
— 1 —

COORDINATION MODELS AND LANGUAGES

GEORGE A. PAPADOPOULOS

Department of Computer Science
University of Cyprus
Nicosia, Cyprus

FARHAD ARBAB

Department of Software Engineering
CWI
Amsterdam, The Netherlands

Abstract

A new class of models, formalisms and mechanisms has recently evolved for describing
concurrent and distributed computations based on the concept of “coordination”. The
purpose of a coordination model and associated language is to provide a means of
integrating a number of possibly heterogeneous components together, by interfacing with
each component in such a way that the collective set forms a single application that can
execute on and take advantage of parallel and distributed systems. In this chapter we
initially define and present in sufficient detail the fundamental concepts of what constitutes a
coordination model or language. We then go on to classify these models and languages as
either “data-driven” or “control-driven” (also called “process-” or “task-oriented”). In the
process, the main existing coordination models and languages are described in sufficient
detail to let the reader appreciate their features and put them into perspective with respect to
each other. The chapter ends with a discussion comparing the various models and some
conclusions.

1. Introduction
1.1 Background and Motivation
1.2 Organisation of the Article

2. From Multilingual and Heterogeneous Systems to Coordination Models
2.1 Need for Multilinguality and Heterogeneity
2.2 The Coordination Paradigm

3. Coordination Models and Languages
3.1 Data- vs. Control-Driven Coordination
3.2 Data-Driven Coordination Models
3.3 Control-Driven Coordination Models

4. Comparison

5. Conclusions

References

COORDINATION MODELS AND LANGUAGES

— 2 —

1. Introduction

1.1 Background and Motivation

Massively parallel and distributed systems open new horizons for large applications and
present new challenges for software technology. Many applications already take advantage of
the increased raw computational power provided by such parallel systems to yield significantly
shorter turn-around times. However, the availability of so many processors to work on a single
application presents a new challenge to software technology: coordination of the cooperation of
large numbers of concurrent active entities. Classical views of concurrency in programming
languages that are based on extensions of the sequential programming paradigm are ill-suited to
meet the challenge.

Exploiting the full potential of massively parallel systems requires programming models that
explicitly deal with the concurrency of cooperation among very large numbers of active entities
that comprise a single application. This has led to the design and implementation of a number of
coordination models and their associated programming languages. Almost all of these models
share the same intent, namely to provide a framework which enhances modularity, reuse of
existing (sequential or even parallel) components, portability and language interoperability.
However, they also differ in how they precisely define the notion of coordination, what exactly
is being coordinated, how coordination is achieved, and what are the relevant metaphors that
must be used.

The purpose of this survey chapter is twofold: (i) to present a thorough view of the
contemporary state-of-the-art research in the area of coordination models and languages, and
(ii) to provide enough information about their historical evolution, design, implementation and
application to give the reader an appropriate understanding of this important and rapidly
evolving research area in Computer Science to appreciate its potential.

In the process, we argue that these coordination models and languages can be classified into
two main categories: those that are “data-driven”, where the evolution of computation is driven
by the types and properties of data involved in the coordination activities, and those that are
“control-driven” (or process-oriented) where changes in the coordination processes are
triggered by events signifying (among other things) changes in the states of their coordinated
processes.

1.2 Organisation of the Article

The rest of this chapter is organised as follows: Part 2 provides a historical perspective on
coordination programming and explains how and why it has evolved into its current form. Part
3 describes in detail the most important coordination models and languages using the above
mentioned classification. Part 4 presents a general comparison and classification of the models
described in the previous part and part 5 ends the chapter with some conclusions.

2. From Multilingual and Heterogeneous Systems to Coordination
Models

2.1 Need for Multilinguality and Heterogeneity

With the evolution of distributed and parallel systems, new programming paradigms were
developed to make use of the available parallelism and the, often massive, number of
processors comprising a system. These languages were able to exploit parallelism, perform
communication but also be fault tolerant. They differed in the granularity or unit of parallelism
they offered (e.g., sequential process, object, parallel statements, etc.) and the communication
mechanism employed (e.g., message passing models such as rendezvous or remote procedure
calls, data sharing models such as distributed data structures or shared variables, etc.). The
increased availability of massively parallel and open distributed systems lead to the design and
implementation of complex and large applications such as vehicle navigation, air traffic control,

G. A. PAPADOPOULOS AND F. ARBAB

— 3 —

intelligent information retrieval and multimedia-based environments, to name but a few.
Gradually, it became apparent that no unique programming language or machine architecture
was able to deal in a satisfactory way with all the facets of developing a complex and
multifunctional application. Furthermore, issues such as reusability, compositionality and
extensibility became of paramount importance.

Thus, in order to deal with all these requirements of programming-in-the-large applications,
the notions of multilinguality and heterogeneity came into play. Multilingual or multiparadigm
programming ([73]) is able to support a number of diverse paradigms and provide inter-
operation of these paradigms while at the same time isolate unwanted interactions between
them. Furthermore, a multilingual or multiparadigm programming environment aims at
accommodating the diverse execution models and mechanisms of the various paradigms,
manage the resources required for implementing them, and offer intuitive ways for combining
code written in a mixture of paradigms while at the same time providing orthogonal
programming interfaces to the involved paradigms. There are basically two ways to produce
multilingual or multiparadigm languages: either design a new superlanguage that offers the
facilities of all paradigms intended to be used or provide an interface between existing
languages. The first approach has the advantage of usually providing a more coherent
combination of different paradigms. However, it has also the disadvantages of introducing yet
another programming language that a programmer must learn plus the fact that such a single
language cannot possibly support all the functionality of the languages it aims to replace. The
second approach can in fact be realised with different degrees of integration ranging from using
the operating system’s communication primitives for inter-component collaboration to
providing concrete integration of the various languages involved, as in the case of, say, Module
Interconnection Languages ([63]). Multilinguality is closely related to heterogeneity ([70]) since
heterogeneous systems (whether metacomputers or mixed-mode computers) demand that a
programming language used must be able to express many useful models of computation. It is,
however, usually impossible to find a single language able to deal satisfactorily with an
extensive variety of such models; a mixture of language models may have to be employed.

Over the years, a number of models and metaphors were devised, their purpose being
(partially) to abstract away and encapsulate the details of communication and cooperation
between a number of entities forming some computation from the actual computational activities
performed by these entities. A typical example is the blackboard model ([53]), developed for
the needs of Distributed Artificial Intelligence, where a blackboard is a common forum used by
a number of autonomous agents forming a multi-agent system to solve a problem in a
cooperative manner. Another typical example is the actor model ([1]), based on the principles
of concurrent object-oriented programming, where actors represent self contained
computational entities, using only message passing (and not direct manipulation of each other’s
internal data structures) to coordinate their activities towards finding the solution for some
problem. All these examples are concerned primarily with the development of parallel or
distributed systems. For (mostly) sequential systems, one can mention the various component
interconnection mechanisms that have been developed ([52]), with MILs (mentioned before)
being an instance of the general model.

2.2 The Coordination Paradigm

The coordination paradigm offers a promising way to alleviate the problems and address
some of the issues related to the development of complex distributed and parallel computer
systems as these were outlined above. Programming a distributed or parallel system can be
seen as the combination of two distinct activities: the actual computing part comprising a
number of processes involved in manipulating data and a coordination part responsible for the
communication and cooperation between the processes. Thus, coordination can be used to
distinguish the computational concerns of some distributed or parallel application from the
communication ones, allowing the separate development but also the eventual amalgamation of
the these two major development phases.

The concept of coordination is closely related to those of multilinguality and heterogeneity.
Since the coordination component is separate from the computational one, the former views the

COORDINATION MODELS AND LANGUAGES

— 4 —

processes comprising the latter as black boxes; hence, the actual programming languages used
to write computational code play no important role in setting up the coordination apparatus.
Furthermore, since the coordination component offers a homogeneous way for interprocess
communication and abstracts away the machine-dependent details, coordination encourages the
use of heterogeneous ensembles of architectures.

The concept of coordination is by no means limited to Computer Science. In a seminal paper
([49]), Malone and Crowston characterise coordination as an emerging research area with an
interdisciplinary focus, playing a key issue in many diverse disciplines such as economics and
operational research, organisation theory and biology. Consequently, there are many
definitions of what is coordination ranging from simple ones such as:

Coordination is managing dependencies between activities.

to rather elaborate ones such as:

Coordination is the additional information processing performed
when multiple, connected actors pursue goals that a single author
pursuing the same goals would not perform.

In the area of Programming Languages, probably the most widely accepted definition is
given by Carriero and Gelernter ([21]):

Coordination is the process of building programs by gluing
together active pieces.

Consequently:

A coordination model is the glue that binds separate activities
into an ensemble.

A coordination model can be viewed as a triple (E,L,M), where E represents the entities
being coordinated, L the media used to coordinate the entities, and M the semantic framework
the model adheres to ([27,71]). Furthermore, a coordination language is the linguistic
embodiment of a coordination model, offering facilities for controlling synchronisation,
communication, creation and termination of computational activities.

Closely related to the concept of coordination is that of configuration and architectural
description. Configuration and architectural description languages share the same principles
with coordination languages. They view a system as comprising components and
interconnections, and aim at separating structural description of components from component
behaviour. Furthermore, they support the formation of complex components as compositions
of more elementary components. Finally, they understand changing the state of some system as
an activity performed at the level of interconnecting components rather than within the internal
purely computational functionality of some component.

Thus, if one adopts a slightly liberal view of what is coordination, one can also include
configuration and architectural description languages in the category of coordination languages.
Reversely, one can also view coordination as dealing with architectures (i.e., configuration of
computational entities). In the sequel, we present a number of coordination models and
languages, where by “coordination” we also mean “configuration” or “architectural
description”. (However, we will not cover those cases where ordinary languages are used for
coordination, such as the framework described in [57].) Other collections of work on
coordination models and languages are [4,28,29], and [27] is a survey article where the focus
is on the first family of models and languages according to the classification presented below.

3. Coordination Models and Languages

3.1 Data- vs. Control-Driven Coordination

The purpose of this (third) main section of the chapter is to present the most important
coordination models and languages. There are a number of dimensions in which one can

G. A. PAPADOPOULOS AND F. ARBAB

— 5 —

classify these models and languages, such as the kind of entities that are being coordinated, the
underlying architectures assumed by the models, the semantics a model adheres to, issues of
scalability, openess, etc. ([27,71]). Although we do provide a classification and a summary
comparison of the models and languages in section 4, here we argue that these models fall into
one of two major categories of coordination programming, namely either data-driven or
control-driven (or task- or process-oriented).

The main characteristic of the data-driven coordination models and languages is the fact that
the state of the computation at any moment in time is defined in terms of both the values of the
data being received or sent and the actual configuration of the coordinated components. In other
words, a coordinator or coordinated process is responsible for both examining and
manipulating data as well as for coordinating either itself and/or other processes by invoking
the coordination mechanism each language provides. This does not necessarily mean that there
does not exist a useful clear separation between the coordination functionality and the purely
computational functionality of some process. But it usually does mean that, at least stylistically
and linguistically, there exists a mixture of coordination and computation code within a process
definition. A data-driven coordination language typically offers some coordination primitives
(coupled with a coordination metaphor) which are mixed within the purely computational part
of the code. These primitives do encapsulate in a useful way the communication and
configurational aspects of some computation, but must be used in conjunction with the purely
computational manipulation of data associated with some process. This means that processes
cannot easily be distinguished as either coordination or computational processes. It is usually
up to the programmer to design his program in such a way that the coordination and the
computational concerns are clearly separated and are made the responsibility of different
processes; however, most of the time such a clear separation is not enforced at the syntactic
level by the coordination model.

The main difference between the models of the data-driven category and those of the control-
driven category is that in the latter case we have an almost complete separation of coordination
from computational concerns. The state of the computation at any moment in time is defined in
terms of only the coordinated patterns that the processes involved in some computation adhere
to. The actual values of the data being manipulated by the processes are almost never involved.
Stylistically, this means that the coordination component is almost completely separated from
the computational component; this is usually achieved by defining a brand new coordination
language where the computational parts are treated as black boxes with clearly defined
input/output interfaces. Consequently, whereas in the case of the data-driven category, the
coordination component is usually a set of primitives with predefined functionality which is
used in connection with some “host” computational language, in the control-driven category the
coordination component is usually a fully-fledged language. This also means that it is easier in
the second case (in fact, it is usually being enforced by the model) to syntactically separate the
processes (or at least program modules) into two distinct groups, namely purely computational
ones and purely coordination ones.

Aside from the stylistic differences between the two categories which affect the degree of
separation between computational and coordination concerns, each category also seems to be
suitable for a different type of application domain. The data-driven category tends to be used
mostly for parallelising computational problems. The control-driven category tends to be used
primarily for modelling systems. This may be attributed to the fact that from within a
configuration component a programmer has more control over the manipulated data in the case
of data-driven coordination languages, than in the case of control-driven ones. Thus, the
former category tends to coordinate data whereas the latter tends to coordinate entities (which,
in addition to ordinary computational processes, can also be devices, system components,
etc.).

We should stress the point here that the data- vs. control-driven separation is by no means a
clear cut one. For instance, regarding the application domains, the data-driven coordination
language LAURA is used for distributed systems whereas the control-driven coordination
languages MANIFOLD and ConCoord are also used for parallelising data-intensive programs.
Furthermore, regarding the degree of syntactic decoupling between the computational and the
coordination components, Ariadne does have a concrete and separate coordination component,

COORDINATION MODELS AND LANGUAGES

— 6 —

although it belongs to the data-driven category. However, the main difference between these
two general categories does hold: i.e., in the data-driven category the coordination component
“sees” the manipulated data whereas in the control-driven category the actual structure and
contents of data is of little or no importance. In the sequel, we describe in more detail the major
members of each one of these two main categories of coordination models and languages.

3.2 Data-Driven Coordination Models

Almost all coordination models belonging to this category have evolved around the notion of
a Shared Dataspace. A Shared Dataspace ([64]) is a common, content-addressable data
structure. All processes involved in some computation can communicate among themselves
only indirectly via this medium. In particular, they can post or broadcast information into the
medium and also they can retrieve information from the medium either by actually removing
this information out of the shared medium or merely taking a copy of it. Since interprocess
communication is done only via the Shared Dataspace and the medium’s contents are
independent of the life history of the processes involved, this metaphor achieves decoupling of
processes in both space and time. Some processes can send their data into the medium and then
carry or doing other things or even terminate execution while other processes asynchronously
retrieve this data; a producer need not know the identity of a consumer (and vice versa) or,
indeed, if the data it has posted into the medium has been retrieved or read by anyone. The
following figure illustrates the general scenario advocated by most of the coordination
languages in this category.

Round objects represent processes whereas square ones represent data. Empty square boxes
are templates and are used by processes to somehow specify what sort of data should be
retrieved (by removal or copying) from the shared medium. Filled square boxes represent
various kinds of data structures. Finally, small round objects represent “active” data structures;
these are effectively processes which once their execution terminates, turn into passive ordinary
data. A process may be a pure producer or a pure consumer or both.

The various models in this category are different with respect to a number of parameters. For
instance, one parameter is the actual structure of the data; in some cases they are flat tuples or
records and in other cases nested tuples and records are also supported. Another parameter is
the actual mechanism employed to retrieve data. Some models are based on various forms of
pattern matching, whereas others use more sophisticated techniques that view the shared
medium as something more than a flat unstructured space (e.g., they view it as a multiset). Yet
another distinction is related to issues such as locality of reference within the shared medium,
security and efficiency.

G. A. PAPADOPOULOS AND F. ARBAB

— 7 —

Strictly speaking, not all coordination models in this category follow the above pattern of
coordination (although even for the cases of using, say, shared variables, one could treat these
variables as a restricted version of a Shared Dataspace). For instance, synchronisers (section
3.1.13) use a message-passing (rather than a Shared Dataspace) based mechanism. However,
all models are data-driven in the sense defined in section 3.1.

