
Global Optimization Algorithms

– Theory and Application –

Evolutionary Algorithms . 47
Genetic Algorithms . 117
Genetic Programming . 139
Learning Classifier Systems . 211
Hill Climbing . 223
Simulated Annealing. .231
Example Applications . 275
Sigoa – Implementation in Java . 367
Background (Mathematics, Computer Science, . . .) . . . 501

Thomas Weise
Version: January 4, 2008

Preface

This e-book is devoted to global optimization algorithms, which are methods
to find optimal solutions for given problems. It especially focuses on evolution-
ary computation by discussing evolutionary algorithms, genetic algorithms,
genetic programming, learning classifier systems, evolution strategy, differen-
tial evolution, particle swarm optimization, and ant colony optimization. It
also elaborates on meta-heuristics like simulated annealing, hill climbing, tabu
search, and random optimization.

With this book, we want to address two major audience groups:

1. It can help students since we try to describe the algorithms in an un-
derstandable, consistent way and, maybe even more important, include
all background knowledge needed to understand them. Thus, you can
find summaries on stochastic theory and theoretical computer science
in Part IV on page 501. Additionally, application examples are provided
which give an idea how problems can be tackled with the different tech-
niques and what results can be expected.

2. Fellow researchers and PhD students maybe will find the application ex-
amples helpful too. For them, in-depth discussions on the single method-
ologies are included that are supported with a large set of useful literature
references.

If this book contains something you want to cite or reference in your work,
please use the citation suggestion provided in Chapter D on page 653.

In order to maximize the utility of this electronic book, it contains automatic,
clickable links. They are not highlighted with color so the book is still b/w
printable, but you can click on

• entries in the table of contents,
• citation references like [1],
• page references like “47”,

VI

• references such as “see Figure 2.1 on page 48” to sections, figures, tables,
and listings, and

• URLs and links like “http://www.lania.mx/~ccoello/EMOO/ [accessed 2007-

10-25]”.1

The following scenario is now for example possible: A student reads the text
and finds a passage that she wants to investigate in-depth. She clicks on a
citation in that seems interesting and the corresponding reference is shown.
To some of the references, which are online available, links are provided in
the reference text. By clicking on such a link, the Adobe ReaderR©2 will open
another window and load the regarding document (or a browser window of
a site that links to the document). After reading it, the student may use the
“backwards” button in the navigation utility to go back to the text initially
read in the e-book.

The contents of this book are divided into four parts. In the first part, different
optimization technologies will be introduced and their features are described.
Often, small examples to ease understanding will be given. In the second part
starting at page 275, we elaborate on different application examples in detail.
With the Sigoa framework, a possible Java implementation of the optimiza-
tion algorithms is discussed and we show how some of solutions of the previous
problem instances can be realized in Part III on page 367. Finally, in the last
part following at page 501, the background knowledge is provided for the rest
of the book. Optimization is closely related to stochastic, and hence, an in-
troduction into this subject can be found here. Other important background
information concerns theoretical computer science and clustering algorithms.

However, this book is currently worked on. It is still in a very preliminary
phase where major parts are still missing or under construction. Other sec-
tions or texts are incomplete (tagged with TODO). There may as well be
errors in the contents or issues may be stated ambiguously. Additionally, the
sequence of the content is not very good. It will probably be changed. There-
fore, I try to update, correct, and improve this book continuously.

This updates and improvements will result in new versions of the book,
which will regularly appear on the website http://www.it-weise.de/.
The direct download link to the newest version of this book is
http://www.it-weise.de/projects/book.pdf.

1 URLs are usually annotated with the date we have accessed them, like http://

www.lania.mx/~ccoello/EMOO/ [accessed 2007-10-25]. We can neither guarantee that
their content remains unchanged, nor that these sites stay available. We also
assume no responsibility for anything we linked to.

2 The Adobe ReaderR© is available for download at http://www.adobe.com/

products/reader/ [accessed 2007-08-13].

http://www.lania.mx/~ccoello/EMOO/
http://www.it-weise.de/
http://www.it-weise.de/projects/book.pdf
http://www.lania.mx/~ccoello/EMOO/
http://www.lania.mx/~ccoello/EMOO/
http://www.adobe.com/products/reader/
http://www.adobe.com/products/reader/

VII

If you want to provide feedback or find errors, missing things, want to criticize
something, or have any additional ideas or suggestions, I would be very happy.
Do not hesitate to contact me via my email address tweise@gmx.de.

Copyright c© 2006-2008 Thomas Weise.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled GNU Free Documentation License
(FDL). You can find a copy of the GNU Free Documentation License in ap-
pendix Chapter A on page 633.

At many places in this book we refer to Wikipedia [2] which is a great source of
knowledge. Wikipedia contains articles and definitions for many of the aspects
discussed in this book. Like this book, it is updated and improved frequently.
Therefore, including the links may add to the book’s utility.

References in form of links to websites, URLs, and URIs are always annotated
with a version, which denotes the date when I visited them. The reference
then regards the content at the location pointed to at this specific date, since
a website’s content may change over time. Hence, we cannot guarantee for its
current or future validity, correctness, or even legality.

mailto:tweise@gmx.de

Contents

Preface . V

Contents . IX

Part I Global Optimization

1 Introduction . 3
1.1 Classification of Optimization Algorithms. 4

1.1.1 Taxonomy According to Method of Operation 4
1.1.2 Classification According to Properties 7

1.2 Optima, Gradient Descend, and Search Space 8
1.2.1 Local and Global Optima . 8
1.2.2 Restrictions of the Search Space . 9
1.2.3 Fitness Landscapes and Gradient Descend 12

1.3 Multi-objective Optimization . 12
1.3.1 Weighted Sum . 13
1.3.2 Pareto Optimization . 14
1.3.3 The Method of Inequalities . 17
1.3.4 External Decision Maker . 18
1.3.5 Prevalence Optimization . 20

1.4 Complicated Fitness Landscapes . 21
1.4.1 Premature Convergence and Multi-Modality 21
1.4.2 Rugged Fitness Landscapes . 25
1.4.3 Deceptive Fitness Landscapes . 25
1.4.4 Neutral Fitness Landscapes . 26
1.4.5 Dynamically Changing Fitness Landscape 27
1.4.6 Overfitting . 27

1.5 Modeling and Simulating . 28
1.6 General Features of Global Optimization Algorithms 31

X CONTENTS

1.6.1 Iterations . 31
1.6.2 Termination Criterion . 31
1.6.3 Minimization . 32

1.7 The Optimal Set . 33
1.7.1 Updating the Optimal Set . 33
1.7.2 Obtaining Optimal Elements . 33
1.7.3 Pruning the Optimal Set . 35

1.8 General Information . 41
1.8.1 Areas Of Application . 41
1.8.2 Conferences, Workshops, etc. 41
1.8.3 Journals . 43
1.8.4 Online Resources . 44
1.8.5 Books . 44

2 Evolutionary Algorithms . 47
2.1 Introduction . 47

2.1.1 The Basic Principles from Nature 47
2.1.2 Classification of Evolutionary Algorithms 53
2.1.3 Populations in Evolutionary Algorithms 54
2.1.4 Forma Analysis . 56

2.2 General Information . 60
2.2.1 Areas Of Application . 60
2.2.2 Conferences, Workshops, etc. 60
2.2.3 Journals . 63
2.2.4 Online Resources . 64
2.2.5 Books . 64

2.3 Fitness Assignment . 65
2.3.1 Weighted Sum Fitness Assignment 66
2.3.2 Prevalence-Count Fitness Assignment 66
2.3.3 Rank-Based Fitness Assignment . 67
2.3.4 Tournament Fitness Assignment . 69
2.3.5 Sharing Functions . 69
2.3.6 Niche Size Fitness Assignment . 71
2.3.7 NSGA Fitness Assignment . 72
2.3.8 NSGA2 Fitness Assignment . 73
2.3.9 RPSGAe Fitness Assignment . 75
2.3.10 SPEA Fitness Assignment . 76
2.3.11 SPEA2 Fitness Assignment . 76

2.4 Selection . 78
2.4.1 Truncation Selection . 80
2.4.2 Random Selection . 80
2.4.3 Tournament Selection . 81
2.4.4 Crowded Tournament Selection . 83
2.4.5 Roulette Wheel Selection . 84
2.4.6 Linear and Polynomial Ranking Selection 85

CONTENTS XI

2.4.7 VEGA Selection . 86
2.4.8 MIDEA Selection . 87
2.4.9 NPGA Selection . 90
2.4.10 CNSGA Selection . 92
2.4.11 PESA Selection . 94
2.4.12 PESA-II Selection . 94
2.4.13 Prevalence/Niching Selection . 99

2.5 Reproduction . 99
2.5.1 NCGA Reproduction . 101

2.6 Algorithms . 103
2.6.1 VEGA . 103
2.6.2 MIDEA . 103
2.6.3 NPGA . 104
2.6.4 NPGA2 . 104
2.6.5 NSGA . 105
2.6.6 NSGA2 . 106
2.6.7 CNSGA . 106
2.6.8 PAES . 107
2.6.9 PESA . 108
2.6.10 PESA-II . 109
2.6.11 RPSGAe . 109
2.6.12 SFGA and PSFGA . 109
2.6.13 SPEA . 110
2.6.14 SPEA2 . 111
2.6.15 NCGA . 114

3 Genetic Algorithms . 117
3.1 Introduction . 117
3.2 General Information . 119

3.2.1 Areas Of Application . 119
3.2.2 Conferences, Workshops, etc. 120
3.2.3 Books . 121

3.3 Genomes . 121
3.4 String Chromosomes . 124

3.4.1 Fixed-Length String Chromosomes 124
3.4.2 Variable-Length String Chromosomes 126

3.5 Genotype-Phenotype Mapping . 127
3.5.1 Artificial Embryogeny . 128

3.6 Schema Theorem . 129
3.6.1 Schemata and Masks . 129
3.6.2 Wildcards . 130
3.6.3 Holland’s Schema Theorem . 130
3.6.4 Criticism of the Schema Theorem 131
3.6.5 The Building Block Hypothesis . 132

3.7 Principles for Individual Representations 133

XII CONTENTS

3.7.1 Locality and Causality . 134
3.7.2 Epistasis . 135
3.7.3 Redundancy . 135
3.7.4 Implications of the Forma Analysis 136

4 Genetic Programming . 139
4.1 Introduction . 139
4.2 General Information . 142

4.2.1 Areas Of Application . 142
4.2.2 Conferences, Workshops, etc. 143
4.2.3 Journals . 144
4.2.4 Online Resources . 144
4.2.5 Books . 144

4.3 (Standard) Tree Genomes . 145
4.3.1 Creation . 145
4.3.2 Mutation . 146
4.3.3 Crossover . 147
4.3.4 Permutation . 148
4.3.5 Editing . 148
4.3.6 Encapsulation . 149
4.3.7 Wrapping . 149
4.3.8 Lifting . 150
4.3.9 Automatically Defined Functions . 151
4.3.10 Node Selection . 152

4.4 Genotype-Phenotype Mappings . 154
4.4.1 Cramer’s Genetic Programming . 154
4.4.2 Binary Genetic Programming . 156
4.4.3 Gene Expression Programming . 156

4.5 Grammars in Genetic Programming . 159
4.5.1 Trivial Approach . 160
4.5.2 Strongly Typed Genetic Programming 160
4.5.3 Early Research in GGGP . 162
4.5.4 Gads 1 . 162
4.5.5 Grammatical Evolution . 165
4.5.6 Gads 2 . 169
4.5.7 Christiansen Grammar Evolution . 171
4.5.8 Tree-Adjoining Grammar-Guided Genetic Programming 173

4.6 Linear Genetic Programming . 177
4.7 Graph-based Approaches . 179

4.7.1 Parallel Distributed Genetic Programming 179
4.7.2 Cartesian Genetic Programming . 182

4.8 Epistasis in Genetic Programming . 185
4.8.1 Problems of String-to-Tree GPMs 185
4.8.2 Positional Epistasis . 187

4.9 Rule-based Genetic Programming . 187

CONTENTS XIII

4.9.1 Genotype and Phenotype . 189
4.9.2 Program Execution and Dimensions of Independence. . . 190
4.9.3 Complex Statements . 191

4.10 Artificial Life and Artificial Chemistry Approaches 193
4.10.1 Push, PushGP, and Pushpop . 193

4.11 Evolving Algorithms . 196
4.11.1 Restricting Problems . 196
4.11.2 Why No Exhaustive Testing? . 198
4.11.3 Non-Functional Features of Algorithms 199

5 Evolution Strategy . 203
5.1 Introduction . 203
5.2 General Information . 203

5.2.1 Areas Of Application . 203
5.2.2 Conferences, Workshops, etc. 204
5.2.3 Books . 204

5.3 Populations in Evolutionary Strategy . 204
5.3.1 (1 + 1)-ES . 205
5.3.2 (µ + 1)-ES . 205
5.3.3 (µ + λ)-ES . 205
5.3.4 (µ, λ)-ES . 205
5.3.5 (µ/ρ, λ)-ES . 205
5.3.6 (µ/ρ + λ)-ES . 205
5.3.7 (µ′, λ′(µ, λ)γ)-ES . 205

5.4 One-Fifth Rule . 206
5.5 Differential Evolution . 206

5.5.1 Introduction . 206
5.5.2 General Information . 206

6 Evolutionary Programming . 209
6.1 Introduction . 209
6.2 General Information . 209

6.2.1 Areas Of Application . 209
6.2.2 Conferences, Workshops, etc. 210
6.2.3 Books . 210

7 Learning Classifier Systems . 211
7.1 Introduction . 211
7.2 General Information . 211

7.2.1 Areas Of Application . 211
7.2.2 Conferences, Workshops, etc. 212

7.3 The Basic Idea of Learning Classifier Systems 212
7.3.1 Messages . 213
7.3.2 Conditions . 215
7.3.3 Actions . 216

XIV CONTENTS

7.3.4 Classifiers . 217
7.3.5 Non-Learning Classifier Systems . 218
7.3.6 Learning Classifier Systems . 218
7.3.7 The Bucket Brigade Algorithm . 219
7.3.8 Applying the Genetic Algorithm . 222

7.4 Families of Learning Classifier Systems . 222

8 Hill Climbing . 223
8.1 Introduction . 223
8.2 General Information . 224

8.2.1 Areas Of Application . 224
8.3 Multi-Objective Hill Climbing . 224
8.4 Problems in Hill Climbing . 224
8.5 Hill Climbing with Random Restarts . 225

9 Random Optimization . 227
9.1 Introduction . 227
9.2 General Information . 229

9.2.1 Areas Of Application . 229

10 Simulated Annealing . 231
10.1 Introduction . 231
10.2 General Information . 233

10.2.1 Areas Of Application . 233
10.3 Temperature Scheduling . 233
10.4 Multi-Objective Simulated Annealing . 234

11 Tabu Search . 237
11.1 Introduction . 237
11.2 General Information . 238

11.2.1 Areas Of Application . 238
11.3 Multi-Objective Tabu Search . 238

12 Ant Colony Optimization . 241
12.1 Introduction . 241
12.2 General Information . 242

12.2.1 Areas Of Application . 242
12.2.2 Conferences, Workshops, etc. 242
12.2.3 Journals . 242
12.2.4 Online Resources . 243

13 Particle Swarm Optimization . 245
13.1 Introduction . 245
13.2 General Information . 247

13.2.1 Areas Of Application . 247
13.2.2 Online Resources . 247

CONTENTS XV

13.2.3 Conferences, Workshops, etc. 248

14 Memetic Algorithms . 249

15 State Space Search . 251
15.1 Introduction . 251
15.2 Uninformed Search . 253

15.2.1 Breadth-First Search . 253
15.2.2 Depth-First Search . 254
15.2.3 Depth-limited Search . 255
15.2.4 Iterative deepening depth-first search 255
15.2.5 Random Walks . 256

15.3 Informed Search . 258
15.3.1 Greedy Search . 259
15.3.2 A* Search . 260
15.3.3 Adaptive Walks . 260

16 Parallelization and Distribution . 263
16.1 Analysis . 263
16.2 Distribution . 266

16.2.1 Client-Server . 266
16.2.2 Island Model . 267
16.2.3 Mixed Distribution . 270

16.3 Cellular GA . 271

Part II Applications

17 Benchmarks and Toy Problems . 275
17.1 Benchmark Functions . 275

17.1.1 Single-Objective Optimization . 275
17.1.2 Multi-Objective Optimization . 276
17.1.3 Dynamic Fitness Landscapes . 276

17.2 Kauffman’s NK Fitness Landscapes . 278
17.2.1 K = 0 . 279
17.2.2 K = N − 1 . 279
17.2.3 Intermediate K . 279
17.2.4 Computational Complexity . 280

17.3 The Royal Road . 280
17.3.1 Variable-Length Representation . 281
17.3.2 Epistatic Road . 282
17.3.3 Royal Trees . 283

17.4 Artificial Ant . 284
17.4.1 Santa Fe trail . 285
17.4.2 Solutions . 285

XVI CONTENTS

17.5 The Greatest Common Divisor . 287
17.5.1 Problem Definition . 287
17.5.2 Rule-based Genetic Programming 291

18 Contests . 299
18.1 Data-Mining-Cup . 299

18.1.1 Introduction . 299
18.1.2 The 2007 Contest – Using Classifier Systems 300

18.2 Web Service Challenge . 312
18.2.1 Introduction . 312
18.2.2 The 2006/2007 Semantic Challenge 313

19 Real-World Applications . 329
19.1 Symbolic Regression . 329

19.1.1 Genetic Programming: Genome for Symbolic Regression 330
19.1.2 Sample Data, Quality, and Estimation Theory 331
19.1.3 An Example and the Phenomenon of Overfitting 332
19.1.4 Limits of Symbolic Regression . 335

20 Research Applications . 337
20.1 Evolving Proactive Aggregation Protocols 337

20.1.1 Aggregation Protocols . 337
20.1.2 The Solution Approach: Genetic Programming 342
20.1.3 Network Model and Simulation. 343
20.1.4 Node Model and Simulation . 345
20.1.5 Evaluation and Objective Values . 347
20.1.6 Input Data . 349
20.1.7 Phenotypic Representations of Aggregation Protocols . . 353
20.1.8 Results from Experiments . 356

Part III Sigoa – Implementation in Java

21 Introduction . 367
21.1 Requirements Analysis . 369

21.1.1 Multi-Objectivity . 369
21.1.2 Separation of Specification and Implementation 369
21.1.3 Separation of Concerns . 369
21.1.4 Support for Pluggable Simulations and Introspection . . . 370
21.1.5 Distribution utilities . 370

21.2 Architecture . 370
21.3 Subsystems . 372

CONTENTS XVII

22 Examples . 375
22.1 The 2007 DATA-MINING-CUP . 375

22.1.1 The Phenotype . 376
22.1.2 The Genotype and the Embryogeny. 376
22.1.3 The Simulation . 378
22.1.4 The Objective Functions . 380
22.1.5 The Evolution Process . 382

23 The Adaptation Mechanisms . 387
23.1 Specification . 387
23.2 Reference Implementation . 388

24 The Events Package . 391
24.1 Specification . 391
24.2 Reference Implementation . 393

25 The Security Concept . 395
25.1 Specification . 395
25.2 Reference Implementation . 396

26 Stochastic Utilities . 399
26.1 Specification . 399

26.1.1 Random Number Generators . 399
26.1.2 Statistic Data Representation . 401

26.2 Reference Implementation . 402
26.2.1 Random Number Generators . 402
26.2.2 Statistic Data Representation . 402

27 The Simulation Interface . 405
27.1 Specification . 405

27.1.1 The Simulations . 406
27.1.2 Simulation Provider and Simulation Manager 407

27.2 Reference Implementation . 408
27.2.1 The Simulation . 408
27.2.2 Simulation Provider and Simulation Manager 408
27.2.3 Simulation Inheritance . 410

28 The Job System . 413
28.1 Specification . 413

28.1.1 The Activity Model . 413
28.1.2 The Job System Interface . 415
28.1.3 The Interface to the Optimization Tasks 416
28.1.4 Notes on Distribution . 419
28.1.5 Using a Job System. 419

28.2 Reference Implementation . 420
28.2.1 The Activity Model . 420

XVIII CONTENTS

28.2.2 The Job System Base Classes . 421
28.2.3 Job System Implementations . 422

29 The Pipeline System . 427
29.1 Specification . 428
29.2 Reference Implementation . 429

29.2.1 Basic Classes . 429
29.2.2 Some Basic Pipes . 432
29.2.3 Pipes for Persistent Output . 434

30 Clustering . 437
30.1 Specification . 437
30.2 Reference Implementation . 439

30.2.1 Clustering Algorithms . 439
30.2.2 Distance Measures . 441

31 Global Optimization . 445
31.1 Specification . 445

31.1.1 Basic Interfaces . 445
31.1.2 Reproduction . 450
31.1.3 Objective Functions . 452
31.1.4 Computing an Objective Value . 453
31.1.5 The Evaluator . 456
31.1.6 Embryogeny . 456
31.1.7 Fitness Assignment and Selection . 458
31.1.8 The Optimizer . 459
31.1.9 The Optimization Info Record . 460
31.1.10Predefined Algorithm Interfaces . 460

31.2 Reference Implementation . 461
31.2.1 Basic Classes . 461
31.2.2 Reproduction . 467
31.2.3 Objective Functions . 470
31.2.4 The Evaluator . 473
31.2.5 Embryogeny . 474
31.2.6 Fitness Assignment . 475
31.2.7 Selection . 477
31.2.8 The Optimizer . 478
31.2.9 The Optimization Info Record . 481

31.3 Predefined Algorithms . 481
31.3.1 Implementing Evolutionary Algorithms. 482

32 Genotypes . 487
32.1 Vectors of Real Numbers . 488

32.1.1 The Evaluation Scheme for Functions of Real Vectors . . 488
32.1.2 Reproduction Operators for Real Vectors 489

CONTENTS XIX

32.2 Bit String Genomes . 491
32.2.1 Encoding and Decoding Data in Bit String Genomes . . . 491
32.2.2 Embryogeny of Bit String Genomes 493
32.2.3 Reproducing Bit Strings . 493

33 Utility Classes . 497
33.1 The Utility Classes of the Reference Implementation 497

33.1.1 The Default Thread Class . 497
33.1.2 The Selector . 497

Part IV Background

34 Set Theory . 501
34.1 Set Membership . 501
34.2 Relations between Sets . 502
34.3 Special Sets . 502
34.4 Operations on Sets . 503
34.5 Tuples and Lists . 505
34.6 Binary Relations . 508

34.6.1 Order relations . 509
34.6.2 Equivalence Relations . 510
34.6.3 Functions . 510

35 Stochastic Theory . 513
35.1 Probability . 513

35.1.1 Probabily as defined by Bernoulli (1713) 514
35.1.2 The Metrical Method of Van Mises (1919) 515
35.1.3 The Axioms of Kolmogorov . 515
35.1.4 Conditional Probability . 516
35.1.5 Random Variable . 517
35.1.6 Cumulative Distribution Function 517
35.1.7 Probability Mass Function . 519
35.1.8 Probability Density Function . 519

35.2 Properties of Distributions and Statistics 519
35.2.1 Count, Min, Max and Range . 520
35.2.2 Expected Value and Arithmetic Mean 521
35.2.3 Variance and Standard Deviation . 522
35.2.4 Moments . 523
35.2.5 Skewness and Kurtosis . 524
35.2.6 Median, Quantiles, and Mode . 524
35.2.7 Entropy . 526
35.2.8 The Law of Large Numbers . 527

35.3 Some Discrete Distributions . 527
35.3.1 Discrete Uniform Distribution . 527

XX CONTENTS

35.3.2 Poisson Distribution πλ . 530
35.3.3 Binomial Distribution B(n, p) . 532

35.4 Some Continuous Distributions . 535
35.4.1 Continuous Uniform Distribution . 535
35.4.2 Normal Distribution N(µ, σ2) . 537
35.4.3 Exponential Distribution exp(λ) . 540
35.4.4 Chi-square Distribution . 542
35.4.5 Student’s t-Distribution . 545

35.5 Example - Throwing a Dice . 548
35.6 Estimation Theory . 549

35.6.1 Likelihood and Maximum Likelihood Estimators 552
35.6.2 Best Linear Unbiased Estimators . 556
35.6.3 Confidence Intervals . 556

35.7 Generating Random Numbers . 559
35.7.1 Generating Pseudorandom Numbers 560
35.7.2 Converting Random Numbers to other Distributions . . . 561
35.7.3 Definitions of Random Functions . 565

35.8 Density Estimation . 567
35.8.1 Histograms . 567
35.8.2 The kth Nearest Neighbor Method 567
35.8.3 Crowding Distance . 568
35.8.4 Parzen Window / Kernel Density Estimation 570

35.9 Functions Often used in Statistics . 570
35.9.1 Gamma Function . 570

36 Clustering . 571
36.1 Distance Measures . 574

36.1.1 Distance Measures for Strings of Equal Length 574
36.1.2 Distance Measures for Real-Valued Vectors 574
36.1.3 Distance Measures Between Clusters 576

36.2 Elements Representing a Cluster . 577
36.3 Clustering Algorithms . 577

36.3.1 Cluster Error . 577
36.3.2 k-means Clustering . 578
36.3.3 nth Nearest Neighbor Clustering . 578
36.3.4 Linkage Clustering . 579
36.3.5 Leader Clustering . 581

37 Theoretical Computer Science . 585
37.1 Algorithms . 585

37.1.1 What are Algorithms? . 585
37.1.2 Properties of Algorithms . 588
37.1.3 Complexity of Algorithms . 589
37.1.4 Randomized Algorithms . 591

37.2 Distributed Systems and Distributed Algorithms 592

CONTENTS XXI

37.2.1 Network Topologies . 593
37.2.2 Some Architectures of Distributes Systems 596
37.2.3 Modeling Distributed Systems . 603

37.3 Grammars and Languages . 614
37.3.1 Syntax and Formal Languages . 614
37.3.2 Generative Grammars . 616
37.3.3 Derivation Trees . 616
37.3.4 Backus-Naur Form . 617
37.3.5 Extended Backus-Naur Form . 618
37.3.6 Attribute Grammar . 619
37.3.7 Extended Attribute Grammars . 621
37.3.8 Adaptable Grammar . 623
37.3.9 Christiansen Grammars . 624
37.3.10Tree-Adjoining Grammar . 625
37.3.11S-Expressions . 627

Part V Appendices

A GNU Free Documentation License (FDL) 633
A.1 Preamble . 633
A.2 Applicability and Definitions . 633
A.3 Verbatim Copying . 635
A.4 Copying in Quantity . 635
A.5 Modifications . 636
A.6 Combining Documents . 638
A.7 Collections of Documents . 638
A.8 Aggregation with Independent Works . 639
A.9 Translation . 639
A.10 Termination . 639
A.11 Future Revisions of this License . 640

B GNU Lesser General Public License (LPGL) 641
B.1 Preamble . 641
B.2 Terms and Conditions for Copying, Distribution and

Modification . 643
B.3 No Warranty . 649
B.4 How to Apply These Terms to Your New Libraries 649

C Credits and Contributors . 651

D Citation Suggestion . 653

References . 655

XXII CONTENTS

Index . 807

List of Figures . 827

List of Tables . 835

List of Algorithms . 837

List of Listings . 841

Part I

Global Optimization

1

Introduction

One of the most fundamental principles in our world is the search for an
optimal state. It begins in the microcosm where atoms in physics try to form
bonds1 in order to minimize the energy of their electrons [3]. When molecules
form solid bodies during the process of freezing, they try to assume energy-
optimal crystal structures. These processes, of course, are not driven by any
higher intention but purely result from the laws of physics.

The same goes for the biological principle of survival of the fittest [4]
which, together with the biological evolution [5], leads to better adaptation
of the species to their environment. Here, a local optimum is a well-adapted
species that dominates all other animals in its surroundings. Homo sapiens
have reached this level, sharing it with ants, bacteria, flies, cockroaches, and
all sorts of other creepy creatures.

As long as humankind exists, we strive for perfection in many areas. We
want to reach a maximum degree of happiness with the least amount of effort.
In our economy, profit and sales must be maximized and costs should be as
low as possible. Therefore, optimization is one of the oldest of science which
even extends into daily life [6].

Global optimization2 is the branch of applied mathematics and numerical
analysis that deals with the optimization of single or multiple, possible even
conflicting, criteria. These criteria are expressed as a set of mathematical
functions3 F = {f1, f2, . . . , fn}, the so-called objective functions. The result of
an optimization process is the set of inputs for which these objective functions
return optimal values.

Definition 1 (Objective Function). An objective function f : X 7→ Y ⊆
R is a function which is subject to optimization. Its codomain Y and its range
must be a subset of the real numbers. (Y ⊆ R). The domain X of f can

1 http://en.wikipedia.org/wiki/Chemical_bond [accessed 2007-07-12]

2 http://en.wikipedia.org/wiki/Global_optimization [accessed 2007-07-03]

3 The concept of mathematical functions is introduced in set theory
in Definition 114 on page 510.

http://en.wikipedia.org/wiki/Chemical_bond
http://en.wikipedia.org/wiki/Global_optimization

4 1 Introduction

contain any given type of elements like numbers, lists, construction plans,
and so on, depending on the optimization problem. Objective functions are
not necessarily mere mathematical expressions but can be complex algorithms
that, for example, involve numerous simulations.

Global optimization comprises all techniques that can be used to find the
best elements xi in the domain X in respect to the criteria f ∈ F . The
difference between optimization algorithms and search algorithms4 is subtle.
When performing a search algorithm, we know a definite criterion that tells
us whether an element xi is a solution or not. With this criterion, we can for
instance quickly find the position of an element in a list. In global optimization
algorithms on the other hand we possibly are not sure about the characteris-
tics of the solutions beforehand and have only the objective functions which
describe if a given configuration is good or not. Since these functions provide
a more general problem definition, we could consider search algorithms as
special case of global optimization methods.

1.1 Classification of Optimization Algorithms

In this book, we will only be able to discuss a small fraction of the wide vari-
ety of global optimization techniques [7]. Before digging any deeper into the
matter, we will attempt to build a taxonomy of these algorithms as overview
and discuss some basic use cases.

1.1.1 Taxonomy According to Method of Operation

Generally, global optimization algorithms can be divided in two basic classes:
deterministic and probabilistic algorithms.

Deterministic algorithms (see also Definition 201 on page 588) are most
often used if a clear relation between the characteristics of the possible solu-
tions and their utility for a given problem exists. Then, the search space can
efficiently be explored using for example a divide and conquer scheme5. If the
relation between a solution candidate and its “fitness” is however cannot be
understood or observed, neighboring solution candidates may differ largely in
their utility, or the dimensionality of the search space is very high, it becomes
harder to solve a problem deterministically. Trying it would possible result in
exhaustive enumeration of the search space, which is not feasible even for rel-
atively small problems. Then, probabilistic algorithms6 come into play. Here,

4 State space search algorithms are discussed in Chapter 15 on page 251.
5 http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm [accessed 2007-07-

09]

6 The common properties of probabilistic algorithms are specified in Definition 208
on page 591.

http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

1.1 Classification of Optimization Algorithms 5

Monte Carlo
Algorithms

Evolutionary
Computation (EC)

Soft Computing

Artificial
Intelligence (AI)

Computational
Intelligence (CI)

Deterministic
Branch and

Bound
Algebraic
Geometry

State Space
Search

Probabilistic

Memetic
Algorithms

Swarm
Intelligence (SI)

Ant Colony
Optimization (ACO)

Particle Swarm
Optimization)(PSO

Evolutionary
Algorithms (EA)

Genetic
Algorithms (GA)

(LCS) Learning
Classifier System

Evolutionary
Programming

Evolution
Strategy (ES)

(GP) Genetic
Programming

Differential
Evolution (DE)

Standard Genetic
Programming

Linear Genetic
Prograaming

Grammar Guided
Genetic Prog.

(Stochastic)
Hill Climbing

Random
Optimization

Simulated
Annealing (SA)

Tabu Search
(TS)

Parallel
Tempering

Stochastic
Tunneling

Direct Monte
Carlo Sampling

Harmonic
Search (HS)

Fig. 1.1: The taxonomy of global optimization algorithms.

6 1 Introduction

most often the Monte Carlo algorithms7 are applied which trade guaranteed
correctness of the solution in for a shorter runtime. This does not mean that
the results obtained using them are totally incorrect – they may just not be
the global optima. On the other hand, a solution a little bit inferior to the
best possible one is better than one which needs 10100 years to be found. . .

Heuristics as used in global optimization are functions that help decide
which one of a set of possible solutions is to be examined next. Heuristics
can be used by both, deterministic as well as probabilistic algorithms. De-
terministic algorithms usually will employ heuristics in order to define the
processing order of the solution candidates. One example for such strategies
are informed searches, as discussed in Section 15.3 on page 258. Probabilistic
methods, on the other hand, may only consider those elements of the search
space in further computations that have been selected by the heuristic.

Definition 2 (Heuristic). A heuristic8 [8, 9, 10] is a part of an optimization
algorithm. It uses the information currently gathered by the algorithm to help
to decide which solution candidate should be tested next or how the next
individual can be produced. Heuristics are usually problem class dependent.

Definition 3 (Metaheuristic). A metaheuristic9 is a heuristic method for
solving a very general class of problems. It combines objective functions or
heuristics in a hopefully efficient way.

Metaheuristics often work population-based or use a model of some natural
phenomenon or physical process as heuristic function. Simulated annealing
for example decides which solution candidate to be evaluated according to
the Boltzmann probability factor of atom configurations of solidifying metal
melts. Evolutionary algorithms copy the behavior of natural evolution and
treat solution candidates as individuals that compete in a virtual environment.

In principle, all the probabilistic optimization algorithms that we consider
in this book as well as some of the deterministic ones (the greedy state space
search for example) are metaheuristics.

An important class of probabilistic, Monte Carlo metaheuristics is evo-
lutionary computation10. It encompasses all such algorithms that are based
on a set of multiple solution candidates (called population) which are itera-
tively refined. This field of optimization is also a class of soft computing11 as
well as a part of the artificial intelligence12 area. Its most important members

7 See Definition 210 on page 592 for a in-depth discussion of the Monte Carlo-type
probabilistic algorithms

8 http://en.wikipedia.org/wiki/Heuristic_%28computer_science%29 [accessed

2007-07-03]

9 http://en.wikipedia.org/wiki/Metaheuristic [accessed 2007-07-03]

10 http://en.wikipedia.org/wiki/Evolutionary_computation [accessed 2007-09-17]

11 http://en.wikipedia.org/wiki/Soft_computing [accessed 2007-09-17]

12 http://en.wikipedia.org/wiki/Artificial_intelligence [accessed 2007-09-17]

http://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Soft_computing
http://en.wikipedia.org/wiki/Artificial_intelligence

1.1 Classification of Optimization Algorithms 7

are evolutionary algorithms and swarm intelligence, which will be discussed
in-depth in this book.

Besides the evolutionary approaches, which are mostly nature-inspired,
there exist also methods that copy physical processes like simulated annealing
and parallel tempering, as well as purely artificial techniques like tabu search
and random optimization.

As a preview of what can be found in this book, we have marked the tech-
niques that will be discussed in this book with a thicker border in Figure 1.1.

1.1.2 Classification According to Properties

The taxonomy just introduced classifies the optimization methods according
to their algorithmic structure and underlying principles, in other words, from
the viewpoint of theory. A software engineer or a user who is wants to solve a
problem with such an approach is however more interested in its “interfacing
features” such as speed and precision.

An interesting thing is that these are again (obviously) conflicting objec-
tives. A general rule of thumb is that you can gain improvements in accuracy
of optimization only by investing more time. Scientists in the area of global
optimization try to push this Pareto frontier13 further by inventing new ap-
proaches and enhancing or tweaking existing ones.

Optimization Speed

When it comes to time constraints and hence, the required speed of the algo-
rithm, we can distinguish two main types of optimization use cases.

Definition 4 (Online Optimization). Online optimization problems rep-
resent tasks that need to be solved quickly, such as robot localization, load
balancing, services composition for business processes in the running IT sys-
tem of an enterprise (see for example Section 18.2.1 on page 313), or updating
a factory’s machine job schedule after new orders came in. Here we generally
have only a time span between some ten milliseconds to some minutes to find
a good solution and will generally trade in optimality for speed. From the
examples, it furthermore becomes clear that online optimization tasks are of-
ten carried out repetitively – new orders will for instance continuously arrive
in a production facility and need to be scheduled to machines in a way that
minimizes the waiting time of all jobs.

Definition 5 (Offline Optimization). In offline optimization problems,
time is not so important and a user is willing to wait maybe even days if
she can get an optimal or close-to-optimal result. Such problems regard for
example design optimization, data mining (see for example Section 18.1 on
page 299), or creating long-term schedules for transportation crews. Such op-
timization processes will usually be carried out only once in a long time.

13 Pareto frontiers will be discussed in .

8 1 Introduction

Before doing anything else, one must be sure about to which of these two
classes the problem to be solved belongs.
TODO

1.2 Optima, Gradient Descend, and Search Space

1.2.1 Local and Global Optima

Global optimization is about finding optimal configurations. So it cannot be
a bad idea to start out by defining what an optimum14 is. In the case of a
single function, i.e. F = {f}, an optimum is either a maximum or a minimum.
Figure 1.2 illustrates such a function f defined over a two-dimensional search
space X = (X1,X2). As outlined there, we distinguish between local and
global optima. A global optimum is an optimum of the whole domain X while
a local optimum is only an optimum of one of its subsets.

local maximum

local minimum

global minimum

local maximum

global maximum

X

X1

X2

f

Fig. 1.2: Global and local optima of a two-dimensional function.

Definition 6 (Local Maximum). A (local) maximum x̂l ∈ X of an ob-
jective function f : X 7→ R is an input element with f(x̂l) ≥ f(x) for all x
neighboring x̂l.

14 http://en.wikipedia.org/wiki/Maxima_and_minima [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Maxima_and_minima

1.2 Optima, Gradient Descend, and Search Space 9

If X ⊆ R, we can write:

x̂l : ∃ε > 0 : f(x̂l) ≥ f(x) ∀x ∈ X, |x− x̂l| < ε (1.1)

Definition 7 (Local Minimum). A (local) minimum x̌l ∈ X of an objective
function f : X 7→ R is an input element with f(x̌l) ≤ f(x) for all x neighboring
x̌l.

If X ⊆ R, we can write:

x̌l : ∃ε > 0 : f(x̌l) ≤ f(x) ∀x ∈ X, |x− x̌l| < ε (1.2)

Definition 8 (Local Optimum). An (local) optimum x⋆
l ∈ X of an objec-

tive function f : X 7→ R is either a local maximum or a local minimum (or
both).

Definition 9 (Global Maximum). A global maximum x̂ ∈ X of an objec-
tive function f : X 7→ R is an input element with f(x̂) ≥ f(x)∀x ∈ X.

Definition 10 (Global Minimum). A global minimum x̌ ∈ X of an ob-
jective function f : X 7→ R is an input element with f(x̌) ≤ f(x)∀x ∈ X.

Definition 11 (Global Optimum). A global optimum x⋆ ∈ X of an ob-
jective function f : X 7→ R is either a global maximum or a global minimum
(or both).

Even a one-dimensional function may have more than one global maxi-
mum, multiple minima, or both in its domain X, take the sinus function for
example. An optimization algorithm may thus yield a list of optimal inputs
rather than a single maximum or minimum. Therefore, we define the optimal
set as15:

Definition 12 (Optimal Set). The optimal set X⋆ is the set containing all
optimal elements so that x⋆

i is optimal⇔ x⋆
i ∈ X⋆ ⊆ X.

Furthermore, when more than one objective function is to be optimized,
the definition of what is an optimum can change. Especially if multiple criteria
conflict, there exist different methods to specify which solutions are optimal.
In Section 1.3 on page 12 we discuss the most prominent approaches for this
case.

1.2.2 Restrictions of the Search Space

Figure 1.3 shows how the application of a global optimization algorithm for
the maximization of a real-valued function y = f(x) ∈ R may look like. The
domain X of the function, for instance the real numbers R too, is restricted

15 see also Definition 11

10 1 Introduction

y=f(x)

x

y X~

x2 x3 x4 x5 x6
««

sample
points

x1

Fig. 1.3: Possible results of global optimization.

to a subset X̃ ⊆ X that can be processed by the algorithm. When using
computers, this is always done at least implicitly by the data types selected
– 8 bytes of floating point data for example can represent 264 different real
numbers at most. In the example given by Figure 1.3, the true maximum x1

of the function f cannot be found since it is situated outside the accessible
domain X̃.

Definition 13 (Individual). An individual is an element x of the exam-
inable part X̃ of the solution space X. We will subsequently use the terms
solution candidate or individual synonymously when talking about the sample
inputs of an optimization algorithm (although the term individual originally
solely stems from evolutionary computation).

Figure 1.4 illustrates how the accessible domain of the example Figure 1.2
that we have introduced in Section 1.2 for instance could look like from the
viewpoint of an optimization algorithm and which individuals are now con-
sidered as optimal.

Even in this restricted space, optimization algorithms can only rely on
sample information (represented by gray lines) since it is not possible to eval-
uate the objective function(s) for all possible inputs x ∈ X̃ (all possible 264

floating point numbers in the above example, for instance). If no optimal
boundaries are known beforehand, it thus cannot be determined if a good
solution candidate found is a global optimum or not. In Figure 1.3, the true
optimal set X⋆ = {x⋆

4, x
⋆
5} was not discovered by the optimization algorithm.

Instead, the set {x2, x3, x6} has been returned.
Another example for the constraints of the space of possible solution is

solving the artificial ant problem16 [11] with genetic programming. Artificial
ants are simulated little insects driven by a small program describing their
behavior. They are placed on a map with food and obstacles. Optimization is

16 See Section 17.4 on page 284 for the artificial ant problem and Chapter 4 on
page 139 for genetic programming.

1.2 Optima, Gradient Descend, and Search Space 11

global maximum

local minimum

global minimum

local maximum

maximum outside
of the sub-domain

inside X~ outside X~

X1

X2

f

Fig. 1.4: Global and local optima of a two-dimensional function.

used to find a program x⋆ ∈ X allowing the ant to pile a maximum of food.
An objective function y = f(x) ∈ Y ⊆ R+ is constructed which computes
positive real numbers denoting the amount of food piled by the ant driven by
the program x ∈ X. Since we (and also the computers we use) are limited
in memory and time, we cannot evaluate programs of huge or even infinite
length so we have to restrict X to a subset X̃ of programs which contain, let’s
say, 100 instructions at most. Then, X̃ will contain programs that are one,
two, three, . . . – up to one hundred instructions long. If we further have four
different instructions (with only one parameter each) and three constants to

our disposal, there roughly exist
∑100

i=1(4 ∗ 3)i ≈ 9 ∗ 10107 different programs

in X̃. Even if evaluating a program takes only one millisecond, we would need
≈ 3 ∗ 1097 years to check all of them. Genetic programming therefore applies
an evolutionary heuristic which iteratively helps us to find prospecting sam-
ple points x. The optimization process is then narrowed to these interesting
individuals.

In the subsequent text of this book we will take the understanding of this
matter for granted and not explicitly distinguish between the true optimum
of a function, its global optima inside X⋆, and the optima found by an opti-
mization algorithm.

It may however be an interesting fact to know that there exist proofs that
some optimization algorithms (like simulated annealing and random optimiza-

12 1 Introduction

tion) will always find the global optimum (when granted a very long, if not
infinite, processing time).

1.2.3 Fitness Landscapes and Gradient Descend

Figure 1.2 on page 8 represents an example for the objective values of a func-
tion f : R2 7→ R. Such a function can be considered as a field17 an assignment
of a (quantity (the objective values) to every point of the (two-dimensional)
space. From its illustration, it also looks very much like a landscape with hills
and valleys.

Definition 14 (Fitness Landscape). In biology, a fitness landscape18 is
a visualization of the relationship of the genotypes to their corresponding
reproduction probability [12, 13, 14, 15, 16]. In global optimization algorithms,
it displays the relation of the solution candidates to their fitness19 or objective
values [17, 18, 19].

Definition 15 (Gradient). A gradient20 of a scalar field f : Rn 7→ R is
a vector field which points into the direction of the greatest increase of the
scalar field. It is denoted by ∇f or grad(f).

Optimization algorithms depend on some form of gradient in objective or
fitness space order to find good individuals. Of course, we normally do not
directly differentiate the objective functions – in most cases, the search space
X̃ is not even Rn. Generally, we use samples of the search space to approxi-
mate the gradient. By comparing two individuals x1, x2 ∈ X̃ and finding, for
instance, f(x1) > f(x2), we estimate that the gradient at x2 would somehow
point into the direction of x1.

By descending this gradient (into the opposite direction), we can hope
to find an x3 < x2 and finally the global minimum. Hence, Figure 1.10a on
page 24 is the best case since regardless where an optimization algorithm
starts exploring the solution space, it will always find a gradient into the
correct direction. Because of its smooth nature, Figure 1.10b and probably
also Figure 1.2 can be handled by most optimization algorithms correctly.

1.3 Multi-objective Optimization

Global optimization techniques are not just applied to find the maxima or
minima of single objective functions f . In many real-world design or decision

17 http://en.wikipedia.org/wiki/Field_%28physics%29 [accessed ,]

18 http://en.wikipedia.org/wiki/Fitness_landscape [accessed 2007-07-03]

19 You can find a detailed discussion on fitness in evolutionary algorithms
in Section 2.3 on page 65.

20 http://en.wikipedia.org/wiki/Gradient [accessed 2007-11-06]

http://en.wikipedia.org/wiki/Field_%28physics%29
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Gradient

1.3 Multi-objective Optimization 13

making problems they are applied to sets F of n functions fi which represent
multiple criteria [20, 21, 22].

F = {fi : X 7→ Yi : 0 < i ≤ n, Yi ⊆ R} (1.3)

Algorithms designed to optimize such a set F of objective functions are
usually named with the prefix multi-objective, like multi-objective evolution-
ary algorithms21. Multi-objective optimization often means to compromise
conflicting goals, for example when trying to build a car which is fast, safe,
and environment-friendly. In this case, there will always22 be more than one
optimal solution. The tasks of global optimization are therefore

1. to find solutions that are as good as possible and
2. that are also widely different from each other [23].

Let visualize this situation by looking again at the artificial ant example23.
The efficiency of an ant may not only be measured by the amount of food it is
able to pile. For every food item, the ant needs to walk to some point on the
map. The more food it piles, the longer the distance it needs to walk. If its
behavior is controlled by a clever program, it may walk along a shorter route
which would not be discovered by an ant with a clumsy program. Thus, the
distance it has to cover to find the food or the time it needs to do say may also
be considered. If two programs produce the same results, and one is shorter
(i. e. contains fewer instructions) than the other, the shorter one should be
preferred. Looking closer at this example yields another realization: To find
the global optimum could mean to maximize one function fi ∈ F and to
minimize another one fj ∈ F, (i 6= j), so it makes no sense to speak of a global
maximum or a global minimum in terms of multi-objective optimization. We
will thus retreat to the optimal set x⋆ ∈ X⋆ ⊆ X̃. Since compromises can be
defined in many ways, there exist different approaches to define what exactly
optimal elements x⋆ are leading to different results for X⋆.

1.3.1 Weighted Sum

The simplest method is computing a weighted sum g(x) of the functions
fi(x) ∈ F (see Equation 1.3). The weights wi represent the importance of
the single functions and also determine if the function should be maximized
(wi > 0) or minimized (wi < 0). Using this method, the multi-objective prob-
lem is reduced to single-objective optimization.

21 see Definition 35 on page 48
22 Notice that multiple optima may also occur in single-objective optimization or

when optimizing consistent goals.
23 see Section 17.4 on page 284 for more details

14 1 Introduction

y =f (x)11 y =f (x)2 2

x

y

x1
^ x2

^

X~

Fig. 1.5: Two functions f1 and f2 with different maxima x̂1 and x̂2.

g(x) =

n∑

i=1

wifi(x) =
∑

∀fi∈F

wifi(x) (1.4)

x⋆ ∈ X⋆ ⇔ g(x⋆) ≥ g(x) ∀x ∈ X̃ (1.5)

The drawback of this approach is that it cannot handle functions that
rise or fall with different speed24 properly. The sum of f1(x) = −x2 and
f2(x) = ex−2 will always disregard one of two functions, depending on the
interval chosen. For small x, f2 is negligible compared to f1. For x > 6 it
begins to outpace f1 which, in turn, will now become negligible. Such functions
cannot be added up properly using constant weights – even if for example
setting w1 to the really large number 1010, f1 will become insignificant for

all x > 40, because (
∣
∣
∣
−402∗1010

e40−2

∣
∣
∣ ≈ 0.0005). Therefore, weighted sums are only

suitable to optimize functions that at least share the same big O notation
(see Section 37.1.3 on page 589). Figure 1.6 demonstrates the optimization
using weighted sums for the example given in Figure 1.5. The weights are set
to 1, which maximizes both functions f1 and f2 and leads to a single optimum
x⋆ = x̂.

1.3.2 Pareto Optimization

Pareto efficiency25, or Pareto optimality, is an important notion in neoclassical
economics with broad applications in game theory, engineering and the social
sciences [24, 25].

It defines the front of solutions that can be reached by trading-off conflict-
ing objectives in an optimal manner. From this front, a decision maker (be it

24 see Section 37.1.3 on page 589
or http://en.wikipedia.org/wiki/Asymptotic_notation [accessed 2007-07-03]

25 http://en.wikipedia.org/wiki/Pareto_efficiency [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Asymptotic_notation
http://en.wikipedia.org/wiki/Pareto_efficiency

1.3 Multi-objective Optimization 15

x

y

x̂

y =f (x)11 y =f (x)2 2 y=g(x)=f (x)+f (x)1 2

X~

Fig. 1.6: Optimization using the weighted sum approach.

a human or another algorithm) can finally choose the configuration that, in
his opinion, suits best [26, 27, 28, 29, 30].

The notation of Pareto optimal is strongly based on the definition of dom-
ination:

Definition 16 (Domination). An element x1 dominates (is preferred to) an
element x2 (x1 ⊢ x2) if x1 is better than x2 in at least one objective function
and not worse with respect to all other objective functions. Referring to the
definition of a function set in Equation 1.3 on page 13 we write:

x1 ⊢ x2 ⇔ ∀i : 0 < i ≤ n⇒ ωifi(x1) ≥ ωifi(x2) ∧
∃j : 0 < j ≤ n : ωjfj(x1) > ωjfj(x2)

(1.6)

ωi =

{
−1 if fi should be minimized

1 if fi should be maximized
(1.7)

The Pareto domination relation defines a (strict) partial order
(see Definition 110 on page 509) on the set of possible objective values. In
contrast, the weighted sum approach imposes a total order by projecting them
into the real numbers R.

Definition 17 (Pareto Optimal). An element x⋆ ∈ X̃ is Pareto optimal
(and hence, part of the optimal set X⋆) if it is not dominated by any other
element in X̃. X⋆ is called the Pareto set or the Pareto Frontier.

x⋆ ∈ X⋆ ⇔6 ∃x ∈ X̃ : x ⊢ x⋆ (1.8)

In Figure 1.7 we illustrate the impact of Equation 1.8 on our example out-
lined in Figure 1.5, assuming again that f1 and f2 should both be maximized.

16 1 Introduction

y =f (x)11

y =f (x)2 2

x

y
X~

x1 x2 x3 x4 x5 x6

Fig. 1.7: Optimization using the Pareto Frontier approach.

The areas shaded with dark gray are Pareto optimal and thus, the optimal set
X⋆ = [x2, x3] ∪ [x5, x6] contains infinite many elements (theoretically, practi-
cally X̃ is always finite).

The points in light gray area between x1 and x2 are all dominated by
other points in the same region or in [x2, x3], since both functions f1 and
f2 can be improved by increasing x. If we start at the leftmost point in X̃
(which is position x1) for instance, we can go one small step ∆ to the right
and will find a point x1 + ∆ dominating it because f1(x1 + ∆) > f1(x1) and
f2(x1 + ∆) > f2(x1). We can repeat this procedure and will always find a
new dominating point until we reach x2. x2 demarks the global maximum of
f2, the point with the highest possible f2 value, which cannot be dominated
by any other point in X̃ by definition (see Equation 1.6). From here on, f2

will decrease for a while, but f1 keeps rising. If we now go a small step ∆
to the right, we will find a point x2 + ∆ with f2(x2 + ∆) < f2(x2) but also
f1(x2 + ∆) > f1(x2). One objective can only get better if another one suffers
– in order to increase f1, f2 would be decreased and vice versa. So the new
point is not dominated by x2. Although some of the f2(x) values of the other
points x ∈ [x1, x2) may be larger than f2(x2 + ∆), f1(x2 + ∆) > f1(x) holds
for all of them. This means that no point in [x1, x2) can dominate any point
in [x2, x4] because f1 keeps rising until x4.

At x3 however, f2 steeply falls to a very low level. A level lower than
f2(x5). Since the f1 values of the points in [x5, x6] are also higher than those
of the points in (x3, x4], all points in the set [x5, x6] (which also contains the
global maximum of f1) dominate those in (x3, x4]. For all the points in the
white area between x4 and x5 and after x6, we can derive similar relations.
All of them are also dominated by the non-dominated regions that we have
just discussed.

1.3 Multi-objective Optimization 17

Problems of Pure Pareto Optimization

The complete Pareto optimal set is often not the wanted result of an opti-
mization algorithm and we are interested in some areas of the Pareto front
only. We can again take the Artificial Ant example to visualize this problem.
In Section 1.3 on page 13 we have introduced multiple additional conflicting
criteria.

• Maximize the amount of food piled.
• Minimize the distance covered or the time needed to find the food.
• Minimize the size of the program driving the ant.

Pareto optimization may now yield for example:

• A program consisting of 100 instructions, allowing the ant to gather 50
food items when walking a distance of 500 length units.

• A program consisting of 100 instructions, allowing the ant to gather 60
food items when walking a distance of 5000 length units.

• A program consisting of 10 instructions, allowing the ant to gather 1 food
item when walking a distance of 5 length units (straight ahead).

• A program consisting of 0 instructions, allowing the ant to gather 0 food
item when walking a distance of 0 length units (straight ahead).

The Pareto optimal set obviously contains two useless but non-dominated
individuals which occupy space in the population and the non-dominated set.
We also invest processing time in evaluating them, and, even worse: they may
dominate solutions that are not optimal but fall into the space behind the
interesting part of the Pareto front. Furthermore, when the size-limit of the
non-dominated list is reached, some algorithms use a clustering technique to
prune it while maintaining diversity. This is normally wanted, since it will
preserve a broad scan of the Pareto frontier. In this case however, a short
but dumb program is of course very different from a longer, intelligent one.
Therefore, it will be kept in the list and other solutions which differ less from
each other will be discarded. And, last but not least, non-dominated elements
have a higher probability to reproduce. This then leads inevitably to the
creation of a great proportion of useless offspring. In the next generation, the
useless offspring will need a good share of the processing time to be evaluated.
So there are some reasons to force the optimization process into a wanted
direction. In Section 18.2.2 on page 321 you can find an illustratitive discussion
on the drawbacks of strict Pareto optimization in a practical example (evolving
web service compositions).

1.3.3 The Method of Inequalities

One method of dealing with these problems is the Method of Inequalities
(MOI) [31, 32, 33] which has its roots in operations research.

18 1 Introduction

We can apply this method by specifying a goal range [ǧi, ĝi] for each ob-
jective function fi. Based on inequalities we can define three categories. Each
individual x ∈ x̃ belongs to one of them:

1. It fulfills none of the goals,

(fi(x) < ǧi) ∨ (fi(x) > ĝi) ∀ i ∈ 1 . . . |F | (1.9)

2. it fulfills all of the goals, or

ǧi ≤ fi(x) ≤ ĝi ∀ i ∈ 1 . . . |F | (1.10)

3. it fulfills some (but not all) of the goals.

(∃ ǧi ≤ fi(x) ≤ ĝi) ∧ (∃ (fj(x) < ǧj) ∨ (fj(x) > ĝj) (1.11)

Using these groups we can create a new comparison mechanism:

1. The individuals that fulfill all goals are preferred instead of all other in-
dividuals that either fulfill some or no goals.

2. The solution candidates that are not able to fulfill any of the goals succumb
to those which fulfill at least some goals.

3. Only the individuals that are in the same group are compared on basis on
the Pareto domination relation.

Now the optimization process will be driven into the direction of the in-
teresting part of the Pareto front. Less effort will be spent in creating and
evaluating individuals in parts of the search space that cannot contain any
valid solution.

Other Related Methods (TODO)

Goal Attainment [34] and Goal Programming26 [35] are techniques very near to
the method of inequalities. Often, characteristics of these methods are added
to evolutionary algorithms [36, 37, 38, 39, 40].

1.3.4 External Decision Maker

To circumvent all the limitations of the previous approaches, Fonseca and
Fleming introduced their general concept of an external decision maker which
(or who) decides which solution candidates prevail [41, 22]. The basic idea
behind this is that Pareto optimization provides only a partial order27 between
the individuals. There can be two individuals x1, x2 ∈ X̃ that do not dominate
each other. A special case of this situation is the non-dominated set, the so-
called Pareto-front which we try to estimate with the optimization process.

26 http://en.wikipedia.org/wiki/Goal_programming [accessed 2007-07-03]

27 A definition of partial order relations is specified in Definition 110 on page 509.

http://en.wikipedia.org/wiki/Goal_programming

1.3 Multi-objective Optimization 19

Fitness assignment however requires some sort of total order28, where each
individual is either better or worse than each other (except for the case of iden-
tical solution candidates which are, of course, equal to each other). The fitness
assignment algorithms can create such a total order themselves by performing
for example Pareto ranking as introduced in Section 2.3.3 on page 67, where
the number of individuals prevailing a solution candidate denotes its fitness.
While this method of ordering is a good default approach able of directing the
search into the direction of the Pareto frontier and delivering a broad scan of
it, it neglects the fact that the user of the optimization most often is not inter-
ested in the whole optimal set but has preferences, certain regions of interest
[42]. This region will then exclude for example the infeasible (but Pareto-
optimal) programs for the artificial ant discussed in . What the user wants is
a detailed scan of this region, which often cannot be delivered by pure Pareto
optimization since there, the optimal individuals will be distributed over the
complete, much broader Pareto front.

utility/cost
resultsEADM

a priori
knowledge

objective values
(acquired knowledge)

Fig. 1.8: An external decision maker providing an EA with utility values.

Here comes the external decision maker as an expression of the user’s pref-
erences [43] into play, as illustrated in Figure 1.8. The task of this decision
maker provides a cost function c : Rn 7→ R (or utility function, if the under-
lying optimizer is maximizing) which maps the space of objective values Rn

to the space of real numbers R. Since there is a total order defined on the
real numbers, this process is another way of resolving the “incomparability-
situation”. The structure of the decision making process c is free and may
incorporate any of the previously mentioned methods. c could, for example,
be reduced to compute a weighted sum of the objective values, to perform
an implicit Pareto ranking, or to compare individuals based on pre-specified
goal-vectors. Furthermore, it may even incorporate forms of artificial intelli-
gence, other forms of multi-criterion decision making, or interaction with the
user. This technique allows focusing the search onto solutions which are not
only optimal in the Pareto sense, but also feasible and interesting from the
viewpoint of the user.

28 The concept of total orders is introduced in Definition 111 on page 509.

20 1 Introduction

Fonseca and Fleming’s make a clear distinction between fitness and cost
values. Cost values have some meaning outside the EA and are based on user
preferences. Fitness values on the other hand are an internal construct of
the evolutionary process with no meaning outside the EA. Fitness is to be
computed on the basis of cost values [44, 43, 45].

1.3.5 Prevalence Optimization

In this section, we define the prevalence relation, which we will use in the
further course of this book as a general way of the comparing individuals in the
optimization process. In principle, it has the same features as the method of
Fonseca and Fleming just discussed. The major difference is that we do not use
any form of cost function but simply replace the Pareto comparator by a freely
defined scheme. This way, all other optimization algorithms (especially many
of the evolutionary approaches) which rely on Pareto comparisons can be used
in their original form while retaining the ability of scanning special regions of
interests of the optimal front provided by the decision making concept.

Like Fonseca and Fleming, we relaxing the domination29 relation by pro-
viding a free definable comparator function cF . Combined with the fitness
assignment strategies discussed later30, it covers the same multi-objective
techniques as proposed in [41] and [46, 36].

Generally, the prevalence concept is just a form of notation, but giving it
an own defined name will help to distinguish it from pure Pareto optimization.

Definition 18 (Prevalence). An element x1 prevails over an element
x2 (x1 ≻ x2) if the application-dependent, transitive comparator function
cF (x1, x2) ∈ R returns a value less than 0.

(x1 ≻ x2)⇔ cF (x1, x2) < 0 (1.12)

(x1 ≻ x2) ∧ (x2 ≻ x3)⇒ x1 ≻ x3∀x1, x2, x3 ∈ X̃ (1.13)

Like in Pareto optimization, the prevalence comparator introduces a par-
tial order on the set of possible objective values. The optimal set can be
constructed in a way very similar to Equation 1.8:

x⋆ ∈ X⋆ ⇔6 ∃x ∈ X̃ : x 6= x⋆ ∧ x ≻ x⋆ (1.14)

With this definition, we can cover the all the aforementioned approaches
for multi-objective optimization. For illustration purposes, we will exercise it
on the examples of the weighted sum (cF,weightedS) method31 with the weights

29 The domination relation is discussed in Definition 16 on page 15.
30 see Section 2.3 on page 65
31 see Equation 1.4 on page 14

1.4 Complicated Fitness Landscapes 21

wi as well as by the domination-based Pareto optimization32 (cF,pareto) with
the objective directions ωi:

cF,weightedS(x1, x2) =

n∑

i=1

(wifi(x2)− wifi(x1)) = g(x2)− g(x1) (1.15)

cF,pareto(x1, x2) =

−1 if x1 ⊢ x2

1 if x2 ⊢ x1

0 else
(1.16)

With the prevalence comparator as instance of Fonseca and Flemings de-
cision making concept, we can easily solve the problem stated in Section 1.3.4
by no longer encouraging the evolution of useless programs for artificial ants
while retaining the benefits of Pareto optimization. The comparator function
simple can be defined in a way that they will always be prevailed by useful pro-
grams. It therefore may incorporate the knowledge on the importance of the
objective functions. Let f1 be the objective function with an output propor-
tional to the food piled, f2 would denote the distance covered in order to find
the food, and f3 would be the program length. Equation 1.17 demonstrates
one possible comparator function for the Artificial Ant problem.

cF,ant(x1, x2) =

−1 if (f1(x1) > 0 ∧ f1(x2) = 0)∨
(f2(x1) > 0 ∧ f2(x2) = 0)∨
(f3(x1) > 0 ∧ f1(x2) = 0)

1 if (f1(x2) > 0 ∧ f1(x1) = 0)∨
(f2(x2) > 0 ∧ f2(x1) = 0)∨
(f3(x2) > 0 ∧ f1(x1) = 0)

cF,pareto(x1, x2) otherwise

(1.17)

Later in this book, we will discuss some of the most popular optimiza-
tion strategies. Although they are usually implemented based on Pareto-
optimization, we will always introduce them using prevalence.

1.4 Complicated Fitness Landscapes

1.4.1 Premature Convergence and Multi-Modality

One of the greatest problems in global optimization is that we most often
cannot determine if the best solution currently known is a local or a global
optimum. In other words, we are not able to say if we should concentrate
on refining our current optimum or if we should examine other parts of the
search space instead. This problem, of course, goes hand in hand with the
multimodality.

32 see Equation 1.6 on page 15

22 1 Introduction

Definition 19 (Multimodality). Multimodal functions have multiple (in-
distinguishable good) local optima and may also have multiple global optima
[47, 48].

Definition 20 (Premature Convergence). A global optimization process
has prematurely converged to a local optimum if it is no longer able to explore
other parts of the search space than the currently examined area and there
exists such another region in the search space that contains a solution superior
to the currently exploited one which could be found with reasonable effort
[49, 50].

In Figure 1.9 we illustrate how an optimization algorithm prematurely
converges. An optimization algorithm will pass several local optima in objec-
tive space before reaching a good result. If it gets stuck on such a intermediate
solution and cannot proceed to over points in search space anymore, we speak
of premature convergence.

global optimum
local optimum

Fig. 1.9: Premature convergence in objective space.

There are many features and parameter settings of optimization algorithms
that influence the convergence behavior. Self-adaptation is an important one
of these factors that may have positive as well as negative effects on the
convergence [51]. The operations that create new solutions from existing ones
have also a very large impact [52, 53].

Exploration vs. Exploitation

All optimization algorithms have to trade-off between exploration and ex-
ploitation [54, 55, 56, 57, 58].

1.4 Complicated Fitness Landscapes 23

Definition 21 (Exploration). Exploration in terms of optimization means
finding new points in the search space. Since we have got limited memory,
this means most often to drop already evaluated individuals. Exploration is
the only mean to find new and maybe better solutions but, on the other hand,
leads to performance degradation at least until a new good solution is found
– which is not guaranteed at all.

Definition 22 (Exploitation). Exploitation means trying to improve the
currently known solution(s) by small changes which lead to new individuals
very close to them. This way, performance improvements can be achieved. If
another, maybe better solution exists in a distant area whatsoever, we will
not be able to find it.

Almost all parts of optimization strategies can either be used for increasing
exploitation or in favor for exploration. Mutation can, for example, improve
an existing solution in small steps, being an exploitation operator. It can
however also be implemented in a way that introduces much randomization
into individuals and effectively being an exploration operation. For crossover
basically goes the same.

Selection operations33 choose the set of individuals which will take part in
reproduction. They can either return a small group of best individuals or a
wide spread of existing solution candidates. The same goes for archive pruning
techniques which truncate the set of known good solutions if it becomes too
large.

While algorithms that favor exploitation have a fast convergence, they
run a great risk of not finding the optimal solution and maybe get stuck at
a local optimum. Algorithms that perform excessive exploration may find the
global optimum but it will take them very long to do so. A good example for
this dilemma is the simulated annealing algorithm discussed in Chapter 10
on page 231. It is often modified to a simulated quenching called form which
favors exploitation but loses the guaranteed convergence to the optimum.

Exploitation and exploration are of course directly linked with diversity:
exploration supports diversity whereas exploitation works against it. Diversity
preservation is a major concern in optimization [59, 60, 61, 62, 63] because
the loss of it can lead to premature convergence to a local optimum.

In Figure 1.10, we have sketched the different types of fitness landscapes which
we are going to discuss in this section. The small bubbles represent solution
candidates. An arrow from one bubble to another means that the second
individual is offspring of the first one, created by a reproduction operation.
The fitness/objective values are subject to minimization.

33 see for example Section 2.4 on page 78

24 1 Introduction
fi

tn
es

s/
ob

je
ct

iv
e

va
lu

es

(a) best case

fi
tn

es
s/

ob
je

ct
iv

e
va

lu
es

(b) smooth

fi
tn

es
s/

ob
je

ct
iv

e
va

lu
es

multiple (local) optima

(c) multimodal

fi
tn

es
s/

ob
je

ct
iv

e
va

lu
es

no gradient information

? ??

(d) rugged

fi
tn

es
s/

ob
je

ct
iv

e
va

lu
es

region with misleading
gradient information

(e) deceptive

fi
tn

es
s/

ob
je

ct
iv

e
va

lu
es

?

neutral area

(f) neutral

? ?

fi
tn

es
s/

ob
je

ct
iv

e
va

lu
es

neutral area or
area without much
information

needle
(isolated
optimum)

(g) needle-in-a-haystack

?

fi
tn

es
s/

ob
je

ct
iv

e
va

lu
es

(h) nightmare

Fig. 1.10: Different possible fitness landscapes.

1.4 Complicated Fitness Landscapes 25

1.4.2 Rugged Fitness Landscapes

We can draw further conclusions from the idea of descending a gradient. If we
change a solution candidate xold by a small amount ε and get xnew = xold⊕ε,
we also expect the change in the fitness landscape to be small f(xnew) ≈
f(xold). This principle is called the principle of strong causality and formally
stated in Section 3.7.1 on page 134. If it holds for many points in our solution
space X̃, an optimization algorithm can climb along steady gradients and will
be able to find good solutions. In fitness landscapes where small changes in
the solution candidates often lead to large changes in the objective values
as outlined in Figure 1.10d, it becomes harder to decide which region of the
solution space to explore see. A small change to a very bad solution candi-
date may then lead to a new local optimum and the best solution candidate
currently known may be surrounded directly by points that are inferior to all
other tested individuals.

In general we can say the more rugged a fitness landscape is, the worse will
optimizers perform [64, 65]. This does not necessarily mean that we cannot
find good solutions, but it may take very long to do so.

As a measure for the ruggedness of a fitness landscape, the autocorrelation
function as well as the correlation length of random walks can be used [66].
Here we borrow its definition from [67]: Given a random walk (st, st+1, . . .),
the autocorrelation function ρ of an objective function f is the autocorrelation
function of the time series (f(st), f(st+1), . . .).

ρ(k, f) =
E [f(st)f(st+k)]− E [f(st)] [f(st+k)]

var(f(st))
(1.18)

where E [f(st)] and var(f(st)) are the expected value and the variance of
f(st). The correlation length τ = − 1

log ρ(1,f) measures how the autocorrelation

function decreases and summarizes the ruggedness of the fitness landscape:
the larger the correlation length, the smoother is the landscape.

1.4.3 Deceptive Fitness Landscapes

Besides ruggedness, another annoying possible feature of objective functions
is deceptiveness (or deceptivity). Figure 1.10e illustrates such a deceptive ob-
jective function that leads the (minimizing) search process away from the true
optimum.

The term deceptiveness is mainly used in the Genetic Algorithms34 com-
munity in the context of the Schema Theorem. There, schemas describe cer-
tain areas (hyperplanes) in the search space. If an optimization algorithm has
discovered such an area with a better average fitness compared to other re-
gions, it will logically focus on exploring this area. Thus, it is important that

34 We are going to discuss Genetic Algorithms in Chapter 3 on page 117 and the
Schema theorem in Section 3.6 on page 129.

26 1 Introduction

these highly fit areas contain the true optimum at some given point of time
in the search process. Objective functions where this is not the case are called
deceptive [68, 69, 70].

1.4.4 Neutral Fitness Landscapes

Definition 23 (Neutrality). We consider the outcome of the application of
a reproduction operation to a solution candidate as neutral if it yields no
change in phenotypic or objective space (while it may lead to an offspring
with a different genotype). The degree of neutrality defines the fraction of
neutral results among all possible products of reproduction operations in an
area of the search space. Areas is in the fitness landscape where this fraction
is very high are considered as neutral.

The phenomenon of neutrality in fitness landscapes exists in natural as
well as in artificial evolution [71, 72]. It has more facets than ruggedness
[67, 73, 74] and may have positive as well as negative effects.

In this section, we will mainly focus on the possible negative aspects, with-
out leaving possible benefits of some degrees of neutrality unmentioned. For
all optimization algorithms, it is problematic when the best solution candi-
date currently found is situated one a plane of the fitness landscape and all
neighbors have the same objective values. Then, there is no gradient informa-
tion and thus no direction into which the optimization algorithm can progress.
Furthermore, each reproduction cycle will yield identically well “optimal” so-
lutions and the archive used to keep them will soon overflow.

Definition 24 (Evolvability). Evolvability35 again can be defined in the
contexts of biology and global optimization. A biological system is evolvable
if its properties show heritable genetic variation and if natural selection can
change these properties or if it can acquire new characteristics via genetic
change [75, 76, 72, 71, 77]. The degree of evolvability in an optimization pro-
cess in its current state defines how likely the reproduction operations will
yield solution candidates with new fitness values [78, 79, 80].

The evolvability of neutral part of a fitness landscapes depends on the
optimization algorithm used. It is especially low for hill climbers and similar
algorithms, since the reproduction operations cannot provide fitness improve-
ments (or even changes). The optimization process degenerates to a random
walk in such planar areas, as illustrated in Figure 1.10f. One of the worst
cases of fitness landscapes is the needle-in-a-haystack problemNeedle-In-A-
Haystack sketched in Figure 1.10g, where the optimum occurs as isolated
spike in a plane.

35 http://en.wikipedia.org/wiki/Evolvability [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Evolvability

1.4 Complicated Fitness Landscapes 27

A certain degree of neutrality can however also be beneficial [81, 82, 83].
Particularly for evolutionary algorithms and in form of redundancy of solu-
tion candidate representations, it may (or may not) provide ways for the opti-
mizer to explore the problem space. More details on redundancy can be found
in Section 3.7.3 on page 135. Generally, neutrality may have positive effects if
it concerns only a subset of the properties of the parental solution candidate
while allowing meaningful “modification” of the others (see Section 4.7.2 on
page 183 for instance). If most or all possible changes will result in individuals
with the same features, it will hinder the optimization algorithm’s progress
as discussed.

Generally we can state that, in spite of ruggedness which is always a bad
for optimization algorithms, neutrality has many aspects that may further as
well as hinder the process of finding good solutions.

1.4.5 Dynamically Changing Fitness Landscape

At least it is to be mentioned that there also exist fitness landscapes that
change dynamically [84, 85, 86, 87]. The task of an optimization algorithm
is then to provide solution candidates with momentarily high fitness for each
point of time. Here we have the problem that an optimum in generation t will
probably not be an optimum in generation t + 1 anymore.

Problems with dynamic characteristics can for example be tackled with
special forms [88] of

• evolutionary algorithms [89, 90, 91, 92, 93, 94, 95],
• particle swarm optimizers [96, 97, 98, 99, 100],
• Differential Evolution [101, 102], and
• Ant Colony Optimization [103, 104]

The moving peaks benchmarks by Branke [87] and Morrison and De Jong
[85] is a good example for dynamically changing fitness landscapes. You can
find it discussed in Section 17.1.3 on page 276.

1.4.6 Overfitting

Definition 25 (Overfitting). Overfitting36 identifies the emergence of an
arbitrarily complicated model in a machine learning process in an effort to
fit as much of the available sample data of a real system as possible [105]. A
model m created with a finite set of sample data is considered to be overfitted
if an alternative model m′ if m has a smaller error on the training data but
the error of m′ is smaller if all possible (maybe even infinite many) system
inputs are considered.

36 http://en.wikipedia.org/wiki/Overfitting [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Overfitting

28 1 Introduction

This phenomenon can often be encountered in the field of artificial neural
networks or in curve fitting. If we, for example, have n sample points (xi, yi),
we can always construct a polynomial37 of the degree n− 1 that passes to all
of them. Thus, we may have one hundred sample points which are results of
the simple function y = f(x) = x and fit polynomial of the degree 99 to them.
The result may be a function that is only correct for exactly the 100 sample
points and does not match to f(x) for all other values of x. In Figure 1.11 we
have illustrated this example.

The major problem that results from overfitted solutions is the loss of
generality.

Definition 26 (Generality). A solution s of an optimization process is gen-
eral if it is not only valid for the sample inputs x1, x2, . . . , xn which were used
during the optimization process in order to find it, but also for different inputs
ξ 6= xi ∀ 0 < i ≤ n if such inputs ξ exist. A solution is also general if it is
valid for all possible inputs.

There are two major reasons for overfitting:

1. To few data samples are available for learning. The resulting model in this
case can be too trivial and may only work correctly on a small fraction of
the possible inputs.

2. If we have noisy data samples, the learning algorithm may have learned a
pseudo-model for the noise as part of its result. This model will, of course,
not be generally valid since if the noise could be modeled exactly, it would
not be noise but part of the correct description of the system.

An overfitted solution will not be able to produce valid results for inputs
which differ from the training data used to create it. If it was valid for such
different inputs, it would not be an overfitted but a perfectly fitting solution.

