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Abstract. The paper is concerned with the numerical method of determination bending force and 

calibration force in plate bending. For numeric procedure the finite element method is used. 

Calibration force is determined when bending force and calibration coefficient are known. 

Significant factors for determination of bending force are: material of the circular plate, bending 

radius circular plate, diameter of the circular plate, thickness of the circular plate and method of 

loading of the circular plate. The calibration coefficient is determined by experiment. The analysis 

of bending plate is limited to the facts and figures used so far in the fabrication of spherical tanks, 

i.e. for deformations up to 1 %. 

 

1 The finite-element method 

 

The finite-element equations are constructed by the condition that the first-order variation of the 

functional vanishes [1]. 

Rigid-plastic materials. The deformation process of the rigid-plastic materials is associated with 

the following boundary value problems. At a generic stage in the process of quasistatic distortion, 

the shape of the body, the internal distribution of temperature, the state of inhomogeneity, and the 

current values of material parameters are supposed to be given ot to have been determined already. 

The velocity vector v is prescribed on a part of the surface, Sv, together with traction f on the 

remainder of the surface, Sf. 

This boundary value problem is dual to the variational problem where the functional is given by 
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Adding the incompressibility constraint, where 
⋅

ε  is the strain-rate vector, and ´σ is the deviatoric 

stress vector. 

 

The first term of the equation (1) is 
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where is  
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The Langragian multiplier, λ in equation (1) can be shown to be equal to the hydrostatic stress 
component σm. Another approach to removing the incompressibility constraint is the use of the 

penalty function method. The method introduces a very large positive constraint, K, as 
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to penalize the dilatation strain. Comparing variations of functional (1) and (3), it can be seen that 

the constant K is the bulk modulus, since λ = σm = K ij
ε& . 

If the workpiece contains a rigid region, the stresses in the zone cannot be determined. This 

difficulty can be prevailed by considering an offset of the effective strain rate (
0
ε& ), which is several 

orders of magnitude smaller than the average strain rate in the deforming zone. The deviator 

stresses are assumed to vary linearly from zero to the flow stress if the effective strain rate is 

smaller than this offset value. This stress-strain rate relation in the "nearly rigid" zone is similar to 

Hook9s law, except for the use of strain rate instead of strain. It must be noted that in the nearly 

rigid zone the first term of the equation (3) must be modified according to the linear relationship 

between the deviator stress and the strain-rate. 

 

2 Finite element analysis plane-strain sheet bending 

 

Elasto-plastic materials. Various forms of the finite-element method dealing with large strain have 

been used by several investigators [2-5]. Among them the most elegant forms are the ones given by 

Hill [6]. In this paper we also utilize Hill´s formulation. Consider a body with volume V0 and 

surface S0 in a reference state. After a certain increment of time t, the body occupies the new 

position V and S. At the reference state each particle of the body is labeled by a set of coordinates 

(ξ
1
, ξ

2
, ξ

3
,) which is imbedded in the material and moves with it [1]. Another coordinate system (x1, 

x2, x3) which is fixed in space and not moving with the body will be chosen. Then, at any t  ≥ t0, we 

have the following relations between the two coordinate systems 

 

xα =  xα(ξ
1
, ξ

2
, ξ

3
, t). 

 

The coordinate systems xα is chosen to be rectangular Cartesian and at a generic moment t, the 

reference state coincides with the current state. The strain-rate 
⋅

ij
ε  as a deformation measure is 

given by 
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and rotation rate as 

),(
2

1
jiijij vvw −=

⋅

             (5) 

As a stress measure we use the contra variant component of Kirchhoff stress in the coordinated 

system which is defined as  

,0 αβαβ σ
ρ
ρ

τ =               (6) 

Where ρ0 and ρ are are the material densities at the reference and the current states, respectively, 

and σ
αβ
 is the Cauchy stress. The time derivative of the stress measure is the Jauman derivative, 

(
ij

Dτ  / Dt), where time differentiation is carried out with the coordinate system which rotates but 

does not deform with the material. 

 

Since the reference state is assumed to coincide with the current state, the two stress measure 

become identical, though their time rates have the following relation. 
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It should also be noted that the material time derivative of the Cauchy stress, (dσij / dt), and the 

Jauman derivative of the Kirchhoff stress have the relationship 
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Assuming that the Prandtl-Reuss equation holds for the Jauman derivative of the Kirchhoff stress 

and strain rates, the constitutive relation is given by 
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and its inverse becomes 
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where α = 1 for the plastic state and α = 0 for the elastic state. In equations (9) and (10), E is the 

Young Modulus; v poisson ratio; σ´ij, the deviatoric stress; σ , the effective stress; and h, the strain 

hardening rate. These equations can be regarded as a special case of those by Hill. 

 

For the deformation process of elasto-plastic materials the velocity vector vi is prescribed on a part, 

S of the surface, Sv, together with the nominal traction rate 
1
t& on the remainder of the surface,. ST 

Then, the deformation mode is characterized by a variational principle [6-9]. 
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Since we are only interested in stress and their rates on the basis of the x1 coordinate system, the 

notational distinction between the contra variant and components will be abandoned there on where 

δ denotes the weak variation in the class of continuous differentiable velocity fields taking the 

prescribed values on S, and U is expressed by 
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Detailed derivations and discussions of the large-strain formulation of variation problems can be 

found elsewhere [9, 10]. 