3.1.1 Linda

Linda ([2,20]) is historically the first genuine member of the family of coordination
languages. It provides a simple and elegant way of separating computation from
communication concerns. Linda is based on the so-called generative communication paradigm:
if two processes wish to exchange some data, then the sender generates a new data object
(referred to as a tuple) and places it in some shared dataspace (known as a tuple space) from
which the receiver can retrieve it. This paradigm decouples processes in both space and time:
no process need to know the identity of other processes, nor is it required of all processes
involved in some computation to be alive at the same time. In addition to passive tuples
containing data, the tuple space can also contain active tuples representing processes which
after the completion of their execution, turn into ordinary passive tuples.

Linda is in fact not a fully fledged coordination language but a set of some simple
coordination primitives. In particular, out(t) is used to put a passive tuple t in the tuple
space, in(t) retrieves a passive tuple t from the tuple space, rd(t) retrieves a copy of t
from the tuple space (i.e., t is still there) and eval(p) puts an active tuple p (i.e., a process)
in the tuple space. The primitives rd and in are blocking primitives and will suspend
execution until the desired tuple has been found. The primitives out and eval are non-
blocking primitives. A process that executes eval(p) will carry on executing in parallel with
p, which will turn into a passive tuple when it completes execution. Over the years, a number
of additional primitives were introduced into the basic model; for instance rdp(t) and
inp(t) are non-blocking variants of rd(t) and in(t), respectively, which when the
desired tuple is not found in the tuple space will return FALSE.

Tuples are actually sequences of typed fields. They are retrieved from the tuple space by
means of associative pattern matching. More to the point, the parameter t of the primitives in,
inp, rd and rdp is actually a tuple schemata containing formal parameters; pattern matching
of t with an actual tuple ta in the tuple space will succeed provided that the number, position,
and types of t’s fields match those of ta.

The Linda primitives are indeed completely independent of the host language; thus, it is
possible to derive natural Linda variants of almost any programming language or paradigm
(imperative, logic, functional, object-oriented, etc.). Linda’s “friends” are C, Modula, Pascal,
Ada, Prolog, Lisp, Eiffel and Java to name but a few ([2,17,20,61]). The following example is
an implementation of the Dining Philosophers in C-Linda. (In the Dining Philosophers
problem, a number (typically 5) of philosophers are seated around a table, with a plate of food
(typically spaghetti) in front of each one of them, and a fork between each plate. To eat, they
must use both forks adjacent to them. But if all act independently, then each may pick up the
left fork first and all enter a “deadlocked” state waiting forever for the right fork to become
available. This is a standard problem for developing coordination solutions among
independently executing processes.

#define NUM 5

philosopher(int i) main()
{ {
while (1) int i;
{ for (i=0, i<=NUM, i++)
think(); {
in(“room ticket”); out(“fork”,i);
in(“fork”,i); eval(philosopher(i));
in(“fork”,(i+1)%NUM); if (i<(NUM-1))

COORDINATION MODELS AND LANGUAGES

— 8 —

eat(); out(“room ticket”);
out(“fork”,i); }
out(“fork”,(i+1)%NUM); }
out(“room ticket”);

}
}

Although the Linda model is appealing, it is also deceptively simple when it comes to
implementing it, especially if distributed (as it is usually the case) environments are to be
considered. There are a number of issues that a Linda implementor must address such as where
precisely the tuples are stored and how are they retrieved, how load balancing is achieved,
choices in implementing the eval primitive, etc. Furthermore, since programmers usually
adhere to specific communication and coordination patterns, often used protocols should be
optimised. There are a number of different approaches in implementing Linda ([34,72]).
Piranha ([41]) for example is an execution model for Linda, particularly suited to networks of
workstations. Piranha features adaptive parallelism where processor assignment to executed
processes changes dynamically. A typical Piranha program is usually a variant of the master-
slave paradigm. In particular, there exists a feeder process responsible for distributing
computations and selecting results and a number of piranhas which perform computations.
Piranhas are statically distributed over the available nodes in a network (i.e., they do not
migrate at run-time). They remain dormant as long as the node they reside on is unavailable;
when the node becomes available they get activated. If the node is claimed back by the system
and is removed from the list of available nodes then the piranha residing on it must retreat.
Work on the current task is stopped and the retreating piranha posts to the tuple space enough
information to allow some other piranha to take up the rest of the work. Typical applications
suitable for the Piranha paradigm are Montecarlo simulations and LU decompositions. The
general structure of a Piranha program is as follows.

#define DONE -999
int index;

feeder() piranha()
{ {
int count; struct Result result;
struct Result result;

while (1)
/* put out the tasks */ {
for (count=0; count<TASKS; count++) in(“task”,?index);
out(“task”,count); if (index==DONE)

{
/* help compute results */ /* all tasks are done */
piranha(); out(“task”,index);

}
/* collect results */ else
for (count=0; count<TASKS; count++) {
in(“result”,count,?result_data); /* do the task */

} do_work(index,&result);
out(“result”,index,result);

retreat() in(“tasks done”,?index);
{ out(“tasks done”,i+1);
/* replace current task */ if ((i+1)==TASKS)
out(“task”,index); out(“task”,DONE);

} }
}

}

Linda has inspired the creation of many other similar languages — some are direct
extensions to the basic Linda model but others differ significantly from it. These derivatives

G. A. PAPADOPOULOS AND F. ARBAB

— 9 —

aim to improve and extend the basic model with multiple tuple spaces, enforcement of security
and protection of the data posted to the tuple space, etc. Some of these proposals will be
described promptly.

3.1.2 Bauhaus Linda

Bauhaus Linda ([22]) is a direct extension of the “vanilla” Linda model featuring multiple
tuple spaces implemented in the form of multisets (msets). Bauhaus Linda does not differentiate
between tuples and tuple spaces, tuples and anti-tuples (i.e., tuple templates) and active and
passive tuples. Instead of adding tuples to and reading or removing tuples from a single flat
tuple space, Bauhaus Linda’s out, rd and in operations add multisets to and read or remove
multisets from another multiset. Consequently, Linda’s ordered and position dependent
associative pattern matching on tuples is replaced by unordered set inclusion.

Assuming the existence of the multiset {a b b {x y Q} {{z}} P} where elements in
capital letters denote processes and the rest denote ordinary tuples, then if P executes out {x-
>R} the multiset will become {a b b {x y Q R} {{z}} P}. If the multiset has the form
{a b b {x y} {{z}} P} and P executes mset m := rd {x} then m will get assigned
the structure {x y}. Finally, if the multiset has the form {a b b {x y Q} {R {z}} P}
and P executes mset m := in {x}, then m is assigned the structure {x y Q} (and thus it
becomes a live mset due to the presence of the element Q).

Furthermore, the language introduces the new primitive move which allows tuples to move
up and down the levels of a multiset. For instance, if the multiset has the form {a b b {x y
Q} {w {z}} P} and P executes move {w} then the result is {a b b {x y Q} {w
{z} P}}. There also exist two other variants of move: up, which causes the issuing process
to go one level up the structure, and down m (equivalent to move -> {m} where m is a
multiset) which causes the issuing process to go down to a sibling node that contains m.

It is thus possible to organise data into useful hierarchies, such as:

{“world”
{“africa” …}
{“antarctica” …}
…
{“north america”
{“usa” …
{“ct” …
{“new haven” …
{“yale” …
{“cs” …}

…}
…}

…}
…}

…}
}

and assuming that the vector of strings Path[] represents a travelling course, we can move
around by means of commands such as:

for (i=0; Path[i]; i++) down {Path[i]};

3.1.3 Bonita

Bonita ([65]) is a collection of new Linda-like primitives aiming at enhancing the
functionality of the basic model as well as improve its performance. The first goal is achieved
by providing the functionality for multiple tuple spaces and aggregate tuple manipulation. The
second goal is achieved by providing a finer grain notion of tuple retrieval where a request by

COORDINATION MODELS AND LANGUAGES

—10—

some process for finding a tuple in the tuple space is treated separately from checking whether
it has actually been delivered to the requesting process; thus, these activities can be done in
parallel and consequently the related overhead is minimised.

In particular, Bonita supports (among others) the following coordination primitives:

rquid=dispatch(ts, tuple)

Non-blocking; puts tuple in ts and returns a tuple id to be used by other processes which
may want to retrieve the tuple.

rquid=dispatch(ts, template, d|p)

Non-blocking; retrieves a tuple from ts matching template, either removing it (if d is
specified) or getting a copy of it (if p is specified), and returns a request id as before.

rquid=dispatch_bulk(ts1, ts2, template, d|p)

Non-blocking; moves (d) or copies (p) from ts1 to ts2 all tuples matching template.

arrived(rquid)

Non-blocking; tests locally in the environment of the issuing process whether the tuple with
the indicated id has arrived, and returns true or false accordingly.

obtain(rquid)

Blocking; suspends until the tuple with the indicated id is available.

The rather subtle differences between the basic Linda model and Bonita can be understood
by considering the retrieval of three tuples from a single tuple space (in general, more than one
tuple space may be involved):

Linda Bonita

int rqid1, rqid2, rqid3;

in(“ONE”); rqid1=dispatch(ts,”ONE”,d);
in(“TWO”); rqid2=dispatch(ts,”TWO”,d);
in(“THREE”); rqid3=dispatch(ts,”THREE”,d);

get(rqid1);
get(rqid2);
get(rqid3);

Whereas in Linda, the first in operation must complete execution before the second one
commences, Bonita follows a finer grain scenario: the three requests for the sought tuples are
dispatched and the underlying system starts executing them in parallel. Thus, the time taken to
retrieve one tuple can be overlapped with the time taken to retrieve the other tuples. In Bonita, it
is also possible to express more efficiently (than in the basic Linda model) a non-deterministic
selection construct:

Linda Bonita

int rqid1, rqid2;

rqid1=dispatch(ts,”ONE”,d);
rqid2=dispatch(ts,”TWO”,d);

while(1) while(1)
{ {
if (inp(“ONE”)) if (arrived(rqid1))

{ do_first(); break; } { do_first(rqid1); break; }
if (inp(“TWO”)) if (arrived(rqid2))

{ do_second(); break; } { do_second(rqid2); break; }
} }

G. A. PAPADOPOULOS AND F. ARBAB

—11—

The Linda version repeatedly polls the global tuple space in order to check as to whether the
requested tuples have appeared; furthermore, execution of the two inp operations is serialised.
The Bonita version dispatches the two requests, which the underlying system is now able to
serve in parallel, and then keeps checking locally in the environment of the process whether the
requested tuples have arrived. The literature on Bonita shows that in many cases the finer grain
notion of tuple handling that this model has introduced produces substantial gains in
performance.

3.1.4 Law-Governed Linda

Whereas both Bauhaus Linda and Bonita extend the basic language by actually modifying
the model and its underlying implementation, Law-Governed Linda ([51]) superimposes a set
of “laws” which all processes wishing to participate in some exchange of data via the tuple
space must adhere to. In particular, there exists a controller for every process in the system,
and all controllers have a copy of the law. A controller is responsible for intercepting any
attempted communication between the process it controls and the rest of the world. The
attempted communication is allowed to complete only if it adheres to the law.

A Law-Governed Linda system is understood as a 5-tuple <C,P,CS,L,E> where C is the
tuple space, P is a set of processes, CS is a set of control states (one associated with each
process), L is the law which governs the system, and E is the set of controllers that enforce the
law. Although the law can be formulated in any language (and a natural choice would be the
host language that a Linda system is using), the designers of Law-Governed Linda have chosen
a restricted subset of Prolog enhanced with the following primitives: complete actually
carries out the operation being invoked; complete(arg’) does the same but the original
argument of the operation is replaced with arg’; return is used in conjunction with the
Linda primitives rd and in and its effect is to actually deliver the requested tuple to the issuing
process; return(t’) does the same but t’ is delivered instead of the matched (from a
previous rd or in operation) tuple t; out(t) is the conventional Linda primitive; remove
removes the issuing process from the system. Furthermore, tuple terms may contain the
following attributes: self(i) where i is the unique id of the process; clock(t) where t is
the current local time of the process; op(t) where t is the argument of the latest Linda
operation invoked by the issuing process. In addition, do(p) adds p (a sequence of one or
more primitive operations) to a ruling list R which is executed after the ruling of the law is
complete, and +t and -t add and remove respectively a term t from the control state of a
process. Finally, every process is in a certain state represented by the global variable CS and
examined by means of the operator ‘@’.

A user may now enhance the basic Linda functionality by formulating a suitable law. For
instance, the following Prolog clauses implement secure message passing, where a message is
a tuple of the form [msg,from(s),to(t),contents] where msg is a tag identifying the
tuple as a message, s is the sender process, t is the receiver process, and contents
represents the actual contents of the message.

R1. out([msg,from(Self),to(_)|_]) :- do(complete).
R2. in([msg,from(…),to(Self)|_]) :- do(complete) :: do(return).
R3. out([X|_]) :- not(X=msg), do(complete).
R4. in/rd([X|_]) :- not(X=msg), do(complete) :: do(return).

R1 allows a process to out messages only with its own id in the sender field (thus a message
cannot be forged). R2 allows a process to remove a tuple from the tuple space only when its
own id is in the receiver field. R3 and R4 simply send to or read/retrieve from the tuple space,
respectively, any other tuple which need not adhere to the above law.

It is also possible in Law-Governed Linda to establish multiple tuple spaces by means of
laws like the following:

COORDINATION MODELS AND LANGUAGES

—12—

R1. out([subspace(S)|_]) :- hasAccess(S)@CS, do(complete).
R2. in/rd([subspace(S)|_]) :- actual(S), hasAccess(S)@CS,

do(complete) :: do(return).

where initially every process has any number of hasAccess(s) terms in its control state,
identifying the subspaces it can access. R1 allows a process to out a tuple to the subspace s
provided the term hasAccess(s) is in its control state. R2 uses the primitive actual to
make sure that the variable representing the name of a subspace is actually instantiated to some
ground value (a process cannot attempt to query multiple subspaces at once) before proceeding
to retrieve or read a tuple from the subspace.

3.1.5 Objective Linda

Objective Linda ([45]) is another direct variant of the basic Linda model, influenced by
Bauhaus Linda and particularly suited to modelling open systems. Objective Linda introduces
an object model suitable for open systems and independent of the host programming language
(objects in Objective Linda are described in the Object Interchange Language (OIL) — a
language-independent notation). Objects make use of the object space by means of suitably
defined object-space operations which address the requirements of openess. Furthermore, the
language supports hierarchies of multiple object spaces and ability for objects to communicate
via several object spaces. Object spaces are accessible through logicals (i.e. object space
references passed around between objects); logicals can be outed by some object to the tuple
space and then retrieved by another space via a special attach operation.

In particular, Objective Linda supports, among others, the following operations which are
variants of Linda’s basic coordination primitives:

bool out(MULTISET *m, double timeout)

Tries to move the objects contained in m into the object space. Returns true if the attempted
operation is successful and false if the operation could not be completed within timeout
seconds.

bool eval(MULTISET *m, double timeout)

Similar to the previous operation but now the moved objects are also activated for execution.

MULTISET *in(OIL_OBJECT *o, int min, int max, double timeout)

Tries to remove multiple objects o´1…o´n matching the template object o from the object

space and returns a multiset containing them if at least min matching objects could be found
within timeout seconds. In this case, the multiset contains at most max objects, even if
the object space contained more. If min objects could not be found within timeout
seconds, NULL is returned instead.

MULTISET *rd(OIL_OBJECT *o, int min, int max, double timeout)

Similar to the previous operation but now clones of multiple objects o´1…o´n are returned.

int infinite_matches

Constant value interpreted as infinite number of matching objects when provided as a min or
max parameter.

double infinite_time

Constant value interpreted as infinite delay when provided as a timeout parameter.

