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Abstract—As deploying Vehicular Ad Hoc NETworks
(VANETs) costs large amounts of resources, it is crucial that
governments and companies make a thorough estimation and
comparison of the benefits and the costs. The network connec-
tivity is an important factor we should take care of, because it
can greatly affect the performance of VANETs and further affect
how much we can benefit from VANETs. We use percolation
theory to analyze the connectivity of VANETs. Through theoret-
ical deduction, we discover the quantitative relationship among
network connectivity, vehicle density and transmission range. We
show that there is a jump of the network connectivity when
vehicle density or transmission range is big enough. Simulations
conducted in a large scenario validate our theoretical results.
Our results have great meanings in the deployment of VANETs
in real world. Given vehicle density, our theorem can be used
to calculate the minimum transmission range to achieve good
network connectivity. As a large transmission range can cause
serious collisions in wireless links, it is a tradeoff to choose a
proper transmission range. Our analysis can give a hand to this
tradeoff and guide the deployment of VANETs in real world.

I. INTRODUCTION

A. Motivation

Vehicular communication system is a promising technology,
which can provide customers with various services from safety
alert to in-car entertainment. Due to its huge application po-
tential, it attracts attentions both from academia and industry.
Many works have been done to establish the foundations
for future intelligent vehicular communication application.
Regardless of its progress in the research field, large-scale
deployments of Vehicular Ad Hoc NETworks (VANETs) are
still missing. An important reason is that both governments and
companies are doubtful about the performance of VANETs in
large-scale deployment in real world. Because deploying such
huge facility as VANETs costs large amounts of resources, it
is crucial that governments and companies make a thorough
estimation and comparison of the benefits and the costs of
VANETs.

Nowadays, there are still many protocols competing with
each other and we do not know which one will finally become
the standard to real deployment. Such situation stresses the
difficulty for us to estimate the performance of VANETs.
However, we can circumvent this problem by analyzing the
connectivity of VANETs. No matter which network protocol
is used in VANETs, the performance of the protocol is closely
related to the connectivity of the network. So if we can have a
good understanding of the VANET connectivity, we can have
a good estimation of the performance of VANETs.

B. Previous work
In MANETs, many works have been done to analyze

the network connectivity theoretically[1][3][4]. However, in
VANETs, such studies are still lacking. Kafsi et al. attempt
to analyze the problem both through theoretical study and
simulations [8]. But their analysis is too rough and their sim-
ulation area is too small. Other works mainly use simulations
to analyze the connectivity of VANETs, such as [6][7][9][10].
All these works get interesting and meaningful results. But
they are all lack of a theoretical and quantitative analysis to
explain the reasons behind the phenomena. Furthermore, the
simulation scenarios in these works are also too small, which
only cover several roads. As the application of VANETs is
aiming at a whole city, a large simulation scenario is more
desirable. It is doubtful that whether results got from small
simulation scenarios can be applied to large scenarios in real
world.

C. Our contribution
In this work, we give a theoretical analysis of the con-

nectivity of VANETs using percolation theory. Our main
contributions are:

• We discover the quantitative relationship among network
connectivity, vehicle density λ and transmission range r.
Based on our analysis, there is a jump for the network
connectivity when vehicle density or transmission range
is big enough. And we can calculate the threshold values.
We conduct simulations in a large scenario, whose results
accord with our analysis. Our analysis gives us some
insights about the properties of the network topology of
VANETs.

• We discuss the application of our theorem in deployment
of VANETs in real world. A large transmission range
can have good network connectivity, but it can also cause
serious collisions in wireless links. So it is a tradeoff for
governments and companies to choose a proper trans-
mission range in deployment. Given vehicle density, our
theorem can give the minimum transmission range to
achieve good network connectivity. Below the minimum
transmission range, although collisions might be few, the
overall performance of VANETs can be disappointing due
to the bad network connectivity. So our theorem can help
us do the tradeoff.

The rest of the paper is organized as follows. In section II,
we give a theoretical analysis of the VANET connectivity. In



section III, we conduct simulations to validate our analysis.
Section IV gives a discussion of our results in application.
Finally the conclusions are drawn in section V.

II. THEORETICAL ANALYSIS

A. Square bond percolation process

First of all, we assume that for each road, the incoming
rate of vehicles follows Poisson distribution with parameter
λ. Actually, it’s not a strong assumption, as it is widely
accepted in transportation engineering [13], [14]. Then we can
use the parameter λ to denote the vehicle density. Secondly,
every vehicle is equipped with electronic devices so that they
can communicate with each other through wireless links. The
transmission range is r, which means if the distance between
two vehicles is no more than r, they are connected by a
wireless link. Thirdly, the network should be large. As VANET
is usually aiming at providing service to a whole city, the
network will be large enough for us to conduct our analysis
using percolation theory.