 

2 Experiment Results 

 

The existing increasing necessity for spherical tanks is easy understandable because it exist the 

possibility to store medium with minimal thickness of tank, small needed volume and minimum 

cost price. Spherical tanks are becoming fair more interesting with in creasing of their radius. The 

shell of spherical tank consists of steel sheet, while the segments are assembled by welding in whole at 

the actual place. The bending separate parts are achieved in several indentations on hydraulic press 

and can be seen from Figure 1. 
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Figure 1. The bending of segment in tool 

 

Figure 2 present tools Kt 5081 (Rk = 4925 mm) and Kt 5136 (Rk = 4500mm). 

 

 

Figure 2. Tool Kt 5081 and Kt 5136 

 

Table 1. Technical data 

MATERIAL Nioval 47 ( ≈StE 500) 

SHEET DIMENSION s L B 29x6000x1800(2000), 

and16x6000x1800(2000) 

DIE NUMBER Kt 5081(Rk = 4925 mm) and 

Kt 5136(Rk = 4500 mm) 

UPPER DIE RADIUS Rk  = 4925 mm and Rk  = 4500 mm 

MEASUREMENT VALUE H FOR  

b = 1800 

MEASUREMENT VALUE H FOR  

l = 1800 
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b

p1
H  b

p2
H  b

p3
H  l

p1
H  l

p2
H  l

p3
H  

ARTIMETIC MEAN VALUE  
b

p1
H , b

p2
H , b

p3
H ⇒ b

p
H  

ARTIMETIC MEAN VALUE  
l

p1
H , l

p2
H , l

p3
H ⇒ l

p
H  

CALCULATED VALUE FOR RADIUS 

OF PLATE RELATED TO  
b

p
H  AND b⇒ b

pρ  

CALCULATED VALUE FOR RADIUS 

OF PLATE RELATED TO  
l

p
H AND l ⇒ l

pρ  

ARTIMETIC MEAN VALUE b

p
H  i l

p
H  ⇒  Hp  

ARTIMETIC MEAN VALUE b
pρ  i l

pρ  ⇒  ρp 

FORMING FORCE [MN] 
CALIBRATION FORCE [MN] 
FORMING TIME        10 s 

CALIBRATION TIME 3 s 
 

 

Figure 3: Pattern for displacement measurements 

 

Table 2. Experimental results 
 

EXPERIMENTAL RESULTS 

Kt 5-136 and Kt 5-081 

 

 

DATA 

II 

16x1800 

Kt5136 

III 

 

Kt5136 

IV 

29x1800 

Kt5136 

V 

 

Kt5136 

VI 

16x1800 

Kt5136 

VII 

 

Kt5136 

VIII 

29x2000 

Kt5136 

IX 

 

Kt5136 

X 

16x1800 

Kt5081 

XI 

 

Kt5081 

XII 

29x1800 

Kt5081 

XIII 

 

Kt5081 

XIV 

16x2000 

Kt5081 

XV 

 

Kt5081 

XVI 

29x2000 

Kt5081 

XVII 

 

Kt5081 

b
pH 1  66.2 67 66.4 67.7 75 76 76.9 76.6 50.5 51 52 51.6 58.2 57.1 58.9 58.1 

b
pH 2  64.5 64 66.7 66.3 72 74 75.3 75.1 50.6 49.3 51.8 51.8 56 55 58.2 59.8 

b
pH 3  66.7 65.5 66.4 67.9 75.3 75 76.4 78.4 52.2 51.5 51.6 52 57.2 56.1 57.2 58.2 

l
pH 1  65 66.6 67.5 68.8 69.3 67.8 69.3 69.3 56.2 55.5 58.2 59.3 56.1 56.1 59.9 60.5 

l
pH 2  67.5 68.5 69.5 70 68.5 69 70.5 70.4 58.1 58 60.1 59.7 59.8 59 61 61 

l
pH 3  66.7 66.5 67.3 68.5 65.6 67.8 69.9 71.5 56.1 56 58.7 60.4 57.2 56.2 60 60.6 

b
pH  65.8 65.9 66.5 67.3 74.1 75.5 76.2 76.7 51.1 50.6 51.3 51.8 57.2 56.6 58.1 58.7 

l
pH  66.4 67.2 68.1 69.1 67.8 68.2 69.9 70.4 56.8 56.5 59 59.8 57.2 57.1 60.3 60.7 

b
pρ  6188 6179 6123 6051 5503 5402 5353 5319 7951 8029 7920 7844 7109 7184 7000 6929 

l
pρ  6133 6060 5981 5896 6007 5972 5829 5788 7159 7196 6894 6802 7048 7121 6746 6702 

Hp 

 
66.1 66.55 67.3 68.2 70.95 71.85 73.05 73.55 53.95 53.55 55.15 55.8 57.45 56.85 59.2 59.7 

pρ  
 

6160.5 

 

6119 

 

6052 

 

5973.5 

 

5755 

 

5687 

 

5591 

 

5553.5 

 

7555 

 

7612.5 

 

7407 

 

7323 

 

7078.5 

 

7152.5 

 

6873 

 

6815.5 
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3 Numerical Method 

 

The finite element approach consists of three parts: pre-processor, main program and machine 

related information and post-processor. Pre-processor for solving the main program MATCVO 

contains [11]: material data (modulus of elasticity, Poison’s ratio, true stress or characteristic of 

plastic flow), the generating of structure, data according loading, connectivity and boundary 

conditions. 