The following C++ example models a collision avoidance scenario for cars driving in a
cyclic grid.

class Position: public OIL_OBJECT
{
private: bool match_position; // switching the matching mode
public: int x, y; // the grid position

int car; // the car’s id
bool match(OIL_OBJECT* obj)

G. A. PAPADOPOULOS AND F. ARBAB

—13—

{
if (match_position)
return ((((Position*)obj)->x == y) && (((Position*)obj->y==y));

else return ((Position*)obj)->car==car;
};
set_match_position() { match_position=true; }
set_match_car() { match_position=false; }

};

class Car: public OIL_OBJECT
{
private: int x, y; // the grid position

int car; // the car’s id
direction dir; // the direction to move

void wait(){}; // wait for an arbitrary interval
void evaluate()
{
MULTISET m = new MULTISET;
Position *p; int nx, ny, px, py;
while(true)
{
m->put(new Position(id,x,y));
(void)context->out(m,context->infinite_time);
wait();
// store next position to move to in nx and ny
nx = … ; ny = … ;
p = new Position(id,nx,ny); p->set_match_position();
m = context->rd(p,1,1,0);
if (m) // there is a car in front of us
{ delete m; delete p; }

else { delete p;
// store position with priority in px and py
px = … ; py = … ;
p = new Position(id,px,py); p->set_match_position();
m = context->rd(p,1,1,0);
if (m) // there is a car with priority
{ delete(m; delete p; }

else { x = nx; y = ny // move
delete p;

}
}

}
p = new Position; p->car = id; p->set_match_car();
m = context->in(p,1,1,context->infinite->time);
p = m->get(); delete p;

}
}

}

Agents responsible for steering cars communicate via the object space. Every agent puts an
object of type Position into the object space which carries the agent’s id as well as its
position and grid. When changing its position, an agent consumes (ins) the Position object
with its own id and replaces it by a new one with the updated position. Before an agent changes
position, it checks whether it can rd a Position object directly in front of it, in which case it
will wait. Also, it checks as to whether some other car is approaching from another direction,
in which case again it waits. This functionality is modelled by Car.

COORDINATION MODELS AND LANGUAGES

—14—

3.1.6 LAURA

LAURA ([69]) is another approach of deriving a Linda-like coordination model suitable for
open distributed systems. In a LAURA system, agents offer services according to their
functions. Agents communicate via a service-space shared by all agents and by means of
exchanging forms. A form can contain a description of a service-offer, a service-request with
arguments or a service-result with results. Suitable primitives are provided by the language
with the intention to put and retrieve offer-, request- and result-forms to and from the service-
space. More to the point, SERVE is used by clients to ask for service, SERVICE is used by
servers to offer service and RESULT is used by servers to produce a result-form. Identification
of services is not done by means of naming schemes but rather by describing an interface
signature consisting of a set of operation signatures. Operation signatures consist of a name and
the types of arguments and parameters. As in the case of Objective Linda, a host language-
independent interface description language (STL for Service Type Language) is used for this
purpose. Furthermore, the service-space is monolithic and fault tolerant.

The following code models the activities of a travel ticket purchase system.

SERVE large-agency operation
(getflightticket : cc * <day,month,year> * dest ->

ack * <dollar,cent>;
getbusticket : cc * <thedate.day,thedate.month,thedate.year>

* dest -> ack * <dollar,cent> * line;
gettrainticket : cc * <day,month,year> * dest ->

ack * <dollar,cent>).
SERVE

RESULT large-agency operation
(getflightticket : cc * <day,month,year> * dest ->

ack * <dollar,cent>;
getbusticket : cc * <thedate.day,thedate.month,thedate.year>

* dest -> ack * <dollar,cent> * line;
gettrainticket : cc * <day,month,year> * dest ->

ack * <dollar,cent>).
RESULT

SERVICE small-agency
(getflightticket : cc * <thedate.day,thedate.month,thedate.year>

* dest -> ack * <dollar,cent>;)
SERVICE

A service with the interface large-agency is offered and the code for the selected
operation should be bound to operation. Depending on which one of the three services
offered by large-agency requested, the respective program variables (such as cc, day,
etc.) will be bound with the arguments offered by the service-user. When SERVE executes, a
serve-form is built from the arguments, the service-space is scanned for a service-request form
whose service-type matches the offered type, and the code of the requested operation and the
provided arguments are copied to the serve-form and bound to the program variables according
to the binding list. After performing the requested service, the service-provider uses RESULT
to deliver a result-form to the service-space. Finally, another agent with interface small-
agency which wishes to invoke the service getflightticket executes SERVICE;
program variables are then bound accordingly in order for small-agency to provide
large-agency with needed information (such as cc and dest) and also let large-
agency pass back to small-agency the results of the service (such as ack).

G. A. PAPADOPOULOS AND F. ARBAB

—15—

3.1.7 Ariadne/HOPLa

Ariadne and its modelling language HOPLa ([36]) are an attempt to use Linda-like
coordination to manage hybrid collaborative processes. As in all the Linda-like models, Ariadne
uses a shared workspace, which however holds tree-shaped data and is self-descriptive, in the
sense that in addition to the actual data it also holds constraints (i.e., type definitions) that
govern its structure. Both highly structured data (e.g., forms consisting of typed fields) and
semi-structured data (e.g., email messages) can be handled. The processes comprising an
Ariadne system are defined in the Hybrid Office Process Language (HOPLa) and use the
concept of flexible records enhanced with constructors such as Set for collections (aggregate
operations) and constraints. Tasks are defined by means of Action terms and use the
following coordination operators: Serie for sequential execution, Parl for parallel
execution, and Unord for execution in random order. The following example models an
electronic discussion between a group of people:

Discussion<Process(
group -> Set+Action(type -> Actor; value -> PS: set));
discuss -> Thread<Data+Serie(

message -> String+Action(actor -> {p | p in PS));
replies -> Set+Parl(type -> Thread)))

First, the set of actors participating in the discussion is defined by setting the feature group.
After the group has been established, a string for the message feature must be provided by one
of the actors in the group. After that, replies can be added in parallel by other members of the
group, each one spawning a different thread of execution.

3.1.8 Sonia

Sonia ([10]) is another approach to using Linda-like coordination languages to model
activities in Information Systems. In fact, Sonia is not so much an extension of Linda with
extra functionality but rather an adaptation of the latter for coordinating human and other
activities in organisations. The basic Linda functionality is expressed by higher level metaphors
which should be understandable by everyone, including non-computer specialists.

Thus, in Sonia, there exists an agora (the equivalent of a tuple space) and a number of actors
communicating by means of posting to and extracting messages from it. An agora ([50]) is a
first class citizen and many (nested) agoras can be defined. Messages are written as tuples of
named values, e.g. Tuple(:shape “square” :color “red”). Nested and typed
tuples are also supported. The traditional Linda primitives out, in and rd are replaced by the
more intuitively named primitives post, pick and peek, respectively. A new primitive,
cancel, is also introduced intended to abort an outstanding pick or peek request.
Templates can be enhanced with timeout functionality and rules: the template
Template(:shape any :color Rule(“value=‘red’ or :[value=‘blue’]”
)) would match a tuple with any shape as long as and colour is either red or blue.

3.1.9 Linda and the World Wide Web

Recently, the concept of coordination has been introduced into the development of
middleware web-based environments. The Shared Dataspace paradigm of Linda is particularly
attractive for orchestrating distributed web-based applications and a number of extensions have
been proposed to the basic Linda suitable for developing interactive WWW environments. The
basic advantage of introducing a coordination formalism into a web application is that it then
becomes easier to separate I/O from processing concerns. CGI scripts deal only with I/O (e.g.,
getting data by means of electronic forms and/or displaying them) whereas the coordination
formalism becomes responsible for the sending/receiving of data via the tuple space. The
system is also enhanced with the two major features of a coordination formalism:
heterogeneous execution of applications and multilinguality ([31]).

Jada ([30]) is a combination of Java with Linda, able to express mobile object coordination
and multithreading and is suited for open systems. Suitable classes such as TupleServer

COORDINATION MODELS AND LANGUAGES

—16—

and TupleClient have been defined for providing remote access to a tuple space and
communication is done by means of sockets. A TupleClient needs to know the host and
port id of TupleServer and the language provides appropriate constructs for specifying this
information. Jada can be used both as a coordination language per se and as a kernel language
for designing more complex coordination languages for the WWW. The following Jada
program implements a symmetric ping-pong.

//--PING--
import jada.tuple.*;
import java.client.*;

public class Ping
{
static final String ts_host=“foo.bar”;

public void run()
{
// a tuple client interacts with remote server
TupleClient ts = new TupleClient(ts_host);
// do ping-pong
while (true)
{
ts.out(new Tuple(“ping”));
Tuple tuple = ts.in(new Tuple(“pong”));

}
}

public static void main(String args[])
{
Ping ping = new Ping();
ping.run();

}
}

//--PONG--
import jada.tuple.*;
import java.client.*;

public class Pong
{
static final String ts_host=“foo.bar”;

public void run()
{
// a tuple client interacts with a remote server
TupleClient ts = new TupleClient(ts_host);
// do ping-pong
while (true)
{
ts.out(new Tuple(“pong”));
Tuple tuple = ts.in(new Tuple(“ping”));

}
}

public static void main(String args[])
{
Pong pong = new Pong();
pong.run();

G. A. PAPADOPOULOS AND F. ARBAB

—17—

}
}

SHADE ([24]) is a higher level object-oriented coordination language for the Web. In
SHADE the coordinated entities are Java objects. However, whereas Jada is based on singleton
tuple transactions, SHADE is based on multiset rewriting. Each object in SHADE has a name,
a class and a state. The name is the pattern used to deliver messages. The type defines the
object behaviour. The state is the contents of the multiset associated with the object. The above
ping-pong program can be defined in SHADE as follows.

class ping_class = class pong_class =
{ {
in do_ping; in do_pong;
send pong, do_pong send ping, do_ping
#
in done; in done;
terminate terminate

} }

Each class comprises two methods (separated by ‘#’). The first method is activated when
one of the items ping or pong appear in the proper object’s multiset. When the method is
activated in the object ping (say), a message (do_pong) is sent to the object pong (and vice
versa). When the message is delivered to an object, it is put in the object’s multiset and triggers
the activation of the first method of that object, and so on. The second method is triggered by
the item done and causes the termination of the object.

3.1.10 GAMMA

The GAMMA (General Abstract Model for Multiset mAnipulation) model ([9]) is a
coordination framework based on multiset rewriting. The basic data structure in GAMMA is a
multiset (or bag), which can be seen as a chemical solution and, unlike an ordinary set, can
contain multiple occurrences of the same element. A simple program is a pair (Reaction
Condition, Action) and its execution involves replacing those elements in a multiset satisfying
the reaction condition by the products of the action. The result is obtained when no more such
reactions can take place and thus the system becomes stable.

There is a unique control structure associated with multisets, namely the
�

 operator, whose
definition is as follows.

�
((R1,A1),…,(Rm,Am)) (M) =

if � i � [1,m] � x1,…,xn � M,
�
Ri(x1,…,xn)

then M
else let x1,…,xn
�
 M, let i
�
 [1,m] such that
	
Ri(x1,…,xn) in

((R1,A1),…,(Rm,Am)) ((M-{x1,…,xn})+Ai(x1,…,xn))

where {…} represents multisets and (Ri,Ai) are pairs of closed functions specifying
reactions. The effect of (Ri,Ai) on a multiset M is to replace in M a subset of elements
{x1,…,xn} such that Ri(x1,…,xn) is true for the elements of Ai(x1,…,xn). GAMMA
enjoys a powerful locality property in that Ri and Ai are pure functions operating on their
arguments. Thus, if the reaction condition holds for several disjoint subsets, the reactions can
be carried out in parallel. The following code implements a prime number generator.

prime_numbers(N) =�((R,A))
({2,…,N}) where
R(x,y) = multiple(x,y)
A(x,y) = {y}

COORDINATION MODELS AND LANGUAGES

—18—

The solution consists of removing multiple elements from the multiset {2,…,N}. The
remaining multiset contains exactly the prime numbers less than N.

Although the operational behaviour of the model is strictly implicit (the programmer does not
specify any order of execution and the latter is by default completely parallel), practical use of it
reveals that a number of program schemes can be identified which are the ones most often used
by programs. These schemes, referred to as tropes, are: Transmuter(C,f), which applies
the same operation f to all the elements of the multiset until no element satisfies the condition C;
Reducer(C,f), which reduces the size of the multiset by applying the operation f to pairs
of elements satisfying C; Optimiser(<,f1,f2,S), which optimises the multiset according
to some criterion expressed through the ordering < between the functions f1 and f2, while
preserving the structure S of the multiset; Expander(C,f1,f2), which decomposes the
elements of a multiset into a collection of basic values according to the condition C and by
applying f1 and f2 to each element; S(C), which removes from the multiset all those
elements satisfying C. Tropes can be combined together to form complex programs; the
following combination of tropes (as opposed to using the fundamental � operator) implements
the functionality of a Fibonacci function:

fib(n) = add(zero(dec({n})))
dec = E(C,f1,f2) where C(x)=x>1, f1(x)=x-1, f2(x)=x-2
zero = T(C,f) where C(x)=(x=0), f(x)=1
add = R(C,f) where C(x,y)=true, f(x,y)=x+y

The vanilla GAMMA model has been enriched with sequential and parallel operators, higher-
order functionality and types. Furthermore, in order to express structure, a variant of the basic
model has been proposed, namely Structured GAMMA, featuring structured multisets. These
can be seen as a set of addresses satisfying specific relations and associated with a value. A
type is defined in terms of rewrite rules and a structured multiset belongs to a type T if its
underlying set of addresses satisfies the invariant expressed by the rewrite system defining T.
In Structured GAMMA reactions test and/or modify the relations on addresses and/or the values
associated with those addresses. Structured GAMMA is particularly suited to the concept of
coordination since addresses can be interpreted as individual entities to be coordinated. Their
associated value defines their behaviour (in a given programming language which is
independent of the coordination one) and the relations correspond to communications links.
Also, a structuring type provides a description of the shape of the overall configuration.
Structured GAMMA has been used for modelling software architectures, a particular type of
coordination usually modelled by the coordination languages of the control-driven family. For
instance, the following Structured GAMMA code models a client-server architecture:

CS = N n
N n = cr c n, ca n c, N n
N n = sr n s, sa s n, N n
N n = m n

where cr c n and ca n c denote respectively a communication link from a client c to a
manager n and the dual link from n to c. A new client can now be added by means of the
rewrite rule

m n => m n, cr c n, ca n c

3.1.11 LO and COOLL

Linear Objects (LO,[3,5,15]) is an object-oriented language based on the Interaction Abstract
Machines computational model. The concept of “interaction” is closely related to the principles
underpinning the theory of Linear Logic and in fact LO amalgamates linearity with multiset
rewriting (as in GAMMA) and asynchronous, actor-like communication by means of
broadcasting. LO views the computation as a system of communicating agents whose state is
represented as a multiset. Agents evolve in terms of transitions which are transformations from

G. A. PAPADOPOULOS AND F. ARBAB

—19—

one state to another; in addition, agents can be created or terminate. Inter-agent communication
is achieved by means of broadcasting.

An LO program is a set of (effectively multi-headed) rewrite rules taking the general form

<multiset> <broadcast> <built-ins>
 <goal>

multiset = a1 @ … @ an
broadcast = ̂ a | ̂ a @ broadcast
goal = a1 @ … @ an | goal1 & … & goaln | #t | #b

where the symbols ‘@’ (“par”), ‘&’ (“with”), ‘�‘ (implication), #t (“top”) and #b (“bottom”)
are taken from Linear Logic. The following example implements Multiminds, a multiplayer
version of MasterMind.

coder(S) @ current(I) @ ̂ go(I) � coder(S)
/* coder calls the player (“go(I)”) */

coder(S) @ try(I,G) @ players(N) @ ̂ result(I,G,B,C) @

{ answer(S,G,B,C), C=\=0, next_player(N,I,I1) } �
coder(S) @ current(I1) @ players(N).

/* coder sends to the player I the answer (bulls B and cows C) to the guess
G. */

coder(S) @ try(I,G) @ ̂ victory(I,G) @

{ answer(S,G,B,C), C=:=0 } � #t.
/* player I has guessed the secret code with G — coder informs players
before ending */

decoder @ alp_l([A|List]) @ n_decod(N) @ { nextplayer(N,N1) } �
decoder @ alp_l(List) @ n_decod(N1) &
decoder(N) @ db([]) @ alph(A).

