear Algebra and its Applications, 421(2), 284–305.

Stegeman, A., & Comon, P. (2010). Subtracting a best rank-1 approximation may
increase tensor rank. Linear Algebra and its Applications, 433(7), 1276–1300.

Stoica, P., & Selén, Y. (2004). Cyclic minimizers, majorization techniques, and the
expectation-maximization algorithm: A refresher. Signal Processing Magazine, IEEE ,
21(1), 112–114.

Stoica, P., & Selen, Y. (2004). Model-order selection: A review of information criterion
rules. Signal Processing Magazine, IEEE , 21(4), 36–47.

Stopfer, M., Jayaraman, V., & Laurent, G. (2003). Intensity versus identity coding in an
olfactory system. Neuron, 39(6), 991–1004.

Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local
Fisher discriminant analysis. The Journal of Machine Learning Research, 8,
1027–1061.

Takeuchi, I., & Sugiyama, M. (2011). Target neighbor consistent feature weighting for
nearest neighbor classification. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
& K. Weinberger (Eds.) Advances in Neural Information Processing Systems 24, (pp.
576–584).

Tenenbaum, J. B., De Silva, V., & Langford, J. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

192



Timmerman, M. E., & Kiers, H. A. L. (2000). Three-mode principal components analysis:
Choosing the numbers of components and sensitivity to local optima. British Journal
of Mathematical and Statistical Psychology , 53(1), 1–16.
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