Based on the three assumptions, it is safe for us to employ a
square bond percolation process for the network. Every road
segment between two intersections can be regarded as a bond.
If the road segment is covered by a sequence of connected
vehicles, the bond, which denotes the road segment, is open;
otherwise, the bond is closed. We define a probability p as
follows.

• p: A road segment between two intersection is covered
by a sequence of connected vehicles with probability p.
It also means a bond is open with probability p.

Then a bond is closed with probability 1−p. From percolation
theory, the connectivity of open bonds is closely related to p
[15]. If p < 0.5, the network connectivity is good; if p > 0.5,
the network connectivity is bad [15]. The state of the network
connectivity changes dramatically when p jumps from below
0.5 to above 0.5 [15]. So if we can use vehicle density λ
and transmission range r to calculate p, we can have an good
estimation of the network connectivity.

B. The relationship among p, λ and r

Now, we begin to discover the relationship between p, λ
and r. First of all, we define a term S as follows.

• S: For a certain vehicle on a road, S is the distance from
this vehicle to the furthest vehicle that can be connected
to it via one-hop or multi-hop wireless links.

Then using S we define a function h(x) as the probability that
S is larger than x. Formally,

h(x) = P(S > x). (1)

In [1], similar definition is used to analyze the connectivity of
MANETs. It also gives the precise expression of h(x):

h(x) =



1, if 0 ≤ x < r;

⌊x/r⌋∑
i=0

(−λe−λr(x−ir))i

i!

− e−λr

⌊x/r⌋−1∑
i=0

(−λe−λr(x−(i+1)r))i

i!
, if x ≥ r.

(2)
In [1], it further shows that h satisfies the following integral

equation:

h(x) = λe−λx

∫ x

x−r

h(y)eλydy, (3)

which can be differentiated to a delay differential equation

h′(x) = −λe−λrh(x− r) (4)

for all x > r.
So, if we can find the relationship between h(x) and p, we

can use λ and r to calculate p. We guess that h(x) is the same
order with px when x grows to infinity. More precisely, we
expect that there exists a positive number c such that

h(x) = (c+ o(1))px, (5)

which is equivalent to

lim
x→+∞

h(x)

px
= c. (6)

1) Proof of the relationship between p and h(x): In order
to prove Equation (5), we should firstly demonstrate that

lim
x→+∞

h(x)
1
x (7)

exists. We need the following lemma.

Lemma 1. For any x, y ≥ 0, we have

h(r + x+ y) ≥ h(r + x)h(r + y). (8)

Proof: Let Az = {S ≥ z}. By definition we have
P(Az) = h(z). It is clearly that Ar+x+y ⊂ Ar+x. Given
Ar+x, we denote by w the distance from the beginning to
the furthest vehicle whose distance from the beginning is no
more than x+ r. It is easy to see x < w ≤ x+ r. Therefore,
conditioned on Ar+x, a random length between y and y + r
should be covered. Since h is a decreasing function, using the
Strong Markov Property [2] of Poisson process we have

P(Ar+x+y|Ar+x) ≥ P(Ar+y). (9)

Therefore, we have

P(Ar+x+y) = P(Ar+x+y ∩Ar+x)

= P(Ar+x)P(Ar+x+y|Ar+x)

≥ P(Ar+x)P(Ar+y).

(10)

Now using Lemma 1, we can prove the existence of (7).



Theorem 2. limx→+∞ h(x)
1
x exists and lies in (0, 1).

Proof: Firstly, we define a function:

g(x) = log h(r + x). (11)

Based on Lemma 1, we obtain

g(x+ y) ≥ g(x) + g(y). (12)

For any positive numbers x < y, we can write y as y =
kx+ z, where k = ⌊y/x⌋ and 0 ≤ z < x. By iteratively using
Inequality (12), we have

g(y) ≥ kg(x) + g(z), (13)

which can be deduced to
g(y)

y
≥ kx

kx+ z

g(x)

x
+

g(z)

y
. (14)

Since g(z) is bounded, by letting y → +∞ we obtain

lim inf
y→+∞

g(y)

y
≥ g(x)

x
, (15)

for arbitrary x. Then we let x → +∞ and get

lim inf
y→+∞

g(y)

y
≥ lim sup

x→+∞

g(x)

x
. (16)

As a consequence,

lim
x→+∞

g(x)

x

exists. We denote it by ω. Recall the definition of g(x) in
Equation (11). We have

lim
x→+∞

h(x)
1
x = lim

x→+∞
e

g(x−r)
x = eω. (17)

It is easily to see that

ω ≥ g(x)

x
> −∞ (18)

for each positive number x.
On the other hand, [1] gives a loose upper bound of h:

h(x) ≤ (1− e−λr)e−λ(x−r)e−λr

. (19)

By using a limit argument we obtain ω ≤ −λe−λr < 0.
Therefore we have

ω ∈ (−∞, 0). (20)

Thus we have proven the existence of limx→+∞ h(x)
1
x = eω

and limx→+∞ h(x)
1
x ∈ (0, 1).