/* creation of players */

decoder(I) @ go(I) @ db(L) @ alph(A) @ ̂ try(I,G) @ { compute(A,L,G) } �
decoder(I) @ db(L) @ alph(A).

/* after receiving the message “go(I)”, player I computes a guess G, sends
it to the coder (“try(…)”), and waits for an answer */

decoder(I) @ result(I,G,B,C) @ db(L) �
decoder(I) @ db([tried(G-[B,C])|L]).

/* player I stores the answer to the guess G (“result(…)”) */

Note that the purely computational procedures answer and compute would normally be
implemented in some ordinary programming language, with Prolog or one of its variants being
the most natural choice. A initial query to the program above could be the following:

coder([h,a,l,l,o]) @ players(2) @ current(0) &
decoder @ n_decod(0) @ alp_l([[l,o,l,h,a],[h,l,a,o,l]])

COOLL ([23]) extends the basic LO model with modularity and a new form of broadcast-
like communication, namely group (multicast) communication. A COOLL program is a set of
theories, each theory having the following structure:

theory theory_name �
method1
#

COORDINATION MODELS AND LANGUAGES

—20—

.

.

.
#
methodN

Communication can be either broadcast or group communication, the latter directed to
specific theories:

Communications = ̂ A | !(dest,msg) | Communications @ Communications

where dest is the name of a theory which will receive msg.

Methods have the general form:

Conditions => Communications => Body

where Conditions specify when methods will be triggered, Communications specifies
broadcast and/or group communication, and Body defines a transition to a new configuration.
The previous LO program can be written in COOLL as follows.

theory coder �
current(I) => !(decoder,go(I)) => #b

#
try(I,G) @ { code(S) @ players(N) } @

{ { answer(S,G,B,C),C=\=0, next_player(N,I,I1) } }
=> !(decoder,result(I,G,B,C)) => current(I1)

#
try(I,G) @ { code(S) } @

{ { answer(S,G,B,C), C=:=0 } }
=> ̂ victory(I,G) => #t.

theory decoder �
alpl([L|List]) @ n_decod(N) @ { next_player(N,N1) }

=> => alp_l(List) @ n_decod(N1) & id(N) @ db([]) @ alph(L)
#

go(I) @ { id(I) @ alph(A) @ db(L) } @
{ { compute(A,L,G) } } => !(coder,try(I,G)) => #b

#
result(G,B,C) @ db(L) => => db([tried(G-[B,C])|L])

#
victory(X,G) => => #t

The program is structured naturally into two theories; furthermore, through employing group
communication, the decoder refrains from receiving guesses from other decoders. The previous
query now takes the following form:

*coder @ code([h,a,l,l,o]) @ players(2) @ current(0) &
*decoder @ n_decod(0) @ alp_l([[l,o,l,h,a],[h,l,a,o,l]])

where ‘*’ denotes the name of a theory.

3.1.12 MESSENGERS

MESSENGERS ([40]) is a coordination paradigm for distributed systems, particularly
suited to mobile computing. MESSENGERS is based on the concept of Messengers which are
autonomous messages. A Messenger, instead of carrying just data (as is the case for ordinary
passive messages), contains a process, i.e. a program together with its current status
information (program counter, local variables, etc.). Each node visited by the Messenger
resumes the interpretation of the Messenger’s program until a navigational command is

G. A. PAPADOPOULOS AND F. ARBAB

—21—

encountered that causes it to leave the current node. A distributed application is thus viewed as
a collection of functions whose coordination is managed by a group of Messengers navigating
freely and autonomously through the network. In addition to navigational autonomy,
MESSENGERS supports both inter- and intra-object coordination.

As is the case for the Linda-like paradigms, MESSENGERS also supports the concept of a
structured global state space. However, MESSENGERS explicitly partitions it by means of the
navigational features it supports. The following example models a manager-worker scenario.

manager_worker()
{
create(ALL);
hop(ll = $last);
while (task = next_task()) != NULL
{
hop(ll = $last);
res = compute(task);
hop(ll = $last);
deposit(res);

}
}

The above Messenger script is injected into the init node of some daemon. It first creates
logical nodes connected to the current node on every neighboring daemon. It also causes a
replica of the Messenger to be created on each node and start executing. Each of the
Messengers hops back to the original node by following the most recently traversed logical
link, which is obtained by accessing the system variable $last. It then attempts to get a new
task to work on. If successful, it hops back to its logical node, computes the result, and carries
it back to the central node to deposit it there. This activity is repeated until no further work is
left to do in which case it ceases to exist. The primary role in the Messenger functionality is
played by the hop statement which is defined as follows:

hop(ln=n;ll=l;ldir=d)

where ln represents a logical node, ll represents a logical link and ldir represents the link’s
direction. The triple (n,l,d) is a destination specification in the network; n can be an
address, a variable, or a constant (including the special node init); l can be a variable, a
constant, or a virtual link (corresponding to a direct jump to the designated node); finally, d can
be one of the symbols ‘+’, ‘-’ or ‘*’ denoting “forward”, “backward” or “either” respectively,
with the latter playing also the role of being the default value. The wild card ‘*’ applies also to
n and l with obvious meanings.

As another example consider the matrix multiplication.

distribute_A(s)
{
M_sched_time_abs((j-i) mod s);
msgr_A = copy_block(resid_A);
hop(ll = “row”);
new_resid_A = copy_block(msgr_A);

}

rotate_B(m)
{
msgr_B = copy_block(resid_B);
for (k=0; k<m; k++)
{
M_sched_time_dlt(.5); /* synchronisation */

COORDINATION MODELS AND LANGUAGES

—22—

resid_C = block_multiply(msgr_B,resid_A,resid_C); /* Cij=Aij*Bij */
hol(ll = “column”; ldir = -); /* rotate B to column i-1 */

The code comprises two Messengers. distribute_A implements the movement of the
array A using temporal coordination which is also supported by the model (each of the
distribute_A Messengers schedules itself to wake up at the time corresponding to its
position in the logical network). rotate_B is the embodiment of one of the blocks of the
matrix B which it copies from the node resid_B to its private area msgr_B. It then enters a
loop during which it keeps moving the block it is responsible for along its respective column.
Temporal coordination is also used here and in fact the two Messengers always alternate
between their respective executions. Each time rotate_B wakes up, it performs a block
multiplication using its own block of B and the currently resident block of A, adds it to the
resident block of C and hops to its northern neighbor.

3.1.13 Synchronisers

Synchronisers ([38,39,62]) are based on the Actor model of computation and are a set of
tools able to express coordination patterns within a multi-object language framework based on
specifying and enforcing constraints that restrict invocation of a set of objects. Constraints are
defined in terms of the interface of objects being invoked rather than their internal
representation. Constraints can enforce access restrictions either temporarily or permanently.
These constraints are typically used to express certain properties fundamental to concurrent
object-oriented languages such as temporal ordering or atomicity of method invocation.

Synchronisers are expressed in an abstract format which is independent of both the syntax of
the particular host languages as well as the underlying protocols used to enforce the required
object properties. Thus, the programmer specifies multi-object constraints in an abstract and
high-level manner which is independent of the details involved in explicit message passing.
Furthermore, the implementation of synchronisers can involve direct communication between
the constrained objects or indirect communication with a central coordinator process.
Synchronisers are not accessed directly by message passing but indirectly through pattern
matching. The following code defines a synchroniser that enforces collective bound on
allocated resources.

AllocationPolicy(adm1,adm2,max)
{
init prev:=0;

prev >= max disables (adm1.request or adm2.request),
(adm1.request or adm2.request) updates prev:=prev+1,
(adm1.release or adm2.release) updates prev:=prev-1

}

The above synchroniser has a local constraint (prev >= max) that prevents (by means of
using the keyword disable) allocation of more resources than the system provides (by
disabling the invocation of the request method). Furthermore, upon encountering an
invocation pattern, the local variable prev is updated accordingly. The next example shows
how the coordination code for the five philosophers can be encapsulated into a synchroniser.

PickUpConstraint(c1,c2,phil)
{
atomic((c1.pick(sender) where sender=phil),

(c2.pick(sender) where sender=phil)),
(c1.pick where sender=phil) stops

}

The synchroniser is parameterised with the two chopsticks (c1 and c2) and the philosopher
who accesses the chopsticks (phil). Furthermore, the synchroniser applies only to pick

G. A. PAPADOPOULOS AND F. ARBAB

—23—

messages sent by phil. We assume the existence of an eat method which invokes
concurrently pick on each of the needed chopsticks. The synchroniser enforces atomic access
to the two chopsticks; when phil has successfully acquired both chopsticks, the constraint is
terminated.

3.1.14 Compositional Programming

The concept of compositionality ([25]), an important design principle for task parallel
programs, shares the same goals with coordination, namely reusability of sequential code,
generality, heterogeneity, and portability; as such it can be seen as a coordination model. A
compositional programming system is one in which properties of program components are
preserved when those components are composed in parallel with other program components.
Thus, it is possible to define in a compositional way recurring patterns of parallel computation,
whether configuration ones (such as mapping techniques) or communication ones (such as
streamers and mergers), as building blocks and combine them together to form bigger
programs. If desired, the compositional assembly preserves the deterministic behaviour of its
constituent parts, thus simplifying program development by allowing program components to
be constructed and tested in isolation from the rest of their environment.

There are basically two approaches to deriving compositional programs. The first approach
is based on concurrent logic programming and is exemplified by languages such as Strand, the
Program Composition Notation (PCN), Fortran-M and Compositional C++ ([37]). Concurrent
logic programming offers a powerful computational model for parallel computing and over the
years a number of techniques have been developed for expressing useful coordination patterns.
In the case of Strand, the language is used to express the coordination aspects of some parallel
program, whereas the actual computation code is written in some other more suitable language,
typically C or Fortran. The following code implements a genetic sequence alignment algorithm.

align_chunk(Sequences,Alignment) :-
pins(Chunks,BestPin),
divide(Sequences,BestPin,Alignment).

pins(Chunk,CpList) :-
cps(Chunk,CpList),
c_form_pins(CpList,PinList),
best_pin(Chunk,PinList,BestPin).

cps([Seq|Sequences],CpList) :-
CpList := [CPs|CpList1],
c_critical_points(Seq,CPs),
cps(Sequences,CpList1).

cps([],CpList) :- CpList := [].

divide(Seqs,Pin,Alignment) :-
Pin =\= [] | split(Seqs,Pin,Left,Right,Rest),

align_chunk(Left,LAlign) @ random,
align_chunk(Right,RAlign) @ random,
align_chunk(Rest,RestAlign) @ random,
combine(LAlign,RAlign,RestAlign,Alignment).

divide(Seqs,[],Alignment) :-
c_basic_align(Seqs,Alignment).

In the above program, the coordination/communication component is quite separate from the
computational one. The first component is expressed in Strand itself; in fact, the actual details
are taken care of by the underlying concurrent logic model using standard techniques such as
shared single assignment variables, dependent AND-parallelism, list composition and, where
appropriate, guarded clauses. The second component, the three procedures with the c_ prefix,
is written in C. Note that different mapping techniques can be explored using the @ notation (in

COORDINATION MODELS AND LANGUAGES

—24—

this case random specifies that the indicated procedure calls will be executed on randomly
selected processors).

Whereas Strand is a concrete language (and thus it needs a dedicated WAM-based
implementation to run), the Program Composition Notation (PCN) is more like a set of
notations adhering to the concurrent logic paradigm (and thus PCN can be implemented as an
extension of the host language(s) to be used). The above program can be written in PCN as
follows.

align_chunk(sequences,alignment)
{ ||

pins(chunks,bestpin),
divide(sequences,bestpin,Alignment)

}

pins(chunk,cplist)
{ ||

cps(chunk,cplist),
c_form_pins(cplist,pinlist),
best_pin(chunk,pinlist,bestpin)

}

cps(sequences,cplist)
{ ? sequences ?= [seq|sequences1] ->

{ ||
cplist = [cps|cplist1],
c_critical_points(seq,cps),
cps(sequences1,cplist1)

},
sequences ?= [] -> cplist = []

}

divide(seqs,pin,alignment)
{ ? pin != [] ->

{ ||
split(seqs,pin,left,right,rest),
align_chunk(left,lalign) @ node(random),
align_chunk(right,ralign) @ node(random),
align_chunk(rest,restalign) @ node(random),
combine(lalign,ralign,restalign,alignment)

},
pin == [] -> c_basic_align(seqs,alignment)

}

The reader may recall the use of logic programming in expressing coordination laws in Law
Governed Linda (section 3.1.4). There, logic programming is interfaced to some other
coordination formalism (namely the tuple space). Here, however, (concurrent) logic
programming is itself the coordination formalism used.

The second approach to deriving compositional programs originates from functional
programming and is expressed in the form of skeletons. Skeletons ([32,67]) are higher order
functional forms with built-in parallel behaviour. They can be used to abstract away from all
aspects of a program’s behaviour such as data partitioning, placement and communication.
Skeletons are naturally data parallel and inherit all the desirable properties of the functional
paradigm such as abstraction, modularity, and transformation. The latter capability allows a
skeletons-based program to be transformed to another, more efficient one, while at the same
time preserving the properties of the original version. Thus, all analysis and optimisation can be
confined to the functional coordination level which is more suitable for this purpose.
Furthermore, one is able to reason about the correctness of the programs produced or derived

G. A. PAPADOPOULOS AND F. ARBAB

—25—

after transformations. Skeletons can be both configuration and computational ones and, being
independent of the host computational language, they can be combined with C, Fortran, etc.
The following is a configuration skeleton.

distribution (f,p) (g,q) A B = align (p ° partition f A)
(q ° partition g B)

distribution takes two function pairs; f and g specify the required partitioning strategy
of A and B, respectively, and p and q specify any initial data rearrangement that may be
required. partition divides a sequential array into a parallel array composed of sequential
subarrays. align pairs corresponding subarrays in two distributed arrays together, to form a
new configuration which is an array of tuples. A specialised partition for a 1 x m two
dimensional array using row_block can be defined as follows.

partition (row_block p) A = << ii := B | ii <- [1..p] >>
where B = SeqArray (1:1/p,1:n)

[(i,j) := A (i+(ii-1)*l/p,j) | i <- [1..l/p], j <- [1..n]]

A computational skeleton for a matrix addition performed in parallel using the configuration
skeleton above, can be defined as follows:

matrixAdd A B = (gather ° map ° SEQ_ADD) (distribution fl dl)
where C = SeqArray ((1..SIZE(A,1)), (1:SIZE(A,2)))

fl = [((row_block p),id), ((row_block p),id), ((row_block p),id)]
dl = [A,B,C]

Note that SEQ_ADD is defined in some other computational language. There is no unique set
of skeletons and a number of them have been designed with some special purpose in mind
([14,18,33,34]).