Overfitting is most often encountered in the area of neural networks [106,
107, 108, 109, 110] and curve fitting, but is a problem in many other fields of
statistics too. We discuss overfitting in conjunction with genetic programming-
based symbolic regression in Section 19.1 on page 329.

1.5 Modeling and Simulating

Whenever we want to solve a real problem, we first need to create some sort
of abstraction from it.

Definition 27 (Model). A model38 is a general abstraction from a real issue
that allow us to reason and to deduct properties of the issue. Models often
represent simplifications of the real-world issue they are describing by leaving
away facts that probably only have minor impact on the conclusions drawn
from the models.
37 http://en.wikipedia.org/wiki/Polynomial [accessed 2007-07-03]

38 http://en.wikipedia.org/wiki/Model_%28abstract%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Model_%28abstract%29

1.5 Modeling and Simulating 29

(a) sample data

(b) overfitted result (c) correct result

Fig. 1.11: Overfitting in curve fitting.

In the area of global optimization, we often need two types of abstractions:

1. Models of the potential solutions, like
• a program in genetic programming, for example for the artificial ant

problem39,
• a construction plan of a skyscraper,
• a distributed algorithm represented as program for genetic program-

ming,
• a construction plan of a turbine,
• a circuit diagrams for logical circuits, and so on.

2. Models of the environment in which we can test and explore the properties
of the potential solutions
• a map on which the artificial ant will move which is driven by the

evolved program,
• the an abstraction from the environment in which the skyscraper will

be built, with wind blowing from several directions,
• a model of the network in which the evolved distributed algorithms

can run,

39 see Section 17.4 on page 284

30 1 Introduction

• a physical model of air which blows through the turbine,
• the model of the energy source and other pins which will be attached

to the circuit together with the possible voltages on these pins.

Models are just conceptual descriptions of reality. Only by bringing them
to life in the form of simulations we can test possible solutions of a problem
for their utility and behavior. If the solution candidates function well in the
simulation, we can assume that they will behave also well in the real world.

Definition 28 (Simulation). A simulation40 is the physical realization of a
model. Whereas a model describes abstract connections between the proper-
ties of a real-world issue, a simulation realizes exactly these connections.

Simulations often are executable, live representations of their according
models that can be regarded as experiments. They allow us to reason if a
model makes sense or not or how some certain objects behave in the context
of a model.

Models of the real world are often probabilistic. Consider a model of a
computer network as done in Section 37.2.3 on page 603 where the communi-
cation is unsafe – messages may get lost with a certain probability. In a model
of a skyscraper, the wind may blow with randomly changing strength from a
random direction.

If we now test a distributed algorithm or a construction plan of a
skyscraper with a simulation that realizes this behavior by utilizing new ran-
dom numbers for each test, the outcomes of the single simulations will be
different, even for exactly the same algorithm or plan. These results may vary
totally unpredictable, making it hard to compare them. A highly fit but un-
lucky individual may be tested in a scenario where even the best solution
candidate could only provide good results whereas a worse solution candidate
could be lucky and be valuated with good results.

There exist two viable ways in representing probabilistic models in a way
that maintains comparability of the results:

1. Repeat the simulations many times and compute the median of the eval-
uation results. These should be more or less stable and allow us to reason
about the fitness of an individual.

2. Before performing any simulation, pre-define the scenarios exactly, i. e.
compute all random numbers. In the case of testing a distributed algo-
rithm, we would specify the topology, the message delay, the connection
speeds and so on randomly. For the skyscraper tests, we define exactly
how strong the wind will blow from which direction also randomly. These
specifications are then used in all simulations time and again, so the out-
comes will always be the same for same solution candidates. This way, we
can still represent probabilistic models correctly but have comparable re-
sults. Of course, we need to create multiple scenarios and test all solution

40 http://en.wikipedia.org/wiki/Simulation [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Simulation

1.6 General Features of Global Optimization Algorithms 31

candidates with each scenario to prevent overfitting (see Section 1.4.6 on
page 27). An overfitted solution in this context would mean an individual
that is produced by the learning the properties of all sample scenarios.
The result of such a process will be one individual that is specialized only
for exactly the one, tested configuration.

1.6 General Features of Global Optimization Algorithms

There are some common semantics and operations that are shared by most
optimization algorithms. Many of them for example first create some starting
values randomly and then refine them iteratively. During these steps, it is
possible to loose a good solution again, so they preserve them in so-called
optimal sets. Optimization algorithms will need to terminate at some point of
time which is when their termination criterion is reached. In this section we
define and discuss such general abstractions.

1.6.1 Iterations

Global optimization algorithms often iteratively evaluate solution candidates
in order to approach the optima.

Definition 29 (Iteration). An iteration41 refers to one round in a loop of
an algorithm. It is one repetition of a specific sequence of instruction inside
an algorithm.

Algorithms are referred to as iterative if most of their work is done by
cyclic repetition of one major loop. In the context of this book, an iterative
optimization algorithm starts with the first step t = 0 while t ∈ N0 is the
index of the current iteration and t + 1 is the next iteration step. Variables
will sometimes be annotated with an index to emphasize their dependency
to t: X⋆

t or will be declared as function of time like ε(t). In some optimiza-
tion algorithms, iterations are referred to as generations. One example of an
iterative algorithm is Algorithm 1.1 on the next page.

1.6.2 Termination Criterion

Definition 30 (Termination Criterion). When the termination criterion
terminationCriterion() ∈ {true, false} is met (i. e. is evaluated to true),
the optimization process will halt and return its results.

Some possible termination criteria are [111, 112, 113, 114]:

41 http://en.wikipedia.org/wiki/Iteration [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Iteration

32 1 Introduction

• A maximum computation time specified in advance is exceeded. This is
always the total time since the computational time of the single itera-
tions in, for example evolutionary algorithms, may vary and is not known
beforehand.

• A total number of generations/iterations is exhausted.
• A total number of solution candidates has been created and evaluated.

These last two criteria often used in research because they allow us to
compare the performance of different optimization measures for a certain
problem.

• An optimization process may be stopped when no improvement could be
detected for a specified number of iterations. Then, the process has con-
verged to a (hopefully good) solution and will most probably not be able
to make further progress.

• If we optimize something like a decision maker based on a sample data set,
we will normally divide this data into a training and a test set. The training
set is used to guide the optimization process whereas the training set is
used to verify its results. We can compare the performance of our solution
when fed with the training set to if fed with the test set. This comparison
may help us detect when no further generalization will be made and when
we should terminate the process because further optimization steps will
only lead to overfitting.

An optimization process may use one or a combination of some of the
criteria above to determine when to halt. How the termination criterion is
tested in an iterative algorithm is illustrated in Algorithm 1.1.

Algorithm 1.1: example iterative algorithm

Input: implicit: terminationCriterion() the termination criterion
Data: t the iteration counter

begin1

t←− 02

// initialize the data of the algorithm

while ¬terminationCriterion() do3

// perform one iteration -- here happens the magic

t←− t + 14

end5

1.6.3 Minimization

Some algorithms are defined for single-objective optimization in their original
form. Such an algorithm may be defined for both, minimization or maximiza-
tion. Without loss of generality we will present them as minimization processes

1.7 The Optimal Set 33

since this is the most commonly used notation. An algorithm that maximizes
the function f may be transformed to a minimization using −f instead.

Note that using the prevalence comparisons as introduced in Section 1.3.5
on page 20, multi-objective optimization processes can be transformed into
single-objective minimization processes. Therefore x1 ≻ x2 ⇔ cF (x1, x2) <
0.

1.7 The Optimal Set

Most multi-objective optimization algorithms return a set of optimal solutions
X⋆ instead of a single individual x⋆. They keep internally track of the set of
best solution candidates known. We use the prevalence-based definition for
optimal sets as introduced on page 20 since it supersets all other definitions.

1.7.1 Updating the Optimal Set

Whenever a new individual is created, X⋆ may change. Possible, the new
individual must be included in the optimal set or even prevails some of the
solution candidates contained therein.

Definition 31 (updateOptimalSet). The updateOptimalSet function up-
dates a set of optimal elements X⋆

old with the knowledge of a new solution
candidate xnew. It uses implicit knowledge of the prevalence function cF .

X⋆
new = updateOptimalSet(X⋆

old, xnew) : xnew ∈ X̃ ∧
X⋆

new,X⋆
old ⊆ X̃ ∧

X⋆
new ⊆ Xold ∪ {xnew}(1.19)

We define two equivalent approaches in Algorithm 1.2 and Algorithm 1.3
which perform the necessary operations. Algorithm 1.2 creates a new, empty
optimal set and successively inserts optimal elements whereas Algorithm 1.3
removes all elements that are prevailed by a new individual xnew from the old
optimal set X⋆

old.

1.7.2 Obtaining Optimal Elements

If we already have an optimal set, it can simple be updated with new indi-
viduals as we have just discussed in Section 1.7.1. An optimization algorithm
however may not necessarily maintain such a set. When it is terminates, it
the just extracts all optimal elements from its current population, thus also
obtaining an optimal set.

34 1 Introduction

Algorithm 1.2: X⋆
new = updateOptimalSet(X⋆

old, xnew)

Input: X⋆
old the optimal set as known before the creation of xnew

Input: xnew a new solution candidate to be checked
Input: Implicit: cF the comparator function as declared in the definition of

prevalence on page 20, a dominance/pareto based comparator is used
as default

Output: X⋆
new the optimal set updated with the knowledge of xnew

begin1

X⋆
new ←− ∅2

foreach x⋆ ∈ X⋆
old do3

if cF (xnew, x⋆) > 0 then // xnew ≻ x⋆
4

X⋆
new ←− X⋆

new ∪ {x⋆}5

if cF (xnew, x⋆) ≥ 0 then // x⋆ ≻ xnew6

return X⋆
old7

X⋆
new ←− X⋆

new ∪ {xnew}8

return X⋆
new9

end10

Algorithm 1.3: X⋆
new = updateOptimalSet(X⋆

old, xnew) (2nd version)

Input: X⋆
old the optimal set as known before the creation of xnew

Input: xnew a new solution candidate to be checked
Input: Implicit: cF the comparator function as declared in the definition of

prevalence on page 20, a dominance/pareto based comparator is used
as default

Output: X⋆
new the optimal set updated with the knowledge of xnew

begin1

X⋆
new ←− X⋆

old2

foreach x⋆ ∈ X⋆
new do3

if cF (xnew, x⋆) < 0 then // xnew ≻ x⋆
4

X⋆
new ←− X⋆

new \ {x⋆}5

else6

if cF (xnew, x⋆) > 0 then // x⋆ ≻ xnew7

return X⋆
old8

X⋆
new ←− X⋆

new ∪ {xnew}9

return X⋆
new10

end11

1.7 The Optimal Set 35

Definition 32 (extractOptimalSet). The extractOptimalSet function ex-
tracts a set of optimal (non-prevailed) individuals X⋆

new from any given list
of individuals Xany.

X⋆ = extractOptimalSet(Xany, cF) : X⋆ ⊆ X̃ ∧
∀x⋆ ∈ X⋆ ⇒ ∃ i ∈ 0 . . . |Xany| : x⋆ = Xany[i] ∧
∀x⋆ ∈ X⋆ ⇒ 6 ∃x ∈ Xany : cF (x, x⋆) < 0 (1.20)

Algorithm 1.4 demonstrates how the extraction of an optimal set can be
performed. Obviously, this approach could also be used for updating:

updateOptimalSet(X⋆
old, xnew) ≡ extractOptimalSet(setToList(X⋆

old)∪xnew)
(1.21)

Algorithm 1.4: X⋆ = extractOptimalSet(Xany)

Input: Xany the list to extract the optimal individuals from
Input: xany, xchk solution candidates tested for supremacy
Input: Impricit: cF the comparator function as declared in the definition of

prevalence on page 20, a dominance/pareto based comparator is used
as default

Output: X⋆ the optimal subset extracted from Xany

begin1

X⋆ ←− Xany2

i←− |X⋆| − 13

while i > 0 do4

j ←− i− 15

while j ≥ 0 do6

if X⋆[i] ≻ X⋆[j] then7

X⋆ ←− deleteListItem(X⋆, j)8

i←− i− 19

else if X⋆[j] ≻ X⋆[i] then10

X⋆ ←− deleteListItem(X⋆, i)11

j ←− −112

j ←− j − 113

i←− i− 114

return listToSet(X⋆)15

end16

1.7.3 Pruning the Optimal Set

As already mentioned, there may be very many if not infinite many optimal
solutions for a problem. On the other hand, the optimal set X⋆ computed

36 1 Introduction

by the optimization algorithms cannot grow infinitely because we only have
limited memory. Therefore we need to perform an action called pruning which
reduces the size of the optimal set to a given limit [115, 116, 117]. If the num-
ber of optimal solutions is large but finite, unrestricted archives for optimal
solution candidates can perform better because any reduction of the number
of individuals stored leads to a loss of generality [118]. Pruning operations
(that try to minimize this loss) will usually base on clustering algorithms
[115, 119] introduced in Section 36.3 or on Pareto-ranking, but in general we
can define:

Definition 33 (pruneOptimalSet). The pruning operation pruneOptimalSet
reduces the size of an optimal set X⋆ to fit an implicitly given upper boundary
kt.

X⋆
new = pruneOptimalSet(X⋆

old) : X⋆
old,X

⋆
new ⊆ X̃ (1.22)

|X⋆
new| ≤ kt, kt ∈ N (1.23)

X⋆
new ⊆ X⋆

old (1.24)

Pruning via Clustering

Algorithm 1.5 uses clustering [115, 119] to provide the functionality specified
in this definition. Basicall, any given clustering algorithm could be used as
replacement for cluster – see Chapter 36 for more information on clustering.

Algorithm 1.5: X⋆
new = pruneOptimalSetc(X⋆

old)

Input: X⋆
old the optimal set to be pruned

Input: Implicit: kt the maximum size allowed for the optimal set (k > 0)
Input: Implicit: cluster the clustering algorithm to be used
Input: Implicit: nucleus the function used to determine the nuclei of the

clusters
Data: B the set of clusters obtained by the clustering algorithm
Data: b a single cluster b ∈ B
Output: X⋆

new the pruned optimal set

begin1

B ←− cluster(X⋆
old)2

X⋆
new ←− ∅3

foreach b ∈ B do X⋆
new ←− X⋆

new ∪ nucleus(b)4

return X⋆
new5

end6

Adaptive Grid Archiving

An algorithm for adaptive grid archiving has been introduced for the evolu-
tionary algorithm PAES (see Section 2.6.8 on page 107) in [120]. We work

1.7 The Optimal Set 37

directly on the n = |F | objective values of the individuals and hence, can
treat them as n-dimensional vectors. We view the n-dimensional space as a
grid, creating d divisions in each dimension. The span of each dimension is
defined by the minimum and maximum objective values of the individuals
in that dimension. The individuals with the minimum/maximum values are
preserved always. Therefore, it is not possible to define maximum optimal set
sizes k which are smaller then 2n. If individuals need to be removed from the
set because it became too large, we remove individuals from regions which are
the most crowded.

The original sources do not contain an exact description of the algorithm,
so we introduce a more or less trivial definition in Algorithm 1.6 on the fol-
lowing page and Algorithm 1.7 on page 39. The preservation of border indi-
viduals is achieved in agaDivide by putting them into separate, unique-boxes
which have an inhabitant count of −1, disabling their later disposal by the
pruning algorithm. The unique hyper-boxes are created by adding an addi-
tional (unique) row to their box coordinate vector in line 27. The agaDivide
algorithm is however also used by some selection schemes, namely for the
PESA-based selection (see Section 2.4.11 and Section 2.4.12). Therefore, this
extra row needs to be removed using the agaNormalize method presented
in Algorithm 1.8 on page 40. Again, the algorithms presented are not neces-
sarily optimal but simple and correct.

38 1 Introduction

Algorithm 1.6: (Xl, lst, cnt) = agaDivide(X⋆
old, d)

Input: X⋆
old the optimal set to be pruned

Input: Implicit: n the count of objective functions f ∈ F
Input: d the count of divisions to be performed per dimension
Data: i, j, k counter variables
Data: min, max, mul temporary stores
Output: (Xl, lst, cnt) a tuple containing the list representation Xl of X⋆

old, a
list lst assigning grid coordinates to the elements of Xl and a list
cnt containing the count of elements in the grid locations defined in
lst

begin1

min←− createList(n,∞)2

max←− createList(n,−∞)3

i←− n4

while i > 0 do5

min[i− 1]←− min{fi(x
⋆) : x⋆ ∈ X⋆

old}6

max[i− 1]←− max{fi(x
⋆) : x⋆ ∈ X⋆

old}7

i←− i− 18

mul←− createList(n, 0)9

i←− n− 110

while i ≥ 0 do11

if max[i] 6= min[i] then mul[i]←− d
max[i]−min[i]12

else max[i]←− max[i] + 1, min[i]←− min[i]− 113

i←− i− 114

Xl ←− setToList(X⋆
old)15

lst←− createList(|Xl|, ∅)16

cnt←− createList(|Xl|, 1)17

i←− |Xl| − 118

k ←− −119

while i ≥ 0 do20

j ←− n21

lst[i]←− createList(n, 0)22

while j > 0 do23

if (fj(Xl[i]) ≤ min[j]) ∨ (fj(Xl[i]) ≥ max[j]) then24

lst[i] = listAdd(lst[i],←− k)25

cnt[i]←− −126

k ←− k − 127

lst[i][j − 1]←− (fj(Xl[i])−min[j]) ∗mul[j]28

j ←− j − 129

if cnt[i] > 0 then30

j ←− i + 131

while j < |Xl| do32

if lst[i] = lst[j] then33

cnt[i]←− cnt[i] + 134

cnt[j]←− cnt[j] + 135

j ←− j + 136

i←− i− 137

return (Xl, lst, cnt)38

end39

1.7 The Optimal Set 39

Algorithm 1.7: X⋆
new = pruneOptimalSetaga(X⋆

old)

Input: X⋆
old the optimal set to be pruned

Input: Implicit: n the count of objective functions f ∈ F
Input: Implicit: k the maximum size allowed for the optimal set (k ≥ 2n)
Input: Implicit: d the count of divisions to be performed per dimension
Data: i a counter variable
Data: Xl the list representation of X⋆

old

Data: lst a list assigning grid coordinates to the elements of Xl

Data: cnt containing the count of elements in the grid locations defined in lst
Output: X⋆

new the pruned optimal set

begin1

if |X⋆
old| ≤ k then return X⋆

old2

(Xl, lst, cnt)←− agaDivide(X⋆
old, d) while |Xl| > k do3

idx←− 04

i←− |Xl| − 15

while i > 0 do6

if cnt[i] > cnt[idx] then idx←− i7

i←− |Xl| − 18

while i ≥ 0 do9

if lst[i] = lst[idx] then cnt[i]←− cnt[i]− 110

Xl ←− deleteListItem(Xl, idx)11

cnt←− deleteListItem(cnt, idx)12

lst←− deleteListItem(lst, idx)13

return listToSet(Xl)14

end15

40 1 Introduction

Algorithm 1.8: (lst, cnt) = agaNormalize(lst, cnt)

Input: lst a list assigning grid coordinates to the elements of Xl

Input: cnt containing the count of elements in the grid locations defined in
lst

Input: Implicit: n the count of objective functions f ∈ F
Data: i, j, k counter variables
Output: (lst, cnt) the corrected inputs where border elements are now

contained in the right boxes

begin1

i←− |lst|2

while i ≥ 0 do3

if |list[i]| > n then4

lst[i]←− deleteListItem(lst[i], n)5

j ←− |lst|6

while j ≥ 0 do7

if (lst[j] = lst[i]) ∧ (cnt[j] > 0) then8

cnt[i]←− cnt[j]9

j ←− −110

j ←− j − 111

if cnt[i] < 0 then cnt[i]←− 112

i←− i− 113

return (lst, cnt)14

end15

1.8 General Information 41

1.8 General Information

To all the optimization methods that are discussed in this book, you will find
such a General Information section. Here we outline some of the applications
of the respective approach, name the most important conferences, journals,
and books as well as link to some online resources.

1.8.1 Areas Of Application

Some example areas of application of global optimization algorithms are:

Application References

chemistry, chemical engineering, and biochem-
istry

[121, 122, 123, 124]

constraint satisfaction problems [6]
system design [31]
multiple criteria decision making [28, 26]
biology and biomedicine [123]
structural optimization and design [125, 123]

economics and finance [126, 123, 127]
engineering design and process design [126, 122, 124, 123]
parameter estimation [124]
mathematical problems [128]
optical design and engineering [129, 130]
water resource management [131]

This is just a small sample of the possible applications of global optimization
algorithms. It has neither some sort of order nor a focus on some specific
areas. In the general information sections of the following chapters, you will
find many application examples for the algorithm discussed.

1.8.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on global optimization algo-
rithms are:

HIS: International Conference on Hybrid Intelligent Systems
http://www.softcomputing.net/hybrid.html [accessed 2007-09-01]

History: 2007: Kaiserslautern, Germany, see [132]
2006: Auckland, New Zealand, see [133]
2005: Rio de Janeiro, Brazil, see [134]
2004: Kitakyushu, Japan, see [135]

http://www.softcomputing.net/hybrid.html

42 1 Introduction

2003: Melbourne, Australia, see [136]
2002: Santiago, Chile, see [137]
2001: Adelaide, Australia, see [138]

MCDM: International Conference on Multiple Criteria Decision Making
http://project.hkkk.fi/MCDM/conf.html [accessed 2007-09-10]

History: 2008: Auckland, New Zealand, see [139]
2006: Chania, Crete, Greece, see [140]
2004: Whistler, British Columbia, Canada, see [141]
2002: Semmering, Austria, see [142]
2000: Ankara, Turkey, see [143]
1998: Charlottesville, Virginia, USA, see [28]
1997: Cape Town, South Africa, see [144]
1995: Hagen, Germany, see [145]
1994: Coimbra, Portugal, see [146]
1992: Taipei, Taiwan, see [147]
1990: Fairfax, USA, see [148]
1988: Manchester, UK, see [149]
1986: Kyoto, Japan, see [150]
1984: Cleveland, Ohio, USA, see [151]
1982: Mons, Belgium, see [152]
1980: Newark, Delaware, USA, see [153]
1979: Königswinter, Germany, see [154]
1977: Buffalo, New York, USA, see [155]
1975: Jouy-en-Josas, France, see [156]

Mendel: International Conference on Soft Computing
http://mendel-conference.org/ [accessed 2007-09-09]

History: 2007: Prague, Czech Republic, see [157]
2006: Brno, Czech Republic, see [158]
2005: Brno, Czech Republic, see [159]
2004: Brno, Czech Republic, see [160]
2003: Brno, Czech Republic, see [161]
2002: Brno, Czech Republic, see [162]
2001: Brno, Czech Republic, see [163]
2000: Brno, Czech Republic, see [164]
1999: Brno, Czech Republic, see [165]
1998: Brno, Czech Republic, see [166]

http://project.hkkk.fi/MCDM/conf.html
http://mendel-conference.org/

1.8 General Information 43

1997: Brno, Czech Republic, see [167]
1996: Brno, Czech Republic, see [168]
1995: Brno, Czech Republic, see [169]

MIC: Metaheuristics International Conference
History: 2007: Montreal, Canada, see [170]

2005: Vienna, Austria, see [171]
2003: Kyoto, Japan, see [172]
2001: Porto, Portugal, see [173]
1999: Angra dos Reis, Brazil, see [174]
1997: Sophia Antipolis, France, see [175]
1995: Breckenridge, Colorado, USA, see [176]

In the general information sections of the following chapters, you will find
many conferences and workshops that deal with the respective algorithms
discussed, so this is just a small selection.

1.8.3 Journals

Some journals that deal (at least partially) with global optimization algo-
rithms are (ordered alphabetically):

Journal of Global Optimization, ISSN: 0925-5001 (Print) 1573-2916 (On-
line), appears monthly, publisher: Springer Netherlands, http://www.

springerlink.com/content/100288/ [accessed 2007-09-20]

The Journal of the Operational Research Society, ISSN: 0160-5682, ap-
pears monthly, editor(s): John Wilson, Terry Williams, publisher: Palgrave
Macmillan, The OR Society, http://www.palgrave-journals.com/jors/
[accessed 2007-09-16]

IEEE Transactions on Systems, Man, and Cybernetics (SMC), appears Part
A/B: bi-monthly, Part C: quaterly, editor(s): Donald E. Brown (Part A),
Diane Cook (Part B), Vladimir Marik (Part C), publisher: IEEE Press,
http://www.ieeesmc.org/ [accessed 2007-09-16]

Journal of Heuristics, ISSN: 1381-1231 (Print), 1572-9397 (Online), appears
bi-monthly, publisher: Springer Netherlands, http://www.springerlink.

com/content/102935/ [accessed 2007-09-16]

European Journal of Operational Research (EJOR), ISSN: 0377-2217, ap-
pears bi-weekly, editor(s): Roman Slowinski, Jesus Artalejo, Jean-Charles.
Billaut, Robert Dyson, Lorenzo Peccati, publisher: North-Holland, Elsevier,
http://www.elsevier.com/wps/find/journaldescription.cws_home/

505543/description [accessed 2007-09-21]

http://www.springerlink.com/content/100288/
http://www.springerlink.com/content/100288/
http://www.palgrave-journals.com/jors/
http://www.ieeesmc.org/
http://www.springerlink.com/content/102935/
http://www.springerlink.com/content/102935/
http://www.elsevier.com/wps/find/journaldescription.cws_home/505543/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/505543/description

44 1 Introduction

Computers & Operations Research, ISSN: 0305-0548, appears monthly, edi-
tor(s): Stefan Nickel, publisher: Pergamon, Elsevier, http://www.elsevier.
com/wps/find/journaldescription.cws_home/300/description [accessed

2007-09-21]

Applied Statistics, ISSN: 0035-9254, editor(s): Gilmour, Skinner, pub-
lisher: Blackwell Publishing for the Royal Statistical Society, http://www.
blackwellpublishing.com/journal.asp?ref=0035-9254 [accessed 2007-09-16]

Applied Intelligence, ISSN: 0924-669X (Print), 1573-7497 (Online), appears
bi-monthly, publisher: Springer Netherlands, http://www.springerlink.

com/content/100236/ [accessed 2007-09-16]

Artificial Intelligence Review , ISSN: 0269-2821 (Print), 1573-7462 (On-
line), appears until 2005, publisher: Springer Netherlands, http://www.

springerlink.com/content/100240/ [accessed 2007-09-16]

Journal of Artificial Intelligence Research (JAIR), ISSN: 11076-9757, edi-
tor(s): Toby Walsh, http://www.jair.org/ [accessed 2007-09-16]

Knowledge and Information Systems, ISSN: 0219-1377 (Print), 0219-
3116 (Online), appears approx. eight times a year, publisher: Springer
London, http://www.springerlink.com/content/0219-1377 [ac-

cessed 2007-09-16] and http://www.springer.com/west/home/computer/

information+systems?SGWID=4-152-70-1136715-0 [accessed 2007-09-16]

1.8.4 Online Resources

Some general, online available ressources on global optimization algorithms
are:

http://www.mat.univie.ac.at/~neum/glopt.html [accessed 2007-09-20]

Last Update: up-to-date
Description: Arnold Neumaier’s Global Optimization Website. Includes

links, publications, and software.

http://web.ift.uib.no/~antonych/glob.html [accessed 2007-09-20]

Last Update: up-to-date
Description: Web site with many links maintained by Gennady A.

Ryzhikov.

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/

Hedar_files/TestGO.htm [accessed 2007-11-06]

Last Update: up-to-date
Description: A beautiful collection of test problems for global optimiza-

tion algorithms

1.8.5 Books

Some books about (or including significant information about) global opti-
mization algorithms are (ordered alphabetically):

http://www.elsevier.com/wps/find/journaldescription.cws_home/300/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/300/description
http://www.blackwellpublishing.com/journal.asp?ref=0035-9254
http://www.blackwellpublishing.com/journal.asp?ref=0035-9254
http://www.springerlink.com/content/100236/
http://www.springerlink.com/content/100236/
http://www.springerlink.com/content/100240/
http://www.springerlink.com/content/100240/
http://www.jair.org/
http://www.springerlink.com/content/0219-1377
http://www.springer.com/west/home/computer/information+systems?SGWID=4-152-70-1136715-0
http://www.springer.com/west/home/computer/information+systems?SGWID=4-152-70-1136715-0
http://www.mat.univie.ac.at/~neum/glopt.html
http://web.ift.uib.no/~antonych/glob.html
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

1.8 General Information 45

Pardalos, Thoai, and Horst: Introduction to Global Optimization (see [7])
Floudas and Pardalos: Frontiers in Global Optimization (see [123])
Dzemyda, Saltenis, and Zilinskas: Stochastic and Global Optimization (see
[126])
Gandibleux, Sevaux, Sörensen, and T’kindt: Metaheuristics for Multiobjec-
tive Optimisation (see [177])
Floudas: Deterministic Global Optimization: Theory, Methods and Applica-
tions (see [124])
Chankong and Haimes: Multiobjective Decision Making Theory and Method-
ology (see [26])
Steuer: Multiple Criteria Optimization: Theory, Computation and Applica-
tion (see [27])
Haimes, Hall, and Freedman: Multiobjective Optimization in Water Resource
Systems (see [131])
Charnes and Cooper: Management Models and Industrial Applications of
Linear Programming (see [35])
Corne, Dorigo and Glover: New Ideas in Optimisation (see [178])

2

Evolutionary Algorithms

2.1 Introduction

Definition 34 (Evolutionary Algorithm). Evolutionary algorithms1

(EA) [179, 180, 181] are generic, population-based meta-heuristic optimiza-
tion algorithms that use biology-inspired mechanisms like mutation, crossover,
natural selection and survival of the fittest.

2.1.1 The Basic Principles from Nature

In 1859, Charles Darwin published his book “On the Origin of Species”2 [5]
in which he first identified the principles of natural selection and survival of
the fittest as driving forces behind the biological evolution. His theory can be
condensed into ten observations and deductions [5, 182, 2]:

1. The individuals of a species posses great fertility and produce more off-
spring than can grow into adulthood.

2. Under the absence of external influences (like natural disasters, human
beings etc.), the population size of a species roughly remains constant.

3. Again, if no external influences occur, food resources are limited but stable
over time.

4. Since the individuals compete for these limited resources, a struggle for
survival ensues.

5. Especially in sexual reproducing species, no two individuals are equal.
6. Some of the variations between the individuals will affect their fitness and

hence, their ability to survive.
7. Many of these variations are inheritable.
8. Individuals less fit are less likely to reproduce, whereas the fittest individ-

uals will survive and produce offspring more probably.

1 http://en.wikipedia.org/wiki/Artificial_evolution [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/The_Origin_of_Species [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Artificial_evolution
http://en.wikipedia.org/wiki/The_Origin_of_Species

48 2 Evolutionary Algorithms

9. Individuals that survive and reproduce will likely pass on their traits to
their offspring.

10. A species will slowly change and adapt more and more to a given envi-
ronment during this process which may finally result in even new species.

Evolutionary algorithms abstract from this biological process and also in-
troduce a change in semantics by being goal-driven [183]. The solution candi-
dates of a certain problem play the role of individuals. The fitness of them is
rated according to objective functions which are subject to optimization and
drive the evolution into specific directions.

The advantage of evolutionary algorithms compared to other optimization
methods is that they make only few assumptions about the underlying fitness
landscape and therefore perform consistently well in many different problem
categories.

Reproduction

create new individuals
from the selected ones by
crossover and mutation

Selection
select the fittest indi-
viduals for reproduction

Evaluation
compute the objective
values of the
individuals

Fitness Assignment
use the objective values
to determine fitness
values

Initial Population
create an initial
population of random
individuals

Fig. 2.1: The basic cycle of evolutionary algorithms.

As already mentioned, the basic idea behind genetic and evolutionary algo-
rithms is copying the process of Darwinian evolution in order to find solutions
for hard problems. Now let us look a bit deeper into the basic cycle of artificial
evolution illustrated in Figure 2.1 and how its single steps correspond with
its natural role model.

First of all, we can distinguish between single-objective and multi-objective
evolutionary algorithms (MOEA), where the latter means that we try to opti-
mize multiple, possible conflicting criteria. Our following elaborations will
be based on MOEAs. The general area of evolutionary computation that
deals with multi-objective optimization is called EMOO, evolutionary multi-
objective optimization.

Definition 35 (MOEA). A multi-objective evolutionary algorithm
(MOEA) is able to perform an optimization of multiple criteria on the ba-
sis of artificial evolution [184, 21, 185, 23, 20, 22, 186].

2.1 Introduction 49

All evolutionary algorithms proceed in principle according to the following
scheme:

1. Initially, a population of individuals with a totally random genome is
created.

2. All individuals of the population are tested. This evaluation may incor-
porate complicated simulation and calculations.

3. With the tests, we have determined the utility of the different features
of the solution candidates and can now assign a fitness value to each of
them.

4. A subsequent selection process filters out the individuals with low fitness
and allows those with good fitness to enter the mating pool with a higher
probability.

5. In the reproduction phase, offspring is created by varying or combining
these solution candidates and integrated into the population.

6. If a terminationCriterion is met, the evolution stops here. Otherwise, it
continues at step 2.

At the beginning of the evolution, there exists no idea what is good or
what is bad. Basically, only some random genes are coupled together as initial
population. I think, back in the Eoarchean3, the earth age 3.8 billion years
ago where most probably the first single-celled life occurred on earth, it was
probably the same.

At the beginning of the evolutionary cycle, nature instantiates each geno-
type in form of a phenotype – a living organism, for example a fish. The
survival of the genes of our fish depend on how good it performs in the ocean,
in other words, how fit it is. This fitness however is not only determined by
one single feature of the phenotype like its size. Although a bigger fish will
have better chances to survive, size alone does not help if it is too slow to
catch any prey. Also its energy consumption should be low so it does not need
to eat all the time. Sharp teeth would be good, and colors that blend into the
environment so it cannot be seen to easily by sharks. But, uh, wait a second,
if its camouflage is too good, how will it find potential mating partners? And
if it is really big, it will also have a higher energy consumption. So there may
be conflicts between the desired properties. To sum it up, we could consider
the life of the fish as the evaluation process of its genotype in an environ-
ment where good qualities in one aspect can turn out as drawbacks in other
perspectives.

In multi-objective genetic algorithms4 this is exactly the same. For each
problem that we want to solve, we can specify multiple so-called objective
functions. An objective function represents one feature that we are interested
in. Let us assume that we want to evolve a car (a pretty weird assumption,

3 http://en.wikipedia.org/wiki/Eoarchean [accessed 2007-07-03]

4 Genetic algorithms, a subclass of evolutionary algorithms, are discussed
in Chapter 3 on page 117.

http://en.wikipedia.org/wiki/Eoarchean

50 2 Evolutionary Algorithms

but let’s stick with it). The genotype would be the construction plan and the
phenotype the real car, or at least a simulation of it. One objective function
would definitely be safety. For the sake of our children and their children,
the car should also be environment-friendly, so that’s our second objective
function. Furthermore, cheap, fast and a cool lookout would be good. So that
is five objective functions from which for example the second and the fourth
are contradictory.

After the fish genome is instantiated, nature “knows” about its phenotypic
properties. Fitness however is always relative; it depends on your environment.
I, for example, may be considered as a fit man in my department (computer
science). If took a stroll to the department of sports science, that statement
will probably not hold anymore. The same goes for the fish, its fitness depends
on the other fish in the population. If one fish can beat another one in all
categories, i.e. is bigger, stronger, smarter, and so on, we can clearly consider it
as fitter since it will have a better chance to survive. This relation is transitive
but only forms a partial order since a fish that is strong but not very clever
and a fish that is clever but not strong maybe have the same probability
to reproduce and hence, are not directly comparable5. Well, Ok, we cannot
decide if a fish with a clever behavioral pattern is worse or better than a
really strong one. Both traits are furthered in the evolutionary process and
maybe, one fish of the first kind will sometimes mate with one of the latter
and produce an offspring which is both, intelligent and sporty6.

Multi-objective evolutionary algorithms basically apply the same princi-
ples. One of the most poplar methods here is called Pareto ranking7. It does
exactly what we’ve just discussed: It first selects the individuals that are
beaten by no one (we call this non-dominated set) and assigns a good (scalar)
fitness value to them. Then it looks at the rest of the population and takes
those which are not beaten by the remaining individuals and gives them a
slightly worse fitness value - and so on, until all solution candidates have
received one scalar fitness.

Now how fit a fish is does not necessarily determine directly if it can
produce offspring. An intelligent fish may be eaten by a shark and a strong one
can die from decease. The fitness only is some sort of probability of survival.
The process of selection is always stochastic, without guarantees - even a fish
that is small and slow, lacking any sophisticated behavior, might survive and
could produce even more offspring than a highly fit one.

The selection in evolutionary algorithms works in exactly the same way.
The oldest selection scheme is called Roulette wheel8. The higher the fitness
value of an individual the high is its chance to reproduce in the original version

5 Which is a very comforting thought for all computer scientists.
6 I wonder if the girls in the sports department are open to this kind of argumen-

tation?
7 Pareto comparisons are discussed in Section 1.3.2 on page 14 and elaborations on

Pareto ranking can be found in Algorithm 2.5.
8 The roulette wheel selection algorithm is introduced in Section 2.4.5 on page 84.

2.1 Introduction 51

of this selection algorithm. Whenever we need an individual for reproduction,
we draw one from the population in way that each solution candidate is se-
lected with a probability proportional to its fitness.

Last but not least, there is the reproduction phase. Fish reproduce sexu-
ally. When a female fish and a male fish will mate, their genes will be recom-
bined by crossover. Mutations may further take place which, most often, only
slightly affect the characteristics of resulting larva [187]. Since fit fish produce
offspring with higher probability, there is a good chance that the next gener-
ation will contain at least some individuals that have combined good traits of
their parents and perform even better than those of the current generation.

In genetic algorithms, we do not have such a thing as “gender”. Each
individual can potentially mate with each other one. In the car example this
would mean that we take the engine of one car and place it car body of
another one – first in the construction plan, of course. Also, we could alter
one feature, like the shape of the headlights, randomly. This way we receive
new construction plans for new cars. Our chance that an environment-friendly
engine inside a cool-looking car will result in a car that is more like to be bought
by the customer is good. If we iteratively perform the presented process again
and again, there is a high probability that the solutions finally found will be
close to optimal.

At this point it should be mentioned that the direct reference to Darwinian
evolution in evolutionary and genetic algorithms is somehow controversial.
[188] for example points out that “neither GA [Genetic Algorithms] nor GP
[Genetic Programming] are concerned with the evolution of new species, nor
do they use natural selection.” On the other hand, nobody would claim that
the idea of selection has not been copied from nature although many additions
and modifications have been introduced in favor for better algorithmic perfor-
mance. The second argument concerning the development of different species
depends on definition: A species is a class of organisms which are very similar
in many aspects such as appearance, physiology, and genetics according to [2].
In principle, there is some elbowroom for us where we well can consider even
different solutions to a single problem in GA as members of a different species
– for example if a crossover/recombination of their genomes cannot produce
another valid solution candidate. So the personal opinion of the author (which
may as well be wrong) is that the citation of Darwin here is well motivated
since there are close parallels between Darwinian evolution and evolutionary
algorithms.

Basic Evolutionary Algorithms

From this informal outline about the artificial evolution and how we can
use it as an optimization method, let us now specify the basic scheme com-
mon to all evolutionary algorithms. All EAs are variations and extensions of
Algorithm 2.1 which relies on functions or prototypes that we will introduce
step by step.

52 2 Evolutionary Algorithms

• createPop (see Algorithm 2.34 in Section 2.5 on page 99) produces an
initial, randomized population.

• terminationCriterion checks whether the evolutionary algorithm should
terminate or continue, see Section 1.6 on page 31.

• updateOptimalSet checks if a new individual can be included in the opti-
mal, and, if so, if it may lead to other individuals being removed from the
optimal set. See Section 1.7.1 on page 33 for details.

• If the optimal set becomes too large – it might theoretically contain un-
countable many individuals - pruneOptimalSet reduces it to a proper size,
employing techniques like clustering in order to preserve the element di-
versity. More about pruning can be found in Section 1.7.3 on page 35.

• Most evolutionary algorithms assign a scalar fitness to each individual
by comparing its objective values to other individuals in the popula-
tion or optimal set. Such a fitness assignment process (assignF itness,
see Section 2.3 on page 65) also provides means to preserve diversity.

• Selection algorithms (select, see Section 2.4 on page 78) chose those indi-
viduals which can reproduce from the population and/or optimal set. They
again perform mainly exploitation but defined in a diversity-preserving
manner.

• With reproducePop a new population is generated from the individuals
inside the mating pool using mutation and/or recombination. More infor-
mation on reproduction can be found in Section 2.5 on page 99.

Algorithm 2.1: X⋆ = simpleEA(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xpop ←− createPop(p)2

while ¬terminationCriterion() do3

assignF itness(Xpop, ∅)4

Xmp ←− select(Xpop, p)5

Xpop ←− reproducePop(Xmp, p)6

return extractOptimalSet(Xpop)7

end8

2.1 Introduction 53

2.1.2 Classification of Evolutionary Algorithms

The Family of Evolutionary Algorithms

The family of evolutionary algorithms encompasses five members, as illus-
trated in Figure 2.2. We will discuss these family members in the following
chapters in more detail and outline here only their general meaning.

• Genetic Algorithms (GAs) are introduced in Chapter 3 on page 117.
GAs subsume all evolutionary algorithms that use strings, arrays of fixed
data types, as genomes. Most commonly, the data type is boolean and the
algorithm searches in the space of bit strings.

• The special case, so to say, of Genetic Algorithms, where the genotypes are
strings of real numbers, is called Evolution Strategy (ES, see Chapter 5
on page 203).

• For Genetic Programming (GP), which will be elaborated on
in Chapter 4 on page 139), we can provide two definitions: On one hand,
GP includes all evolutionary that grow programs, algorithms, and these
alike. On the other hand, also all EAs that evolve tree-shaped individuals
are instances of Genetic Programming.

• Learning Classifier Systems (LCS), discussed in Chapter 7 on page 211,
are online learning approaches that assign output values to given input
values. They internally use a Genetic Algorithm to find new rules for this
mapping.

• Evolutionary Programming (EP, see Chapter 6 on page 209) is an
evolutionary approach that treats the instances of the genome as different
species rather than as individuals. It has mainly merged into GP and the
other evolutionary algorithms.

Algorithmic Properties of Evolutionary Algorithms

In the previous section, we have classified different evolutionary algorithms
according to their semantics, the type of their search spaces (which includes
how their reproduction operations work). These different approaches all use
the same scheme which has been introduced in Algorithm 2.1. Improvements
of this basic scheme will be valid for all members of the EA family. Because of
their generality, we term algorithms that provide such improvements simple
as “evolutionary algorithms”.

In this chapter, we outline the major building blocks of many of the most
efficient evolutionary algorithms [189] which have been developed until today.
These EAs can be distinguished in many ways and some of their distinctive
features are:

• The population size or the number of populations used.
• The method of selecting the individuals for reproduction.

54 2 Evolutionary Algorithms

Evolutionary Algorithms

Genetic Programming

Evolutionary
Programming

Evolution Strategy

Differential
Evolution

Genetic Algorithms

Learning Classifier
Systems

GGGP

LGP

SGP

Fig. 2.2: The family of evolutionary algorithms.

• The representations of the individuals – they may be represented as is or
in the form of chromosomes of a given genotype.

• The way the offspring is included into the population(s). (replacement-
operators)

2.1.3 Populations in Evolutionary Algorithms

One distinctive feature of different evolutionary algorithms in the way pop-
ulations are treated, especially how the population of the next iteration is
selected from the current population and its offspring.

If the next population is entirely formed by the offspring of the current
one, we speak of extinctive selection [190, 191]. Extinctive selection can be
compared with ecosystems of small protozoa which reproduce in a fissiparous
manner. In that case, of course, the elders will not be present in the next
generation. Other comparisons can partly be drawn to the sexual reproducing
to octopi, where the female dies after protecting the eggs until the larvae
hatch or to the black widow spider where the female devours the male after the
insemination. Especially in the area of genetic algorithms, extinctive strategies
are also known as generational algorithms.

Definition 36 (Generational). In evolutionary algorithms that are gener-
ational [192], the next generation will only contain the offspring of the current
one and no parent individuals will be preserved.

2.1 Introduction 55

Extinctive evolutionary algorithms can further be divided into left and
right selection [193]. In left extinctive selections, the best individuals are not
allowed to reproduce in order to prevent premature convergence of the opti-
mization process. The worst individuals are not permitted to breed in right
extinctive selection schemes in order to reduce the selective pressure because
they would scatter the fitness too much.

In algorithms that apply a preservative selection scheme, the population
is a combination of the next population and the offspring [194, 195, 196, 183].
The biological metaphor for such algorithms is that the lifespan of many
organisms exceeds a single generation. Hence, parent and child individuals
compete with each other for survival.

For evolution strategy discussed in Chapter 5 on page 203, there exists a
notation which also can be used describe the generation transition in evolu-
tionary algorithms [197, 198, 199, 194].

• λ denotes the number of offspring created and
• µ is the number of parent individuals.

Extinctive selection patterns are denoted as (µ, λ)-strategies and will cre-
ate λ > µ child individuals from the µ patterns and only keep the µ best
offspring while discarding the µ parents and the λ− µ worst children.

In (µ + λ)-strategy, again λ children are generated from µ parents with
also often λ > µ. Then the parent and offspring populations are united (to a
population of the size λ + µ) and from this unison, the µ best individuals will
survive. (µ + λ)-strategies are thus preservative.

Steady state evolutionary algorithms [200, 201, 202, 203, 204, 205], ab-
breviated SSEA, are preservative evolutionary algorithm values of λ that are
relatively low in comparison with µ. Usually, λ is chosen in a way that a
recombination operator (which in this context produces two offspring) is ap-
plied exactly once per generation. Hence, we have a (µ + 2) evolution, since
is equal to the number of offspring λ = 2 and we have a (µ + λ) selection.
Although steady state evolutionary algorithms are often observed to produce
better results than generational EAs [203, 206, 207], there is also research that
indicates that they are not generally superior [208].

Even in preservative strategies it is not granted that the best individuals
will always survive. In principle, a (µ + λ) strategy can also mean that from
µ+λ individuals, µ are selected with a certain selection algorithm. Most of the
selection algorithms tend to pick the better individuals, but most of them are
also randomized, and hence may also choose worse individuals with a certain,
lower probability.

Definition 37 (Elitism). An elitist evolutionary algorithm [209, 210, 184]
ensures that at least one copy of the best individual(s) of the current gen-
eration is passed on to the next generation. The main advantage of elitism
is that its convergence is guaranteed, meaning that if the global optimum is
discovered, the evolutionary algorithm converges to that optimum. On the
other hand, the risk of converging to a local optimum is also higher.

56 2 Evolutionary Algorithms

Elitism is an additional feature of global optimization algorithms, a sort of
preservative strategy which is often reached by using a secondary population
only containing the non-prevailed individuals. This population normally does
not take part in the genetic operations directly and is updated only at the
end of the iterations. Such an archive-based elitism can be combined with
generational and preservative evolutionary algorithms as well.

Algorithm 2.2 specifies the basic scheme of elitist evolutionary algorithms.
Note that it only differs in line 5 from Algorithm 2.1.

Algorithm 2.2: X⋆ = elitistEA(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− ∅2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

foreach x ∈ Xpop do X⋆ ←− updateOptimalSet(X⋆, x)5

X⋆ ←− pruneOptimalSet(X⋆)6

assignF itness(Xpop, X⋆)7

Xmp ←− select(Xpop ∪X⋆, p)8

Xpop ←− reproducePop(Xmp, p)9

return X⋆
10

end11

2.1.4 Forma Analysis

In his seminal 1975 work, Holland stated the schema theorem9 which describes
how different characteristics of genotypes will be propagated during the evo-
lutionary process in genetic algorithms [211, 209, 54]. Here we are going to
discuss this issue from the more general perspective of forma analysis from
[212] as introduced by Radcliffe10 and Surry [213, 214, 215, 216, 217, 218].
Forma analysis originally is focused on Genetic Algorithms only. We can (and
will) extend many of its basic definitions to other evolutionary algorithms like
Genetic Programming easily.

9 The Schema theorem is discussed in Section 3.6 on page 129.
10 Radcliffe also has maintained a website about forma analysis. Although now most

of its links are dead, maybe it’s worth a visit: http://users.breathe.com/njr/
formaPapers.html [accessed 2007-07-29].

http://users.breathe.com/njr/formaPapers.html
http://users.breathe.com/njr/formaPapers.html

2.1 Introduction 57

Basically, every solution candidate in the search space of an evolutionary
algorithm is characterized by its properties. A property p1 of a given formula
f : R 7→ R in symbolic regression11 can be whether or not it contains the
mathematical expression x + 1. This is a rather structural or “genotypic”
property. We can also declare a “phenotypic” property p2 that defines if |f(0)−
1| ≤ 0.1 holds, i. e. if the result of f is close to a value 1 for a specified input
x = 0. If we would try to solve a graph-coloring problem for instance, a
property p3 ∈ {black,white, gray} could denote the color of a specific vertex q
as illustrated in Figure 2.3.

Ap3=

Ap black3=

q
G1

q
G3

q
G2

q
G4

q
G6

q
G7

q
G8

q
G5

Ap3=gray

X Xpop
~Í

Fig. 2.3: An graph coloring-based example for properties and formae.

In general we can imagine the properties pi to be some sort of functions
that map the individuals to property values. p1 and p2 would then both
map the space of mathematical functions to the set {true, false} whereas
p3 maps the space of all possible colorings for the given graph to the set
{white, gray, black}. On the basis of the properties pi we can define equiva-
lence relations12 ∼pi

:
x ∼pi

y ⇒ pi(x) = pi(y) (2.1)

Obviously, for each two individuals x and y, either x ∼pi
y or x 6∼pi

y holds.
These relations divide the search space into equivalence classes Api=v.

11 More information on symbolic regression can be found in Section 19.1 on page 329.
12 See the definition of equivalence classes in Section 34.6.2 on page 510.

58 2 Evolutionary Algorithms

Definition 38 (Forma). An equivalence class Api=v that contains all the
individuals sharing the same characteristic v in terms of the property pi is
called a forma [216] or predicate [219].

Api=v = {∀ pi(x) = v} (2.2)

∀ x, y ∈ Api=v ⇒ x ∼pi
y (2.3)

The number of formae induced by a property, i.e. the number of its different
characteristics, is called its precision [216]. The precision of p1 and p2 is 2,
of p3 it is 3. We can define another property p4 ≡ f(0) denoting the value
a mathematical function has for the input 0. This property would have an
infinite large precision.

f (x) x 11 = + f (x) x 1.12 = +2

f (x)3 =x 2+

f (x) 2(4 = x 1)+

f (x) (sin x)(x 1)6 = +

f (x) (cos x)(x 1)7 = +

f (x) (tan x) 18 = +

f (x) tan x5 =

f1

f4

f6

f7

Ap1=true

f2
f3

f8

f5

Ap1=false

f1 f2f7

f8

Ap2=true

f3

f4

f6
f5

Ap2=false

Ap 14=

f1

f2

f7

f8

Ap 04=

f6
f5

f3f4

Ap 24=

~p1

~
p
2

~p4

Ap 1.14=

X Xpop
~Í

Fig. 2.4: Example for formae in symbolic regression.

Two formae Api=v and Apj=w are said to be compatible, written as Api=v ⊲⊳
Apj=w, if there can exist at least one individual which is an instance of both.

Api=v ⊲⊳ Apj=w ⇔ Api=v ∩Apj=w 6= ∅ (2.4)

Api=v ⊲⊳ Apj=w ⇔ ∃ x : x ∈ Api=v ∧ x ∈ Apj=w (2.5)

Api=v ⊲⊳ Api=w ⇒ w = v (2.6)

Of course, two different formae of the same property pi, i. e. two different
peculiarities of pi, are always incompatible. In our initial symbolic regres-
sion example hence Ap1=true 6⊲⊳ Ap1=false since it is not possible that a

2.1 Introduction 59

function f contains a term x + 1 and at the same time does not contain it.
All formae of the properties p1 and p2 on the other hand are compatible:
Ap1=false ⊲⊳ Ap2=false, Ap1=false ⊲⊳ Ap2=true, Ap1=true ⊲⊳ Ap2=false,
and Ap1=true ⊲⊳ Ap2=true. If we take p3 into consideration, we will find that
there exist some formae compatible with some of p2 and some that are not,
like Ap2=true ⊲⊳ Ap3=1 and Ap2=true ⊲⊳ Ap3=1.1, but Ap2=true 6⊲⊳ Ap3=0

and Ap2=true 6⊲⊳ Ap3=2.
The idea of evolutionary search is that the population Xpop represents a

sample from the search space. In this sample, different combinations of dif-
ferent formae can be found. An evolutionary algorithm will discovers formae
which have a good influence on the overall fitness of the solution candidates.
This is done by individual evaluation, subsequent fitness assignment, and se-
lection. We now hope that there are many compatible formae that will be
gradually combined in the search process and that finally an optimal con-
figuration is found. One aspect of forma analysis is to find out how the re-
production operations and the selection schemes influence the propagation of
the good formae during the evolution. It is for example used to define lower
bounds for their replication rate.

If two formae are compatible and there exist individuals in the population
that are members of both, the evaluation of these individuals will also be the
evaluation of the utility of the both formae. Thus, with one computation of
the objective values, we inherently can determine the quality of n compatible
forma.

Let us review our introductory example where we have discussed the prop-
erties of a fish in terms of forma analysis. Fish can be characterized by the
properties “clever” and “strong”, for example. Both properties may be true

or false for a single individual and hence define two formae each. A third
property can be the color, for which many different possible variations exist.
Some of them may be good in terms of camouflage, others maybe good in
terms of finding mating partners. Now a fish can be clever and strong at the
same time, as well as weak and green. Here, a living fish allows nature to
evaluate the utility of at least three different formae.

This fact has first been stated by Holland [211] for genetic algorithms
and is termed implicit parallelism (or intrinsic parallelism). Since then, it has
widely been studied [220, 221, 222, 223].

Holland’s Schema Theorem elaborates on genotypic forma in genetic algo-
rithms which can be expressed as sequence of 0, 1, and ∗, where ∗ means don’t
care. It is discussed in Section 3.6 on page 129 and provides an estimation on
how such schemas will be propagated in a population by time.

Forma analysis provides puts the Schema Theorem into a broader, much
more general context. It allows us to draw additional conclusions on how
genomes, genetic operations, and genotype-phenotype mappings should be
constructed. We discuss some of them in Section 3.7.4 on page 136.

60 2 Evolutionary Algorithms

2.2 General Information

2.2.1 Areas Of Application

Some example areas of application of evolutionary algorithms are:

Application References

multi-objective optimization and function opti-
mization

[41, 22, 189, 224, 225, 226,
39]

combinatorial optimization [227]
spacecraft design [228]
constraint satisfaction problems [183, 224, 22, 39]
solving the satisfiability problem (SAT) [196]
finance, trade, asset management, and taxing [111, 229]
system identification and control optimization [49]
data mining and analysis [230, 231]
solving hard mathematical problems [232]
filter design [233]
chemistry [234]
scheduling problems [235, 236, 237, 238]

For more information see also the application sections of the different members
of the evolutionary algorithm family: genetic algorithms in Section 3.2.1 on
page 119, genetic programming in Section 4.2.1 on page 142, evolution strategy
in Section 5.2.1 on page 204, evolutionary programming in Section 6.2.1 on
page 210, and learning classifier systems in Section 7.2.1 on page 212.

2.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on evolutionary algorithms
are:

BIOMA: International Conference on Bioinspired Optimization Methods
and their Applications
http://bioma.ijs.si/ [accessed 2007-06-30]

History: 2006: Ljubljana, Slovenia, see [239]
2004: Ljubljana, Slovenia, see [240]

CEC: Congress on Evolutionary Computation
http://ieeexplore.ieee.org/servlet/opac?punumber=7875

[accessed 2007-09-05]

History: 2007: Singapore, see [241]
2006: Vancouver, BC, Canada, see [242]
2005: Edinburgh, Scotland, UK, see [243]

http://bioma.ijs.si/
http://ieeexplore.ieee.org/servlet/opac?punumber=7875

2.2 General Information 61

2004: Portland, Oregon, USA, see [244]
2003: Canberra, Australia, see [245]
2002: Honolulu, HI, USA, see [246]
2001: Seoul, Korea, see [247]
2000: La Jolla, California, USA, see [248]
1999: Washington D.C., USA, see [249]
1998: Anchorage, Alaska, USA, see [250]
1997: Indianapolis, IN, USA, see [251]
1996: Nagoya, Japan, see [252]
1995: Perth, Australia, see [253]
1994: Orlando, Florida, USA, see [254]

Dagstuhl Seminar: Practical Approaches to Multi-Objective Optimization
History: 2006: Dagstuhl, Germany, see [255]

2004: Dagstuhl, Germany, see [256]

EA/AE: Conference on Artificial Evolution (Evolution Artificielle)
History: 2007: Tours, France, see [257]

2005: Lille, France, see [258]
2003: Marseilles, France, see [259]
2001: Le Creusot, France, see [260]
1999: Dunkerque, France, see [261]
1997: Nı̂mes, France, see [262]
1995: Brest, France, see [263]
1994: Toulouse, France, see [264]

EMO: International Conference on Evolutionary Multi-Criterion Optimiza-
tion

History: 2007: Matsushima/Sendai, Japan, see [265]
2005: Guanajuato, Mexico, see [266]
2003: Faro, Portugal, see [267]
2001: Zurich, Switzerland, see [268]

EUROGEN: Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems

History: 2007: Jyväskylä, Finland, see [269]
2005: Munich, Germany, see [270]
2003: Barcelona, Spain, see [271]
2001: Athens, Greece, see [272]
1999: Jyväskylä, Finland, see [273]
1997: Triest, Italy, see [274]
1995: Las Palmas de Gran Canaria, Spain, see [275]

62 2 Evolutionary Algorithms

EvoCOP: European Conference on Evolutionary Computation in Combina-
torial Optimization
http://www.evostar.org/ [accessed 2007-09-05]

Co-located with EvoWorkshops and EuroGP.
History: 2007: Valencia, Spain, see [276]

2006: Budapest, Hungary, see [277]
2005: Lausanne, Switzerland, see [278]
2004: Coimbra, Portugal, see [279]
2003: Essex, UK, see [280]
2002: Kinsale, Ireland, see [281]
2001: Lake Como, Milan, Italy, see [282]

EvoWorkshops: Applications of Evolutinary Computing: EvoCoMnet,
EvoFIN, EvoIASP, EvoINTERACTION, EvoMUSART, EvoPhD, EvoS-
TOC and EvoTransLog
http://www.evostar.org/ [accessed 2007-08-05]

Co-located with EvoCOP and EuroGP.
History: 2007: Valencia, Spain, see [283]

2006: Budapest, Hungary, see [284]
2005: Lausanne, Switzerland, see [285]
2004: Coimbra, Portugal, see [286]
2003: Essex, UK, see [280]
2002: Kinsale, Ireland, see [281]
2001: Lake Como, Milan, Italy, see [282]
2000: Edinburgh, Scotland, UK, see [287]
1999: Göteborg, Sweden, see [288]
1998: Paris, France, see [289]

FEA: International Workshop on Frontiers in Evolutionary Algorithms
Was part of Joint Conference on Information Science
History: 2005: Salt Lake City, Utah, USA, see [290]

2003: Cary, North Carolina, USA, see [291]
2002: Research Triangle Park, North Carolina, USA, see
[292]
2000: Atlantic City, NJ, USA, see [293]
1998: Research Triangle Park, North Carolina, USA, see
[294]
1997: Research Triangle Park, North Carolina, USA, see
[295]

GECCO: Genetic and Evolutionary Computation Conference
http://www.sigevo.org/ [accessed 2007-08-30]

A recombination of the Annual Genetic Programming Conference (GP,
see Section 4.2.2 on page 143) and the International Conference on Ge-
netic Algorithms (ICGA, see Section 3.2.2 on page 120), also “con-
tains” the International Workshop on Learning Classifier Systems (IWLCS,
see Section 7.2.2 on page 212).

http://www.evostar.org/
http://www.evostar.org/
http://www.sigevo.org/

2.2 General Information 63

History: 2007: London, England, see [296, 297]
2006: Seattle, Washington, USA, see [298]
2005: Washington, D.C., USA, see [299, 300, 301]
2004: Seattle, Washington, USA, see [302, 303]
2003: Chicago, Illinois, USA, see [304, 305]
2002: New York, USA, see [306, 307, 308, 309]
2001: San Francisco, California, USA, see [310, 311]
2000: Las Vegas, Nevada, USA, see [312, 313]
1999: Orlando, Florida, USA, see [314, 315]

ICANNGA: International Conference on Adaptive and Natural Computing
Algorithms

before 2005: International Conference on Artificial Neural Nets and Genetic
Algorithms
History: 2007: Warsaw, Poland, see [316, 317]

2005: Coimbra, Portugal, see [318]
2003: Roanne, France, see [319]
2001: Prague, Czech Republic, see [320]
1999: Portoroz, Slovenia, see [321]
1997: Norwich, England, see [322]
1995: Alès, France
1993: Innsbruck, Austria

Mendel: International Conference on Soft Computing
see Section 1.8.2 on page 42

PPSN: International Conference on Parallel Problem Solving from Nature
http://ls11-www.informatik.uni-dortmund.de/PPSN/ [accessed

2007-09-05]

History: 2006: Reykjavik, Iceland, see [323]
2004: Birmingham, UK, see [324]
2002: Granada, Spain, see [325]
2000: Paris, France, see [326]
1998: Amsterdam, The Netherlands, see [327]
1996: Berlin, Germany, see [328]
1994: Jerusalem, Israel, see [329]
1992: Brussels, Belgium, see [330]
1990: Dortmund, Germany, see [331]

2.2.3 Journals

Some journals that deal (at least partially) with evolutionary algorithms are
(ordered alphabetically):

Evolutionary Computation, ISSN: 1063-6560, appears quaterly, editor(s):
Marc Schoenauer, publisher: MIT Press, http://www.mitpressjournals.
org/loi/evco [accessed 2007-09-16]

http://ls11-www.informatik.uni-dortmund.de/PPSN/
http://www.mitpressjournals.org/loi/evco
http://www.mitpressjournals.org/loi/evco

64 2 Evolutionary Algorithms

IEEE Transactions on Evolutionary Computation, ISSN: 1089-778X, appears
bi-monthly, editor(s): Xin Yao, publisher: IEEE Computational Intelligence
Society, http://ieee-cis.org/pubs/tec/ [accessed 2007-09-16]

Biological Cybernetics, ISSN: 0340-1200 (Print), 1432-0770 (Online), ap-
pears bi-monthly, publisher: Springer Berlin/Heidelberg, http://www.

springerlink.com/content/100465/ [accessed 2007-09-16]

Complex Systems, ISSN: 0891-2513, appears quaterly, editor(s): Stephen
Wolfram, publisher: Complex Systems Publications, Inc., http://www.

complex-systems.com/ [accessed 2007-09-16]

Journal of Artificial Intelligence Research (JAIR) (see Section 1.8.3 on
page 44)
New Mathematics and Natural Computation (NMNC), ISSN: 1793-0057, ap-
pears three times a year, editor(s): Paul P. Wang, publisher: World Scientific,
http://www.worldscinet.com/nmnc/ [accessed 2007-09-19]

The Journal of the Operational Research Society (see Section 1.8.3 on
page 43)

2.2.4 Online Resources

Some general, online available ressources on evolutionary algorithms are:

http://www.lania.mx/~ccoello/EMOO/ [accessed 2007-09-20]

Last Update: up-to-date
Description:

EMOO Web page – Dr. Coello Coello’s giant bibliography
and paper repository for evolutionary multi-objective opti-
mization.

http://www-isf.maschinenbau.uni-dortmund.de/links/ci_links.

html [accessed 2007-10-14]

Last Update: up-to-date
Description:

Computational Intelligence (CI)-related links and literature,
maintained by Jörn Mehnen

http://www.aip.de/~ast/EvolCompFAQ/ [accessed 2007-09-16]

Last Update: 2001-04-01
Description: Frequently Asked Questions of the comp.ai.genetic group.

See [1].

http://nknucc.nknu.edu.tw/~hcwu/pdf/evolec.pdf [accessed 2007-09-16]

Last Update: 2005-02-19
Description: Lecture Nodes on Evolutionary Computation. See [193]

2.2.5 Books

Some books about (or including significant information about) evolutionary
algorithms are (ordered alphabetically):

http://ieee-cis.org/pubs/tec/
http://www.springerlink.com/content/100465/
http://www.springerlink.com/content/100465/
http://www.complex-systems.com/
http://www.complex-systems.com/
http://www.worldscinet.com/nmnc/
http://www.lania.mx/~ccoello/EMOO/
http://www-isf.maschinenbau.uni-dortmund.de/links/ci_links.html
http://www-isf.maschinenbau.uni-dortmund.de/links/ci_links.html
http://www.aip.de/~ast/EvolCompFAQ/
http://nknucc.nknu.edu.tw/~hcwu/pdf/evolec.pdf

2.3 Fitness Assignment 65

Bäck: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms (see [179])
Bäck, Fogel, Michalewicz: Handbook of Evolutionary Computation (see [180])
Fogel: Evolutionary Computation: The Fossil Record (see [332])
Deb: Multi-Objective Optimization Using Evolutionary Algorithms (see [20])
Eiben, Smith: Introduction to Evolutionary Computing (see [19])
Bentley: Evolutionary Design by Computers (see [333])
Morrison: Designing Evolutionary Algorithms for Dynamic Environments
(see [94])
Weicker: Evolutionäre Algorithmen (see [212])
Yang, Ong, Jin: Evolutionary Computation in Dynamic and Uncertain En-
vironments (see [88])
Branke: Evolutionary Optimization in Dynamic Environments (see [92])
Nedjah, Alba, De Macedo Mourelle: Parallel Evolutionary Computations (see
[190])
Rothlauf: Representations for Genetic and Evolutionary Algorithms (see
[334])
Banzhaf and Eeckman: Evolution and Biocomputation – Computational
Models of Evolution (see [335])
Chen: Evolutionary Computation in Economics and Finance (see [336])

2.3 Fitness Assignment

Additional to the concept of comparing elements introduced in Section 1.3
on page 12 it is often useful if not required to assign a single real number
determining a solution candidate’s fitness to it. By doing so, we may loose
the information needed in order to determine if the individual belongs into
the optimal set or not. On the other hand, many selection algorithms need a
scalar fitness to work (see Section 2.4 on page 78). Furthermore, the fitness
assigned to an individual may not just reflect its rank in the population but
also incorporate density/niching information which can improve the perfor-
mance of the optimization algorithm significantly. If many individuals in the
population occupy the same rank or do not dominate each other, this infor-
mation will be very helpful. Therefore, a scalar value f(Xpop) ∈ R+ for an
element x will be determined using a list of population individuals Xpop and
an archive list Xarc. The archive is most often used if elitism is applied and
usually contains the set of optimal individuals X⋆.

Definition 39 (Fitness Assignment). A fitness assignment process creates
a function (f) which relates each element of the lists Xpop and Xarc to a
positive real value (or 0).

f = assignF itness(Xpop,Xarc)⇒
f(x) ∈ R+∀x ∈ Xpop ∧ f(x) ∈ R+∀x ∈ Xarc (2.7)

66 2 Evolutionary Algorithms

Therefore, a fitness assignment process can for example use the (possible
multiple) objective value(s) f ∈ F . Such fitness assignment function f may be
viewed as two-step translation of the form:

|F | = n⇒ f : X̃ 7→ Rn 7→ R+ (2.8)

Furthermore, in the context of this book we generally minimize fitness
values, i. e. the lower the scalar fitness of an individual the better. Therefore,
the following condition must hold for all fitness assignment processes on basis
of the prevalence relation:

x1 ≻ x2 ⇒ f(x1) ≤ ff(x2) ∀ x1, x2 ∈ appendList(Xpop,Xarc) (2.9)

Although it is not very common, it is also possible to chain fitness assign-
ment algorithms. Since we define the fitness assignment processes by using the
objective function values either directly or indirectly via the prevalence com-
parators cF , a primary scalar fitness assignment function f1(x) could be used
in order to compute a secondary fitness assignment function f2(x). By doing
so, one could base the tournament fitness assignment process (see Section 2.3.4
on page 69) on SPEA fitness assignment (see Section 2.3.10 on page 76).

2.3.1 Weighted Sum Fitness Assignment

The most primitive fitness assignment strategy would be assigning a weighted
sum of the objective values. This method corresponds to the weighted sum
prevalence comparator introduced in Section 1.3.5 on page 20. The difference
is that the prevalence function cF,weightedS in Equation 1.15 on page 21 com-
pares two different individuals whereas weighted fitness assignment defines
one single value defining the worth of a single solution candidate. Like in
Equation 1.15, we specify the weights of the objective values w and obtain
the formula:

f(x) = weightedSumFitnessAssign(Xpop,Xarc)⇔ f(x) ≡
|F |
∑

i=1

wifi(x)

(2.10)

2.3.2 Prevalence-Count Fitness Assignment

Another very simple method of fitness assignment would be to use fitness
values that directly reflect the prevalence relation illustrated in Figure 2.5.

There are two methods for computing such fitness values. (Remember that
they will later be subject to minimization.)

• Assign to each individual a number inversely proportional to the count of
other individuals it prevails (prevalenceF itnessAssign1, Algorithm 2.3).

2.3 Fitness Assignment 67

f1

f2

x1

x2

^

^

Fig. 2.5: The dominated sets of the individuals x̂1 and x̂2.

It is clear that individuals that dominate many others will receive a higher
fitness than those which are prevailed by many. The disadvantage of this
approach is that it promotes individuals that reside in larger niches and
discriminates individuals in smaller niches. Figure 2.5 illustrates this prob-
lem: If the objective functions f1 and f2 were to be maximized, the dom-
inated (prevailed) set of x̂1 is much larger than the one of x̂2. x̂1 and
x̂2 however are both non-prevailed solutions and should thus be treated
equally – the prevalenceF itnessAssign1 method would instead lead to
constant growth of the niche of x̂1. The niche of x̂2 would diminish and
eventual disappear. Also, all the upper the individuals in the niche of x̂1

will be valued higher than x̂2, although their are dominated.
• If assigning to each individual the number of other individuals it is pre-

vailed by [337, 338] (prevalenceF itnessAssign2, Algorithm 2.4), this effect
will not occur. Both, x̂1 and x̂2 are non-dominated and will have the same,
minimum fitness value. The individuals in their niches will also receive fit-
ness values more useful.

Such fitness assignment methods are very rough but provide pressure in
direction of the prevalence front. They do not incorporate any means of di-
versity preservation.

2.3.3 Rank-Based Fitness Assignment

The rank-based fitness assignment method (also known as Pareto ranking)
rates individuals based on their rank in the total population. It first sorts
the list containing the population and the archive ascending according to
the prevalence comparator function cF . Non-prevailed individuals will thus
be at the beginning of this list while individuals prevailed by many others
are at the end. Ranks are increasing with the index in this list but are the
same for neighboring individuals do not prevailing each other [339, 340, 341].
Algorithm 2.5 presents this assignment procedure. It should be noted that
this method is a bit of a crude approach which has some disadvantages if
compared with the more sophisticated ideas of prevalenceF itnessAssign2

and the following algorithms.

68 2 Evolutionary Algorithms

Algorithm 2.3: f(x) = prevalenceF itnessAssign1(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the archive (normally the empty list ())
Data: Xl the list representation of the unison of Xpop and Xarc

Data: i, j, cnt counter variables
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xl ←− appendList(Xpop, Xarc)2

i←− |Xl| − 13

while i ≥ 0 do4

cnt←− 05

j ←− |Xl| − 16

while j ≤ 0 do7

if (j 6= i) ∧ (Xl[i] ≻ Xl[j]) then cnt←− cnt + 18

j ←− j − 19

f(Xl[i])←− 1
cnt+110

i←− i− 111

return f12

end13

Algorithm 2.4: f(x) = prevalenceF itnessAssign2(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the archive (normally the empty list ())
Data: Xl the list representation of the unison of Xpop and Xarc

Data: i, j, cnt counter variables
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xl ←− appendList(Xpop, Xarc)2

i←− |Xl| − 13

while i ≥ 0 do4

cnt←− 05

j ←− |Xl| − 16

while j ≤ 0 do7

if (j 6= i) ∧ (Xl[j] ≻ Xl[i]) then cnt←− cnt + 18

j ←− j − 19

f(Xl[i])←− cnt10

i←− i− 111

return f12

end13

2.3 Fitness Assignment 69

Algorithm 2.5: f(x) = rankBasedF itnessAssign(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the archive (normally the empty list ())
Data: Xl the list representation of the unison of Xpop and Xarc

Data: i counter variable
Data: r rank counter
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xl ←− appendList(Xpop, Xarc)2

Xl ←− sorta(Xl, cF)3

i←− 14

r ←− 15

f(Xl[0])←− 16

while i < |Xl| do7

if cF (Xl[i], Xl[i− 1]) > 0 then r ←− r + 18

f(Xl[i])←− r9

i←− i + 110

return f11

end12

2.3.4 Tournament Fitness Assignment

In tournament fitness assignment, which is a generalization of the q-level bi-
nary tournament selection introduced in [212], the fitness of each individual
is computed by letting it compete q times against r other individuals (with
r = 1 as default) and counting its victories. For a better understanding of
the tournament metaphor, see Section 2.4.3 on page 81 where the tournament
selection scheme is discussed.

2.3.5 Sharing Functions

Definition 40 (Sharing Function). A sharing function Sh is a function
that relates two individuals x1 and x2 to a value decreasing with their distance
dist(x1, x2) in a way that it is 1 for dist(x1, x2) = 0 and 0 if the distance
exceeds a specified constant σ.

Sh(x1, x2) =

1 if dist(x1, x2) ≤ 0
∈ [0, 1] if 0 < dist(x1, x2) < σ

0 otherwise
(2.11)

Sh(x1, x2) ∈ R+ (2.12)

Sharing functions are employed by many fitness assignment processes [342,
343]. Often, the simple triangular function Sht or one of its either convex

70 2 Evolutionary Algorithms

Algorithm 2.6: f(x) = tournamentF itnessAssignq,r(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the archive (normally the empty list ())
Input: Implicit: q the count of tournaments per individuals
Input: Implicit: r the count of other contestants per tournament, normally 1
Data: Xl the list representation of the unison of Xpop and Xarc

Data: z the counter of tournament wins
Data: i, j, k counter variables
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xl ←− appendList(Xpop, Xarc)2

i←− |Xl| − 13

while i > 0 do4

j ←− q5

z ←− 06

while j > 0 do7

b←− true8

k ←− r9

while (k > 0) ∧ b do10

b←− Xl[i] ≻ Xl [⌊randomu (|Xl|)⌋]11

k ←− k − 112

if b then z ←− z + 113

j ←− j − 114

f(Xl[i])←− 1
z+115

i←− i− 116

return f17

end18

(Shv,p) or concave (Shn,p) pendants with the power p ∈ R+, p > 0 are applied.
One can also use the exponential version defined as She.

Sht(x1, x2) =

{

1− dist(x1,x2)
σ

if dist(x1, x2) < σ
0 otherwise

(2.13)

Shv,p(x1, x2) =

{(

1− dist(x1,x2)
σ

)p

if dist(x1, x2) < σ

0 otherwise
(2.14)

Shn,p(x1, x2) =

{

1−
(

dist(x1,x2)
σ

)p

if dist(x1, x2) < σ

0 otherwise
(2.15)

She(x1, x2) =

{
1

1−e−1

(

1− e
dist(x1,x2)

σ −1
)

if dist(x1, x2) < σ

0 otherwise
(2.16)

2.3 Fitness Assignment 71

The Euclidian distance measure disteucl ≡ distn,2 in objective space is
normally used in sharing functions, but of course, any other distance measure
could be applied.