Now we begin to prove Equation (5). We need the following
theorem from [16].

Theorem 3. Each solution h of the delay differential equation
(4), provided that

lim
x→+∞

h(x)
1
x = p (21)

exists and positive, has the asymptotic form:

h(x) = (c+ o(1))px, (22)

where c is a positive constant.

Remark 4. This theorem is trivial at first glance. But actually
it is not. For example, h(x) = px

x also enjoys Equation (21),
but does not have the property the theorem asserts.

Theorem 5.
h(x) = (c+ o(1))px. (23)

Proof: Combining with Theorem 2 and Theorem 3 gives
the desired result.

Our next step is to infer the relationship among p, λ and r
from Equation (5).

2) Determination of p: To find the exact value of p, we
need the following lemma.

Lemma 6. Given r, λ > 0, when rλ ̸= 1, the following
equation has exactly two roots in the interval (0, 1):

xr log x+ λe−λr = 0. (24)

When λr = 1, this equation has exactly one root in (0, 1).

Proof: Denote f(x) by f(x) = x log x + λre−λr. It is
easy to see that x is a root of f if and only if x is a solution
of Equation (24). When x → 0 or x → 1, f will tend to
→ λre−λr > 0. Observe that

f ′′(x) =
1

x
> 0,

which implies that f is strictly convex on (0, 1). Let the
derivative of f be zero, then we find f reaches minimum at
p = e−1:

f(e−1) = −e−1 + λre−λr ≤ 0,

which will be a strict inequality when λr ̸= 1. By the
continuum and convexity properties of f we can conclude
that f has one root in (0, e−1) and the other root in (e−1, 1)
respectively, when λr ̸= 1. When λr = 1, e−1 is the only root
of f .

Remark 7. It is easy to see that Equation (24) has a root e−λ.
We denote by p the other root when λr ̸= 1. When λr = 1,
e−λ is the only root.

Now we present our main theorem.

Theorem 8.
p = lim

x→+∞
h(x)

1
x

is a root of Equation (24). Furthermore, we have
p > e−

1
r , if λr > 1

p = e−λ, if λr = 1

p < e−
1
r , if λr < 1

. (25)

Proof: From Equation (3) and Equation (22), we find that

(c+ o(1))(peλ)x = λ(c+ o(1))

∫ x

x−r

(peλ)ydy, (26)

which leads to{
pr log p+ λe−λr = 0, p ̸= e−λ, if λr ̸= 1

p = e−λ, if λr = 1
(27)

by letting x → +∞.
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Fig. 1. r vs. λ when p = 0.5. r is unified by the distance between two
intersections.

C. Theoretical discussion

From Theorem 8, we conclude that p is a function of r, λ:

p = p(r, λ). (28)

Though this is an implicit function, it is easy to calculate
the value of p by many methods, such as Newton-Raphson
method. Intuitively, p is an increasing function of both r and
λ, which can be proved rigorously. Figure 1 shows all pairs
of (λ, r) that satisfies p = 0.5. All the theoretical analysis, as
well as Figure 1, ensures us for each λ, there exists a minimum
transmission range r0 such that for any r > r0, p will be larger
than 0.5, and vice versa. For each r, similar conclusion can
be easily obtained.

III. SIMULATION

A. Simulation settings and metrics

We conduct simulations in a large scenario. The area has 50
horizontal roads and 50 vertical roads. The distance between
two parallel roads is 250 meters. The simulation area is
about 150 square kilometers large, nearly a small city.
The mobility model we use is similar to Manhattan Mobility
Model [5]. The max velocity is 30 m/s. For each second,
each vehicle chooses a random velocity smaller than the max
velocity. Vehicles can choose to turn left, right or go straight
at intersections. The choice is probabilistic: the probability of
going straight is 0.5 and the probability of turning left and
right is both 0.25. The simulation time is 300 seconds. We
use Nc to measure network connectivity, which is defined as
follows.

• Nc: number of clusters. A cluster consists of a group
of vehicles in which every vehicle is connected to other
vehicles by single-hop or multi-hop wireless links. Then
Nc is the number of different clusters in the network.

• Sc: average size of clusters. The size of a cluster is the
number of vehicles in the cluster. And Sc is the average
size of all the clusters in the network.