3.1.15 CoLa

CoLa ([44]) is particularly suited for Distributed Artificial Intelligence applications
implemented using massive parallelism. It is effectively a set of primitives (quite independent of
the host programming language) that introduce and enforce a number of desired properties such
as high-level communication abstraction (correspondents), virtual communication topologies,
and a local view of computation for each process. In particular, associated with each process is
a Range of Vision which defines the set of correspondents the process can locally communicate
with, plus a Point of View which indicates a specific communication topology the process is
involved in. The following program models bi-directional communication in a tree topology.

with csTopoVision -- CoLa base topology class
class csTreeVision is -- Define Point of View

father(csCor, const csCor); -- father node in Point of View
son(csCor, const csCor); -- son node in Point of View

end class;

implementation csTreeVision is -- Implementation of the Point of Views
son is rule son(X,Y) :- csTopoVision.isLinked(X,Y).
father is rule father(X,Y) :- son(Y,X). -- Prolog like clauses

end implementation;

procedure p(T: in csTreeVision) is
F: csSet := {X in T | father(X,self)}; -- Compute correspondence
S: csSet := {X in T | son(X,self);
myMsgDep := csMsgSendAssDep(highest_prio(S),T,csREAD);
myMsgId := csMsgAss(myMsgBody,myMsgDep,csFIFO);
csMsgSend(myMsgId); -- Send in the tree topology
M := {}; -- Enter loop

COORDINATION MODELS AND LANGUAGES

—26—

csLoop do -- Read all messages
myMsgDep := csMsgRecvAssDep(C in S, T);
myMsgRecvId := csMsgAss(myMsgBody,myMsgDep,csIMMEDIATE);
csMsgRecv(myMsgRecvId);
M := union(M,{C});
exit if csIsSmallSubset(M,S);

end csLoop
myMsgDep := csMsgSendAssDep(F,T,csREAD); -- Build depiction
myMsgId := csMsgAss(myMsgBody,myMsgDep,csCAUSAL);
csMsgSend(myMsgId); -- Send results upward to father node

end procedure

A process sends information to a set of other processes (computed by the relation son and
the filter highest_prio) and expects a reply from some, but not necessarily all of its
addressed processes. It then sends some computed results upwards to its father. The program
uses a predefined topology (csTopoVision) whose specification and implementation are
also given. On setup of the procedure p , it first computes its father and children
correspondents, using the appropriate Points of View supplied as parameters. It then constructs
the message Depiction for the destination processes and finally sends a message to all its
children selected by the filter highest_prio. To receive an answer, the program enters a
loop and specifies from whom in the topology it is ready to process a message, and then
forwards the results to the father node. Note the declarative Prolog-like style for implementing
Points of View. Note also the use of predefined communication view primitives (such as
csMsgSendAssDep) throughout the code.

3.1.16 Opus

Opus ([19]) is effectively a coordination superlanguage on top of High Performance Fortran
(HPF) for which it was designed, for the purpose of coordinating concurrent execution of
several data-parallel components. Interaction between concurrently executing tasks is achieved
via the ShareD Abstraction (SDA), a Linda-like common forum. An SDA is in fact an Abstract
Data Type containing a set of data structures that define its state and a set of methods for
manipulating this state. SDAs can be used either as traditional ADTs that act as data servers
between concurrently executing tasks or as computation servers driven by a main, controlling
task. In that respect, Opus combines data- and task-parallelism.

Execution of an Opus program begins with a single coordinating task that establishes all the
participating computation and data servers. The coordinating task drives the computation by
invoking the proper methods within the computation SDAs. Communication and
synchronisation between the concurrently executing tasks is managed by the data SDAs. The
following code implements a data server for a FIFO bounded buffer.

SDA TYPE buffer_type(size)
INTEGER ::size
REAL, PRIVATE ::fifo(0:size-1) ! FIFO buffer
INTEGER, READ ONLY ::count=0 ! number of full elements in fifo
INTEGER, PRIVATE ::px=0 ! producer index
INTEGER, PRIVATE ::cx=0 ! consumer index

…
CONTAINS

SUBROUTINE put(x) WHEN (count .LT. size)
REAL, INTENT(IN) ::x
fifo(px)=x ! put x into first empty buffer element
px=MOD(px+1,size)
count=count+1

END
SUBROUTINE get(x) WHEN (count .GT. 0)

REAL, INTENT(OUT) ::x

G. A. PAPADOPOULOS AND F. ARBAB

—27—

x=fifo(cx) ! get next element from full buffer
cx=MOD(cx+1,size)
count=count-1

END
…

END buffer_type

SDAs of the above type are created and activated as follows:

PROCESSORS R(128)

SDA(buffer_type)::buffer1, buffer2
…
CALL buffer1%CREATE(256) on PROCESSORS R(1)
CALL buffer2%CREATE(000000,STAT=create_status) ON PROCESSORS R

The first CREATE statement generates an SDA with buffer size 256 and allocates it on
processor R(1) with the variable buffer1 playing the role of a handle. The second CREATE
statement allocates a much bigger buffer size across the rest of the processors with buffer2
as the handle.

Opus is in fact one of the few languages in the data-driven category which separates quite
clearly the coordination component from the HPF computational component. However, we
choose to include the model in this category rather than the one on control-driven coordination
languages because of the SDA mechanism it employs which is quite remoniscent to the Shared
Dataspace one.

3.2 Control-Driven (Process-Oriented) Coordination Models

In control-driven or process-oriented coordination languages, the coordinated framework
evolves by means of observing state changes in processes and, possibly, broadcast of events.
Contrary to the case of the data-driven family where coordinators directly handle and examine
data values, here processes (whether coordination or computational ones) are treated as black
boxes; data handled within a process is of no concern to the environment of the process.
Processes communicate with their environment by means of clearly defined interfaces, usually
referred to as input or output ports. Producer-consumer relationships are formed by means of
setting up stream or channel connections between output ports of producers and input ports of
consumers. By nature, these connections are point-to-point, although limited broadcasting
functionality is usually allowed by forming 1-n relationships between a producer and n
consumers and vice versa. Certainly though, this scheme contrasts with the Shared Dataspace
approach usually advocated by the coordination languages of the previous family. In addition to
using ports, processes often send out to their environment control messages or events with the
purpose of letting other interested processes know in which state they are or informing them of
any state changes. The diagram below depicts these concepts.

In particular, the figure shows a configuration involving one producer with one input and
two output ports and two consumers, one with a single input port and a single output port and
the other with two input ports and one output port. Stream connections have been established
between the output ports of the producer and the input ports of the consumers, sometimes with
more than one stream entering an input port or leaving an output port. Furthermore, the
producer and one of the consumers either raises and/or observes the presence of some events.
Most of the coordination languages to be described in this section realise in one way or another
the above CSP- or Occam-like formalism. However, they differentiate in the exact functionality
of the involved concepts. For instance, in some languages events can be parametric with types
and data values (effectively another mechanism for interprocess communication) whereas in
other languages events are strictly simple units signifying state changes. Furthermore, in some
languages events are broadcast by means of mechanisms different from stream connections
whereas in other languages events actually travel through streams. Stream connections
themselves can be realised in a number of ways; for instance, they may or may not support

COORDINATION MODELS AND LANGUAGES

—28—

synchronous communication. In some cases streams are interfaced to some common medium
(such as a “data bus”) rather than being point-to-point connections between ports; even in this
latter case however, the medium is not used for unrestricted broadcasting. Also, some
languages support dynamic creation of ports and exporting of their id for use by other
processes whereas others limit such functionality.

Prod

Cons1

Cons2

Pi

Po1

P02

C1i C1o

C2i1

C2i2

C2o

e1, e2

e3

The ability to visualise the evolution of computation in this family of coordination models
using metaphors similar to the ones shown in the above figure is not irrelevant to the fact that
for many of these coordination languages graphical programming environments exist ([16]).

3.2.1 PCL (Proteus Configuration Language)

PCL ([68]) is a language designed to model architectures of multiple versions of computer-
based systems. Furthermore, it has been used to model static as well as dynamic
configurations. Coordination in PCL is understood as a configuration; the unit of configuration
is a family entity, representing one or more versions of a logical component or system. A
family entity may be related to other family entities through inheritance, composition, and
relationship participation. A family entity has various kinds of associated information, namely a
composition structure, a classification (specifying its type), a list of attributes, a parts section
specifying the composition of the entity in terms of other entities, and a number of version
descriptors.

In the configuration paradigm, an application is presented as a co-operating set of
components. A component encapsulates state and may provide and require services, to and
from other components. There exist single and composite components, the latter merely
providing abstraction mechanisms since at run-time the system unfolds to one comprising only
simple components realised as processes. Simple components may be classified as active (that
provide services to other components, but are also able to execute in the absence of external
stimuli) and passive (acting only when some external stimulus requests a service from them).
Another major element of the configuration paradigm is the ports which are used to represent
either provided or required service. A component may have a number of required and/or
provided ports. Inter-component communication is facilitated indirectly by transmitting
messages through bindings, where a binding is used to connect two ports. Communication can
either be synchronous or asynchronous.

The following example models a scenario involving a log component, a controller
component and three sensor components. log provides two services: an add service

G. A. PAPADOPOULOS AND F. ARBAB

—29—

allowing a sensor component to register a value and a readings service allowing the
controller component to read the last n sensor readings registered. Only the code for
log is shown below.

family log inherits component
class
type => active

end
attributes
persistentState=true

end
interface
provides => (add,readings)

end
structure
portBindLeastOnce => add, (sensor)
portBindExactlyOnce => readings, (controller)

end
behaviour
intraAtomicOperation => (writeToDisk)

end
end

log is defined as an active component which periodically writes data to the disk;
meanwhile, this component may not be substituted with another one. Furthermore, log
supports persistent state in the sense that during dynamic reconfiguration, persistent
information should survive.

The above mentioned framework inherently supports a clear distinction between the
configuration component (namely PCL) and what is being configured (i.e., computational
components written in any conventional programming language). Furthermore, components are
context independent since inter-component interaction and communication is achieved only by
means of indirect interfaces comprising ports connected by means of bindings. Thus, a
separation is achieved between the functional description of individual component behaviours
and a global view of the formed system as a set of processes with interconnections. In addition,
port connections are effectively unlimited buffers. If component replacement is to take place,
any outstanding messages not yet delivered to a to-be-replaced component are retained by the
run-time system and eventually forwarded to the component’s replacement.

Finally, note that PCL is object-oriented and polymorphic. Thus, inheritance can be
exploited to build hierarchies of family entities (in the example above, for instance, log
inherits the basic functionality of a component). In addition, it is easy to create reusable
descriptions of configuration scenarios.

3.2.2 Conic

Conic ([47]) is another language where coordination is viewed as configuration. In fact,
Conic is two languages: a programming language which is a variant of Pascal enhanced with
message passing primitives, plus a configuration language, similar in nature to PCL, featuring
logical nodes that are configured together by means of links established among their
input/output ports. A logical node is a system configuration unit comprising sets of tasks which
execute concurrently within a shared address space. Configured systems are constructed as sets
of interconnected logical nodes; these sets are referred to as groups.

The programming subcomponent of Conic is based on the notion of task module types,
which are self-contained, sequential tasks; these are used at run-time by the Conic system to
generate respective module instances, which exchange messages and perform various activities.
The modules’ interface is defined in terms of strongly typed ports. An exitport denotes the
interface at which message transactions can be initiated and provide a local name and type

COORDINATION MODELS AND LANGUAGES

—30—

holder in place of the source name and type. An entryport denotes the interface at which
message transactions can be received and provides a local name and typeholder in place of the
source name and type. A link between an exitport and an entryport is realised by means of
invoking the message passing facilities of the programming subcomponent. The system
supports both unidirectional asynchronous and bi-directional synchronous communication.
Since all references are to local objects, there is no direct naming of other modules or
communication entities. Thus each programming module is oblivious to its environment, which
renders it highly reusable, simplifies reconfiguration, and clearly separates the activities related
to the latter from purely programming concerns.

The following example illustrates the syntax of the configuration subcomponent of Conic; it
is part of a typical (regarding configuration languages) example describing a patient monitoring
system comprising nurses and patients.

group module patient;
use monmsg: bedtype, alarmstype;
exitport alarm: alarmstype;
entryport bed: signaltype reply bedtype;
<< code >>

end.

group module nurse;
use monmsg: bedtype, alarmstype;
entryport alarm[1..maxbed]: alarmstype;
exitport bed[1..maxbed]: signaltype reply bedtype;
<< code >>

end.

The first module models the monitoring device of a patient. The device periodically reads
sensors attached to the patient. If any readings are detected which are outside their established
ranges, suitable alarm messages are sent to the exitport. Also, a request message received in the
entryport, returns the current readings. The second module displays alarms received at the
entryports and can request the display of the readings associated with a patient from its
exitports. Note that a nurse may be monitoring more than one patient (hence the use of arrays
of ports).

The following configuration code creates instances of the above modules (at specified
machine locations in the system) and establishes the required communication links.

system ward;
create
bed1: patient at machine1;
nurse: nurse at machine2;

link
bed1:alarm to nurse.alarm[1];
nurse.bed[1] to bed[1].bed;

end.

Conic supports a limited form of dynamic reconfiguration. First of all, the set of task and
group types from which a logical node type is constructed is fixed at node compile time.
Furthermore, the number of task and group instances within a node is fixed at the time a node
is created. Dynamic changes to link set-ups can be achieved through the unlink command.
The following example shows how the above system can evolve at run-time to one where the
nurse module instance changes behaviour and starts monitoring the readings of another patient
(such a scenario would make sense if the nurse already monitors the maximum number of
patients it can handle).

manage ward;
create
bed2: patient at machine1;

G. A. PAPADOPOULOS AND F. ARBAB

—31—

unlink
bed1:alarm from nurse.alarm[1];
nurse.bed[1] from bed[1].bed;

link
bed2:alarm to nurse.alarm[1];
nurse.bed[1] to bed[2].bed;

end.

Another limitation of the dynamic reconfiguration functionality of Conic is related to the very
nature of the links that are being established between entryports and exitports. In particular,
these links are not viewed as (unbounded) buffer areas. Thus, when some link is severed
between a pair or set of ports, the module instances involved in communication must have
stopped exchanging messages, otherwise information may be lost and inconsistent states may
result. The Conic developers have designed a system reconfiguration model whereby links may
be severed only between nodes which enjoy a quiescence property. More to the point, a node is
quiescent if: (i) it is not currently involved in a transaction that it initiated, (ii) it will not initiate
new transactions, (iii) it is not currently engaged in servicing a transaction, and (iv) no
transactions have been or will be initiated by other nodes which require service from this node.
Finally, one cannot underestimate the fact that in Conic a user is constrained by using a single
programming language (the Pascal like Conic programming subcomponent).

3.2.3 Darwin/Regis

The Regis system and the associated configuration language Darwin ([48]) are effectively an
evolution of the above mentioned Conic model. Darwin generalises Conic by being largely
independent of the language used to program processes (although the Regis system actually
uses a specific language, namely C++). Furthermore, Darwin realises a stronger notion of
dynamic reconfiguration: it supports (lazy) component instantiation and (direct) dynamic
component instantiation (in contrast, Conic supports only static configuration patterns which
can be changed at run-time only by explicitly invoking a configuration manager). Furthermore,
it allows components to interact through user defined communication primitives (whereas
Conic offers only a predefined set of such primitives). Finally, there is a clear separation of
communication from computation (in Conic, the computation code is intermixed with the
communication code).

As in Conic, a Darwin configuration comprises a set of components with clearly defined
interfaces which are realised as ports, the latter being queues of typed messages. Ports are of
two types: those used by a process to receive data (effectively input ports) are understood as
being provided to the environment of the process for the benefit of other processes to post the
messages, and those used to send data (effectively output ports) are understood as requiring a
port reference to some remote port in order to post there the involved data. In fact, ports in
Darwin/Regis are viewed as the more general concept of services (either provided or required);
combined with port references, this allows the realisation of rather liberal notions of port
connections. In addition to the provided/required ports included in a process definition,
processes may at run-time realise various communication and configuration patterns by
exchanging port references and then using them to send/receive messages.

The following example calculates in a distributed fashion the number π. It consists of three
groups of processes: a set of worker processes dividing among themselves the computational
work to be done, a supervisor process which combines the results, and a top-level coordinator
process which sets up the whole apparatus. First we show the configuration component of the
example written in Darwin.

component supervisor (int w)
{
provide
result <port,double>;

require
labour <component,int,int,int>;

COORDINATION MODELS AND LANGUAGES

—32—

}

component worker (int id, int nw, int intervals)
{
require
result <port,double>;

}

component calcpi2(int nw)
{
inst
S:supervisor(nw);

bind
worker.result -- S.result;
S.labour -- dyn worker;

}

The supervisor process is responsible for dynamically spawning new worker
processes. Note that the require part of supervisor specifies as the required type of
service a component rather than merely a port. The coordinator process calcpi2 generates an
instance of supervisor; furthermore, it dynamically generates instances of labour (by
means of the dyn primitive which in this case creates instances of worker when invoked)
and sets up the port connections accordingly.