The material that takes place is Nioval 47, produced according to DIN 17102/83. The dimensions of 

specimens were B 6 x 50 according to DIN 50125. From the same table were taken sheet blanks φ 
2000x16 mm for evaluation of the results obtained by FEM. The machine used for material data 

establishing used latterly in pre-processing is from firm "Siempelkamp". On the same machine were 

performed the experiments with the tool for bending of circular plate for evaluation the results 

achieved with FEM. By examination of the specimens the obtained results are: 

- True stress or characteristic of material flow is 4.0700588 vfk ϕ+=  

- Modulus of elasticity E=206112-206795 [N/mm
2] 

- Poison’s ratio ν=0.31 - 0.33 
 

The main program is used for computing the displacements as well as the stresses. 

 

4 Mathematical Interpretations of Results Obtained by FEM 

 

Mathematical interpretation of bending force. In attempt to obtain equation for calculating 

bending force it has to be observed tables 9.10 till 9.14 that represent the results of FEM [12-19]. 
Analysing the expressions given for the diameters between φ1800 and φ2200 mm with thickness of 

16- 29 mm and materials StE355, StE420, StE500 it can be written the general expression for 

bending force in the form: 

( )( )[ ] [ ]F s a u Rq s z m00 1

2

1 16 75 0 5= +/ , ,    N         (13) 

Figure 4 present numerical and experimental comparison the force depending of punch motion. 

 

 
Figure 4. Numerical and experimental comparison the force F depending of punch motion h 
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The mathematical equation 13 obtained with the results of FEM can be accepted only for the tested 

area and examined materials as well as considered thickness among 15 and 40 mm. As in 

assembling the spherical tanks these are the commonly used parameters of thickness and materials it 

can be concluded that this expression can be used in projecting or planning the spherical tanks. 

 

Experimental Obtained the Calibration Force. The experiments were conducted using the plates 

φ2000x16 mm of material NIOVAL 47. Using the equation 3 it can be find necessary bending force 

as Fq00s =1.185 MN. The plate bended with 1.185 MN had wrinkles at the edge of height up to 2 

mm. Because of that reason the plate has to be calibrated. The calibration force can be calculated 

using the expression 

sqk
FkF

00
⋅=              (14) 

 

In order to compute the calibrating force it is necessary to obtain experimentally the amount of 

coefficient of calibration k for relevant dimensions. For the plate with dimensions φ2000 x 29 mm 

coefficient of calibration k is k = 2, and for the plate with dimensions φ2000 x 16 this value is k = 
2.5. Comparing the values of coefficient of calibration k it can be seen that its value is greater when 

the plate thickness is smaller. It is because during the bending process the wrinkles tend to form 

themselves more if the thickness is smaller. On that way, for the plate with dimensions φ2000 x 20 
it can be supposed using the above obtained experiments that k = 2.34. 

 

Determination of the Mechanical Springback after Calibration. The factors that have the most 

significant influence on the amount of mechanical spring-back are: calibration forces, plate 

material, punch radius, punch motion, plate thickness and plate diameter. In order to research the 

influence of punch radius R
k
, plate thickness and plate diameter, according to technological and 

productivity conditions it was used experiment′s factor plan. It where carried out the industrial 
experiments with scale dimension 1:1. Experiments were conducted using randomised distribution 

in attempt to avoid systematic errors. The considered factors were: punch radius 4500 and 4925 

mm, plate thickness 16 and 29 mm, plate diameter 1800 and 2000 mm. Using all above mentioned 

considerations, it can be on the basis of experimental and industrial researching determined the law 

for coefficient of mechanical spring-back of calibrated plate with constant plate diameter K
II
. It can 

be determined using expression [11-12]: 

p

II

 0906276,0768304,0

1

R
K

+
=   

2

p

k

D
KR ΙΙ=      (15) 

For technological usage it is recommended the calculation by using the equation (15). For instance, 

in the case of the plate with 2000 mm diameter, bending plate radius 7 m (shell diameter of 

spherical tank 14 m) and plate material NIOVAL 47 this coefficient of mechanical spring is 0,1406. 

 

5 Conclusion 

 

In metal forming processes, the cold axial-symmetrical bending process has a considerable great 

role. The production of axial-symmetrical bended plates with larger dimensions is industrial 

interesting for producers of steel tanks and similar products. FEM enables using program 

MATCVO and corresponding pre and post-processor the determination of displacements, stresses 

and mechanical spring-back of plates of various dimensions and related materials. In order to 

eliminate the wrinkles at plate edges that are formed during the process, the plates have to be 

calibrated after the bending. 
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