The niche count m(x,Xtst) [344] of an individual x is the sum of a sharing
function of this individual to all other individuals in a test list Xtst. As test
list the population which x is part of could be used as well as an external set
of elements.

In , we have defined m on basis of an element x and assumed that Xtst is
a set.

m(x,Xtst) =
∑

∀xt∈Xtst:xt 6=x

Sh(x, xt) (2.17)

Sets however do not allow the same element to occur more than once. Our
general problem is here that this might of course happen in populations of
evolutionary algorithms. Then, Xtst is necessarily a list. Furthermore, if we
stick with the = operator between two elements, we will not be able to take
multiple occurrences of the same element as x in Xsel. It is however clear that
m(x = 1,Xtst) should be greater than m(x = 2,Xtst) if Xtst = (1, 2, 3, 1, 1, 1).
By adding max{0, countItemOccurrences(x,Xtst)−1} we take the fact of the
missed sharing values due to (x = Xtst[0] = Xtst[3] = . . . into account. The
sharing function would be 1 for all equal elements (Sh(x, x) = 1). The max is
needed just in case that x 6∈ Xtst. Based on these modifications, Equation 2.18
provides a better definition for the niche count.

m(x,Xtst) =

|Xtst|−1
∑

j=0

{
0 if x = Xtst[j]
Sh(Xtst[i],Xtst[j]) if x 6= Xtst[j]

+

max{0, countItemOccurrences(x,Xtst)− 1} (2.18)

2.3.6 Niche Size Fitness Assignment

Niche size fitness assignment attributes a fitness value to each individual which
reflects how crowded the niche of the individual is. With niche we mean the
area in a given distance around the individual (see Section 36.1). The crowd-
edness then describes the count of other individuals inside that niche. It is
usually not wanted that niches are very crowded, since that would mean that
the optimization algorithm converges fast. Instead, you want many niches with
few individuals inside which means that many different solution paths are fol-
lowed and a broader scan of the optimal front can be obtained. Therefore,
the niche size fitness assignment will attach small fitness values to individuals
with crowded niches and large fitness values to those which are lonesome.

Notice that the niche fitness does not contain any information about the
prevalence/dominance or other objective features, it solely concentrates on
niching and should thus be only used in conjunction with the prevalence func-
tion cF .

72 2 Evolutionary Algorithms

The niche size fitness of an individual x is the sum of a sharing function
of this individual to all the other individuals in the population and there-
fore its niche count m(x,Xpop ∪ Xarc) (see Equation 2.19 and the equiva-
lent Algorithm 2.7). In its original application in the NPGA [345] (see Sec-
tion 2.4.9), the triangular sharing function Sht is used.

f(x) = nicheSizeF itnessAssign(Xpop,Xarc)

⇔ f(x) ≡ m(x, appendList(Xpop,Xarc)) (2.19)

Algorithm 2.7: f(x) = nicheSizeF itnessAssign(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the archive (which normally equals the set of optimal

individuals X⋆ or the empty list ())
Input: Implicit: Sh, dist a sharing function and a distance measure
Input: Implicit: cF the prevalence function
Data: i, j individual indices we iterate over
Data: Xl the joinded lists Xarc and Xpop

Data: sum the sharing function sum
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xl ←− appendList(Xpop, Xarc)2

i←− |Xl| − 13

while i ≥ 0 do4

sum←− 05

j ←− |Xl| − 16

while j ≥ 0 do7

if i 6= j then sum←− sum + Sh(Xl[i], Xl[j])8

f(Xl[i])←− sum9

i←− i + 110

return f11

end12

2.3.7 NSGA Fitness Assignment

The Nondominated Sorting Genetic Algorithm by Srninivas and Deb [346]
uses sharing (see Section 2.3.5 on page 69) in order to assign fitness values. It
therefore first picks all the non-prevailed individuals Z from the population
Xpop and assigns a fitness value to them decreased by a sharing function.
After removing these individuals from the population, it repeats the first step

2.3 Fitness Assignment 73

and again selects all the non-prevailed individuals and assigns a fitness value
smaller than the smallest fitness of the previous turn to them. This step
is iterated until fitness values are related to all individuals. This approach
does obviously lead to fitness that must be maximized. In Algorithm 2.8 we
modified this process in order to obtain fitness values that can be minimized.

In principle, this fitness assignment process resembles a sum of
the rank-based fitness assignment (see Section 2.3.3) and the niche
size fitness assignment (see Algorithm 2.7): nsgaF itnessAssign ≈
rankBasedF itnessAssign + nicheSizeF itnessAssign.

Algorithm 2.8: f(x) = nsgaF itnessAssign(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the list of optimal individuals, normally ()
Input: Implicit: cF the prevalence function
Data: Xa the unison of Xpop and Xarc

Data: Xf ⊆ Xa the current non-prevailed front
Data: n, m maximum fitness values, used for the current/next set of

non-prevailed individuals
Data: x, u individuals in Xa

Output: f(x) the fitness assignment function which assigns a scalar fitness to
all individuals in Xpop and Xarc

begin1

Xa ←− appendList(Xarc, Xpop)2

m←− 13

while |Xa| > 0 do4

Xf ←− extractOptimalSet(Xa)5

Xa ←− Xa \Xf6

n←− m7

foreach x ∈ Xf do8

f(x)←− m
(

1 +
∑

∀u∈Xf
Sh(x, u)

)

9

if f(x) > n then n←− f(x)10

m←− n + 111

return f12

end13

2.3.8 NSGA2 Fitness Assignment

The NSGA2 algorithm [347] uses a fitness assignment process similar to the
one in NSGA in Section 2.3.7, except for three improvements:

1. Elitism is applied in order to preserve the best individuals by taking both,
the previous and the current population into account.

74 2 Evolutionary Algorithms

2. Instead of sharing, the crowding distance (see Section 35.8.3 on page 568)
is used for niching.

3. The fitness assignment is only applied to the first p individuals, where p
denotes the size of the next population.

The Algorithm 2.9 realizes the first two points by assigning a basic fitness
value to each non-prevailed front of the unison of the two populations (sim-
ilar to NSGA-fitness assignment) and offsetting it by the crowding distance
cd (Section 35.8.3 on page 568). It does however not consider the last point
by performing the fitness assignment to all elements in the population, since
that matches with our model. This will lead to a slightly higher computa-
tional time than the original algorithm has, and could be corrected in a real
implementation.

Algorithm 2.9: f(x) = nsga2FitnessAssign(Xpop,Xarc)

Input: Xpop the population to assign fitness values to, the unison of the
current and previous population in nsga2

Input: Xarc the list of optimal individuals, normally ()
Input: Implicit: cF the prevalence function
Data: Xa the unison of Xpop and Xarc

Data: Z ⊆ Xa the current non-prevailed front
Data: n, m maximum fitness values, used for the current/next set of

non-prevailed individuals
Data: x the current individual
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xa ←− appendList(Xarc, Xpop)2

m←− 13

while |Xa| > 0 do4

Z ←− extractOptimalSet(Xa)5

Xa ←− listToSet(Xa) \ Z6

computeCrowdingDistance(Z)7

n←− m8

foreach x ∈ Z do9

f(x)←− m + ρcd(x)10

if f(x) > n then n←− f(x)11

m←− n + 112

return f13

end14

2.3 Fitness Assignment 75

2.3.9 RPSGAe Fitness Assignment

The Reduced Pareto Set Genetic Algorithm with Elitism (RPSGAe)
[348] has another interesting fitness assignment process which is specified
in Algorithm 2.10. A maximum count of ranks n is defined for the algorithm.
The variable r is used in a loop as counter starting from r = 1 to n − 1. In

this loop, the population Xa is reduced to r |Xa|
n

individuals by clustering. To
all representative individuals nucleus(b) in the resulting set of clusters B, the
rank r is assigned if they do not have a rang yet. After the loop, the remain-
ing individuals receive the rank n. The fitness f(x) of an individual x is then
assigned to a linear or exponential function of its rank divided by its niche
count m(x,Xa) (see Section 2.3.5 on page 69).

Algorithm 2.10: f(x) = rpsgaeF itnessAssignn(Xpop,Xarc)

Input: Xpop the population to assign fitness values to, the unison of the
current and previous population in nsga2

Input: Xarc the list of optimal individuals, normally ()
Input: Implicit: n the total count of ranks to use
Input: Implicit: g a linear or exponential function used for ranking
Input: Implicit: cluster a clusterin algorithm
Data: Xa, x the unison of Xpop and Xarc and an element in that set
Data: s the rank assignment function
Data: B, b the clustering result and a cluster
Data: r the rank counter
Data: l the count of individuals to reduce Xa to by clustering
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xa ←− listToSet(appendList(Xpop, Xarc))2

forall x ∈ Xa do s(x)←− 03

r ←− 14

while r < n do5

l←− ⌊r |Xa|
n

+ 0.5⌋6

B ←− clusterl(Xa)7

foreach b ∈ B do8

if s(nucleus(b)) = 0 then s(nucleus(b))←− r9

forall x ∈ Xa do if s(x) = 0 then s(x)←− n10

forall x ∈ Xa do f(x) = g(s(x))
m(x,Xa)+111

return f12

end13

76 2 Evolutionary Algorithms

2.3.10 SPEA Fitness Assignment

This fitness assignment process is used by the Strength Pareto Evolutionary
Algorithm ([349], see Section 2.6.13 on page 110). It uses the optimal set in
order to evaluate the individuals. The optimal set therefore has to be updated
and pruned before the fitness assignment takes place. First, a strength value
s is assigned to each member xarc of the optimal set Xarc (where the optimal
set X⋆ is passed in as archive Xarc = X⋆).

f(xarc ∈ Xarc) = s(xarc) =
|x ∈ Xpop : xarc ≻ x|

|Xpop + 1| (2.20)

These values represent the fitness of the optimal individuals, while the fitness
of the non-optimal individuals is

f(x ∈ Xpop) = 1 +
∑

∀xarc≻x

f(xarc) (2.21)

Algorithm 2.11 describes this process more precisely.

2.3.11 SPEA2 Fitness Assignment

This fitness assignment process is utilized by the Strength Pareto Evolutionary
Algorithm 2 ([350, 351] see Section 2.6.14 on page 111). Other than in the
original SPEA algorithm, it uses both, the archive Xarc and the population
Xpop, in order to evaluate the individuals. Note that SPEA2 (unlike SPEA)
does not use a set of strictly optimal solution candidates as archive but a list
of constant length containing the best individuals. First, a strength value S(x)
for a solution candidate x ∈ setToList(appenList(Xarc,Xpop)) is computed
for all individuals equal to the number of individuals it dominates:

S(x) = |{∀ i ∈ 0 . . . |Xarc| − 1 : x ≻ Xarc[i]}|+
|{∀ j ∈ 0 . . . |Xpop| − 1 : x ≻ Xpop[j]}| (2.22)

Using that strength value, the raw fitness R of the individual x is determined:

R(x) =

|Xarc|−1
∑

i=0

{
S(Xarc[i]) if Xarc[i] ≻ x
0 otherwise

|Xpop|−1
∑

j=0

{
S(Xpop[j]) if Xpop[j] ≻ x
0 otherwise

(2.23)

The smaller the resulting fitness is, the better is the solution candidate. Non-
prevailed individuals xarc have a raw fitness of R(xarc) = 0. This raw fitness
already provides some sort of niching based the concept of prevalence, but
may fail if most individuals of the population do not dominate each other. It is

2.3 Fitness Assignment 77

Algorithm 2.11: f(x) = speaF itnessAssign(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the archive (which normally equals the set of optimal

individuals X⋆)
Input: Implicit: cF the prevalence function
Data: x ∈ Xpop the current individual
Data: xarc ∈ Xarc the current archive individual
Data: sum, counter internal counters
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

i←− |Xarc| − 12

while i ≥ 0 do3

count←− 04

j ←− |Xpop| − 15

while j ≥ 0 do6

if Xarc[i] ≻ Xpop[j] then count← count + 17

j ←− j − 18

f(Xarc[i])←− count
|Xpop|9

i←− i− 110

j ←− |Xpop| − 111

while i ≥ 0 do12

if searchu(Xpop[j], Xarc) < 0 then13

sum←− 014

i←− |Xarc| − 115

while j ≥ 0 do16

if Xarc[i] ≻ Xpop[j] then sum← sum + f(Xarc[i])17

j ←− j − 118

f(Xpop[j])←− sum + 119

i←− i− 120

return f21

end22

therefore complemented by a density estimate (see Section 35.8 on page 567),
namely the kth nearest neighbor estimate ρnn,k with k =

√

|Xarc ∪Xpop| as
introduced in Section 35.8.2 on page 567, is used to compute the fitness f.
This density estimate (see line 20 in Algorithm 2.12 on the following page)
can be replaced by any other suitable density estimate.

D(x) =
1

2 + ρ(x)
(2.24)

f(x) = R(x) + D(x) (2.25)

This process is specified in Algorithm 2.12 on the next page.

78 2 Evolutionary Algorithms

Algorithm 2.12: f(x) = spea2FitnessAssign(Xpop,Xarc)

Input: Xpop the population to assign fitness values to
Input: Xarc the list of optimal individuals
Input: Implicit: cF the prevalence function
Data: Xa the list containing unison of Xpop and Xarc

Data: k the k-value for the kth nearest neighbor density estimate ρnn,k -
other values for k could be chosen too

Data: i, j indexes into Xa used for computation
Data: S the list of the strength values
Data: sum, counter internal counters
Output: f(x) the fitness assignment function which assigns a scalar fitness to

all individuals in Xpop and Xarc

begin1

Xa ←− appendList(Xarc, Xpop)2

k ←−
√

|Xa|3

S ←− createList(|Xa| , 0)4

i←− |Xa| − 15

while i ≥ 0 do6

count←− 07

j ←− |Xa| − 18

while j ≥ 0 do9

if Xa[i] ≻ Xa[j] then count← count + 110

j ←− j − 111

S[i]←− count12

i←− j − 113

i←− |Xa| − 114

while i ≥ 0 do15

sum←− 016

j ←− |Xa| − 117

while j ≥ 0 do18

if Xa[j] ≻ Xa[i] then sum← sum + S[j]19

f (Xa[i])←− sum + 1
2+ρnn,k(Xa[i])20

return f21

end22

2.4 Selection

Definition 41 (Selection). The operation select is used to choose a list of
individuals for reproduction, the so-called mating pool Xmp, from a list of
solution candidates Xsel [179, 18, 352, 17].

Selection13 may behave in a deterministic or in a randomized manner,
according to its application-dependant implementation.

13 http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29 [accessed

2007-07-03]

http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29

2.4 Selection 79

There exist two classes of selection algorithms: such with replacement (an-
notated with a subscript r, Equation 2.27) and such without replacement (an-
notated with a subscript w, Equation 2.27) [353]. In a selection algorithm
without replacement, each individual from the input list Xsel is taken into
consideration for reproduction at most once and therefore also will occur in
the mating pool one time at most. The mating pool list returned by algo-
rithms with replacement can contain the same individual multiple times. This
is the reason why the mating pool is always represented as a list and not as a
set. The parameter n of the selection algorithm corresponds to the size of the
mating pool wanted. Notice that there may be restrictions on n in algorithms
without replacement.

Xmp = selectw(Xsel, n) ⇒ ∀ xmp ∈ Xmp ⇒ countItemOccurrences(xmp,Xmp) ≤
countItemOccurrences(xmp,Xsel) ∧

|Xmp| ≤ n (2.26)

Xmp = selectr(Xsel, n) ⇒ ∀ xmp ∈ Xmp ⇒ xmp ∈ Xsel ∧
|Xmp| = n (2.27)

Selection may work directly on the individuals using the prevalence com-
parator function cF (see Section 1.3.5 on page 20) or by referring to a pre-
viously executed fitness assignment process (Section 2.3 on page 65). Selec-
tion algorithms that base on prevalence are annotated with a superscript p

whereas algorithms that use fitness assignment are annotated with a super-
script f. When taking down the algorithms, we will omit that annotations,
it just plays a role when wanting to specify exactly what selection scheme is
used in an optimization process.

There exist selection algorithms which can only work on scalar fitness and
thus need to rely on a fitness assignment process in multi-objective optimiza-
tion. Algorithms that may exist in both variants will use the x1 > x2 operator
for internal individual comparison. This operators will be replaced by x1 ≻ x2

in directly prevalence-based selection and by f(x1) > f(x2) in fitness assign-
ment based realizations.

Selection can be used in conjunction with the other operations defined to
extend single-solution algorithms to support a list of solutions.

Another possible classification of selection algorithms has already been
discussed in Section 2.1.3 on page 54 and depends on the composition of this
list Xsel. In (µ, λ)-selection, the selection algorithm returns µ elements of a
set |Xsel| = λ of the child individuals of the current generation. In (µ + λ)-
algorithms, Xsel contains λ children and µ parents of the current population
and the selection returns µ elements.

Selection algorithms can be chained – in some applications, an environ-
mental selection that reduces the number of individuals is performed first and
then a mating selection follows which extracts the individuals which should
be used for reproduction.

80 2 Evolutionary Algorithms

2.4.1 Truncation Selection

Truncation selection14, also called deterministic selection, returns the best
elements of the list Xsel. Such a selection algorithm will usually not be a
good choice since it does not preserve the diversity. It is especially bad if
applied to an optimal set where no element is better than another one. Below,
the algorithm in the form with replacement is noted – it simple returns an
list containing n-times the minimal element of Xsel.

Xmp = truncationSelectr(Xsel, n)⇔ Xmp = createList(n,min≻{Xsel})
(2.28)

The definition of Truncation selection without replacement is presented in
Algorithm 2.13. Here, the n best individuals are extracted from the selectable
population Xsel and placed into the mating pool Xmp. For n normally values

like |Xsel|
2 or |Xsel|

3 are used.
Notice that computing the Truncation element of a set uses the · ≻ ·

comparison operator internally. Thus, the Truncation selection is available in
both, prevalence and fitness assignment based flavors.

Algorithm 2.13: Xmp = truncationSelectw(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n ≤ |Xsel the number of individuals to be placed into the mating

pool Xmp

Input: Implicit: cF the prevalence comparator function
Data: xsel ∈ Xsel the next minimal element
Data: i a counter variable
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

i←− n− 13

while i ≥ 0 do4

xsel ←− min≻{Xsel}5

Xsel ←− removeListItem(Xsel, xsel)6

Xmp ←− addListItem(Xmp, xsel)7

i←− i− 18

return Xmp9

end10

2.4.2 Random Selection

Random selection returns elements by chance. A possible preceding fitness
assignment process as well as the objective values of the individuals play no

14 http://en.wikipedia.org/wiki/Truncation_selection [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Truncation_selection

2.4 Selection 81

role at all. This hinders the optimization algorithm to follow any gradient in
the fitness landscape – it is effectively turned into a random walk. Random
selection is thus not applied exclusively, but can serve as mating selection
scheme in conjunction with a separate environmental selection. It maximally
preserves the diversity and can be a good choice if used to pick elements from
an optimal set.

Since random selection bases on uniformly distributed random numbers, it
is a good and simple model to derive general properties of selection algorithms
from.

Algorithm 2.14 and Algorithm 2.15 demonstrate how random selection
with and without replacement can be performed. A more sophisticated ran-
dom method which also preserves the order of the individuals is presented in
[354].

Algorithm 2.14: Xmp = rndSelectr(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: cF the prevalence comparator function
Data: i a counter variable
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

i←− n− 13

while i ≥ 0 do4

Xmp ←− addListItem(Xmp, Xsel [⌊randomu(|Xs|)⌋])5

i←− i− 16

return Xmp7

end8

2.4.3 Tournament Selection

In tournament selection15 [355, 356], k elements will be picked out of a list
Xsel and compete with each other. The winner of this competition will then
enter mating pool Xmp. Although being a very simple strategy, it is very
powerful and therefore used in many practical applications [357, 358, 359].

Consider a tournament selection (with replacement) with a tournament
size of two, where the winners are allowed to enter the mating pool. For
each single tournament, the contestants are chosen randomly according to an
uniform distribution. Hence, each individual will on average participate in two
tournaments. The best solution candidate of the population will win all the

15 http://en.wikipedia.org/wiki/Tournament_selection [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Tournament_selection

82 2 Evolutionary Algorithms

Algorithm 2.15: Xmp = rndSelectw(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n ≤ |Xsel| the number of individuals to be placed into the mating

pool Xmp

Input: Implicit: cF the prevalence comparator function
Data: i a counter variable
Data: j the index of the element to be selected next
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

i←− n− 13

while i ≥ 0 do4

j ←− ⌊randomu(|Xsel|)⌋5

Xmp ←− addListItem(Xmp, Xsel[j])6

Xsel ←− deleteListItem(Xsel, j)7

i←− i− 18

return Xmp9

end10

contests it takes part in and, again on average, will contribute two copies to
the mating pool. The median individual of the population is better than 50%
of its challengers but will also loose against 50%. Therefore, it will enter the
mating pool one time on average. The worst individual in the population will
loose all its challenges and thus will not be able to reproduce [360].

Tournament selection may directly work using the prevalence comparator
function or it could make use of a previous fitness assignment process. If the list
Xsel is already sorted, then a direct comparison between the k competitors is
not needed anymore – generating k random indices and returning the element
at the smallest of them will be sufficient.

Tournament selection with replacement is presented in Algorithm 2.16.
Tournament selection without replacement [361] exists in two versions: nor-
mally, only the selected individuals are removed from the set Xsel (see
Algorithm 2.17) - it is though possible to remove all the competitors of the
tournaments (Algorithm 2.18 on page 85).

The algorithms introduced here should more specifically be entitled as
deterministic tournament selection algorithms [356] since the winner of the k
contestants that take part in each tournament enters the mating pool.

There also exists a non-deterministic variant of this selection type16 where
this is not necessarily the case. Therefore, a probability p is defined. The best
individual in the tournament is selected with probability p, the second best
with probability p(1 − p), the third best with probability p(1 − p)2 and so
on (i.e., the ith best with probability p(1 − p)i). Algorithm 2.19 on page 86

16 http://en.wikipedia.org/wiki/Tournament_selection [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Tournament_selection

2.4 Selection 83

Algorithm 2.16: Xmp = tournamentSelectr,k(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: k the tournament size
Input: Implicit: cF the prevalence comparator function
Data: a, b the indexes of the tournament contestants in Xsel

Data: i, j counter variables
Output: Xmp the winners of the tournaments which now form the mating

pool

begin1

Xmp ←− ()2

i←− n3

while i > 0 do4

j ←− k − 15

a←− ⌊randomu(|Xsel|)⌋6

while j > 0 do7

b←− ⌊randomu(|Xsel|)⌋8

if Xsel[b] ≻ Xsel[a] then a←− b9

j ←− j − 110

Xmp ←− addListItem(Xmp, Xsel[a])11

i←− i− 112

return Xmp13

end14

realizes this behavior for a tournament selection with replacement. Notice that
this algorithm is equivalent to Algorithm 2.16 if p = 1.

2.4.4 Crowded Tournament Selection

Crowded tournament selection is applied directly on optimal sets. It only re-
lies on the crowding density estimate (see Section 35.8.3 on page 568) and
is basically one example for fitness assignment process based tournament se-
lection. It is used in algorithms where either no prevalence information is
needed, for example in hill climbing or simulated annealing (see Chapter 8
and Chapter 10) or as sub-algorithm for higher level selection methods such as
CNSGA-Selection in Section 2.4.10 on page 92. It is defined by Equation 2.29
and Equation 2.30.

crowdedTournamentSelectw,k ≡ tournamentSelectf=ρcd

w,k (2.29)

crowdedTournamentSelectr,k ≡ tournamentSelectf=ρcd

r,k (2.30)

84 2 Evolutionary Algorithms

Algorithm 2.17: Xmp = tournamentSelectw1,k(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n ≤ |Xsel| the number of individuals to be placed into the mating

pool Xmp

Input: Implicit: k the tournament size
Input: Implicit: cF the prevalence comparator function
Data: a, b the indexes of the tournament contestants in Xsel

Data: i, j counter variables
Output: Xmp the winners of the tournaments which now form the mating

pool

begin1

Xmp ←− ()2

i←− n3

while i > 0 do4

j ←− k − 15

a←− ⌊randomu(|Xsel|)⌋6

while j > 0 do7

b←− ⌊randomu(|Xsel|)⌋8

if Xsel[b] ≻ Xsel[a] then a←− b9

j ←− j − 110

Xmp ←− addListItem(Xmp, Xsel[a])11

Xsel ←− deleteListItem(Xsel, a)12

i←− i− 113

return Xmp14

end15

2.4.5 Roulette Wheel Selection

Roulette wheel selection17, also known as proportionate selection, is one of the
oldest selection methods. In this selection algorithm, an individual’s chance of
being selected is proportional to its fitness compared to the sum of the fitness
of all individuals. Roulette wheel selection works only with scalar fitness values
and therefore needs to rely on a preceding fitness assigned process if applied
to multi-objective optimization.

You should have that we wrote proportional to its fitness . . . well, in the
context of this book we regard optimization processes per default as minimiza-
tion. A high fitness would not be beneficial but a small one. In our case, we
hence want the selection to work inversely proportional to the fitness values.
In the roulette wheel algorithms introduced here, we do so.

Roulette wheel selection has a bad performance compared to other schemes
like tournament selection [358, 359] or ranking selection [358, 352]. It is mainly
included because of its fame since it was the original selection scheme for
genetic algorithms defined by Holland [211].

17 http://en.wikipedia.org/wiki/Roulette_wheel_selection [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Roulette_wheel_selection

2.4 Selection 85

Algorithm 2.18: Xmp = tournamentSelectw2,k(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n ≤ |Xsel|

k
the number of individuals to be placed into the mating

pool |Xmp|
Input: Implicit: k the tournament size
Input: Implicit: cF the prevalence comparator function
Data: a, b the indexes of the tournament contestants in Xsel

Data: i, j counter variables
Output: Xmp the winners of the tournaments which now form the mating

pool

begin1

Xmp ←− ()2

i←− n3

while i > 0 do4

j ←− k − 15

a←− ⌊randomu(|Xsel|)⌋6

while j > 0 do7

b←− ⌊randomu(|Xsel|)⌋8

if Xsel[b] > Xsel[a] then9

Xsel ←− deleteListItem(Xsel, a)10

a←− b11

j ←− j − 112

Xmp ←− addListItem(Xmp, Xsel[a])13

Xsel ←− deleteListItem(Xsel, a)14

i←− i− 115

return Xmp16

end17

Again, we provide a version with replacement in Algorithm 2.20 and one
without replacement in Algorithm 2.21.

2.4.6 Linear and Polynomial Ranking Selection

In polynomial ranking selection [205, 220], the probability for an individual
to be selected is proportional to (a power of) its position (rank) in the sorted
list of all individuals that can be selected. Therefore, it does not depend on
a fitness assignment process. The implicit parameter p ∈ R+ of the poly-
nomial ranking selection denotes the strictness of the selection: the bigger p
gets, the higher is the probability that individuals which are non-prevailed
i. e. have good objective values will be selected. p < 1 reverses that tendency:
bad individuals will be preferred. Of course, we only speak of linear ranking
if p = 1. For all other cases, the expression polynomial ranking is more ap-
propriate. Since linear ranking is the most wide spread and analyzed version
of polynomial ranking [352, 362, 358], we will focus on it here. Algorithm 2.22

86 2 Evolutionary Algorithms

Algorithm 2.19: Xmp = ndTournamentSelectpr,k(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: k the tournament size
Input: Implicit: p ∈ [0, 1] the selection probability
Input: Implicit: cF the prevalence comparator function
Input: A the tournament
Data: i, j counter variables
Output: Xmp the winners of the tournaments which now form the mating

pool

begin1

Xmp ←− ()2

i←− n3

while i > 0 do4

j ←− k5

A←− ()6

while j > 0 do7

A←− addListItem(A, ⌊randomu(|Xsel|)⌋)8

j ←− j − 19

A←− sorta(A, s(x1, x2) ≡ f(x1)− f(x2)))10

j ←− 011

while j < k do12

if randomu() < p then13

Xmp ←− addListItem(Xmp, A[j])14

j =∞15

j ←− j + 116

if j = k then Xmp ←− addListItem(Xmp, A[j])17

i←− i− 118

return Xmp19

end20

demonstrates how linear ranking selection with replacement works, ordered
selection without replacement is described in Algorithm 2.23.

Exactly like tournament selection, polynomial ranking selection can use
the prevalence comparator as well as a previous fitness assignment process.

2.4.7 VEGA Selection

The Vector Evaluated Genetic Algorithm’s selection method [363, 364] is the
first selection algorithm invented for multi-objective optimization. Here, one
subpopulation of p

|F | individuals is selected from the main population |Xsel| =
p for each objective fi ∈ F to be optimized. This subpopulation selection is
performed using a proportional secondary selection scheme like roulette wheel

2.4 Selection 87

Algorithm 2.20: Xmp = rouletteSelectr(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: f the fitness assignment function
Data: i, j counter variables, randomized index
Data: z a temporary storage for the fitness values to be minimized
Data: d the fitness sum
Output: Xmp the mating pool

begin1

Xsel ←− sorta(Xsel)2

z ←− createList(|Xsel|, 03

i←− |Xsel| − 14

ofs←− f (Xsel [|Xsel| − 1])5

while (i ≥ 0) ∧ (ofs ≤ f (Xsel[i])) do i←− i− 16

if (i < 0) ∨ (ofs ≤ f (Xsel[i])) then ofs←− 07

else ofs←− ofs + 0.5 ∗ (ofs− f (Xsel[i]))8

i←− 09

d←− 010

while i < |Xsel| do11

d←− d + ofs− f (Xsel[i])12

z[i]←− d13

i←− i + 114

Xmp ←− ()15

i←− n16

while i > 0 do17

j ←− searchas(randomu(0, d), z)18

if j < 0 then j ←− −(j + 1)19

Xmp ←− addListItem(Xmp, Xsel[j])20

return Xmp21

end22

selection (see Section 2.4.5 on page 84). The mating pool returned is then a
mixture of these subpopulations.

2.4.8 MIDEA Selection

The selection scheme applied in the MIDEA-algorithm [338] is very elitist since
it only selects optimal individuals. If the optimal set is too large, a subset of
maximum diversity is returned. This subset is created by first choosing one
individual which is best in respect to a randomly drawn objective function
(lines 4 and 5 in Algorithm 2.25). This drawing may be performed by taking
all individuals and assuming that all objectives other than i are 0 and then
applying prevalence comparator cF . If the first individual x is chosen, it is
placed into the mating pool. For each other individual, the distance to x is

88 2 Evolutionary Algorithms

Algorithm 2.21: Xmp = rouletteSelectw(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n < |Xsel| the number of individuals to be placed into the mating

pool Xmp

Input: Implicit: f the fitness assignment function
Data: i, j, k counter/index variables
Data: z a temporary storage for the fitness values to be minimized
Data: d, δ fitness value sum calculation variables
Output: Xmp the mating pool

begin1

Xsel ←− sorta(Xsel)2

z ←− createList(|Xsel|, 0)3

i←− |Xsel| − 14

ofs←− f (Xsel [|Xsel| − 1])5

while (i ≥ 0) ∧ (ofs ≤ f (Xsel[i])) do i←− i− 16

if (i < 0) ∨ (ofs ≤ f (Xsel[i])) then ofs←− 07

else ofs←− ofs + 0.5 ∗ (ofs− f (Xsel[i]))8

i←− 09

d←− 010

while i < |Xsel| do11

d←− d + ofs− f (Xsel[i])12

z[i]←− d13

i←− i + 114

Xmp ←− ()15

i←− n16

while i > 0 do17

j ←− searchas(randomu(d, 0), z)18

if j < 0 then j ←− −(j + 1)19

Xmp ←− addListItem(Xmp, Xsel[j])20

if j > 0 then δ ←− z[j]− z[j − 1]21

else δ ←− z[j]22

if j < |Xsel| − 1 then23

k ←− j24

while k < |Xsel| do25

z[k]←− z[k + 1]− δ26

Xsel[k]←− Xsel[k + 1]27

d←− d− δ28

Xsel ←− deleteListItem(Xsel, |Xsel| − 1)29

z ←− deleteListItem(z, |z| − 1)30

i←− i− 131

return Xsel[i]32

end33

2.4 Selection 89

Algorithm 2.22: Xmp = polynomialRankingSelectr,p(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: p ∈ R the power value to be used for ordering
Input: Implicit: cF the prevalence comparator function
Data: i a counter variable
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

Xsel ←− sorta(Xsel, cF)3

i←− n− 14

while i ≥ 0 do5

Xmp ←− addListItem(Xmp, Xsel [⌊(randomu())p ∗ |Xsel|⌋])6

i←− i− 17

return Xmp8

end9

Algorithm 2.23: Xmp = polynomialRankingSelectw,p(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n ≤ |Xsel| the number of individuals to be placed into the mating

pool Xmp

Input: p ∈ R the power value to be used for ordering
Input: Implicit: cF the prevalence comparator function
Data: i a counter variable
Data: j the index of the element to be selected next
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

Xsel ←− sorta(Xsel, cF)3

i←− n− 14

while i ≥ 0 do5

j ←− ⌊(randomu())p ∗ |Xsel|⌋6

Xmp ←− addListItem(Xmp, Xsel[j])7

Xsel ←− deleteListItem(Xsel, j)8

i←− i− 19

return Xmp10

end11

90 2 Evolutionary Algorithms

Algorithm 2.24: Xmp = vegaSelect(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: F the set of objective functions fi

Data: i a counter variable
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

i←− |F |3

while i > 0 do4

Xmp ←− appendList(Xmp, rouletteWheelSelectf=fi(Xsel,
n
|F |))5

i←− i− 16

return Xmp7

end8

computed. The individual which is the farthest away from x is to be included
next. After doing so, the distance of the rest of the selectable individuals to
the mating pool are updated if they are nearer to the newly included element.
This repeated until the mating pool is filled. Notice that MIDEA-selection is
always without replacement and may result in a mating pool with less than
n individuals - n now is a mere upper bound of its size (|Xmp| ≤ n).

2.4.9 NPGA Selection

This selection scheme was introduced by Jeffrey Horn, Nicholas Nafpliotis,
and David E. Goldberg for their Niched Pareto Genetic Algorithm in [345]
as extension of normal tournament selection. Each time one new individual
should be included in the mating pool, two candidates (x1, x2) are picked
randomly. Then, these two are compared to an also randomly picked set of
v individuals xtst. If one of the two individuals x1 or x2 is not prevailed
by any of the individuals xtst while the other one is, it is selected. If either
both are prevailed or non-prevailed, the one with the less other individuals
in Xsel in its niche is used. This niching method is implicitly performed by
the fitness assignment process f which assigns the niche size as scalar fitness
to each individual (see Section 2.3.6). Of course, any other fitness assignment
process then this intended one could be used. In Algorithm 2.26 we introduce
NPGA selection with replacement, Algorithm 2.27 on page 93 presents NPGA
selection without replacement. Notice that this selection scheme can easily be
extended to use a candidate set of the size k instead of two as propagated in
the original work.

The NPGA selection scheme uses both, the prevalence comparator as well
as a fitness assignment process at the same time.

2.4 Selection 91

Algorithm 2.25: Xmp = mideaSelect(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: cF the prevalence comparator function and therefore:
Implifict F the objective functions

Data: i, j counter variables
Data: Xl the list representation of the optimal set in Xsel

Data: x the individual most recently included in Xmp

Data: dl the list assigning a distance from the mating pool to each individual
Data: md, mi the maximum distance to the mating pool and the index of

the individual with this distance
Output: Xmp the individuals selected

begin1

Xl = setToList(extractOptimalSet(Xsel))2

if |Xl| ≤ n then return Xl3

i←− ⌈randomu(|F |)⌉4

x←− opt{fi(x) ∀x ∈ Xl}5

Xmp ←− createList(1, x)6

Xl ←− remove(|Xl|, x)7

dl←− createList(|Xl|,∞)8

i←− n− 19

while i > 0 do10

md←− −∞11

j ←− |Xl| − 112

while j ≥ 0 do13

if dist(Xl[j], x) < dl[j] then dl[j]←− dist(Xl[j], x)14

if dl[j] > md then15

md←− dl[j]16

mi←− j17

j ←− j − 118

x←− Xl[mi]19

Xl ←− deleteListItem(Xl, mi)20

dl←− deleteListItem(dl, mi)21

Xmp ←− addListItem(Xmp, x)22

i←− i− 123

return Xmp24

end25

92 2 Evolutionary Algorithms

Algorithm 2.26: Xmp = npgaSelectr,v(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: v the size of the test set
Input: Implicit: cF the prevalence comparator function
Data: i, j counter variables
Data: xtst the test individual
Data: x1, x2 the candidates for inclusion into Xmp

Data: d1, d2 boolean variables checking if x1, x2 are prevailed
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

i←− n− 13

while i ≥ 0 do4

Xtst ←− ∅5

x1 ←− Xsel[⌊randomu(|Xsel|)⌋]6

x2 ←− Xsel[⌊randomu(|Xsel|)⌋]7

d1 ←− false8

d2 ←− false9

j ←− v10

while j > 0 do11

xtst ←− Xsel[⌊randomu(|Xsel|)⌋]12

if xtst ≻ x1 then d1 ←− true13

if xtst ≻ x2 then d2 ←− true14

j ←− j − 115

if d1 ∧ d2 then Xmp ←− addListItem(Xmp, x1)16

else if d1 ∧ d2 then Xmp ←− addListItem(Xmp, x2)17

else if f(x1) > f(x2) then Xmp ←− addListItem(Xmp, x1)18

else Xmp ←− addListItem(Xmp, x2)19

i←− i− 120

return Xmp21

end22

2.4.10 CNSGA Selection

The Controlled Non-dominated Sorting Genetic Algorithm (CNSGA) [365]
by Deb and Goell uses a selection scheme which preserves individual diversity
along the optimal (non-prevailed) frontiers as well as in depth of the prevailed
individuals. It extends the measures applied in NSGA2-fitness assignment pro-
cesses (see Section 2.3.8 on page 73). Basing on the prevalenceF itnessAssign2

fitness assignment process (Section 2.3.2 on page 66), the frontiers where each
element has the same integer fitness are enumerated. This will be the non-
dominated frontiers Zi, which can be defined by:

Z0 = extractOptimalSet(Xsel) (2.31)

2.4 Selection 93

Algorithm 2.27: Xmp = npgaSelectw,v(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n ≤ |Xsel| the number of individuals to be placed into the mating

pool Xmp

Input: v the size of the test set
Input: Implicit: cF the prevalence comparator function
Data: i, j counter variables
Data: xtst the test individual
Data: x1, x2 the candidates for inclusion into Xmp

Data: d1, d2 boolean variables checking if x1, x2 are prevailed
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

i←− n− 13

while i ≥ 0 do4

Xtst ←− ∅5

x1 ←− Xsel[⌊randomu(|Xsel|)⌋]6

x2 ←− Xsel[⌊randomu(|Xsel|)⌋]7

d1 ←− false8

d2 ←− false9

j ←− v10

while j > 0 do11

xtst ←− Xsel[⌊randomu(|Xsel|)⌋]12

if xtst ≻ x1 then d1 ←− true13

if xtst ≻ x2 then d2 ←− true14

j ←− j − 115

if d1 ∧ d2 then16

if
(
d1 ∧ d2

)
∨ (f(x2) > f(x1)) then x1 ←− x217

Xsel ←− removeListItem(Xsel, x1)18

Xmp ←− addListItem(Xmp, x1)19

i←− i− 120

return Xmp21

end22

Z1 = extractOptimalSet(Xsel \ Z0) (2.32)

Z2 = extractOptimalSet(Xsel \ (Z0 ∪ Z1)) (2.33)

· · ·
Zi = extractOptimalSet

(
Xsel \

(
∪i−1

j=0Zj

))
(2.34)

(2.35)

It is attempted to maintained an adaptively computed number pi of indi-
viduals from each such front Zi, where pi is computed using the geometric
distribution:

pi = v pi−1(v ∈ [0, 1)) (2.36)

94 2 Evolutionary Algorithms

pi is the maximum number of individuals allowed in the ith frontier F . If
K is the total count of frontiers in the set of selectable individuals Xsel and
the first frontier has the index 0 (thus i ∈ {0, 1, 2, . . . ,K − 1}), the count of
individuals allowed in frontier Zi can be computed by

pi = ⌊|Xsel|
1− v

1− vK
vi + 0.5⌋ (2.37)

The number of individuals selected from the first front is highest, decreasing
exponentially with i. Of course, it may be possible that in a frontier j are not
enough individuals for selection (|Zj | < pj). If that is the case, the number of
remaining individuals is used as a bonus of additional individuals allowed in
the next front, therefore changing the equation of pi:

bonus0 = 0 (2.38)

bonusi = max{0, pi−1 − |Zi−1|} (2.39)

pi = ⌊|Xsel|
1− v

1− vK
vi + 0.5⌋+ bonusi (2.40)

If there are more individuals in Zi than needed (|Zi| > pi), a sec-
ondary selection algorithm, in the original paper crowded tournament selec-
tion crowdedTournamentSelect2 (see Section 2.4.4 on page 83) is applied.
Crowded tournament selection serves here to preserve diversity. This special
selection algorithm solely bases on the crowding distance cd and the density
estimate ρcd (see Section 35.8.3 on page 568). It is still possible that we cannot
fill up the mating pool with one pass of the selection algorithm, since it may
happen that we have very much individuals in the first fronts and only very few
in the last frontiers. If that is the case, the whole process is simple repeated.
We have specified CNSGA selection with replacement in Algorithm 2.28 and
without replacement in Algorithm 2.29.

2.4.11 PESA Selection

The selection algorithm employed by PESA [366] relies strongly on the adap-
tive grid archiving technique which is introduced as Algorithm 1.6 on page 38
in this book. Basically, PESA selection selects only individuals of the optimal
set using a binary tournament where the individual in the less crowded grid
region wins and ties are broken randomly. For more information about how
the hyper-grid used is generated, take a look at Section 1.7.3 on page 36.
The PESA selection can be performed with (in Algorithm 2.30) and without
(in Algorithm 2.31) replacement, but usually works directly on the objective
function values since these are internally used to build the hyper-grid.

2.4.12 PESA-II Selection

In PESA-II [367], selection is no longer performed individual- but hyper-box
based. This selection algorithm is a two-level method: first, the individuals

2.4 Selection 95

Algorithm 2.28: Xmp = cnsgaSelectfr,v(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: v the frontier ratio
Data: Z the remaining/optimal front/unused individual lists
Data: i, K the front counter and the expected count of fronts
Data: j a counter variable
Data: m, p the remaining/current count of individuals to select
Data: bonus the count of individuals missing in the previous fronts
Data: selectr the secondary selection scheme, normally

crowdedTournamentSelectr

Output: Xmp the individuals selected

begin1

Xmp ←− ()2

Xsel ←− sorta(Xsel, s(x1, x2) ≡ f(x1)− f(x2))3

K ←− ⌊f(Xsel[|Xsel| − 1])⌋ − ⌊f(Xsel[0])⌋+ 14

while |Xmp| < n do5

i←− 06

j ←− 07

bonus←− 08

m←− n−Xmp9

while (|Xsel| > 0) ∧ (|Xmp| < n) do10

Z ←− ()11

f ←− ⌊f(Xsel[j])⌋12

while (j < |Xsel|) ∧ (f = ⌊f(Xsel[j])⌋) do13

Z ←− listAdd(Z, Xsel[j])14

j ←− j + 115

p←− max{⌊m 1−v
1−vK vi + 0.5⌋+ bonus, 1}16

if |Z| ≤ p then17

Xmp ←− appendList(Xmp, Z)18

bonus←− |Z| − p19

else20

Xmp ←− appendList(Xmp, selectr(listToSet(Z), p))21

bonus←− 022

i←− i + 123

return Xmp24

end25

96 2 Evolutionary Algorithms

Algorithm 2.29: Xmp = cnsgaSelectfw,v(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n ≤ |Xsel| the number of individuals to be placed into the mating

pool Xmp

Input: Implicit: v the frontier ratio
Data: Z, G the remaining/optimal front/unused individual lists
Data: i, K the front counter and the expected count of fronts
Data: m, p the remaining/current count of individuals to select
Data: bonus the count of individuals missing in the previous fronts
Data: selectw the secondary selection scheme, normally

crowdedTournamentSelectw

Output: Xmp the individuals selected

begin1

Xmp ←− ()2

Xsel ←− sorta(Xsel, s(x1, x2) ≡ f(x1)− f(x2))3

while |Xmp| < n do4

G←− ()5

i←− 0 bonus←− 06

K ←− ⌊f(Xsel[|Xsel| − 1])⌋ − ⌊f(Xsel[0])⌋+ 17

m←− n−Xmp8

while (|Xsel| > 0) ∧ (|Xmp| < n) do9

Z ←− ()10

f ←− ⌊f(Xsel[0])⌋11

while (|Xsel| > 0) ∧ (f = ⌊f(Xsel[0])⌋) do12

Z ←− listAdd(Z, Xsel[0])13

Xsel ←− listDelete(Xsel[0])14

p←− max{⌊m 1−v
1−vK vi + 0.5⌋+ bonus, 1}15

if |Z| ≤ p then16

Xmp ←− appendList(Xmp, Z)17

bonus←− |Z| − p18

else19

Xmp ←− appendList(Xmp, selectw(listToSet(Z), p))20

bonus←− 021

G←− appendList(G, Z)22

i←− i + 123

Xsel ←− G24

return Xmp25

end26

2.4 Selection 97

Algorithm 2.30: Xmp = pesaSelectr(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Data: lst a list assigning grid coordinates to the elements of Xsel

Data: cnt containing the count of elements in the grid locations defined in lst
Data: a, b, i index variables
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

(Xsel, lst, cnt)←− agaDivide(extractOptimalSet(Xsel), d)3

(lst, cnt)←− agaNormalize(lst, cnt)4

i←− n5

while i > 0 do6

a←− ⌊randomu(|Xsel|)⌋7

b←− ⌊randomu(|Xsel|)⌋8

if cnt[b] < cnt[a] then a←− b9

Xmp ←− addListItem(Xmp, Xsel[a])10

i←− i− 111

return Xmp12

end13

Algorithm 2.31: Xmp = pesaSelectw(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n < |Xsel| the number of individuals to be placed into the mating

pool Xmp

Data: lst a list assigning grid coordinates to the elements of Xsel

Data: cnt containing the count of elements in the grid locations defined in lst
Data: a, b, i index variables
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

(Xsel, lst, cnt)←− agaDivide(extractOptimalSet(Xsel), d)3

(lst, cnt)←− agaNormalize(lst, cnt)4

i←− n5

while i > 0 do6

a←− ⌊randomu(|Xsel|)⌋7

b←− ⌊randomu(|Xsel|)⌋8

if cnt[b] < cnt[a] then a←− b9

Xmp ←− addListItem(Xmp, Xsel[a])10

Xsel ←− deleteListItem(Xsel, a)11

cnt←− deleteListItem(cnt, a)12

i←− i− 113

return Xmp14

end15

98 2 Evolutionary Algorithms

are divided into hyper-boxes according to Algorithm 1.6 on page 38 and a
secondary selection is performed on these hyper-boxes on line 12. Therefore,
any fitness assignment process based selection could be chosen (be default,
a binary tournament selection is used). As fitness subject to minimization,
the inhabitant count is assigned to each box. From each box chosen by the
secondary selection algorithm, one individual is drawn by random. This selec-
tion method is only defined as algorithm with replacement and only selection
algorithms with replacement should be chosen as secondary selection schemes.
Like the PESA-selection, this selection algorithm is also strictly elitist.

Algorithm 2.32: Xmp = pesa2Select(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: selectf a fitness assignment based selection scheme to be
used for hyper-box selection, binary tournament selection by default

Data: lst a list assigning grid coordinates to the elements of Xsel

Data: cnt containing the count of elements in the grid locations defined in lst
Data: i, j index variables
Data: X ′

sel, X ′
mp the hyper-box selection and mating pools

Data: f a fitness function that assigns the count of occupying individuals to
the hyper-boxes

Output: Xmp the individuals selected

begin1

Xmp ←− ()2

(Xsel, lst, cnt)←− agaDivide(extractOptimalSet(Xsel), d)3

(lst, cnt)←− agaNormalize(lst, cnt)4

X ′
sel ←− ∅5

i←− |lst| − 16

while i ≥ 0 do7

if lst[i] 6∈ X ′
sel then8

X ′
sel ←− X ′

sel ∪ lst[i]9

f(lst[i])←− cnt[i] + 210

i←− i− 111

X ′
mp ←− selectf(X ′

sel, n)12

i←− |X ′
mp|13

while i > 0 do14

j ←− ⌊randomu(|Xsel|)⌋15

while lst[j] 6= X ′
mp[i] do j ←− (j + 1) mod |Xsel|16

Xmp ←− listAdd(Xmp, Xsel[j])17

i←− i− 118

return Xmp19

end20

2.5 Reproduction 99

2.4.13 Prevalence/Niching Selection

Fernando Jiménez et al. introduced in [224] another interesting selection al-
gorithm [368]. Although it is used for constraint-based genetic algorithms,
the constraint-related parts can be striped so only a simple selection scheme
remains in Algorithm 2.33. The basic idea is to draw two individuals a and
b from the selectable set Xsel. If one of them prevails over the other, the
non-prevailed individual is included into the mating pool. If neither one is
prevailing, then a test set Xt of the size k is drawn. If a is non-prevailed by
this test set but b is, then a is put into the mating pool. The same goes for b
vice versa. If again either both are prevailed or non-prevailed, the one of them
with the smaller niche count m(x,Xsel) wins (see Section 2.3.5 on page 69).

2.5 Reproduction

Optimization algorithms use the information gathered up to step t to create
the solution candidates to be evaluated in step t + 1. There exist different
methods to do so, but basically, they can be reduced to four reproduction op-
erations. Although their names are strongly inspired by genetic algorithms and
the biological reproduction mechanisms18 of mother nature [187], the defini-
tions given in this chapter are general enough to fit for all global optimization
algorithms. Note that all the operations defined may application-dependently
be implemented in a deterministic or a randomized way.

In the following definitions, the operators are applied to elements x of the
solution space X̃. This is not always the case – in genetic algorithms for ex-
ample, they will work on the genotypes g ∈ G which are only an intermediate
representation of the phenotypes x. In these cases, we assume that an implicit
translation takes place.

Definition 42 (Creation). The creation operation create is used to produce
a new solution candidate which is not related to the existing ones. When
starting up the optimization process, this operation may be used to create
randomized individuals.

xnew = create(), xnew ∈ X̃ (2.41)

Definition 43 (Duplication). The duplication operation duplicate is used
to create an exact copy of an existing solution candidate x. Duplication may
be useful to increase the share of a given type of individual in a population
for population-based algorithms or if the evaluation criteria have changed.

xnew = x = duplicate(x) : x ∈ X̃, xnew ∈ X̃ (2.42)

18 http://en.wikipedia.org/wiki/Reproduction [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Reproduction

100 2 Evolutionary Algorithms

Algorithm 2.33: Xmp = prevalenceNicheSelect(Xsel, n)

Input: Xsel the list of individuals to select from
Input: n the number of individuals to be placed into the mating pool Xmp

Input: Implicit: k the test set size
Data: Xt the test set
Data: a, b individuals competing against each other
Data: i, j index variables
Output: Xmp the individuals selected

begin1

Xmp ←− ()2

i←− n3

Xsel ←− setToList(Xsel)4

while i > 0 do5

a←− Xsel[⌊randomu(|Xsel|)⌋]6

b←− Xsel[⌊randomu(|Xsel|)⌋]7

if a ≻ b then8

Xmp ←− listAdd(Xmp, a)9

else if b ≻ a then10

Xmp ←− listAdd(Xmp, b)11

else12

j ←− k13

Xt ←− ∅14

while j > 0 do15

Xt ←− Xt ∪Xsel[⌊randomu(|Xsel|)⌋]16

j ←− j − 117

if ∃x ∈ Xt : x ≻ a ∧ (∃x ∈ Xt : x ≻ b) then18

Xmp ←− listAdd(Xmp, a)19

else if ∃x ∈ Xt : x ≻ a ∧ ∃x ∈ Xt : x ≻ b then20

Xmp ←− listAdd(Xmp, b)21

else22

if m(a, Xsel) < m(b, Xsel) then Xmp ←− listAdd(Xmp, a)23

else Xmp ←− listAdd(Xmp, b)24

i←− i− 125

return Xmp26

end27

Definition 44 (Mutation). The mutation19 operation mutate is used to
create a new solution candidate by modifying an existing one. This modifica-
tion may application-dependently happen in a randomized or in a determin-
istic fashion.

xnew = mutate(x) : x ∈ X̃, xnew ∈ X̃ (2.43)

19 http://en.wikipedia.org/wiki/Mutation [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Mutation

2.5 Reproduction 101

Definition 45 (Crossover). The crossover20 (or recombination21) opera-
tion crossover is used to create a new solution candidate by combining the
features of two existing ones. This modification may application-dependently
happen in a randomized or in a deterministic fashion.

xnew = crossover(x1, x2) : x1, x2 ∈ X̃, xnew ∈ X̃ (2.44)

Notice that the term recombination is more general than crossover (which
is often used for linear representations of solution candidates only) and is
therefore maybe a better choice for the function that produces and offspring
of two parents. Crossover is however more common and therefore used here.

These operations may be combined arbitrarily, mutate (crossover (x1, x2))
for example may produce a mutated offspring of x1 and x2. All operators
together are used to reproduce whole populations of individuals.

Definition 46 (reproducePop). While a single reproducePop-function cre-
ates exactly one solution candidate, we introduce the reproducePop(Xmp, k)
operation which creates a new population of k individuals from a list of Xmp

individuals (the mating pool, obtained for example from one of the selection
operators, see Section 2.4).

Xnew = reproducePop(Xmp, k) (2.45)

∀xold ∈ Xmp ⇒ xold ∈ X̃ (2.46)

|Xnew| = k (2.47)

∀xnew ∈ Xnew ⇒ xnew ∈ X̃ (2.48)

∀xold ∈ Xmp ∃ xnew ∈ X̃ : reproduce(xold) = xnew (2.49)

Furthermore, we define a macro for creating a set of n random individuals:

2.5.1 NCGA Reproduction

The NCGA evolutionary algorithm [369] uses a special reproduction method.
Crossover is performed only neighboring individuals which will lead to child in-
dividuals close to their parents. This so-called neighborhood cultivation shifts
the crossover/recombination-operator more into exploitation. It can further-
more be argued that parents that do not differ very much from each other
are more likely to be compatible in order to produce functional offspring than
parents that have nothing in common. Neighborhood cultivation is achieved
in Algorithm 2.35 by sorting the mating pool along one focused objective and
then recombine elements situated directly besides each other. The focus on
the objective rotates in a way that in a three-objective optimization the first

20 http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29 [accessed

2007-07-03]

21 http://en.wikipedia.org/wiki/Recombination [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Recombination

102 2 Evolutionary Algorithms

Algorithm 2.34: Xpop = createPop(n)

Input: n the size of the population to be created
Data: i a counter variable
Output: Xpop the new, random population (|Xpop| = n)

begin1

Xpop ←− ()2

i←− n3

while i > 0 do4

Xpop ←− appendListItem(Xpop, create())5

i←− i− 16

return Xpop7

end8

objective is focused at the beginning, then the second, then the third and after
that again the first. The algorithm shown here has the implicit parameter foc
denoting that focused parameter. The original publication is not very clear
about how the mutation is applied, so we simple mutate each individual (see
line 12), which could be changed in any real implementation.

Algorithm 2.35: Xpop = ncgaReproducePopfoc(Xmp, p)

Input: Xmp the mating pool list
Input: Implicit: p the count of individuals to be created
Input: Implicit: foc the objective currently focussed
Input: Implicit: crossover, mutate - crossover and mutation routines
Output: Xpop the new population

begin1

Xmp ←− sorta(Xmp, s(x1, x2) ≡ ffoc(x1)− ffoc(x2))2

Xp ←− ()3

i←− p− 14

while i ≥ 0 do5

Xp ←− appendListItem(Xp, crossover(Xmp [i mod |Xmp|] ,6

Xmp [(i + 1) mod |Xmp|]))7

i←− i− 18

Xmp ←− ()9

i←− |Xp| − 110

while i ≥ 0 do11

Xmp ←− appendListItem(Xmp, mutate(Xp[i]))12

i←− i− 113

return Xpop14

end15

2.6 Algorithms 103

2.6 Algorithms

Besides the standard evolutionary algorithms introduced in Section 2.1.1 on
page 51, there exists a variety of other, more sophisticated approaches. Many
of them deal especially with multi-objectivity which imposes new challenges on
fitness assignment and selection. In this section we discuss the most prominent
of these evolutionary algorithms.

2.6.1 VEGA

The very first multi-objective genetic algorithm is the Vector Evaluated Ge-
netic Algorithm [363, 364] invented in 1985 by Schaffer. In VEGA, the selec-
tion algorithm has been modified (see Section 2.4.7 on page 86). If it is applied
to |F | objectives, the selection will first create p

|F | subpopulations, each filled

with a proportional secondary selection algorithm working on one single ob-
jective. These subpopulations are then shuffled together again in order to
perform reproduction. The VEGA is specified here as Algorithm 2.36.

Richardson et.al. [370, 371] argue the selection scheme of VEGA would be
approximately the same as if computing a weighted sum of the fitness values
[372].

Algorithm 2.36: X⋆ = vega(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xpop ←− createPop(p)2

while ¬terminationCriterion() do3

Xmp ←− vegaSelect(Xpop, p)4

Xpop ←− reproducePop(Xmp, p)5

return extractOptimalSet(Xpop)6

end7

2.6.2 MIDEA

The naive mixture-based, multi-objective iterated density-estimation evolu-
tionary algorithm [337, 338, 373] uses a mixture of probability distributions
in order to estimate multi-objective criteria. It has a good performance in
function minimization and in solving combinatorial problems [227]. In this

104 2 Evolutionary Algorithms

part of the book we are not concerned about special applications (like pure
numeric parameter approximation) so we will solely concentrate on the evo-
lutionary properties of MIDEA.

MIDEA uses a special selection scheme specified in Section 2.4.8 on
page 87. In the population, the individuals which have not been selected are
replaced by offspring of the selected individuals - MIDEA is thus an elitist
algorithm. As far as general problem spaces are regarded, that is the ma-
jor difference to other EA. The specification of (the generalized version of)
MIDEA can be found in Algorithm 2.37.

Algorithm 2.37: X⋆ = midea(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xnew the individuals of the next generation
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xpop ←− createPop(p)2

while ¬terminationCriterion() do3

Xmp ←− mideaSelect(Xpop, p)4

Xnew ←− reproducePop(Xmp, p− |Xmp|)5

Xpop ←− appendList(Xmp, Xnew)6

return extractOptimalSet(Xpop)7

end8

2.6.3 NPGA

The Niched Pareto Genetic Algorithm for multi-objective optimization by
Horn, Nafpliotis, and Goldberg [374, 345, 375] uses a special sort of tourna-
ment selection, the npgaSelect-algorithm (see page 90) and a fitness assign-
ment strategy which puts pressure against crowded niches (see Section 2.3.6
on page 71) in order to obtain a broad scan of the optimal frontier. It works
as described in Algorithm 2.38 on the facing page.

2.6.4 NPGA2

Erickson, Mayer and Horn improved the Niched Pareto Genetic Algorithm in
order to make the Pareto domination sampling used in the tournaments less
lossy [376]. In principle, they now apply a Pareto-ranking scheme, as discussed
in [372] and defined as rank-based fitness assignment processes in this book

2.6 Algorithms 105

Algorithm 2.38: X⋆ = npga(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xpop ←− createPop(p)2

while ¬terminationCriterion() do3

nichSizeF itnessAssign(Xpop, ())4

Xmp ←− npgaSelect(Xpop, p)5

Xpop ←− reproducePop(Xmp, p)6

return extractOptimalSet(Xpop)7

end8

(see Section 2.3.3 on page 67). The NPGA2 utilizes (deterministic) tourna-
ment selection with the tournament size k. For each tournament, we check
if one individual has the lowest rank of all k candidates. If so, it wins the
tournament. Otherwise, the population density around the candidates will
break the tie – the individual with the fewest other individuals in its near
will win. This approach is equivalent to performing a fitness assignment pro-
cess which orders the individuals according to their rank and using the values
of the sharing function Sh as increments while ensuring that individuals of
lower rank have always lower fitness values regardless of how crowded their
surrounding is. Exactly this is done in the nsgaF itnessAssign fitness as-
signment process, Algorithm 2.8 on page 73. The result of this specification
is Algorithm 2.39 on the next page, which was used by the authors to optimize
groundwater remediation systems.

2.6.5 NSGA

The non-dominated sorting genetic algorithm by Srinivas and Deb [346, 23]
employs a special fitness assignment procedure (see Algorithm 2.8 on page 73)
that successively removes the non-prevailed individuals from the population
and relates it to fitness values using sharing to enhance diversity. After fit-
ness assignment, the original paper mentions the use of a stochastic remainder
proportionate selection scheme – seemingly a roulette wheel method. NSGA
has been applied in a variety of multi-objective optimization problems, for
example in polymer reaction engineering, catalytic reactors, membrane mod-
ules, cyclone separators and venturi scrubbers in chemical engineering [121].
The NSGA algorithm is specified here as Algorithm 2.40. Many similarities
between NSGA and the NPGA2 algorithm (Section 2.6.4 on the preceding
page) can be observed.

106 2 Evolutionary Algorithms

Algorithm 2.39: X⋆ = npga2(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xpop ←− createPop(p)2

while ¬terminationCriterion() do3

nsgaF itnessAssign(Xpop, ())4

Xmp ←− tournamentSelect(Xpop, p)5

Xpop ←− reproducePop(Xmp, p)6

return extractOptimalSet(Xpop)7

end8

Algorithm 2.40: X⋆ = nsga(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xpop ←− createPop(p)2

while ¬terminationCriterion() do3

nsgaF itnessAssign(Xpop, ())4

Xmp ←− rouletteWheelSelect(Xpop, p)5

Xpop ←− reproducePop(Xmp, p)6

return extractOptimalSet(Xpop)7

end8

2.6.6 NSGA2

The nondominated sorting genetic algorithm 2 by Deb, Agrawal, Pratab and
Meyarivan [347] is an extension of the NSGA algorithm. It improves conver-
gence with elitism and employs a new, improved fitness assignment process
(see Algorithm 2.9 on page 74). After fitness assignment, a binary tournament
selection is used. NSGA2 is specified as Algorithm 2.41 on the next page.

2.6.7 CNSGA

The Controlled Non-dominated Sorting Genetic Algorithm (CNSGA) [365]
by Deb and Goell is an extension of the NSGA2. Whereas NSGA2 may

2.6 Algorithms 107

Algorithm 2.41: X⋆ = nsga2(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates

Input: Implicit: p the population size
Data: Xpop, Xold the current and the previous population
Data: Xmp the mating pool
Output: Xsel the individuals list of selectable individuals

begin1

Xold ←− ()2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

Xsel ←− appendList(Xold, Xpop)5

nsga2FitnessAssign(Xsel, ())6

Xsel ←− sorta(Xsel, s(x1, x2) = f(x1)− f(x2))7

if p < |Xsel| then Xsel ←− deleteListRange(Xsel, p, |Xsel| − p)8

Xmp ←− tournamentSelectf
r,2(Xsel, p)9

Xold ←− Xpop10

Xpop ←− reproducePop(Xmp, p)11

return extractOptimalSet(appendList(Xpop, Xold))12

end13

be too explorative in some circumstances and thus loose the individual
diversity to optimally solve problems, CNSGA applies a controlled ap-
proach for diversity preservation. CNSGA preserves individual diversity by
a special selection algorithm (see Section 2.4.10 on page 92) which uses
the prevalenceF itnessAssign2 fitness assignment process (Section 2.3.2 on
page 66). It preserves diversity inside the optimal frontiers by using the
crowding density estimate and across the frontiers by adaptively including
individuals. While the properties of the selection algorithm are described in
Section 2.4.10, the rest of the algorithm remains the same as in NSGA2:

2.6.8 PAES

The Pareto Archived Evolutionary Strategy (PAES) [377] by Knowles and
Corne is very similar to multi-objective hill climbing presented in Chapter 8
on page 223. It introduces a new method of pruning the optimal set [120]
(see Algorithm 1.7 on page 39). An individual is included in the non-prevailed
set if it is non-prevailed. If this optimal set reaches its maximum size, a new,
non-prevailed individual is only included if it can replace one inside the archive
that resides in a more crowded region. This means that new individuals enter
the archive only if they may add diversity (see Section 1.7.3 on page 36).

It is also possible to create (1 + λ) or (µ + λ) variants of PAES, which, in
its pure version, is a (1 + 1)-algorithm and specified here as Algorithm 2.43
on the next page.

108 2 Evolutionary Algorithms

Algorithm 2.42: X⋆ = cnsga(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates

Input: Implicit: p the population size
Data: Xpop, Xold the current and the previous population
Data: Xmp the mating pool
Output: Xsel the individuals list of selectable individuals

begin1

Xold ←− ()2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

Xsel ←− appendList(Xold, Xpop)5

prevalenceF itnessAssign2(Xsel, ())6

Xmp ←− cnsgaSelectf
w(Xsel, p)7

Xold ←− Xpop8

Xpop ←− reproducePop(Xmp, p)9

return extractOptimalSet(appendList(Xpop, Xold))10

end11

Algorithm 2.43: X⋆ = paes(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Data: xnew ∈ X̃ the new element created
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− ∅2

xnew ←− create()3

while ¬terminationCriterion() do4

X⋆ ←− updateOptimalSet(X⋆, xnew)5

X⋆ ←− pruneOptimalSetaga(X⋆)6

xnew ←− select(setToList(X⋆), 1)[0]7

xnew ←− mutate(xnew)8

return X⋆
9

end10

2.6.9 PESA

The Pareto Envelope-based Selection Algorithm [366] (Algorithm 2.44 on the
facing page) is an evolutionary algorithm with many parallels to the PAES.
It also uses a hyper-grid in order to determine if a solution is situated in a
crowded region or not. PESA is very elitist by only using the optimal set for
selection (see Section 2.4.11 on page 94 for more details).

2.6 Algorithms 109

Algorithm 2.44: X⋆ = pesa(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− ∅2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

foreach x ∈ Xpop do X⋆ ←− updateOptimalSet(X⋆, x)5

X⋆ ←− pruneOptimalSetaga(X⋆)6

Xmp ←− pesaSelect(X⋆, p)7

Xpop ←− reproducePop(Xmp, p)8

return X⋆
9

end10

2.6.10 PESA-II

The Pareto Envelope-based Selection Algorithm II [367] (Algorithm 2.45 on
the following page) improves PESA by using a more sophisticated selection
method (see Section 2.4.12 on page 94). Basically, instead of selecting indi-
viduals, boxes in the hyper-grid are now selected basing on the count of their
inhabitants. From these boxes, individuals are then drawn randomly. In all
other features, PESA-II equals PESA.

2.6.11 RPSGAe

The Reduced Pareto Set Genetic Algorithm with Elitism (RPSGAe) [348, 378]
improves the RPSG algorithm [379] by adding elitism in a very decent way
and is specified here as Algorithm 2.46 on page 111. The algorithm works
on a local population Xpop and an external population/archive Xarc. It uses
a rank-based fitness assignment strategy defined in Section 2.3.9 on page 75
with a maximum number of n ranks. The archive is initially empty, but in
each generation, the best 2 p

n
(where p is the population size) individuals from

the local population Xpop are copied to it. If the archive reaches size 2p,
it is truncated back to size p

n
, only keeping the best solution candidates.

This truncated archive is now incorporated back into the local population by
replacing the p

n
weakest individuals there.

2.6.12 SFGA and PSFGA

The Single Front Genetic Algorithm and its parallelized version the Parallel
Single Front Genetic Algorithm are introduced in [380] by de Toro, Ortega

110 2 Evolutionary Algorithms

Algorithm 2.45: X⋆ = pesa2(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− ∅2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

foreach x ∈ Xpop do X⋆ ←− updateOptimalSet(X⋆, x)5

X⋆ ←− pruneOptimalSetaga(X⋆)6

Xmp ←− pesa2Select(X⋆, p)7

Xpop ←− reproducePop(Xmp, p)8

return X⋆
9

end10

et al. It is very similar to the basic elitist evolutionary Algorithm 2.2 on
page 56.

Algorithm 2.47 on page 112 specifies the behavior of the SFG algorithm
using a grid-based pruning technique as stated in the original paper. While
SFGA runs locally, a distributed form, called PSFGA is also introduced in
the paper. There, the populations of the GA are divided and each runs on
a processor for its own. Then global loop restarts after some time when the
populations are joined and divided again.

2.6.13 SPEA

The Strength Pareto Evolutionary Algorithm (SPEA [349]) by Zitzler and
Thiele for multi-objective optimization, extended for prevalence, works as il-
lustrated in Figure 2.6 on page 112 and is characterized as follows:

• Besides the population a set of the optimal (non-prevailed) individuals
generated so far is maintained.

• This set is used to evaluate the fitness of individuals according to the
prevalence relationship.

• The population’s diversity is preserved using a prevalence based mecha-
nism.

• A clustering method is incorporated in order to reduce the Pareto set
without losing its characteristics. ()

The developers of SPEA used the experiments of SPEA uses the av-
erage linkage method (see Section 36.3.4 on page 579) in order to reduce
the optimal set and a binary tournament for selection (see Section 2.4.3 on

2.6 Algorithms 111

Algorithm 2.46: X⋆ = rpsgae(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Input: Implicit: n the count of ranks
Data: Xpop, Xpl the population and its list representation
Data: Xarc, Xal the archive and its list representation
Data: rc the archive truncation size
Data: i a counter variable
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xarc ←− ()2

Xpop ←− createPop(p)3

rc←− ⌊ p
n

+ 0.5⌋4

while ¬terminationCriterion() do5

rpsgaeF itnessAssign(Xpop, ())6

Xpl ←− sorta(Xpop, s(x1, x2) ≡ f(x1)− f(x2))7

i←− ⌊2 p
n

+ 0.5⌋ − 18

while i ≥ 0 do9

Xarc ←− appendListItem(Xarc, Xpl[i])10

i←− i− 111

if |Xarc| ≥ 2p then12

rpsgaeF itnessAssign(Xarc, ())13

Xal ←− sorta(Xarc, s(x1, x2) ≡ f(x1)− f(x2))14

Xal ←− deleteListRange(Xal, rc, |Xal| − rc)15

Xpl ←− deleteListRange(Xpl, |Xpl| − rc, rc)16

Xpop ←− appendList(Xpl, Xal)17

Xarc ←− Xal18

Xpop ←− reproducePop(Xpop, p)19

return extractOptimalSet(appendList(Xpop, Xarc))20

end21

page 81). For fitness assignment, a customized algorithm introduced in sec-
tion sec:speaFitnessAssignment is used. The Strength Pareto Evoluationary
Algorithm thus works as illustrated in Algorithm 2.48 on page 113.

Except for SPEA2, which is discussed in the next section, there are also
other suggestions for improvements of SPEA, for example the usage of un-
bounded archives [118, 381].

2.6.14 SPEA2

The Strength Pareto Evolutionary Algorithm 2 [350, 351] is an improvement
of the original SPEA algorithm. The new algorithm (depicted in Figure 2.7
on page 114) comes with three major modifications:

112 2 Evolutionary Algorithms

Algorithm 2.47: X⋆ = sfga(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xpop ←− createPop(p)2

while ¬terminationCriterion() do3

Xpop ←− extractOptimalSet(Xpop)4

if |Xpop| ≥ p then Xpop ←− pruneOptimalSetaga(Xpop)5

Xmp ←− select(Xpop, p)6

Xpop ←− Xpop ∪ reproducePop(Xmp, p− |Xpop|)7

return extractOptimalSet(Xpop)8

end9

Selection

Collect non-pre-
vailed individuals

Reproduction

Prune Optimal Set

extended Optimal Set

reduced Optimal Set

Create Initial
Population

Evaluation

Optimal Set X
«

Fitness
Assignment

population Xpop

Fig. 2.6: The cycle of the SPEA

2.6 Algorithms 113

Algorithm 2.48: X⋆ = spea(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: p the population size
Data: Xpop the population
Data: Xsel the selection pool
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− ∅2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

foreach x ∈ Xpop do X⋆ ←− updateOptimalSet(X⋆, x)5

X⋆ ←− pruneOptimalSet(X⋆)6

assignF itness(Xpop, X⋆)7

Xsel ←− appendList(Xpop, X⋆)8

Xmp ←− tournamentSelectf
r,2(Xsel, p)9

Xpop ←− reproducePop(Xmp, p)10

return X⋆
11

end12

1. A new fitness assignment process (see Section 2.3.11 on page 76) now
takes the whole population into consideration when computing the fitness
while in SPEA only the optimal set is used for fitness assignment.

2. This fitness assignment process employs density estimation in order to
avoid too many individuals with the same fitness. This feature is partic-
ularly useful if most of the solution candidates do not prevail each other,
especially in situations where the optimization process is just starting up.

3. SPEA2 uses an archive Xarc of the fixed-size n as source for selection.

The archive construction algorithm (Algorithm 2.49 on page 115) creates
an archive Xarc of the fixed size n using an old archive Xold and the current
population Xpop. First, the optimal individuals are copied into this archive.
If the archive size is now exactly n, everything is fine. If it contains less
than n individuals, it is filled up using the best individuals of the rest of the
population and the previous archive. If it already contains too many (> n)
individuals, it is truncated to the proper size. When truncating, we use the
kth nearest neighbor method (see Section 35.8.2 on page 567) successively.
First, the set of individuals which are nearest to their 1st nearest neighbor
r is chosen. This will contain at least two individuals. Now we look for the
individuals which are closest to their 2nd nearest neighbor amongst in r.
We iterate this way until we’ve reached a state where r contains only one
individual. This individual is the removed from Xarc. If we do not reach this
state, we simple remove the first best individual in r from Xarc.

114 2 Evolutionary Algorithms

Truncate Archive

Create Initial
Population

Evaluation

Fitness
Assignment

population Xpop archive Xarc

new archive

Reproduction

Selection

Fig. 2.7: The cycle of the SPEA2

Algorithm 2.48 on the preceding page illustrates the mean loop of SPEA2.
First, a scalar fitness value is computed for all individuals in the population
and the archive (using the spea2FitnessAssign-fitness assignment process
introduced as Algorithm 2.12 on page 78 on page 78 per default). Then, the
new archive is constructed using the before mentioned Algorithm 2.49 on
the facing page. From that archive, the population of the next iteration is
produced, using a binary tournament selection scheme with replacement as
default.