The criteria that dictate precisely when new worker processes are spawned, as well as the
actual computation code form the Regis C++ based computation subcomponent are shown
below.

worker::worker(int id, int nw, int intervals)
{
double area=0.0;
double width=1.0/intervals;
for (int i=id; i<intervals; i+=nw)
{
double x=(i+0.5)*width;
area+=width*(4.0/(1.0+x*x));

}
result.send(area);
exit();

}

supervisor::supervisor(int nw)
{
const int intervals=400000;
double area=0.0;
for (int i=0; i<nw; i++)
{
labour.at(i);
labour.inst(i,nw,intervals);

}
for (int i=0; i<nw; i++)
{
double tmp;
result.in(tmp);
area+=tmp;

}
printf(“Approx pi %20.15lf\n”,area);

}

G. A. PAPADOPOULOS AND F. ARBAB

—33—

Note the use of the communication primitives send and in which are used to post and
retrieve, respectively, a message to/from a port. Furthermore, note the expression
labour.inst(i,nw,intervals) which actually invokes a new worker process (the
at primitive in the previous command line is used to specify on which processor the new
process should run).

3.2.4 Durra

Durra ([11,12]) is yet another architecture configuration language. A Durra application
consists of a set of components and a set of configurations specifying how the components are
interrelated. Components consist of application tasks, which feature input/output ports, and
communication channels. At run-time, tasks create processes and channels create links;
composite process configurations are achieved by using links to connect input/output ports
between different processes.

Durra’s main concern is how to coordinate resources, i.e., load and execute programs at
different locations (thus supporting heterogeneous processing), route data, reconfigure the
application, etc. As all the other members in this family of coordination languages, it makes a
clear distinction between application structure and behaviour. Tasks implement the functionality
of the application whereas channels implement communication facilities. Thus, it is possible to
support different kinds of communication; furthermore, reusability of components is enhanced.

The following example shows how one can realise a producer-consumer scenario in Durra.
In particular, it presents the definitions for a producer task, a consumer task and a FIFO
channel.

task producer task consumer
ports ports
output: out message; input: in message;

attributes attributes
processor=“sun4”; processor=“sun4”;
procedure_name=“producer”; procedure_name=“consumer”;
library=“/usr/durra/srclib”; library=“/usr/durra/srclib”;

end producer; end consumer;

channel fifo(msg_type:identifier, buffer_size:integer)
ports
input: in msg_type;
output: out msg_type;

attributes
processor=“sun4”;
bound=buffer_size;
package_name=“fifo_channel”;
library=“/usr/durra/channels”;

end fifo;

The above piece of code defines a producer task with an output port of type message.
Furthermore, the Durra code specifies that task instances of producer should run on the
indicated machine, the task’s implementation code can be found in the procedure producer in
the directory /usr/durra/srclib. Similar things can be said about the task consumer
and the channel fifo (the description of the latter also generically specifies through
parameters, the types of messages its two ports can receive and other relevant information,
such as the size of the channel). The actual implementation of the above tasks and channel are
not shown here; they can be written in any conventional programming language.

The following Durra code uses the above defined entities to generate a compound task
description featuring dynamic reconfiguration.

task dynamic_producer_consumer
components

COORDINATION MODELS AND LANGUAGES

—34—

p: task producer;
c[1..2]: task consumer;
buffer: channel fifo(message,10);

structures
L1: begin

baseline p, c[1], buffer;
buffer: p.output >> c[1].input;

end L1;
L2: begin

baseline p, c[2], buffer;
buffer: p.output >> c[2].input;

end L2;
reconfigurations
enter => L1;
L1 => L2 when signal(c[1],1);

clusters
cl1: p, buffer;
cl2: c[1], c[2];

end dynamic_producer_consumer;

The scenario involves one producer, two consumers and a FIFO channel of buffer size 10.
Two different configuration scenarios are possible: L1 involving the producer, the first
consumer and the channel, and L2, of similar in nature to L1, where the second consumer is
used instead. In either case, the producer sends data via its output port to the input port of the
first or the second consumer through the channel. Initially, the configuration L1 is active;
transition to L2 is done when some particular signal is raised by the first consumer.

Durra is tailored more to support rapid prototyping of distributed heterogeneous applications
and test different configuration strategies, rather than as a means to actually implement these
applications. Its task emulator supports a number of useful features including timing constraints
(thus, rendering the language suitable for real-time applications) but its implementation is
centralised. Furthermore, although in principle any implementation language can be used, the
Durra system is tailored towards the use of Ada. Finally, unrestricted dynamic creation of task
instances is not possible; for instance, the above code restricts the involved entities at run-time
to be one producer, two consumers and a channel.

3.2.5 CSDL

CSDL (Cooperative Systems Design Language, [58,59]) is a specification and design
language that supports the definition of the coordination aspects, and the definition of the
logical architecture of a cooperative system. A CSDL configuration comprises users,
applications and coordinators where the latter define the cooperation policies and control the
data flowing between users and shared applications. A coordinator is composed of three parts:
a specification that defines groups and cooperation policies in terms of requests exported
selectively to members of different groups; a body that defines the access rights associated with
the groups in terms of communication system control; and a context that defines coordinator
dependencies in terms of groups mapping. The following CSDL code defines the specification
and body of an X-Windows coordinator.

coordinator XWindow
{
group ConnectedUsers;
group Output
nestedIn ConnectedUsers;

group Input
nestedIn Output;

invariant #Input <= 1;
requests
{

G. A. PAPADOPOULOS AND F. ARBAB

—35—

exportedTo extern
{
join Output other
{
actions: insert ConnectedUsers other;

insert Output other;
}
join Input other
{
requires: other in Output and #Input = 0;
actions: insert Input other;

}
}
leave Output other
{
actions: extract Output other;

extract ConnectedUsers other;
}
leave Input other
{
actions: extract Input other;

}
}

}

coordinator body XWindow
{
S: switcher inOut XSwitcher;
group ConnectedUsers
{ connected; inOff; outOff; }
group Output
{ outOn; }
group Input
{ inOn; }

}

The specification includes declaration of group identifiers that may involve the definition of a
type and of a nesting. It also includes an invariant stating some constraints on group cardinality
and membership through logical expressions, and a set of requests (such as join or leave)
exported selectively to members of groups according to a desired policy. For instance,
exportedTo extern refers to any sender not belonging to the group of the coordinator.
Exchange of information between components is done by means of virtual switches, defined
within the body of a coordinator, that model multiplexing and demultiplexing of data streams.
Declaration of switches is accompanied by kinds and modes of access; in the example above,
members of the ConnectedUsers group can be connected but cannot send and/or receive
data since they have both their input and their output channels disabled.

3.2.6 POLYLITH

POLYLITH ([26,60]) is a software interconnection system, effectively a MIL enhanced with
functionality (such as input/output ports and, more recently, events) found usually in
coordination languages. POLYLITH clearly separates functional requirements from interfacing
requirements, thus enhancing decoupling and reuse of software components. A component is
treated as a module; modules have interfaces for each communication channel upon which the
running instances of a module (i.e., processes) will send or receive messages. An abstract
decoupling agent, called the software bus, is used as a means for process communication;

COORDINATION MODELS AND LANGUAGES

—36—

message passing routines provided by the system allows processes to get “plugged” to or
“unplugged” from the bus.

The program code for a module is written separately from the rest of the code describing
how it interfaces with the rest of the system and, in fact, the language supports the mixed
language approach. Furthermore, the software bus actually encapsulates separately the
interfacing decisions of the involved modules. Thus, it is possible to use the same set of
modules with different buses, say, one for distributed systems based on the TCP/IP paradigm,
another one tailored to use shared memory, etc.

The following code shows the outline of the implementation and the specification of two
modules.

main(argc,argv) main(argc,argv)
/* a.c (exec in a.out) */ /* b.c (exec in b.out) */
{ {
char str[80]; char str[80];
… …
mh_write(“out”,…,”msg1”); mh_read(“in”,…,str);
… …
mh_read(“in”,…,str); mh_write(“out”,…,”msg2”);
… …

} }

service “A”: orchestrate “example”:
{ {
implementation: {binary: “a.out”} tool “foo”: “A”
source “out”: {string} tool “bar”: “B”
sink “in”: {string} tool “bartoo”: “B”

} bind “foo out” “bar in”
bind “bar out” “bartoo in”

service “B”: bind “bartoo out” “foo in”
{ }
implementation: {binary: “b.out”}
source “out”: {string}
sink “in”: {string}

}

In the implementation part and using the primitives mh_read and mh_write, each of the
two modules sends to its output channel out the messages msg1 and msg2, respectively, and
receives a message of type string from its own input channel in into its local variable msg.
In the specification part, two services A and B are defined of type a.out and b.out,
respectively, and furthermore, it is specified that each of them has an outgoing interface out
and an incoming interface in, both of type string. The application definition example
(effectively the “coordinator” process) actually creates a specific scenario involving one
instance of a.out and two instances of b.out and properly connects their respective
input/output channels.

Recently, the model has been enhanced with events allowing event-based interaction:
modules register their interest in observing the raising of an event, at which point they invoke a
procedure associated with the event. Furthermore, “event coordinators” are used to match
together events of the same functionality but with different names among a number of modules
realising a composite interaction. The following code illustrates some of these points.

module “A”: module “B”:
{ {
declare Sig1 {integer,string}; declare Sig2 {integer};
generate Sig1; generate Sig2;
when Sig2 => Proc1; when Sig1 => Proc2;

G. A. PAPADOPOULOS AND F. ARBAB

—37—

} }

main() main()
{ {
char *event_type, *event; char *event_type, *event;

/* initialisation */ /* initialisation */
Init(argc,argv,NULL,NULL); Init(argc,argv,NULL,NULL);

/* events declaration */ /* events declaration */
DeclareEvent(“IS”,”Sig1”); DeclareEvent(“I”,”Sig2”);

/* register interest */ /* register interest */
RegisterEvent(“Sig2”); RegisterEvent(“Sig1”);

while (true) while (true)
{ {
/* get next event */ /* get next event */
GetNextEvent(event_type,event); GetNextEvent(event_type,event);

/* invoke corresp proc */ /* invoke corresp proc */
if (strcmp(“Sig2”,event_type)==0) if (strcmp(“Sig1”,event_type)==0)

Proc1(event); Proc2(event);
} }

} }

Each module declares an event and registers its interest in observing the raising of some
other event. Upon detecting the presence of the specified event, the module calls some
procedure. The first part of the code specifies the intended interaction, while the second part
presents the outline of the implementation using C. Note that events are actually parameterised
with data, so in fact they substitute the use of input/output channels in the previous version of
POLYLITH.

3.2.7 The Programmer’s Playground

The Programmer’s Playground ([42]) shares many of the aims of languages such as Conic,
Darwin and Durra, in that it is a software library and run-time system supporting dynamic
reconfiguration of distributed components. Furthermore, the model supports a uniform
treatment of discrete and continuous data types and, as in the case of the other models in this
family, a clear separation of communication from computation concerns.

The Programmer’s Playground is based on the notion of I/O abstraction. I/O abstraction is a
model of interprocess communication in which each module in the system has a presentation
that consists of data structures that may be externally observed and/or manipulated. An
application consists of a collection of independent modules and a configuration of logical
connections among the data structures in the module presentations. Whenever published data
structures are updated, communication occurs implicitly according to the logical connections.

I/O abstraction uses declarative communication (as opposed to imperative communication) in
the sense that the user declares high-level logical connections among state components of
modules (rather than expressing direct communication within the control flow of the program).
Declarative communication enhances the separation of communication from computation, is
less error-prone and facilitates the automatic updating of the modules’ states in cases where
changes in the state of one module should be reflected in some other module. This last
functionality is achieved by means of connections: if an item x in a module A is connected to an
item y in another module B, then any change in x’s value will cause an appropriate update in
the value of y. Such connections can be simple (point-to-point) or element-to-aggregate (one-
to-many); furthermore, the former can be unidirectional or bi-directional.

COORDINATION MODELS AND LANGUAGES

—38—

The following producer-consumer apparatus illustrates some of the above points.

#include “PG.hh”

PGint next=0;
PGstring mess;

send_next(PGstring mess, static int i)
{
if (strcmp(mess,”ok”)==0)

next=i++;
}

main()
{
PGinitialise(“producer”);
PGpublish(next,”next_int”,READ_WORLD);
PGpublish(mess,”ok”,WRITE_WORLD);

while (1)
{
PGreact(mess,send_next);

}
PGterminate();

}

#include “PG.hh”

PGint next=0;
PGstring mess;

void consume_int(PGint i)
{ /* consumes list of integers */ }

main()
{
PGinitialise(“consumer”);
PGpublish(mess,”ok”,READ_WORLD);
PGpublish(next,”next_int”,WRITE_WORLD);

while (1)
{
PGreact(next,consume_int);
mess=“ok”;

}
PGterminate();

}

The above program consists of two modules forming a producer-consumer pair
communicating synchronously to exchange an infinite list of integers. Both modules use an
integer variable used to send/receive the integers and a string variable used by the consumer to
declare that it is ready to receive the next integer. These variables are published by the two
modules with an external name and a protection flag (read/write). The procedure PGreact is
used to suspend execution of the module until the variable indicated in its first argument has
been updated. The logical connection between the two variables in the respective modules is
assumed to have already been established (in the Programmer’s Playground this is achieved

G. A. PAPADOPOULOS AND F. ARBAB

—39—

graphically: modules are shown as boxes, published variables as input/output “ports” and
logical connections as lines drawn between their respective ports).

The Programmer’s Playground is based on the C/C++ language formalism and has been
implemented on Sun Solaris. Although it claims to clearly separate communication from
computation concerns, at least stylistically the two different types of code are intermixed within
a module. The model was developed primarily for developing distributed multimedia
applications and in fact it places emphasis on supporting uniform treatment of discrete and
continuous data, where differences in communication requirements are handled implicitly by
the run-time system. Since the nature of the data being handled is here of more importance than
in most of the other coordination models comprising the control-driven category, the
Programmer’s Playground could also be included in the data-driven category. We chose to
place it here though, because of the well-defined input/output connections that each process
possesses as well as for sharing the same application domains with configuration languages.

3.2.8 RAPIDE

RAPIDE ([66]) is an architecture definition language and in that respect shares many of the
aims of languages such as Conic and Durra. It supports both component and communication
abstractions as well as a separation between these two formalisms. An architecture in RAPIDE
is an executable specification of a class of systems. It consists of interfaces, connections, and
constraints. The interfaces specify the behaviour of components of the system, the connections
define the communication between the components using only those features specified by the
components’ interfaces, and the constraints restrict the behaviour of the interfaces and
connections. RAPIDE is event-driven; components generate (independently from one another)
and observe events. Events can be parameterised with data and types. Asynchronous
communication is modelled by connections that react to events generated by components and
then generate events at other components. Synchronous communication can be modelled by
connections between function calls. The result of executing a RAPIDE architecture (i.e., a set
of interfaces and connections) is a poset showing the dependencies and independencies
between events.

The following producer-consumer example illustrates some of the above points.

type Producer(Max: Positive) is interface
action out Send(N: Integer);
action in Reply(N: Integer);

behavior
Start => Send(0);
(?X in Integer) Reply(?X) where ?X < Max => Send(?X+1);

end Producer;

type Consumer is interface
action in Receive(N: Integer);
action out Ack(N: Integer);

behavior
(?X in Integer) Receive(?X) => Ack(?X);

end Consumer;

architecture ProdCons() return SomeType is
Prod: Producer(100);
Cons: Consumer;

connect
(?n in Integer)
Prod.Send(?n) => Cons.Receive(?n);
Cons.Ack(?n) => Prod.Reply(?n);

end architecture ProdCons;

COORDINATION MODELS AND LANGUAGES

—40—

The above code initially declares two types of components. Producer is designed to accept
events of type Reply and broadcast events of type Send, both parameterised with an integer
value. Upon commencing execution, Producer broadcasts the event Send(0) and upon
receiving an event Reply(X) it will reply with the event Send(X+1) provided that X is less
than a certain value. Consumer has similar functionality. The “coordinator” ProdCons()
creates two process instances for Producer and Consumer and furthermore it associates the
output event of the former with the input event of the latter and vice versa. Note that the above
code specifies how the two components interact with each other but the actual details of their
implementation are left unspecified.