In each simulation, we calculate number of clusters and
average size of clusters in every second and use the average
of them as Nc and Sc for the simulation.
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(a) Network connectivity vs. transmission range r. The total number
of vehicles is fixed to 10000.
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Fig. 2. Simulation Results

B. The impact of transmission range

In the first group of simulations, we fix the vehicle density
λ and change the transmission range r. The total number
of vehicles in the simulation area is fixed to 10000, which
means λ is about 2 vehicles/lane. r varies from 10 meters
to 300 meters. The results are shown in Figure 2(a). We
can easily see that when r increases, Nc decreases and Sc

increases. It means an increase of transmission range can result
in better network connectivity. Furthermore, we observe that
when r is about 200 meters, there is a jump both for Nc and
Sc. From Theorem 8, we can calculate p is about 0.5 when r
is 200 meters and λ is 2 vehicles/lane. So our simulation
result here is consistent with our analysis.

C. The impact of vehicle density

In the second group of simulations, we fix the transmission
range r and change the vehicle density λ. r is fixed to
150 meters. The total number of vehicles varies from 1000
to 30000, which means λ varies from 0.20 vehicles/lane to
4.08 vehicles/lane. The results are shown in Figure 2(b).
When the total number of vehicles increases, number of
clusters Nc first increases and then decreases. This is because
when the vehicle is few, the network connectivity is not so
good. More vehicles only result in more isolated clusters.



However, when the number of vehicles increases to some
degree, the small isolated clusters aggregate to become big
clusters. So Nc begins to decrease. For Sc, it increases along
with the total number of vehicles. Moreover, when the total
number of vehicles increases to about 16000, there is a jump
for both Nc and Sc, after which the network connectivity
becomes so good. When the total number of vehicles is
16000, the vehicle density is about 3.26 vehicles/lane. The
probability p is about 0.5 when r is 150 meters and λ is
3.26 vehicles/lane based on Theorem 8. The simulations
again accord with our theoretical analysis that when p is 0.5,
there will be a jump for the network connectivity.

IV. APPLICATION IN REAL WORLD

Our results have great meanings in real world, which can
guide the deployment of VANETs.

If there are not many vehicles in a city, which means the
vehicle density λ is low, the transmission range r should be
large in order to get a good network connectivity. So when de-
ploying VANET in the city, government and companies should
be aware of such situation and choose electronic devices with
large power. We can calculate the minimum transmission range
to achieve good network connectivity using Theorem 8. On
the other hand, we know that a large transmission range can
cause serious collisions in wireless links, which can reduce the
performance of wireless networks. So it’s a tradeoff to choose
a smaller transmission range with worse network connectivity
but fewer collisions and a larger transmission range with
better network connectivity but more collisions. At least, our
theory tells us that there is a minimum transmission range,
below which the overall performance of the network might
be disappointing due to the bad network connectivity. Further
discussion about the tradeoff will be a part of our future wok.

For cities with large amounts of vehicles, our theory states
that even a small transmission range is enough to obtain
good network connectivity. The exact value of the minimum
transmission range can be calculated by Theorem 8. Devices
with a small transmission range need less power and save en-
ergy, which also meets the requirement of ”GREEN EARTH”.
However, there is also a pitfall here. Large amounts of vehicles
do not mean large amounts of vehicles equipped with these
electronic devices. In our analysis, we assume that all vehicles
are equipped with the devices and use vehicle density to
denote them. But it is natural that for a new technology,
there will be a long process until reaching a high market
penetration rate. So although a city might have a large quantity
of vehicles, the exactly vehicle density equipped with the
electronic devices can still be very low. In such situation, a
large transmission range is still desirable in order to get good
network connectivity.

Another thing we should take into account is that even in
the same city, the vehicle density is different at different time.
Usually the vehicles running on the roads in the daytime are
much more than those at night. So the minimum transmission
range varies during the day. If the transmission range is fixed
to provide good network connectivity all the day, it will be

too large for the daytime, which not only wastes energy but
also brings more collisions. In such situation, the software
radio technology can be used to adjust the transmission range
according to different vehicle density at different time.

V. CONCLUSION

In this paper, we studied the connectivity of VANETs both
using theoretical analysis and simulations. Firstly, we use
percolation theory to analyze the problem theoretically. We
find the quantitative relationship between network connectiv-
ity, vehicle density λ and transmission range r. Furthermore,
we conduct simulations in a large scale scenario to validate
our theorem, whose results accord with our analysis well.
Our results have great meanings in real world. Given vehicle
density, we can calculate the minimum transmission range
to achieve good network connectivity, which can guide the
deployment of VANETs.

In the future, we will take the impact of RSUs into consid-
eration. Furthermore, we will study the impact of transmission
range and vehicle density on collisions in wireless links.
Given vehicle density, we want to give a proper choice of
transmission range to obtain a good tradeoff of network con-
nectivity and collision, which will greatly help governments
and companies in planning and deploying of VANETs.
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