2.6.15 NCGA

The Neighborhood Cultivation Genetic Algorithm for Multi-Objective Opti-
mization Problems (NCGA) [369, 307] makes use of the archive maintenance
feature of SPEA2 but extends it by neighborhood cultivation. Neighborhood
cultivation means that crossover only occurs between parents that are simi-
lar to each other. NCGA achieves this using a special reproduction scheme
(Algorithm 2.35 on page 102) that simply sorts the mating pool according to

2.6 Algorithms 115

Algorithm 2.49: Xarc = constructArchiveSPEA2(Xold,Xpop, n)

Input: Xold the archive of the previous iteration
Input: Xpop the current population
Input: n the wanted archive size
Data: xall the combination of the old archive and the current population
Data: x, z, xs some individuals used internally
Data: i, k counter variables
Data: r the set used for individual removal
Output: Xarc the newly constructed archive

begin1

Xall ←− appendList(Xpop, Xold)2

Xarc ←− extractOptimalSet(Xall)3

i←−4

while |Xarc| < n do5

xs ←− x : f(x) = min{f(z) : z ∈ Xall}6

Xarc ←− appendListItem(Xarc, xs)7

Xall ←− removeListItem(Xall, xs)8

i←− i− 19

while |Xarc| > n do10

k ←− 111

r ←− Xarc12

while k < |r| do13

r ←− {x : ρnnk(x) = min{ρnn,k(z) : z ∈ r}}14

if |r| = 1 then15

Xarc ←− removeListItem(Xarc, r[0])16

k ←− |Xarc|17

k ←− k + 118

if k = |Xarc| then Xarc ←− removeListItem(Xarc, r[0])19

return Xarc20

end21

one focused objective first and then recombines individuals which are direct
neighbors. The focused objective changes every generation in a cyclic manner.
NCGA is specified as Algorithm 2.51 on the following page.

116 2 Evolutionary Algorithms

Algorithm 2.50: X⋆ = spea2(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: n the wanted archive size
Input: Implicit: p the population size
Data: Xarc the archive
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

Xarc ←− ()2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

assignF itness(Xpop, Xarc)5

Xarc ←− constructArchiveSPEA2(Xarc, Xpop, n)6

Xmp ←− tournamentSelectf
r,2(Xarc, p)7

Xpop ←− reproducePop(Xmp, p)8

return extractOptimalSet(Xarc)9

end10

Algorithm 2.51: X⋆ = ncga(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: n the wanted archive size
Input: Implicit: p the population size
Input: Implicit: F the objectives functions used by cF

Data: Xarc the archive
Data: Xpop the population
Data: Xmp the mating pool
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

foc←− 0 Xarc ←− ()2

Xpop ←− createPop(p)3

while ¬terminationCriterion() do4

assignF itness(Xpop, Xarc)5

Xarc ←− constructArchiveSPEA2(Xarc, Xpop, n)6

Xmp ←− tournamentSelectf
r,2(Xarc, p)7

Xpop ←− ncgaReproducePopfoc(Xmp, p)8

foc←− (foc + 1) mod |F |9

return extractOptimalSet(Xarc)10

end11

3

Genetic Algorithms

3.1 Introduction

Beginning in the 1950s, biologists like Barricelli began to apply computer-
aided simulations to study the artificial selection of organisms [382, 383, 384,
385]. Scientists like Bremermann [386] and Bledsoe [387, 388, 389, 390] began
to use evolutionary approaches based on binary genomes to solve problems
like function optimization and balance weights for neural networks [391] in the
early 1960s. At the end of that decade, important research on these genomes
was contributed by Bagley [392], Cavicchio [393], and Frantz [394] and con-
ducted by John Holland at the University of Michigan. As a result of his
work, Genetic Algorithms1 (GA) as a new approach for problem solving fi-
nally became widely recognized and popular [395, 211, 396, 69]. Today there
are many applications of genetic algorithms in science, economy, and research
and development [397].

Genetic Algorithms are a subclass of evolutionary algorithms that employs
two different representations for each solution candidate. The genotype is
used in the reproduction operations whereas the phenotype is the form of
the individual which can be used for the determining its fitness [1, 360]. The
genotypes in Genetic Algorithms are usually binary strings of fixed or variable
length.

Definition 47 (Genotype). A genotype2 g ∈ G is the individual represen-
tation on which the reproduction operators work, both in biology as well in
evolutionary algorithms.

If only a single objective functions is applied in a Genetic Algorithm, it
is often called fitness function, which should not be mixed up with the fit-
ness assignment processes mentioned in Section 2.3 on page 65. The objective

1 http://en.wikipedia.org/wiki/Genetic_algorithm [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Genotype [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Genotype

118 3 Genetic Algorithms

functions do not work directly on the genotypes g but on the phenotypes
x = hatch(g) ∈ X̃ (see Figure 3.1 on the facing page and Definition 57).

Definition 48 (Phenotype). The fitness of an individual is determined
on basis of its phenotype3 x ∈ X̃, both in biology as well in evolutionary
algorithms.

Phenotypes are the solution models, which can for example be evaluated
in simulations. There are two reasons for the existence of genotypes during
the reproduction process

1. The genotypic form is chosen in a way that can especially easily be handled
be reproduction operations.

2. There exists a set of highly efficient, well-studied, and simple operators
for data types like bit strings. If we can reuse them, we lower the risk
of making errors because we do not need to design them on our own.
Additionally, we can rely on the mathematical features of these operators
which have been validated in years of research.

If we, for instance, are able to encode the design of an electronic circuit to a
variable-length binary string [398, 399, 400], we can use the default reproduc-
tion operators for such strings. Creating new operators that process the circuit
designs directly on the other hand would be error prune, time-consuming, and
no necessarily yield better results.

The best phenotypes found in the domain X̃ are the outputs of the genetic
algorithms whereas the genotypes are just an internal formats used in the
reproduction operations (see Section 2.5 on page 99).

The process of transforming the genotypic representations to their corre-
sponding phenotype is called genotype-phenotype mapping and is discussed
thoroughly in Section 3.5 on page 127 and subject to active research.

There exist various forms of genetic algorithms [401]. Some even allow/re-
quire human interaction or evaluation of the individuals, like interactive ge-
netic algorithms4 [402, 403] or human-based genetic algorithms5 (HBGA)
[404, 405].

From the algorithmic point of view, there is not much of a difference be-
tween GA and EA – the only major issue is the explicit option in GA to
employ different representations for genotypes and phenotypes. One could for
example consider evolutionary algorithms as genetic algorithms with equal
genotypes and phenotypes6.

3 http://en.wikipedia.org/wiki/Phenotype [accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Interactive_genetic_algorithm [accessed 2007-

07-03]

5 http://en.wikipedia.org/wiki/HBGA [accessed 2007-07-03]

6 see Definition 49 on page 122

http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Interactive_genetic_algorithm
http://en.wikipedia.org/wiki/HBGA

3.2 General Information 119

Population

genotype g mutation

crossover

Reproduction

create new individuals
from the selected ones by
crossover and mutation

Selection
select the fittest indi-
viduals for reproduction

Evaluation
compute the objective
values of the
individuals

Fitness Assignment
use the objective values
to determine fitness
values

Initial Population
create an initial
population of random
individuals

phenotype x

genotype g

Population

fitness function fi

Genotype-Phenotype Mapping

G
P

M

Fig. 3.1: The basic cycle of genetic algorithms.

3.2 General Information

3.2.1 Areas Of Application

Some example areas of application of genetic algorithms are:

Application References

scheduling problems [406, 407, 408, 409]
chemistry and chemical manufacturing [348, 410, 411, 412, 413]

medicine [414, 415, 416, 417]
data mining and data analysis [418, 419, 420, 421, 231]

120 3 Genetic Algorithms

geometry
[422, 423, 424, 425, 426,
427]

finance and trade [428]
optimizing distributed protocols [429, 430]

For more information see also [397].

3.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on genetic algorithms are:

EUROGEN: Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems

see Section 2.2.2 on page 61

FOGA: Foundations of Genetic Algorithms
http://www.sigevo.org/ [accessed 2007-09-01]

History: 2007: Mexico City, Mexico, see [431]
2005: Aizu-Wakamatsu City, Japan, see [432]
2002: Torremolinos, Spain, see [433]
2000: Charlottesville, VA, USA, see [434]
1998: Madison, WI, USA, see [435]
1996: San Diego, CA, USA, see [436]
1994: Estes Park, Colorado, USA, see [437]
1992: Vail, Colorado, USA, see [438]
1990: Bloomington Campus, Indiana, USA, see [439]

GALESIA: International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications

now part of CEC, see Section 2.2.2 on page 60
History: 1997: Glasgow, UK, see [440]

1995: Scheffield, UK, see [441]

GECCO: Genetic and Evolutionary Computation Conference
see Section 2.2.2 on page 62

ICGA: International Conference on Genetic Algorithms
Now part of GECCO, see Section 2.2.2 on page 62
History: 1997: East Lansing, Michigan, USA, see [442]

1995: Pittsburgh, PA, USA, see [443]
1993: Urbana-Champaign, IL, USA, see [444]
1991: San Diego, CA, USA, see [445]
1989: Fairfax, Virginia, USA, see [371]
1987: Cambridge, MA, USA, see [446]

http://www.sigevo.org/

3.3 Genomes 121

1985: Pittsburgh, PA, USA, see [447]

ICANNGA: International Conference on Adaptive and Natural Computing
Algorithms

see Section 2.2.2 on page 63

Mendel: International Conference on Soft Computing
see Section 1.8.2 on page 42

3.2.3 Books

Some books about (or including significant information about) genetic algo-
rithms are (ordered alphabetically):

Goldberg: Genetic Algorithms in Search, Optimization and Machine Learn-
ing (see [69])
Mitchell: An Introduction to Genetic Algorithms (see [17])
Holland: Adaptation in Natural and Artificial Systems (see [211])
Gen and Chen: Genetic Algorithms (Engineering Design and Automation)
(see [448])
Quagliarella, Periaux, Poloni, and Winter: Genetic Algorithms and Evolu-
tion Strategy in Engineering and Computer Science: Recent Advances and
Industrial Applications (see [397])
Gwiazda: Crossover for single-objective numerical optimization problems
(see [449])

3.3 Genomes

The term Genome7 was coined in 1920 by the German biologist Hans Winkler
[450] as a portmanteau of the words gene and chromosome [451]. It identifies
the whole hereditary information of an organism. This includes both, the genes
and the non-coding sequences of the Deoxyribonucleic acid (DNA8), which is
illustrated in Figure 3.2.

Simply put, the Dna is a string of base pairs that encodes the phenotyp-
ical characteristics of the creature it belongs to. When reproducing sexually,
the genes of the two parents genotypes will recombine. Additionally, small
variations (mutations) will modify the chromosomes during this process. In
asexual reproduction, mutations are the only changes that occur. After the
genes have been copied this way, life begins with a single cell which divides9

time and again until a mature individual is formed10 The emergence of an

7 http://en.wikipedia.org/wiki/Genome [accessed 2007-07-15]

8 http://en.wikipedia.org/wiki/Dna [accessed 2007-07-03]

9 http://en.wikipedia.org/wiki/Cell_division [accessed 2007-07-03]

10 Matter of fact, cell division will continue until the individual dies, but I think you
got my point here.

http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Dna
http://en.wikipedia.org/wiki/Cell_division

122 3 Genetic Algorithms

Thymine

Adenine Guanine

Cytosine Hydrogen
Bond

Deoxyribose (sugar)Phosphate

Fig. 3.2: A sketch of a part of a DNA molecule.

individual phenotype from its genotypic representation is called embryogen-
esis, its artificial counterpart, as for example used in genetic algorithms, is
discussed in Section 3.5.1 on page 128.

Definition 49 (Genome). In genetic algorithms, the genome (or chromo-
some11) G is the space of possible individual representations g ∈ G that can
be processed by the reproduction operations. It encompasses the set of pa-
rameters that define a possible solution.

Definition 50 (Solution Space). While the genome represents the search
space G where the genetic operations take place, the solution space (or problem
space) is the space X̃ of all solution candidates. In genetic algorithms, both
differ and are connected with the aid of a genotype-phenotype mapping12.
In other optimization algorithms like for example genetic programming, they
may as well be equal G = X̃.

The genome G of in genetic algorithms is normally different from the space
of possible solutions (phenotypes13) X̃.

Definition 51 (Gene). A gene is the basic informational unit in a genome.
This can be a bit, a real number, or any other structure. In biology, a gene is
a segment of nucleic acid that contains the information necessary to produce
a functional RNA product in a controlled manner14.

11 http://en.wikipedia.org/wiki/Chromosome_%28genetic_algorithm%29 [ac-

cessed 2007-07-03]

12 The subject of mapping genotypes to phenotypes is elaborated on in Section 3.5
on page 127.

13 see Definition 47 and Definition 48 on page 118
14 http://en.wikipedia.org/wiki/Gene [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Chromosome_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Gene

3.3 Genomes 123

Definition 52 (Allele). An allele15 is a value of specific gene. A gene which
is a bit for example can have the values {0, 1}, a gene representing a real
number can take on real values in R, and so on. Thus, as in nature, an allele
is a specific instance of a gene.

Definition 53 (Locus). The locus is the position where a specific gene can
be found in a chromosome16.

Definition 54 (Intron). In biology, an intron17 is a section of the DNA that
has no (obvious) function [452]. Corresponding to this natural phenomenon,
we refere to the parts of a genotype g ∈ G that do not contribute to the
phenotype x = hatch(g) ∈ X̃ also as introns.

Biological introns have often been thought of as junk DNA or “old code”,
i. e. parts of the genome that were translated to proteins in evolutionary past
but are now not used anymore. It has however recently been discovered that
introns are not as useless as initially assumed. Instead, they seem to provide
support for efficient splicing.

Figure 3.3 illustrates the relations between the aforementioned entities in
a bit string genome G of the length 5. Additionally, it shows that a gene in the
genotype g corresponds to one feature of the phenotype x in the randomly
chosen example solution space X̃. If additional bits were appended to the
genotype – for example because our computer always uses full bytes instead
of bits – these occur as introns and will not influence the phenotype.

genotype g GÎ

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

...

Genome G

2

1

3

0 1 2 3

1

phenotype x XÎ~

Gene
(Allele ”11”)=Locus 1=

Introns

10 1 1 1 1 0 1

Fig. 3.3: A five bit string genome G and a fictitious phenotype X̃.

15 http://en.wikipedia.org/wiki/Allele [accessed 2007-07-03]

16 http://en.wikipedia.org/wiki/Locus_%28genetics%29 [accessed 2007-07-03]

17 http://en.wikipedia.org/wiki/Intron [accessed 2007-07-05]

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Locus_%28genetics%29
http://en.wikipedia.org/wiki/Intron

124 3 Genetic Algorithms

3.4 String Chromosomes

In genetic algorithms, we most often use chromosomes that are strings of one
and the same data type, for example bits or real numbers [449, 448, 17].

Definition 55 (String Chromosome). A string chromosome can either be
a fixed-length tuple (Equation 3.1) or a variable-length list (Equation 3.2). In
the first case, the positions of the genes are constant and hence, the tuples
may contain elements of different types.

G = {∀(g1, g2, . . . , gn) : g1 ∈ G1, g2 ∈ G2, . . . , gn ∈ Gn} (3.1)

This is not given in variable-length string genomes. Here, the positions of the
genes may shift due to the reproduction operations. Thus, all elements of such
genotypes must have the same type Gl.

G = {∀lists g : g[i] ∈ Gl ∀0 ≤ i < |g|} (3.2)

String chromosomes are often bit strings or vectors of real numbers. Ge-
netic algorithms with such real vector genomes in their natural representation
are called real encoded [453]. As already said, string genomes of fixed length
may also contain mixed elements, for example like G = {∀(g1 ∈ R, g2 ∈
[0, 1], g2 ∈ {a, b, c, d})}.

In the case of bit string genomes, it is common practice to use gray coding18

when transforming them into their phenotypic representations. This ensures
that small changes in the genotype will also lead to small changes in the
phenotype. This method is discussed in [454].

3.4.1 Fixed-Length String Chromosomes

Especially widespread are fixed-length genomes. A lot of research has been
conducted investigating the properties of their crossover and mutation oper-
ations [455].

Creation

Creation of fixed-length string individuals means simple to create a new tuple
of the structure defined by the genome and initialize it randomized.

Mutation

Mutation is an important method of preserving individual diversity. In fixed-
length string chromosomes it can be achieved by modifying the value of one

18 http://en.wikipedia.org/wiki/Gray_coding [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Gray_coding

3.4 String Chromosomes 125

element of the genotype, as illustrated in Figure 3.4. More generally, a mu-
tation may change 0 ≤ n < |g| locations in the string. In binary coded chro-
mosomes for example, the elements are bits which are simply toggled. For
real-coded genomes, modifying an element gi can be done by replacing it
with a number drawn from a normal distribution with expected value g1, like
gnew

i ∼ N(g1, σ).

Change One Locus Change n Loci

Fig. 3.4: Value-altering mutation of string chromosomes.

Permutation

The permutation operation is an alternative mutation method where the al-
leles of two genes are exchanged. This, of course, makes only sense if all
genes have similar data types. Permutation is for instance useful when solving
problems that involve finding an optimal sequence of items, like the traveling
salesman problem. Here, a genotype could encode the sequence in which the
cities are visited. Exchanging two alleles then equals of switching two cities in
the route.

Exchange the alleles of two genes

Fig. 3.5: Permutation applied to a string chromosome.

Crossover

Figure 3.6 outlines the recombination of two string chromosomes. This op-
eration is called crossover and is done by swapping parts of the genotypes
between the parents.

126 3 Genetic Algorithms

When performing crossover, both parental chromosomes are split at a ran-
domly determined crossover point. Subsequently, a new child chromosome is
created by appending the first part of the first parent with the second part
of the second parent. This method is called one-point crossover. In two-point
crossover, both parental genotypes are split at two points, constructing a new
offspring by using parts number one and three from the first, and the middle
part from the second ancestor. The generalized form of this technique is n-
point crossover. For fixed-length strings, the crossover points for both parents
are always identical.

Single-Point Crossover Two-Point Crossover ...
Fig. 3.6: Crossover (recombination) of fixed-length string chromosomes.

3.4.2 Variable-Length String Chromosomes

Creation

Variable-length strings can be created by first randomly drawing a length
l > 0 and then creating a list of that length filled with random elements.

Mutation

If the string chromosomes are of variable length, the set of mutation operations
introduced in Section 3.4.1 can be extended by two additional methods. On
one hand, one could insert a couple of elements at any given position into a
chromosome. One the other hand, this operation can be reversed by deleting
elements from the string. These operations are one of the reasons why variable-
length strings need to be constructed of elements the same set because the
positions of the elements are no longer be coupled to their types anymore - one
would need to including additional logic into the operators and the evaluation
functions otherwise. It should be noted that both, insertion and deletion, are
also implicitly performed by crossover. Recombining two identical strings with
each other can for example lead to deletion of genes. The crossover of different
strings may turn out as an insertion of new genes into an individual.

3.5 Genotype-Phenotype Mapping 127

Insert Delete

Fig. 3.7: Mutation of variable-length string chromosomes.

Crossover

For variable-length string chromosomes, the same crossover operations are
available as for fixed-length strings except that the strings now are not nec-
essarily split at the same positions. The length of the new strings resulting
from such a cut and splice operation may now differ from the length of the
parents (which itself may also differ, see Figure 3.8).

Cut and Splice

Fig. 3.8: Crossover of variable-length string chromosomes.

3.5 Genotype-Phenotype Mapping

Genetic algorithms often use string genomes to encode the phenotypes of the
individuals that represent the possible candidate solutions. These phenotypes
however do not necessarily need to be one-dimensional strings too. Instead,
they can be construction plans, or trees19.

Definition 56 (Genotype-Phenotype Mapping).
The process of translating genotype into a corresponding phenotype is

called genotype-phenotype mapping (GPM in short) [456].

GPM is often also revered to as ontogenic mapping [188] which has its
reason in the natural analog discussed in Section 3.5.1. In the context of

19 See for example Section 4.5.5 on page 165

128 3 Genetic Algorithms

this book, we define the two operations hatch and regress considering this
translation.

Definition 57 (hatch). The operation hatch transforms one instance of the
genotype g ∈ G into an instance of the phenotype x ∈ X̃. It is possible
that different genomes g1, g2 ∈ G, g1 6= g2 may result in the same phenotype
x ∈ X̃, x = hatch(g1) = hatch(g2) since the function hatch is not bijective.

hatch(g) = x : g ∈ G, x ∈ X̃ (3.3)

Computing the corresponding phenotype of a given genotype may involve
arbitrary complicated calculations (see especially artificial embryogeny in Sec-
tion 3.5.1). There are also mappings that require further restrictions or cor-
rections [457] in order to produce valid phenotypes for all possible genotypes
g ∈ G.

Definition 58 (regress). The operation regress transforms one instance of
the phenotype x ∈ X̃ into one instance of the genotype g′ ∈ G. It is pos-
sible that different phenotypes x1, x2 ∈ X̃, x1 6= x2 may result in the same
genome g′ ∈ G, g′ = regress(x1) = regress(x2) since the function hatch is
not bijective.

regress(x) = g′ : x = hatch(g′), g′ ∈ G, x ∈ X̃ (3.4)

regress is the reverse operation of hatch. Notice that for some forms of
GPM, it may not be possible to specify this inverse operation. In other cases,
it may only be defined for a subset X̃ ′ ⊆ X̃ of X̃.

3.5.1 Artificial Embryogeny

Embryogenesis is the process in nature in which the embryo forms and de-
velops20. The genotype-phenotype mapping in genetic algorithms and genetic
programming corresponds to this natural process. Most of even the more so-
phisticated mappings have however an implicit one-to-one mapping in terms
of complexity. In the grammar-guided genetic programming approach Gads21,
for example, a single gene encodes (at most) the application of a single gram-
matical rule which in turn unfolds a single node in a tree.

Embryogeny in nature is often more complex. Among other things, the Dna
for instance encodes the structural design information of the human brain. For
over 100 trillion neural connections in our cerebrum, there are only about 30
thousand active genes in the human genome (2800 million amino acids) [458].
A huge manifold of information is hence decoded from “data” which is of a
much lower magnitude. This process is possible because the same genes can
be reused in order to repeatedly create the same pattern. The layout of the
light receptors in the eye for example is always the same, just their wiring
changes.

20 http://en.wikipedia.org/wiki/Embryogenesis [accessed 2007-07-03]

21 See Section 4.5.4 on page 162 for more details.

http://en.wikipedia.org/wiki/Embryogenesis

3.6 Schema Theorem 129

Definition 59 (Artificial Embryogeny). We subsume all methods of
transforming a genotype into a phenotype of (much) higher complexity under
the subject of artificial embryogeny [458, 459, 460] (also known as computa-
tional embryogeny [461, 462]).

Two different approaches are common in artificial embryogeny: construct-
ing the phenotype by using a grammar to translate the genotype and expand-
ing it step by step until a terminal state is reached or simulating chemical
processes. Both methods may also require subsequent correction steps that
ensure that the produced results are correct.

An example for gene reuse is the non-trivial mapping is the genotype-
phenotype mapping performed in grammatical evolution which is discussed
in Section 4.5.5 on page 166. Although the resulting phenotypes are not much
more complicated than the genotypes, it can be viewed a bridge method be-
tween normal GPM and artificial embryogeny.

3.6 Schema Theorem

The schema theorem is a special case of forma analysis (discussed
in Section 2.1.4 on page 56) in genetic algorithms. Matter of fact, it is older
than its generalization and was first stated by Holland in 1975 [211, 209, 54].

3.6.1 Schemata and Masks

Most generally said, in genetic algorithms the genotypes g of individuals in
the search space G are often represented as strings of a fixed-length l over
an alphabet22 Σ, i. e. g ∈ G = Σl. Most often, Σ is the binary alphabet
Σ = {0, 1}.

From forma analysis we know that properties can be defined on the geno-
typic or the phenotypic space. When we have fixed-length string genomes,
we can consider the values at certain loci as properties of a genotype. There
are two basic principles on defining such properties: masks and do not care
symbols.

Definition 60 (Mask). For a fixed-length string genome G = Σl we define
the set of all genotypic masks Φl as the power set23 of the valid loci Φl =
P({0, . . . , l − 1}) [212]. Every mask φi ∈ Φl defines a property pi and an
equivalence relation:

g ∼φi
h⇔ gj = hj ∀ j ∈ φi (3.5)

22 Alphabets and such and such are defined in Section 37.3 on page 614.
23 The power set you can find described in Definition 94 on page 504.

130 3 Genetic Algorithms

The order o(φi) of the mask φi is the number of loci defined by it:

o(φi) = |φi| (3.6)

The defined length δ(φi) of a mask φi is the maximum distance between
two indices in the mask:

δ(φi) = max{|j − k| ∀ j, k ∈ φi} (3.7)

A mask contains the indices of all characters in a string that are interest-
ing in terms of the property it defines. Assume we bit strings of the length
l = 3 as genotypes (G = {0, 1}3). The set of valid masks Φ is then Φ =
{{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. The mask φ1 = {1, 2} for speci-
fies that the values at the loci 0 and 1 of a genotype denote the value of a prop-
erty p1 and the value of the bit at position 2 is irrelevant. Therefore, it defines
four formae Ap1=(0,0) = {(0, 0, 0), (0, 0, 1)}, Ap1=(0,1) = {(0, 1, 0), (0, 1, 1)},
Ap1=(1,0) = {(1, 0, 0), (1, 0, 1)}, and Ap1=(1,1) = {(1, 1, 0), (1, 1, 1)}.
Definition 61 (Schema). A forma defined on a string genome concerning
the values of the characters at specified loci is called Schema [211, 463].

3.6.2 Wildcards

The second method of specifying such schemata is to use do not care symbols
(wildcards) to create “blueprints” H of their member individuals. Therefore,
we place the do not care character * at all irrelevant positions and the char-
acterizing values of the property at the others.

Hi ∈ Σ ∪ {*} (3.8)

Hi =

{
gj if j ∈ φi

* otherwise
(3.9)

We now can redefine the aforementioned schemata like: Ap1=(0,0) ≡ H1 =
(0, 0, *), Ap1=(0,1) ≡ H2 = (0, 1, *), Ap1=(1,0) ≡ H3 = (1, 0, *), and Ap1=(1,1) ≡
H4 = (1, 1, *).

These schemata mark hyperplanes in the genome space, as illustrated in
Figure 3.9 for the three bit genome.

3.6.3 Holland’s Schema Theorem

The original schema theorem24 was defined by Holland [211, 209, 54] for
genetic algorithms where fitness is to be maximized and that use fitness-
proportionate selection (see Section 2.4.5 on page 84).

m(H, t + 1) ≥ m(H, t)f(H, t)

f(t)
(1− p) (3.10)

where
24 http://en.wikipedia.org/wiki/Holland%27s_Schema_Theorem [accessed 2007-07-29]

http://en.wikipedia.org/wiki/Holland%27s_Schema_Theorem

3.6 Schema Theorem 131

(1,0,0)(0,0,0)

(1,1,0)(0,1,0)

(1,0,1)(0,0,1)

(1,1,1)(0,1,1)

g1

g0

g2

H (0,1,*)2=

H (0,0,*)1=

H (1,0,*)3=

H (1,1,*)4=

H (1,*,*)5=

Fig. 3.9: An example for schemata in a three bit genome.

• m(H, t) is the number of instances of a given Schema A defined by the
blueprint H in the population of time step t,

• f(H, t) is the average fitness of these individuals (observed in time step t),
• f(t) is the average fitness of the population in time step t, and
• p is the probability that the schema will be “destroyed” by a reproduction

operation, i. e. the probability that the offspring of an instance of the
schema is not an instance of the schema.

From this formula can be deduced that genetic algorithms will generate for
short, above-average fit schemata an exponentially rising number of samples.
This is because they will multiply with a certain factor in each generation and
only few of them are destroyed by the reproduction operations.

3.6.4 Criticism of the Schema Theorem

The deduction that good schemata will spread exponentially is only a very
optimistic assumption and not generally true. If a highly fit schema has many
offspring with good fitness, this will also improve the overall fitness of the
population. Hence, the probabilities in Equation 3.10 will shift. Generally,
the schema theorem represents a lower bound that will only hold for one
generation [360]. Trying to derive predictions for more than one or two gener-
ations using the schema theorem as is will lead to misleading or wrong results
[220, 464].

Furthermore, the population of a genetic algorithm only represents a sam-
ple of limited size of the genotypic space G. This limits the reproduction of the

132 3 Genetic Algorithms

schema but also makes statements about probabilities in general more com-
plicated. We also have only samples of the schemata H and cannot be sure if
f(H, t) really represents the average fitness of all the members of the schema.
Even reproduction operators that preserve the instances of the schema may
lead to a decrease of f(H, t). This becomes especially critical if parts of the
population already have converged and other members of a schema will not be
explored anymore, so we do not get further information about its real utility.

We also do not know if it is really good if one specific schema spreads fast,
even it is very fit. Remember that we have already discussed the exploration
vs. exploitation topic and the importance of diversity in Section 1.4.1 on
page 22.

Another issue is that we assume that most schemata are compatible and
can be combined, i. e. that there is low interaction between different genes.
This is also not generally valid.

It can also be argued that there are properties for which we cannot specify
schema blueprints or masks. If we take the set D3 of numbers divisible by
three, for example D3 = {3, 6, 9, 12, . . .}. Representing them as binary strings
will lead to D3 = {0011, 0110, 1001, 1100, . . .} if we have a bit-string genome
of the length 4. Obviously, we cannot seize these individuals in a schema using
the discussed approach. They may, however, be gathered in a forma, but the
schema theorem cannot hold then since the probability of destruction may be
different from forma instance to instance.

3.6.5 The Building Block Hypothesis

The building block hypothesis (BBH) [69, 211] is based on two assumptions:

1. When a genetic algorithm solves a problem, there exist some low-order,
low-defining length schemata with above-average fitness (the so-called
building blocks).

2. These schemata are combined step by step by the genetic algorithm in or-
der to form larger and better strings. By using the building blocks instead
of testing any possible binary configuration, genetic algorithms efficiently
decrease the complexity of the problem. [69]

Although it seems as if the building block hypothesis was supported by
the schema theorem, this cannot be verified easily. Experiments that originally
were intended to proof this theory often did not work out as planned [465]
(and also consider the criticisms of the schema theorem mentioned in the
previous section). In general, there exists much criticism of the building block
hypothesis and, although it is a very nice trail of thought, it can be regarded
as not (yet) proven sufficiently.

3.7 Principles for Individual Representations 133

3.7 Principles for Individual Representations

In software engineering, there are some design patterns25 that describe good
practice and experience values. Utilizing these patterns will help the software
engineer to create well-organized, extensible, and maintainable applications.

Whenever we want to solve a problem with evolutionary algorithms, we
need to define a representation for the solution candidates, the structure of
the elements in G. The individual representation along with the genotype-
phenotype mapping is a vital part of genetic algorithms and has major impact
on the chance of finding good solutions. Like in software engineering, there
are some principles that lead to better solutions if considered in this process
[334, 466].

Two general design patterns for genotypes are [69, 466]

1. The representations for the formae26 and schemata should be as short as
possible and the representations of different, compatible formae should
not influence each other.

2. The alphabet of the encoding and the lengths of the different genes should
be as small as possible.

Some other simple rules have been defined for tree-representations in [467,
468] and generalized in [466]:

3. A good genome should be able to represent all phenotypes, i.e.

∀ x ∈ X̃ ⇒ ∃ g ∈ G : x = hatch(g) (3.11)

4. G should be unbiased in the sense that all phenotypes are represented by
the same number of phenotypes, i.e.

∀ x, y ∈ X̃ ⇒ |{gx ∈ G : x = hatch(gx)}| ≈ |{gy ∈ G : y = hatch(gy)}|
(3.12)

5. The transformation from genotypes to phenotypes (the genotype-
phenotype mapping, the artificial embryogeny) should always yield valid
phenotypes. The meaning of valid in this context is that if our problem
space X̃ is the space of real vectors with three elements, X̃ ⊆ R3, only
such vectors are the result of the . No vectors with fewer or more elements
will be produced. This form of validity does not imply that the individuals
are also correct solutions in terms of the objective functions.

6. The genotype-phenotype mapping should be simple.
7. The genotypic representation should possess locality (or causality), i. e.

small changes in the genotype lead to small changes in the phenotype.
Optimally, this would mean that27:

25 http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29 [ac-

cessed 2007-08-12]

26 See Section 2.1.4 on page 56 for more details on formae analysis.
27 Here, reproduce stands for any given reproduction operation

http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29

134 3 Genetic Algorithms

∀ x, x′ ∈ X̃ : x′ = reproduce(x)⇒ x′ ≈ x (3.13)

[469, 466] summarize additional rules:

8. The genotypic representation should be aligned to a set of reproduction
operators in a way that good configurations of schemata, the building
blocks, are preserved when creating offspring.

9. The representations should minimize epistasis (see Section 3.7.2 on the
facing page).

10. The problem should be represented at an appropriate level of abstraction.
11. If a direct mapping between genotypes and phenotypes is not possible, a

suitable artificial embryogeny approach should be applied (see also rule
6).

3.7.1 Locality and Causality

The 7th rule discussed is very basic and can easily be justified: Generally we
can assume that the individuals that are processed by reproduction operations
have previously been selected. The chance of being selected is higher, the fit-
ter an individual is. Reversing this statement suggests that individuals which
have been selected are likely to have a good fitness. The fitness of a solution
candidate depends on its properties, and we can assume that these, in turn,
depend on their genotypic representation. If small changes in this represen-
tation lead to small changes in the properties, as outlined in Equation 3.13,
we can assume that also the objective values (the utility of the solution can-
didate) changes only slightly. Hence, we have a smooth fitness landscape and
the optimization algorithm can perform a gradient descent. If the phenotypes,
on the other hand, change wildly in each reproduction cycle, the fitness land-
scape will become rugged and the optimizer has no hint in which direction to
move. This problem has been discussed in Section 1.4.2 on page 25.

Definition 62 (Locality). The principle of strong locality (causality) states
that small changes in an object lead to small changes in its behavior [470, 471].

In natural genomes, the same principle can be observed. Small modifica-
tions in the genotype of a fish induced by mutation will more probably lead
to a change of the color of the scales of its offspring than producing totally
different creatures.

Apart from its straightforward, informal explanation here, causality has
been investigated thoroughly in different fields of artificial evolution, such
as evolution strategy [470, 472], structure evolution based on evolution strat-
egy [473], Genetic Programming [471, 474, 472], genotype-phenotype mapping
[475], reproduction operators [472], and evolutionary algorithms in general
[476, 334, 472].

3.7 Principles for Individual Representations 135

3.7.2 Epistasis

Another very important aspect of encoding solution candidates is picked up in
rule 9 and already indirectly mentioned in rule 1: The representations for com-
patible formae should not influence each other. In biology, epistasis is defined
as a form of interaction between different genes. It was coined by Bateson [477]
in order to describe how one gene can suppress the phenotypical expression
of another gene. According to Lush [478, 479], the interaction between genes
is epistatic if the effect on the fitness from altering one gene depends on the
allelic state of other genes.

Definition 63 (Epistasis). Epistasis in evolutionary algorithms means that
a change in one property of a solution candidate, introduced by an repro-
duction operation for instance, also leads to a change in some of its other
properties [480, 481].

We speak of minimal epistasis when every gene is independent of every
other gene and of maximal epistasis when no proper subset of genes is inde-
pendent of any other gene [439, 482].

Such behavior violates the locality previously discussed, since changes in
the phenotypes and the objective values resulting from changes in the geno-
types should be small. In a genome with high epistasis, a modification in a
genotype will alter multiple properties of a phenotype. Hence, we should try
to avoid epistasis in the design of the genome [480].

In [483], Naudts and Verschoren have shown on the example of length-
two binary string genomes that deceptiveness28 does not occur in situations
with low epistasis. However, even fitness functions with high epistasis are note
necessarily deceptive.

3.7.3 Redundancy

The degree of redundancy in the context of genetic representations denotes
how many genotypes g ∈ G represent the same phenotype x ∈ X̃. Different
from epistasis or locality, redundancy may have both, positive and negative
effects [466].

Redundancy can have much impact on the explorability of the problem
space. If we imagine a one-to-one mapping, the translation of a slightly mod-
ified genotype will always result in a different phenotype. If the number n of
loci where a genotype can be modified is finite (as it normally is), there are also
exactly n different phenotypes that can be reached by altering one genotype.
If there exists a many-to-one mapping between genotypes and phenotypes,
reproduction operations may create offspring genotypes different from the
parent, which still translate to the same phenotype. The evolution may now
walk a neutral path leading to new, unexplored regions of the search space.

28 See Section 1.4.3 on page 25 for a introduction of deceptive fitness landscapes.

136 3 Genetic Algorithms

If all genotypes along this path can be modified to n different offsprings, and
only a fraction of them leads to the same phenotypes, many more new so-
lution candidates can be reached. Positive effects of redundancy have been
observed in [484, 485, 486, 487, 81]. In the Cartesian Genetic Programming
method, neutrality is explicitly introduced in order to increase the evolvability
(see Section 4.7.2 on page 183).

Neutrality however can also have very negative effects, as already outlined
in Section 1.4.4 on page 26. [334, 486] show that uniform neutrality is harmful
for the evolutionary process [466]. If redundancy exists in a genome, it is vital
that only some fraction of the possible results of the reproduction operations
produce the same phenotypes than their parental genotype. Otherwise, the
negative effects described in Section 1.4.4 will occur, since the optimization
algorithm has no hint in which direction it should proceed.

The effects of neutrality induced by redundancy of natural genomes are
also part of scientific discussion and are also considered to have positive and
negative effects [71].

It is not possible to state a simple rule-of-thumb on how to deal with
redundancy in genomes. In principle, one should avoid it where it seems useless
(for example, when encoding real numbers) and permit it, where it seems
beneficial (for problems with rugged fitness landscapes, for instance).

3.7.4 Implications of the Forma Analysis

In this section, we will discuss some of the implications of forma analysis for
representations in genetic algorithms as stated in [213, 212].

Formae in Genotypic and Phenotypic Space

The major idea here is that most arguments considering the Building Block
Hypothesis or the Schema theorem focus on the genotypic representations
g ∈ G of the individuals, the bit-strings. The fitness of the schemas how-
ever depends on their expression in the solution space X̃. This representation
in turn results from the genotype-phenotype mapping (see Section 3.5 on
page 127). The GPM may map single schemas to single properties, but phe-
notypic properties could also be completely unrelated to any schema. Hence,
intrinsic parallelism, as discussed in Section 2.1.4 on page 56, exists only in
phenotypic space.

From this point of view, it becomes clear that useful separate properties
in phenotypic space can only be combined by the reproduction operations
properly if they are separate in genotypic space too. In other words, formae
in phenotypic space should also be formae in genotypic space. Then, implicit
parallelism also applies to genotypic space.

3.7 Principles for Individual Representations 137

Compatibility of Formae

Formae of different properties should be compatible. Compatible Formae in
phenotypic space should also be compatible in genotypic space. This leads to
a low level of epistasis and hence will increase the chance of success of the
reproduction operations.

Inheritance of Formae

From a good recombination (crossover) operation we can expect that the
offspring of two members x, y of a forma A are also always members of the
forma.

∀ x, y ∈ A ⊆ X̃ ⇒ crossover(x, y) ∈ A (3.14)

If we furthermore can assume that all instances of all formae A with min-
imal precision mini of an individual (which was created via crossover) are
inherited by at least one parent, crossover performs a pure recombination.

∀ z = crossover(x, y) ∈ X̃, ∀; A ∈ mini : z ∈ A⇒ x ∈ A ∨ y ∈ A (3.15)

Otherwise, crossover may also perform an implicit mutation. This property is
not necessarily needed, more important is that the recombination operation
is able to combine two parents which are instances of different but compatible
forma in a way that their offspring is an instance of both formae.

Reachability of Formae

The mutation operator should be able to reach all possible formae. If crossover
is purely recombinatorial, mutation is the only genetic operation able to in-
troduce new formae not yet present in the population. Hence, it should be
able to find any given forma.

4

Genetic Programming

4.1 Introduction

The term Genetic Programming1 [11, 1] has two possible meanings. On one
hand, it is often used to subsume all evolutionary algorithms that produce
tree data structures as phenotypes. On the other hand, we can also define
it as the set of all evolutionary algorithms that breed programs2, algorithms,
and similar constructs. In this chapter, we focus on the latter definition, which
still involves discussing tree-shaped genomes.

The conventional well-known input-processing-output model3 of informa-
tion processing in computer science states that a running instance of a pro-
gram uses its input information to compute and return output data. In Genetic
Programming, we already know (or are able to produce) some inputs or situ-
ations and corresponding output data samples and we want to find a program
that connects them or that exhibits some kind of desired behavior according
to the specified situations, as sketched in Figure 4.1.

In 1958, Friedberg left the first footprints in this area by using a learn-
ing algorithm to stepwise improve a program [488, 489]. The program was
represented as a sequence of instructions4 for a theoretical computer called
Herman. Friedberg did not use an evolutionary, population-based approach
for searching the programs. This may be because the idea of evolutionary
algorithms wasn’t fully developed yet5 and also because of the limited com-
putational capacity of the computers of that era.

Twenty years later, a new generation of scientists began to look for ways
to evolve programs. First new results were reported by Smith in his PhD

1 http://en.wikipedia.org/wiki/Genetic_programming [accessed 2007-07-03]

2 We have extensively discussed the topic of algorithms and programs
in Section 37.1.1 on page 585.

3 see Section 37.1.1 on page 587
4 Linear Genetic Programming is discussed in Section 4.6 on page 177.
5 Compare with Section 3.1 on page 117.

http://en.wikipedia.org/wiki/Genetic_programming

140 4 Genetic Programming

Process
(running Program)

outputinput

samples are known

to be found with genetic programming

Fig. 4.1: Genetic programming in the context of the IPO model.

thesis [490] in 1980. Forsyth evolved trees denoting fully bracketed Boolean
expressions for classification problems in 1981 [491, 492, 493]. Four years later,
Cramer applied a Genetic Algorithms in order to evolve a program written
in a subset of the programming language PL.6 This GA used a string of inte-
gers as genome and employed a genotype-phenotype mapping that recursively
transformed them into program trees [494]. At the same time, the undergrad-
uate student Schmidhuber also used a Genetic Algorithm to evolve programs
at the Siemens AG. He re-implemented his approach in Prolog at the TU
Munich in 1987 [495, 496].

Genetic Programming became fully accepted at the end of this produc-
tive decade mainly because of the work of John R. Koza. One of the most
important of the approaches that he developed was symbolic regression7, a
method for obtaining mathematical expressions that match given data sam-
ples. Koza further formalized (and patented [497, 498]) the idea of employing
genomes purely based on tree data structures rather than string chromosomes
as used in genetic algorithms. In symbolic regression, such trees encode Lisp

S-expressions8 where a node stands for an operation and its child nodes are
the parameters of the operation. Leaf nodes are terminal symbols like numbers
or variables. This form of Genetic Programming is called Standard Genetic
Programming or SGP. With it, not only mathematical functions but also more
complex programs can be expressed as well.

Generally, a tree can represent a rule set [499, 500], a mathematical expres-
sions, a decision tree (of course) [501], or even the blueprint of an electrical
circuit [502]. Trees are very close to the natural structure of algorithms and
programs. The syntax of most of the high-level programming languages for
example leads to a certain hierarchy of modules, alternatives, and such and
such. Not only does this form normally constitute a tree – compilers even use
tree representations internally. When reading the source code of a program,

6 Cramer’s approach is discussed in Section 4.4.1 on page 154.
7 More information on symbolic regression is presented in Section 19.1 on page 329

in this book.
8 List S-expressions are discussed in Section 37.3.11 on page 627

4.1 Introduction 141

X createPop(n)pop =

Input: n the size of the population to be created

Data: i a counter variable

Output: X the new, random population (|X | n)pop pop =

begin1

X ()pop2

i n3

while i 0 do>4

Xpop appendList(X , create())pop5

i i 1-6

return Xpop7

end8

Algorithm

Xpop () i n

i 0

Xpop

1i

iXpop create

appendList

ret

>

1

2

3

4

5

6

7

8

List<IIndividual> createPop(n) {
List<Individual> Xpop;
Xpop = new ArrayList<IIndividual>(n);
for(int i=n; i>0; i--) {
Xpop.add(create());
}

return Xpop;
}

Program
(Schematic Java, High-Level Language)

Abstract Syntax Tree Representation

while

{block}

{block}

Fig. 4.2: The AST representation of algorithms/programs.

they first split it into tokens9, parse10 these tokens, and finally create an ab-
stract syntax tree11 (AST) [503, 504]. The internal nodes of ASTs are labeled
by operators and the leaf nodes contain the operands of these operators. In
principle, we can illustrate almost every12 program or algorithm as such an
AST (see Figure 4.2).

9 http://en.wikipedia.org/wiki/Lexical_analysis [accessed 2007-07-03]

10 http://en.wikipedia.org/wiki/Parse_tree [accessed 2007-07-03]

11 http://en.wikipedia.org/wiki/Abstract_syntax_tree [accessed 2007-07-03]

12 Excluding such algorithms and programs that contain jumps that would pro-
duce crossing lines in the flowchart (http://en.wikipedia.org/wiki/Flowchart
[accessed 2007-07-03]).

http://en.wikipedia.org/wiki/Lexical_analysis
http://en.wikipedia.org/wiki/Parse_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Flowchart

142 4 Genetic Programming

Tree-based Genetic Programming now directly evolves individuals in this
form, which also provides a very intuitive representation for mathematical
functions it has initially been used for by Koza (see Figure 19.1 on page 330).

Another interesting aspect of the tree genome is that it has no natural
role model. While genetic algorithms match their direct biological metaphor
particularly well, Genetic Programming introduces completely new charac-
teristics and traits. Genetic programming is one of the few techniques that
are able to learn solutions of potentially unbound complexity. It is also more
general than genetic algorithms because it makes fewer assumptions about
the structure of possible solutions. Furthermore, it often offers white-box so-
lutions that are human-interpretable. Other approaches, for example artificial
neural networks, generate black-box outputs, which are highly complicated if
not impossible to fully grasp [505].

4.2 General Information

4.2.1 Areas Of Application

Some example areas of application of Genetic Programming are:

Application References

symbolic regression [11, 506, 507, 508]

Section 19.1
grammar induction [509, 510, 511, 512]

data mining and data analysis
[513, 514, 515, 516, 231,
501, 517]
Section 18.1.2

logic function synthesis [11, 518, 519]

circuit design and layout
[502, 520, 521, 522, 523,
524]

high-level circuit design, for FPGAs ect. [525]

medicine [526, 527, 528, 529]
breeding financial and trading rules [530, 531, 532]
microwave antenna design [533]
finding cellular automata rules [534, 535, 536, 537]
learning of rules for geometric structures [538]

automated programming
[539, 18, 540, 541, 542,
543]

4.2 General Information 143

automated programming of robots [544, 542, 545, 546, 547]

evolving aggregation protocols
Section 20.1 on page 337

and [548]
deriving distributed algorithms and protocols [549, 550, 551, 552, 547]

evolving agent behaviors
[553, 554, 555, 556, 557,
547, 558, 559, 560, 561,
562]

learning rules for OCR systems [563, 564]
biochemistry, detecting proteins, and such and
such

[565, 566]

evolving game players [567]

See also Section 4.4.3 on page 158, Section 4.5.5 on page 168, and Section 4.7.2
on page 185.

4.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on Genetic Programming are:

EuroGP: European Conference on Genetic Programming
http://www.evostar.org/ [accessed 2007-09-05]

Co-located with EvoWorkshops and EvoCOP.
History: 2007: Valencia, Spain, see [568]

2006: Budapest, Hungary, see [569]
2005: Lausanne, Switzerland, see [570]
2004: Coimbra, Portugal, see [571]
2003: Essex, UK, see [572]
2002: Kinsale, Ireland, see [573]
2001: Lake Como, Italy, see [574]
2000: Edinburgh, Scotland, UK, see [575]
1999: Göteborg, Sweden, see [576]
1998: Paris, France, see [577, 578]

GECCO: Genetic and Evolutionary Computation Conference
see Section 2.2.2 on page 62

GP: Annual Genetic Programming Conference
Now part of GECCO, see Section 2.2.2 on page 62
History: 1998: Madison, Wisconsin, USA, see [579, 580]

1997: Stanford University, CA, USA, see [581, 582]
1996: Stanford University, CA, USA, see [583, 584]

GPTP: Genetic Programming Theory Practice Workshop

http://www.evostar.org/

144 4 Genetic Programming

http://www.cscs.umich.edu/gptp-workshops/ [accessed 2007-09-28]

History: 2007: Ann Arbor, Michigan, USA, see [585]
2006: Ann Arbor, Michigan, USA, see [586]
2005: Ann Arbor, Michigan, USA, see [587]
2004: Ann Arbor, Michigan, USA, see [588]
2003: Ann Arbor, Michigan, USA, see [589]

ICANNGA: International Conference on Adaptive and Natural Computing
Algorithms

see Section 2.2.2 on page 63

Mendel: International Conference on Soft Computing
see Section 1.8.2 on page 42

4.2.3 Journals

Some journals that deal (at least partially) with Genetic Programming are
(ordered alphabetically):

Genetic Programming and Evolvable Machines (GPEM), ISSN: 1389-2576
(Print) 1573-7632 (Online), appears quaterly, editor(s): Wolfgang Banzhaf,
publisher: Springer Netherlands, http://springerlink.metapress.com/

content/104755/ [accessed 2007-09-28]

4.2.4 Online Resources

Some general, online available ressources on Genetic Programming are:

http://www.genetic-programming.org/ [accessed 2007-09-20] and http://www.

genetic-programming.com/ [accessed 2007-09-20]

Last Update: up-to-date
Description: Two portal pages on Genetic Programming websites, both

maintained by Koza.

http://www.cs.bham.ac.uk/~wbl/biblio/ [accessed 2007-09-16]

Last Update: up-to-date
Description: Langdon’s large Genetic Programming bibliography.

4.2.5 Books

Some books about (or including significant information about) Genetic Pro-
gramming are (ordered alphabetically):

Koza: Genetic Programming, On the Programming of Computers by Means
of Natural Selection (see [11])

http://www.cscs.umich.edu/gptp-workshops/
http://springerlink.metapress.com/content/104755/
http://springerlink.metapress.com/content/104755/
http://www.genetic-programming.org/
http://www.genetic-programming.com/
http://www.genetic-programming.com/
http://www.cs.bham.ac.uk/~wbl/biblio/

4.3 (Standard) Tree Genomes 145

Koza: Genetic Programming II: Automatic Discovery of Reusable Programs:
Automatic Discovery of Reusable Programs (see [590])
Koza, Bennett III, Andre, Keane: Genetic Programming III: Darwinian In-
vention and Problem Solving (see [591])
Koza, Keane, Streeter, Mydlowec, Yu, Lanza: Genetic Programming IV:
Routine Human-Competitive Machine Intelligence (see [543])
Langdon, Polli: Foundations of Genetic Programming (see [18])
Langdon: Genetic Programming and Data Structures: Genetic Programming
+ Data Structures = Automatic Programming! (see [592])
Banzhaf, Nordin, Keller, Francone: Genetic Programming: An Introduction
– On the Automatic Evolution of Computer Programs and Its Applications
(see [539])
Kinnear: Advances in Genetic Programming, Volume 1 (see [593])
Angeline, Kinnear: Advances in Genetic Programming, Volume 2 (see [594])
Spector, Langdon, O’Reilly, Angeline: Advances in Genetic Programming,
Volume 3 (see [595])
Wong, Leung: Data Mining Using Grammar Based Genetic Programming
and Applications (see [517])
Geyer-Schulz: Fuzzy Rule-Based Expert Systems and Genetic Machine
Learning (see [596])

4.3 (Standard) Tree Genomes

Tree-based Genetic Programming (TGP) is, not alone for historical reasons,
the most widespread Genetic Programming variant (see also Section 4.6 on
page 177). In this section, we introduce the well-known reproduction opera-
tions applicable to tree genomes.

4.3.1 Creation

Before the evolutionary process can begin, we need an initial, randomized
population. In genetic algorithms, we therefore simple created a set of random
bit strings. For Genetic Programming, we do the same with trees instead of
such one-dimensional sequences.

Normally (but not necessarily), there is a maximum depth d specified that
the tree individuals are not allowed to surpass. Thus, the creation operation
will return only return trees with a longest path between the root and the
most distant node of not more than d. There three different ways for realizing
the create() operation (see Definition 42 on page 99) for trees which can be
distinguished according to the depth of the produced individuals.

The full method (Figure 4.3) creates trees where each non-backtracking
path from the root to the leaf nodes has exactly the length d.

The grow method (Figure 4.4) on the other hand creates trees where each
non-backtracking path from the root to the leaf nodes is no longer than d

146 4 Genetic Programming

maximum depth

Fig. 4.3: Tree creation by the full method.

but may be shorter. This is achieved by deciding randomly for each node if it
should be a leaf or not when it is attached to the tree. Of course, to nodes of
the depth d− 1, only leaf nodes may be attached to.

maximum depth

Fig. 4.4: Tree creation by the grow method.

Koza additionally introduced a mixture method called ramped half-and-
half [11]. For each tree to be created, this algorithm draws a number r uni-
formly distributed between 2 and d: (r = ⌊randomu(2, d+1)⌋). Now either full
or grow is chosen to finally create a tree with the maximum depth r (instead
of d). This method is preferable since it produces an especially wide range of
different tree depths and shapes and thus provides a great initial diversity.

4.3.2 Mutation

Analogously to nature, tree genotypes may undergo small variations called
mutations during the reproduction process. Mutation on a tree is defined
as randomly selecting a node, removing this node and all its children and
replacing it with a new, randomly created one [11]. This general definition
subsumes

• insertions of new nodes or small trees,
• replacement of existing nodes with others, or
• the deletion of nodes, as illustrated in Figure 4.5.

4.3 (Standard) Tree Genomes 147

It is performed by the operation mutate which is introduced in Definition 44
on page 100.

Delete

Insert Replace

maximum depth

maximum depth

Fig. 4.5: Possible tree mutation operations.

4.3.3 Crossover

The mating process in nature, the recombination of the genotypes of two
individuals, also takes place in tree-based Genetic Programming. Applying
the crossover-operator (see Definition 45 on page 101) to two trees means to
exchange sub-trees between them as illustrated in Figure 4.6. Therefore, one
single sub-tree is selected randomly from each of the parents. They are cut
out and reinserted in the partner genotype.

The intent of using the crossover operation in Genetic Programming is
the same as in genetic algorithms. Over many generations, successful building
blocks – for example a highly fit expression in a mathematical formula –
should spread throughout the population and combined with good genes of
different solution candidates. On the other hand, crossover in standard Genetic
Programming has also a very destructive effect on the individual fitness [466,
597, 539].

148 4 Genetic Programming

maximum depth

Fig. 4.6: Tree crossover by exchanging sub-trees.

If a depth restriction is imposed on the genome, both, the mutation and
the crossover operation have to respect them. The new trees they create must
not exceed it.

4.3.4 Permutation

The tree permutation operation illustrated in Figure 4.7 somewhat resembles
the inversion operation of string genomes. Like mutation, it is used to repro-
duce one single tree asexually. It first selects an internal node of the parental
tree. The child nodes attached to that node are then shuffled randomly, i. e.
permutated. If the tree represents a mathematical formula and the operation
represented by the node picked is commutative, it has direct effect. The main
goal is to re-arrange the nodes in highly fit sub-trees in order to make them
less fragile for other operations such as recombination. The effects of this
operation are doubtable and most often it is not applied [11].

Fig. 4.7: Tree permutation – asexually shuffling sub-trees.

4.3.5 Editing

Editing trees in Genetic Programming is what simplifying is to mathematical
formulas. Take x = b + (7 − 4) + (1 ∗ a) for instance. This expression clearly
can be written in a shorter way be replacing (7 − 4) with 3 and (1 ∗ a) with

4.3 (Standard) Tree Genomes 149

a. By doing so, we improve its readability and also decrease the time that
we need to compute it for concrete values of a and b. Similar measures can
often be applied to algorithms and program code. Editing a tree as outlined
in Figure 4.8 means to create a new offspring tree which is more efficient
but, in terms of functional aspects, equivalent to its parent. It is thus a very
domain-specific operation.

+

a1

*+

b -
7 4

+
a+

b 3

Fig. 4.8: Tree editing – asexual optimization.

A positive aspect of editing is that it usually reduces the number of nodes
in a tree by removing useless expression, for instance. This makes it more easy
for crossover operations to pick “important” building blocks. At the same time,
the expression (7 − 4) is now less likely to be destroyed by crossover since it
is replaced by the single terminal node 3.

On the other hand, editing also reduces the diversity in the genome which
could degrade the performance by reducing the variety of structures available.
Another negative aspect would be if (in our example) a fitter expression was
(7− (4 ∗ a)) and a is a variable close to 1. Then, transforming (7− 4) into 3
prevents a transition to the fitter expression.

In Koza’s experiments, Genetic Programming with and without editing
showed equal performance, so this operation is not necessarily needed [11].

4.3.6 Encapsulation

The idea behind the encapsulation operation is to a potentially useful sub-tree
and making it an atomic building block as sketched in Figure 4.9. To put it
plain, we create a new terminal symbol that (internally hidden) is a tree with
multiple nodes. This way it will no longer be subject to potential damage by
other reproduction operations. The new terminal may spread throughout the
population in the further course of the evolution. Again, this operation has no
substantial effect but may be useful in special applications like the evolution
of neural networks [11].

4.3.7 Wrapping

Applying the wrapping operation means to first select an arbitrary node n in
the tree. Additionally, we create a new node non-terminal m outside of the

150 4 Genetic Programming

Fig. 4.9: An example for tree encapsulation.

tree. In m, at least one child node position is left unoccupied. We then cut n
(and all its potential child nodes) from the original tree and append it to m
by plugging it into the free spot. Now we hang m into the tree position that
formerly was occupied by n.

Fig. 4.10: An example for tree wrapping.

As illustrated in Figure 4.10 is to allow modifications of non-terminal nodes
that have a high probability of being useful. Simple mutation would, for ex-
ample, simple cut n from the tree or replace it with another expression. This
will always change the meaning of the whole sub-tree below n dramatically,
like for example in (b+3) + a −→ (b*3) + a. By wrapping however, a more
subtle change is possible like (b+3) + a −→ ((b+1)+3) + a.

The wrapping operation is introduced by the author – at least, I have not
seen another source where it is used.

4.3.8 Lifting

While wrapping allows nodes to be inserted in non-terminal positions with
small change of the tree’s semantic, lifting is able to remove them in the same
way. It is the inverse operation to wrapping, which becomes obvious when
comparing Figure 4.10 and Figure 4.11.

4.3 (Standard) Tree Genomes 151

Fig. 4.11: An example for tree lifting.

Lifting begins with selecting an arbitrary inner node n of the tree. This
node then replaces its parent node. The parent node inclusively all of its child
nodes except n are removed from the tree.

With lifting, a tree that represents the mathematical formula (b+(1−a))∗3
can be transformed to b ∗ 3 in a single step. Lifting is used by the author in
his experiments with Genetic Programming (see for example Section 20.1
on page 337). I, however, have not yet found other sources using a similar
operation.

4.3.9 Automatically Defined Functions

Automatically defined functions (ADF) [11] introduce some sort of pre-
specified modularity into Genetic Programming. Finding a way to evolve
modules and reusable building blocks is one of the key issues in using GP
to derive higher-level abstractions and solutions to more complex problems
[567, 590].

If ADFs are used, a certain structure is defined for the genome. The
root of the trees looses its functional responsibility and now serves only as
glue that holds the individual together. It has a fixed number of n children,
from which n − 1 are automatically defined functions and one is the result-
generating branch. When evaluating the fitness of the individual, only this
result-generating branch is taken into consideration whereas the root and the
ADFs are ignored. The result-generating branch however may use any of the
automatically defined functions to produce its output.

When ADFs are employed, not only their number must be specified be-
forehand but also the number of arguments of each of them. How this works
can maybe best illustrated using an example from function approximation13,
since this is the area where the idea originally stems from. In Figure 4.12b we
illustrate such a concrete example while Figure 4.12a outlines how a genotype
with s could look like.

With this example, we want to approximate a function g with the one
parameter x. We use a genome where two functions (lets call them f0 and f1)

13 A very common example for function approximation, Genetic Programming-based
symbolic regression, is discussed in Section 19.1 on page 329.

152 4 Genetic Programming

result-generating
branch

dummy root

ADF0 ADF1

call to ADF0

call to ADF1

(a) general structure

f (a)0 f (a,b)1

+

3

xx

f0

f1

f04

*7

+
-
*

(b) example

Fig. 4.12: Automatically defined functions in Genetic Programming.

are automatically defined. f0 has a single formal parameter a and f1 has two
formal parameters a and b. The genotype Figure 4.12a encodes the following
mathematical functions:

f0(a) = a + 7

f1(a, b) = (−a) ∗ b

g ≈ f1(4, f0(x)) + (f0(x) ∗ 3)

Hence, g ≈ ((−4) ∗ (x + 7)) + (x + 7) ∗ 3. As you can see, the number of
children of the function calls in the result-generating branch must be equal to
the number of the parameters of the corresponding ADF.

Although ADFs were first introduced in symbolic regression [11], they can
also be applied to a variety of other problems like in the evolution of agent
behaviors [555, 556, 598, 560], electrical circuit design [522], or the evolution
of robotic behavior [545].

4.3.10 Node Selection

In most reproduction operations, in mutation as well a crossover, certain nodes
in the trees need to be selected. In order to apply the mutation, we first need
to find the node which is to be altered. For crossover, we need one node in
each parent tree. These nodes are then exchanged. The question how to select
these nodes seems to be more or less irrelevant but plays a very important role
in reality. The literature most often speaks of “randomly selecting” a node but
does not describe how exactly this should be done.

A good method for doing so should select all nodes c and n in the tree t with
exactly the same probability as done by the method uniformSelectNode.

4.3 (Standard) Tree Genomes 153

P (uniformSelectNode(c)) = P (uniformSelectNode(n)) ∀ c, n ∈ t (4.1)

Therefore, we define the weight of a tree node n, nodeWeight(n), to
be the total count of all of its descendants (children, grandchildren, grand-
grandchildren, . . .).

nodeWeight(n) = 1 +

|n.children|
∑

i=1

nodeWeight(n.children[i])(4.2)

P (uniformSelectNode(c)) =
1

nodeWeight(t)
∀ c ∈ t (4.3)

Thus, the nodeWeight of the root of a tree is the number of all nodes
in the tree and the nodeWeight of its leafs is exactly 1. We can now reach
each node in the tree t with an uniform probability (see Equation 4.3) by
descending it from the root according to Algorithm 4.1.

Algorithm 4.1: n = uniformSelectNode(t)

Input: t the tree to select a node from
Data: c the currently investigated node
Data: c.children the list of child nodes of c
Data: b, d two boolean variables
Data: r a value uniformly distributed in [0, getWeight(c)]
Data: i an index
Output: n the selected node

begin1

b←− true2

c←− t3

while b do4

r ←− ⌊randomu(0, nodeWeight(c) + 1)⌋5

if r >= nodeWeight(c) then b←− false6

else7

i←− |c.children| − 18

while i ≥ 0 do9

r ←− r − nodeWeight(c.children[i])10

if r < 0 then11

c←− c.children[i]12

i←− −113

else i←− i− 114

return c15

end16

A tree descend where with probabilities different from these defined here
will lead to unequal node selection probability distributions. Then, the re-

154 4 Genetic Programming

production operators will prefer accessing some parts of the trees while very
rarely altering the other regions. We could, for example, descend the tree by
starting at the root t and would return the current node with probability 0.5
or recursively go to one of its children (with also 0.5 probability). Then, the
root t would have a 50% chance of being the starting point of reproduction

operation. Its direct children have at most probability 0.52

|t.children| each, and

their children even 0.53

|t.children||t.children[i].children| and so on. Hence, the leaves

would almost never take actively part in reproduction.
When applying Algorithm 4.1 on the other hand, there exist no regions in

the trees that have lower selection probabilities than others.

4.4 Genotype-Phenotype Mappings

Genotype-phenotype mappings (GPM, see Section 3.5 on page 127) are used
in many different Genetic Programming approaches. Here we illustrate them
by the means of two examples: binary Genetic Programming and Gene Ex-
pression Programming. Moreover, many of the grammar-guided genetic ap-
proaches discussed in Section 4.5 on page 159 are based on similar mappings.

4.4.1 Cramer’s Genetic Programming

It is interesting to see that the earliest Genetic Programming approaches
were based on a genotype-phenotype mapping. One of them, dating back to
1985, is the method of Cramer [494]. His goal was to evolve programs in a
modified subset of the programming language PL. Two simple examples for
such programs, obtained from his work, are:

1 ;;Set variable V0 to have the value of V1

2 (:ZERO V0)

3 (:LOOP V1 (:INC V0))

4

5 ;;Multiply V3 by V4 and store the result in V5

6 (:ZERO V5)

7 (:LOOP V3 (:LOOP V4 (:INC V5)))

Listing 4.1: Two examples for the PL dialect used by Cramer for GP

Using a Genetic Algorithm working on integer strings for evolving his
programs. He proposed two ideas on how to convert these strings to valid
program trees.

The JB Mapping

The first approach is to divide the integer string to tuples of a fixed length large
enough to hold the information required to encode an arbitrary instruction.

4.4 Genotype-Phenotype Mappings 155

In the case our examples, these are triplets where the first item identifies the
operation, and the following two numbers define its parameters. Superfluous
information, like a second parameter for a unary operation, are ignored.

1 (0 4 2) → (: BLOCK AS4 AS2)

2 (1 6 0) → (:LOOP V6 AS0)

3 (2 1 9) → (:SET V1 V9)

4 (3 17 8) → (:ZERO V17) ;;the 8 is ignored

5 (4 0 5) → (:INC V0) ;;the 5 is ignored

Listing 4.2: An example for the JB Mapping

Here, the symbols of the form Vn and ASn represent example variables
and auxiliary statements, respectively. Cramer distinguishes between input
variables providing data to a program and local (body) variables used for
computation. Any of them can be chosen as output variable at the end of
the execution. The multiplication program used in listing 4.1 can now, for in-
stance, be encoded as (0 0 1 3 5 8 1 3 2 1 4 3 4 5 9 9 2) which translates
to

1 (0 0 1) ;;main statement → (: BLOCK AS0 AS1)

2 (3 5 8) ;;auxiliary statement 0 → (:ZERO V5)

3 (1 3 2) ;;auxiliary statement 1 → (:LOOP V3 AS2)

4 (1 4 3) ;;auxiliary statement 2 → (:LOOP V4 AS3)

5 (4 5 9) ;;auxiliary statement 3 → (:INC V5)

Listing 4.3: Another example for the JP Mapping

Cramer outlines some of the major problems of this representation, espe-
cially the strong positional epistasis14 – the strong relation of the meaning
of an instruction to its position. This epistasis makes it very hard for the ge-
netic operations to work efficiently and not to destroy the genotypes passed
to them.

The TB Mapping

The TB mapping is essentially the same as the JB mapping, but reduces these
problems a bit. Instead of using the auxiliary statement method as done in JB,
the expressions in the TB language are decoded recursively. The string (0 (3

5)(1 3 (1 4 (4 5)))), for instance, expands to the program tree illustrated
in listing 4.3. Furthermore, Cramer restricts mutation to the statements near
the fringe of the tree, more specifically, to leaf operators that do not require
statements as arguments and to non-leaf operations with leaf statements as
arguments. Similar restrictions apply to crossover.

14 We come back to positional epistasis in Section 4.8.2 on page 187.

156 4 Genetic Programming

4.4.2 Binary Genetic Programming

With their Binary Genetic Programming (BGP) approach [456, 599, 600, 601],
Keller and Banzhaf further explore the utility of explicit genotype-phenotype
mappings and neutral variations in the genotype. They called the genes in
their fixed-length binary string genome codons analogously to molecular bi-
ology where a codon is a triplet of nucleic acids in the DNA15, encoding
one amino acid at most. Each codon corresponds to one symbol in the tar-
get language. The translation of the binary string genotype g into a string
representing a sentence in the target language works as follows:

1. x←− ǫ
2. Take the next gene (codon) g from g and translate it to the according

symbol s.
3. If s is a valid continuation of x, set x←− x◦s and continue in step 2.
4. Compute the set of symbols S that would be valid continuation of x.
5. From this set, extract the set of (valid) symbols S′ which have the minimal

Hamming distance16 to the codon g.
6. From S′ take the symbol s′ which has the minimal codon value and append

it to x: x←− x◦s′.
After this mapping, x may still be an invalid sentence since there could

have been not enough genes in g so the phenotype is incomplete, for example
x = 3 ∗ 4 − sin(v∗. These incomplete sequences are fixed by consecutively
appending symbols that lead to a quick end of a sentence according to some
heuristic.

The genotype-phenotype mapping of Binary Genetic Programming repre-
sents a n : 1 relation: Due to the fact that different codons may be replaced by
the same approximation, multiple genotypes have the same phenotypic rep-
resentation. This also means that there can be genetic variations induced by
the mutation operation that do not influence the fitness. Such neutral vari-
ations are often considered as a driving force behind (molecular) evolution
[602, 603, 604] and are discussed in Section 3.7.3 on page 135 in detail.

From the form of the genome we assume the number of corrections needed
(especially for larger grammars) in the genotype-phenotype mapping will be
high. This, in turn, could lead to very destructive mutation and crossover
operations since if one codon is modified, the semantics of many subsequent
codons may be influenced wildly. This issue is also discussed in Section 4.8.1
on page 185.

4.4.3 Gene Expression Programming

Gene Expression Programming (GEP) by Ferreira [605, 606, 607, 608, 609] in-
troduces an interesting method for dealing with remaining unsatisfied function

15 See Figure 3.2 on page 122 for more information on the DNA.
16 see Definition 186 on page 574

4.4 Genotype-Phenotype Mappings 157

arguments at the end of the expression tree building process. Like BGP, Gene
Expression Programming uses a genotype-phenotype mapping that translates
fixed-length string chromosomes into tree phenotypes representing programs.

A gene in GEP is composed of a head and a tail [605] which are further
divided into codons, where each codon directly encodes one expression. The
codons in the head of a gene can represent arbitrary expressions whereas the
codons in the tail identify parameterless expressions only. This makes the tail
a reservoir for unresolved arguments of the expressions in the head.

For each problem, the length h of the head is chosen as a fixed value, and
the length of the tail t is defined according to Equation 4.4, where n is the
arity (the number of arguments) of the function with the most arguments.

t = h(n− 1) + 1 (4.4)

The reason for this formula is that we have h expressions in the head, each
of them taking at most n parameters. An upper bound for the total number
of arguments is thus h ∗n. From this number, h− 1 are already satisfied since
all expressions in the head (except for the first one) themselves are arguments
to expressions instantiated before. This leaves at most h ∗ n − (h − 1) =
h∗n−h+ 1 = h(n−1) + 1 unsatisfied parameters. With this simple measure,
incomplete sentences that require additional repair operations in BGP and
most other approaches simply cannot occur.

For instance, consider the grammar for mathematical expressions with the
terminal symbols Σ = {√·, *, /, -, +, a, b} given as example in [605]. It includes
two variables, a and b, as well as five mathematical functions,

√·, *, /, +, and
-.
√· has the arity 1 since it takes one argument, the other four have arity 2.

Hence, n = 2.
Figure 4.13 illustrates an example gene (with h = 10 and t = h(2−1)+1 =

11) and its phenotypic representation of this mathematical expression gram-
mar. A phenotype is built by interpreting the gene as a level-order traversal17

of the nodes of the expression tree. In other words, the first codon of a gene
encodes the root r of expression tree (here +), then all nodes in the first level
(i. e. the children of r, here

√· and -) are stored from left to right, then their
children and so on. In the phenotypic representation, we have sketched the
traversal order and numbered the levels. These level numbers are annotated
to the gene but are neither part of the real phenotype nor the genotype. Fur-
thermore, the division of the gene into head and tail is shown: in the head, the
mathematical expressions as well as the variables may occur, while variables
are the sole construction element of the tail.

In GEP, multiple genes form one genotype, thus encoding multiple expres-
sion trees. These tree may then be combined to one phenotype by predefined
statements. It is easy to see that binary or integer strings can be used as
genome here because the number of allowed symbols is known before.

17 http://en.wikipedia.org/wiki/Tree_traversal [accessed 2007-07-15]

http://en.wikipedia.org/wiki/Tree_traversal

158 4 Genetic Programming

1

0

2

3

4

b *

a

a a bb a

ph
en

ot
yp

ic
 r

ep
re

se
n

ta
ti

on
ge

n
e b * a aa bbaaaa bba

0 1 2 3 4 unused

head tail

GPM

Fig. 4.13: A GPM example for Gene Expression Programming.

This fixed mapping is a disadvantage of Gene Expression Programming in
comparison with the methods introduced in the following which have variable
input grammars. On the other side there is the advantage that all genotypes
can be translated to valid expression trees without requiring any corrections.
Another benefit is that it seems to circumvent – at least partially – the problem
of low causality from which the string-to-tree-GPM based approaches in this
chapter suffer. By modularizing the genotypes, potentially harmful influences
of the reproduction operations are confined to single genes while others may
stay intact. (See Section 4.8.1 on page 185 for more details.)

General Information

Areas Of Application

Some example areas of application of Gene Expression Programming are:

4.5 Grammars in Genetic Programming 159

Application References

boolean function discovery [610]
mathematical function discovery [611, 612]
building classification and predicate association
rules

[499, 500, 613, 614, 615,
616]

modeling electronics circuits [617]
neural network design [618, 619]
physical modeling [620, 621, 622]

Online Resources

Some general, online available ressources on Gene Expression Programming
are:

http://www.gene-expression-programming.com/ [accessed 2007-08-19]

Last Update: up-to-date
Description: Gene Expression Programming Website. Includes publica-

tions, tutorials, and software.

4.5 Grammars in Genetic Programming

We have learned that the most common genotypic and phenotypic represen-
tations in Genetic Programming are trees. Furthermore, we have discussed
the reproduction operations that are available for tree-based genomes. In this
discussion we left one out important point: Reproduction cannot occur freely.
In almost all applications, there are certain restrictions to the structure and
shape of the trees that must not be violated. Take our pet-example symbolic
regression18 for instance. If we have a node representing a division operation,
it will take two arguments: the dividend and the divisor. One argument is not
enough and a third argument is useless, as to be seen in Figure 4.14.

invalid

1 1 2 3
invalid

1 2
validinvalid

...
Fig. 4.14: Example for valid and invalid trees in symbolic regression.

There are four general methods how to avoid invalid configurations under
these limitations:
18 See Section 19.1 on page 329.

http://www.gene-expression-programming.com/

160 4 Genetic Programming

1. Compensate illegal configurations during the evaluation of the objective
functions. This would mean, for example, that a division with no argu-
ments could return 1, a division with only the single argument a could
return a, and superfluous arguments (like c in Figure 4.14) would simple
be ignored.

2. A subsequent repair algorithm could correct errors in the tree structure
that have been introduced during reproduction.

3. Using additional checking and refined node selection algorithms we can
ensure that only valid trees are created during the reproduction cycle.

4. With special genotype-phenotype mapping methods, we can prevent the
creation of invalid trees from the start.

In this section, we will introduce some general considerations mostly re-
garding the latter approach.

A very natural way to express structural and semantic restrictions of a
search space are formal grammars which are elaborated on in Section 37.3
on page 614. Genetic programming approaches that limit their phenotypes
(the trees) to sentences of a formal language are subsumed under the topic of
grammar-guided Genetic Programming (GGGP).

4.5.1 Trivial Approach

Standard Genetic Programming as introduced by Koza already inherently uti-
lizes simple mechanisms to ensure the correctness of the tree structures. These
mechanisms are rather trivial, though, and should not be counted to the family
of GGGP approaches, but are mentioned here for the sake of completeness.