3.2.9 ConCoord

ConCoord ([43]) is a typical member of this family of control-driven coordination
languages. A ConCoord program is a dynamic collection of computation processes and
coordination processes. A computation process executes a sequential algorithm and can be
written in any conventional programming language augmented with some communication
primitives. Coordination processes are written in CCL, ConCoord’s Coordination Language.
Communication between processes is done in the usual way of sending data to output ports
they own and receiving data from input ports they also own, thus effectively, achieving
complete decoupling of producers from consumers. Processes raise or broadcast their state
which is, in fact, an event or signal parameterised with data. States are communicated by
message passing. The following example shows a dynamically evolving pipeline of generic
processes.

coordinator <t_node, t_data> gen_dyn_pipeline
{
inport <t_data> in;
outport <t_data> out;
states error(), done();

create t_node n bind in -- n.left, n.out -- out;
loop
{
choose
{
sel(t_node n | n.new and not n.right--)

=> create t_node new_n
bind n.right -- new_n.left, new_n.out -- out;

sel(t_node n | n.new and n.right--)
=> error();

}
}

}

gen_dyn_pipeline is a coordinator parameterised with the types of both the
computation processes forming the pipeline (t_node) and the data being communicated
(t_data). The pipeline of nodes communicates with the outside world by means of the in
and out ports of gen_dyn_pipeline; namely, the first process will get data via in and all
processes will output data via out. Initially, one process is created and its own ports left
and out are bound to gen_dyn_pipeline’s in and out respectively. Then, each time a
process at the end of the pipeline raises the state new, a new process is created and inserted in
the pipeline. Whether a process raising the state new is actually the last one in the pipeline is
determined by means of examining as to whether its port right is linked to some other port
(in this particular configuration to the port left of some other process). If that is indeed the
case, then instead of creating a new process gen_dyn_pipeline raises the state error.

The language features nested hierarchies of coordination domains and synchronous or
asynchronous communication between components. In particular, a computational process

G. A. PAPADOPOULOS AND F. ARBAB

—41—

raising a state blocks until this is treated by the coordinator process in charge of it; thus,
communication appears to be synchronous from the process’s point of view and asynchronous
from the point of view of the coordinator process. Coordinator processes and their groups of
coordinated processes are configured in a hierarchical manner with the top level of the
configuration being a coordinator. Furthermore, the language enforces and encourages the
building of structured programs by treating each pair of coordinator-coordinated processes as a
separate domain. The coordinator of some domain is unaware of any nested subdomains and
treats homogeneously computational and coordination processes within the latter. Furthermore,
state change notification by some process is only visible in the domain of its supervisor
coordinator process.

3.2.10 TOOLBUS

The TOOLBUS coordination architecture ([13]) is reminiscent of models such as
POLYLITH, featuring a component interconnection metaphor (the toolbus) on which tools can
be “plugged in”. The toolbus itself consists of a number of processes which manage the tools
forming the system. Although the number of tools comprising a system is static, the number of
processes changes dynamically according to the intended functionality of the system. Thus, in
addition to the straightforward one-to-one correspondence between tools and processes, it is
also possible to have a tool controlled by a number of processes or groups of tools controlled
by one process. Tools communicate implicitly via the toolbus; no direct tool-to-tool
communication is allowed. A number of primitives are offered by the system realising both
synchronous and asynchronous communication among the processes and between processes
and tools. The TOOLBUS architecture recognises a common format for the interchanged data;
thus, each tool must use an adapter which changes data formats accordingly. Furthermore, the
intended behaviour of the system is specified by means of T-scripts which contain a number of
definitions for processes and tools followed by a configuration statement. The following
example shows how a compiler-editor cooperation can be modelled in TOOLBUS.

define COMPILER =
(rec-msg(compile,Name) . snd-eval(compiler,Name) .

(rec-value(compiler,error(Err),loc(Loc)) .
snd-note(compile-error,Name,error(Err),loc(Loc))

) * rec-value(compiler,Name,Res) . snd-msg(compile,Name,Res)
) * delta

define EDITOR =
subscribe(compile-error) .
(rec-note(compile-error,Name,error(Err),loc(Loc)) .

snd-do(editor,store-error(Name,error(Err),loc(Loc)))
+ rec-event(editor,next-error(Name)) .

snd-do(editor,visit-next(Name)) . snd-ack-event(editor)
) * delta

define UI =
(rec-event(ui,button,(compile,Name)) .

snd-msg(compile,Name) . rec-msg(compile,Name,Res)
. snd-ack-event(ui)

) * delta

COMPILER receives a compilation request (from UI), starts the compilation, broadcasts any
errors it encounters and finally sends the result back to the process that invoked it. EDITOR
either receives a message with a compilation error and stores the compiled program and the
error location for future reference or receives a next-error event from the editor and goes to a
previously stored error location. Finally, UI is a user-interface with a compile button which
when pushed causes a compile message to be sent and waits for a reply.

The following TOOLBUS primitives are used in the above program: snd-msg is used by a
process to synchronously send a message to another process which the latter will receive by

COORDINATION MODELS AND LANGUAGES

—42—

invoking rec-msg; snd-note is used by a process to asynchronously broadcast messages
to other processes which the latter receive by invoking rec-note, and subscribe is used
by a process to declare its interest in receiving certain asynchronous broadcasts from other
processes. Furthermore, rec-event and rec-value are used by a process to receive,
respectively, an event and the evaluation result from some tool, and snd-do is used by a
process to request the evaluation of some term by a tool. Finally, ‘+’ and ‘.’ are the selection
and sequential operators, respectively, and delta signifies process termination.

Using the above definitions, a number of configurations are possible to set up, namely:

toolbus(COMPILER,EDITOR,UI) toolbus(COMPILER,UI)

where in the latter case a simpler system is configured without the ability to refer back to error
locations.

The TOOLBUS enjoys formal semantics (the T-scripts can be formally analysed in terms of
process algebras) and recently it has been extended with the notion of discrete time. A
prototype interpreter C-based implementation exists and has been used to test the model’s
effectiveness in a number of applications.

3.2.11 MANIFOLD

MANIFOLD ([8]) is one of the latest developments in the evolution of control-driven or
process-oriented coordination languages. As is the case in most of the other members of this
family, MANIFOLD coordinators are clearly distinguished from computational processes
which can be written in any conventional programming language augmented with some
communication primitives. Manifolds (as MANIFOLD coordinators are called) communicate by
means of input/output ports, connected between themselves by means of streams. Evolution of
a MANIFOLD coordination topology is event-driven based on state transitions. More to the
point, a MANIFOLD coordinator process is at any moment in time in a certain state where
typically it has set up a network of coordinated processes communicating by sending and/or
receiving data via stream connections established between respective input/output ports. Upon
observing the raising of some event, the process in question breaks off the stream connections
and evolves to some other predefined state where a different network of coordinated processes
is set up. Note that, unlike the case with other coordination languages featuring events,
MANIFOLD events are not parameterised and cannot be used to carry data — they are used
purely for triggering state changes and causing the evolution of the coordinated apparatus. The
following example is a bucket sorter written in MANIFOLD.

export manifold Sorter()
{
event filled, flushed, finished.
process atomsort is AtomicSorter(filled).
stream reconnect KB input -> *.
priority filled < finished.

begin:
(activate(atomsort), input -> atomsort,

guard(input,a_everdisconnected!empty,finished)
).

finished:
{ ignore filled.

begin: atomsort -> output
}.

filled:
{ process merge<a,b | output> is AtomicIntMerger.

stream KK * -> (merge.a, merge.b).

G. A. PAPADOPOULOS AND F. ARBAB

—43—

stream KK merge -> output.

begin:
(activate(merge),

input -> Sorter -> merge.a,
atomsort -> merge.b,
merge -> output

).

end | finished: .
}.

end:
{ begin:

(guard(output,a_disconnected,flushed),
terminated(void)

).

flushed: halt.
}.

}

The apparatus created by the above program functions more or less as follows: Sorter
initially activates a computation process performing the actual sorting (AtomicSorter). This
latter process which is capable of performing very fast sorting of a bucket of numbers of size k
will raise the event filled once it receives the maximum number k of numbers to sort. Upon
detecting the raising of filled, Sorter will activate a new sorting computation process as
well as a merger process which is responsible for merging the output of both sorting processes
into one stream. Depending on the bucket size k and the number of units to be sorted, an
arbitrary number of sorting and merger processes may be created and linked together at run-
time. Note that every process has by default an input and an output port; additionally, it
may have other named ports too. The triggering process which, in fact, is also responsible for
passing the units to be sorted to Sorter and printing out the output is shown below.

manifold Main
{
auto process read is ReadFile(“unsorted”).
auto process sort is Sorter.
auto process print is printunits.

begin: read -> sort -> print.
}

Although many of the concepts found in MANIFOLD have been used in other control-
oriented coordination languages, MANIFOLD generalises them into abstract linguistic
constructs, with well-defined semantics that extends their use. For instance, the concept of a
port as a first-class linguistic construct representing a “hole” with two distinct sides, is a
powerful abstraction for anonymous communication: normally, only the process q that owns a
port p has access to the “private side” of p, while any third party coordinator process that
knows about p, can establish a communication between q and some other process by
connecting a stream to the “public side” of p. Arbitrary connections (from the departure sides to
the arrival sides) of arbitrary ports, with multiple incoming and multiple outgoing connections
are all possible and have well-defined semantics. Also, the fact that computation and
coordinator processes are absolutely indistinguishable from the point of view of other
processes, means that coordinator processes can, recursively, manage the communication of
other coordinator processes, just as if they were computation processes. This means that any
coordinator can also be used as a higher-level or meta-coordinator, to build a sophisticated

COORDINATION MODELS AND LANGUAGES

—44—

hierarchy of coordination protocols. Such higher-level coordinators are not possible in most
other coordination languages and models.

MANIFOLD advocates a liberal view of dynamic reconfiguration and system consistency.
Consistency in MANIFOLD involves the integrity of the topology of the communication links
among the processes in an application, and is independent of the states of the processes
themselves. Other languages (such as Conic) limit the dynamic reconfiguration capability of the
system by allowing evolution to take place only when the processes involved have reached
some sort of a safe state (e.g., quiescence). MANIFOLD does not impose such constraints;
rather, by means of a plethora of suitable primitives, it provides programmers the tools to
establish their own safety criteria to avoid reaching logically inconsistent states. For example,
in the above program the stream connected to the input port of Sorter has been declared of
type KB (keep-break) meaning that even if it is disconnected from its arrival side (the part
actually connected to Sorter) it will still remain connected at the departure side (the part
connected to the process which sends data down the stream — in our case read). Hence,
when read must break connection with a filled sorter and forward the rest of the data to be
sorted to a new sorting process, the data already in the stream will not be lost. Furthermore,
guards are installed in the input and output ports of Sorter to make sure that all units to be
sorted have either been received by Sorter or got printed successfully. These primitives,
e.g., guards, inherently encourage programmers to express their criteria in terms of the
externally observable (i.e., input/output) behavior of (computation as well as coordination)
processes. In contrast to this extensive repertoire of coordination constructs, MANIFOLD does
not support ordinary computational entities such as data structures, variables, conditional or
loop statements, etc. although syntactically sugared versions of them do exist for a
programmer’s convenience.

Although not shown here, manifolds can actually be parameterised; these highly reusable
generic manifolds are called manners. MANIFOLD has been successfully ported to a number
of platforms including IBM SP1/SP2, Solaris 5.2, SGI 5.3/6.3 and Linux. Furthermore, it has
been used with many conventional programming languages including C, C++ and Fortran
([7]). Recently it has been extended with real-time capabilities ([54]). Its underlying
coordination model IWIM ([6]), which is in fact independent of the actual language, has been
shown to be applicable to other coordination models and frameworks ([55,56]).

4. Comparison

In the previous section we described in some detail the most important members of the two
major families of coordination models and languages, namely the data-driven and the control-
driven ones. In this section we present in a tabular form a comparison between these
formalisms along some major dimensions that characterise a coordination formalism.

These dimensions are the following: (i) the entities being coordinated, (ii) the mechanism of
coordination, (iii) the coordination medium or architecture, (iv) the semantics, rules of
protocols of coordination employed, (v) whether a model supports a different (from the
computational component) coordination language or involves the use of “add-on” primitives,
(vi) whether a model supports and encourages the use of many computational languages, (vii)
what is the most relevant application domain for each model, and (viii) what is the
implementation status of the proposed framework.

These are by no means the only issues that differentiate one model from another. For
instance, regarding the category of control-driven coordination models, an issue worth
comparing is the exact nature of the port-to-port connections via streams each model employees
(where this is indeed the case) and whether and how any dynamic reconfigurations are realised.
For example, some models only support static configurations or restrict access to ports to their
owners whereas other models support dynamic (re)configurations and exporting of ports
identifiers. Although such a rather low-level comparison is useful, we felt that it would run the
danger of obscuring the main differences between all the models involved across both main
categories. In any case, we have outlined differences of this nature in the respective sections for
each model.

G. A. PAPADOPOULOS AND F. ARBAB

—45—

5. Conclusions

The purpose of this article was to provide a comprehensive survey of those models and
languages forming the family of coordination formalisms. In the process, we have classified
the members of the coordination family into two broad categories, namely the data-driven and
the control-driven ones. Furthermore, we have described in some depth the most prominent
members in each family, highlighting their features and presenting typical examples of their
use.

Most members of the first family have evolved around the notion of a Shared Dataspace
which plays the dual role of being both a global data repository and an interprocess
communication medium. Processes forming a computation either post and/or retrieve data from
this medium. The most prominent member of this family (and, indeed, historically the first
genuine coordination model) is Linda where the common medium is a tuple space and
processes use it to send to or retrieve from it tuples. Linda has been used extensively and over
the years a number of other similar models evolved, their main purpose being to address some
of the deficiencies, weaknesses and inefficiencies of the basic vanilla model, such as issues of
security, locality of reference, hierarchy of global data and optimisation in tuple access. A
number of other Shared Dataspace based coordination models have been proposed, where the
emphasis is on providing even more implicit (than Linda’s associative pattern matching)
semantics of tuple handling such as multiset rewriting. However, not all members of this
family are adhering to the Shared Dataspace concept; there are a few which use the message
-passing metaphor or a limited form of Shared Dataspace in the form of common buffer areas
or global synchronisation variables being manipulated concurrently by a number of processes.

Whereas the first family has been influenced by the concept of a shared medium, the second
family has evolved around the Occam notion of distinct entities communicating with the outside
world by means of clearly marked interfaces, namely input/output ports, connected together in
some appropriate fashion by means of streams or channels. In fact, the coordination paradigm
offered by this second family is sometimes characterised as being channel-based as opposed to
the medium-based notion of coordination supported by the first family. Traditionally,
languages of this family where initially proposed for configuring systems and modelling
software architectures. However, recently a number of proposals has been put forward where
control-driven languages are designed with more conventional coordination application areas in
mind. Most members of this family share the concept of a separate coordination language (as
opposed to the case of the data-driven models where a set of coordination primitives are used in
conjunction with a host language) which is used to define pure coordination modules featuring
ports, streams or channels and possibly event broadcasting. They differentiate though in issues
such as whether the id of ports can become public or not, whether the communication is
asynchronous or synchronous (or both), or whether events carry values.

An interesting and quite fruitful “confrontation” between the data- and control-driven
coordination approaches is with respect to whether and to what extent a program need be
structured and locality of communication be supported. The Shared Dataspace vanilla models,
such as Linda and GAMMA, encourage a flat unstructured communication medium employing
global broadcasting. However, some of their variants, such as Bauhaus Linda and Structured
GAMMA, provide hierarchical levels of their communication medium which are able to express
locality of communication and support structure. On the other hand, control-driven
coordination languages such as MANIFOLD, support multiple port-to-port stream connections
which employ limited forms of broadcasting. Furthermore, these streams are first class
citizens, able to hold data within themselves while stream connections break off and get
reconnected between different coordinated processes, thus providing to a certain extent the
functionality of a shared communication medium. It is the authors’ belief that a number of
novel coordination models and languages will be proposed which will further converge these
two approaches towards the formation of communication media which will provide the desired
(ideal?) degree of shared or point-to-point communication as well as support naturally the
structuring of programs.

The issue of coordination is rather broad ([46,49]) and in this article we have only
concentrated on the “programming languages” aspect and furthermore we have advocated a

COORDINATION MODELS AND LANGUAGES

—46—

practical flavour. Thus, aspects of coordination related to, say, workflow management,
cooperative work and software composition (to name but a few) have not been addressed.
Neither did we dwell into theoretical issues such as semantics, formal specification and
reasoning. Coordination models and languages have evolved rapidly over the past few years
and the concept of coordination is now being introduced in many aspects of contemporary
Computer Science including middleware domains such as the Web and CORBA-like platforms,
modelling activities in Information Systems, and “coordination-in-the-large” application areas
such as software engineering and open distributed systems. Thus, we expect a proliferation of
many more models and languages over the years to come, addressing these issues and possibly
also offering unified solutions for a number of different application domains.

ACKNOWLEDGMENTS

A number of people have provided useful feedback in improving the presentation of the
survey and its contents. Special thanks are due to Anne-Alexandra Holzbacher Jensen and
Andrea Omicini for detailed comments on earlier drafts of this chapter.

This work has been partially supported by the INCO-DC KIT (Keep-in-Touch) program
962144 “Developing Software Engineering Environments for Distributed Information
Systems”, financed by the Commission of the European Union.

REFERENCES

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT
Press, 1986.

[2] S. Ahuja, N. Carriero and D. Gelernter, “Linda and Friends”, IEEE Computer 19 (8),
1986, pp. 26-34.

[3] J.-M. Andreoli, H. Gallaire and R. Pareschi, “Rule-Based Object Coordination”, in [28],
pp. 1-13.

[4] J-M. Andreoli, C. Hankin and D. Le Métayer, Coordination Programming: Mechanisms,
Models and Semantics, World Scientific, 1996.

[5] J.-M. Andreoli and R. Pareschi, “Linear Objects: Logical Processes with Built-In
Inheritance”, New Generation Computing 9 (3-4), 1991, pp. 445-473.

[6] F. Arbab, “The IWIM Model for Coordination of Concurent Activities”, in [28], pp. 34-
56.

[7] F. Arbab, C. L. Blom, F. J. Burger and C. T. H. Everaars, “Reusable Coordinator
Modules for Massively Concurrent Applications”, Europar’96, Lyon, France, 27-29
Aug., 1996, LNCS 1123, Springer Verlag, pp. 664-677.

[8] F. Arbab, I. Herman and P. Spilling, “An Overview of Manifold and its
Implementation”, Concurrency: Practice and Experience 5 (1), 1993, pp. 23-70.

[9] J.-P. Banâtre and D. Le Métayer, “GAMMA and the Chemical Reaction Model: Ten
Years After”, in [4], pp. 1-39.

[10] M. Banville, “Sonia: an Adaptation of Linda for Coordination of Activities in
Organizations”, in [28], pp. 57-74.

[11] M. R. Barbacci, C. B. Weinstock, D. L. Doubleday, M. J. Gardner and R. W. Lichota,
“Durra: A Structure Description Language for Developing Distributed Applications”,
Software Engineering Journal, IEE, March 1996, pp. 83-94.

[12] M. R. Barbacci and J. M. Wing, “A Language for Distributed Applications”,
International Conference on Computer Languages (ICCL’90), New Orleans, Lui., USA,
12-15 March, 1990, IEEE Press, pp. 59-68.

[13] J. A. Bergstra and P. Klint, “The TOOLBUS Coordination Architecture”, in [28], pp.
75-88.

G. A. PAPADOPOULOS AND F. ARBAB

—47—

[14] G. H. Botorog and H. Kuchen, “Skil: An Imperative Language with Algorithmic
Skeletons for Efficient Distributed Programming”, Fifth IEEE International Symposium
on High Performance Distributed Computing (HPDC-5), New York, USA, 6-9 Aug.,
1996, IEEE Press, pp. 243-252.

[15] M. Bourgois, J-M. Andreoli and R. Parechi, “Concurrency and Communication: Choices
in Implementing the Coordination Language LO”, Object-Based Distributed Programming
ECOOP’93 Workshop, Kaiserslautern, Germany, 26-27 July, 1993, LNCS 791,
Springer Verlag, pp. 73-92.

[16] P. Bouvry and F. Arbab, “Visifold: A Visual Environment for a Coordination
Language”, in [28], pp. 403-406.

[17] A. Brogi and P. Ciancarini, “The Concurrent Language Shared-Prolog”, ACM
Transactions on Programming Languages and Systems 13 (1), 1991, pp. 99-123.

[18] H. Burkhart, R. Frank and G. Hächler, “ALWAN: A Skeleton Programming Language”,
in [28], pp. 407-410.

[19] B. Chapman, M. Haines, P. Mehrotra, J. V. Rosendale and H. Zima, “Opus: A
Coordination Language for Multidisciplinary Applications”, Scientific Programming 6
(2), 1997.

[20] N. Carriero and D. Gelernter, “Linda in Context”, Communications of the ACM 32 (4),
1989, pp. 444-458.

[21] N. Carriero and D. Gelernter, “Coordination Languages and their Significance”,
Communications of the ACM 35 (2), 1992, pp. 97-107.

[22] N. Carriero, D. Gelernter and L. Zuck, “Bauhaus Linda”, in [29], pp. 66-76.

[23] S. Castellani and P. Ciancarini, “Enhancing Coordination and Modularity Mechanisms
for a Language with Objects-as-Multisets”, in [28], pp. 89-106.

[24] S. Castellani, P. Ciancarini and D. Rossi, “The ShaPE of ShaDE: a Coordination
System”, Technical Report UBLCS 96-5, Dipartimento di Scienze dell’Informazione,
Università di Bologna, Italy, March, 1996.

[25] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison Wesley
Publs., 1989.

[26] C. Chen and J. M. Purtilo, “Configuration-Level Programming of Distributed
Applications Using Implicit Invocation”, IEEE TENCON’94, Singapore, 22-26 Aug.,
1994, IEEE Press.

[27] P. Ciancarini, “Coordination Models, Languages, Architectures and Applications: a
Personal Perspective”, University of Leuven, Feb., 1997, http://www.cs.unibo.
it/~cianca/coord_ToC.html.

[28] P. Ciancarini and C. Hankin (eds), First International Conference on Coordination
Models, Languages and Applications (Coordination’96), Cesena, Italy, 15-17 April,
1996, LNCS 1061, Springer Verlag.

[29] P. Ciancarini, O. Nierstrasz and A. Yonezawa (eds), Object-Based Models and
Languages for Concurrent Systems, Bologna, Italy, 5 July, 1994, LNCS 924, Springer
Verlag.

[30] P. Ciancarini and D. Rossi, “Jada: Coordination and Communication for Java Agents”,
Second International Workshop on Mobile Object Systems: Towards the Programmable
Internet (MOS’96), Linz, Austria, July, 1996, LNCS 1222, Springer Verlag, pp. 213-
228.

[31] P. Ciancarini, R. Tolksdorf and F. Vitali, “Weaving the Web Using Coordination”, in
[28], pp. 411-415.

[32] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation,
Pitman/MIT Press, 1989.

COORDINATION MODELS AND LANGUAGES

—48—

[33] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti and M. Vanneschi, “A
Methodology for the Development and the Support of Massively Parallel Programs”,
Programming Languages for Parallel Processing, IEEE Press, pp. 205-220.

[34] J. Darlington, Y. Guo, H. W. To and J. Yang, “Functional Skeletons for Parallel
Coordination”, EUROPAR’95, Stockholm, Sweden, 23-31 Aug., 1995, LNCS 966,
Springer Verlag, pp. 55-68.

[35] M. D. Feng, Y. Q. Gao and C. K. Yuen, “Distributed Linda Tuplespace Algorithms and
Implementations”, Parallel Processing: CONPAR’94-VAPP VI, Linz, Austria, 6-8 Sept.,
1994, LNCS 854, Springer Verlag, pp. 581-592.

[36] G. Florijn, T. Bessamusca and D. Greefhorst, “Ariadne and HOPLa: Flexible
Coordination of Collaborative Processes”, in [28], pp. 197-214.

[37] I. Foster, “Compositional Parallel Programming Languages”, ACM Transactions on
Programming Languages and Systems 18 (4), 1996, pp. 454-476.

[38] S. Frølund and G. Agha, “A Language Framework for Multi-Object Coordination”, in
[29], pp. 107-125.

[39] S. Frølund and G. Agha, “Abstracting Interactions Based on Message Sets”, Seventh
European Conference on Object-Oriented Programming (ECOOP’93), Kaiserslautern,
Germany, 26-30 July, 1993, LNCS 707, Springer Verlag, pp. 346-360.

[40] M. Fukuda, L. F. Bic, M. B. Dillencourt and F. Merchant, “Intra- and Inter-Object
Coordination with MESSENGERS”, in [28], pp. 179-196.

[41] D. Gelernter and D. Kaminsky, “Supercomputing out of Recycled Garbage: Preliminary
Experience with Piranha”, Sixth ACM International Conference on Supercomputing,
Washington D. C., USA, 19-23 July, 1992, ACM Press, pp. 417-427.

[42] K. J. Goldman, B. Swaminathan, T. P. McCartney, M. D. Anderson and R.
Sethuraman, “The Programmer’s Playground: I/O Abstractions for User-Configurable
Distributed Applications”, IEEE Transactions on Software Engineering 21 (9), 1995,
pp. 735-746.

[43] A. A. Holzbacher, “A Software Environment for Concurrent Coordinated
Programming”, in [28], pp. 249-266.

[44] B. Hirsbrunner, M. Aguilar and O. Krone, “CoLa: A Coordination Language for
Massive Parallelism”, ACM Symposium on Principles of Distributed Computing
(PODC’94), Los Angeles, Ca, USA, 14-17 Aug., 1994, pp. 384.

[45] T. Kielmann, “Designing a Coordination Model for Open Systems”, in [28], pp. 267-
284.

[46] M. Klein, “Challenges and Directions for Coordination Science”, Second International
Conference on the Design of Cooperative Systems, Juan-les-Pins, France, 12-14 June,
1996, pp. 705-722.

[47] J. Kramer, J. Magee and A. Finkelstein, “A Constructive Approach to the Design of
Distributed Systems”, Tenth International Conference on Distributed Computing Systems
(ICDCS’90), Paris, France, 26 May - 1 June, 1990, IEEE Press, pp. 580-587.

[48] J. Magee, N. Dulay and J. Kramer, “Structured Parallel and Distributed Programs”,
Software Engineering Journal, IEE, March 1996, pp. 73-82.

[49] T. W. Malone and K. Crowston, “The Interdisciplinary Study of Coordination”, ACM
Computing Surveys 26, 1994, pp. 87-119.

[50] M. Marchini and M. Melgarejo, “Agora: Groupware Metaphors in OO Concurrent
Programming”, in [29].

[51] N. H. Minsky and J. Leichter, “Law-Governed Linda as a Coordination Model”, in [29],
pp. 125-145.

G. A. PAPADOPOULOS AND F. ARBAB

—49—

[52] R. Motschnig-Pitrik and R. T. Mittermeid, “Language Features for the Interconnection of
Software Components”, Advances in Computers 43, 1996, pp. 51-139.

[53] H. P. Nii, “Blackboard Systems”, The Handbook of Artificial Intelligence 4, Addison
Wesley, 1989, pp. 1-82.

[54] G. A. Papadopoulos and F. Arbab, “Coordination of Systems With Real-Time Properties
in Manifold”, Twentieth Annual International Computer Software and Applications
Conference (COMPSAC’96), Seoul, Korea, 19-23 Aug., 1996, IEEE Press. pp. 50-55.

[55] G. A. Papadopoulos and F. Arbab, “Control-Based Coordination of Human and Other
Activities in Cooperative Information Systems”, Second International Conference on
Coordination Models, Languages and Applications (Coordination’97), Berlin, Germany,
1-4 Sept., 1997, LNCS 1282, Springer Verlag, pp. 422-425.

[56] G. A. Papadopoulos and F. Arbab, “Control-Driven Coordination Programming in
Shared Dataspace”, Fourth International Conference on Parallel Computing Technologies
(PaCT-97), Yaroslavl, Russia, 8-12 Sept., 1997, LNCS 1277, Springer Verlag, pp.
247-261.

[57] M. Papathomas. G. S. Blair and G. Coulson, “A Model for Active Object Coordination
and its Use for Distributed Multimedia Applications”, in [29], pp. 162-175.

[58] F. DePaoli and F. Tisato, “Development of a Collaborative Application in CSDL”,
Thirteenth International Conference on Distributed Computing Systems, 25-28 May,
1993, Pittsburgh, USA, IEEE Press, pp. 210-217.

[59] F. DePaoli and F. Tisato, “Cooperative Systems Configuration in CSDL”, Fourteenth
International Conference on Distributed Computing Systems, 21-24 June, 1994, Poznan,
Poland, IEEE Press, pp. 304-311.

[60] J. M. Purtilo, “The POLYLITH Software Bus”, ACM Transactions on Programming
Languages and Systems 16 (1), 1994, pp. 151-174.

[61] M. Rem, “Associons: A Program Notation with Tuples instead of Variables”, ACM
Transactions on Programming Languages and Systems 3 (3), 1981, pp. 251-262.

[62] S. Ren and G. A. Agha, “RTsynchronizer: Language Support for Real-Time
Specifications in Distributed Systems”, ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems, La Jolla, California, June 21-22, 1995.

[63] M. D. Rice and S. B. Seidman, “A Formal Model for Module Interconnection
Languages”, IEEE Transactions on Software Engineering 20, 1994, pp. 88-101.

[64] G.-C. Roman and H. C. Cunningham, “Mixed Programming Metaphors in a Shared
Dataspace Model of Concurrency”, IEEE Transactions on Software Engineering 16
(12), 1990, pp. 1361-1373.

[65] A. Rowstron and A. Wood, “BONITA: A Set of Tuple Space Primitives for Distributed
Coordination”, 30th Hawaii International Conference on Systems Sciences (HICSS-30),
Maui, Hawaii, 7-10 Jan., 1997, IEEE Press, Vol. 1, pp. 379-388.

[66] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young and G. Zelesnik,
“Abstractions for Software Architecture and Tools to Support Them”, IEEE Transactions
on Software Engineering 21 (4), 1995, pp. 314-335.

[67] D. B. Skillicorn, “Towards a Higher Level of Abstraction in Parallel Programming”,
Programming Models for Massively Parallel Computers (MPPM’95), Berlin, Germany,
9-12 Oct., 1995, IEEE Press, pp. 78-85.

[68] I. Sommerville and G. Dean, “PCL: A Language for Modelling Evolving System
Architectures”, Software Engineering Journal, IEE, March 1996, pp. 111-121.

[69] R. Tolksdorf, “Coordinating Services in Open Distributed Systems With LAURA”, in
[28], pp. 386-402.

COORDINATION MODELS AND LANGUAGES

—50—

[70] C. C. Weems, G. E. Weaver and S. G. Dropsho, “Linguistic Support for Heterogeneous
Parallel Processing: A Survey and an Approach”, Third Heterogeneous Computing
Workshop, Canceen, Mexico, 26 Apr., 1994, pp. 81-88.

[71] P. Wegner, “Coordination as Constrained Interaction”, in [28], pp. 28-33.

[72] G. Wilson (ed.), “Linda-Like Systems and Their Implementation”, Edinburgh Parallel
Computing Centre, TR-91-13, 1991.

[73] P. Zave, “A Compositional Approach to Multiparadigm Programming”, IEEE Software,
Sept. 1989, pp. 15-25.