In Standard GP, all expressions have exactly the same type. Applied to
symbolic regression this means that, for instance, all constructs will be real-
valued or return real values. If logical functions like multiplexers are grown,
all entities will be Boolean-valued, and so on. For each possible tree node
type, we just need to specify the exact amount of children. This approach
yields a context-free grammar19 with a single non-terminal symbol which is
expanded by multiple rules. Listing 4.4 illustrates such a trivial grammar G =
(N,Σ,P, S) in Backus-Naur Form (BNF)20. Here, the non-terminal symbol
is Z (N = {Z}), the terminal symbols are Σ = {(,), +, -, *, /, sin, X}, and six
different productions are defined. The start symbol is S = Z.

Standard Genetic Programming does not utilize such grammars directly.
Rather, they are hard-coded in the reproduction operators or are represented
in fixed internal data structures.

4.5.2 Strongly Typed Genetic Programming

Strongly typed Genetic Programming (STGP) developed by Montana [623,
624, 625] is an approach still very close to standard Genetic Programming

19 see Section 37.3.2 on page 616 for details
20 The Backus-Naur form is discussed in Section 37.3.4 on page 617.

4.5 Grammars in Genetic Programming 161

1 <Z> ::= (<Z> + <Z>)

2 <Z> ::= (<Z> - <Z>)

3 <Z> ::= (<Z> * <Z>)

4 <Z> ::= (<Z> / <Z>)

5 <Z> ::= (sin <Z>)

6 <Z> ::= X

Listing 4.4: A trivial symbolic regression grammar.

that solves the problem of illegal parse trees that can occur when using data
types in the evolved programs as illustrated in Figure 4.15.

1 2
valid

...
invalid

1 {3,4}

invalid

“x” 2
invalid

true void

Fig. 4.15: Example for valid and invalid trees in typed Genetic Programming.

As already mentioned in Section 4.5.1 on the preceding page, in Standard
Genetic Programming such errors are circumvented by only using represen-
tations that are type-safe per definition. In standard symbolic regression, for
instance, only functions and variables which are real-typed are allowed, and
in the evolution of logic functions only boolean-valued expressions will be
admitted, so inconsistencies like in Figure 4.15 are impossible.

In STGP, a tree genome is used which permits different data types that
are not assignment-compatible. One should not mistake STGP for a fully
grammar-guided approach yet since it uses rules still based on an implicit,
hard-coded internal grammar which are built in the bootstrap phase of the
GP system. However, it represents clearly a method to shape the individuals
according to some validity constraints.

These constraints are realized by modified reproduction operations that
use types possibilities tables which denote which types for expressions are
allowed in which level of a tree (individual). The mutation and creation oper-
ators now create valid individuals per default. Crossover still selects the node
to be replaced in the first parent randomly, but the sub-tree in the second par-
ent which should replace this node is selected in a way that its type matches.
If this is not possible, either the parents are returned directly or nothing is
returned.

STGP also introduces interesting new concepts like generic functions and
data types, very much like in Ada or C [625] and hierarchical type systems,

162 4 Genetic Programming

comparable to object-oriented programming in their inheritance structure
[626]. This way, STGP increases the reusability and modularity of individual
parts in GP which is needed for solving more complex problems [567, 590].

4.5.3 Early Research in GGGP

Research steps into grammatically driven program evolution can be traced to
the early 1990s where Antonisse developed his Grammar-based Genetic Algo-
rithm [627]. As genome, he used character strings representing sentences in a
formal language defined by a context-free grammar. Whenever crossover was
to be performed, these strings were parsed into the derivation trees21 of that
grammar. Then, crossover was performed similar as in tree-based systems.
This parsing was the drawback of the approach, leading to two major prob-
lems: first, it slows down the whole evolution since it is an expensive operation.
Secondly, if the grammar is ambiguous, there may be more than one deriva-
tion tree for the same sentence [505]. Antonisse’s early example was followed
by others like Stefanski [628], Roston [629], and Mizoguchi et al. [630].

In the mid-1990s [505, 631], more scientists began to concentrate on this
topic. The LOGENPRO system developed by Wong and Leung [632, 633,
634, 635, 636, 637, 517] used PROLOG Definite Clause Grammars to de-
rive first-order logic programs. The system proposed by Whigham applied
context-free grammars [638, 639, 640, 641] in order to generate populations of
derivation trees. His system additionally had the advantage that it allowed the
user to bias the evolution into the direction of certain parts of the grammar
[641]. Schulz derived a similar system [596], differing mainly in the initializa-
tion procedure [642, 505], for learning rules for expert systems. The Genetic
Programming Kernel (GPK) by Hörner [643] used tree-genomes where each
genotype was a deviation tree generated from a BNF definition.

4.5.4 Gads 1

The Genetic Algorithm for Deriving Software 1 (Gads 1) by Paterson and
Livesey [644, 645] was one of the basic research projects that paved the way
for other more sophisticated approaches like grammatical evolution. Like the
binary Genetic Programming system of Keller and Banzhaf, it uses a clear
distinction between genotype and phenotype. The genotypes g ∈ G in Gads
are fixed-length integer strings which are transformed to character string phe-
notypes x ∈ X̃ (representing program syntax trees) by a genotype-phenotype
mapping (see Section 3.5 on page 127). Because of this genome, Gads can use
a conventional genetic algorithm engine22 to evolve the solution candidates.

Gads receives a context-free grammar G = (N,Σ,P, S) specified in
Backus-Naur form as input. In binary Genetic Programming, the genome

21 An elaboration on derivation trees can be found in Section 37.3.3 on page 616.
22 Gads 1 uses the genetic algorithm C++ class library GAGS (http://geneura.

ugr.es/GAGS/ [accessed 2007-07-09]) release 0.95.

http://geneura.ugr.es/GAGS/
http://geneura.ugr.es/GAGS/

4.5 Grammars in Genetic Programming 163

1 (0) <expr > ::= <expr > <op > <expr >

2 (1) <expr > ::= (<expr > <op > <expr >)

3 (2) <expr > ::= <pre -op > (<expr >)

4 (3) <expr > ::= <var >

5

6 (4) <op > ::= +

7 (5) <op > ::= -

8 (6) <op > ::= /

9 (7) <op > ::= *

10

11 (8) <pre -op > ::= log

12 (9) <pre -op > ::= tan

13 (10) <pre -op > ::= sin

14 (11) <pre -op > ::= cos

15

16 (12) <var > ::= X

17

18 (13) <func > ::= double func(double x){

19 return <expr >;

20 }

Listing 4.5: A simple grammar for C functions that could be used in Gads.

encodes the sequence of terminal symbols of the grammar directly. Here, a
genotype specifies the sequence of the productions to be applied to build a
sentence of terminal symbols.

Although Gads was primarily tested with LISP S-expressions it can
evolve sentences according to all possible BNF grammars. For the sake of
coherence with later sections, we use a grammar for simple mathemati-
cal functions in C as example. Here, the set of possible terminals is Σ =
{sin, cos, tan, log, +, -, *, /, X, (), . . .} and as non-terminal symbols we use
N = {expr, op, pre-op, func}. The starting symbol is S = func and the set
of productions P is illustrated in listing 4.5.

In the BNF grammar definitions for Gads, the “|” symbol commonly de-
noting alternatives is not used. Instead, multiple productions may be defined
for the same non-terminal symbol.

Every gene in a Gads genotype contains the index of the produc-
tions in G to be applied next. For now, let us assume the genotype g =
(2, 0, 12, 5, 5, 13, 10) as example. If the predefined start symbol is func, we
would start with the phenotype string x1

1 double func(double x){

2 return <expr >;

3 }

The first gene in g, 2, leads to the application of rule (2) to x1 and we
obtain x2:

164 4 Genetic Programming

1 double func(double x){

2 return <pre -op > (<expr >);

3 }

The next gene is 0, which means that we will use production (0)). There
is a expr-non-terminal symbol in x2, so we get x3 as follows:

1 double func(double x){

2 return <pre -op > (<expr > <op > <expr >);

3 }

Now comes the next gene with allele 1223. We cannot apply rule (12) since
no var-symbol can be found in x3 – we simple ignore this gene and set x3 = x4.
The following gene with value 5 translates the symbol op to - and we obtain
for x5:

1 double func(double x){

2 return <pre -op > (<expr > - <expr >);

3 }

The next two genes, 5 and 13, must again be ignored (x7 = x6 = x5).
Finally, the last gene with the allele 10 resolves the non-terminal pre-op and
we get for x8:

1 double func(double x){

2 return sin (<expr > - <expr >);

3 }

For the remaining two expr non-terminal symbols no rule is defined in the
genotype g. There are several ways for dealing with such incomplete resolu-
tions. One would be to spare the individual from evaluation/simulation and
to give it the lowest possible objective values directly. Gads instead uses sim-
ple default expansion rules. In this example, we could translate all remaining
exprs to vars and these subsequently to X. This way we obtain the resulting
function below.

1 double func(double x){

2 return sin (X - X);

3 }

One of the problems in Gads is the unacceptable large number of introns24

[188] caused by the encoding scheme. Many genes will not contribute to the
structure of the phenotype since they encode productions that cannot be exe-
cuted (like allele 12 in the example genotype g) because there are no matching
non-terminal symbols. This is especially the case in “real-world” applications
where the set of non-terminal symbols N becomes larger.

With the Gads system, Paterson paved the way for many of the advanced
techniques described in the following sections.

23 An allele is a value of specific gene, see Definition 52 on page 123.
24 Introns are genes or sequences of genes (in the genotype) that do not contribute

to the phenotype or its behavior, see Definition 54 on page 123

4.5 Grammars in Genetic Programming 165

1 (A) <expr > ::= <expr > <op > <expr > (0)

2 | (<expr > <op > <expr >) (1)

3 | <pre -op > (<expr >) (2)

4 | <var > (3)

5

6 (B) <op > ::= + (0)

7 | - (1)

8 | / (2)

9 | * (3)

10

11 (C) <pre -op > ::= log (0)

12 | tan (1)

13 | sin (2)

14 | cos (3)

15

16 (D) <var > ::= X (0)

17

18 (E) <func > ::= double func(double x){

19 return <expr >;

20 } (0)

Listing 4.6: A simple grammar for C functions that could be used by GE.

4.5.5 Grammatical Evolution

Like Gads, grammatical evolution25 (GE), developed by Ryan, Collins, and
O’Neill [631], creates expressions in a given language by iteratively applying
the rules of a grammar specified in the Backus-Naur form [631, 646, 647].

In order to discuss how grammatical evolution works, we re-use the ex-
ample of C-style mathematical functions [631] as in Section 4.5.4. Listing 4.6
shows the rules, using a format which is more suitable for grammatical evo-
lution.

There are five rules in the set of productions P , labeled from A to E. Some
of the rules have different options (separated with |). In each rule, options are
numbered started with 0. When the symbol <exp> for example is expanded,
there are four possible results (0-3). The shape of the sentences produced by
the grammar depends on these choices.

Like in Gads, the genotypes in GE are numerical strings. However, these
strings encode the indices of the options instead of the productions them-
selves. In Gads, each option was treated as a single production because of the
absence of the “|” operator. The idea of grammatical evolution is that it is
already determined which rules must be used during the genotype-phenotype
mapping by the non-terminal symbol to be expanded and we only need to

25 http://en.wikipedia.org/wiki/Grammatical_evolution [accessed 2007-07-05]

http://en.wikipedia.org/wiki/Grammatical_evolution

166 4 Genetic Programming

decide which option of this rule is to be applied. Therefore the number of
introns is dramatically reduced, compared to Gads.

The variable-length string genotypes of grammatical evolution can be
evolved using genetic algorithms [631, 648] (like in Gads) or with other tech-
niques, like particle swarm optimization [649, 650] or differential evolution
[651]. As illustrated in Figure 4.16, a grammatical evolution system consists
of three components: the problem definition (including the means of evaluat-
ing a solution candidate), the grammar that defines the possible shapes of the
individuals, and the search algorithm that creates the individuals [652].

Problem

Grammar

Search Algorithm G
ra

m
m

at
ic

al
E

vo
lu

ti
on

Program

Fig. 4.16: The structure of a grammatical evolution system [652].

An Example Individual

We get back to our mathematical C function example grammar in listing 4.6.
As already said, a genotype g ∈ G is a variable-length string of numbers that
denote the choices to be taken whenever a non-terminal symbol n ∈ N is to
be expanded and more than one option is available (as in the productions (A),
(B), and (C)). The start symbol, S = func does not need to be encoded since
it is predefined. Rules with only one option do not consume information from
the genotype. The processing of non-terminal symbols uses a depth-first order
[631], so resolving a non-terminal symbol ultimately to terminal symbols has
precedence before applying an expansion to a sibling.

Let us assume we have settled for bytes as granularity for the genome.
As we may have less than 256 options, we apply modulo arithmetics to get
the index of the option. This way, the sequence g = (193, 47, 51, 6, 251, 88, 63)
would be a valid genotype. According to our grammar, the first symbol to
expand is S = func (rule (E)) where only one option is available. Therefore,
all phenotypes will start out like

1 double func(double x){

2 return <expr >;

3 }

The next production we have to check is (A), since it expands expr. This
productions has four options, so taking the first number from the genotype g,
we get 193 mod 4 = 1 which means that we use option (1) and obtain

4.5 Grammars in Genetic Programming 167

1 double func(double x){

2 return (<expr > <op > <expr >);

3 }

As expr appears again, we have to evaluate rule (A) once more. The next
number, 47, gives us 47 mod 4 = 3 so option (3) is used.

1 double func(double x){

2 return (<var > <op > <expr >);

3 }

var is expanded by rule (D) where only one result is possible:

1 double func(double x){

2 return (X <op > <expr >);

3 }

Subsequently, op will be evaluated to * since 51 mod 4 = 3 (rule (B)(3))
and expr becomes pre-op(<expr>) because 6 mod 4 = 2 (production (A)(2)).
Rule (C)(3) then turns pre-op into cos since 251 mod 4 = 3. expr is expanded
to <expr> <op> <expr> by (A)(0) because 88 mod 4 = 0. The last gene in our
genotype is 63, and thus rule (A)(3) (63 mod 4 = 3) transforms expr to <var>

which then becomes X.

1 double func(double x){

2 return (X * cos(X <op > <expr >));

3 }

By now, the numbers available in g are exhausted and we still have non-
terminal symbols left in the program. There are three possible approaches
how to proceed:

1. Mark g as invalid and give it a reasonably bad fitness.
2. Expand the remaining non-terminals using default rules (i.e. we could say

the default value for expr is X and op becomes +),
3. or wrap around and restart taking numbers from the beginning of g.

The latter method is applied in GE. It has, of course, the disadvantage that
it can possible result in an endless loop in the genotype-phenotype translation,
so there should be a reasonable maximum for the iteration steps after which
we fall back to the aforementioned default rules.

We will proceed by expanding op according to (B)(1) since 193 mod 4 = 1
and obtain - (minus). The next gene gives us 47 mod 4 = 3 so the last expr

will become a <var> and finally our phenotype is:

1 double func(double x){

2 return (X * cos(X - X));

3 }

Note that if the last gene 63 was missing in g, the “restart” method which
we have just described would produce an infinite loop, because the first non-
terminal to be evaluated whenever we restart taking numbers from the front
of the genome then will always be expr.

168 4 Genetic Programming

In this example, we are lucky and this is not the case since after wrapping
at the genotype end, a pre-op is to be resolved. The gene 193 thus is an index
into rule A at its first usage and an index into production C in the second
application.

Initialization

Grammatical evolution uses an approach for initialization similar to ramped
half-and-half26, but on basis of derivation trees27. Therefore, the number of
the choices made during a random grammatical rule expansion beginning at
the start symbol is recorded. Then, a genotype is built by reversing the modulo
operation, i. e. finding a number that produces the same number as recorded
when modulo-divided for each gene. The number of clones is subsequently
reduced and, optionally, the single-point individuals are deleted.

General Information

Areas Of Application

Some example areas of application of grammatical evolution are:

Application References

solving trigonometric equalities (vs. standard
GP: [11])

[648, 631]

creating program source code in different pro-
gramming languages

[647, 653, 654]

the evolution of robotic behavior (vs. standard
GP: [542, 544])

[546, 655]

breeding financial and trading rules (vs. standard
GP: [530, 531])

[532, 656, 657, 658]

There even exists an approach called “Grammatical Evolution by Grammat-
ical Evolution” ((GE)2) where the grammar defining the structure of the
solution candidates itself is co-evolved with the individuals represented in it
[659].

Conferences, Workshops, etc.

Some conferences, workshops and such and such on grammatical evolution
are:

GEWS: Grammatical Evolution Workshop
http://www.grammatical-evolution.com/gews.html [accessed

2007-09-10]

26 An initialization method of standard, tree-based Genetic Programming that cre-
ates a good mixture of various tree shapes [11], see Section 4.3.1 on page 146 for
more details.

27 see Section 37.3.3 on page 616

http://www.grammatical-evolution.com/gews.html

4.5 Grammars in Genetic Programming 169

History: 2004: Seattle, WA, USA, see [660]
2003: Chicago, IL, USA, see [661]
2002: New York, NY, USA, see [309]

Online Resources

Some general, online available ressources on grammatical evolution are:

http://www.grammatical-evolution.com/ [accessed 2007-07-05]

Last Update: up-to-date
Description: Grammatical Evolution Website. Includes publications,

links, and software.

4.5.6 Gads 2

In Gads 2, Paterson uses the experiences from Gads 1 and the methods of the
grammatical evolution approach to tackle context-sensitive grammars with
Genetic Programming. While context-free grammars are sufficient to describe
the syntax of a programming language, they are not powerful enough to de-
termine if a given source code is valid. Take for example the C snippet

1 char i;

2 i = 0.5;

It is obviously not a well-typed program although syntactically correct.
Context-sensitive grammars28 allow productions like αAβ → αγβ where A ∈
N is a non-terminal symbol, and α, β, γ ∈ V ∗ are concatenations of arbitrary
many terminal and non-terminal symbols (with the exception that γ 6= ε
must not be the empty string). Hence, it is possible to specify that a value
assignment to a variable must be of the same type as the variable with a
context-sensitive grammar. Paterson argues that the application of existing
approaches like two-level grammars and standard attribute grammars29 in
Genetic Programming is infeasible [188] and introduces an approach based on
reflective attribute grammars.

Definition 64 (Reflective Attribute Grammar). A reflective attribute
grammar (rag30) [188] is a special form of attribute grammar. When expanding
a non-terminal symbol with a rag production, the grammar itself is treated
as an (inherited) attribute. During the expansion, it can be modified and
is finally passed on to the next production step involving the newly created
nodes.
28 See Section 37.3.2 on page 616 where we discuss the Chomsky Hierarchy of gram-

mars.
29 See Section 37.3.6 on page 619 for a discussion of attribute grammars.
30 Notice that the shortcut of this definition rag slightly collides with the one of

recursive attribute grammars (RAG) introduced by Shut in [662] and discussed
in Section 37.3.8 on page 623, although their letter cases differ. To the knowledge
of the author, rags are exclusively used in Gads 2.

http://www.grammatical-evolution.com/

170 4 Genetic Programming

The transformation of a genotype g into a phenotype using a reflective
attribute grammar r resembles grammatical evolution to some degree. Here
we discuss it with the example of the recursive expansion of the symbol s:

1. Write the symbol s to the output.
2. If s ∈ Σ, i. e. s is a terminal symbol, nothing else is to do – return.
3. Use the next gene in the genotype g to choose one of the alternative

productions that have s on their left hand side. If g is exhausted, choose
the default rule.

4. Create the list of the child symbols s1. . .sn according to the right-hand
side of the production.

5. For i = 1 to n do
a) Resolve the symbol i, passing in si, r, and g.
b) If needed, modify the grammar r according to the semantics of s and

si.

Item 5 is the main difference between Gads2 and grammatical evolution.
What happens here depends on the semantics in the rag. For example, if a
non-terminal symbol that declares a variable x is encountered, a new terminal
symbol κ is added to the alphabet Σ that corresponds to the name of x.
Additionally, the rule which expands the non-terminal symbol that stands for
variables of the same type now is extended by a new option that returns κ.
Thus, the new variable becomes available in the subsequent code.

Another difference compared to grammatical evolution is the way the genes
are used to select an option in item 3. GE simply uses the modulo operation to
make its choice. Assume we have genotypes with genes in one-byte granularity
and encounter a production with four options while the next gene has the
value 45. In GE, this means to select the second option since 45 mod 4 = 1
and we number the alternatives beginning with zero. Gads 2 on the other
hand will divide the range of possible alleles into four disjoint intervals of
(approximately) equal size [0, 63], [64, 127], [128, 191], [192, 255] where 45 falls
clearly into the first one. Thus, Gads 2 will expand the first rule.

The advantage of Gads 2 is that it allows to grow valid sentences accord-
ing to context-sensitive grammars. It becomes not only possible to generate
syntactically correct but also well-typed source code for most conventional
programming languages. Its major drawback is that it has not been realized
fully. The additional semantics of the production expansion rule 5b have not
been specified in the grammar or in an additional language as input for the Ge-
netic Programming system but are only exemplarily realized in a hard-coded
manner for the programming language S-Algol [663]. The experimental results
in [188], although successful, do not provide substantial benefits compared to
the simpler grammatical evolution approach.

Here Gads 2 shows properties that we also experienced in the past: Even
if constructs like loops, procedure calls, or indexed access to memory are
available, the chance that they are actually used in the way in which we
would like them to be used is slim. Genetic programming of real algorithms

4.5 Grammars in Genetic Programming 171

in a high-level programming language-like syntax exhibits a high affinity to
employ rather simple instructions while neglecting more powerful constructs
and reaching good fitness values with overfitting.

Like grammatical evolution, the Gads 2 idea can be realized with arbitrary
genetic algorithm engines. The experiments in [188] used the Java-based evo-
lutionary computation system ECJ by Luke et al. [664] as genetic algorithm
engine.

4.5.7 Christiansen Grammar Evolution

Christiansen grammars (as described in Section 37.3.9 on page 624) have
many similarities to reflective grammars as used in Gads 2. They are both
(extended) attribute grammars31 and the first attribute of both grammars
is an inherited instance of themselves. Christiansen grammars are formalized
and backed by comprehensive research since being developed back in 1985
[665].

Building on their previous work [666], Ortega, de la Cruz, and Alfonseca
place the idea of Gads 2 on the solid foundation of Christiansen grammars
with their Christiansen grammar evolution approach (CGE) [667]. They tested
their system for finding logic function identities with constraints on the ele-
mentary functions to be used. Instead of elaborating on this experiment, let
us stick with the example of mathematical functions in C for the sake of
simplicity.

In listing 4.7 we define the productions P of a Christiansen grammar G =
(N,Σ,P, S) that extends the examples from before by the ability of creating
and using local variables. Three new rules (F), (G), and (H) are added, and
the existing ones have been extended with attributes.

The non-terminal symbol expr now receives the inherited attribute g which
is the (Christiansen) grammar to be used for its expansion. The ↓ (arrow
down) indicates inherited attribute values that are passed down from the par-
ent symbol, whereas ↑a (arrow up) identifies an attribute value a synthesized
during the expansion of a symbol and passed back to the parent symbol.

The start symbol S is still func, but the corresponding production (E) has
been complemented by a reference to the new non-terminal symbol stmt (line
19). The symbol stmt has two attributes: an inherited (input) grammar g0

and a synthesized (output) grammar g2. We need to keep that in mind when
discussing the options possible for its resolution. A stmt symbol can either be
expanded to two new stmts in option (0), a variable declaration represented
by the non-terminal symbol new-var as option (1), or to a variable assignment
(symbol assign) in option (2). Most interesting here is option (1), the variable
declaration.

The production for new-var, labeled (G), receives the grammar g as input.
The synthesized attribute it generates as output is g extended by a new rule

31 See Section 37.3.7 on page 621 for more information on such grammars.

172 4 Genetic Programming

1 (A) <expr ↓g> ::= <expr↓g> <op↓g> <expr↓g> (0)

2 | (<expr ↓g> <op ↓g> <expr ↓g>) (1)

3 | <pre -op ↓g> (<expr ↓g>) (2)

4 | <var ↓g> (3)

5

6 (B) <op ↓g> ::= "+" (0)

7 | "-" (1)

8 | "/" (2)

9 | "*" (3)

10

11 (C) <pre -op ↓g> ::= "log" (0)

12 | "tan" (1)

13 | "sin" (2)

14 | "cos" (3)

15

16 (D) <var ↓g> ::= "X" (0)

17

18 (E) <func ↓g1 > ::= "double func(double x){"

19 <stmt ↓g1 ↑g2 >
20 "return " <expr ↓g2 > ";"

21 } (0)

22

23 (F) <stmt ↓g0 ↑g2 > ::= <stmt ↓g0 ↑g1 ><stmt ↓g1 ↑g2 > (0)

24 | <new -var ↓g0 ↑g2 > (1)

25 | <assign ↓g0 ↑g2 > (2)

26

27 (G) <new -var ↓g ↑g+new -rule > ::=

28 "double " <alpha -list ↓g ↑w> "=0;" (0)

29 where <new -rule > is <var ↓g> ::= w

30

31 (H) <assign ↓g ↑g> ::= <var ↓g> "=" <expr ↓g> ";" (0)

Listing 4.7: A Christiansen grammar for C functions that that use variables.

new-rule. The name of the new variable is a string over the Latin alphabet. In
order to create this string, we make use of the non-terminal symbol alpha-list
defined in listing 37.11 on page 624. alpha-list inherits a grammar as first
attribute, generates a character string w and also synthesizes it as output.
Production (G) uses this value w in order to build its output grammar. It
creates a new rule (see line 29) which extends the production (D) by a new
option. var can now be resolved to either X or to one of the new variables
in subsequent expansions of expr because the synthesized grammar is passed
up to stmt and from there to all subsequent statements (see rule (F) option
(0)) and even by the returned expression in line 20. It should be mentioned
that this example grammar does not prevent name collisions of the identifiers,
since X, for instance, is also a valid expansion of new-var.

4.5 Grammars in Genetic Programming 173

With this grammar, a Christiansen grammar evolution system would pro-
ceed exactly as done in Section 4.5.5 on page 165.

4.5.8 Tree-Adjoining Grammar-Guided Genetic Programming

A different approach to grammar-driven Genetic Programming has been de-
veloped by Nguyen [466, 668, 669, 670, 671, 672] with his Tree-Adjoining
Grammar-Guided Genetic Programming (TAG3P) system. Instead of using
grammars in the Backus-Naur Form or one of its extensions as done in the
aforementioned methods, it bases on tree-adjoining grammars (TAGs, dis-
cussed in detail in Section 37.3.10 on page 625).

An Example TAG grammar

A tree-adjoining grammar can be defined as quintuple G = (N,Σ,A, I, S)
where N are the non-terminal, Σ contains the terminal symbols, and S is the
start symbol. TAGs support two basic operations: adjunction and substitu-
tion. For these operations, blueprint trees are provided in the set of auxiliary
and initial trees respectively (A and I). Substitution is quite similar to ex-
pansion in BNF, the root of an initial tree replaces a leaf with the same label
in another tree. A tree β to be used for adjunction has at least one leaf node
ν (usually marked with an asterisk *) with the same label as its root. It is
injected into another tree by replacing a node with (again) that label whose
children are then attached to ν.

Let us take a look back on the tree-adjoining representation of our earlier
example grammar G in listing 4.6 on page 165 for mathematical functions in C.
Figure 4.17 illustrates one possible realization of G as TAG. The productions
are divided into the set of initial trees I, which are used in substitution oper-
ations, and the auxiliary trees A needed by the adjunction operator. Again,
the start symbol is func – this time however it identifies a tree in I. We ad-
ditionally have annotated the trees with the index of the corresponding rule
in listing 4.6. It is possible that we need to build multiple TAG trees for one
BNF rule, as done with rule 1 which is reflected in the two auxiliary tress β1

and β2. The rules 3 and 12 on the other hand have been united into one initial
tree for the purpose of simplicity (It could have been done in the BNF in the
same way).

The TAG3P approach has in common with the other grammar-guided
methods that it uses a genotype-phenotype mapping. The phenotypes are,
of course, trees that comply with the input tree-adjoining grammar. The
genotypes being evolved are derivation trees that work on this grammar too.
Derivation trees illustrate the way the productions of a grammar are applied in
order to derive a certain sentence, as discussed in Section 37.3.3 on page 616.

174 4 Genetic Programming

expr

preop expr()*op

expr

exprexpr * op

expr

exprexpr*

op

expr

exprexpr()* op

expr

exprexpr()*

(0)

(1)

(2)

op op op op

*

preop

log

preop

tan

preop

sin

preop

cos

expr

X

(3+12)(4 7)...

(8 11)... expr

func

double func (double X) {
return

; }X

(13)

I set of initial trees= a

A set of auxiliary trees= b

start symbol S = a1

b1 b2

b3 b4 b5

Fig. 4.17: An TAG realization of the C-grammar of listing 4.6.

Derivation Trees

For tree-adjoining grammars, there exist different types of derivation trees
[466]. In Weir’s definition in [673], they are characterized as object trees where
the root is labeled with an S-type initial tree (i. e. the start symbol) and all
other trees are labeled with the names of auxiliary trees. Each connection
from a parent p to a child node c is labeled with the index of the node in
p being the center of the operation. Indices are determined by numbering
the non-terminal nodes according to a preorder traversal32. The number of

32 http://en.wikipedia.org/wiki/Tree_traversal [accessed 2007-07-18]

http://en.wikipedia.org/wiki/Tree_traversal

4.5 Grammars in Genetic Programming 175

adjunctions performed with each node is limited to one. Substitution opera-
tions, not possible with the Weir method, are enabled by Joshi’s and Schabes’
extension [674]. In their notation (not illustrated here) a solid connection be-
tween two nodes in the derivation tree stands for “and” adjunction, whereas
a broken line denotes a substitution.

In TAG3P, Nguyen uses a restricted form of such TAG derivation trees
[466] where adjunction is not permitted to (initial) trees used for substitution.
This essentially means that all adjunctions are performed before any substitu-
tions. With this definition, substitutions become basically in-node operations.
We simply attach the nodes substituted into a tree as list of lexemes (here
terminal symbols) to the according node of a derivation tree.

Example Mapping: Derivations Tree → Tree

Figure 4.18 outlines some example mappings from derivation trees on the left
side to sentences of the target languages (displayed as trees) on the right side.
In Figure 4.17 we annotated some of the elementary trees with α or β and
numbers, which we will use here. The derivation tree α1 for example represents
the initial production for the starting symbol. In addition, we have attached
the preorder index to each node of the trees α1, β3, and β5. In the next tree
we show how the terminal symbols X and + can be substituted into β3. In
the according derivation tree, they are simple attached as a list of lexemes. A
similar substitution can be performed β5, where sin is attached as terminal
symbol.

In the fourth example, the second derivation tree is adjoined to the first
one. Since it replaces the node with the preorder index 1, the connection from
β3 to α1 is labeled with 1. Finally, in the fifth example, the third derivation
tree is adjoined. We use the rule for preops to replace the node number 3
(according to preorder) in the second derivation in its adjoined state.

As you can see, all initial trees and trees derived from them are always
valid sentences of the grammar. This means that we can remove any of the
derivation steps and still get valid phenotypes. Thus, we can evaluate the
share of the fitness clubbed by every single modification by evaluating the
resulting phenotypes with and without it.

Summary

Tree-adjoining grammar-guided Genetic Programming is a different approach
to grammar-based Genetic Programming which has some advantages com-
pared with the other methods. Maybe its biggest plus is the increased domain
of locality. All nodes of a derivation tree stay accessible for the reproduc-
tion operations. This becomes interesting when modifying nodes “without
side effects to other regions of the resulting trees”. If we, for example, toggle

176 4 Genetic Programming

double func (double X) {
return

double func (double X) {
return

a1
expr

func

; }X

0

1

b3 X

0

op

expr

exprexpr *

X

1 2 3

b5 sin

expr

preop expr

()

*

sin

0

1 2

expr

func

double func (double X) {
return

; }X

op exprexpr

X

a1

b3 X

1

expr

func

; }

opexpr

X X

expr

preop expr

()sin

a1

b3 X

1

b5 sin

3

Fig. 4.18: One example genotype-phenotype mapping in TAG3P.

4.6 Linear Genetic Programming 177

one bit in a grammar evolution-based genotype, chances are that the mean-
ing of all subsequent genes change and the tree resulting from the genotype-
phenotype mapping will be totally different from its parent. In TAG3P, this
is not the case. All operations can at most influence the node they are applied
to and its children. Here the general principle holds that small changes in the
genotype should lead to small changes in the phenotype. On the other hand,
some of these positive effects may also be reached more easily with the wrap-
ping and lifting operations for Genetic Programming introduced in this book
in Section 4.3.7 on page 149 and Section 4.3.8. The reproduction operations
of TAG3P become a little bit more complicated. When performing crossover,
for instance, we can only exchange compatible nodes. We cannot adjoin the
tree α1 in Figure 4.18 with itself, for example.

General Information

Areas Of Application

Some example areas of application of tree-adjoining grammar-guided genetic
programminn are:

Application References

symbolic regression [669, 670]
finding trigonometric identities [675, 676]
logical function synthesis [671]

Online Resources

Some general, online available ressources on tree-adjoining grammar-guided
genetic programminn are:

http://sc.snu.ac.kr/SCLAB/Research/publications.html [accessed 2007-09-

10]

Last Update: up-to-date
Description: Publications of the Structural Complexity Laboratory of the

Seoul National University, includes Nguyen’s papers about
TAG3P

4.6 Linear Genetic Programming

In the beginning of this chapter, we have learned that the major goal of
Genetic Programming is to find programs that solve a given set of problems.
We have seen that tree genomes are suitable to encode such programs and
how the genetic operators can be applied to them.

Trees are however not the only way of representing programs. Matter of
fact, a computer processes them in form of a sequence of instructions. This

http://sc.snu.ac.kr/SCLAB/Research/publications.html

178 4 Genetic Programming

sequence may contain branches in form of jumps to other places in the pro-
gram. Every possible flowchart describing the behavior of a program can be
translated into such a sequence. It is therefore only natural that the first ap-
proach to automated program generation by Friedberg in 1958 [488, 489] used
a fixed-length instruction sequence genome.

The area of Genetic Programming that works with such instruction string
genomes is called linear Genetic Programming (LGP) [677, 678, 679, 680, 681,
682] in contrast to the traditional tree-based Genetic Programming (TGP). It
can furthermore be distinguished from approaches like grammatical evolution
(see Section 4.5.5 on page 165) by the fact that strings there are just genotypic,
intermediate representations that encode the program trees. Here however,
they are the center of the whole evolution and contain the program code
directly.

Simple reusing the genetic operators for variable-length string genomes,
introduced in Section 3.4.2 on page 126 that randomly insert, delete, or toggle
bits, is however not really feasible [682].

We must visualize the alternatives and loops that we know from high-level
programming languages are mapped to conditional and unconditional jump
instructions in machine code. These jumps target to either absolute or relative
addresses inside the program. Let us for example take the insertion of a single,
new command into the instruction string, maybe as result of a mutation or
crossover operation. If we do not perform any further corrections after this
insertion, it is well possible that the resulting address-shift invalidates the
control flow and renders the whole program useless as illustrated in 4.19a.

Tree-based genomes on the other hand are less vulnerable to such insertions
– the loop in stays intact, although one useless instruction richer.

The advantage of linear Genetic Programming lies in the easy evaluation
of the evolved algorithms. Its structure allows for limiting the runtime in
individual evaluation and even to simulate parallelism.

4.7 Graph-based Approaches 179

(before insertion)

... 50 01 9A 10 38 33 83 8F 03 50 ...50 01

(after insertion: loop begin shifted)

... 50 01 9A 10 38 33 83 8F 03 50 ...50 01 23

(a) Inserting into an instruction string.

0

1i

iXpop create

> {block}

while

{block}

appendList

n i

(after Insertion)

(b) Inserting in a tree representation.

Fig. 4.19: The impact of insertion operations in Genetic Programming.

4.7 Graph-based Approaches

In this section we will discuss some Genetic Programming approaches that
are based on graphs rather than on trees or linear sequences of instructions.

4.7.1 Parallel Distributed Genetic Programming

Parallel Distributed Genetic Programming (PDGP) is a method for growing
programs in the form of graphs that has been developed by Poli in the mid
1990s [683, 684, 685, 686]. In PDGP, a graph is represented as a fixed-size, n-
dimensional grid. The nodes of the grid are labeled with operations, functions,
or references to variables. Except for the latter case, they are connected to
their inputs with directed links. Both, the labels as well as the connections in
the grid are subject to evolution.

In order to illustrate this structure, we use the formula term max{x∗y, x∗
y + 3} as example. We already have elaborately discussed how we can express
mathematical terms as trees. Figure 4.20a illustrates a such a function tree.
Using a directed graph, as outlined in Figure 4.20b, we can retrieve a more
compact representation of the same term by reusing the expression x ∗ y.
Evolving such graphs is the goal of PDGP. Therefore, we first have to define
a grid structure. In Figure 4.20c, we settle for a two dimensional 4*3 grid.
Additionally, we add a row at the top containing one cell for each output of
the program. We can easily fill the graph from Figure 4.20b into this grid. This

180 4 Genetic Programming

max

* +

y x * 3

y x

(a) tree structure

max

+

*
3

y x

(b) graph struc-
ture

-1

/ *

+ y

5

max

+

* 3

yx

output node

pass-through node

inactive node
(c) PDGP structure

Fig. 4.20: The term max{x ∗ y, x ∗ y + 3}

leaves some nodes unoccupied. If we assume that Figure 4.20c represents a
solution grown by this Genetic Programming approach, these nodes would be
labeled with some unused expressions and would somehow be connect without
any influence on the result of the program. Such an arbitrary configuration of
inactive nodes (or introns and links is sketched in light gray in Figure 4.20c.
The nodes that have influence on the program’s result,i. e. those which are
connected to a output node directly or indirectly, are named active nodes.

We may impose restrictions on the connectivity of PDGP graphs. For
instance, we can define that each row must only be connected its predecessor
in order to build layered feed-forward networks. We can transform any given
parallel distributed program (i. e. any given acyclic graph) into such a layered
network if we additionally provide the identity function so pass-through nodes
can evolve as shown in Figure 4.20c. Furthermore, we could also attach weights
to the links between the nodes and make them also subject to evolution. This
way, we can also grow artificial neural networks [687]. However, we can as
well do without any form of restrictions for the connective and may allow
backward connections in the programs, depending on the application.

An interesting part of PDGP is how we execute the programs. Principally,
it allows for a great proportion of parallelism. Coming back to the exam-
ple outlined Figure 4.20c, the values of the leaf nodes could be computed in
parallel, as well those of the pass-through and the addition node.

Genetic Operations

For this new representation, new genetic operations are needed.

4.7 Graph-based Approaches 181

Creation

Similar to the grow and full methods for creating trees in Standard Genetic
Programming introduced in Section 4.3.1 on page 145, it is possible to obtain
balanced or unbalanced graphs/trees in PDGP, depending whether we allow
variables and constants to occur anywhere in the program or only at a given,
predetermined depth.

Crossover

SAAN Crossover The basic crossover operation in PDGP is Sub-graph Active-
Active Node (SAAN) crossover. It proceeds as follows:

1. Select a random active node in each parent, the crossover points.
2. Extract the sub-graph that contains all the (active) nodes that influence

the result of the node marking the crossover point in the first parent.
3. Insert this sub-graph at the crossover point in the second parent. If its

x-coordinate is incompatible and some nodes of the sub-graph would be
outside the grid, wrap it so that these nodes are placed on the other side
of the offspring.

Of course, we have to ensure that the depths of the crossover points are
compatible and no nodes of the sub-graph would “hang” below the grid in
the offspring. This can be achieved by first selecting the crossover point in
the first parent and then choosing a compatible crossover point in the second
parent.

The idea of SAAN crossover is that active sub-graphs represent functional
units and this way, we explore new combinations of them.

SSAAN Crossover The Sub-Sub-Graph Active-Active Node (SSAAN)
Crossover method works essentially the same like SAAN, with one excep-
tion: it disregards crossover point depth compatibility. It may now happen
that we want to insert a sub-graph into an offspring at a point where it does
not fit because it is too long. Here we make use of the simple fact that the
lowest row in a PDGP graph always is filled with variables and constants only
– functions cannot occur there because there would be no arguments which
could be connected to them. Hence, we can cut the overhanging nodes of the
sub-graph and connect the now unsatisfied arguments at second-to-last row
with the nodes in the last row of the second parent. Of course, we have to pay
special attention where to cut the sub-graph: terminal nodes that would be
copied to the last row of the offspring can remain in it, functions cannot.

SSIAN Sub-Sub-Graph Inactive-Active Node (SSIAN) Crossover works ex-
actly like SSAAN crossover except that the crossover point in the first parent
is chosen amongst both, active and inactive nodes.

182 4 Genetic Programming

Mutation

We can extend the mutation operation from Standard Genetic Programming
easily to PDGP. Then, a new, random graph is created and inserted at a
random point into the offspring. In the context of PDGP, this is called global
mutation and can be achieved by creating a completely new graph and per-
forming crossover with an existing one.

Furthermore, link mutation is introduced, an operation that performs sim-
ple local changes on the connection topology of the graphs.

ADLs

Similar to Standard Genetic Programming, we can also introduce Automati-
cally Defined Functions33 in PDGP by extending the function set with a new
symbol which then executes an (also evolved) subprogram when being evalu-
ated. Automatically Defined Links, ADLs, work similarly, except that a link
is annotated with the subprogram-invoking symbol [688, 689].

4.7.2 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) was developed by Julian Miller and
Peter Thomson [690, 691, 692] in order to achieve a higher degree of effec-
tiveness in learning Boolean functions. In his 1999 paper [691], Miller ex-
plains the idea of Cartesian Genetic Programming with the example of a
program with o = 2 outputs that computes both, the difference and the
sum, of the volumes of two boxes V1 = X1X2X3 and V2 = Y1Y2Y3. As il-
lustrated in Figure 4.21, the i = 6 input variables X1 . . . X3 and Y1 . . . Y3,
placed to the left, are numbered from 0 to 5. As function set, we could use
{+ = 0,− = 1, ∗ = 2, / = 3,∨ = 4,∧ = 5,⊕ = 6,¬ = 7}. Like in PDGP,
before the evolution begins, we define a grid of cells. In our example, this grid
is n = 3 cells wide and m = 2 cells deep. Each of the cells can accommodate
an arbitrary function and has a fixed number of inputs and outputs (in the
example i′ = 2 and o′ = 1, respectively). The outputs of the cells, similarly to
the inputs of the program, are numbered in ascending order beginning with i.
The output of the cell in the top-left has number 6, the one of the cell below
number 7, and so on. This numeration is annotated in gray in Figure 4.21.

Which functions the cells should carry out and how their inputs and out-
puts are connected will be decided by the optimization algorithm. Therefore
we could use, for instance, a Genetic Algorithm with or without crossover or
a Hill Climber. The genotype of Cartesian Genetic Programming is a fixed-
length integer string. It consists of n∗m genes each encoding the configuration
of one cell. Such a gene starts with i′ numbers identifying the incoming data
and one number (underlined in Figure 4.21) denoting the function it will carry

33 More information on ADFs can be found in Section 4.3.9 on page 151.

4.7 Graph-based Approaches 183

X1

X2

X3

Y1

Y2

Y3

V V
X

1 2

1

+ =

X X
Y Y Y

2 3

1 2 3

+

V V1 2- =

X1X X
Y Y Y

2 3

1 2 3

-

8

9
0

+
10

8

9
1

-
11

10

11

6

2
2

*
8

7

5
2

*
9

0

1
2

*
6

3

4
2

*
7

0

1

2

3

4

5

01 34 62 75 89 89 10 112 2 2 2 0 1

Genotype

Phenotype

GPM

Fig. 4.21: An example for the GPM in Cartesian Genetic programming.

out. Another gene at the end of the genotype identifies which of the available
data are “wired” to the outputs of the program.

By using a fixed-length genotype, the maximum number of expressions
in a Cartesian program is also predefined. It may however be shorter, since
not all cells are necessarily are connected with the output-producing cells.
Furthermore, not all functions need to incorporate all i′ inputs into their
results. ¬ for instance, which is also part of the example function set, uses
only the first of its i′ = 2 input arguments and ignores the second one.

Levels-back, a parameter of CGP, is the number of columns to the left of
a given cell whose outputs may be used as inputs of this cell. If levels-back is
one, the cell with the output 8 in the example could only use 6 or 7 as inputs.
A levels-back value of 2 allows it to also being connected with 0-5. Of course,
the reproduction operations have to respect the levels-back value set.

Although CGP labeled itself a Genetic Programming technique from the
beginning. However, crossover was often absent in many of the work con-
tributed about it. So one could regarded it also as an Evolutionary Program-
ming34 method. Lately, researchers begin also to focus on efficient crossover
techniques for CGP [693].

Neutrality in CGP

Cartesian Genetic Programming explicitly utilizes different forms of neutral-
ity35 in order to foster the evolutionary progress. Normally, neutrality can

34 See Chapter 6 on page 209 for more details on Evolutionary Programming.
35 See Section 1.4.4 on page 26 and Section 3.7.3 on page 135 for more information

on neutrality and redundancy.

184 4 Genetic Programming

have positive as well as negative effects on the evolvability of a system. In
[83, 694], Yu and Miller outline different forms of neutrality in Cartesian Ge-
netic Programming which also apply to other forms of GP or GAs:

• Inactive genes configure cells that are not connected to the outputs in
any way and hence cannot influence the output of the program. Mutating
these genes therefore has no effect on the fitness and represents explicit
neutrality .

• Active genes have direct influence on the results of the program. Neutral
mutations here are such modifications that have no influence on the fitness.
This implicit neutrality is the results of functional redundancy or introns.

Their experiments indicate that neutrality can increase the chance of success
of Genetic Programming for needle-in-a-haystack fitness landscapes and in
digital circuit evolution [82].

Embedded Cartesian Genetic Programming

In 2005, Wagner and Miller developed Embedded Cartesian Genetic Program-
ming (ECGP), a new type of CGP with a module acquisition [695] method
in form of automatic module creation [696, 697, 698]. Therefore, three new
operations are introduced:

• Compress randomly selects two points in the genotype and creates a new
module containing all the nodes between these points. The module then
replaces these nodes with a cell that invokes it. The compress operator
has the effect of shortening the genotype of the parent and of making the
nodes in the module immune against the standard mutation operation but
does not affect its fitness. Modules are more or less treated like functions
so cell to which a module number has been assigned now uses that module
as “cell function”.

• Expand randomly selects a module and replaces it with the nodes inside.
Only the cell which initially replaced the module cells due to the Compress
operation can be expanded in order to avoid bloat.

• The new operator Module Mutation changes modules by adding or
removing inputs and outputs and may also carry out the traditional one-
point mutation on the cells of the module.

General Information

Areas Of Application

Some example areas of application of Cartesian Genetic Programming are:

4.8 Epistasis in Genetic Programming 185

Application References

circuit design and layout
[699, 82, 690, 700, 701,
697]

learning Boolean functions [691, 692, 83]
symbolic regression [692]
evolving robot controllers [702, 703]
prime number prediction [704]

Online Resources

Some general, online available ressources on Cartesian Genetic Programming
are:

http://www.cartesiangp.co.uk/ [accessed 2007-11-02]

Last Update: up-to-date
Description: The homepage of Cartesian Genetic Programming

http://www.emoware.org/evolutionary_art.asp [accessed 2007-11-02]

Last Update: 2006
Description: A website with art pieces evolved using Cartesian Genetic

Programming.

4.8 Epistasis in Genetic Programming

In the previous sections, we have discussed many different Genetic Program-
ming approaches, like Standard Genetic Programming and grammar-guided
Genetic Programming methods. We also have elaborated on linear Genetic
Programming techniques that encode an algorithm as a stream of instructions,
very much like real programs are represented in the memory of a computer.

Whenever we use such methods to evolve real algorithms, we encounter
the problem of epistasis. In an algorithm, each instruction depends on the
instructions that have been executed before. The result of one instruction
will influence the behavior of those executed afterwards. Besides this gen-
eral dependency, we can observe a set of other epistatic effects which we will
introduce in this section.

4.8.1 Problems of String-to-Tree GPMs

In this chapter, we have learned about multiple grammar-guided Genetic Pro-
gramming methods that employ a genotype-phenotype mapping between an
(integer) string genome and trees that represent sentences in a given gram-
mar, like grammatical evolution, Christiansen grammar evolution, Gads, and
binary Genetic Programming (BGP).

http://www.cartesiangp.co.uk/
http://www.emoware.org/evolutionary_art.asp

186 4 Genetic Programming

According to [631], the idea of mapping string genotypes can very well
be compared to one of the natural antetypes of artificial embryogeny36: the
translation of the DNA into proteins. This process depends very much on the
proteins already produced and now present around the cellular facilities. If
a certain piece of DNA has created a certain protein X and is transcripted
again, it may result into a molecule of protein type Y because of the presence
of X.

Although this is a nice analogy, it also bears an important weakness. These
genomes usually violate the causality37 [505]. In Grammatical Evolution for
example, a change in any gene in G will also change the meaning of all subse-
quent alleles. This means that mutation and crossover will probably have very
destructive impacts on the individuals [466]. Additionally, even the smallest
change in the genotype can modify the whole structure and functionality of the
phenotype. A valid solution can become infeasible after a single reproduction
operation.

Figure 4.22 outlines how the change of a single bit a genotype (in hexadec-
imal notation) may lead to a drastic modification in the tree structure when
a string-to-tree mapping is applied. The resulting phenotype in the example
has more or less nothing in common with its parent except maybe the type
of its root node.

a3 cd 4c ...ff 16

GPM

genotypes

phenotypes

a3 ff 1 cd 4c ...7

GPM

¹

»

reproduction

Fig. 4.22: Epistasis in Grammatical Evolution.

The lack of causality is rooted in a strong epistasis38 in the string-tree-
GPM approaches: many loci of the genotypes have some mutual influence.
The efficiency of the reproduction operations of the mentioned approaches

36 Find out more about artificial embryogeny in Section 3.5.1 on page 128.
37 The principles of causality and locality are discussed in Section 3.7.1 on page 134.
38 Epistasis is elaborated on in Section 3.7.2 on page 135.

4.9 Rule-based Genetic Programming 187

will probably decrease with a growing set of non-terminal symbols and corre-
sponding productions.

One way to decrease these effects is (implicitly) inherent in the Gene Ex-
pression Programming GPM approach (see Section 4.4.3 on page 156). An
a-priori division of genotypes into different sections, each independently en-
coding different parts of the phenotype, can reduce the harmful influences of
the reproduction operations.

4.8.2 Positional Epistasis

In order to clarify the role of positional epistasis in the context of Genetic Pro-
gramming, we begin with some basic assumptions. Let us consider a program
P as a form of function P : I 7→ O that connects the possible inputs I of a
system to its possible outputs O. Two programs P1 and P2 can be considered
as equivalent if P1(i) = P2(i) ∀i ∈ I.39

For the sake of simplicity, we further define a program as a sequence of n
statements P = (s1, s2, . . . , sn). For these n statements, there are n! possible
permutations. We argue that the fraction θ(P) = v

n! of permutations v that
leads to programs equivalent to P is a measure of robustness for a given phe-
notypic representation in Genetic Programming. More precisely, a low value
of θ indicates a high degree of epistasis, which means that the loci (the posi-
tions) of many different genes in a genome have influence on their functionality
[74]. This reduces for example the efficiency of reproduction operations like
crossover, since they often change the number and order of instructions in a
program. A general rule in evolutionary algorithms is thus to reduce epistasis
[469] (see rule 9 in Section 3.7 on page 133).

Many of the phenotypic and most genotypic representations in Genetic
Programming mentioned so far seem to be rather fragile in terms of inser-
tion and crossover points. One of the causes is that their genomes have high
positional epistasis (low θ-measures), as sketched in Figure 4.23.

The points discussed in this section do by no means indicate that the in-
volved Genetic Programming approaches are infeasible or deliver only inferior
results. Most of them have provided human-competitive or even better solu-
tions. We point out here just some classes of problems that, if successfully
solved, could even increase their utility.

4.9 Rule-based Genetic Programming

There exists one class of evolutionary algorithms that elegantly circumvents
the positional epistasis discussed in Section 4.8.2: the learning classifier sys-
tems (LCS) [705, 706] which you can find discussed in Chapter 7 on page 211.

39 In order to cover stateful programs, the input set may also comprise sequences of
input data.

188 4 Genetic Programming

* cos

3 *

x1 1 x2x3

/

+

*

3 *

x1 x3

/

cos

1 x2

+
¹

(a) In Standard Genetic Programming and Symbolic
Regression

¹

1i

ii 0

>

while

1i

i

>

while

0 i

(b) In Standard Genetic Programming.

¹

...

MOV ECX, 3
ADD EAX, ECX
...

MOV EAX, 7
...
MOV ECX, 3
ADD EAX, ECX

...
MOV EAX, 7

(c) In Linear Genetic Programming.

¹

a3 cd 4c ...ff 17 a3 cd 4c ...17 ff

GPM GPM

(d) With Genotype-Phenotype Mapping, as in
Grammatical-Evolution like approaches.

Fig. 4.23: Positional epistasis in Genetic Programming.

Here we focus on the Pittsburgh approach associated with Smith and De
Jong [707, 708], where a genetic algorithm evolves a population of rule sets.
Each individual in this population consists of multiple classifiers (the rules)
that transform input signals into output signals. The evaluation order of the
rules in such a classifier system C plays absolutely no role except for rules
concerning the same output bits, i. e. θ(C) ≈ 1.

The basic idea behind rule-based Genetic Programming approach is to use
this knowledge to create a new individual representation that retains these
high θ values in order to become more robust in terms of reproduction opera-
tions. This will probably lead to a smoother evolution with a higher probability

4.9 Rule-based Genetic Programming 189

of finding good solutions. On the other hand, it also extends LCS by intro-
ducing some of the concepts from Genetic Programming like mathematical
operations.

This approach to Genetic Programming is illustrated by the example
shown in Figure 4.24. Like in Pitt-style learning classifier systems, the pro-
grams consist of arbitrary many rules. A rule evaluates the values of some
symbols in its condition part (left of⇒) and, in its action part, assigns a new
value to one symbol or performs any other procedure specified in its setup.

true
false

¹ 101
110

111

>
³
=
£
<

Comp. Enc.

001

010
011

100

000

Enc.

00
01

10

11

Action

x
1 x-

x y+=

x y-=

=

=

Enc.

0
1

Concat.

Ù
Ú

0

Symbol Encoding

1
start

enter
leave

id
netSize
receive
send

a
b

0000 1100,
0001 1101,
0010 1110,
0011 1111,
0100

0101

0110

0111

1000

1001

1010

(receive 1)t = (true) send send at 1 t t+ = +Ù Þ

(1)¹ Ú ³ Þ -start (enter leave) var1 id at t t t 1 t t+ =

(false) Ù <1 Þ -(leave)) enter 1 entert t 1 t+ =

...

...

0101 010 1101 0 XXXX 110 XXXX 0110 00 1001

XXXX 111 XXXX 1 1000 100 0001 0111 11 0111

0001 101 0010 1 0111 001 1000 1001 01 1111

...

...

Genotype

Phenotype

GPM

Fig. 4.24: Genotype-Phenotype mapping in Rule-based Genetic Programming.

4.9.1 Genotype and Phenotype

Before the evolution begins, the number of symbol and their properties must
be specified as well as the possible actions.

190 4 Genetic Programming

Each symbol identifies an integer variable, which is either read-only or
read-write. Generally we also define some constants like 0 and 1 and an input
symbol start which will only be 1 during the first execution of the program
and then becomes 0 (but may be written to the program). Additionally, a
program can be provided with some general-purpose variables (a and b in the
example). We can introduce further symbols with special meanings. If we, for
instance, want to evolve distributed algorithms, we could add an input symbol
receive where incoming messages will occur and a variable send from which
outgoing messages could be transmitted. An action set containing mathemat-
ical operations like addition, subtraction, value assignment, and some sort
of logical negation (1-x) is sufficient in most cases but may arbitrarily be ex-
tended. Alternatively to the send and receive symbol, actions could be defined
with the same semantics.

From these specifications, the system can determine how many bits are
needed to encode a single rule. The genotypes are bit strings with a length
which is a multiple of this bit count.

With this simple genotype, we can encode any possible nesting depth
of condition statements and all possible logical operations. Furthermore, we
could even construct a tree-like program structure from the rules, since each of
them corresponds to a single if statement in a normal programming language.

There are similarities between our RBGP and some special types of LCS,
like Browne’s abstracted LCS [709] and S-expression-based LCS [710]. The
two most fundamental differences lie in the semantics of both, the rules and
the approach: In RBGP, a rule may directly manipulate symbols and invoke
external procedures with (at most) two in/out-arguments. This includes math-
ematical operations like multiplication and division which do not exist a priori
in LCS. They would have to evolve on basis of binary operations, which is,
although possible, very unlikely.

Furthermore, the individuals in RBGP are not classifiers but programs.
Classifiers are intended to be executed once for a given situation, judge it,
and decide upon an optimal output. A program on the other hand runs in-
dependently and performs an asynchronous and interactive computation with
its environment. Furthermore, the syntax of RBGP is very extensible. The
nature of the symbols and actions is not bound to specific data types, our
approach can for example easily be adapted to floating point computation.

4.9.2 Program Execution and Dimensions of Independence

The simplest method to execute a rule-based program would be to loop over
it in a cycle. Although this approach is sufficient for simulation purposes, it
would result in a large waste of CPU power on a real system. This consumption
of computational power can very much be decreased if the conditional parts of
the rules are only evaluated when one of the symbols that they access changes.

4.9 Rule-based Genetic Programming 191

Positional Independence

Such changes can either be caused by data incoming from the outside, like
messages that are received by a distributed algorithm (and are stored in the
receive symbol in our example) or by the actions invoked by the program
itself. In RBGP, actions do not directly modify the values of the symbols but
rather write their results to temporary variables. After all actions have been
processed, these values are written back to the real memory. Therefore, the
symbols in the condition part and in the computation parts of the actions are
annotated with the index t and those in the assignment part of the actions
are marked with t + 1.

This approach allows for a greater amount of disarray in the rules, since
the only possible positional dependencies left are those of rules that write
to the same variables. All other rules can be freely permutated without any
influence on the behavior of the program. Hence, the positional epistasis in
RBGP is very low.

Cardinality Independence

By excluding any “learning” features like the bucket brigade algorithm40 from
the evolution, we additionally gain some form of insensitivity in terms of rule
cardinality. It is irrelevant whether a rule occurs once, twice, or even more
often in a program. If triggered, all occurrences of the rule use the same input
data and thus will write the same values to the (temporary variable repre-
senting) the target symbol. Assuming that an additional objective function
which puts pressure into the direction of smaller programs is always imposed,
superfluous appearances of rules will be wiped out during the course of the
evolution anyway.

Neutrality

The existence of neutral reproduction operations can have a positive as well as
negative influence on the evolutionary progress (see Section 1.4.4 on page 26).
The positional and cardinality independence are a clear example of phenotypic
redundancy and neutrality in RBGP. They allow a useful rule to be replicated
arbitrary often in the same program without decreasing its functional fitness.
This is likely to happen during crossover, without changing any functionality.
By doing so, the conditional parts of the rule will (obviously) be copied too.
Subsequent mutation operations may now modify the action part of the rule
and lead to improved behavior.

4.9.3 Complex Statements

From the above descriptions, it would seem that rule-based programs are
strictly sequential, without branching or loops. This is generally not the case.

40 The bucket brigade algorithm is discussed in Section 7.3.7 on page 219.

192 4 Genetic Programming

Complex Conditions

Assume that we have five variables a. . . e and want to express something like

1 if((a<b) ∧ (c>d) ∧ (a<d)) {

2 a += c;

3 c--; }

Listing 4.8: A complex conditional statement.

we can do this in RBGP with 4 rules:

1 true ∧ true ⇒ et+1 = 0

2 (at<bt) ∧ (ct>dt) ⇒ et+1 = 1

3 (at<dt) ∧ (et=1) ⇒ at+1 = at + ct

4 (at<dt) ∧ (et=1) ⇒ ct+1 = ct - 1

Listing 4.9: The RBGP version of listing 4.8.

Although this does not look very elegant, it fulfils the task by storing the
first part of the condition as logical value in the variable e. e will normally be
0 because of line 1 and is only set to 1 by rule 2. Since both of them write to
temporary variables, the then-part of the condition (in lines 3 and 4) will be
reached in the next round (if a<d holds too). Notice that the only positional
dependency in listing 4.9 are that rule 2 must always occur after 1 – all rule
permutations that obey this statement are equivalent and so is listing 4.10:

1 (at<dt) ∧ (et=1) ⇒ at+1 = at + ct

2 true ∧ true ⇒ et+1 = 0

3 (at<bt) ∧ (ct>dt) ⇒ et+1 = 1

4 (at<dt) ∧ (et=1) ⇒ ct+1 = ct - 1

5 true ∧ true ⇒ et+1 = 0

6 (at<dt) ∧ (et=1) ⇒ at+1 = at + ct

7 (at<bt) ∧ (ct>dt) ⇒ et+1 = 1

8 (at<dt) ∧ (et=1) ⇒ ct+1 = ct - 1

Listing 4.10: An equivalent alternative version of listing 4.9.

Loops

Loops in RBGP can be created in the very same fashion.

1 b = 1;

2 for(a=c;a>0;a--) {

3 b *= a;

4 }

Listing 4.11: A loop.

The loop defined in listing 4.11 can be expressed in RBGP like outlined in
listing 4.12, where we use the start-symbol (line 1) to initialize a. As its name
suggests, the start is only 1 at the very beginning of the program’s execution
and 0 afterwards (unless modified by an action).

4.10 Artificial Life and Artificial Chemistry Approaches 193

1 (startt >0) ∨ false ⇒ at+1=ct

2 (at >0) ∧ true ⇒ at+1=at -1

3 false ∨ (at >0) ⇒ bt+1 = bt * at

Listing 4.12: The RBGP-version of listing 4.11.

Here no positional or cardinality restrictions occur at all, so listing 4.13 is
equivalent to listing 4.12.

1 false ∨ (at >0) ⇒ bt+1 = bt * at

2 (startt >0) ∨ false ⇒ at+1=ct

3 false ∨ (at >0) ⇒ bt+1 = bt * at

4 (at >0) ∧ true ⇒ at+1=at -1

5 (startt >0) ∨ false ⇒ at+1=ct

Listing 4.13: An equivalent alternative version of listing 4.12.

4.10 Artificial Life and Artificial Chemistry Approaches

Definition 65 (Artificial Life). Artificial Life41, also abbreviated with AL-
ife or AL, is a field of research that studies the general properties of life by
synthesizing and analyzing life-like behavior [711].

4.10.1 Push, PushGP, and Pushpop

Push is a stack-based programming language introduced by Spector especially
suitable for evolutionary computation [712, 713, 714]. Programs in that lan-
guage can be evolved by adapting existing standard Genetic Programming
systems (as done in PushGP) or, more interestingly, by themselves in an
autoconstructive manner, which has been realized in the Pushpop system.
Currently, the Push language is currently available in its third release, Push3
[715, 716].

A Push program is either an instruction, a literal, or a sequence of zero or
more Push programs inside parentheses.

1 program ::= instruction | literal | ({program})

Each instruction may take zero or more arguments from the stack. If insuf-
ficient many arguments are available, it acts as NOOP, i. e. does nothing. The
same goes if the arguments are invalid, like when a division by zero would
occur.

In Push, there is a stack for each data type available, including integers,
Boolean values, floats, name literals, and code itself. The instructions are
usually named according to the scheme <type>.<operation>, like INTEGER.+,
BOOLEAN.DUP, and so on. One simple example for a Push program borrowed
from [714, 715] is

41 http://en.wikipedia.org/wiki/Artificial_life [accessed 2007-12-13]

http://en.wikipedia.org/wiki/Artificial_life

194 4 Genetic Programming

1 (5 1.23 INTEGER .+ (4) INTEGER.- 5.67 FLOAT .*)

2 Which will leave the stacks in the following states:

3 FLOAT STACK : (6.9741)

4 CODE STACK : ((5 1.23 INTEGER .+ (4) INTEGER.- 5.67

5 FLOAT .*))

6 INTEGER STACK: (1)

Listing 4.14: A first, simple example for a Push program.

Since all operations take their arguments from the corresponding stacks,
the initial INTEGER.+ does nothing because only one integer, 5, is available on
the INTEGER stack. INTEGER.- subtracts the value on the top of INTEGER stack
(4) from the one beneath it (5) and leaves the result (1) there. On the float
stack, the result of the multiplication FLOAT.* of 1.23 and 5.67 is left while
the whole program itself resides on the CODE stack.

Code Manipulation

One of the most interesting features of Push is that we can easily express new
forms of control flow or self-modifying code with it. Here, the CODE stack and,
since Push3, the EXEC stack play an important role. Let us take the following
example from [712, 715]:

1 (CODE.QUOTE (2 3 INTEGER .+) CODE.DO)

Listing 4.15: An example for the usage of the CODE stack.

The instruction CODE.QUOTE leads to the next piece of code ((2 3 INTEGER

.+) in this case) being pushed onto the CODE stack. CODE.DO then invokes the
interpreter on whatever is on the top of this stack. Hence, 2 and 3 will land
on the INTEGER stack as arguments for the following addition. In other words,
listing 4.15 is just a complicated way to add 2 + 3 = 5.

1 (CODE.QUOTE

2 (CODE.QUOTE (INTEGER.POP 1)

3 CODE.QUOTE (CODE.DUP INTEGER.DUP 1 INTEGER.- CODE.DO

INTEGER .*)

4 INTEGER.DUP 2 INTEGER.< CODE.IF)

5 CODE.DO)

Listing 4.16: Another example for the usage of the CODE stack.

Listing 4.16 outlines a Push program using a similar mechanism to com-
pute the factorial of an input provided on the INTEGER stack. It first places
the whole program on the CODE stack and executes it (with the CODE.DO at
its end). This in turn leads on the code in lines 2 and 3 being placed on the
code stack. The INTEGER.DUP instruction now duplicates the top of the INTEGER

stack. Then, 2 is pushed and the following INTEGER.< performs a comparison
of the top two elements on the INTEGER stack, leaving the result (true or
false) on the BOOLEAN stack. The instruction CODE.IF executes one of the top

4.10 Artificial Life and Artificial Chemistry Approaches 195

two items of the CODE stack, depending on the value it finds on the BOOLEAN

stack and removes all three elements. So in case that the input element was
smaller than 2, the top element of the INTEGER stack will be removed and 1 will
be pushed into its place. Otherwise, the next instruction CODE.DUP duplicates
the whole program on the CODE stack (remember, that everything else has
already been removed from the stack when CODE.IF was executed). INTEGER

.DUP copies the top of the INTEGER stack, 1 is stored and then subtracted from
this duplicate. The result is then multiplied with the original value, leaving the
product on the stack. So, listing 4.16 realizes a recursive method to compute
the factorial of a given number.

Name Binding

As previously mentioned, there is also a NAME stack in the Push language. It
enables us to bind arbitrary constructs to names, allowing for the creation of
named procedures and variables.

1 (DOUBLE CODE.QUOTE (INTEGER.DUP INTEGER .+) CODE.DEFINE)

Listing 4.17: An example for the creation of procedures.

In listing 4.17, we first define the literal DOUBLE which will be pushed onto
the NAME stack. This definition is followed by the instruction CODE.QUOTE, which
will place code for adding an integer number to itself on the CODE stack. This
code is then assigned to the name on top of the NAME stack (DOUBLE in our case)
by CODE.DEFINE. From there on, DOUBLE can be used as a procedure.

The EXEC Stack

Many control flow constructs of Push programs up to version 2 of the language
are executed by similar statements in the interpreter. Beginning with Push3,
all instructions are pushed onto the new EXEC stack prior their invocation. Now,
now additional state information or flags are required in the interpreter except
from the stacks and name bindings. Furthermore, the EXEC stack supports
similar manipulation mechanisms like the CODE stack.

1 (DOUBLE EXEC.DEFINE (INTEGER.DUP INTEGER .+))

Listing 4.18: .]An example for the creation of procedures similar to
listing 4.17].

The EXEC stack is very similar to the CODE stack, except that its elements
are pushed in the inverse order. The program in listing 4.18 is similar to
listing 4.17 [715].

196 4 Genetic Programming

Autoconstructive Evolution

Push3 programs can be considered as tree structures and hence be evolved
using standard Genetic Programming. This approach has been exercised with
the PushGP system [712, 713, 562, 717, 718]. However, the programs can also
be equipped with the means to create their own offspring. This idea has been
realized in a software called Pushpop [712, 713, 719]. In Pushpop, whatever
is left on top of the CODE stack after a programs execution is regarded as its
child. Programs may use the above mentioned code manipulation facilities to
create their descendants and can also access a variety of additional functions,
like

• CODE.RAND pushes newly created random code onto the CODE stack.
• NEIGHBOR takes an integer n and returns the code of the individual in

distance n. The population is defined as a linear list where siblings are
grouped together.

• ELDER performs a tournament between n individuals of the previous gen-
eration and returns the winner.

• OTHER performs a tournament between n individuals of the current genera-
tion, comparing individuals according to their parents fitness, and returns
the winner.

After the first individuals able to reproduce have been evolved the system
can be used to derive programs solving a given problem. The only external
influence on the system is a selection mechanism required to prevent uncon-
trolled growth of the population by allowing only the children of fit parents
to survive.

4.11 Evolving Algorithms

As already discussed, with Genetic Programming we breed algorithms and
programs suitable for a given class of problems. In order to guide such an
evolutionary process, we have to evaluate the utility of these grown programs.
Algorithms are valuated in terms of functional and non-functional require-
ments. The functional properties comprise all features regarding how good
the algorithm solves the specified problem and the non-functional aspects are
concerned for example with its size and memory consumption. We specify
(multiple) objective values to map these attributes to the space of the real
numbers R.

4.11.1 Restricting Problems

While some of the non-functional objective values can easily be computed
(for example the algorithms size), at least determining its functional utility
requires testing. The functional utility of the algorithm specifies how close its

4.11 Evolving Algorithms 197

results produced from given inputs come to the output values wanted. This
problem cannot be solved by any computable function since it is an instance
of the Entscheidungsproblem42 [720] as well as of the halting problem43 [721].

Entscheidungsproblem

The Entscheidungsproblem formulated by David Hilbert asks for an algorithm
that, if provided with a description of a formal language and statement in
that language, can decide whether the statement is trueor false. In the case
of Genetic Programming, the formal language is the language in which the
algorithms are evolved and the statements are the algorithms itself. Church
[722, 723] and Turing [724, 725] both proved that such an algorithm cannot
exist.

Halting problem

The Halting problem asks for an algorithm that decides if another algorithm
will finish at some time or runs forever if provided with a certain, finite input.
Again, Turing [724, 725] proved that an algorithm solving the Halting Problem
cannot exist. His proof is based on a counter-example. If we assume that
a correct algorithm doesHalt exists (as presumed in Algorithm 4.2) which
takes an algorithm as input and determines if the algorithm will halt or not.
We could now specify the algorithm trouble which in turn uses doesHalt
to determine if it itself will halt at some point of time. If doesHalt returns
true, it loops forever. Otherwise it halts. doesHalt cannot return the correct
result for trouble and hence it cannot be universally applied and thus it is not
possible to solve the halting problem algorithmically.

Algorithm 4.2: Halting problem: reductio ad absurdum

doesHalt(algo) ∈ {true, false}1

begin2

. . .3

end4

trouble()5

begin6

if doesHalt(trouble) then7

while true do8

. . .9

end10

42 http://en.wikipedia.org/wiki/Entscheidungsproblem [accessed 2007-07-03]

43 http://en.wikipedia.org/wiki/Halting_problem [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/Halting_problem

198 4 Genetic Programming

4.11.2 Why No Exhaustive Testing?

Since we can neither determine the evolved programs will terminate, let alone
if they will provide correct results, we must use testing in order to determine
whether they are suitable for a given problem.

Software testing is a very important field in software engineering [726,
727, 728, 729]. Its core problem is the size of the input space. Let us as-
sume that we have, for example, a program that takes two integer numbers
(32 bit) as input and computes another one as output. If we wanted to test
this program for all possible inputs, we have to perform 232 ∗ 232 = 264 =
18′446′744′073′709′551′616 single tests. Even if each test run would only take
1µs, exhaustive testing would take approximately 584′542 years. In most cases
however the input space is much larger and in general, we can consider it to
be countable infinite large according to Definition 92 on page 504.

Thus, we can only pick a very small fraction of the possible test scenarios
and hope that they will provide significant results. The probability that this
will happen depends very much on the method with which we select the test
cases.

Here we can draw another interesting analogy to nature: One can never
be sure whether evolved behavioral patterns (like algorithms) are perfect and
free from error in all possible situations or not. Nature indeed has the same
problem as the noble scientist trying to apply Genetic Programming.

What spontaneously comes to my mind here is a scheme in the behavior
of monkeys. If a monkey sees or smells something delicious in, for example,
a crevice, it sticks its hand in, grabs the item of desire and pulls it out.
This simple behavior itself is quite optimal; it has served the monkeys well for
generations. But with the occurrence of the hairless apes called human beings,
the situation changed. African hunters use this behavior against the monkey
by creating a situation that was never relevant during its evolutionary testing
period. The slice a coconut in half and put a hole in one side just big enough
for a monkey hand to fit through. Now they place an orange between the two
coconut halves, tie them closely together and secure the trap with a rope to
a tree. Sooner or later a monkey will smell a free meal, find the coconut with
the hole, stick its hand inside, and grab the fruit. However, it cannot pull out
the hand anymore with the orange in its fist. The hunter now can very easily
catch the monkey, to whom it never occurs that it could let go the fruit and
save its life.

What I here want to say is that although evolutionary algorithms like
Genetic Programming may provide good solutions for many problems, their
results still need to be analyzed and interpreted by somebody at least a bit
more cunning than an average monkey.

From the impossibility of deciding the Halting problem, another important
fact follows. If we compile the algorithms evolved to real machine code and
execute them as a process, it is possible that this process will never terminate.
We therefore either need a measure to restrict the runtime of the executed

4.11 Evolving Algorithms 199

programs which might be more or less difficult, depending on the operating
system we use, or we could use simulations. The latter approach is more
suitable. It is very easy to limit the runtime of a program that is executed
on a simulator – even to an exact number of CPU ticks, which, in general,
would not be possible with real processes. Furthermore, the simulation allows
us a much deeper insight into the behavior of the algorithm and we may
also emulate resources required like network connections, sensors, or physical
phenomena like interference.

4.11.3 Non-Functional Features of Algorithms

Besides evaluating an algorithm in terms of its functionality, there always
exists a set of non-functional features that should be regarded too.

Code Size

In section Section 37.1.1 on page 585 we give define what algorithms are: Com-
positions of atomic instructions that, if executed, solve some kind of problem
or a class of problems. Without specifying any closer what atomic instructions
are, we can define the following:

Definition 66 (Code Size). The code size c(A) of an algorithm or program
A is the number of atomic instructions it is composed of. The atomic instruc-
tions cannot be broken down into smaller pieces, therefore the code size is a
positive integer number c(A) ∈ N0. Since algorithms are statically finite per
definition (see Definition 199 on page 588), the code size is always finite.

Code Bloat

Definition 67 (Bloat). In Genetic Programming, bloat is the uncontrolled
growth in size of the individuals during the course of the evolution [730, 731,
539, 11, 732].

Code bloat is often used in conjunction with code introns, which are re-
gions inside programs that do not contribute to the fitness because they can
never be reached (see Definition 54 on page 123). Limiting the code size and
increasing the code efficiency by reducing the number of introns is an impor-
tant task in Genetic Programming since disproportionate program growth has
many bad side effects like:

1. Programs become unnecessarily big – solutions for a problem should al-
ways be as small as possible.

2. Mutation and crossover operators always have to select the point in an
individual where they will change it. If there exist many points in an
individual that do not contribute to its functionality, the probability of

200 4 Genetic Programming

selection such a point for modification is high. The modified offspring will
then have exactly the same functionality as its parents and the genetic
operation performed was literarily useless.

3. Bloat slows down both, the evaluation and the breeding process of new
solution candidates.

4. It leads to increased memory consumption.

There are many theories about how code bloat emerges [730], some of them
are:

• Unnecessary code hitchhikes with good individuals. Since it is part of a
fit solution candidate that creates many offspring, it is likely to be part of
many new individuals. [733]

• As already stated, unnecessary code makes it harder for genetic operations
to alter the functionality of an individual. In most cases, genetic opera-
tors yield offspring with worse fitness than its parents. If a good solution
candidate has good objective values, unnecessary code can be one mea-
sure for defense against crossover and mutation. If the genetic operators
are neutralized, the offspring will have the same good fitness as its parent
[731, 597, 734, 735, 736, 539, 737]. The reduction of the destructive effect
of crossover on the fitness can also have positive effects [738, 739] since it
may lead to a smoother evolution.

• Similar to the last theory, the idea of removal bias states, that removing
code from an individual will preserve the individual’s functionality if the
code removed is non-functional. Since the portion of useless code inside an
individual is finite, there also exists an upper limit of the amount of code
that can be removed without altering the functionality of the individual.
On the other hand, for the size of new sub-trees that could be inserted due
to mutation or crossover, no such limit exists. Therefore, programs tend
to grow [740, 737].

• According to the diffusion theory, the number of large programs in the solu-
tion space that are functional is higher than the number of small functional
programs. Thus, code bloat would be the movement of the population into
this direction [737].

• Another theory states that for each unreachable or dysfunctional code,
there exists and invalidator. In the formula 4 + 0 ∗ (4− x) for example, 0
invalidates the whole part 0∗ (4−x). Luke [730] argues that if the propor-
tion of such invalidators remains constant, the chance of their occurrence
close to the root of a tree would be higher. Hence, their influence on large
trees would be bigger than on small trees and with the growth of the
programs the amount of unnecessary instructions would increase.

• Luke [730] furthermore defines a more general theory for the tree growth.
As already stated, crossover is likely to destroy the functionality of an
individual. On the other hand, the deeper the crossover occurs in the tree,
the lesser is its influence since fewer instructions are removed. On the other
hand, if only a few instructions are replaced from a functional program,

4.11 Evolving Algorithms 201

they are likely to be exchanged by a larger sub-tree. The new offspring,
retaining its parent’s functionality, therefore tends to be larger.

• Instead of being real solutions, programs that grow uncontrolled also tend
to be some sort of decision tables. This phenomenon is called overfitting
and is discussed in detail in Section 1.4.6 on page 27 and Section 19.1.3
on page 332. The problem is that overfit programs tend to have marvelous
good fitness for the test cases/sample data, but are normally useless for
any other input.

Runtime

Another aspect subject to minimization is generally the runtime of the algo-
rithms grown. The amount of steps needed to solve a given task, i. e. the time
complexity, is only loosely related to the code size. Although large programs
with many instructions tend to run longer than small programs with few in-
structions, the existence of loops and recursion invalidates a direct relation.

Memory Consumption

Like the complexity in time, the complexity in space of the bred solutions often
should to be minimized. The count of variables and memory cells needed by
program in order to perform its work should be as small as possible.

Errors

An example for an application where non-functional errors can occur should
be minimized is symbolic regression. Here, the division operator div is often re-
defined in order to prevent division-by-zero errors. Therefore, such a division is
either rendered to a nop (i. e. does nothing) or yields 1 as result. However, one
could count the number of such errors and make the subject to minimization
too.

Transmission Count

If we evolve distributed algorithms, we want the number of messages required
to solve a problem to be as low as possible since transmissions are especially
costly and time-consuming operations.

Optimizing Non-Functional Aspects

Optimizing the non-functional aspects of the individuals evolved is a topic of
scientific interest.

202 4 Genetic Programming

• One of the simplest means of doing so is to define additional objective func-
tions and perform a multi-objective optimization. Successful and promis-
ing experiments showed that this is a viable countermeasure for code bloat
[741], for instance.

• Another method is limiting the aspect of choice. A very simple measure
to limit code bloat for example is to prohibit the evolution of trees with a
depth surpassing a certain limit [742].

• Poli [743] suggests that the fitness of a certain portion of the population
with above-average code size is simple zeroed. These artificial fitness holes
will repel the individuals from becoming too large and hence reduce the
code bloat.

5

Evolution Strategy

5.1 Introduction

An evolution Strategy1 (abbreviated with ES) is a heuristic optimization tech-
nique based in the ideas of adaptation and evolution, a special form of evolu-
tionary algorithms [744, 470, 745, 746, 747, 199, 748, 1]. Evolution strategies
have the following features:

• They usually use vectors of real numbers as individuals, i. e. a string
genome2 of fixed-size floating point number sequences.

• Mutation and selection are the primary operators and the recombination
is less common.

• Mutation most often changes the elements xi of the individual vector x to a
number drawn from a normal distribution N(xi, σ

2
i). (see also Section 3.4.1

on page 124).
• Then, the values σi are governed by self-adaptation [749, 750] or by co-

variance matrix adaptation [751, 752, 753, 754].

In evolution strategy, these operations, as in any normal evolutionary al-
gorithms, are performed iteratively in a cycle along with evaluation and re-
production processes where the iterations are called generations.

5.2 General Information

5.2.1 Areas Of Application

Some example areas of application of evolution strategy are:

Application References

1 http://en.wikipedia.org/wiki/Evolution_strategy [accessed 2007-07-03], http://
www.scholarpedia.org/article/Evolution_Strategies [accessed 2007-07-03]

2 see Section 3.4 on page 124

http://en.wikipedia.org/wiki/Evolution_strategy
http://www.scholarpedia.org/article/Evolution_Strategies
http://www.scholarpedia.org/article/Evolution_Strategies

204 5 Evolution Strategy

data mining and data analysis [231]
scheduling problems [755]
chemistry [756, 757, 758]
to find emission sources from atmospheric obser-
vations

[759]

combinatorial optimization [760]
geometry, surface reconstruction, CAD/CAM [761, 762]
solving Travelling Salesman Problem (TSP)-like
tasks

[763, 764]

optics and image processing [765, 766]

For more information see also [397].

5.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on evolution strategy are:

EUROGEN: Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems

see Section 2.2.2 on page 61

5.2.3 Books

Some books about (or including significant information about) evolution strat-
egy are (ordered alphabetically):

Schwefel: Evolution and Optimum Seeking: The Sixth Generation (see [199])
Rechenberg: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution (see [470])
Rechenberg: Evolutionsstrategie ’94 (see [745])
Beyer: The theory of evolution strategies (see [748])
Quagliarella, Periaux, Poloni, and Winter: Genetic Algorithms and Evolu-
tion Strategy in Engineering and Computer Science: Recent Advances and
Industrial Applications (see [397])

5.3 Populations in Evolutionary Strategy

The following classification has been partly borrowed from German Wikipedia
site for evolution strategy3.

3 http://de.wikipedia.org/wiki/Evolutionsstrategie [accessed 2007-07-03]

http://de.wikipedia.org/wiki/Evolutionsstrategie

5.3 Populations in Evolutionary Strategy 205

5.3.1 (1 + 1)-ES

The population only consists of a single individual which is reproduced. From
the elder and the offspring, the better individual will survive and form the next
population. This scheme is very close to hill climbing which will be introduced
in Chapter 8 on page 223.

5.3.2 (µ + 1)-ES

Here, the population contains µ individuals from which one is drawn randomly.
This individual is reproduced then reproduced and from the joint set of its
offspring and the current population, the least fit individual is removed.

5.3.3 (µ + λ)-ES

Using the reproduction operations, from µ parent individuals λ ≥ µ offspring
individuals are created. From the joint set of offspring and parents, only the
µ fittest ones are kept [767].

5.3.4 (µ, λ)-ES

Again, from µ parents λ > µ children are created. The parents are subse-
quently deleted and from the λ offspring individuals, only the µ fittest are
retained [768].

5.3.5 (µ/ρ, λ)-ES

Evolution strategies named (µ/ρ, λ) are (µ, λ) strategies. Here the additional
parameter ρ is added, denoting the number of parent individuals of one off-
spring. As already said, normally, we only use mutation (ρ = 1). If recombina-
tion as used in other evolutionary algorithms is applied, ρ = 2 holds. A special
case of (µ/ρ, λ) algorithms is the (µ/µ, λ) evolution strategy [769, 768].

5.3.6 (µ/ρ + λ)-ES

Analogously to (µ/ρ, λ)-ESs, the (µ/ρ + λ)-ESs are (µ, λ) strategies where ρ
denotes the number of parents of an offspring individual.

5.3.7 (µ′, λ′(µ, λ)γ)-ES

From a population of the size µ′, λ′ offspring is created and isolated for γ
generations. In each of the γ generations, λ children are created from which
the fittest µ are passed on to the next generation. After the γ generations,
the best of the γ isolated populations is selected and the cycle starts again
with λ′ new child individuals. This nested evolutionary strategy can be more
efficient than the approaches when applied to complex multimodal fitness
environments [745, 770].

206 5 Evolution Strategy

5.4 One-Fifth Rule

The 1
5 success rule defined by Rechenberg denotes that the quotient of the

number of successful mutations (i.e. those which lead to fitness improvements)
to the total number of mutations should be approximately 1

5 . If the quotient
is bigger, the σ-values should be increased and with that, the scatter of the
mutation. If it is lower, σ should be decreased and thus, the mutations are
narrowed down.

5.5 Differential Evolution

5.5.1 Introduction

Differential evolution4 (DE,DES) is a method for mathematical optimization
of multidimensional functions that belongs to the group of evolution strategies
[771, 772, 773, 774, 775, 101, 776]. First published in [777], the DE technique
has been invented by Price and Storn in order to solve the Chebyshev polyno-
mial fitting problem. It has proven to be a very reliable optimization strategy
for many different tasks with parameters that can be encoded in real vectors
like digital filter design, multiprocessor synthesis, neural network learning, op-
timization of alkylation reactions, and the design of water pumping systems
or gas transmission networks.

The crucial idea behind differential evolution is the way the recombination
operator is defined for creating trial parameter vectors. The difference x1−x2

of two vectors x1 and x2 in X̃ is weighted with a weight w ∈ R and added to
a third vector x3 in the population.

xn = deRecombination(x1,x2,x3)⇔ xn = x3 + w(x1 − x2) (5.1)

Except for determining w, no additional probability distribution has to be
used and the differential evolution scheme is completely self-organizing. This
classical reproduction strategy has been complemented with new ideas like
triangle mutation and alternations with weighted directed strategies.

5.5.2 General Information

Areas Of Application

Some example areas of application of differential evolution are:

Application References

mechanical design optimization [778, 779]

4 http://en.wikipedia.org/wiki/Differential_evolution [accessed 2007-07-03],
http://www.icsi.berkeley.edu/~storn/code.html [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Differential_evolution
http://www.icsi.berkeley.edu/~storn/code.html

5.5 Differential Evolution 207

chemistry [780, 781, 782, 783]
scheduling [784]
function optimization [785]
filter design [786, 787]

Journals

Some journals that deal (at least partially) with differential evolution are
(ordered alphabetically):

Journal of Heuristics (see Section 1.8.3 on page 43)

Books

Some books about (or including significant information about) differential
evolution are (ordered alphabetically):

Price, Storn, Lampinen: Differential Evolution – A Practical Approach to
Global Optimization (see [771])
Feoktistov: Differential Evolution – In Search of Solutions (see [772])
Corne, Dorigo, Glover: New Ideas in Optimisation (see [178])

6

Evolutionary Programming

6.1 Introduction

Different from the other major types of evolutionary algorithms introduced,
there exists no clear specification or algorithmic variant for evolutionary pro-
gramming1 (EP). There is though a semantic difference: while single individ-
uals of a species are the biological metaphor for solution candidates in other
evolutionary algorithms, in evolutionary programming a solution candidate
is thought of as a species itself. Hence, mutation and selection are the only
operators used in EP and recombination is not applied. The selection scheme
utilized in evolutionary programming is quite similar to the (µ + λ) method
in evolution strategies.

Evolutionary programming was first invented by Lawrence Fogel [788, 19]
in order to evolve finite state machines as predictors for data streams. His
son David Fogel [789, 790, 791] and he together [792, 793] are also the major
forces developing it further.

Generally, it is hard to distinguish between EP and genetic programming,
genetic algorithms, and evolution strategy. Although there are semantic dif-
ferences (as already mentioned), the author thinks that the evolutionary pro-
gramming approach generally has melted together with these other research
areas.

6.2 General Information

6.2.1 Areas Of Application

Some example areas of application of evolutionary programming are:

1 http://en.wikipedia.org/wiki/Evolutionary_programming [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Evolutionary_programming

210 6 Evolutionary Programming

Application References

machine learning [789]

evolution of finite state machines [788]
evolving game players [790, 791]
training of artificial neural networks [793]
chemistry and biochemistry [794, 795, 796]
electronic and controller design [797, 798]
fuzzy clustering [799]
general constraint optimization [800]

robotic motion control [801]

6.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on evolutionary programming
are:

EP: International Conference on Evolutionary Programming
now part of CEC, see Section 2.2.2 on page 60
History: 1998: San Diego, California, USA, see [802]

1997: Indianapolis, Indiana, USA, see [803]
1996: San Diego, California, USA, see [804]
1995: San Diego, California, USA, see [805]
1994: see [806]
1993: see [807]
1992: see [808]

EUROGEN: Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems

see Section 2.2.2 on page 61

6.2.3 Books

Some books about (or including significant information about) evolutionary
programming are (ordered alphabetically):

Fogel, Owens, and Walsh: Artificial Intelligence through Simulated Evolution
(see [788])
Fogel, Owens, and Walsh: System Identification through Simulated Evolution:
A Machine Learning Approach to Modeling (see [789])
Fogel: Blondie24: playing at the edge of AI (see [791])

7

Learning Classifier Systems

7.1 Introduction

In the late 1970s, Holland invented and patented a new class of cognitive
systems, called classifier systems (CS) [705, 706]. These systems are a special
case of production systems [809, 810] and consist of four major parts:

1. a set of interacting productions, called classifiers,
2. a performance algorithm that directs the action of the system in the en-

vironment,
3. a simple learning algorithm that keeps track on each classifier’s success in

bringing about rewards, and
4. a more complex algorithm, called the genetic algorithm, that modifies

the set of classifiers so that variants of good classifiers persist and new,
potentially better ones are created in a provably efficient manner [811].

By time, classifier systems have undergone some name changes. In 1986,
reinforcement learning was added to the approach and the name changed to
learning classifier systems1 (LCS) [1, 812]. Today, learning classifiers are some-
times subsumed under a new machine learning paradigm called evolutionary
reinforcement learning (ERL) [1, 813].

7.2 General Information

7.2.1 Areas Of Application

Some example areas of application of learning classifier systems are:

Application References

1 http://en.wikipedia.org/wiki/Learning_classifier_system [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Learning_classifier_system

212 7 Learning Classifier Systems

data mining [814, 815, 816]
inferring the grammar of natural language [817, 818, 819]
decease risk-prediction in medicine [820]
image processing [821, 822]

7.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on learning classifier systems
are:

IWLCS: International Workshop on Learning Classifier Systems
Nowadays often co-located with GECCO (see Section 2.2.2 on page 62).
History: 2007: London, England, see [823]

2006: Seattle, WA, USA, see [824]
2005: Washington DC, USA, see [825, 826]
2004: Seattle, Washington, USA, see [827, 826]
2003: Chicago, IL, USA, see [828, 826]
2002: Granada, Spain, see [829]
2001: San Francisco, CA, USA, see [830]
2000: Paris, France, see [831]
1999: Orlando, Florida, USA, see [832]
1992: Houston, Texas, USA, see [833]

7.3 The Basic Idea of Learning Classifier Systems

Figure 7.1 illustrates Holland’s original idea of the structure of a Michigan-
style learning classifier system. A classifier system is connected via detectors
(b) and effectors (c) to its environment (a). The input in the system, coming
from the detectors, is encoded in binary messages that are written into a mes-
sage list (d). On this list, the classifiers, simple if-then rules (e), are applied.
The result of a classification is again encoded as a message and written to the
message list. These new messages may now trigger other rules or are signals
for the effectors [834]. The payoff of the performed actions is distributed by
the credit apportionment system (f) to the rules. Additionally, a rule discov-
ery system (g) is responsible for finding new rules and adding them to the
classifier population [835].

Such a classifier system is computational complete and is hence as powerful
as any other Turing-equivalent programming language [836, 837]. One can
imagine it as something like a computer program where the rules play the
role of the instructions and the messages are the memory.

7.3 The Basic Idea of Learning Classifier Systems 213

(a) Environment

(b) Detectors (c) Effectors

(d) Message List

(e) Rule Base

(f) Apportionment of
Credit System

(e.g. Bucket Brigade)

(g) Rule Discovery
System

(e.g. Genetic Algorithm)

Learning Classifier System

information action

payoff

Non-Learning Classifier System,
Production System

Fig. 7.1: The structure of a Michigan style learning classifier system.

7.3.1 Messages

In order to describe how rules and messages are structured in a basic classifier
systems, we borrow a simple example from [1] and modify it so it fits to our
needs.

Let us imagine that we want to find a classifier system that is able to con-
trol the behavior of a frog. Our frog likes to eat nutritious flies, and therefore
it can sense a small, flying object. These objects can be eaten if they are right
in front of it. They can be distinguish if they have stripes or not, because
small, flying objects with stripes probably are bees or wasps which should
preferably not be eaten. The frog furthermore also senses large, looming ob-
jects far above, birds in human-lingo, which should be avoided by jumping
away quickly. The frog furthermore has a sense of direction – it detects if the

214 7 Learning Classifier Systems

objects are in front, to the left, or to the right of it and it can then turn into
this direction. Now we can compile this behavior into the form of if-then

rules which are listed in Table 7.1.

Table 7.1: if-then rules for frogs

No. if-part then-part

1 small, flying object with no stripes to the left send a
2 small, flying object with no stripes to the right send b
3 small, flying object with no stripes to the front send c
4 large, looming object send d
5 a and not d turn left
6 b and not d turn right
7 c and not d eat
8 d move away rapidly

Z F DD S MMM TT J E

size
0=
1=

small
large

0=
1=

flying
looming

type

0=
1=

without
with

stripes

01=
10=
11=

left
center
right

direction

eat
0=
1=

no
yes

turn
00=
01=
10=

don’t turn
left
right

memory
001=
010=
011=
100=

a
b
c
d

detector input actions

jump0=
1=

no
yes

Fig. 7.2: One possible encoding of messages for a frog classifier system

In Figure 7.2 we demonstrate how the messages in a classifier system that
drives such a frog can be encoded. Here, input information as well as action

7.3 The Basic Idea of Learning Classifier Systems 215

commands are encoded in one message type. Also, three bits are assigned for
encoding the internal messages a to d. Two bits would not suffice, since 00

would also occur in all input messages. The idea is that at the beginning of
a classification process, the input messages are written to the message list.
They contain useful values only at the positions reserved for detections and
zeros everywhere else. They will be transformed to internal messages which
normally have only the bits marked as “memory” set. These messages are
finally transformed to output messages by setting some action bits. In our
frog-system, a message is in total k = 12 bits long, i. e. |m| = 12 ∀ message m.

7.3.2 Conditions

Rules in classifier systems consist of a condition part and an action part. The
conditions have the same length k as the messages. Instead of being binary
encoded strings, a ternary system consisting of the symbols 0, 1, and *. In a
condition,

• a 0 means that the corresponding bit in the message must be 0,
• a 1 means that the corresponding bit in the message must be 1, and
• a * means do not care, i. e. the corresponding bit in the message may be

0 as well as 1

for the condition to match.

Definition 68 (matchesCondition). A message m matches to a condition c
if matchesCondition(m, c) evaluates to true.

matchesCondition(m, c) = ∀ 0 ≤ i < |m| ⇒ m[i] = c[i] ∨ c[i] = * (7.1)

The condition part of a rule may consist of more than one condition which
are then implicitly concatenated with and (∧). A classifier is satisfied if all
its conditions are satisfied by some message in the current message list. This
means that each of the conditions of a classifier may match to a different
message. Furthermore, we can precede each single condition c with an addi-
tional ternary digit which defines if it should be negated or not: * denotes
¬c and 0 as well as 1 denotes c2. A negated condition evaluates to true if
no message exists that matches it. By combining ∧ and ¬ we get nands with
which we can build all other logic operations and hence, whole computers
[838]. Algorithm 7.1 illustrates how the condition part C is matched against
the message list M .

Definition 69 (Condition Specificity). We define the condition specificity
conditionSpecificity(x) of a classifier x to be the number of non-* symbols
in its condition part C(x).

conditionSpecificity(x) = |{∀; i : C(x)[i] 6= *}| (7.2)

2 Here we deviate from one of our sources (namely [835]) because the definition of
the conditionSpecificity (see Definition 69) makes more sense this way.

216 7 Learning Classifier Systems

Algorithm 7.1: {true, false} = matchesConditions(C,M)

Input: C the condition part of a rule
Input: M the message list
Input: Implicit: k the length of the messages m ∈M and the single

conditions c ∈ C
Input: Implicit: hasNegPart true if and only if the single conditions have a

negation prefix, false otherwise
Data: xnew ∈ X̃ the new element created
Data: Xtabu the tabu list
Output: true if messages exist that match the condition part C, false

otherwise

begin1

i←− 02

match←− true3

while (i < |C|) ∧match do4

if hasNegPart then5

neg ←− C[i] = *6

i←− i + 17

else neg ←− false8

c←− subList(C, i, k)9

i←− i + k10

match←− neg xor (∃ m ∈M : matchesCondition(m, c))11

return match12

end13

A rule x1 with a higher condition specificity is more specific than another
rule x2 with a lower condition specificity. On the other hand, a rule x2 with
conditionSpecificity(x1) > conditionSpecificity(x2) is more general than
the rule x1. We can use this information for example if two rules match to one
message, and we want only one to post a message. By always selecting the
more specific rule in such situations, we built a default hierarchy [839] which
allows specialized classes to be contained in more general classes.

7.3.3 Actions

The action part of a rule most often has exactly the length of a message. It
can either be binary or ternary encoded. In the first case, the action part of
a rule is simple copied to the message list if the classifier is satisfied, in the
latter one some sort of merging needs to be performed. Here,

1. a 0 in the action part will lead to a 0 in the corresponding message bit,
2. a 1 in the action part will lead to a 1 in the corresponding message bit,
3. and for a * in the action part, we copy the corresponding bit from the

(first) message that matched the classifier’s condition to the newly created
message.

7.3 The Basic Idea of Learning Classifier Systems 217

Definition 70 (mergeAction). The function mergeAction computes a new
message n as product of an action a. If the alphabet the action is based on is
ternary and may contain *-symbols, mergeAction needs implicit access to the
first message m which has satisfied the first condition of the classifier to which
a belongs. If the classifier contains negation symbols and the first condition
was negated, m is assumed to be a string of zeros (m = createList(|a|, 0)).
Notice that we do not explicitly distinguish between binary and ternary en-
coding in mergeAction, since * cannot occur in actions based on a binary
alphabet and Equation 7.3 stays valid.

n = mergeAction(a)⇔ (|n| = |a|∧)

(n[i] = a[i] ∀ i : a[i] 6= *) ∧
(n[i] = m[i] ∀ i : a[i] = *) (7.3)

7.3.4 Classifiers

So we now know that a rule x consist of a condition part C and an action
part a. C is list of r ∈ N conditions ci, and we distinguish between repre-
sentations with (C = (n1, c1, n2, c2, . . . , nr, cr)) and without negation symbol
(C = (c1, c2, . . . , cr)).

Let us go back to our frog example. Based on the encoding scheme defined
in Figure 7.2, we can now translate Table 7.1 into a set of classifiers. In our
example we use two conditions c1 and c2 with negation symbols n1 and n2,
i. e. r = 2.

Table 7.2: if-then rules for frogs in encoded form

No. n1 c1 n2 c2 a

1 0 0 0 01 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 001 00 0 0

2 0 0 0 11 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 010 00 0 0

3 0 0 0 10 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 011 00 0 0

4 0 1 1 ** * *** ** * * 0 * * ** * *** ** * * 0 0 00 0 100 00 0 0

5 0 * * ** * 001 ** * * * * * ** * 100 ** * * 0 0 00 0 000 01 0 0

6 0 * * ** * 010 ** * * * * * ** * 100 ** * * 0 0 00 0 000 10 0 0

7 0 * * ** * 011 ** * * * * * ** * 100 ** * * 0 0 00 0 000 00 0 1

8 0 * * ** * 100 ** * * 0 * * ** * *** ** * * 0 0 00 0 000 00 1 0

Table 7.2 contains the result of this encoding. We now can apply this
classifier to a situation in the life of our frog: it detects

1. a fly to its left,
2. a bee to its right, and
3. a stork left in the air.

218 7 Learning Classifier Systems

How will it react? The input sensors will generate three messages and insert
them into the message list M1 = (m1,m2,m3):

1. m1 = (0 0 01 0 000 00 0 0) for the fly,
2. m2 = (0 0 11 1 000 00 0 0) for the bee, and
3. m3 = (1 1 01 0 000 00 0 0) for the stork.

The first message triggers rule 1 and the third message triggers rule 4 whereas
no condition fits to the second message. As a result, the new message list M2

contains two messages, m4 and m5, produced by the corresponding actions.

1. m4 = (0 0 00 0 001 00 0 0) from rule 1 and
2. m5 = (0 0 00 0 100 00 0 0) from rule 4.

m4 could trigger rule 5 but is inhibited by the negated second condition c2

because of message m5. m5 matches to classifier 8 which finally produces
message m6 = (0 0 00 0 000 00 1 0) which forces the frog to jump away. No
further classifiers become satisfied with the new message list M3 = (m6) and
the classification process is terminated.

7.3.5 Non-Learning Classifier Systems

So far we have described a non-learning classifier system. Algorithm 7.2 de-
scribes the behavior of such a system which we also could observe in the ex-
ample. It still lacks the credit apportionment and the rule discovery systems
(see (f) and (g) in Figure 7.1). A non-learning classifier is able to operate
correctly on a fixed set of situations. It is sufficient for all applications where
we are able to determine this set beforehand and no further adaptation is
required. Then we can use genetic algorithms to evolve them, for example.

Algorithm 7.2 illustrates how a classifier system works. No optimization
or approximation of a solution is done; this is a complete control system in
action. Therefore we do not need a termination criterion but run an infinite
loop.

7.3.6 Learning Classifier Systems

In order to convert this non-learning classifier system to learning classifier
system as proposed by Holland [840] and defined in Algorithm 7.3, we have to
add the aforementioned missing components. [1] suggests two ways for doing
so:

1. Currently, the activation of a classifier x results solely from the message-
matching process. If a message matches the condition(s) C(x), the clas-
sifier may perform its action a(x). We can change this mechanism by
making it also dependent on an additional parameter s(x), the strength
value, which can be modified as a result of experience, i.e. by reinforcement
from the environment. Therefore, we have to solve the credit assignment
problem [841, 842].

7.3 The Basic Idea of Learning Classifier Systems 219

Algorithm 7.2: nonLearningClassifierSystem(P)

Input: P the list of rules xi that determine the behavior of the classifier
system

Input: Implicit: readDetectors a function which creates a new message list
containing only the input messages from the detectors

Input: Implicit: sendEffectors a function which translates all messages
concerning effectors to signals for the output interface

Input: Implicit: I ∈ N the maximum number of iterations for the internal
loop, avoids endless loops

Input: Implicit: a(x), C(x) functions that extract the action and the
condition part from a rule x

Data: i ∈ N a counter the internal loop
Data: Mi the message list of the ith iteration
Data: S the set of satisfied classifiers x

begin1

while true do2

M1 ←− readDetectors()3

i←− 14

repeat5

S ←− {x ∈ P : matchesConditions(C(x), Mi)}6

Mi+1 ←− ∅7

foreach x ∈ S do8

Mi+1 ←−Mi+1 ∪ {mergeAction(a(x))}9

i←− i + 110

until (S = ∅) ∨ (i > I)11

sendEffectors(Mi)12

end13

2. Furthermore (or instead), we may also modify the set of classifiers P by
adding, removing, or combining condition/action parts of existing classi-
fiers.

A learning classifier system hence is a control system that is able to learn
while actually running and performing its work. Usually, a training phase
will precede any actual deployment. Afterwards, the learning may even be
deactivated, turning the LCS into an ordinary classifier system.

7.3.7 The Bucket Brigade Algorithm

The bucket brigade algorithm [843, 844, 706] is one method of solving the
credit assignment problem in learning classifier systems.

It selects the classifiers from the match set S that are allowed to post
a message (i. e. becoming member in the activated set S′) by an auction.
Therefore, each matching classifier x ∈ S places a bid B(x) which is the
product of a linear function ϑ of the condition specificity of x, a constant

220 7 Learning Classifier Systems

Algorithm 7.3: learningClassifierSystem(B)

Input: Implicit: generateClassifiers a function which creates randomly a
population P of classifiers

Input: Implicit: readDetectors a function which creates a new message list
containing only the input messages from the detectors

Input: Implicit: sendEffectors a function which translates all messages
concerning effectors to signals for the output interface

Input: Implicit: selectMatchingClassifiers a function that determines at
most k classifiers from the matching set S that are allowed to trigger
their actions

Input: Implicit: I ∈ N the maximum number of iterations for the internal
loop, avoids endless loops

Input: Implicit: a(x), C(x) functions that extract the action and the
condition part from a rule x

Input: Implicit: generationCriterion a criterion that becomes trueif new
classifiers should be created

Input: Implicit: createNewRules a function that finds new rules
Data: P the population of rules xi that determine the behavior of the

classifier system
Data: i ∈ N a counter the internal loop
Data: Mi the message list of the ith iteration
Data: S the set of satisfied classifiers x
Data: S′ the set of classifiers x selected from S
Data: R a variable to receive the credit/reward

begin1

P ←− generateClassifiers()2

s←− 1 ∀ x ∈ P3

while true do4

M1 ←− readDetectors()5

i←− 16

repeat7

S ←− {x ∈ P : matchesConditions(C(x), Mi)}8

S′ ←− selectMatchingClassifiers(S)9

// ...update the strengths ...

Mi+1 ←− ∅10

foreach x ∈ S′ do11

Mi+1 ←−Mi+1 ∪ {mergeAction(a(x))}12

i←− i + 113

until (S = ∅) ∨ (i > I)14

sendEffectors(Mi)15

// ...receive and distribute the payoffs ...

if generationCriterion() then P ←− createNewRules(P)16

end17

7.3 The Basic Idea of Learning Classifier Systems 221

0 < β ≤ 1 that determines the fraction of the strength of x should be used
and the strength s(x) of x itself. In practical applications, values like 1

8 or 1
16

are often chosen for β.

B(x) = ϑ(x) ∗ β ∗ s(x) + randomn(0, σ2) (7.4)

Sometimes a normal distributed random number is added to each bid in order
to make the decisions of the system less deterministic.

The condition specificity is included in the bid calculation because it gives
a higher value to rules with fewer *-symbols in their conditions. These rules
match to fewer messages and can be considered more relevant in the cases
they do match. For ϑ, the quotient of the number non-*-symbols and the
condition length plus some constant 0 < α determining the importance of the
specificity of the classifier is often used [834].

ϑ(x) =
conditionSpecificity(x)

|C(x)| + α (7.5)

The bucket brigade version of the selectMatchingClassifiers-method in-
troduced in Algorithm 7.3 then picks the k classifiers with the highest bids
and allows them to write their messages into the new message list. They are
charged with the payment part P (x) of their bids. The payment does not con-
tain the condition specificity-dependent part and also not the possible random
addend. It is added as reward R(y) to the strength of classifier y that wrote
the message that allowed them to become active. In the case that this was an
input message, it is simple thrown away. The payment of classifiers that are
not activated is null.

P (x) = β ∗ s(x) (7.6)

In some learning classifier systems, a life-tax T (x) is collected from all
classifiers in each cycle. It is computed as a small fraction τ of their strength
[834].

T (x) = τ ∗ s(x) (7.7)

Those classifiers that successfully triggered an action of the effectors re-
ceive a reward R(x) from the environment which is added to their strength.
Together with the payment method, all rules that are involved in a successful
action receive some of the reward which is handed down stepwise – similar to
how water is transported by a bucket brigade.

For all classifiers that do not produce output to the effectors and also do
not receive payment from other classifier they have triggered, this reward is
null.

In total, the new strength s(x)t+1 of a classifier x is composed of its old
strength, its payment P (x), the life-tax T (x), and the reward R(x).

s(x)t+1 = s(x)t − P (x)t − T (x)t + R(x)t (7.8)

222 7 Learning Classifier Systems

7.3.8 Applying the Genetic Algorithm

With the credit assignment alone no new rules can be discovered – only the
initial, randomly create rule set P is rated. At some certain points in time,
a genetic algorithm (see Chapter 3 on page 117) replaces old rules by new
ones. In learning classifiers we apply steady-state genetic algorithms which are
discussed in Section 2.1.3 on page 54. They will retain most of the classifier
population and only replace the weakest rules. Therefore, the strength s(x) of
a rule x is used as its fitness f(x).

f(x) = s(x) (7.9)

For mutation and crossover, the well known reproduction operations for
fixed-length string chromosomes discussed in Section 3.4.1 on page 124 are
employed.

7.4 Families of Learning Classifier Systems

The exact definition of learning classifier systems still seems contentious [845,
846, 847, 848]. There exist for example versions without message list where the
action part of the rules does not encode messages but direct output signals.

Also the importance of the role of genetic algorithms in conjunction with
the reinforcement learning component is not quite clear. There are scientists
who emphasize more the role of the learning components [849] and others who
grant the genetic algorithms a higher weight [850, 705].

Depending on how the genetic algorithm acts, we can divide learning classi-
fier systems into two types. The Pitt approach is originated at the University of
Pittsburgh and mainly associated with Smith and De Jong [707, 708, 851, 852].
Pittsburgh-style learning classifier systems work on a population of separate
rule sets, single classifiers, which are combined and reproduced by the genetic
algorithm [815, 853, 854]. Closer to the original idea of Holland are Michigan-
style LCSs where the whole population itself is considered as classifier. They
focus on selecting the best rules in this rule set [855, 834, 856]. Wilson devel-
oped two subtypes of Michigan-style LCS:

1. ZCS systems use fitness sharing [857, 858, 859, 860] for reinforcement
learning.

2. They have later been somewhat superseded by XCS systems which are
accuracy-based [861, 862, 863, 864, 865].

8

Hill Climbing

8.1 Introduction

Hill climbing1 (HC) [866] is a very simple search/optimization algorithm. In
principle, it is a loop in which the currently known best solution x⋆ candidate
is used to produce one offspring xnew. If this new individual is better than
its parent, it replaces it. Then the cycle starts all over again, as specified in
Algorithm 8.1.

The major problem of hill climbing is that it very easily gets stuck on a
local optimum. It always uses the best known individual x⋆ to produce new
solution candidates and the therefore used mutate operation will return an
element xnew ∈ X̃ neighboring x⋆. Section 8.4 on the next page discusses how
this problem can be overcome.

It should also be noted that hill climbing can be implemented in a de-
terministic manner if the neighbor sets are always finite and can be iterated
over.

Algorithm 8.1: x⋆ = hillClimbing(f)

Input: f the objective function to be minimized
Data: xnew ∈ X̃ the new element created
Output: x⋆ ∈ X̃ the best element found

begin1

x⋆ ←− create()2

while ¬terminationCriterion() do3

xnew ←− mutate(x⋆)4

if f(xnew) < f(x⋆) then x⋆ ←− xnew5

return x⋆
6

end7

1 http://en.wikipedia.org/wiki/Hill_climbing [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Hill_climbing

224 8 Hill Climbing

8.2 General Information

8.2.1 Areas Of Application

Some example areas of application of hill climbing are:

Application References

application server configuration [867]
development of robotic behavior [868]

feature selection [869]
solving games like matermind [870]
to solve combinatorial problems like Knapsack [871]
finding planted bisections [872]

8.3 Multi-Objective Hill Climbing

As illustrated in Algorithm 8.2 on the facing page, we can easily extend the
hill-climbing algorithm with a support for multi-objective optimization. Ad-
ditionally, this new hill climber returns set of best known solutions instead of
a single individual as done in Algorithm 8.1 on the previous page. This al-
gorithm needs a selection scheme in order to determine which of the possible
multiple currently best solution candidates should be used as parent for the
next offspring. The selection algorithm applied must not rely on prevalence
comparison directly, since no element in X⋆ prevails any other per definition –
otherwise, the set of optimal elements X⋆ would contain non-optimal solution
candidates. Selection should thus either be randomized (seeSection 2.4.2 on
page 80) or a density/diversity/crowding-based fitness assignment process.

8.4 Problems in Hill Climbing

Both versions of the algorithm are very likely to get stuck on local optima.
They will only follow a path of solution candidates if it is monotonously2

improving the objective function(s). Hill climbing in this form should be re-
garded as local search rather than global optimization algorithm. By making
a few slight modifications to the algorithm however, it can become a valuable
global optimization technique:

• A tabu-list can be used which stores elements recently evaluated. By deny-
ing visiting them again, a better exploration of the problem space can be
enforced. This technique is used in tabu search, see Chapter 11 on page 237.

2 http://en.wikipedia.org/wiki/Monotonicity [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Monotonicity

8.5 Hill Climbing with Random Restarts 225

Algorithm 8.2: X⋆ = hillClimbing(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Data: xnew ∈ X̃ the new element created
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− ∅2

xnew ←− create()3

while ¬terminationCriterion() do4

X⋆ ←− updateOptimalSet(X⋆, xnew)5

X⋆ ←− pruneOptimalSet(X⋆)6

xnew ←− select(X⋆, 1)[0]7

xnew ←− mutate(xnew)8

return X⋆
9

end10

• Not always use the better solution candidate to continue. Simulated an-
nealing introduces a heuristic based on the physical model the cooling
period of molten metal to decide whether a superior offspring should re-
place its parent or not. It is discussed Chapter 10 on page 231.

• The dynamic hill climbing approach [873] uses the last two visited points
to compute unit vectors. With this technique, the directions are adjusted
according to the structure of the space and a new coordinate frame is
created that points more likely into the right direction.

• Randomly restart the search after so-and-so many steps, see Section 8.5.
• Use a reproduction scheme that not necessarily generates solution candi-

dates directly neighboring x⋆, as done in random optimization introduced
in Chapter 9 on page 227.

8.5 Hill Climbing with Random Restarts

Another approach is to simple restart the algorithm after some time at a
random state. Of course, the best solutions found are remembered in a set
X⋆ but are no longer incorporated in the search. An independent best-of-run
set, X⋆cur is used to create new solution candidates. Algorithm 8.3 on the
following page illustrates this idea.

This method is also called Stochastic Hill Climbing (SH) or Stochastic
gradient descent3 [874, 875].

For the sake of generality, we define a function shouldRestart() that is
evaluated in every iteration and determines whether or not the algorithm

3 http://en.wikipedia.org/wiki/Stochastic_gradient_descent [accessed 2007-07-

03]

http://en.wikipedia.org/wiki/Stochastic_gradient_descent

226 8 Hill Climbing

should be restarted. shouldRestart therefore could for example count the
iterations performed or check if any improvement was produced in the last
ten iterations.

Algorithm 8.3: X⋆ = hillClimbing(cF) (random restarts)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Data: X⋆
cur ⊆ X̃ the set of the best elements found in the current run

Data: xnew ∈ X̃ the new element created
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− {create()}2

X⋆
cur ←− X⋆

3

while ¬terminationCriterion() do4

if shouldRestart() then X⋆
cur ←− {create()}5

else6

xnew ←− select(X⋆
cur, 1)[0]7

xnew ←− mutate(xnew)8

X⋆
cur ←− updateOptimalSet(X⋆

cur, xnew)9

X⋆
cur ←− pruneOptimalSet(X⋆

cur)10

X⋆ ←− updateOptimalSet(X⋆, xnew)11

X⋆ ←− pruneOptimalSet(X⋆)12

return X⋆
13

end14

9

Random Optimization

9.1 Introduction

Random optimization1 [876] is a global optimization method algorithmically
very close to hill climbing (see Chapter 8 on page 223). There are, however,
three important differences between the two approaches:

1. In hill climbing, the new solution candidates that are created from a good
individual x⋆ are always very close neighbors of it. In random search, that
is not necessarily but only probably.

2. Random optimization is a purely numerical approach, i. e. most often
X̃ ⊆ Rn.

3. In random optimization, we distinguish between objective values and con-
straints.

Like for simulated annealing, it has been proven that with random opti-
mization the global optimum can be found with probability one. Furthermore,
this premise even holds if the objective function is multimodal and even if its
differentiability is not ensured [877].

The reason for this property and the first two differences to hill climbing
lies in the special mutatero procedure applied:

mutatero(x⋆) = xnew = x⋆ + r, x, r ∈ Rn (9.1)

r =

randomn(µ1, σ
2
1) (∼ N(µ1, σ

2
1)

randomn(µ2, σ
2
2) (∼ N(µ2, σ

2
2)

. . .
randomn(µn, σ2

n) (∼ N(µn, σ2
n)

(9.2)

To the (currently best solution candidate) vector x⋆ we add a vector of
normally distributed random numbers r. The µi are the expected values and
the σi the standard deviations of the normal distributions, as introduced

1 http://en.wikipedia.org/wiki/Random_optimization [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Random_optimization

228 9 Random Optimization

in Section 35.4.2 on page 537. The µi define a general direction for the search,
i. e. if µi > 0, randomn(µi, σi) will likely also be greater zero and for µi < 0
it will probably also be smaller than zero (given that |σi| ≪ |mui|). The σi

can be imagined as the range in which the random numbers are distributed
around the µi and denote a step width of the random numbers. If we chose the
absolute values of both, µi and σi, very small, we can exploit a local optimum
whereas larger values lead to a rougher exploration of search space.

The normal distribution is generally unbounded, which means that even
for µi = 0 and σi ≈ 0, it is generally possible that the random elements in
r can become very large. Therefore, local optima can be left again even with
bad settings of µ and σ.

In order to respect the idea of constraint satisfaction in random optimiza-
tion, we define the additional function valid(x) that returns trueif and only if
a solution candidate x does not violate any of the constraints and requirements
and falseotherwise.

Algorithm 9.1 illustrates how random optimization works, clearly show-
ing connatural traits in comparison with the hill climbing Algorithm 8.1 on
page 223.

Algorithm 9.1: x⋆ = randomOptimization(f)

Input: f the objective function to be minimized
Data: xnew ∈ X̃ the new element created
Output: x⋆ ∈ X̃ the best element found

begin1

repeat2

x⋆ ←− create()3

until valid(xnew)4

while ¬terminationCriterion() do5

repeat6

xnew ←− mutatero(x
⋆)7

until valid(xnew)8

if f(xnew) < f(x⋆) then x⋆ ←− xnew9

return x⋆
10

end11

Setting the values of µ and σ adaptively can lead to large improvements
in convergence speed. The heuristic random optimization (HRO) algorithm
[878] and its successor [879] random optimizer II for example update them by
utilizing gradient information or reinforcement learning.

9.2 General Information 229

9.2 General Information

9.2.1 Areas Of Application

Some example areas of application of (heuristic) random optimization are:

Application References

medicine [880, 881]
biotechnology and bioengineering [882]
training of artificial neural networks [883]
global optimization of mathematical functions [878]

10

Simulated Annealing

10.1 Introduction

Simulated Annealing1 (SA), [884] is a global optimization algorithm inspired
by the manner in which metals crystallize in the process of annealing or in
which liquids freeze. Annealing steel is cooled down slowly in order to keep the
system of the melt in a thermodynamic equilibrium which will increase the
size of its crystals and reduce their defects. As cooling proceeds, the atoms of
the steel become more ordered. If the cooling was prolonged beyond normal,
the system would approach a “frozen” ground state at T = 0K – the lowest
energy state possible. The initial temperature must not be too low and the
cooling must be done sufficiently slowly so as to avoid the system getting stuck
in a meta-stable state representing a local minimum of energy.

In physics, each set of positions of all atoms of a system pos is weighted

by its Boltzmann probability factor e
−

E(pos)
kBT where E(pos) is the energy of

the configuration pos, T is the temperature measuren in Kelvin, and kB is the
Boltzmann’s constant2 kB = 1.380650524 ∗ 10−23 J

K
.

Simulated annealing was first introduced by Metropolis et al. [885]. The
original method was an exact copy of this physical process which could be
used to simulate a collection of atoms in thermodynamic equilibrium at a
given temperature. A new nearby geometry posi+1 was generated as a random
displacement from the current geometry posi in each iteration. The energy
at the new geometry is computed and the energetic difference between the
current and the new geometry is given as ∆E. The probability that this new
geometry is accepted, P (∆E) is defined as:

∆E = E(posi+1)− E(posi) (10.1)

1 http://en.wikipedia.org/wiki/Simulated_annealing [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Boltzmann%27s_constant [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Boltzmann%27s_constant

232 10 Simulated Annealing

P (∆E) =

{

e
− ∆E

kBT : if ∆E > 0
1 : if ∆E ≤ 0

(10.2)

Thus, if the new nearby geometry has a lower energy level, the transition is
accepted. Otherwise, the step will only be accepted if a uniformly distributed
random number r = randomu() ∈ [0, 1) generated is less or equal the Boltz-
mann probability factor r ≤ P (∆E). At high temperatures T , this factor is
very near to 1, leading to the acceptance of many uphill steps. As the temper-
ature falls, the proportion of steps accepted which increase the energy level
diminishes. Now the system cannot escape local regions any more and (hope-
fully) comes to a rest in the global minimum at temperature T = 0K. The
use of this stochastic technique turns Simulated Annealing into a Monte Carlo
algorithm and is the major difference to Hill Climbing (see Chapter 8).

The abstraction of this method in order to allow arbitrary problem spaces
is straightforward - the energy computation E(posi) is replaced by a more
general objective function f(x ∈ X̃). Algorithm 10.1 represents the basic
simulated annealing process.

Algorithm 10.1: x⋆ = simulatedAnnealing(f)

Input: f the objective function to be minimized
Data: xnew ∈ X̃ the new element created
Data: xcur ∈ X̃ the element currently investigated
Data: T ∈ R+ the temperature of the system which is decreased over time
Data: t ∈ N0 the current time index
Data: ∆E ∈ R the enery difference of the xnew and xcur.
Output: x⋆ ∈ X̃ the best element found

begin1

xnew ←− create()2

xcur ←− xnew3

x⋆ ←− xnew4

t←− 05

while ¬terminationCriterion() do6

∆E ←− f(xnew)− f(xcur)7

if ∆E ≤ 0 then8

xcur ←− xnew9

if f(xcur) < f(x⋆) then x⋆ ←− xcur10

else11

T ←− getTemperature(t)12

if randomu() < e
− ∆E

kBT then xcur ←− xnew13

xnew ←− mutate(xcur)14

t←− t + 115

return x⋆
16

end17

10.3 Temperature Scheduling 233

Simulated algorithms have an associated proof of asymptotic convergence
which means that they will actually find the global optimum. Such algorithms
are usually very slow [886]. Therefore, the process is often speeded up so a
good solution is found faster while voiding the guaranteed convergence on the
other hand. Such algorithms are called Simulated Quenching (SQ).

10.2 General Information

10.2.1 Areas Of Application

Some example areas of application of simulated annealing are:

Application References

traveling salesman problem (TSP) [887, 884, 888]
global optimization of mathematical functions [889]
chemistry [890, 891]
positron emission tomography/image recon-
struction

[892, 893, 894, 888]

finance and trading [895, 896]
circuit design [897, 888]
path planning [898, 899, 888]
planar mechanism synthesis [900, 901, 888]
paper cutting waste optimization [902]

seismic waveform inversion [903]

For more information see also [904, 905].

10.3 Temperature Scheduling

Definition 71 (Temperature Schedule). The temperature schedule rep-
resents the sinking temperature in simulated annealing and it is accessed by
the function getTemperature(t) which returns the temperature to be used for
the current iteration step t. The start temperature is Tstart which will reduced
by all subsequent iterations until it reaches 0K in the final step.

T = getTemperature(t) ∈ R+ (10.3)

Tstart = getTemperature(0) (10.4)

0K = getTemperature(∞) (10.5)

Although there exists a wide range of methods to determine this temper-
ature schedule – Miki et al. for example used genetic algorithms for this [906]
– we will introduce only the three simple variants here given in [907].

234 10 Simulated Annealing

• Reduce T to (1 − ǫ)T after every m iterations, where ǫ and m are deter-
mined by experiment.

• Grant a total of K iterations, and reduce T after every m steps to a value
T = Tstart(1 − t

K
)α. t is the already introduced iteration index, and α is

a constant, maybe 1, 2, or 4. α depends on the positions of the relative
minima. Large values of α will spend more iterations at lower temperature.

• After every m moves, set T to β times ∆Ec = f(xcur)− f(x⋆), where β is
an experimentally determined constant. Since ∆Ec may be 0, we allow a
maximum temperature change of T ∗ γ, γ ∈ [0, 1].

Another technique that may be applied are the random restarts already
known from hill climbing (see page 225).

10.4 Multi-Objective Simulated Annealing

Again we want to incorporate this ability together with multi-objectivity
and also enable the resulting algorithm to return a set of optimal solu-
tions. Like for multi-objective hill climbing, this algorithm needs a selec-
tion scheme. The selection algorithm applied here should not rely on preva-
lence comparison directly, since no element in X⋆ prevails any other. Se-
lection should thus either be randomized (Section 2.4.2 on page 80), em-
ploy a density/diversity/crowding-based fitness assignment process be strictly
elitist like PSEA-II (Section 2.4.12 on page 94). If a fitness assignment
process (Section 2.3 on page 65) is applied, one could also use the scalar
fitness instead of the prevalence comparator in line 18, replacing it with
∆E ←− f(xnew)− f(xcur).

10.4 Multi-Objective Simulated Annealing 235

Algorithm 10.2: X⋆ = simulatedAnnealing(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Data: X⋆
cur ⊆ X̃ the optimal set of the current run

Data: xcur ∈ X̃ the element currently investigated
Data: xnew ∈ X̃ the new element created
Data: X⋆

new ⊆ X̃ the optimal set of the current run after updating it with
xnew

Data: T ∈ R+ the temperature of the system which is decreased over time
Data: t ∈ N0 the current time index
Data: ∆E ∈ R the enery difference of the xnew and xcur.
Output: X⋆ ⊆ X̃ the best element found

begin1

X⋆
cur ←− {create()}2

X⋆ ←− Xcur3

t←− 04

while ¬terminationCriterion() do5

if shouldRestart() then6

X⋆
cur ←− {create()}7

t←− 08

else9

xcur ←− select(X⋆
cur, 1)[0]10

xnew ←− mutate(xcur)11

X⋆
new ←− updateOptimalSet(X⋆

cur, xnew)12

if X⋆
new 6= X⋆

cur then13

X⋆
cur ←− pruneOptimalSet(X⋆

new)14

X⋆ ←− updateOptimalSet(X⋆, xnew)15

X⋆ ←− pruneOptimalSet(X⋆)16

else17

∆E ←− cF (xnew, xcur)18

T ←− getTemperature(t)19

if randomu() < e
− ∆E

kBT then20

X⋆
cur ←− X⋆

cur \ {xcur}21

X⋆
cur ←− X⋆

cur ∪ {xnew}22

t←− t + 123

return X⋆
24

end25

11

Tabu Search

11.1 Introduction

Tabu search1 (TS) [908, 909, 910, 911, 912] is an optimization method bas-
ing on local search. It improves the search performance and decreases the
probability of getting stuck at local optima by using internal memory.

Tabu search works on single solution candidate. It creates a neighboring
individual of this candidate and uses its memory to check if the new element
is allowed. If so, it can transcend to it and again start to explore its neighbors.
The simplest version of this method will store n individuals already visited
in a tabu list and prohibit visiting them again. More complex variants will
store only specific properties of the individuals which are tabu. This will also
lead to more complicated algorithms since it also may prohibit new solutions
which are actually very good. Therefore, aspiration criteria can be defined
which override the tabu list and allow certain individuals. The length of the
tabu list is limited to n and therefore the list must be truncated surpassing
that maximum length. Therefore, techniques like clustering could be used. In
Algorithm 11.1 we just remove the oldest list elements.

1 http://en.wikipedia.org/wiki/Tabu_search [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Tabu_search

238 11 Tabu Search

Algorithm 11.1: x⋆ = tabuSearch(f)

Input: f the objective function to be minimized
Input: Implicit: n the maximum length of the tabu list Xtabu

Data: xnew ∈ X̃ the new element created
Data: Xtabu the tabu list
Output: x⋆ ∈ X̃ the best element found

begin1

xnew ←− create()2

x⋆ ←− xnew3

Xtabu ←− ()4

while ¬terminationCriterion() do5

if searchu(xnew, Xtabu) < 0 then6

if f(xnew) < f(x⋆) then x⋆ ←− xnew7

if |Xtabu| ≥ n then Xtabu ←− deleteListItem(Xtabu, 0)8

Xtabu ←− addListItem(Xtabu, xnew)9

xnew ←− mutate(x⋆)10

return x⋆
11

end12

11.2 General Information

11.2.1 Areas Of Application

Some example areas of application of tabu search are:

Application References

general manufacturing problems [913]
traveling salesman problem (TSP) [914, 915]
quadratic assignment problem [916]
general combinatorial problems [908, 909]
optimization of artificial neural networks [917]
resonance assignment in NMR (Nuclear Mag-
netic Resonance) spectroscopy

[918]

test design in education [919]
vehicle routing [920]

11.3 Multi-Objective Tabu Search

The simple tabu search is very similar to hill climbing and simulated annealing
(see Chapter 8 and Chapter 10). Like for those two algorithms, we can define
a multi-objective variant for tabu search too (see Algorithm 11.2 for more
details).

11.3 Multi-Objective Tabu Search 239

Algorithm 11.2: X⋆ = tabuSearch(cF)

Input: cF the comparator function which allows us to compare the fitness of
two solution candidates, used by updateOptimalSet

Input: Implicit: n the maximum length of the tabu list Xtabu

Data: xnew ∈ X̃ the new element created
Data: Xtabu the tabu list
Output: X⋆ ⊆ X̃ the set of the best elements found

begin1

X⋆ ←− ∅2

Xtabu ←− ()3

xnew ←− create()4

while ¬terminationCriterion() do5

if searchu(xnew, Xtabu) < 0 then6

X⋆ ←− updateOptimalSet(X⋆, xnew)7

X⋆ ←− pruneOptimalSet(X⋆)8

if |Xtabu| ≥ n then Xtabu ←− deleteListItem(Xtabu, 0)9

Xtabu ←− addListItem(Xtabu, xnew)10

xnew ←− select(X⋆, 1)[0]11

xnew ←− mutate(xnew)12

return X⋆
13

end14

12

Ant Colony Optimization

12.1 Introduction

Ant colony optimization1 (ACO) [921, 922, 923, 924, 925, 926] is a bio-inspired
optimization method for problems that can be reduced to paths in graphs.

It is based on the metaphor of ants that seek for food. An ant will leave
the anthill and begin to wander randomly around. If it finds some food, it
will return to the anthill while laying out a track of special pheromones. After
deposing the food, it will follow the path to the food item by tracking the
pheromones. Other ants will do the same, so many of them will arrive at the
food piece. Every ant marks the path again by going back to the anthill, so
the pheromone gets stronger and stronger. The ability to follow a pheromone
trail is dependent on the amount placed there: the ants movements are always
randomized, but the probability of flitting into the direction of pheromones
if higher. Pheromones also vanish by time if they are not refreshed. If all of
the food is collected cart away, ants will stop putting pheromones onto the
track since they cannot find new food at this location anymore. Therefore,
the pheromones vaporize and the ants will head to new, random locations.

The process of distributing and tracking pheromones is called stigmery2.
Stigmery sums up all ways of communication by modifying the environment
[927].

These mechanisms are copied by ACO: the problems are visualized as
(directed) graphs. First, a set of ants performs randomized walks through the
graphs. Proportional to the goodness of the solutions denoted by the paths,
pheromones are laid out, i. e. the probability to walk into the direction of the
paths is shifted. The ants run again through the graph. They will not follow
the marked paths fully, maybe taking other routes at junctions, since their
walk is still randomized, just with modified probabilities.

1 http://en.wikipedia.org/wiki/Ant_colony_optimization [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Stigmergy [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Stigmergy

242 12 Ant Colony Optimization

It is interesting to note that even real vector optimizations can be viewed
as graph problems, as introduced by Korošec and Šilc in [928].

12.2 General Information

12.2.1 Areas Of Application

Some example areas of application of ant colony optimization are:

Application References

route planning/TSP [922, 929, 104, 930]
scheduling [931]
load balancing [932]
network routing [933]
other combinatorial problems [934]

12.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on ant colony optimization
are:

BIOMA: International Conference on Bioinspired Optimization Methods
and their Applications

see Section 2.2.2 on page 60

CEC: Congress on Evolutionary Computation
see Section 2.2.2 on page 60

12.2.3 Journals

Some journals that deal (at least partially) with ant colony optimization are
(ordered alphabetically):

Adaptive Behavior , ISSN: Online ISSN: 1741-2633, Print ISSN: 1059-
7123, appears quaterly, editor(s): Peter M. Todd, publisher: Sage Pub-
lications, http://www.isab.org/journal/ [accessed 2007-09-16], http://adb.

sagepub.com/ [accessed 2007-09-16]

Artificial Life, ISSN: 1064-5462, appears quaterly, editor(s): Mark A. Be-
dau, publisher: MIT Press, http://www.mitpressjournals.org/loi/artl
[accessed 2007-09-16]

http://www.isab.org/journal/
http://adb.sagepub.com/
http://adb.sagepub.com/
http://www.mitpressjournals.org/loi/artl

12.2 General Information 243

IEEE Transactions on Evolutionary Computation (see Section 2.2.3 on
page 64)
The Journal of the Operational Research Society (see Section 1.8.3 on
page 43)

12.2.4 Online Resources

Some general, online available ressources on ant colony optimization are:

http://iridia.ulb.ac.be/~mdorigo/ACO/ [accessed 2007-09-13]

Last Update: up-to-date
Description: Repository of books, publications, people, jobs, and software

about ACO.

http://uk.geocities.com/markcsinclair/aco.html [accessed 2007-09-13]

Last Update: 2006-11-17
Description: Small intro to ACO, some references, and a nice applet

demonstrating its application to the travelling salesman
problem.

http://iridia.ulb.ac.be/~mdorigo/ACO/
http://uk.geocities.com/markcsinclair/aco.html

13

Particle Swarm Optimization

13.1 Introduction

Particle Swarm Optimization1 (PSO) developed by Kennedy and Eberhard
in 1995 [935, 936] is a form of swarm intelligence in which the behavior of
a biological social system, for example a flock of birds or a school of fish, is
simulated. If the swarm looks for food and one individual part of the swarm
found it, the rest will follow. On the other hand, each individual has a degree
of freedom, or randomness, in its movement which enables it to find new food
accumulations [937, 938, 939, 940].

A swarm of particles in a n-dimensional search space is simulated where
each particle p has a position x(p) ∈ X̃ ⊆ Rn and a velocity v(p) ∈ Rn. The
position x(p) of a particle p denotes a possible solution for the problem whereas
its velocity v(p) determines in which direction the search will continue and if
it has an explorative (high velocity) or an exploitive (low velocity) character.
Both, the position and the velocity are real vectors. Because of this individual
representation, PSO is especially suitable for numerical optimization.

At startup, the positions and velocities of all individuals are randomly
initialized. In each step, first the velocity of an particle is updated and then
its position. Therefore, each particle p has a memory holding its best position
best(p) ∈ X̃. Furthermore, it also knows a set of topological neighbors N(p),
i. e. neighboring particles in a specific perimeter. We can define this neighbor-
ing particles for example as set of all individuals which are no further away
from x(p) than a given distance δ according to a given distance measure2 dist
(normally, the Euclidian distance):

∀ p, q ∈ Xpop : q ∈ N(p)⇔ dist(x(p), x(q)) ≤ δ (13.1)

1 http://en.wikipedia.org/wiki/Particle_swarm_optimization [accessed 2007-07-

03]

2 See Section 36.1 on page 574 for more information on distance measures.

http://en.wikipedia.org/wiki/Particle_swarm_optimization

246 13 Particle Swarm Optimization

Assuming that each particle can communicate with its neighbors, the best
position obtained so far by any element in N(p) is best(N(p)). The optimal
position ever obtained by any individual in the population (which the opti-
mization algorithm always keeps track of) is best(Xpop).

The PSO algorithm may use either best(N(p)) or best(Xpop) in order to
adjust the adjust the velocity of the particle p. If it relies on the global best
position, the algorithm will converge fast but may find the global optimum
less probably. If, on the other hand, neighborhood communication is used,
the convergence speed drops but the global optimum is found more likely.
Equation 13.2 and Equation 13.3 show this update process for the ith compo-
nents of the two vectors x(p) and v(p) for global and local PSO.

v(p)i = v(p)i + (ci ∗ randomu() ∗ (best(p)i − x(p)i)) +
(di ∗ randomu() ∗ (best(Xpop)i − x(p)i))

(13.2)

v(p)i = v(p)i + (ci ∗ randomu() ∗ (best(p)i − x(p)i)) +
(di ∗ randomu() ∗ (best(N(p))i − x(p)i))

(13.3)

x(p)i = x(p)i + v(p)i (13.4)

The learning rate vectors c and d have further influence of the convergence
speed. Furthermore, the values of all dimensions of x(p) are normally confined
to a certain maximum and minimum of the search space. For the absolute
values of the velocity, normally maximum thresholds also exist.

Algorithm 13.1 illustrates the native form of the particle swarm op-
timization algorithm implementing the update procedure according to
Equation 13.3. Like we have done it with hill climbing, this algorithm can
easily be generalized for multi-objective optimization and for returning sets
of optimal solutions (compare with Section 8.3 on page 224).

13.2 General Information 247

Algorithm 13.1: x⋆ = particleSwarmOptimize(f)

Input: f the function to optimize
Input: Implicit: s the population size
Input: Implicit: n the dimension of the vectors
Data: Xpop ⊆ X̃ ⊆ Rn the particle population
Data: p ∈ Xpop a particle
Data: i ∈ 1..n a counter variable
Output: x⋆ ∈ X̃ the best value found

begin1

Xpop ←− createPop(s)2

while ¬terminationCriterion() do3

foreach p ∈ Xpop do4

i←− 15

while i ≤ n do6

// update according to Equation 13.3

v(p)i = v(p)i + (ci ∗ randomu() ∗ (best(p)i − x(p)i)) +
(di ∗ randomu() ∗ (best(N(p))i − x(p)i))7

x(p)i = x(p)i + v(p)i8

i←− i + 19

if f(x(p)) < f(best(N(p))) then best(N(p))←− x(p)10

if f(x(p)) < f(best(Xpop)) then best(Xpop)←− x(p)11

return best(Xpop)12

end13

13.2 General Information

13.2.1 Areas Of Application

Some example areas of application of particle swarm optimization are:

Application References

training of artificial neural networks [936, 941]
training of hidden Markov models [942]
global optimization of mathematical functions [936, 943]
in antenna or filter design [944]
water resource and quality management [945]
quantitative structure-activity relationship
(QSAR) modeling in chemistry

[946, 947]

13.2.2 Online Resources

Some general, online available ressources on particle swarm optimization are:

248 13 Particle Swarm Optimization

http://www.swarmintelligence.org/ [accessed 2007-08-26]

Last Update: up-to-date
Description: Particle Swarm Optimization Website by Xiaohui Hu

http://www.red3d.com/cwr/boids/ [accessed 2007-08-26]

Last Update: up-to-date
Description: Boids – Background and Update by Craig Reynolds

http://www.projectcomputing.com/resources/psovis/ [accessed 2007-08-26]

Last Update: 2004
Description: Particle Swarm Optimization (PSO) Visualisation (or “PSO

Visualization”)

http://www.engr.iupui.edu/~eberhart/ [accessed 2007-08-26]

Last Update: 2003
Description: Russ Eberhart’s Home Page

http://www.cis.syr.edu/~mohan/pso/ [accessed 2007-08-26]

Last Update: 1999
Description: Particle Swarm Optimization Homepage

http://tracer.uc3m.es/tws/pso/ [accessed 2007-11-06]

Last Update: up-to-date
Description: Website on Particle Swarm Optimization

13.2.3 Conferences, Workshops, etc.

Some conferences, workshops and such and such on particle swarm optimiza-
tion are:

SIS: IEEE Swarm Intelligence Symposium
http://www.computelligence.org/sis/ [accessed 2007-08-26]

History: 2007: Honolulu, Hawaii, USA, see [948]
2006: Indianapolis, IN, USA, see [949]
2005: Pasadena, CA, USA, see [950]
2003: Indianapolis, IN, USA, see [951]

http://www.swarmintelligence.org/
mailto:xhu@ieee.org
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/index.html
http://www.projectcomputing.com/resources/psovis/
http://www.engr.iupui.edu/~eberhart/
http://www.cis.syr.edu/~mohan/pso/
http://tracer.uc3m.es/tws/pso/
http://www.computelligence.org/sis/

14

Memetic Algorithms

Memetic Algorithms1 [952, 953, 954, 955, 956] (MA) try to simulate cultural
evolution rather than the biological one, as evolutionary algorithms do. They
are a combination of population-based global optimization and heuristic local
search. First, individuals are initialized randomly. Starting with each single
individual, one local search is performed. After that, the individuals start to
interact either competitively (in the form of selection) or cooperatively (in
the form of recombination). These two steps are repeated until the stopping
criterion is met.

In the context of this work, we will regard memetic algorithms as two-
level optimization algorithm, where the top-level algorithm is an evolutionary
or otherwise population based algorithm and at the bottom-level, a single
individual optimizer like hill climbing or simulated annealing (see Chapter 8
and Chapter 10) can be found.

In order to create such algorithms, one would replace the createPop and
reproducePop algorithms (introduced in Section 2.5 on page 99) by their
locally optimizing counterparts createPopMA and reproducePopMA (see
Algorithm 14.1 and Algorithm 14.2). The localOptimize(cF , x)-calls on line 5
of each of the two algorithms would then replaced to calls to a hill climber or a
simulated annealing algorithm which would start with the supplied element x
instead of a randomly created on. Now createPopMA and reproducePopMA
can for example be implanted into any given evolutionary algorithm dealt
with so far (see Chapter 2).

1 http://en.wikipedia.org/wiki/Memetic_algorithm [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Memetic_algorithm

250 14 Memetic Algorithms

Algorithm 14.1: Xpop = createPopMA(n)

Input: n the size of the population to be created
Input: Implicit: cF the optimization criterion
Data: i a counter variable
Output: Xpop the new, random but locally optimized population

begin1

Xpop ←− ∅2

i←− n3

while i > 0 do4

Xpop ←− Xpop ∪ {localOptimize(cF , create())}5

i←− i− 16

return Xpop7

end8

Algorithm 14.2: Xnew = reproducePopMA(Xmp, k)

Input: k the count of offspring to create
Input: Implicit: cF the optimization criterion
Data: x the new element subject to optimization
Output: Xnew the population containing the locally optimized offspring of

Xmp)

begin1

Xtmp ←− reproducePop(Xmp, k)2

Xnew ←− ∅3

foreach x ∈ Xtmp do4

Xnew ←− Xnew ∪ {localOptimize(cF , x)}5

return Xnew6

end7

15

State Space Search

15.1 Introduction

State space search strategies1 are not directly counted as optimization algo-
rithms. Instead, they are means to browse and find valid solutions the search
space X̃. If we however assume that there we can define a threshold for each
objective function f ∈ F below which an individual is a valid solution, such
a strategy can be applied. Another condition is that X̃ must be enumerable
[866, 957, 958].

One feature of the state space search algorithms introduced here is that
they all are deterministic. This means that they will yield the same results in
each run when applied to the same problem.

Generally, two operations must be defined in such search algorithms: one
that tells us if we have found what we are looking for (isGoal) and one that
helps enumerating the search space (expand).

Definition 72 (isGoal). The function isGoal(x) ∈ {true, false} is the tar-
get predicate of state space search algorithms that tells us whether a given
state x ∈ X̃ is a valid solution (by returning true), i. e. the goal state, or not
(by returning false).

If we consider isGoal again from the perspective of optimization, isGoal(x)
becomes trueif and only if all objective functions fi(x) have a value lower than
a corresponding threshold y̌i. In other words, x ∈ X̃ is a valid solution if it
satisfies all constraints.

isGoal(x)⇔ fi(x) ≤ y̌i ∀ x ∈ X̃, i = 1 . . . |F | (15.1)

Definition 73 (expand). The operator expand(x) computes a set of so-
lution candidates (states) Xnew from a given state x. It is the exploration

1 http://en.wikipedia.org/wiki/State_space_search [accessed 2007-08-06]

http://en.wikipedia.org/wiki/State_space_search

252 15 State Space Search

operation of state space search algorithms. Different from the mutation oper-
ator of evolutionary algorithms (see Definition 44 on page 100), it is strictly
deterministic and returns a set instead of single individual. Applying it to the
same x values will always yield the same set Xnew. We can consider expand(x)
to return the set of all possible result that we could obtain with mutate(x).

expand(x) = Xnew, x ∈ X̃,Xnew ⊆ X̃ (15.2)

expand(x) ≡ {∀ s : s = mutate(x)} (15.3)

The realization of expand may have severe impact on the performance
of search algorithms. An efficient implementation for example, should try to
prevent that states that have already been visited are returned. It may be
possible to reach the same solution candidate x by mutating different parents
x′

1, x
′
2, Hence, x would be included in expand(x′

1), in expand(x′
2), and so

on, if no further measures are applied. This will lead to the same solution
candidate (and all of its children) to be evaluated multiple times, which is
obviously useless. Another problem is that one can reach x from its parent
x ∈ expand(x′) but possible also the parent from x (x′ ∈ expand(x)). This
is even more serious since, if not prevented, will lead to infinite loops in the
search. Therefore, some form of caching or tabu lists should be used, as done
in the previously discussed tabu search (see Chapter 11 on page 237).

For all state space search strategies, we can define four criteria that tell if
they are suitable for a given problem or not.

1. Completeness. Does the search algorithm guarantee to find a solution
(given that there exists one)?

2. Time Consumption. How much time will the strategy need to find a solu-
tion?

3. Memory Consumption. How much memory will the algorithm need to
store intermediate steps? Together with time consumption this property
is closely related to complexity theory, as discussed in Section 37.1.3 on
page 589.

4. Optimiality. Will the algorithm find an optimal solution if there exist
multiple correct solutions?

Search algorithms can further be classified according to the following def-
initions:

Definition 74 (Local Search). Local search algorithms work on a single
current state (instead of multiple solution candidates) and generally transcend
only to neighbors of the current state [866].

Local search algorithms are not systematic but have two major advantages:
They use very little memory (normally only a constant amount) and are often
able to find solutions in large or infinite search spaces. These advantages come,
of course, with large trade-offs in processing time.

15.2 Uninformed Search 253

We can consider local searches as special case of global searches which
incorporate larger populations, which, in turn, can be regarded as a special
case of global optimization algorithms.

15.2 Uninformed Search

The optimization algorithms that we have considered up to now always require
some sort of measure of the utility of possible solutions. These measures,
the objective functions, are normally real-valued and allow us to make fine
distinctions between different individuals. Under some circumstances, maybe
only the criterion isGoal is given as a form of Boolean objective function.
The methods previously discussed will then not be able to descend a gradient
anymore and degenerate to random walks (see Section 15.2.5 on page 256).

Here, uninformed search strategies2 are a viable alternative since they
do not require or take into consideration any knowledge about the special
nature of the problem (apart from the knowledge represented by the expand
operation, of course). Such algorithms are very general and can be applied
to a wide variety of problems. Their common drawback is that search spaces
are often very large. Without the incorporation of information, for example in
form of heuristic functions, the search may take very long and quickly becomes
infeasible [866, 957, 958].

15.2.1 Breadth-First Search

In breadth-first search3 (BFS) we start with expanding the root solution candi-
date. Then all of the states derived from this expansion, and all their children,
and so on. In general, we first expand all states in depth d before considering
any state in depth d + 1.

It is complete, since it will always find a solution if there exists one. If so,
it will also find the solution that can be reached from the root state with the
least expansion steps. Hence, if the number of expansion steps needed from
the origin to a state is a measure for the costs, BFS is also optimal.

Algorithm 15.1 illustrates how breath-first search works. The algorithm
starts with a root state r ∈ X̃ which marks the starting point of the search.
We create a list initially only containing this state. In a loop we remove the
first element s of that list and check whether the predicate isGoal(s) evaluates
to true or not. If s is a goal state, we can return a set X⋆ containing it as the
solution. Otherwise, we expand s and append the newly found states to the
end of queue S. If no solution can be found, this process will continue until
the whole search space has been enumerated and S becomes empty. Then, an

2 http://en.wikipedia.org/wiki/Uninformed_search [accessed 2007-08-07]

3 http://en.wikipedia.org/wiki/Breadth-first_search [accessed 2007-08-06]

http://en.wikipedia.org/wiki/Uninformed_search
http://en.wikipedia.org/wiki/Breadth-first_search

254 15 State Space Search

Algorithm 15.1: X⋆ = bfs(r)

Input: r ∈ X̃ the root node to start the expansion at
Input: Implicit: expand the expansion operator
Input: Implicit: isGoal an operator that checks whether a state is a goal

state or not
Data: s ∈ X̃ the state currently processed
Data: S ∈ X̃ the queue of states to explore
Output: X⋆ ⊆ X̃ the solution states found, or ∅
begin1

S ←− (r)2

while S 6= ∅ do3

s←− deleteListItem(S, 0)4

if isGoal(s) then return {s}5

S ←− appendList(S, expand(s))6

return ∅7

end8

empty set is returned in place of X⋆, because there is no element x ∈ X̃ for
which isGoal(x) becomes true.

In order to examine the space and time complexity of BFS, we assume a
hypothetical state space X̃h where the expansion of each state x ∈ X̃h will
return a set of |expand(x)| = b new states. In depth 0 we only have one state,
the root state r. In depth 1, there are b states, and in depth 2 we can expand
each of them to again, b new states which makes b2, and so on. Up to depth
d we have a number of states total of

1 + b + b2 + . . . + bd =
bd+1 + 1

b− 1
∈ O(bd) (15.4)

We have both, a space and time complexity from O(bd). In the worst case,
all nodes in depth d need to be stored, in the best case only those of depth
d− 1.

15.2.2 Depth-First Search

Depth-first search4 (DFS) is very similar to BFS. From the algorithmical
point of view, the only difference that it uses a stack instead of a queue as
internal storage for states (compare line 4 in Algorithm 15.2 with line 4 in
Algorithm 15.1). Here, always the last state element of the set of expanded
states is considered next. Thus, instead of searching level for level in the breath
as BFS does, DFS searches in depth (which is the reason for its name). It
advances in depth until the current state cannot further be expanded, i. e.
expand(s) = ∅. Then the search steps again up one level. If the whole search
space has been browsed and no solution is found, ∅ is returned.

4 http://en.wikipedia.org/wiki/Depth-first_search [accessed 2007-08-06]

http://en.wikipedia.org/wiki/Depth-first_search

15.2 Uninformed Search 255

Algorithm 15.2: X⋆ = dfs(r)

Input: r ∈ X̃ the root node to start the expansion at
Input: Implicit: expand the expansion operator
Input: Implicit: isGoal an operator that checks whether a state is a goal

state or not
Data: s ∈ X̃ the state currently processed
Data: S ∈ X̃ the stack of states to explore
Output: X⋆ ⊆ X̃ the solution states found, or ∅
begin1

S ←− (r)2

while S 6= ∅ do3

s←− deleteListItem(S, |S| − 1)4

if isGoal(s) then return {s}5

S ←− appendList(S, expand(s))6

return ∅7

end8

The memory consumption of the DFS is linear, because in depth d, at
most d∗ b states are held in memory. If we assume a maximum depth m, then
the time complexity is bm in the worst case where the solution is the last child
state in the path explored the last. If m is very large or infinite, a DFS may
take very long to discover a solution or will not find it at all, since it may
get stuck in a “wrong” branch of the state space. Hence, depth first search is
neither complete nor optimal.

15.2.3 Depth-limited Search

The depth-limited search5 [866] is a depth-first search that only proceeds up
to a given maximum depth d. In other words, it does not examine solution
candidates that are more than d expand-operations away from the root state
r, as outlined in Algorithm 15.3. Analogously to the plain depth first search,
the time complexity now becomes bd and the memory complexity is in O(b∗d).
Of course, the depth-limited search can neither be complete nor optimal. If a
maximum depth of the possible solutions however known, it may be sufficient.

15.2.4 Iterative deepening depth-first search

The iterative deepening depth-first search6 (IDDFS, [866]), defined in
Algorithm 15.4, iteratively runs a depth-limited DFS with stepwise increas-
ing maximum depths d. In each iteration, it visits the states in the state
space according to the depth-first search. Since the maximum depth is always

5 http://en.wikipedia.org/wiki/Depth-limited_search [accessed 2007-08-07]

6 http://en.wikipedia.org/wiki/IDDFS [accessed 2007-08-08]

http://en.wikipedia.org/wiki/Depth-limited_search
http://en.wikipedia.org/wiki/IDDFS

256 15 State Space Search

Algorithm 15.3: X⋆ = dl dfs(r, d)

Input: r ∈ X̃ the node to be explored
Input: d ∈ N the maximum depth
Input: Implicit: expand the expansion operator
Input: Implicit: isGoal an operator that checks whether a state is a goal

state or not
Data: s ∈ X̃ the state currently processed
Data: S ∈ X̃ set of “expanded” states
Output: X⋆ ⊆ X̃ the solution states found, or ∅
begin1

if isGoal(r) then return {r}2

if d > 0 then3

foreach s ∈ expand(r) do4

S ←− dl dfs(s, d− 1)5

if S 6= ∅ then return S6

return ∅7

end8

incremented by one, one new level (in terms means of distance in expand op-
erations from the root) is explored in each iteration. This effectively leads to
a breadth-first search.

IDDFS thus unites the advantages of BFS and DFS: It is complete and
optimal, but only has a linearly rising memory consumption in O(d ∗ b). The
time consumption, of course, is still in O(bd). IDDFS is the best uninformed
search strategy and can be applied to large search spaces with unknown depth
of the solution.

15.2.5 Random Walks

Random walks7 (sometimes also called drunkard’s walk) are a special case
of undirected, local search. Instead of proceeding according to some schema
like depth-first or breadth-first, the next solution candidate to be explored is
always generated randomly from the currently investigated one. [959, 960]

From the viewpoint of evolutionary algorithms, we can also define a ran-
dom like an optimization method working on small populations (usually size
1). In each step, one offspring is created using some predefined reproduction
method next (which could be mutation, for instance) and always replaces the
current population regardless if it is better or worse. It is very often assumed
that the result of next is uniformly distributed amongst all possibilities (where
expand defines the set of possible offspring), i. e.

∀x, y ∈ X : P (y = next(x)) =

{ 1
|expand(x)| if y ∈ expand(x)

0 otherwise
(15.5)

7 http://en.wikipedia.org/wiki/Random_walk [accessed 2007-11-27]

http://en.wikipedia.org/wiki/Random_walk

15.2 Uninformed Search 257

Algorithm 15.4: X⋆ = iddfs(r)

Input: r ∈ X̃ the node to be explored
Input: Implicit: expand the expansion operator
Input: Implicit: isGoal an operator that checks whether a state is a goal

state or not
Data: d ∈ N the (current) maximum depth
Output: X⋆ ⊆ X̃ the solution states found, or ∅
begin1

d←− 02

/* This algorithm is for infinitely large search spaces. In

real systems, there is a maximum d after which the whole

space would be explored and the algorithm should return ∅ if

no solution was found. */

repeat3

X⋆ ←− dl dfs(r, d)4

d←− d + 15

until X⋆ 6= ∅6

return X⋆
7

end8

Under some circumstances, random walks can be the search algorithms of
choice. This for instance the case in

• If we encounter a state explosion because there are too many states to
which we can possible transcend to and methods like breadth-first or
depth-first search cannot be applied because they would consume too much
memory.

• In certain cases of online search it is not possible to apply systematic
approaches like BFS or DFS. If the environment, for instance, is only
partially observable and each state transition represents an immediate
interaction with this environment, we are maybe not able to navigate to
past states again. One example for such a case is discussed in the work of
Skubch about reasoning agents [961].

Random walks are often used in optimization theory for determining fea-
tures of a fitness landscape. Measures that can be derived mathematically
from a walk model include estimates for the number of steps needed until
a certain configuration is found, the chance to find a certain configuration
at all, the average difference between two consecutive populations, and such
and such. However, also from practically running random walks some infor-
mation about the search space can be extracted. Skubch for instance uses the
number of encounters of certain state transition during the walk in order to
successively build a heuristic function [961].

258 15 State Space Search

15.3 Informed Search

In an informed search8, a heuristic function helps to decide which nodes are
to be expanded next. If the heuristic is good, informed search algorithms may
dramatically outperform uninformed strategies [8, 9, 10].

As specified in Definition 2 on page 6, heuristic functions are problem
domain dependent. In the context of an informed search, a heuristic function
h : X̃ 7→ R+ maps the states in the state space X̃ to the positive real numbers
R+. The value h(s) should be some form of estimate on how likely expanding
or testing the state s will lead to a correct solution or how many expansion
steps a correct solution is away. Here we focus on the latter notation which
makes heuristics subject to minimization. This also means that all heuristics
become zero if s already is a valid solution.

∀ s ∈ X̃ : isGoal(s)⇒ h(s) = 0 ∀ heuristics h : X̃ 7→ R+ (15.6)

There are two possible meanings of the values returned by a heuristic
function h:

1. In the above sense, the value of a heuristic function h(s) for a state s is
the higher, the more expand-steps s is probably (or approximately) away
from a valid solution. Hence, the heuristic function represents the distance
of an individual to a solution in solution space.

2. The heuristic function can also represent an objective function in some
way. Suppose that we know the optimal value o for an objective function
f , or at least, a value from where on all solutions are feasible. If this is
the case, we could for example set h(s) = max{0, f(s)−o}, assuming that
f is subject to minimization. Now the value of heuristic function will be
the smaller, the closer an individual is to a possible correct solution and
Equation 15.6 still holds. In other words, a heuristic function may also
represent the distance to a solution in objective space.

Of course, both meanings are often closely related since states that are close to
each other in solution space are probably also close to each other in objective
space (the opposite does not necessarily hold).

A best-first search9 is a search algorithm that incorporates such an es-
timation function v in a way that promising solution candidates s with low
estimation values v(s) are evaluated before other states t that receive a higher
values v(t) > v(s). For estimation functions, the same constraints are valid
as for heuristic functions. Matter of fact, an estimation may be a heuristic
function itself (as in greedy search) or be based on a heuristic function (as in
A* search).

8 http://en.wikipedia.org/wiki/Search_algorithms#Informed_search [accessed

2007-08-08]

9 http://en.wikipedia.org/wiki/Best-first_search [accessed 2007-09-25]

http://en.wikipedia.org/wiki/Search_algorithms#Informed_search
http://en.wikipedia.org/wiki/Best-first_search

15.3 Informed Search 259

15.3.1 Greedy Search

A greedy search10 is a best-first search where the currently known solution
candidate with the lowest heuristic value is investigated next. Here, the esti-
mation function is the heuristic function itself.

The greedy algorithm internal sorts the list of currently known states in
descending order according to a comparator function ch(x1, x2) ∈ R. As a
comparator function defined in compliance with Section 1.3.5 on page 20, ch

will be below zero if x1 should be preferred instead of x2 (h(x1) < h(x2)) and
higher then zero for all h(x1) > h(x2), which indicate that x2 is more a more
prospective solution candidate. Thus, the elements with the best heuristic
value will be at the end of the list, which then can be used as a stack.

ch(x1, x2) = h(x1)− h(x2) (15.7)

The greedy search as specified in Algorithm 15.5 now works like a depth-
first search on this stack. It thus also shares most of the properties of the
DFS. It is neither complete nor optimal and its worst case time consumption
is bm. On the other hand, like breadth-first search, its worst-case memory
consumption is also bm.

Algorithm 15.5: X⋆ = greadySearch(r)

Input: r ∈ X̃ the root node to start the expansion at
Input: Implicit: h : X̃ 7→ R+ the heuristic function
Input: Implicit: expand the expansion operator
Input: Implicit: isGoal an operator that checks whether a state is a goal

state or not
Data: s ∈ X̃ the state currently processed
Data: S ∈ X̃ the sorted list of states to explore
Output: X⋆ ⊆ X̃ the solution states found, or ∅
begin1

S ←− (r)2

while S 6= ∅ do3

S ←− sortd(S, ch)4

s←− deleteListItem(S, |S| − 1)5

if isGoal(s) then return {s}6

S ←− appendList(S, expand(s))7

return ∅8

end9

Notice that we can replace ch with any other valid comparator function.
In principle, we could even apply objective functions and Pareto-based com-
parisons here.

10 http://en.wikipedia.org/wiki/Greedy_search [accessed 2007-08-08]

http://en.wikipedia.org/wiki/Greedy_search

260 15 State Space Search

15.3.2 A* Search

In A* search11 is a best-first search that uses a estimation function h∗ : X̃ 7→
R+ which is the sum of a heuristic function h(s) that estimates the costs
needed to get from s to a valid solution and a function g(s) that computes
the costs that we had to find s.

h∗(s) = g(s) + h(s) (15.8)

A* search proceeds exactly like the greedy search outlined in
Algorithm 15.5, if h∗ is used instead of plain h. A* search will definitely
find a solution if there exists one, i. e. it is complete.

Definition 75 (Admissible Heuristic Function). A heuristic function h :
X̃ 7→ R+ is admissible if it never overestimates the minimal costs of reaching
a goal.

Definition 76 (Monotonic Heuristic Function). A heuristic function
h : X̃ 7→ R+ is monotonic12 if it never overestimates the costs from getting
from one state to its successor.

h(s) ≤ g(s′)− g(s) + h(s′) ∀ s′ ∈ expand(s) (15.9)

An A* search is optimal if the heuristic function h used is admissible. If
we implement expand in a way the prevents that a state is visited more than
once, h also needs to be monotone in order for the search to be optimal.

15.3.3 Adaptive Walks

An adaptive walk is a theoretical optimization method which, like a random
walk, usually works on a population of size 1. It starts at a random location
in the search space and proceeds by changing (or mutating) its single solution
candidate. For this modification, three methods are available:

• One-mutant change: The optimization process chooses a single new indi-
vidual from the set of “one-mutant change” neighbors, i. e. a neighboring
individual differing from the current solution candidate in only one prop-
erty. If the new individual is better, it replaces its ancestor, otherwise it is
discarded.

• Greedy dynamics: The optimization process chooses a single new individual
from the set of “one-mutant change” neighbors. If it is not better than the
current solution candidate, the search continues until a better one has been
found or all neighbors have been enumerated. The major difference to the
previous form is the number of steps that are needed per improvement.

11 http://en.wikipedia.org/wiki/A%2A_search [accessed 2007-08-09]

12 see Definition 115 on page 510

http://en.wikipedia.org/wiki/A%2A_search

15.3 Informed Search 261

• Fitter Dynamics: The optimization process enumerates all one-mutant
neighbors of the current solution candidate and transcends to the best
one.

From these elaborations, it becomes clear that adaptive walks are very
similar to hill climbers and random optimization. The major difference is that
an adaptive walk is a theoretical construct that, very much like random walks,
helps us to determine properties of fitness landscapes whereas the other two
are practical realizations of optimization algorithms.

Adaptive walks are a very common construct in evolutionary biology. Bi-
ological populations are running for a very long time and so their genetic
compositions are assumed to be relatively converged [962, 479]. The dynam-
ics of such populations in near-equilibrium states with low mutation rates can
be approximated with one-mutant adaptive walks [963, 962, 479].

16

Parallelization and Distribution

As already stated many times, global optimization problems are often com-
putational intense. Up until now we have only explored the structure and
functionality of optimization algorithms without paying attention to their po-
tential of parallelization or even distribution1.

Roughly speaking, parallelization2 means to search for pieces of code that
can potentially run concurrently and letting them execute by different pro-
cessors [964, 965]. When painting a fence, the overall progress will be much
faster if more than one painter applies the color to the wood. Distribution3

is a special case of parallelization where the different processors are located
on different machines in a network [966, 967]. Imagine that each fence-painter
would take a piece of the fence to his workshop where he can use a special
airbrush which can color the whole piece at once. Distribution comes with the
trade-off of additional communication costs for transporting the data, but has
the benefit that it is more generic. Off the shelf PCs usually have no more
than two CPUs, limiting the benefit of local parallelization. We can how-
ever connect arbitrarily many of such computers in a network for distributed
processing.

16.1 Analysis

In order to understand which parts of an optimization algorithm can be par-
allelized, the first step is an analysis. We will do such an analysis in a very
general manner for evolutionary algorithms as example for population-based
optimizers.4.

1 Section 37.2 on page 592 gives a detailed introduction into distributed algorithms,
their advantages and drawbacks.

2 http://en.wikipedia.org/wiki/Parallelization [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Distributed_computing [accessed 2007-11-30]

4 In Section 2.1.1 on page 51 you can find the basic evolutionary algorithm.

http://en.wikipedia.org/wiki/Parallelization
http://en.wikipedia.org/wiki/Distributed_computing

264 16 Parallelization and Distribution

There are two parts in evolutionary algorithms whose performance poten-
tially can be increased by parallelization: the evaluation and the reproduction
stages. As sketched in Figure 16.1, evaluation is a per-individual process. The
values of the objective functions are determined for each solution candidate
independently from the rest of the population. Evaluating the individuals of-
ten involves complicated simulations and calculations and is thus usually the
most time-consuming part of evolutionary algorithms.

During the fitness assignment process, it is normally required to compare
solution candidates with the rest of the population, to compute special sets
of individuals, or to update some data structures. This makes it very hard for
parallelization to provide any speedup. The selection phase may or may not
require access to certain subsets of the population or data updates. Whether
parallelization is possible or is beneficial thus depends on the selection scheme
applied.

The reproduction phase on the other hand again can very easily be par-
allelized. It involves creating a new individual by using (but not altering) the
information from n existing ones, where n = 0 corresponds to the create op-
eration, n = 1 resembles mutation, and n = 2 means crossover. Each creation
of a new solution candidate is an independent task.

Reproduction Selection

Evaluation
Fitness

Assignment
Initial Population

Fig. 16.1: Parallelization potential in evolutionary algorithms.

Despite running an evolutionary algorithm in single a thread5 of execu-
tion (see Figure 16.2), our “analysis” has shown that makes sense to have
at least the evaluation and reproduction phase executed in parallel as illus-
trated in Figure 16.3. Usually, the population is larger than the number of

5 http://en.wikipedia.org/wiki/Thread_%28computer_science%29 [accessed 2007-

07-03]

http://en.wikipedia.org/wiki/Thread_%28computer_science%29

16.1 Analysis 265

available CPUs6, so one thread is created per processors that consecutively
pulls individuals out of a queue and processes them. This approach even yields
performance gains on off the shelf personal computers since these nowadays
come with hyper-threading7 technology [968, 969] or even dual-core8 CPUs
[970, 971].

single thread / local machine

Initial Eval Fitness.

SelectReprod

Fig. 16.2: A sequentially proceeding evolutionary algorithm.

local machine

Initial. Eval.

Fitness.

Select.

Reprod.

Initial. Eval.

Reprod.

main thread

worker thread

worker thread

Fig. 16.3: A parallel evolutionary algorithm with two worker threads.

Parallel evolutionary algorithms can be divided into two classes [972]:

• In globally parallelized EAs, each individual in the population can (possi-
ble) always mate with any other.

6 http://en.wikipedia.org/wiki/Cpu [accessed 2007-07-03]

7 http://en.wikipedia.org/wiki/Hyper-threading [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Dual-core [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Cpu
http://en.wikipedia.org/wiki/Hyper-threading
http://en.wikipedia.org/wiki/Dual-core

266 16 Parallelization and Distribution

• In coarse grained approaches, the population is divided into several sub-
populations where mating inside a sub-population is unrestricted but mat-
ing between individuals of different sub-populations may only take place
occasionally according to some rule.

In the following, we are going to discuss some of the different parallelization
methods from the viewpoint of distribution because of its greater generality.

16.2 Distribution

The distribution of an algorithm only pays off if the delay induced by the
transmissions necessary for data exchange is much smaller than the time saved
by distributing the computational load. Thus, in some cases distributing of
optimization is useless. If searching for the root of a mathematical function
for example, transmitting the parameter vector x to another computer will
take much longer than computing the function f(x) locally. In this section we
will investigate some basic means to distribute evolutionary algorithms that
can as well as be applied to other optimization methods [552].

16.2.1 Client-Server

If the evaluation of the objective functions is time consuming, the easi-
est approach to distribute and evolutionary algorithm is the client-server
scheme[973, 974] (also called master-slave).9

Figure 16.4 illustrates how we can make use of this very basic, global
distribution scheme. Here, the servers (slaves) receive the single tasks, process
them, and return the results [975, 976, 977]. Such a task can for example be
the reproduction of one or two individuals and the subsequent determination
of the objective values of the offspring. The client (or master) just needs
to distribute the parent individuals to the servers and receives their fully
evaluated offspring in return. These offspring can than be integrated into the
population where fitness assignment and selection is performed.

In a practical realization, we can use a queue where all the selected in-
dividuals are pushed into as mating pool. Each server in the network could
be represented by a thread on the client side. These threads successively pull
individuals from the queue, send them to their according server, wait for the
result to be returned, place the individuals they receive into the new popula-
tion, and then starts over again. The servers may posses multiple processors,
which can be taken into account by representing each one by an appropriate
number of threads.

9 A general discussing concerning the client-server architecture can be found
in Section 37.2.2 on page 596

16.2 Distribution 267

Initial. Eval.

Fitness.

Select.

Reprod.

Initial. Eval.

Reprod.
Client/Master

Server/Slave

Server/Slave

Fig. 16.4: An EA distributed according to the client-server approach.

16.2.2 Island Model

Under some circumstances however, the client-server approach may not be
optimal, especially if

• Processing of the tasks is fast relatively to the amount of time needed for
the data exchange between the client and the server. In other words, if
messages that have to be exchanged travel longer than the actual work
would take if performed locally, the client/server method would actually
slow down the system.

• Populations are required that cannot be held completely in the memory
of a single computer. This can be the case either if the solution candidates
are complex and memory consuming or the nature of the problem requires
large populations.

In such cases, we can again learn from nature. Until now we only have imi-
tated evolution on one large continent. All individuals in the population com-
pete with each other and there are no barriers between the solution candidates.
In reality however there may occur obstacles like mountain ranges or oceans,
separating parts of the population and creating isolated sub-populations. An-
other example for such a scenario is an archipelago like the Galapagos islands
where Darwin, the father of the evolution theory performed his studies [5].
On the single islands, different species can evolve independently. From time to
time, a few individuals from one isle migrate another one, maybe by traveling
on a tree trunk over the water or by been blown there by a storm. If they
are fit enough, they can compete and survive in the new habitat. Otherwise,
they will be extruded by its native residents. This way, all islands manage an
approximately equal level of fitness of their individuals while still preserving
a large amount of diversity.

268 16 Parallelization and Distribution

Initial. Eval. Fitness.

Select.Reprod.

P2P
Network

Initial. Eval. Fitness.

Select.Reprod.

P2P-Node

P2P-Node

Fig. 16.5: An evolutionary algorithm distributed in a P2P network.

Using separate sub-populations, we can easily copy this natural role model
for evolutionary algorithms [978, 979, 980, 981, 982, 983, 984] and use it
for coarse grained parallelization. By distributing these sub-populations on n
different nodes in a network of computers, each representing one island, both
disadvantages of the original master/slave approach are circumvented.

Communication between nodes is only needed when individuals migrate
between the nodes. This communication can be performed asynchronously
to the n independently running evolutionary algorithms and does not slow
down their performance. It is determined by the migration rule which can
be chosen in a way that reduces the network traffic. By dividing the popu-
lation, the number of solution candidates to be held on single machines also
decreases, which helps to mitigate the second disadvantage mentioned, the
memory consumption problem.

This island model can be realized by peer-to-peer networks10 as illustrated
in Figure 16.5, where each node runs an independent evolution. Here, we have
modified the selection phase which now returns some additional individuals to
be transmitted to another node in the system. Depending on the optimization

10 P2P networks are discussed in Section 37.2.2 on page 597.

16.2 Distribution 269

problems, solution candidates migrating over the network can either enter the
fitness assignment process on the receiving machine directly are may take
part in the evaluation process first. If the latter is the case, different objective
functions can applied on the nodes.

Driving this thought further, one will recognize that the peer-to-peer ap-
proach inherently allows mixing of different optimization technologies [552].
On one node, for instance, the SPEA2-algorithm (see Section 2.6.14 on
page 111) may run whereas another node could optimize according to plain hill
climbing as described in Chapter 8 on page 223. Such a system, illustrated
in Figure 16.6, has one striking advantage: for different problems, different
optimization algorithms will perform best. If the problem is for example uni-
modal, i. e. has exactly one global optimum and no local optima, the hill
climber will outperform any other technique since it will directly converge to
this optimum. If the fitness landscape is rugged one the other hand, methods
like SPEA2 that have a very balanced exploration/exploitation proportion are
able to yield better results while hill climbers will get stuck to local optima. In
most cases, it is not possible to know beforehand which optimization strategy
will perform best. Furthermore, the best approach may even change while the
optimization proceeds. If a new, better individual evolves, i.e. a new optimum
is approached, the hill climber will be fast in developing this solution candi-
date further until its best form is found, i. e. the top of this local optimum
is reached. In other phases, an exploration of the solution space may be re-
quired since all known local optima have been tracked; another technology like
ant colony optimization could now come into play. A heterogeneous mixture
of these algorithms that exchanges individuals from time to time will retain
the good properties of the single algorithms and in many cases outperform a
homogeneous search [406, 985, 986, 987, 988].

P2P
Network

Ant
Colony

Optimiz.
Sim.

Annealing

Hill
Climbing

SPEA2
NSGA2

Fig. 16.6: An example for a heterogeneous search.

270 16 Parallelization and Distribution

The island model can also be applied locally by simply using disjoint lo-
cal populations. Although this would not bring a performance gain, it could
improve the convergence behavior of the optimization algorithm. Spieth et al.
for example argue that the island model can be used to preserve the solu-
tion diversity [989]. By doing so it decreases the probability of premature
convergence (see Section 1.4.1 on page 21).

16.2.3 Mixed Distribution

Of course, we can combine the both distribution approaches previously dis-
cussed by having a peer-to-peer network that also contains client-server sys-
tems, as outlined in Figure 16.7. Such a system will be especially powerful if
we need large populations of individuals that take long to evaluate. The single
nodes in the peer-to-peer network together provide a larger virtual population,
while speeding up their local evolutions by distributing the computational load
to multiple servers.

Initial. Eval. Fitness.

Select.Reprod.P2P-Node

Initial. Eval.

Fitness.

Select.

Reprod.

Initial. Eval.

Reprod.

P2P-Node
Client/Master

Server/Slave

Server/Slave

P2P
Network

Fig. 16.7: A mixed distributed evolutionary algorithms.

16.3 Cellular GA 271

16.3 Cellular GA

The cellular genetic algorithm is a special parallelization model for genetic
algorithms. A good understanding of this model can be reached by starting
with the basic architecture of the cellular system [360].

Assume we have a matrix m of N ×N cells. Each cell has a processor and
holds one individual of the population. It can communicate with its right, left,
top, and bottom neighbor. Cells at the edge of the matrix are wired with cells
in the same column/row at the opposite edge. The cell mij can thus communi-
cate with m(i+1) mod N j , m(i−1) mod N j , mi (j+1) mod N , and mi (j−1) mod N .11

Each cell can evaluate the individual it locally holds. For creating offspring,
it can either mutate this individual or recombine it with one selected from of
the four solution candidates on its neighbors.

At the beginning, the matrix is initialized with random individuals. After
some time, the spatial restriction of mating leads to the occurrence of local
neighborhoods with similar solution candidates denoting local optima. These
hoods begin to grow until they touch each other. Then, the regions better
optima will “consume” worse ones and reduce the overall diversity.

Although there are no such fixed mating restrictions like in the island
model, regions that are about 20 or so moves away will virtually not influence
each other. We can consider groups of cells that distant as separate sub-
populations. This form of separation is called isolation by distance – again, a
term that originally stems from biology [12, 360, 990, 991, 983]. For observing
such effects, it is said that a certain minimum of cells is required (at least
about 1000) [360].

11 It is also possible to extend this neighborhood to all cells in a given Manhattan
distance larger than one, but this here is the easiest case.

Part II

Applications

17

Benchmarks and Toy Problems

In this chapter, we discuss some benchmarks and toy problems that are used
to demonstrate the utility of global optimization algorithms. They usually
do not have a direct real-world application but are well understood, widely
researched, and can be used

• to measure the speed and the convergence-ability of evolutionary algo-
rithms and newly developed techniques (as done for example in [992, 732]),

• as basis to verify theories (used for instance in [993]),
• as playground to test new ideas, research, and developments,
• as easy-to-understand examples to discuss features/problems of optimiza-

tion problems (as done here in Section 1.3 on page 13),
• for demonstration purposes since they normally are interesting, funny, and

can be visualized in a nice manner.

17.1 Benchmark Functions

Benchmark functions are especially interesting for testing and comparing tech-
niques like plain evolution strategy (see Chapter 5 on page 203), differential
evolution (see Section 5.5 on page 206), and particle swarm optimization
(see Chapter 13 on page 245). The optimum of these functions is already
known and we are interested in the number of solution candidates that need
to be processed to find it. They also give us a great opportunity to find out
about the influence of parameters like population size, the choice of the selec-
tion algorithm, or the efficiency of reproduction operations.

17.1.1 Single-Objective Optimization

In this section, we list some of the most important benchmark functions for
scenarios involving only a single objective. This, however, does not mean that
the search space has only a single dimension – even a single-objective opti-
mization can take place in n-dimensional space Rn.

276 17 Benchmarks and Toy Problems

Sphere

The sphere function [994] (or De Jong’s F1 [209]) is a very simple measure
of efficiency of optimization methods. They have, for instance, been used by
Rechenberg for testing his Evolution Strategy-approach [470].

function fsphere(x) =
∑n

i=1 x2
i (17.1)

domain X̃ ∈ Rn, X̃i ∈ [−10, 10] (17.2)
optimum x⋆ = (0, 0, . . . , 0)T (17.3)
separable yes
multimodal no

todo

17.1.2 Multi-Objective Optimization

In this section, we list some of the most important benchmark functions for
scenarios involving multiple-objectives (see Section 1.3 on page 12). todo

17.1.3 Dynamic Fitness Landscapes

The moving peaks benchmarks independently developed by Branke [87] and
Morrison and De Jong [85] illustrate the behavior of dynamic environments
as discussed in Section 1.4.5 on page 27. Figure 17.1 shows an example of this
benchmark for a two-dimensional real parameter setting (the third dimension
is the fitness).

17.1 Benchmark Functions 277

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

(e) t = 4 (f) t = 6

(g) t = 7 (h) t = 13

Fig. 17.1: An example for the moving peaks benchmark [87].

278 17 Benchmarks and Toy Problems

17.2 Kauffman’s NK Fitness Landscapes

The ideas of fitness landscapes1 and epistasis2 came originally from evolution-
ary biology and later were adopted by evolutionary computation theory. It is
thus not surprising that biologists also contributed very much to the research
of their interaction. In the late 1980s, Kauffman defined the NK fitness land-
scape [995, 996, 997], a family of fitness functions with tunable epistasis, in
an effort to investigate the links between epistasis and ruggedness.

The genome of this problem are bit strings of the length N (X̃ = G =
{0, 1}N), where each bit is treated as a single gene. In terms of the NK land-
scape, only one single objective function is used and referred to as fitness
function FN,K : {0, 1}N 7→ R+. Each gene xi contributes one value fi to the
fitness function which is defined as the average of all of these N contributions.
The fitness fi of a gene xi is determined by its allele and the alleles at K other
loci xi1 , xi2 , . . . , xiK

with i1...K ∈ [0, N − 1] \ {i} ⊂ N0, called its neighbors.

FN,K(x) =
1

N

N−1∑

i=0

fi(xi, xi1 , xi2 , . . . , xiK
) (17.4)

Whenever the value of a gene changes, all the fitness values of the genes to
whose neighbor set it belongs will change too – to values uncorrelated to their
previous state. If K = 0, there is no such epistasis at all, but for K = N − 1
the epistasis is maximized and the fitness contribution of each gene depends
on all other genes.

Two different models are defined for choosing the K neighbors: adjacent
neighbors, where the K nearest other genes influence the fitness of a gene or
random neighbors where K other genes are therefore randomly chosen.

The single functions fi can be implemented by a table of length 2K+1

which is indexed by the (binary encoded) number represented by the gene
xi and its neighbors. These tables contain one fitness value for each possible
value of a gene and its neighbors. They can be filled by sampling an uniform
distribution in [0, 1) (or any other random distribution).

We can consider the fi as single objective functions that are combined
to a fitness value FN,K by averaging. Then, the nature of NK problems will
probably lead to another well known aspect of multi-objective optimization:
conflicting criteria. An improvement in one objective may very well lead to
degeneration in another one.

The properties of the NK landscapes have intensely been studied in the
past and the most significant results from Kauffman [13], Weinberger [998],
and Fontana et al. [999] will be discussed here. We therefore borrow from the
summaries provided in [479] and [1000].

1 Fitness landscapes have been introduced in Section 1.2.3 on page 12.
2 Epistasis is discussed in Section 3.7.2 on page 135.

17.2 Kauffman’s NK Fitness Landscapes 279

17.2.1 K = 0

For K = 0 the fitness function is not epistatic. Hence, all genes can be opti-
mized separately and we have the classical additive multi-locus model.

• There is a single optimum x⋆ which is globally attractive, i. e. which can
and will be found by any (reasonable) optimization process regardless of
the initial configuration.

• For each individual x 6= x⋆ there exists a fitter neighbor.
• An adaptive walk3 from any point in the search space will proceed by re-

ducing the Hamming distance to the global optimum by 1 in each step (if
each mutation only affects one single gene). The number of better neigh-
bors equals the Hamming distance to the global optimum. Hence, the
estimated number of steps of such a walk is N

2 .
• The fitness of direct neighbors is highly correlated since it shares N − 1

components.

17.2.2 K = N − 1

For K = N − 1, the fitness function equals a random assignment of fitness to
each point of the search space.

• The probability that a genotype is a local optimum is 1
N−1 .

• The expected total number of local optima is thus 2N

N+1 .
• The average distance between local optima is approximately 2 ln (N − 1).
• The expected length of adaptive walks is approximately ln (N − 1).
• The expected number of mutants to be tested in an adaptive walk before

reaching a local optimum is
∑log2 (N−1)−1

i=0 2i.
• With increasing N , the expected fitness of local optima reached by an

adaptive from a random initial configuration decreases towards the mean
fitness FN,k = 1

2 of the search space. This is called the complexity catas-
trophe [13].

17.2.3 Intermediate K

• For small K, the best local optima share many common alleles. As K
increases, this correlation diminishes, for the random neighbors method
faster than for the nearest neighbors method.

• For larger K, the fitness of the local optima approach a normal distribution
with mean m and variance s approximately

m = µ + σ
√

2 ln (K + 1)K + 1 s = (K+1)σ2

N(K+1+2(K+2) ln (K+1))
(17.5)

where µ is the expected value of the fi and σ2 is their variance.

3 See Section 15.3.3 on page 260 for a discussion of adaptive walks.

280 17 Benchmarks and Toy Problems

• The mean distance between local optima, roughly twice the length of an

adaptive walk, is approximately N log2 (K+1)
2(K+1) .

• The autocorrelation function ρ(k, FN,k) and the correlation length τ are:

ρ(k, FN,k) =
(
1− K+1

N

)k
, τ = −1

ln (1−K+1
N) (17.6)

17.2.4 Computational Complexity

[479] nicely summarizes the four most important theorems about the compu-
tational complexity of optimization of NK fitness landscapes. These theorems
have been proven by different algorithms introduced by Weinberger [1001] and
Thompson and Wright [1002].

• The NK optimization problem with adjacent neighbors is solvable in
O(2KN) steps and thus in P [1001].

• The NK optimization problem with random neighbors is NP complete for
K ≥ 2 [1001, 1002].

• The NK optimization problem with random neighbors and K = 1 is solv-
able in polynomial time. [1002].

17.3 The Royal Road

The Royal Road functions [1003, 465, 1004] which have been presented at the
Fifth International Conference on Genetic Algorithms in July 1993 are a set
of special fitness landscapes for genetic algorithms with fixed-length bit string
genomes. They are closely related to the Schema Theorem4 and the Building
Block Hypothesis5 and were used to study the way in which highly fit schemas
are discovered. They therefore define a set of schemas S = s1, s2, . . . , sn and
fitness functions, subject to maximization, as

f(x) =
∑

∀s∈S

c(s)σ(s, x) (17.7)

where x ∈ X̃ ≡ G is a bit string, c(s) is a value assigned to the schema s and

σ(s, x)

{
1 : if x is an instance of s
0 : otherwise

. In the original version, c(s) is the order

of the schema s and S is defined as follows.

1 s1 = 11111111**; c(s1) = 8

2 s2 = ********11111111**; c(s2) = 8

3 s3 = ****************11111111**; c(s3) = 8

4 s4 = ************************11111111********************************; c(s4) = 8

4 See Section 3.6 on page 129 for more details.
5 The Building Block Hypothesis is elaborated on in Section 3.6.5 on page 132

17.3 The Royal Road 281

5 s5 = ********************************11111111************************; c(s5) = 8

6 s6 = **11111111****************; c(s6) = 8

7 s7 = **11111111********; c(s7) = 8

8 s8 = **11111111; c(s8) = 8

9 s9 = 1111111111111111**; c(s9) = 16

10 s10 = ****************1111111111111111********************************; c(s10) = 16

11 s11 = ********************************1111111111111111****************; c(s11) = 16

12 s12 = **1111111111111111; c(s12) = 16

13 s13 = 11111111111111111111111111111111********************************; c(s13) = 32

14 s14 = ********************************11111111111111111111111111111111; c(s14) = 32

15 s15 = 11; c(s15) = 64

Listing 17.1: An example Royal Road function.

The Royal Road function provides certain, predefined stepping stones (i.e.
building blocks) which (theoretically) can be combined by the genetic algo-
rithm to successively create schemas of higher fitness and order.

Mitchell, Forrest, and Holland performed several tests with their Royal
Road functions. These tests revealed or confirmed that

• Crossover is a useful reproduction operation in this scenario. Genetic al-
gorithms which apply this operation clearly outperform hill climbing ap-
proaches solely based on mutation.

• In the sprit of the Building Block Hypothesis, one would expect that the in-
termediate steps (for instance order 32 and 16) of the Royal Road functions
would help the genetic algorithm to reach the optimum. The experiments
of Mitchellet al. showed the exact opposite: leaving them away speeds
up the evolution significantly [465]. The reason is the fitness difference
between the intermediate steps and the low-order schemas is high enough
that the first instance of them will lead the GA to converge to it and wipe
out the low-order schemas. The other parts of this intermediate solution
play no role and may allow many zeros to hitchhike along.

Especially this last point gives us another insight on how we should con-
struct genomes: the fitness of combinations of good low-order schemas should
not be too high so other good low-order schemas do not extinct when they
emerge.

17.3.1 Variable-Length Representation

The original Royal Road problems can be defined for binary string genomes
of any given length n, as long as n is fixed. A Royal Road benchmark for
variable-length genomes has been defined by Defoin Platel et al. in [1005].

The search space X̃Σ of the VLR (variable-length representation) Royal
Road problem is based on an alphabet Σ with N = |Σ| letters. The fitness of
an individual x ∈ X̃Σ is determined by whether or not consecutive building
blocks of the length b of the letters l ∈ Σ are present. This presence can be
defined as

282 17 Benchmarks and Toy Problems

Bb(x, l) =

{
1 if ∃0 ≤ i < (length(x)− b) : x[i + j] = l ∀0 ≤ j < (b− 1)
0 otherwise

(17.8)
Where

• b ≥ 1 is the length of the building blocks,
• Σ is the alphabet with N = |Σ| letters,
• l is a letter in Σ,
• x ∈ X̃Σ is a solution candidate, and
• x[k] is the kth locus of x.

Bb(x, l) is 1 if a building block, an uninterrupted sequence of the letter l, of
at least length b, is present in x. Of course, if length(x) < b this cannot be
the case and Bb(x, l) will be zero.

We can now define the functional objective function fΣb : X̃Σ 7→ [0, 1]
which is subject to maximization as

fΣb(x) =
1

N

N∑

i=1

Bb(x,Σ[i]) (17.9)

An optimal individual x⋆ solving the VLR Royal Road problem is thus a
string that includes building blocks of length b for all letters l ∈ Σ. Notice
that the position of these blocks plays no role. The set of all such optima X⋆

b

with fΣb(x
⋆) = 1.

X⋆
b ≡

{

x⋆ ∈ X̃ : Bb(x
⋆, l) = 1∀l ∈ Σ

}

(17.10)

Such an optimum x⋆ for b = 3 and Σ = {A, T,G,C} is

x⋆ = AAAGTGGGTAATTTTCCCTCCC (17.11)

The relevant building blocks of x⋆ are written in bold face. As it can
easily be seen, their location plays no role, only their presence is important.
Furthermore, multiple occurrences of building blocks (like the second CCC)
do not contribute to the fitness. The fitness landscape has been designed that
fitness degeneration by crossover can only occur if the crossover points are
located inside building blocks and not by block translocation or concatenation.
In other words, there is no inter-block epistasis.

17.3.2 Epistatic Road

In [1000], Defoin Platel et al. combined their previous work on the VLR Royal
Road with Kauffman’s NK landscapes and introduced the Epistatic Road.
The original NK landscape works on binary representation of the fixed length
N . To each locus i in the representation, one fitness function fi is assigned
denoting its contribution to the overall fitness. fi however is not exclusively

17.3 The Royal Road 283

computed using the allele at the ith locus but also depends on the alleles of
K other loci, its neighbors.

The VLR Royal Road uses a genome based on the alphabet Σ with
N = |Σ| letters. It defines the function Bb(x, l) which returns 1 if a build-
ing block of length b containing only the character l is present in x and 0
otherwise. Because of the fixed size of the alphabet Σ, there exist exactly N
such functions. Hence, the variable-length representation can be translated to
a fixed-length, binary one by simply concatenating them:

Bb(x,Σ[0])Bb(x,Σ[1]) . . . Bb(x,Σ[N − 1]) (17.12)

Now we can define a NK landscape for the Epistatic Road by substituting
the Bb(x, l) into Equation 17.4 on page 278:

FN,K,b(x) =
1

N

N−1∑

i=0

fi(Bb(x,Σ[i]), Bb(x,Σ[i1]), . . . , Bb(x,Σ[iK])) (17.13)

The only thing left is to ensure that the end of the road, i. e. the pres-
ence of all N building blocks, also is the optimum of FN,K,b. This is done
by exhaustively searching the space 0, 1N and defining the fi in a way that
Bb(x, l) = 1 ∀ l ∈ Σ ⇒ FN,K,b = 1.

17.3.3 Royal Trees

An analogue of the Royal Road for Genetic Programming has been specified by
Punch et al. in [1006]. This Royal Tree problem specifies a series of functions A,
B, C, . . . with increasing arity, i.e. A has one argument, B has two arguments,
C has three, and so on. Additionally, a set of terminal nodes x, y, z is defined.

A

x

(a) Perfect A-level

A

x

A

x

B

(b) Perfect B-level

A

x

A

x

B

A

x

A

x

A

x

A

x

B

C

B

(c) Perfect C-level

Fig. 17.2: The perfect Royal Trees.

For the first free levels, the perfect trees are shown Figure 17.2. An optimal
A-level tree consists of an A node with an X leaf attached to it. The perfect
level-B tree has a B as root with two perfect level-A trees as children. A node

284 17 Benchmarks and Toy Problems

labeled with C having three children which all are optimal B-level trees is the
optimum at C-level, and so on.

The objective function, subject to maximization, is computed recursively.
The raw fitness of a node is the weighted sum of the fitness of its children. If
the child is a perfect tree at the appropriate level (a perfect C tree beneath
a D-node), its fitness is multiplied with the constant FullBonus, which is
normally 2. If the child is not a perfect tree, but has the correct root, the
weight is PartialBonus (usually 1). If it is otherwise incorrect, its fitness is
multiplied with Penalty, which is 1

3 per default. After evaluating the root
of the tree, if it is a perfect tree, the raw fitness is finally multiplied with
CompleteBonus which normally is also 2. The value of a of a X leaf is 1.

From [1006] we can furthermore borrow three examples for this fitness
assignment, outlined in Figure 17.3. A tree which represents a perfect A level
has the score of CompleteBonus∗FullBonus∗1 = 2∗2∗1 = 4. A complete and
perfect tree at level B receives CompleteBonus(FullBonus∗4+FullBonus∗
4) = 2∗(2∗4+2∗4) = 32. At level C, this makes CompleteBonus(FullBonus∗
32 + FullBonus ∗ 32 + FullBonus ∗ 32) = 2(2 ∗ 32 + 2 ∗ 32 + 2 ∗ 32) = 384.

A

x

A

x

B B

C

B

A

x

A

x

A

x

A

x

(a) 2(2∗32+2∗32+2∗32) =
384

A

x

A

x

B B

C

B

A

x

A

x

x x

(b) 2(2∗32+2∗32+ 2
3
∗1) =

128 2
3

A

x

A

x

B

C

x x

(c) 2(2∗32+ 1
3
∗1+ 1

3
∗1) =

64 2
3

Fig. 17.3: Example fitness evaluation of Royal Trees.

17.4 Artificial Ant

We have discussed parts of the artificial ant [1007, 1008, 1009, 11, 1010, 1011,
1012] problem already in Section 1.3 on page 13 and Section 1.2.2 on page 10
– here we are going to investigate it more thoroughly.

The goal of the original problem defined by Jefferson and Collins [1007]
is to find a program that controls an artificial ant in an environment. This
environment has the following features:

• It is divided in a toroidal grid generating rectangular cells in the plane
making the positions of coordinates of all objects discrete.

17.4 Artificial Ant 285

• There exists exactly one ant in the environment.
• The ant will always be inside one cell at one time.
• A cell can either contain one piece of food or not.

The ant is a very simple life form. It always faces in one of the four direc-
tions north, east, south, or west. Furthermore, it can sense if there is food in
the next cell in the direction it faces. It cannot sense if there is food on any
other cell in the map.

Like the space, the time in the artificial ant problem is also discrete. Thus,
the ant may carry out one of the following actions per time unit:

• The ant can move for exactly one cell into the direction it faces. If this cell
contains food, the ant consumes it in the very moment in which it enters
the cell.

• The ant may turn left or right by 90.
• The ant may do nothing in a time unit.

17.4.1 Santa Fe trail

One instance of the artificial ant problem is the “Santa Fe trail” (see
Figure 17.4) designed by Christopher Langdon [11]. This is a map of 32 ∗ 32
cells containing 89 food pellets distributed along a certain route. Initially, the
ant will be placed in the upper left corner of the field. In trail of food pellets,
there are gaps of five forms:

• one cells along a straight line
• two cells along a straight line
• one cell in a corner
• two cells at a corner (requiring something like a “horse jump” in chess)
• three cells at a corner

The goal is here to find some form of control for the ant that allows it to
eat as many of the food pellets as possible (the maximum is of course 89) and
to walk a distance as short as possible in order to do so (the optimal route is
illustrated in Figure 17.4). Of course, there will be a time limit set for the ant
to perform this task (normally 200 time units).

17.4.2 Solutions

Genetic Algorithm evolving Finite State Machine

Jefferson, Collins et al. [1009] used a conventional genetic algorithm that
evolved finite state machines encoded in a fixed-length binary string genome.

The sensor information together with the current state determines the next
state, therefore a finite state machine with at most m states can be encoded in
a chromosome using 2m genes. In order to understand the structure of such
a chromosome, let us assume that m = 2n. We can specify the finite state

286 17 Benchmarks and Toy Problems

start

end

food gap in the trail with no food

Fig. 17.4: The Santa Fee Trail in the Artificial Ant Problem.

machine as a table where n + 1 bits are used as row index. n of this index
identify the current state and one bit for the sensor information (1=food
ahead, 0=no food ahead). In total, we have 2m rows. We do not need to store
the row indices, just the cell contents: n bits encode the next state, and two bits
encode the action to be performed at the state transition (00 for nothing, 01
for turning left, 10 for turning right, 11 for moving). A chromosome encoding a
finite state machine with m states can be encoded in 2m(n+2) = 2n+1(n+2)
bits. If we also want to store the initial state in the chromosome, we need
another n bits to do so. Every chromosome represents a valid finite state
machine.

Jefferson, Collins et al. allowed for 32 states (453 bit chromosomes) in
their finite state machines. They used one objective function that returned
the number of food pellets eaten by the ant in a simulation run (of maximal
200 steps) and made it subject to maximization. Using a population of 65’536
individuals, they found one optimal solution (with fitness 89).

17.5 The Greatest Common Divisor 287

Genetic Algorithm evolving Neural Network

Jefferson, Collins et al. also evolved a neural network (encoded in a 520 bit
genome) with a genetic algorithm of the same population size to successfully
solve the artificial ant problem.

Genetic Programming evolving Control Programs

Koza [1013] solved the artificial ant problem by evolving LISP6-programs.
Therefore, he introduced the parameterless instructions MOVE, RIGHT, and LEFT

that moved the ant one unit, or turned it right or left respectively. Further-
more, the two-parameter conditional expression IF-FOOD-AHEAD executed its
first parameter expression if the ant could sense food and the second one oth-
erwise. Two compound instructions, PROGN2 and PROGN3, execute their two or
three sub-expressions unconditionally. After 21 generations using a 500 in-
dividual population and fitness-proportional selection, genetic programming
yielded an individual solving the Santa Fe trail optimally.

17.5 The Greatest Common Divisor

A problem suitable to test genetic programming approaches is to evolve an
algorithm that computes the greatest common divisor7, the GCD.

17.5.1 Problem Definition

Definition 77 (GCD). For two integer numbers a, b ∈ N0, the great-
est common divisor (GCD) is the largest number c that divides both a
(c|a ≡ a mod c = 0) and b (c|b ≡ b mod c = 0).

c = gcd(a, b) ⇔ c|a ∧ c|b ∧ (6 ∃d : d|a ∧ d|b ∧ d > c) (17.14)

⇔ max {e : (a mod e = 0) ∧ (b mod e = 0)} (17.15)

The Euclidean Algorithm

The GCD can be computed by the Euclidean algorithm8 which is specified in
its original version in Algorithm 17.1 and in the improved, faster variant as
Algorithm 17.2 [1014, 1015].

6 http://en.wikipedia.org/wiki/Lisp_%28programming_language%29 [accessed

2007-07-03]

7 http://en.wikipedia.org/wiki/Greatest_common_divisor [accessed 2007-10-05]

8 http://en.wikipedia.org/wiki/Euclidean_algorithm [accessed 2007-10-05]

http://en.wikipedia.org/wiki/Lisp_%28programming_language%29
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Euclidean_algorithm

288 17 Benchmarks and Toy Problems

Algorithm 17.1: gcd(a, b) = euclidGcdOrig(a, b)

Input: a, b ∈ N0 two integers
Data: t ∈ N0 a temporary variable
Output: gcd(a, b) the greatest common divisor of a and b

begin1

while b 6= 0 do2

if a > b then a←− a− b3

else b←− b− a4

return a5

end6

Algorithm 17.2: gcd(a, b) = euclidGcd(a, b)

Input: a, b ∈ N0 two integers
Data: t ∈ N0 a temporary variable
Output: gcd(a, b) the greatest common divisor of a and b

begin1

while b 6= 0 do2

t←− b3

b←− a mod b4

a←− t5

return a6

end7

The Objective Functions and the Prevalence Comparator

Although the GCD-problems seems to be more or less trivial since simple
algorithms exist that solve it, it has characteristics that make it hard of genetic
programming. Assume we have evolved a program x ∈ X̃ which takes the two
values a and b as input parameters and returns a new value c = x(a, b). Unlike
in symbolic regression9, it makes no sense to define the error between c and
the real value gcd(a, b) as objective function, since there is no relation between
the “degree of correctness” of the algorithm and (c − gcd(a, b))2. Matter of
fact, we cannot say that a program returning c1 = x1(20, 15) = 6 is better
than c2 = x2(20, 15) = 10. 6 may be closer to the real result gcd(20, 15) = 5
but shares no divisor with it whereas 5|10 ≡ 10 mod 5 = 0.

Based on the idea that the GCD is of the variables a and b is preserved in
each step of the Euclidean algorithm, a suitable functional objective function
f1 : X̃ 7→ [0, 5] for this problem is Algorithm 17.3. It takes a test case (a, b)
as argument and first checks whether the evolved program x ∈ X̃ returns the
correct result for it. If so, f1(x) is returned. Otherwise, we check if the greatest
common divisor of x(a, b) and a is still the greatest common divisor of a and b.

9 See Section 19.1 for an extensive discussion of symbolic regression.

17.5 The Greatest Common Divisor 289

If this is not the case, 1 is added to the objective value. The same is repeated
with x(a, b) and b. Furthermore, negative values of x(a, b) are penalized with
2 and results that are larger or equal to a or b are penalized with 1 additional
point for each violation. This objective function is very rugged and can take
on only integer values between 0 (the optimum) and 5 (the worst case).

Algorithm 17.3: fa,b
1 (x) ≡ euclidObjective(x, a, b)

Input: a, b ∈ N0 the test case
Input: x ∈ X̃ the evolved algorithm to be evaluated
Data: v a variable holding the result of x for the test case
Output: fa,b

1 (x) = r the objective value of the functional objective function
f1 for the test case

begin1

r ←− 02

v ←− x(a, b)3

if v 6= gcd(a, b) then4

r ←− r + 15

if gcd(v, a) 6= gcd(a, b) then r ←− r + 16

if gcd(v, b) 6= gcd(a, b) then r ←− r + 17

if v ≤ 0 then r ←− r + 28

else9

if v ≥ a then r ←− r + 110

if v ≥ b then r ←− r + 111

return r12

end13

Additionally to f1, two objective functions optimizing non-functional as-
pects should be present. f2(x) should minimize the number of expressions in
x and f3(x) should minimize the number of steps x needs until it terminates
and returns the result. This way we further small and fast algorithms. These
three objective functions, combined to a prevalence comparator cF,gcd as de-
fined in Definition 18 on page 20, can serve as a benchmark on how good a
genetic programming approach can cope with the rugged fitness landscape
common to the evolution of real algorithms and how the parameter settings
of the evolutionary algorithm influence this ability.

cF,gcd(x1, x2) =

−1 if (f1(x1) < f1(x2)
1 if (f1(x1) > f1(x2))

cF,pareto(x1, x2) otherwise
(17.16)

In principle, Equation 17.16 gives the functional fitness precedence before
any other objective. If (and only if) the functional objective values of both

290 17 Benchmarks and Toy Problems

individuals are equal, the prevalence is decided upon a Pareto comparison of
the remaining two (non-functional) objectives.

The Test Cases

Of further importance is the structure of the test cases. If we simple use two
random numbers a and b, their GCD is likely to 1 or 2. Hence, we construct
a single test case by first drawing a random number r ∈ [10, 100000] as lower
limit for the GCD and then keep drawing random numbers a > r, b > r until
gcd(a, b) ≥ r. Furthermore, if multiple test cases are involved in the individual
evaluation, we ensure that they involve different magnitudes of the values of
a, b, and r. If we change the test cases after each generation of the applied
evolutionary algorithm, the same goes for two subsequent test case sets. Some
typical test sets are noted in listing 17.2.

1 Generation 0

2 ===================================

3 a b gcd(a,b)

4 87546096 2012500485 21627

5 1656382 161406235 9101

6 7035 5628 1407

7 2008942236 579260484 972

8 556527320 1588840 144440

9 14328736 10746552 3582184

10 1390 268760 10

11 929436304 860551 5153

12 941094 1690414110 1386

13 14044248 1259211564 53604

14

15 Generation 1

16 ===================================

17 a b gcd(a,b)

18 117140 1194828 23428

19 2367 42080 263

20 3236545 379925 65

21 1796284190 979395390 10

22 4760 152346030 10

23 12037362 708102 186

24 1785869184 2093777664 61581696

25 782331 42435530 23707

26 434150199 24453828 63

27 45509100 7316463 35007

28

29 Generation 2

30 ===================================

31 a b gcd(a,b)

32 1749281113 82 41

33 25328611 99 11

17.5 The Greatest Common Divisor 291

34 279351072 2028016224 3627936

35 173078655 214140 53535

36 216 126 18

37 1607646156 583719700 2836

38 1059261 638524299 21

39 70903440 1035432 5256

40 26576383 19043 139

41 1349426 596258 31382

Listing 17.2: Some test cases for the GCD problem.

17.5.2 Rule-based Genetic Programming

We have conducted a rather large series of experiments on solving the GCD
problem with rule-based genetic programming (RBGP, see Section 4.9 on
page 187). In this section we will elaborate on the different parameters that
we have tried out and what results could be observed for these settings.

Configurations

As outlined in Table 17.1, we’ve tried to solve the GCD problem with rule-
based genetic programming with a lot of different settings (60 in total) which
we will discuss here.

Table 17.1: Parameters of the RBGP Test Series for the GCD Problem

parameter shortcut possible values

EA/random walk rw 0⇒ EA, 1⇒ random walk
population size pop 512, 1024, 2048
steady state/generational ss 0⇒ generational, 1⇒ steady state
convergence prevention cp 0⇒ off, 1⇒ on
number of test cases tc 1, 10
changing test cases ct 0⇒ constant test cases, 1⇒ test cases

change each generation

Population Size [pop]

Experiments were performed with three different population sizes pop: 512,
1024, and 2048.

292 17 Benchmarks and Toy Problems

Steady State [ss]

The evolutionary algorithms could either be steady state (ss=1), meaning
that the offspring of a generation has to compete with the already existing
individuals in the selection phase, or generational/extinctive (ss=0), meaning
that only the offspring of a generation will take part in the selection and the
parents are discarded. See Section 2.1.3 on page 54 for details on steady state
vs. generational evolutionary algorithms.

Convergence Prevention [cp]

In our past experiments, we have made the experience that genetic program-
ming in rugged fitness landscapes and genetic programming of real algorithms
(which usually leads to rugged fitness landscapes) is very inclined to prema-
ture convergence. If it finds some half-baked solution, the population often
tended to converge to this individual and the evolutions stopped.

There are many ways to prevent this, like modifying the fitness assignment
process by using sharing functions (see Section 2.3.5 on page 69), for example.
Such methods influence individuals close in objective space and decrease their
chance to reproduce.

We decided for a very simple measure that only decreases probability of
reproduction of individuals with exactly equal objective functions. In our sce-
nario, this approach is absolutely sufficient since we do not perform a mathe-
matical approximation were individuals close in objective space are often also
close in solution space, but an evolution of algorithms, where such relation
not necessarily holds. Our method of convergence prevention (cp) is to place
a filter right after the evaluation of the individuals and before the selection
algorithm. Whenever a program enters this filter, we lookup the number n of
other programs with equal objective values that entered the filter this gen-
eration. The incoming individual is allowed to pass with probability (1− c)n

(and discarded with probability 1 − (1 − c)n), with c ∈ [0, 1] and c = 0.3 in
our experiments.

This filter has either been applied cp=1 or not applied cp=0.

Number of Test Cases [tc]

We have tested two different numbers of test cases tc: 1 and 10. This means
that the evaluation of a program was done by computing its objective values
either directly with a single test case (tc=1) or by computing it on ten different
test cases (tc=10), setting the final value to be the average.

This was done in order to find out whether overfitting will take place
when only a single test case is used and if there is an increase in quality of
the solution when ten test cases are performed.

17.5 The Greatest Common Divisor 293

Changing Test Cases [ct]

For the same reason, learning about the influence of overfitting, the utility
of a second measure was examined: We either changed the test cases in each
generation (ct=1) or left them constant throughout all runs (ct=0).

If ct=1, each individual in the population is evaluated with the same test
cases. In each generation however, different test cases are applied. This is a
common method to prevent an evolutionary algorithm from “learning” the
characteristics of a certain test case and creating programs that only solve
this certain problem, used for example in [558]. Such an individual, receiving
good objective values during one generation, would probably being penalized
with very bad fitness in the next.

General Settings

In the evolutionary algorithms, we always applied a binary tournament selec-
tion (see Algorithm 2.16 on page 83) and a prevalence ranking fitness assign-
ment as defined in Algorithm 2.4 on page 68. All runs of all configurations
are limited to 501 generations, starting with generation 0 and ending after
generation 500.

Comparison to Random Walks [rw]

Last but not least, we found it necessary to compare the genetic program-
ming approach for solving this problem with random walks, so we can be sure
whether or not it can provide any advantage in a rugged fitness landscape.
Therefore we either used an evolutionary algorithm with the parameters dis-
cussed above (rw=0) or parallel random walks (rw=1). Random walks in this
context are principally evolutionary algorithms where neither fitness assign-
ment nor selection are preformed. Hence we can test parameters like pop, tc,
and ct, but no convergence prevention (cp=0) and also no steady state ss=0.
The result of these random walks are the best individuals encountered during
their course.

Results

The results of the application of the RBGP to the GCD problem are listed
in Table 17.2 on the following page. Each of the sixty rows of this table denotes
one single test series. The first seven columns of this table specify the settings
of the test series as discussed in defined Table 17.1 on page 291. The last two
columns contain the evaluation results, which are formatted as follows:

The Correct Solution Ratio [cr]

The column with the headline cr contains the ratio of correct solutions c
r

obtained by applying the configuration. In other words, the number of runs
that yielded a correct, non-overfitted algorithm for computing the GCD c
divided by the number of runs performed in total r.

294 17 Benchmarks and Toy Problems

Table 17.2: Results of the RBGP test series on the GCD problem.

rw cp ss ct tc pop cr c/s/r sg

0 1 1 1 10 2048 0.98 53/53/54 61.1
0 1 1 0 10 2048 0.98 48/48/49 70.0
0 1 0 1 10 2048 0.79 41/41/52 101.1
0 1 0 0 10 2048 0.79 39/39/49 111.1
0 1 1 1 10 1024 0.78 42/42/54 125.5
0 1 1 0 10 1024 0.78 41/41/53 129.1
0 1 0 1 10 1024 0.67 37/37/54 199.4
0 1 0 0 10 1024 0.52 27/27/53 196.3
0 1 1 0 10 512 0.49 25/25/51 153.0
0 1 1 1 10 512 0.41 21/21/50 231.5
0 1 1 1 1 2048 0.28 14/14/54 107.8
0 1 1 0 1 1024 0.28 15/45/53 100.4
0 1 0 0 1 2048 0.27 14/49/51 85.2
0 1 0 1 10 512 0.25 13/13/52 231.5
0 1 1 0 1 2048 0.25 13/51/51 36.4
0 0 0 0 10 2048 0.24 12/12/49 280.6
0 1 0 0 10 512 0.19 10/10/52 250.8
1 0 0 0 1 1024 0.17 9/41/54 170.0
0 0 1 0 10 2048 0.16 8/8/49 249.9
0 0 0 0 10 1024 0.15 8/8/55 263.0
0 0 1 1 10 2048 0.13 7/7/52 250.9
0 0 1 0 10 1024 0.13 7/7/53 272.3
0 1 1 0 1 512 0.12 6/35/51 98.5
0 1 0 1 1 1024 0.10 5/5/52 197.4
0 0 0 1 10 2048 0.10 5/5/50 237.4
1 0 0 0 1 512 0.10 5/27/51 259.1
0 1 0 1 1 2048 0.09 5/5/53 46.6
0 1 0 0 1 1024 0.09 5/44/54 138.2
0 0 1 1 10 512 0.08 4/4/50 320.3
0 1 1 1 1 1024 0.06 3/3/52 116.0

rw cp ss ct tc pop cr c/s/r sg

0 0 0 1 10 1024 0.06 3/3/53 264.3
0 1 0 0 1 512 0.06 3/22/51 162.1
0 1 1 1 1 512 0.04 2/2/49 102.0
0 0 1 1 10 1024 0.03 2/2/54 328.5
1 0 0 0 1 2048 0.02 1/50/54 120.9
0 0 1 0 1 2048 0.02 1/18/51 245.5
1 0 0 1 1 2048 0.00 0/2/53 101.5
0 0 0 0 1 2048 0.00 0/16/54 146.2
0 0 1 0 1 512 0.00 0/6/51 202.0
1 0 0 1 1 1024 0.00 0/2/53 209.0
0 0 0 0 1 1024 0.00 0/9/54 257.1
0 0 1 0 1 1024 0.00 0/16/54 277.3
0 0 0 0 1 512 0.00 0/4/50 369.5
0 0 0 0 10 512 0.00 1/1/52 492.0
0 0 0 1 1 1024 0.00 0/0/53 –
0 0 0 1 1 2048 0.00 0/0/53 –
0 0 0 1 1 512 0.00 0/0/51 –
0 0 0 1 10 512 0.00 0/0/51 –
0 0 1 0 10 512 0.00 0/0/52 –
0 0 1 1 1 1024 0.00 0/0/52 –
0 0 1 1 1 2048 0.00 0/0/54 –
0 0 1 1 1 512 0.00 0/0/49 –
0 1 0 1 1 512 0.00 0/0/52 –
1 0 0 0 10 1024 0.00 0/0/55 –
1 0 0 0 10 2048 0.00 0/0/49 –
1 0 0 0 10 512 0.00 0/0/52 –
1 0 0 1 1 512 0.00 0/0/51 –
1 0 0 1 10 1024 0.00 0/0/53 –
1 0 0 1 10 2048 0.00 0/0/51 –
1 0 0 1 10 512 0.00 0/0/51 –

Correct/Solution/Runs [c/s/r]

The c/s/r -column gives a more detailed review of the results. Here you can
find the number of runs with correct solutions c in relation with the number of
runs with solutions with optimal functional objective values (f1 = 0, whether
due to overfitting or not) s and the total number of runs performed with a
given configuration r. The relation r ≥ s always holds, because there can never
be more successful runs than runs in total. Furthermore s ≥ c is also always
true because s includes the runs which returned individuals with an optimal
functional objective value but are overfitted, i. e. will not work with inputs a
and b different from those used in their evaluation like the one illustrated in

17.5 The Greatest Common Divisor 295

1 false ∨ true ⇒ bt+1=bt%at

2 (bt≤at) ∨ false ⇒ at+1=at%bt

3 false ∨ true ⇒ ct+1=bt

Listing 17.3: The RBGP version of the Euclidean algorithm.

1 (at≤bt) ∧ true ⇒ startt+1=1-startt

2 false ∨ (startt>at) ⇒ startt+1=startt*0

3 (at=1) ∧ (0≥startt) ⇒ startt+1=startt/ct

4 true ∧ (ct=startt) ⇒ ct+1=ct+1

5 (ct >0) ∨ (at≤bt) ⇒ at+1=at*startt

6 true ∧ true ⇒ ct+1=ct-ct

7 false ∨ (at!= startt) ⇒ startt+1=startt-startt

8 true ∨ (ct=startt) ⇒ ct+1=ct+1

9 false ∨ (0<startt) ⇒ bt+1=bt*ct

10 (startt=ct) ∨ (1>startt) ⇒ bt+1=bt%1

11 (0≤1) ∧ (0≥0) ⇒ at+1=at/ct

12 false ∨ (bt <0) ⇒ at+1=1-1

13 (startt≤startt) ∨ true ⇒ ct+1=ct/0

14 (at=startt) ∧ true ⇒ ct+1=ct+0

15 (at≤bt) ∧ true ⇒ startt+1=1-1

Listing 17.4: An overfitted RBGP solution to the GCP problem.

listing 17.4. Finally, c is the number of runs which lead to a correct solution
like listing 17.3.

Not all configurations were tested with the same number of runs since we
had multiple computers involved in these test series and needed to end it at
some point of time. We then used the maximum amount of available data for
our evaluation.

The Average First Success Generation [sg]

The last column, sg, contains the average generation where the first solution
x ∈ X̃ with f1(x) = 0 was found. The lower the value in this column, the
faster a solution was found. This average includes the runs with overfitted
results.

Figure 17.5 illustrates the relation between the functional objective value
f1 of the currently best individual of the runs to the generation for the twelve
best test series (according to their cr -values). The curves are monotone for
series with constant test sets (ct=0) and jagged for those where the test data
changed each generation (cr=1).

296 17 Benchmarks and Toy Problems

0

5

500

(a)
rw=0,cp=1,ss=1,ct=1,
tc=10,pop=2048

0

5

500

(b)
rw=0,cp=1,ss=1,ct=0,
tc=10,pop=2048

0

5

500

(c)
rw=0,cp=1,ss=0,ct=1,
tc=10,pop=2048

0

5

500

(d)
rw=0,cp=1,ss=0,ct=0,
tc=10,pop=2048

0

5

500

(e)
rw=0,cp=1,ss=1,ct=1,
tc=10,pop=1024

0

5

500

(f)
rw=0,cp=1,ss=1,ct=0,
tc=10,pop=1024

0

5

500

(g)
rw=0,cp=1,ss=0,ct=1,
tc=10,pop=1024

0

5

500

(h)
rw=0,cp=1,ss=0,ct=0,
tc=10,pop=1024

0

5

500

(i)
rw=0,cp=1,ss=1,ct=0,
tc=10,pop=512

0

5

500

(j)
rw=0,cp=1,ss=1,ct=1,
tc=10,pop=512

0

5

500

(k)
rw=0,cp=1,ss=1,ct=1,
tc=1,pop=2048

0

5

500

(l)
rw=0,cp=1,ss=1,ct=0,
tc=1,pop=1024

Fig. 17.5: The f1/generation-plots of the best configurations.

17.5 The Greatest Common Divisor 297

Discussion

We have sorted the runs according to their cr -values, i. e. the probability of
yielding a correct solution, in Table 17.2 and Figure 17.5. In the further text
we use this value as quality measure.

Population Size [pop]

The role of the population size is quite obvious, since the four best runs all have
a population size of 2048. At least in this experiment, the bigger the population
the bigger the chance of success holds. However, the population size is bar
far not the sole factor influencing the performance of genetic programming,
because the second-best four series all have population size 1024.

Steady State [ss]

We can also make a very clear statement about the influence of the steady
state parameter ss had in our experiments. If we again look at the four best
runs, we can see that the better two of them both have ss=1 while the other
two have ss=0 – while all other parameters remained constant. The difference
seems to be around 1− 79

98 ≈ 20%. Exactly the same relation can be observed
with the second-best four configurations (with population size 1024), where
those with steady state EAs each have a success rate of 78% and those without
have 67% and 52%. Here, the ratio is with 1− 67

78 ≈ 14% and 1− 52
78 = 1

3 = 33%
again somewhat near to 20%.

Convergence Prevention [cp]

Even clearer is the influence of our primitive convergence prevention mecha-
nism – the top 15 test series all have cp=1, and even generational tests with a
population size of 512 beat steady-state runs a population of 2048 individuals
if using convergence prevention. It seems that keeping the evolutionary process
going and not allowing a single program to spread unchanged all throughout
the population increases the solution quality a lot.

Number of Test Cases [tc]

The number of test cases has an almost as same as drastic effect: the top ten
test series all are based on ten test cases (tc=10). We can think of a very
simple reason for that which can be observed very well when comparing for
example Figure 17.5l with Figure 17.5i. In the twelfth best series, based on
only a single test (tc=1) and illustrated in Figure 17.5l, only six values (0..5)
for the objective function f1 could occur. The ninth best series depicted in
Figure 17.5i on the other hand, had a much broader set of values of f1 avail-
able. Since tc=10 and the final objective value is the average multiple runs,
it had a much smoother curve for f1 with 51 = |0.0, 0.1, 0.2, . . . , 4.8, 4.9, 5.0|
levels.

298 17 Benchmarks and Toy Problems

By using multiple test sets for these runs, we have effectively reduced the
ruggedness of the fitness landscape and made it easier for our EA to descend
a gradient.

Changing Test Cases [ct]

In the top ten test series, it seems to have no direct relevance if the test cases
are constant (ct=0) or change every generation (ct=1). This does also go
the speed of the evolution – the average first success generation sg remains
roughly constant, regardless if the test data changes or not. The best ten series
all use ten test cases (tc=10), which seems to prevent overfitting sufficiently
on its own. Hence, we furthermore consider only the series with tc=1.

At first glance, no benefit of changing test cases can be detected here either
– the cr values are not really influenced by the ct settings. However, there is
a difference when we compare their c/s ratios. In all runs that find a solution
x ∈ X̃ with f1(x) = 0, this solution is also correct if ct=1, i. e. c=s. In the test
series where ct=0, usually only a fraction of the runs that found an individual
with perfect functional fitness had indeed found a solution. Here, overfitting
takes place and s¿c can be usually observed.

Because of the stronger influence of the other settings, we must admit
that the parameter ct has no substantial influence on the chance of finding a
solution to the GCD problem with rule-based genetic programming. This may
be rooted in the sufficient prevention of overfitting by using enough constant
test cases and it is quite well possible that there are problems, which can
benefit from changing test cases. Nevertheless, the chance of having a correct
solution when an EA finds a minimum in the fitness landscapes are higher
with ct=1.

Comparison to Random Walks [rw]

The best 17 configurations all were evolutionary algorithms, and apart from
the 18th and 26th best series, no random walk made it into the top 30. Thus,
we can safely declare that genetic programming is better than random walks
even when solving a task with an extremely rugged fitness landscape as the
GCD problem.

One of the reasons for the bad performance of the random walks was
that the individuals tended to become unreasonable large. This also increased
the amount of time needed for evaluation. The evolutionary algorithm runs
usually took about one to ten minutes (depending on the population size) on
normal off-the-shelf PCs with approximately 2 GHz processor power, whereas
the random walks easily used up to forty minutes.

18

Contests

For most of the problems that can be solved with the aid of computers, mul-
tiple different approaches exist. They are often comparably good and their
utility in the single cases depends on parameter settings and thus, the expe-
rience of the user. Contests provide a stage where students, scientists, and
the industry can demonstrate their solutions to specific problems. They help
us finding out which techniques are suitable for these tasks but also give
incitements and trickle scientific interest to improve and extend them. The
RoboCup1 for example is known to be the origin of many new, advanced tech-
niques in robotics, image processing, cooperative behavior, multivariate data
fusion, and motion controls [1016, 1017, 1018]. In this chapter we discuss such
competitions like the Data-Mining-Cup and how their tasks can be tackled
by applying global optimization algorithms.

18.1 Data-Mining-Cup

18.1.1 Introduction

Data Mining

Definition 78 (Data Mining). Data mining2 can be defined as the nontriv-
ial extraction of implicit, previously unknown, and potentially useful informa-
tion from data [1019] and the science of extracting useful information from
large data sets or databases [1020].

Today, gigantic amounts of data are collected in the web, in medical
databases, by enterprise resource planning (ERP) and customer relationship
management (CRM) systems in corporations, web shops, by administrative

1 http://www.robocup.org/ [accessed 2007-07-03] and http://en.wikipedia.org/

wiki/Robocup [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Data_mining [accessed 2007-07-03]

http://www.robocup.org/
http://en.wikipedia.org/wiki/Robocup
http://en.wikipedia.org/wiki/Robocup
http://en.wikipedia.org/wiki/Data_mining

300 18 Contests

and governmental bodies, and in science projects. These data sets are way to
large to be incorporated directly into a decision process or to be understood
as-is by a human being. Instead, automated approaches have to be applied
that extract the relevant information, to find underlying rules and patterns, or
to detect time-dependent changes. Data mining subsumes methods and tech-
niques capable to perform this task. It is very closely related to estimation
theory in stochastic (discussed in Section 35.6 on page 549) – the simplest
digest of data sets is still the arithmetic mean. Data mining is also strongly
related to artificial intelligence [866, 958], which includes learning algorithms
that can generalize the given information. Some of the most wide spread and
most common data mining techniques are:

• (artificial) neural networks (ANN) [1021, 1022],
• support vector machines (SVM) [1023, 1024, 1025, 1026],
• logistic regression [1027],
• decision trees [1028, 1029],
• learning classifier systems as introduced in Chapter 7 on page 211, and
• näıve Bayes Classifiers [1030, 1031].

The Data-Mining-Cup

The Data-Mining-Cup3 (DMC) has been established in the year 2000 by the
prudsys AG4 and the Technical University of Chemnitz 5. It aims to provide
an independent platform for data mining users and data analysis tool vendors
and builds a bridge between academic science and economy. Today, it is one of
Europe’s biggest and most influential conferences in the area of data mining.

The Data-Mining-Cup Contest is the biggest international student data
mining competition. In the spring of each year, students of national and in-
ternational universities challenge to find the best solution of a data analysis
problem. Figure 18.1 shows the logos of the DMC from 2005 till 2007 obtained
from http://www.data-mining-cup.com/ [accessed 2007-07-03].

18.1.2 The 2007 Contest – Using Classifier Systems

In Mai 2007, the students Stefan Achler, Martin Göb, and Christian Voigt-
mann came into my office and told me about the DMC. They knew that

3 The Data-Mining-Cup is a registered trademark of prudsys AG. Der Data-

Mining-Cup ist eine eingetragene Marke der prudsys AG. http://www.

data-mining-cup.com/ [accessed 2007-07-03], http://www.data-mining-cup.de/ [ac-

cessed 2007-07-03]

4 http://www.prudsys.de/ [accessed 2007-07-03]

5 http://www.tu-chemnitz.de [accessed 2007-07-03] (Germany) – By the way, that’s
the university I’ve studied at, a great place with an excellent computer science
department.

http://www.data-mining-cup.com/
http://www.data-mining-cup.com/
http://www.data-mining-cup.com/
http://www.data-mining-cup.de/
http://www.prudsys.de/
http://www.tu-chemnitz.de

18.1 Data-Mining-Cup 301

(a) 2005 (b) 2006 (c) 2007

Fig. 18.1: Some logos of the Data-Mining-Cup.

evolutionary algorithms are methods for global optimization that can be ap-
plied to a wide variety of tasks and wondered if they can be utilized for the
DMC too. After some discussion about the problem to be solved, we together
came up with the following approach which was then realized by them. While
we are going to talk about our basic ideas and the results of the experiments,
a detailed view on the implementation issues using the Java Sigoa framework
are discussed in Section 22.1 on page 375. We have also summarized our work
for this contest in a technical report [230].

A Structured Approach to Data Mining

Whenever any sort of problem should be solved, a structured approach is
always advisable. This goes for the application of optimization methods like
evolutionary algorithms as well as for deriving classifiers in a data mining
problem. In this section we discuss a few simple steps which should be valid
for both kinds of tasks and which have been followed in our approach to the
2007 DMC.

The first step is always to clearly specify the problem that should be solved.
Parts of this specification are possible target values and optimization criteria
as well as the semantics of the problem domain. The optimization criteria
tell us how different possible solutions can be compared with each other. If we
were to sell tomatoes, for example, the target value (subject to maximization)
would be the profit. Then again, the semantics of the problem domain allow
us to draw conclusions on what features are important in the optimization or
data mining process. Again, when selling tomatoes, the average weight of the
vegetables, their color, and maybe the time of the day when we open the store
are important. The names of our customers on the other hand are probably

302 18 Contests

not. The tasks of the DMC 2007 Contest, outlined in Section 18.1.2, are a
good example for such a problem definition.

Before choosing or applying any data mining or optimization technique, an
initial analysis of the given data should be performed. With this review and the
problem specification, we can filter the data and maybe remove unnecessary
features. Additionally, we will gain insight in the data structure and hopefully
can already eliminate some possible solution approaches. It is of course better
to exclude some techniques that cannot lead to good results in the initial phase
instead of wasting working hours in trying them out to avail. We have now
to decide on one or two solution approaches that are especially promising for
the problem defined. We have performed this step for the DMC 2007 Contest
data in Section 18.1.2 on the facing page.

The next step is to apply these approaches. Of course, running an optimizer
on all known sample data at once is not wise. Although we will obtain a
result with which we can solve the specified problem for all the known data
samples, it is possible not a good solution. Instead, it may be overfitted or
overspecialized and can only process the data we are given. Normally however,
we are only provided with fraction of the “real data” and want to find a
system that is able to perform well also on samples that are not yet known
to us. Hence, we need to find out whether or not our approach generalizes.
Therefore, it is sufficient to derive a solution for a subset of the available
data samples, the training data. This solution is then tested on the test set,
the remaining samples not used in its creations. The system we have created
generalizes well if it is rated approximately equally good by the optimization
criterion for both, the training and the test data. Now we can repeat the
process by using all available data. We have evolved classifier systems that
solve the DMC 2007 Contest according to this method in Section 18.1.2 on
page 306.

The students Achler, Göb, and Voigtmann have participated in the 2007
DMC Contest and proceeded according to this pattern. In order to solve the
challenge, they chose for a genetic algorithm evolving a fuzzy classifier system.
The results of their participation are discussed in Section 18.1.2 on page 310.

The following sub-sections are based on their experiences and impressions,
and reproduce how they proceeded.

The Problem Definition

Rebate systems are an important means to animate customers to return to a
store in classical retail. In the 2007 contest, we consider a check-out couponing
system. Whenever a customer leaves a store, at the end of her bill a coupon
can be attached. She then can use the coupon to receive some rebate on her
next purchase. When printing the bill at the checkout, there are three options
for couponing:

Case N: attach no coupon to the bill,

18.1 Data-Mining-Cup 303

Case A: attach coupon type A, a general rebate coupon, to the bill, or
Case B: attach coupon type B, a special voucher, to the bill.

The profit of the couponing system is defined as follows:

• Each coupon which is not redeemed costs 1 money unit.
• For each redeemed coupon of type A, the retailer gains 3 money units.
• For each coupon of type B which is redeemed, the retailer gains 6 money

units.

It is thus clear that simply printing both coupons at the end of each bill
makes no sense. In order to find a good strategy for coupon printing, the
retailer has initiated a survey. She wants to find out which type of customer
has an affinity to cash in coupons and, if so, which type of coupon most likely.
Therefore the behavior of 50000 customers has been anonymously recorded.
For all these customers, we know the customer id, the number of redemptions
of 20 different coupons and the historic information whether coupon type A,
coupon type B, or none of them has been redeemed. Cases where both have
been cashed in are omitted.

Figure 18.2 shows some samples from this data set. The task is to use it
as training data in order to derive a classifier C that is able to decide from a
record of the 20 features whether a coupon A, B, or none should be provided
to a customer. This means to maximize the profit P (C) of retailer gained by
using the classifier C which can be computed according to

P (C) = 3 ∗AA + 6 ∗ BB − 1 ∗ (NA + NB + BA + AB) (18.1)

where

• AA is the number of correct assignments for coupon A.
• BB is the number of correct assignments for coupon B.
• NA is the number of wrong assignments to class A from the real class N.
• NB is the number of wrong assignments to class B from the real class N.
• BA is the number of wrong assignments to class A from the real class B.
• AB is the number of wrong assignments to class B from the real class A.

Wrong assignments from the classes A and B to N play no role.
The classifier built with the 50000 training data sets is then to be applied

to another 50000 data samples. There however, the column Coupon is missing
and should be the result of the classification process. Based on the computed
assignments, the profit score P is calculated for each contestant by the jury
and the team with the highest profit will win.

Initial Data Analysis

The test dataset have some properties which make it especially hard for learn-
ing algorithms to find good solutions. Figure 18.3 for example shows three
data samples with exactly the same features but different classes. In general,

304 18 Contests

C11

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0

C12

1
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
0
0

C13

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C14

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C15

0
0
1
0
1
1
1
1
1
1
1
0
1
1
0
0
1
1
0
1
0
1
1
1
1
0

1
0
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
1
0
1

C16

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C17

0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0

C18

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C19

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C20

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C1

0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C2

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

C3

0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
0
0
0
0
0
0

1
0
0
0
0
0
1
0
1
0
1
0
0
0
1
0
1
1
1
0
0
0
0

C4

0
1
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
0
1
0
0
1

1
0
0
0
0
1
1
0
0
0
1
0
0
1
0
1
1
1
0
1
0
0
1

C5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0

C6

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C7

0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
1
1
1

1
1
1
1
0
1
1
0
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1

C8

0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
1
1
0
0
0
1
0
1
1
0
0
1
0
1
0
0

C9

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

C10

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
1
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

Coupon

N
N
A
N
N
A
N
N
B
A
N
N
N
N
N
N
N
N
N
A
N
N
N
N
N

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
A
N

ID

97006
97025
97032
97051
97054
97061
97068
97082
97093
97113
97128
97143
97178
97191
97204
97207
94101
94116
94118
94126
94129
94140
94143
94149

83151
83159
83162
83172
83185
83197
83203
83224
83229
83233
83235
83245
83259
83264
83268
83276
83281
83285
83298
83315
83337
83347

. . .

Fig. 18.2: A few samples from the DMC 2007 training data.

C11

0

0

0

C12

0

0

0

C13

0

0

0

C14

0

0

0

C15

1

1

1

C16

0

0

0

C17

0

0

0

C18

0

0

0

C19

0

0

0

C20

0

0

0

C1

0

0

0

C2

0

0

0

C3

0

0

0

C4

0

0

0

C5

0

0

0

C6

0

0

0

C7

0

0

0

C8

1

1

1

C9

0

0

0

C10

0

0

0

Coupon

N

A

B

ID

97054

94698

96366

......

......

......

Fig. 18.3: DMC 2007 sample data – same features but different classes.

18.1 Data-Mining-Cup 305

there is some degree of fuzzyness and noise, and clusters belonging to different
classes overlap and contain each other. Since the classes cannot be separated
by hyper-planes in a straightforward manner, the application of neural net-
works and support vector machines becomes difficult. Furthermore, the values
of the features take on only four different values and are zero to 83.7%, as
illustrated in Table 18.1. In general, such a small number of possible feature

Table 18.1: Feature-values in the 2007 DMC training sets.

value number of ocurences

0 837′119
1 161′936
2 924
3 21

values makes it hard to apply methods that are based on distances or aver-
ages. Stefan, Martin, and Christian had already come to this conclusion when
we met.

At least one positive fact can easily be found by eyesight when inspecting
the training data: the columns C6, C14, and C20, marked gray in Figure 18.2,
are most probably insignificant since they are almost always zero and hence,
can be excluded from further analysis. The same goes for the first column,
the customer ID, by common sense.

The Solution Approach: Classifier Systems

From the initial data analysis, we can reduce the space of values a feature
may take on to 0, 1, and >1. This limited, discrete range is especially suited
for learning classifier systems (LCS) discussed in Chapter 7 on page 211.

Since we already know the target function, P (C), we do not need the
learning part of the LCS. Instead, our idea was to use the profit P (C) defined
in Equation 18.1 directly as objective function for a genetic algorithm.

Very much like in the Pitt-approach [708, 851, 707] in LCS, the genetic
algorithm would base on a population of classifier systems. Such a classifier
system is a list of rules (the single classifiers). A rule contains a classification
part and one condition for each feature in the input data. We used a two bit
alphabet for the conditions, allowing us to encode the four different conditions
per feature listed in Table 18.2. The three different classes can be represented
using two additional bits, where 00 and 11 stands for A, 01 means B, and
10 corresponds to N. We leave three insignificant features away, so a rule is
in total 17 ∗ 2 + 2 = 36 bits small. This means that we need less memory for
a classifier system with 17 rules than for 10 double precision floating point
numbers, as used by a neural network, for example.

306 18 Contests

Table 18.2: Feature conditions in the rules.

condition condition corresponding feature value
(in genotype) (in phenotype)

00 0 must be 0
01 1 must be ≥ 1
10 2 must be > 1
11 3 do not care (i. e. any value is ok)

When a feature is to be classified, the rules of a classifier system are ap-
plied step by step. A rule fits to a given data sample if none of its conditions
is violated by a corresponding sample feature. As soon as such a rule is found,
the input is assigned to the class identified by the classification part of the
rule. This stepwise interpretation creates a default hierarchy that allows clas-
sifications to include each other: a more specific rule (which is checked before
the more general one) can represent a subset of features which is subsumed
by a rule which is evaluated later. If no rule in the classifier systems fits to a
data sample, N is returned per default since misclassifying an A or B as an
N at least does not introduce a penalty in P (C) according to Equation 18.1.

Since the input data is noisy, it turned out to be a good idea to introduce
some fuzzyness in our classifiers too by modifying this default rule. During
the classification process, we remember the rule which was violated by the
least features. In the case that no rule fits perfectly, we check if the number
of these misfits is less than one fifth of the features, in this case 17

5 ≈ 3. If
so, we consider it as a match and classify the input according to the rules
classification part. Otherwise, the original default rule is applied and N is
returned. Figure 18.4 outlines the relation of the genotype and phenotype of
such a fuzzy classifier system. It shows a classifier system consisting of four
rules that has been a real result of the genetic algorithm. In this graphic we
also apply it to the second sample of the dataset that is to be classified. As one
can easily see, none of the four rules matches fully – which is strangely almost
always the case for classifier systems that sprung of the artificial evolution.
The data sample however violates only three conditions of the second rule and
hence, stays exactly at the 1

5 -threshold. Since no other rule in the classifier
system has less misfit conditions, the result of this classification process will
be A.

Analysis of the Evolutionary Process

As already discussed in the previous section, we want to evolve the classifier
systems directly. Therefore we apply two objective functions:

f1(C) = −P (C) (18.2)

f2(C) = max {|C|, 3} (18.3)

18.1 Data-Mining-Cup 307

ID C11

0
0
0
0
0

C12

0
1
0
0
0

C13

0
1
0
0
0

C14

0
0
0
0
0
0

C15

1
0
0
1
1
0

C16

0
0
0
0
0
0

C17

0
0
0
0
0
1

C18

0
0
0
0
0
0

C19

0
0
0
0
0
0

C20

0
0
0
0
0
0

C1

0
0
0
0

C2

0
0
0
0

C3

1
0
0

C4

1
1
0

C5

0
0
0

C6

0
0
0
0

C7

0
0
0
0

C8

0
0
0
0

C9

0
0
0
0

C10

1
0
0
0

82583
82628
82638
82653
97054

Coupon

?
?
?
?
?

0 3 3 3 3 A3 3 1 0 3 3

0 3 0 3 3 3 A3 3 3 0 0 0 0 0

1 1 3 0 3 B3 0 3 0 3 3 3 0

3 3 3 3 3 0 A3 3 1 3 3

phenotype: classifier system
single classifier (rule) condition classification

00 00 11 11 01 01 11 1101 11 11 01 00 01 11 11 10

00 10 10 11 00 11 11 1111 10 11 11 00 00 00 00 00

11 00 11 11 11 01 11 0011 11 01 01 01 11 01 11 01

01 01 01 01 11 01 00 1111 01 00 11 00 11 11 11 00

11

00

00

01

genotype: variable-length bit string

1 1 2 1 1

2

0

2 2

1 1 1 1

1 1 1 1 0 1

pr
oc

es
si

n
g

or
de

r

violated condition The second rule wins since it has only 3 violated conditions.
(and 3 is the allowed maximum for the default rule)

Þ

Fig. 18.4: An example classifier for the 2007 DMC.

Here f1 represents the (negated) profit gained with a classifier system C and
f2(C) is the number of rules in C (cut-off at a size of at 3). Both functions
are subject to minimization. Figure 18.5 illustrates the course of the classifier
system evolution. Here we have applied a simple elitist genetic algorithm with
a population size of 10240 individuals. We can see a logarithmic growth of the
profit with the generations as well as with the number of rules in the classifier
systems. A profit of 8800 for the 50000 data samples has been reached. Ex-
periments with 10000 datasets held back and an evolution on the remaining
40000 samples indicated that the evolved rule sets generalize sufficiently well.
The cause for the generalization of the results is the second, non-functional
objective function which puts pressure into the direction of smaller classifier
systems and the modified default rule which allows noisy input data. The
result of the multi-objective optimization process is the Pareto-optimal set. It
comprises all solution candidates for which no other individual exists that is
better in at least one objective value and not worse in any other. Figure 18.6
displays some classifier systems which are members of this set after generation
1000. C1 is the smallest non-dominated classifier system. It consists of three
rules which lead to a profit of 7222. C2, with one additional rule, reaches 7403.
The 31-rule classifier system C3 provides a gain of 8748 to which the system
with the highest profit evolved, C4, adds only 45 to a total of 8793 with a
trade-off of 18 additional rules (49 in total).

308 18 Contests

0 200 400 600 800

10

20

30

40

50

60

1000

2000

3000

4000

5000

6000

7000

8000

Profit P(C)

Number of rules
in classifier system C

Generation

1000

Fig. 18.5: The course of the classifier system evolution.

As shown in Table 18.1 on page 305, most feature values are 0 or 1, there
are only very few 2 and 3-valued features. In order to find out how differ-
ent treatment of those will influence the performance of the classifiers and
of the evolutionary process, we slightly modified the condition semantics in
Table 18.3 by changing the meaning of rule 2 from > 1 to ≤ 1 (compare
with Table 18.2 on page 306).

Table 18.3: Different feature conditions in the rules.

condition condition corresponding feature value
(in genotype) (in phenotype)

00 0 must be 0
01 1 must be ≥ 1
10 2 must be ≤ 1
11 3 do not care (i. e. any value is ok)

18.1 Data-Mining-Cup 309

C1

31333333011130233 B
00000000000200022 A
33111333330332130 A

C3

03331333011130231 B
30111233133033133 A
31133103011313123 B
02311333332332333 A
33011103011310123 B
10300321012202233 B
10023302313300100 N
13133032333113230 A
03213300330031031 N
03020000013303113 N
13331332003110200 N
23213331131003032 A
11000330203002300 N
03300220010030331 N
33113233330032133 A
31330333011330123 B
00203301133033010 N
01201323030333330 N
30223313301003001 B
30131230133013133 A
00113010002133100 B
30033000311103200 B
11121311103310003 A
11313132101000310 B
13312102313010013 A
31100222331222302 N
01333333011130230 B
31113333100312133 A
21313101111013100 B
00000000030200022 A
33111333330331133 A

31333333011130233 B
01201333030333310 N
00000000000200022 A
33111333330332133 A

C2

03331333011130231 B
30111233133033133 A
31133103011313123 B
02311333332332333 A
33011103011310123 B
10023302313300100 N
13133032333113230 A
02232331022331121 B
11023300332213301 A
02311333332332333 A
03213300330031031 N
03020000013303113 N
13331332003110200 N
13331332003110200 N
03300220010030331 N
23213331131003032 A
03300220010000331 N
21130320011021302 A
33113233330032133 A
10023122212302322 A
11000330203002300 N
30210113033032112 N
11321310200313233 A
33113233330332133 A
31330333011330123 B
30223313301003002 B
00203301133033010 N
01201323030333330 N
30223313301003001 B
30131230133013133 A
00113010002133100 B
30033000311103200 B
11121311103310003 A
21133113001000202 B
11313132101000310 B
13312102313010013 A
01333333011130230 B
30223313301003002 B
31113333100312133 A
21313101111013100 B
11330302002121233 B
32021231303033130 A
00000000030200022 A
31133103011313123 B
13133032333113230 A
02311333332332333 A
21313101111013100 B
10030321130311103 A
33111330330332133 A

C4

ru
le

 p
ro

ce
ss

in
g

Fig. 18.6: Some Pareto-optimal individuals among the evolved classifier sys-
tems.

310 18 Contests

0 200 400 600 800

10

20

30

40

50

60

2000

3000

4000

5000

6000

7000

8000

1000

Profit P(C)

Number of rules
in classifier system C

Generation

Fig. 18.7: The course of the modified classifier system evolution.

The progress of the evolution depicted in Figure 18.7 exhibits no significant
difference to the first one illustrated in Figure 18.5. With the modified rule
semantics, the best classifier system evolved delivered a profit of 8666 by
utilizing 37 rules. This result is also not very much different from the original
version. Hence, the treatment of the features with the values 2 and 3 does
not seem to have much influence on the overall result. In the first approach,
rule-condition 2 used them as distinctive criterion. The new method treats
them the same as feature value 1, with slightly worse results.

Contest Results and Placement

A record number of 688 teams from 159 universities in 40 countries registered
for the 2007 DMC Contest, from which only 248 were finally able to hand in
results. The team of the RWTH Aachen won place one and two by scoring
7890 and 7832 points on the contest data set. Together with the team from
the Darmstadt University of Technology, ranked third, they occupy the first
eight placements.

Our team reached place 29 which is quite a good result considering that
none of its members had any prior experience in data mining.

18.1 Data-Mining-Cup 311

Retrospectively one can recognize that the winning gains are much lower
than those we have discussed in the previous experiments. They are, however,
results of the classification of a different data set – the profits in our experiment
are obtained from the training sets and not from the contest data. Although
our classifiers did generalize well in the initial tests, they seem to suffer from
some degree of overfitting. Furthermore, the systems discussed here are the
result of reproduced experiments and not the original contribution from the
students. The system with the highest profit that the students handed in also
had gains around 8600 on the training sets. With a hill climbing optimizer,
we squeezed out another 200, increasing, of course, the risk of additional
overfitting. In the challenge, the best scored score of our team, a total profit
of 7453 (only 5.5% less than the winning team). This classifier system was
however grown with a much smaller population (4096) than in the experiments
here, due to time restrictions.

Remarkably we did not achieve the best result with the best single classifier
system evolved, but with a primitive combination of this system with another
one: If both classifier systems delivered the same result for a record, this
result was used. Otherwise, N was returned, which at least would not lead to
additional costs (as follows from Equation 18.1 on page 303).

Conclusion

In order to solve the 2007 Data-Mining-Cup contest we exercised a struc-
tured approach. After reviewing the data samples provided for the challenge,
we have adapted the idea of classifier systems to the special needs of the com-
petition. As a straightforward way of obtaining such systems, we have chosen
a genetic algorithm with two objective functions. The first one maximized the
utility of the classifiers by maximizing the profit function provided by the con-
test rules. The section objective function minimized a non-functional criterion,
the number of rules in the classifiers. It was intended to restrict the amount
of overfitting and overspecialization. The bred classifier systems showed rea-
sonable good generalization properties on the test data sets separated from
the original data samples, but seem to be overfitted when comparing these
results with the profits gained in the contest. A conclusion is that it is hard
to prevent overfitting in an evolution based on limited sample data – the
best classifier system obtained will possibly be overfitted. In the challenge,
the combination of two classifiers yielded the best results. Such combinations
of multiple, independent systems will probably perform better than each of
them alone.

In further projects, especially the last two conclusions drawn should be
considered. Although we used a very simple way to combine our classifier
systems for the contest, it still provided an advantage.

A classifier system in principle is nothing more but an estimator6. There
exist many sophisticated methods of combining different estimators in order

6 See our discussion on estimation theory in Section 35.6 on page 549.

312 18 Contests

to achieve better results [1032]. The original version of such “boosting al-
gorithms”, developed by Schapire [1033], theoretically allows to achieve an
arbitrarily low error rate, requiring basic estimators with a performance only
slightly better than random guessing on any input distribution. The AdaBoost
algorithm [1034] additionally takes into consideration the error rates of the
estimators. With this approach, even classifiers of different architectures like
a neural network and a learning classifier system can be combined. Since the
classification task in the challenge required non-fuzzy answers in form of def-
inite set memberships, the usage of weighted majority voting [1035, 1036], as
already applied in a very primitive manner, would probably have been the
best approach.

18.2 Web Service Challenge

18.2.1 Introduction

Web Service Composition

The necessity for fast service composition systems and the overall idea of the
WS-Challenge is directly connected with the emergence of Service-Oriented
Architectures (SOA). Today, companies rely on IT-architectures which are as
flexible as their business strategy. The software of an enterprise must be able to
adapt to changes in the business processes, regarding for instance accounting,
billing, the workflows, and even in the office software. If external vendors,
suppliers, or customers change, the interfaces to their IT systems must newly
be created or modified too. Hence, the architecture of corporate software has
to be built with the anticipation of changes and updates [1037, 1038, 1039].

A SOA is the ideal architecture for such systems [1040, 1041]. Service
oriented architectures allow us to modularize business logic and implement
in the form of services accessible in a network. Services are building blocks
for service processes which represent the workflows of an enterprise. Services
can be added, removed, and updated at runtime without interfering with the
ongoing business. A SOA can be seen as a complex system with manifold
services as well as n:m dependencies between services and applications:

• An application may need various service functionalities.
• Different applications may need the same service functionality.
• A certain functionality may be provided by multiple services.

Business now depends on the availability of service functionality, which
is ensured by service management. Manual service management however be-
comes more and more cumbersome and ineffective with a rising number of
relations between services and applications. Here, self-organization promises
a solution for finding services that offer a specific functionality automatically.

Self-organizing approaches need a combination of syntactic and semantic
service descriptions in order to decide whether a service provides a wanted

18.2 Web Service Challenge 313

functionality or not. Common syntactic definitions like WSDL [1042] specify
the order and types of service parameters and return values. Semantic interface
description languages like OWL-S [1043] or WSMO [1044, 1045] annotate
these parameters with a meaning. Where WSDL can be used to define a
parameter myisbn of the type String, with OWL-S we can define that myisbn

expects a String which actually contains an ISBN. Via an taxonomy we can
now deduce that values which are annotated as either ISBN-10 or ISBN-137 can
be passed to this service.

A wanted functionality is defined by a set of required output and available
input parameters. A service offers this functionality if it can be executed with
these available input parameters and its return values contain the needed
output values. In order to find such services, the semantic concepts of their
parameters are matched rather than their syntactic data types.

Many service management approaches employ semantic service discovery
[1046, 1047, 1048, 1049, 1044, 1045, 1050, 1051]. Still there is a substantial lack
of research on algorithms and system design for fast response service discovery.
This is especially the case in service composition where service functionality
is not necessarily provided by a single service. Instead, combinations of ser-
vices (compositions) are discovered. The sequential execution of these services
provides the requested functionality.

The Web Service Challenge

Since 2005 the annual Web Service Challenge8 (WS-Challenge, WSC) provides
a platform for researchers in the area of web service composition to compare
their systems and exchange experiences [1052, 1053, 1054]. It is co-located
with the IEEE Conference on Electronic Commerce (CEC) and the IEEE
International Conference on e-Technology, e-Commerce, and e-Service (EEE).

Each team participating in this challenge has to provide a software sys-
tem. A jury then uses these systems to solve different, complicated web service
discovery and composition tasks. The major evaluation criterion for the com-
posers is the speed with which the problems are solved. Another criterion is
the completeness of the solution. Additionally, there is also a prize for the
best overall system architecture.

18.2.2 The 2006/2007 Semantic Challenge

We have participated both in the Web Service 2006 and 2007 challenges [1055,
1056]. Here we present the system, algorithms and data structures for semantic
web service composition that we applied in these challenges. A slightly more
thorough discussion of this topic can be found in [1057].

7 There are two formats for International Standard Book Numbers (ISBNs), ISBN-
10 and ISBN-13, see also http://en.wikipedia.org/wiki/Isbn [accessed 2007-09-02].

8 see http://www.ws-challenge.org/ [accessed 2007-09-02]

http://en.wikipedia.org/wiki/Isbn
http://www.ws-challenge.org/

314 18 Contests

Fig. 18.8: The logo of the Web Service Challenge.

The tasks of the 2006 Web Service Challenge in San Francisco, USA and
the 2007 WSC in Tokyo, Japan are quite similar and only deviate in the way
in which the solutions have to be provided by the software systems. Hence, we
will discuss the two challenges together in this single section. Furthermore, we
only consider the semantic challenges, since they are more demanding than
mere syntactic matching.

Semantic Service Composition

In order to discuss the idea of semantic service composition properly, we need
some prerequisites. Therefore, let us initially define the set of all semantic
concepts M. All concepts that exist in the knowledge base are members of M

and can be represented as nodes in a wood of taxonomy trees.

Definition 79 (subsumes). Two concepts A,B ∈ M can be related in
one of four possible ways. We define the predicate subsumes : (M, M) 7→
{true, false} to express this relation as follows:

1. subsumes(A,B) holds if and only if A is a generalization of B (B is then
a specialization of A).

2. subsumes(B,A) holds if and only if A is a specialization of B (B is then
a generalization of A).

3. If neither subsumes(A,B) nor subsumes(B,A) holds, A and B are not
related to each other.

4. subsumes(A,B) and subsumes(B,A) is true if and only if A = B.

18.2 Web Service Challenge 315

The subsumes relation is transitive, and so are generalization and spe-
cialization: If A is a generalization of B (subsumes(A,B)) and B is a
generalization of C (subsumes(B,C)), then A is also a generalization of
C (subsumes(A,C)). The same goes vice versa for specialization, here we
can define that if A is a specialization of B (subsumes(B,A)) and A is
also a specialization of C (subsumes(C,A)), then either subsumes(B,C) or
subsumes(C,B) (or both) must hold,i. e. either C is a specialization of B, or
B is a specialization of C, or B = C.

If a parameter x of a service is annotated with A and a value y anno-
tated with B is available, we can set x = y and call the service only if
subsumes(A,B) holds (contravariance). This means that x expects less or
equal information than given in y. The hierarchy defined here is pretty much
the same as in object-oriented programming languages. If we imagine A and B

to be classes in Java, subsumes(A,B) can be considered to be equivalent to
the expression A.class.isAssignableFrom(B.class). If it evaluates to true, a
value y of type B can be assigned to a variable x of type A since y instanceof A

will hold.
From the viewpoint of a composition algorithm, there is no need for a dis-

tinction between parameters and the annotated concepts. The set S contains
all the services s known to the service registry. Each service s ∈ S has a set
of required input concepts s.in ⊆ M and a set of output concepts s.out ⊆ M

which it will deliver on return. We can trigger a service if we can provide all
of its input parameters. After its completion, the service will return a set of
output parameters as defined in its interface description.

Similarly, a composition request R always consists of a set of available
input concepts R.in ⊆M and a set of requested output concepts R.out ⊆M.

A composition algorithm discovers a (partially9) ordered set of n services
S = {s1, s2, . . . , sn} : s1, . . . , sn ∈ S that can successively be executed with
the accumulated input parameters so that output parameters produced are
treated as available input parameters in the next execution step. S can be ex-
ecuted with the available input parameters defined in R.in. If it is executed,
it produces outputs that are either annotated with exactly the requested con-
cepts R.out or with more specific ones (covariance). This is the case if they
can be brought into an order (s1, s2, . . . , sn) in a way that

isGoal(S)⇔ ∀A ∈ s1.in ∃B ∈ R.in : subsumes(A,B) ∧
∀A ∈ si.in, i ∈ {2..n} ∃B ∈ R.in ∪ si−1.out ∪ . . . ∪ s1.out : subsumes(A,B) ∧

∀A ∈ R.out ∃B ∈ s1.out ∪ . . . ∪ sn.out : subsumes(A,B)(18.4)

assuming that R.in∩R.out = ∅. With Equation 18.4 we have defined the goal
predicate which we can use in any form of informed or uninformed state space
search (see Chapter 15 on page 251).

9 The set S is only partially ordered since, in principle, some services may be
executed in parallel if they do not depend on each other.

316 18 Contests

The Problem Definition

In the 2006 and 2007 WSC, the composition software is provided with three
parameters:

1. A concept taxonomy to be loaded into the knowledge base of the system.
This taxonomy was stored in a file of the XML Schema format [1058].

2. A directory containing the specifications of the service to be loaded into
the service registry. For each service, there was a single file given in WSDL
format [1042].

3. A query file containing multiple service composition requests R1, R2, . . .
in a made-up XML [1059] format.

These formats are very common and allow the contestants to apply the
solutions in real world applications later, or to customize their already existing
applications so they can be used as contribution in the competition.

The expected result to be returned by the software was also a stream of
data in a proprietary XML dialect containing all possible service compositions
that solved the queries according to Equation 18.4. It was possible that a re-
quest Ri was resolved by multiple service compositions. In the 2006 challenge,
the communication between the jury and the programs was via command line
or other interfaces provided by the software, in 2007 a web service interface
was obligatory.

We will not discuss the data formats used in this challenge any further
since they are replaceable and do not contribute to the way the composition
queries are solved.

Remarkably however are the restrictions in the challenge tasks:

• There exists at least one solution for each query.
• The services in the solutions are represented as a sequence of sets. Each

set contains equivalent services. Executing one service from each set forms
a valid composition S. This representation does not allow for any notation
of parallelization.

These restrictions sure will be removed in future WSCs.
Before we elaborate on the solution itself, let us define the operation

getPromisingServices which obtains the set of all services s ∈ S that pro-
duce an output parameter annotated with the concept A (regardless of their
inputs).

∀s ∈ getPromisingServices(A) ∃B ∈ s.out : subsumes(A,B) (18.5)

The composition system that we have applied in the 2007 WSC consists of
three types of composition algorithms. The search space that they investigate
is basically the set of all possible permutations of all possible sets of services.
The power set P(S) includes all possible subsets of S. X̃ is then the set of all
possible permutations of the elements in such subsets, in other words X̃ ⊆
{∀perm(ξ) : ξ ∈ P(S)}.

18.2 Web Service Challenge 317

An (Uninformed) Algorithm Based on IDDFS

The first solution approach, Algorithm 18.1, is an iterative deepening depth-
first search (IDDFS) algorithm, as discussed in Section 15.2.4 on page 255. It
is maintained in our system since it was part of the award winning solution of
the WSC’06. It is only fast in finding solutions for small service repositories
but optimal if the problem requires an exhaustive search. Thus, it may be used
by the strategic planner in conjunction with another algorithm that runs in
parallel if the size of the repository is reasonable small.

Algorithm 18.1 (webServiceCompositionIDDFS) builds a valid web ser-
vice composition starting from the back. In each recursion, its internal helper
method dl dfs wsc tests all elements A of the set wanted of yet unknown pa-
rameters. It then iterates over the set of all services s that can provide A. For
every single s, wanted is recomputed. If it becomes the empty set ∅, we have
found a valid composition and can return it. If dl dfs wsc is not able to find a
solution within the maximum depth limit (which denotes the maximum num-
ber of services in the composition), it returns ∅. The loop in Algorithm 18.1
iteratively invokes dl dfs wsc by increasing the depth limit step by step, until
a valid solution is found.

An (Informed) Heuristic Approach

The IDDFS-algorithm just discussed performs an uninformed search in the
space of possible service compositions. As we know from Section 15.3 on
page 258, we can increase the search speed by defining good heuristics and
using domain information. Such information can easily be derived in this re-
search area. Therefore, we will again need some further definitions. Notice
that the set functions specified in the following does not need to be evalu-
ated every time they are queried, since we can maintain their information as
meta-data along with the composition and thus save runtime.

Let us first define the set of unsatisfied parameters wanted(S) ⊆ M in a
candidate composition S as

A ∈ wanted(S)⇔ (∃ s ∈ S : A ∈ s.in ∨A ∈ R.out)∧
A 6∈ R.in

⋃|S|
i=1 si . . . (si ∈ S)

(18.6)

In other words, a wanted parameter is either an output concept of the com-
position query or an input concept of any of the services in the composition
candidate that has not been satisfied by neither an input parameter of the
query nor by an output parameter of any service. Here we assume that the
concept A wanted by service s is not also an output parameter of s. This is
done for simplification purposes – the implementation has to keep track of
this possibility.

The set of eliminated parameters of a service composition contains all
input parameters of the services of the composition and queried output pa-
rameters of the composition request that already have been satisfied.

318 18 Contests

Algorithm 18.1: S = webServiceCompositionIDDFS(R)

Input: R the composition request
Data: maxDepth, depth the maximum and the current search depth
Data: in, out current parameter sets
Data: composition,comp the current compositions
Data: A,B,C,D,E some concepts
Output: S a valid service composition solving R

begin1

maxDepth←− 22

repeat3

S ←− dl dfs wsc(R.in, R.out, ∅, 1)4

maxDepth←− maxDepth + 15

until S 6= ∅6

end7

dl dfs wsc(in, out, composition, depth)8

begin9

foreach A ∈ out do10

foreach s ∈ getPromisingServices(A) do11

wanted←− out12

foreach B ∈ wanted do13

if ∃ C ∈ s.out : subsumes(B, C) then14

wanted←− wanted \ {B}
foreach D ∈ s.in do15

if 6 ∃ E ∈ in : subsumes(D, E) then16

wanted←− wanted ∪ {D}
comp←− s⊕ composition17

if wanted = ∅ then18

return comp19

else20

if depth < maxDepth then21

comp←− dl dfs wsc(in, wanted, comp, depth + 1)
if comp 6= ∅ then return comp22

return ∅23

end24

eliminated(S) =

R.out ∪

|S|
⋃

i=1

si.in

 \ wanted(S) (18.7)

Finally, the set of known concepts is the union of the input parameters
defined in the composition request and the output parameters of all services
in the composition candidate.

18.2 Web Service Challenge 319

known(S) = R.in ∪
|S|
⋃

i=1

si.out (18.8)

Instead of using these sets to build a heuristic, we can derive a compara-
tor function cwsc directly (see Section 15.3.1 on page 259). This comparator
function has the advantage that we also can apply randomized optimization
methods like evolutionary algorithms based on it.

Algorithm 18.2: r = cwsc(S1, S2)

Input: S1, S2 ∈ X̃ two composition candidates
Data: i1, i2, e1, e2 some variables
Output: r ∈ Z indicating whether S1 (r < 0) or S2 (r > 0) should be

expanded next
begin1

i1 ←− |wanted(S1)|2

i2 ←− |wanted(S2)|3

if i1 ≤ 0 then4

if i2 ≤ 0 then return |S1| − |S2|5

else return −16

if i2 ≤ 0 then return 17

e1 ←− |eliminated(S1)|8

e2 ←− |eliminated(S2)|9

if e1 > e2 then return −110

else11

if e1 < e2 then return 112

if i1 > i2 then return −113

else14

if i1 < i2 then return 115

if |S1| 6= |S2| then return |S1| − |S2|16

return |known(S1)| − |known(S2)|17

end18

Algorithm 18.2 defines cwsc which compares two composition candidates
S1 and S2. This function can be used by a greedy search algorithm in order to
decide which of the two possible solutions is more prospective. cwsc will return
a negative value if S1 seems to be closer to a solution than S2, a positive value
if S2 looks as if it should be examined before S1, and zero if both seem to be
equally good.

The first thing it does is comparing the number of wanted parameters. If
a composition has no such unsatisfied concepts, it is a valid solution. If both,
S1 and S2 are valid, the solution involving fewer services wins. If only one
of them is complete, it also wins. If the comparator has not returned a value
yet, it means that both candidates still have wanted concepts. For us, it was

320 18 Contests

surprising that it is better to use the number of already satisfied concepts
as next comparison criterion instead of the number of remaining unsatisfied
concepts. However, if we do so, the search algorithms perform significantly
faster. Only if both composition candidates have the same number of satisfied
parameters, we again compare the wanted concepts. If their numbers are also
equal, we prefer the shorter composition candidate. If the compositions are
even of the same length, we finally base the decision of the total number of
known concepts.

The form of this interesting comparator function is maybe caused by the
special requirements of the WSC data. Nevertheless, it shows which sorts of
information about a composition can be incorporated into the search.

The interesting thing that we experienced in our experiments is that it is
not a good idea to decide on the utility of a solution candidate with

In order to apply pure greedy search, we still need to specify the expand
operator computing the set of possible offspring that can be derived from a
given individual. In Algorithm 18.1, we have realized it implicitly. Addition-
ally, we can also define the isGoal predicate on basis of the wanted function:

expand(S) ≡ s⊕ S ∀ s,A : s ∈ getPromisingServices(A)∧
A ∈ wanted(S)

(18.9)

isGoal(S) ≡ wanted(S) = ∅ (18.10)

With these definitions, we can now employ plain greedy search as defined
in Algorithm 15.5 on page 259.

A Genetic Approach

In order to use a genetic algorithm to breed web service compositions, we first
need to define a proper genome able to represent service sequences. A straight-
forward yet efficient way is to use (variable-length) strings of service identifiers
which can be processed by standard genetic algorithms (see Section 3.4.2 on
page 126). Because of this well-known string form, we also could apply stan-
dard creation, mutation, and crossover operators.

However, by specifying a specialized mutation operation we can make the
search more efficient. This new operation either deletes the first service in S
(via mutate1) or adds a promising service to S (as done in mutate2). Using
the adjustable variable σ as a threshold we can tell the search whether it
should prefer growing or shrinking the solution candidates.

mutate1(S) ≡
{
{s2, s3, . . . , s|S|} if |S| > 1
S otherwise

(18.11)

mutate2(S) ≡ s⊕ S : s ∈ getPromisingServices(A)∧
A ∈ wanted(S)

(18.12)

mutate(S) ≡
{

mutate1(S) if randomu() > σ
mutate2(S) otherwise

(18.13)

18.2 Web Service Challenge 321

A new create operation for building the initial random configurations can
be defined as a sequence of mutate2 invocations of random length. Initially,
mutate2(∅) will return a composition consisting of a single service that satisfies
at least one parameter in R.out. We iteratively apply mutate2 to its previous
result a random number of times in order to create a new individual.

The Comparator Function and Pareto Optimization

As driving force for the evolutionary process we can reuse the comparator
function cwsc as specified as for the greedy search in Algorithm 18.2 on
page 319. It combines multiple objectives, putting pressure towards the di-
rection of

• compositions which are complete,
• small compositions,
• compositions that resolve many unknown parameters, and
• compositions that provide many parameters.

On the other hand, we could as well separate these single aspects into
different objective functions and apply direct Pareto optimization. This has
the drawback that it spreads the pressure of the optimization process over the
complete Pareto frontier10.

w
an

te
d(

S
)

ge
ner

at
io

ns generation 0

generation 5

generation 20

generation 50

composition size (|S|)

Pareto
frontiers shifting
during the Evolution

correct compositions (i.e. wanted(S) 0)=

Fig. 18.9: A sketch of the Pareto front in the genetic composition algorithm.

Figure 18.9 visualizes the multi-objective optimization problem “web ser-
vice composition” by sketching a characteristic example for Pareto frontiers of
several generations of an evolutionary algorithm. We concentrate on the two

10 See Section 1.3.4 on page 19 for a detailed discussion on the drawbacks of pure
Pareto optimization.

322 18 Contests

dimensions composition size and number of wanted (unsatisfied) parameters.
Obviously, we need to find compositions which are correct, i. e. where the
latter objective is zero. On the other hand, an evolution guided only by this
objective can (and will) produce compositions containing additional, useless
invocations of services not related to the problem at all. The size objective is
thus also required.

In Figure 18.9, the first five or so generations are not able to produce good
compositions yet. We just can observe that longer compositions tend to pro-
vide more parameters (and have thus a lower number of wanted parameters).
In generation 20, the Pareto frontier is pushed farther forward and touches
the abscissa – the first correct solution is found. In the generations to come,
this solution is improved and useless service calls are successively removed,
so the composition size decreases. There will be a limit, illustrated as genera-
tion 50, where the shortest compositions for all possible values of wanted are
found. From now on, the Pareto front cannot progress any further and the
optimization process has come to a rest.

As you can see, pure Pareto optimization does not only seek for the best
correct solution but also looks for the best possible composition consisting of
only one service, for the best one with two service, with three services, and so
on. This spreading of the population of course slows down the progress into
the specific direction where wanted(S) decreases.

The comparator function cwsc has proven to be more efficient in focusing
the evolution on this part of the search space. The genetic algorithm based
on it is superior in performance and hence, is used in our experiments.

Experimental Results

In Table 18.4 we illustrate the times that the different algorithms introduced
in this section needed to perform composition tasks of different complexity11.
We have repeated the experiments multiple times on an off-the-shelf PC12 and
noted the mean values. The times themselves are not so important, rather are
the proportions and relations between them.

The IDDFS approach can only solve smaller problems and becomes in-
feasible very fast. When building simpler compositions though, it is about as
fast as the heuristic approach, which was clearly dominating in all categories.
A heuristic may be misleading and (although it didn’t happen in our experi-
ments) could lead to a very long computation time in the worst case. Thus we
decided to keep both, the IDDFS and the heuristic approach in our system
and run them in parallel on each task if sufficient CPUs are available.

11 The test sets used here are available at http://www.it-weise.de/documents/

files/BWG2007WSC_software.zip [accessed January 4, 2008]. Well, at least partly, I’ve
accidentally deleted set 12 and 13. Sorry.

12 2 GHz, Pentium IV single core with Hyper-Threading, 1 GiB RAM, Windows
XP, Java 1.6.0. 03-b05

http://www.it-weise.de/documents/files/BWG2007WSC_software.zip
http://www.it-weise.de/documents/files/BWG2007WSC_software.zip

18.2 Web Service Challenge 323

Table 18.4: Experimental results for the web service composers.

Test Depth of No. of No. of IDDFS Greedy GA
Solution Concepts Services (ms) (ms) (ms)

1 5 56210 1000 241 34 376
2 12 56210 1000 - 51 1011
3 10 58254 10000 - 46 1069
4 15 58254 2000 - 36 974
5 30 58254 4000 - 70 6870
6 40 58254 8000 - 63 24117
7 1 1590 118 ≤16 ≤16 290

8.1 2 15540 4480 ≤16 ≤16 164
8.2 2 15540 4480 ≤16 ≤16 164
8.3 2 15540 4480 ≤16 ≤16 164
8.4 2 15540 4480 ≤16 ≤16 234
8.5 3 15540 4480 ≤16 ≤16 224
8.6 3 15540 4480 ≤16 ≤16 297
8.7 4 15540 4480 18 24 283
8.8 3 15540 4480 ≤16 ≤16 229
8.9 2 15540 4480 ≤16 ≤16 167

11.1 8 10890 4000 - 31 625
11.3 2 10890 4000 - 21 167
11.5 4 10890 4000 22021 ≤16 281
12.1 5 43680 2000 200320 ≤16 500
12.3 7 43680 2000 99 31 375

13 6 43680 2000 250 32 422

The genetic algorithm (population site 1024) was able to resolve all com-
position requests correctly for all knowledge bases and all registry sizes. It was
able to build good solutions regardless how many services had to be involved
in a valid solution (solution depth). In spite of this correctness, it always was
a magnitude slower than the greedy search which provided the same level of
correctness.

If the compositions would become more complicated or involve quality
of service (QoS) aspects, it is not clear if these can be resolved with a sim-
ple heuristic. Then, the Genetic Algorithm could outperform greedy search
approaches.

Architectural Considerations

In 2007, we introduced a more refined version [1056] of our 2006 semantic
composition system [1055]. The architecture of this composer, as illustrated
in Figure 18.10, is designed in a very general way, making it not only a chal-
lenge contribution but also part of the ADDO web service brokering system
[1048, 1046, 1047]: In order to provide the functionality of the composition

324 18 Contests

algorithms to other software components, it was made accessible as a Web
Service shortly after WSC’06. The web service composer is available for any
system where semantic service discovery with the Ontology Web Language
for Services (OWL-S) [1043] or similar languages is used. Hence, this contest
application is indeed also a real-world application.

Service

Register

Knowledge

Base

Strategy

Planer

SAX-based

Output Writer

WSC’07 Composition

System

WSC’07 Challenge

Documents

Heuristic

Composer

Genetic

Algorithm

Composer

SAX-based

Input Parser

Web Service

Interface

(f)

OWL-S

Documents

Client

Application

(b)

(g)

(a1) (a2)

(c)

(d)

(e)

IDDFS
Composer

Fig. 18.10: The WSC 2007 Composition System of Bleul and Weise.

An application accesses the composition system by submitting a service
request (illustrated by (b)) through its Web Service Interface. It furthermore
provides the services descriptions and their semantic annotations. Therefore,
WSDL and XSD formatted files as used in the WSC challenge or OWL-S de-
scriptions have to be passed in ((a1) and (a2)). These documents are parsed
by a fast SAX-based Input Parser (c). The composition process itself is started
by the Strategy Planer (d). The Strategy Planer chooses an appropriate com-
position algorithm and instructs it with the composition challenge document
(e).

18.2 Web Service Challenge 325

The software modules containing the basic algorithms all have direct access
to the Knowledge Base and to the Service Register. Although every algorithm
and composition strategy is unique, they all work on the same data structures.
One or more composition algorithm modules solve the composition requests
and pass the solution to a SAX-based Output Writer, an XML document
generating module (f) faster than DOM serialization. Here it is also possible
to transform it to, for example, BPEL4WS [1060] descriptions. The result is
afterwards returned through the Web Service Interface (g).

One of the most important implementation details is the realization of
the operation getPromisingServices since it is used by all composition algo-
rithms in each iteration step. Therefore, we transparently internally merge the
knowledge base and the service registry. This step is described here because
it is very crucial for the overall system performance.

Service

Constructor(String,Concept[]..

getIn(): Concept[]

in: Concept[]

name: String

out: Concept[]

getOut(): Concept[]

Concept

Constructor(String)

getPromisingServices(): List

promisingServices: Service[]

name: String

specializations: Concept[]

generalization: Concept

subsumes(Concept)

KnowledgeBase

Constructor()

getConcept(String)

services: Service[]

concepts: Concept[]

getService(String)

Fig. 18.11: The Knowledge Base and Service Registry of our Composition
System.

A semantic concept is represented by an instance of the class Concept. Each
instance of Concept holds a list of services that directly produce a parameter
annotated with it as output. The method getPromisingServices(A) of Concept,
illustrated in Figure 18.11, additionally returns all the Services that provide a
specialization of the concept A as output. In order to determine this set, all the
specializations of the concept have to be traversed and their promising services
have to be accumulated. The crux of the routine is that this costly traversal
is only performed once per concept. Our experiments substantiated that the

326 18 Contests

resource memory, even for largest service repositories, is not a bottleneck.
Hence, getPromisingServices caches its results.

This caching is done in a way that is thread-safe on one hand and
does not need any synchronization on the other. Each instance X of Concept

holds an internal variable promisingServices which is initially null. If X

.getPromisingServices() is invoked, it first looks up if X.promisingServices

is null. If so, the list of promising services is computed, stored in X

.promisingServices, and returned. Otherwise, X.promisingServices is re-
turned directly. Since we do not synchronize this method, it may be possible
that the list is computed concurrently multiple times. Each of these com-
putations will produce the same result. Although all parallel invocations of
x.getPromisingServices() will return other lists, their content is the same.
The result of the computation finishing last will remain x.promisingServices

whereas the other lists will get lost and eventually be freed by the garbage col-
lector. Further calls to x.getPromisingServices() always will yield the same,
lastly stored, result. This way, we can perform caching which is very impor-
tant for the performance and spare costly synchronization while still granting
a maximum degree of parallelization.

Conclusions

In order to solve the 2006 and 2007 Web Service Challenges we utilized three
different approaches, an uninformed search, an informed search, and a ge-
netic algorithm. The uninformed search proofed generally unfeasible for large
service repositories. It can only provide a good performance if the resulting
compositions are very short.

However, in the domain of web service composition, the maximum number
of services in a composition is only limited by the number of services in the
repositories and cannot be approximated by any heuristic. Therefore, any
heuristic or meta-heuristic search cannot be better than the uninformed search
in the case that a request is sent to the composer which cannot be satisfied.
This is one reason why the uninformed approach was kept in our system, along
with its reliability for short compositions.

Superior performance for all test sets could be obtained by utilizing
problem-specific information encapsulated in a fine-tuned heuristic function
to guide a greedy search. This approach is more efficient than the other two
tested variants by a magnitude.

Genetic algorithms are much slower, but were also always able to pro-
vide correct results to all requests. To put it simple, the problem of semantic
composition as defined in the context of the WSC is not complicated enough
to fully unleash the potential of genetic algorithms. They cannot cope with
the highly efficient heuristic used in the greedy search. We anticipate how-
ever, that, especially in practical applications, additional requirements will
be imposed onto a service composition engine. Such requirements could in-
clude quality of service (QoS), the question for optimal parallelization, or the

18.2 Web Service Challenge 327

generation of complete BPEL [1061] processes. In this case, heuristic search
will most probably become insufficient but genetic algorithms and genetic
programming [11, 1062] will still be able to deliver good results.

In this report, we have discussed semantic composition in general way. The
algorithms introduced here are not limited to semantic web service compo-
sition. Other applications, like the composition of program modules are also
interesting. From general specifications what functionality is needed, a com-
piler could (in certain limits, of course) deduce the correct modules and code
to be linked, using the same methods we use for building service processes.

19

Real-World Applications

In this chapter we will explore real-world applications of global optimization
techniques. Some of the areas where global optimization algorithms can easily
be applied in a productive fashion, aiding scientists and engineers with their
work, are discussed here.

19.1 Symbolic Regression

In statistics, regression analysis examines the unknown relation ϕ :∈ Rm 7→∈
R of a dependent variable y ∈ R to specified independent variables x ∈ Rm.
Since ̟ is not known, the goal is to find a reasonable good approximation f⋆.

Definition 80 (Regression). Regression1 [1063, 1064, 1065, 1066] is a statis-
tic technique used to predict the value of a variable which is dependent one
or more independent variables. The result of the regression process is a func-
tion f⋆ : Rm 7→ R that relates the m independent variables (subsumed in the
vector x to one dependent variable y ≈ f⋆(x). The function f⋆ is the best
estimator chosen from a set F of candidate functions f : Rm 7→ R.

Regression is strongly related to the estimation theory outlined
in Section 35.6 on page 549. In most cases, like linear2 or nonlinear3 regres-
sion, the mathematical model of the candidate functions is not completely
free. Instead, we pick a specific one from an array of parametric functions by
finding the best values for the parameters.

Definition 81 (Symbolic Regression). Symbolic regression [11, 506, 507,
1067, 1068, 1069, 1070, 1071, 508] is the most general case of regression. It
is not limited to determining the optimal values for the set of parameters of

1 http://en.wikipedia.org/wiki/Regression_analysis [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Linear_regression [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Nonlinear_regression [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Nonlinear_regression

330 19 Real-World Applications

a certain array of functions. Instead, regression functions can be constructed
by combining elements of a set of mathematical expressions, variables and
constants.

19.1.1 Genetic Programming: Genome for Symbolic Regression

One of the most widespread methods to perform symbolic regression is to
apply genetic programming. Here, the candidate functions are constructed
and refined by an evolutionary process. In the following we will discuss the
genotypes (which are also the phenotypes) of the evolution as well as the
objective functions that drive it.

As illustrated in Figure 19.1, the solution candidates, i. e. the candidate
functions, are represented by a tree of mathematical expressions where the
leaf nodes are either constants or the fields of the independent variable vector
x.

+

* cos

/3 *

x 1 xx

3*x*x+cos (1
x (

mathematical expression genetic programming tree representation

Fig. 19.1: An example genotype of symbolic regression of with x = x ∈ R1.

The set F of functions f that can possible be evolved is limited by the set
of expressions E available to the evolutionary process.

E = {+,−, ∗, /, exp, ln, sin, cos, max, min, . . .} (19.1)

Another aspect that influences the possible results of the symbolic regres-
sion is the concept of constants. In general, constants are not really needed
since they can be constructed indirectly via expressions. The constant 2.5 for
example equals the expression x

x+x
+ ln x∗x

x
. The evolution of such artificial

constants however takes rather long.
Koza has therefore introduced the concept of ephemeral random constants

[11].

Definition 82 (Ephemeral Random Constants). If a new individual is
created and a leaf in its expression-tree is chosen to be a constant, a random
number is drawn uniformly distributed from a reasonable interval. For each

19.1 Symbolic Regression 331

new constant leaf, a new constant is created independently. The values of
the constant leafs remain unchanged and are moved around and copied by
crossover operations.

According to Koza’s idea ephemeral random constants remain unchanged
during the evolutionary process. In our work, it has proven to be practicable
to extend his approach by providing a mutation operation that changes the
value c of a constant leaf of an individual. A good policy for doing so is by
replacing the old constant value cold by a new one cnew which is a normally
distributed random number with the expected value cold (see Definition 177
on page 566):

cnew = randomn(cold, σ
2) (19.2)

σ2 = e−randomu(0,10) ∗ |cold| (19.3)

Notice that the other reproduction operators for tree genomes have been
discussed in detail in Section 4.3 on page 145.

19.1.2 Sample Data, Quality, and Estimation Theory

In the following elaborations, we will reuse some terms that we have applied
in our discussion on likelihood in Section 35.6.1 on page 552.

Again, we are given a finite set of sample data S containing n pairs of
(xi, yi) where the vectors xi ∈ Rm are known inputs to an unknown function
ϕ : Rm 7→ R and the scalars yi are its observed outputs (possible contaminated
with measurement errors ηi, see Equation 35.209 on page 552). Furthermore,
we can access a (possible infinite large) set F of functions f : Rm 7→ R ∈ F
which are possible estimators of ϕ. For the inputs xi, the results of these
functions f deviate by the estimation error (see Definition 165 on page 551)
from the yi.

yi = ϕ(xi) + ηi ∀0 < i ≤ n (19.4)

yi = f(xi) + ǫi(f) ∀f ∈ F, 0 < i ≤ n (19.5)

In order to guide the evolution of estimators (in other words, for driving
the regression process), we need an objective function that furthers solution
candidates that represent the sample data S and thus, resemble the function
ϕ, closely. Let us call this “driving force” quality function.

Definition 83 (Quality Function). The quality function q(f, S) defines the
quality of the approximation of ϕ by a function f . The smaller the value of
the quality function is, the more precisely is the approximation of ϕ by f in
the context of the sample data S.

332 19 Real-World Applications

Under the conditions that the measurement errors ηi are uncorrelated
and are all normally distributed with an expected value of zero and the
same variance (see Equation 35.210, Equation 35.211, and Equation 35.212 on
page 552), we have shown in Section 35.6.1 that the best estimators minimize
the mean square error MSE (see Equation 35.226 on page 555, Definition 172
on page 556 and Definition 168 on page 551).

Thus, if the source of the values yi complies at least in a simplified, the-
oretical manner with these conditions or even is a real measurement process,
the square error is the quality function to choose.

qσ 6=0(f, S) =

n=|S|
∑

i=1

(yi − f(xi))
2 (19.6)

While this is normally true, there is one exception to the rule. If the val-
ues yi are no measurements but direct results from ϕ. A common example for
this situation is if we apply symbolic regression in order to discover functional
identities [631, 670, 11] (see also Section 19.1.3). Different from normal regres-
sion analysis or estimation, we here know ϕ exactly and want to find another
function f⋆ that is another, equivalent form of ϕ. Therefore, we will use ϕ to
create sample data set S beforehand, carefully selecting characteristic points
xi.

Then, the measurement errors ηi all become zero. If we would still regard
them as normally distributed, their variance σ2 would be zero.

The proof for the statement that minimizing the square errors max-
imizes the likelihood is based on the transition from Equation 35.221
to Equation 35.222 on page 554 where we cut divisions by σ2. This is not
possible if σ becomes zero. Hence, we may or may not select metrics different
from the square error as quality function. Its feature of punishing larger devi-
ation stronger than small ones however is attractive even if the measurement
errors become zero.

Another metric used in these circumstances are the sums of the absolute
values of the estimation errors:

qσ=0(f, S) =

n=|S|
∑

i=1

|yi − f(xi)| (19.7)

19.1.3 An Example and the Phenomenon of Overfitting

If multi-objective optimization can be applied, the quality function should be
complemented by an objective function that puts pressure in the direction
of smaller functions f . In symbolic regression by genetic programming, the
problem of code bloat (discussed in Section 4.11.3 on page 199) is eminent.
Here, functions do not only grow large because they include useless expressions

19.1 Symbolic Regression 333

(like x∗x+x
x
− x − 1). A large function may consist of functional expressions

only, but instead of really representing or approximating ϕ, it is just some sort
of misfit decision table. This phenomenon is called overfitting and is initially
discussed in Section 1.4.6 on page 27.

Let us for example assume we want to find a function similar to
Equation 19.8. Of course, we would hope to find something like Equation 19.9.

y = ϕ(x) = x2 + 2x + 1 (19.8)

y = f⋆
1 (x) = (x + 1)2 = (x + 1)(x + 1) (19.9)

For simplicity, we choose randomly the nine sample data points listed in
Table 19.1.

Table 19.1: Sample Data S = {(xi, yi) : i = 1 . . . 9} for Equation 19.8

i xi yi = ϕ(xi) f⋆
2 (xi)

1 −5 16 15.59
2 −4.9 15.21 15.40
3 0.1 1.21 1.11
4 2.9 15.21 15.61
5 3 16 16
6 3.1 16.81 16.48
7 4.9 34.81 34.54
8 5 36 36.02
9 5.1 37.21 37.56

As result of the symbolic regression we may obtain something like
Equation 19.10, outlined in Figure 19.2, which represents the data points
quite precisely but has nothing to do with the original form of our equation.

f⋆
2 (x) = (((((0.934911896352446 * 0.258746335682841) - (x * ((x / ((x -

0.763517999368926) + (0.0452368900127981 - 0.947318140392111))) / ((x -
(x + x)) + (0.331546588012695 * (x + x)))))) + 0.763517999368926) + ((x -
(((0.934911896352446 * ((0.934911896352446 / x) / (x +
0.947390132934724))) + (((x * 0.235903629190878) * (x -
0.331546588012695)) + ((x * x) + x))) / x)) * ((((x - (x *
(0.258746335682841 / 0.455160839551232))) / (0.0452368900127981 -
0.763517999368926)) * x) * (0.763517999368926 * 0.947318140392111)))) -
(((((x - (x * (0.258746335682841 / 0.455160839551232))) /
(0.0452368900127981 - 0.763517999368926)) * 0.763517999368926) * x) + (x
- (x * (0.258746335682841 * 0.934911896352446))))) (19.10)

We obtained both functions f⋆
1 (in its second form) and f⋆

2 using the
symbolic regression applet of Hannes Planatscher which can be found at

334 19 Real-World Applications

-20

-10

0

10

20

30

-4 -3 -2 1 2 43-5 -1

f (x) (x)1 jº
«

f (x)2

«

Fig. 19.2: ϕ(x), the evolved f⋆
1 (x) ≡ ϕ(x), and f⋆

2 (x).

http://www.potschi.de/sr/ [accessed 2007-07-03]
4. It needs to be said that the

first (wanted) result occurred way more often than absurd variations like f⋆
2 .

Indeed there are some factors which further the evolution of such eyesores:

• If only few sample data points are provided, the set of prospective functions
that have a low estimation error becomes larger. Therefore, chances are
that symbolic regression provides results that only match those points but
differ in all other points significantly from ϕ.

• If the sample data points are not chosen wisely, their expressiveness is low.
We for instance chose 4.9,5, and 5.1 as well as 2.9, 3 and 3.1 which form
two groups with members very close to each other. Therefore, a curve that
approximately hits these two clouds is rated automatically with a high
quality value.

• A small population size decreases the diversity and furthers “incest” be-
tween similar solution candidates. Due to a lower rate of exploration, only
a local minimum of the quality value is often yielded.

• Allowing functions of large depth and putting low pressure against bloat
(see Section 4.11.3 on page 199) leads to uncontrolled function growth.
The real laws ϕ that we want to approximate with symbolic regression
do usually not consist of more than 40 expressions. This is valid for most

4 Another good applet for symbolic regression can be found at http://alphard.

ethz.ch/gerber/approx/default.html [accessed 2007-07-03]

http://www.potschi.de/sr/
http://alphard.ethz.ch/gerber/approx/default.html
http://alphard.ethz.ch/gerber/approx/default.html

19.1 Symbolic Regression 335

physical, mathematical, or financial equations. Therefore, the evolution of
large functions is counterproductive in those cases.

Although we made some of these mistakes intentionally, there are many
situations where it is hard to determine good parameter sets and restrictions
for the evolution and they occur accidentally.

19.1.4 Limits of Symbolic Regression

In most cases, we cannot obtain an optimal approximation of f , especially
if the function f that produced the data cannot be represented by the basic
expressions available to the regression process. One of these cases has already
been discussed before: if f has no closed arithmetical expression. Another
possibility is that our regression method tries to generate a polynomial that
approximates the f , but f does contain different expressions like sin or ex or
polynomials of an order higher than available. Another case is that the values
yi are not results computed by function directly but could be for example
measurements taken from some physical entity and we want to use regression
to determine the interrelations between this entity and some others. Then, the
measurements will be biased by noise and systematic measurement errors. So
there exist multiple situations where q(f⋆, S) is will be greater than zero after
a successful regression.

20

Research Applications

Research applications differ from real-world application by the fact that they
have not yet reached the maturity to be applied in the mainstream of their
respective area. Here we often begin to obtain solutions that are on par or
at least comparable with those obtained by the traditional methodologies
[543, 591]. On the other hand, they differ from toy problems because they are
not intended to be used as demonstration example or benchmark but are first
steps into a new field of application of genetic programming.

The future of a research application is either to succeed and become a
real-world application or to fail. In case of a failure, it may turn into a toy
application where some certain features of evolutionary algorithms and other
optimization techniques can be tested.

20.1 Evolving Proactive Aggregation Protocols

In this section we discuss what proactive aggregation protocols are and how we
can evolve them using a modified symbolic regression approach with genetic
programming.

20.1.1 Aggregation Protocols

Definition 84 (Aggregate). In computer science, an aggregate function1

α : Rm 7→ R computes a single result α(x) from a set of input data x. This
result represents some feature of the input, like its arithmetic mean.

Other examples for aggregate functions are the variance and the number of
points in the input data. In general, an aggregate2 is a fusion of a (large) set of
low-level data to one piece of high-level information. Aggregation operations

1 http://en.wikipedia.org/wiki/Aggregate_function [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Aggregate_data [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Aggregate_function
http://en.wikipedia.org/wiki/Aggregate_data

338 20 Research Applications

in databases and knowledge bases [1072, 1073, 1074, 1075, 1076, 1077, 1078],
be they local or distributed, for instance have been an active research area in
the past decades. Here, large datasets from different tables are combined to
an aggregate by structured queries which need to be optimized for maximal
performance.

With the arising interest in peer-to-peer applications (see Section 37.2.2)
and sensor networks (discussed in Section 37.2.2), a whole new type of aggre-
gation came into existence in the form of aggregation protocols. They are a key
functional building block for such systems by providing the distributed compo-
nents with access to global information including network size, average load,
mean uptime, location and description of hotspots, and so on [1079, 1080].
Robust and adaptive applications often require this local knowledge of such
properties of the whole. If for example the average concentration of some
toxin, which is aggregated from the measurements of multiple sensors in a
chemical laboratory, exceeds a certain limit, an alarm should be triggered.

In aggregation protocols, the data vector x is no longer locally available
but its elements are spread all over the network. When now computing the
aggregate, we cannot just evaluate α. Instead, some form of data exchange
must be performed by the nodes. This exchange can happen in two ways:
either reactive or proactive. In a reactive aggregation protocol, one of the
nodes in the network issues a query to all other nodes. Only this node re-
ceives the answer in form of the result (the aggregate) or the data needed
to compute the result as illustrated in Figure 20.1a. A proactive aggregation
protocol as outlined in Figure 20.1b one the other hand allows all nodes in the
network to receive knowledge of the aggregate. This is achieved by repetitive
data exchange amongst the nodes and iterative refinement of estimates of the
wanted value. Notice that the trivial solution would be that all nodes send
their information to all other nodes – this is avoided generally and the data
is disseminated step by step as part of the estimates.

Gossip-Based Aggregation

Jelasity, Montresor and Babaoglu [1080] propose a simple yet efficient type of
proactive aggregation protocols [1081]. In their model, a network consists of
many nodes in a dynamic topology where every node can potentially commu-
nicate with every other node. Errors in communication may occur, Byzantine
faults not.

The basic assumption of the protocol is that each node in the network holds
one numerical value x. This value represents some information about the node
or its environment, like for example the current work load. The task of the
protocol is to provide all nodes in the network with an up-to-date estimate of
the aggregate function α(x) of the vector of all values x = (xp, xq, . . .).

The nodes hold local states s (possible containing x) which they can ex-
change via communication. Therefore, each nodes knows picks its communi-
cation partners with the getNeighbor() method.

20.1 Evolving Proactive Aggregation Protocols 339

(a) reactive aggregation (b) proactive aggregation

Fig. 20.1: The two basic forms of aggregation protocols.

The skeleton of the gossip-based aggregation protocol is specified in
Algorithm 20.1 and consists of an active and a passive part. Once in each
δ > 0 time units, at a randomly picked time, the active thread of a node p
selects a neighbor q. Both partners exchange their information and update
their states with the update method: p calls update(sp, sq) in its active thread
and q calls update(sq, sp) in the passive thread. update is defined according
to the aggregate that we want to be computed

Example – Distributed Average

Assume that we have built a sensor network measuring the temperature as
illustrated in Figure 20.2. Each of our sensor nodes is equipped with a little
display visible to the public. The temperatures measured locally will fluctuate
because of wind or light changes. Thus, the displays should not only show the
temperature measured by the sensor node they are directly attached to, but
also the average of all temperatures measured by all nodes. Then the network
needs to execute a distributed aggregation protocol in order to estimate that
average.

If we therefore choose a gossip-based average protocol, each node will hold
a state variable which contains its local estimation of the mean. The update
function, henceforth receiving the local approximation and and the estimate
of another node, returns the mean of its inputs.

updateavg(sp, sq) =
sp + sq

2
(20.1)

If two nodes p and q communicate with each other, the new value of sp

and sq will be sp(t + 1) = sq(t + 1) = 0.5 ∗ (sp(t) + sq(t)). The sum – and

340 20 Research Applications

Algorithm 20.1: gossipBasedAggregation()

Data: p the node running the algorithm
Data: sp the local state of the node p
Data: sq, sr states received as messages from the nodes q and r
Data: q, p, r neighboring nodes in the network

// active Thread

begin1

while true do2

do exactly once in every δ units at a randomly picked time:3

q ←− getNeighbor()4

sendTo(q, sp)5

sq ←− receiveFrom(q)6

sp ←− update(sp, sq)7

end8

// passive Thread

begin9

while true do10

sr ←− receiveAny()11

sendTo(getSender(sr), sp)12

sp ←− update(sp, sr)13

end14

Fig. 20.2: An example sensor network measuring the temperature.

20.1 Evolving Proactive Aggregation Protocols 341

thus also the mean – of both states remains constant. Their variance, however,
becomes 0 and so the overall variance in the network gradually decreases.

5 6

7 8

(a) initial state

6 7

6 7

(b) after step 1

6.5

6.5

6.5

6.5

(c) after step 2

Fig. 20.3: An gossip-based aggregation of the average example.

In order to visualize how that type of protocol works, let us assume that
we have a network of four nodes with the initial values x = (5, 6, 7, 8)T as
illustrated in Figure 20.3a. The arithmetic mean here is

5 + 6 + 7 + 8

4
=

13

2
= 6.5 (20.2)

The initial variance is

(5− 6.5)2 + (6− 6.5)2 + (7− 6.5)2 + (8− 6.5)2

4
=

5

4
(20.3)

In the first step of the protocol, the nodes with the initial values 5 and 7 as
well as the other two exchange data with each other and update their values
to 6 and 7 respectively (see Figure 20.3b). Now the average of all estimates is
still

6 + 6 + 7 + 7

4
= 6.5 (20.4)

but the variance has been reduced to

(6− 6.5)2 + (6− 6.5)2 + (7− 6.5)2 + (7− 6.5)2

4
= 1 (20.5)

After the second protocol step, outlined in Figure 20.3c, all nodes estimate
the mean with the correct value 6.5 (and thus, the variance is 0).

The distributed average protocol is only one example of gossip-based ag-
gregation. Others are:

• Minimum and Maximum. The minimum and maximum of a value in
the network can be computed by setting updatemin(sp, sq) = min{sp, sq}
and updatemax(sp, sq) = max{sp, sq} respectively.

342 20 Research Applications

• Count. The number of nodes in a network n can be computed using the
average protocol: the initiator sets its state to 1 and all other nodes begin
with 0. Then the average is computed is then 1+0+0+...

n
= 1

n
. Its inverse

1
1
n

= n then corresponds to the number of nodes in the network.

• Sum. The sum of all values in the network can be computed by estimat-
ing both, the mean value x and the number of nodes in the network n
simultaneously and multiplying both with each other: nx =

∑
x.

• Variance. As declared in Equation 35.59 on page 522, the variance of a
data set is the difference of the mean of the squares of the values and the
square of their means. Therefore, if we compute x2 and x by using the
average protocol, we can subtract them var ≈ x2 − x2 and hence obtain
an estimation of the variance.

Further considerations are required if x is not constant but changes by and
by. Both, peer-to-peer networks as well as sensor networks, have properties
discussed in Section 37.2.2 that are very challenging for distributed applica-
tions and lead to an inherent volatility of x. The default approach to handle
unstable data is to periodically restart the aggregation protocols [1080]. In
our research we were able to provide alternative aggregation protocols capa-
ble of dealing with dynamically changing data. This approach is discussed
in Section 20.1 on page 337.

20.1.2 The Solution Approach: Genetic Programming

In order to derive certain aggregate functions automatically, we could mod-
ify the genetic programming approach for symbolic regression introduced
in Section 19.1 on page 329 [548]. Let α : Rm 7→ R be the exact aggregate
function. It works on a vector of the dimension m containing the data elements
where m is not a constant, i. e. α will return exact results for m = 1, 2, 3,
In Section 35.6.1 on page 555 we were able to show that the dimension m of
the domain Rm of α plays no role when approximating it with a maximum
likelihood estimator. The theorems used there are again applied in symbolic
regression (see Equation 19.6 on page 332), so the value of m does not af-
fect the correctness of the symbolic regression approach. Deriving aggregation
functions for distributed systems however exceeds the capabilities of normal
symbolic regression. Here, m = |N | is the number of nodes in a network N .
Each of the m nodes holds exactly one element of the data vector. Hence,
α cannot be computed directly anymore since it requires access to all data
elements at once. Instead, each node has to execute local rules that define
how data is exchanged and how an approximation of the aggregate value is
calculated. How to find these rules automatically is subject to our research
here.

There are three use cases for such an automated aggregation protocol
generation:

20.1 Evolving Proactive Aggregation Protocols 343

• We may already know a valid aggregation protocol but want to find an
equivalent protocol which has advantages like faster convergence or ro-
bustness in terms of input volatility. This case is analogous to finding
arithmetic identities in symbolic regression.

• We do not know the aggregate function α nor the protocol but have a set
of sample data vectors xi (maybe differing in dimensionality) and corre-
sponding aggregates yi. Using Genetic Programming, we attempt to find
an aggregation protocol that fits to this sample information.

• The most probable use case is that we know how to compute the aggre-
gate locally with a given α but want to find a distributed protocol that
does the same. We, for example, are well aware of how to compute the
arithmetic mean of a data set (x1, x2, . . . , xm) – we just divide the sum
of the single data items by their number m. If these items however are
distributed and not locally available, we cannot simple sum them up. The
correct solution described in Section 20.1.1 on page 339 is that each node
starts by approximating the mean with its locally known value. Now al-
ways two nodes inform each other about their estimates and set their new
approximation to be that mean of the old and the received on. This way,
the aggregate is approached by iteratively refining the estimations.
The transformation of the local aggregate calculation rule α to the dis-
tributed one is not obvious. Instead of doing it by hand, we can just use
the local rule to create sample data sets and then apply the approach of
the second use case.

20.1.3 Network Model and Simulation

For gossip-based aggregation protocols, [1080] supposes a topology where all
nodes can potentially communicate with each other. In this fully connected
overlay network, communication can be regarded as fault-free.

Taking a look at the basic algorithm scheme of such protocols introduced
as Algorithm 20.1 on page 340, we see that the data exchange happens once
every δ time units at a randomly picked point in time. Even though being
asynchronous in reality, it will definitely happen in this time span. That is,
we may simplify the model to a synchronous network model where all com-
munication happens simultaneously.

Another aspect of communication is how the nodes select their partners for
the data exchange. It is a simple fact that the protocol can only converge to
the correct value if each node has, maybe over multiple hops and calculations,
been able to receive information from all other nodes. Imagine a network N
consisting of m = 4 nodes p, q, r, and t for example. If the communication
partners are always (p, q) and (r, t), the data dissemination is insufficient since
p will never be able to incorporate the knowledge of the states of r and t. On
the other hand, one data exchange between q and r will allow the protocol to
work since p would later on indirectly receive the required information from
q.

344 20 Research Applications

Besides this basic fact, Jelasity, Montresor and Babaoglu have shown that
different forms of pair selection influence the convergence speed of the proto-
col [1080]. However, correct protocols will always converge if complete data
dissemination is guaranteed. Knowing that, we should choose a partner selec-
tion method that leads to fast convergence because we then can safe protocol
steps in the evaluation process. The pair building should be deterministic,
because randomized selection schemes lead to slow convergence [1080], and,
more importantly, will produce different outcomes in each test and make com-
paring the different evolved protocols complicated (as discussed in Section 1.5
on page 28). Therefore, choosing a deterministic selection scheme seems to be
the best approach. Perfect matching according to [1080] means that each node
is present in exactly one pair per protocol cycle, i. e. always takes part in the
data exchange. If different pairs are selected in each cycle, the convergence
speed will increase. It can further be increased by selecting (different) pairs
in a way that disseminates the data fastest.

t 0= t 1=

D=20
=1

t 2=

D=21
=2

t 3=

D=22
=4

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) pair-based

t 1=

D=20
=1

0

1

2

3

4

5

6

t 2=

D=21
=2

0

1

2

3

4

5

6

t 3=

D=22
=4

0

1

2

3

4

5

6

(b) general

Fig. 20.4: Optimal data dissemination strategies.

From these ideas we can derive a deterministic pair selection mechanism
with best-case convergence. Therefore, we first need to set the number of nodes
in the simulated network N = m = 2d as a power of two. In each protocol step
t with t = 1, 2, . . ., we compute a value ∆ = 2t mod d. Then we build pairs in
the form (i, i+∆), where i is the id-number of the node. This setup is optimal,
as you can see in Figure 20.4a. The data from node 0 (marked with a thick
border) spreads in the first step to node 1. In the second step, it reaches node
2 directly and node 3 indirectly through node 1. Remember, if the average

20.1 Evolving Proactive Aggregation Protocols 345

protocol would use this pair selection scheme, node 3 would compute its new
estimate at step 2 as

s3(t = 2) =
s3(t = 1) + s1(t = 1)

2
+

s3(t=0)+s2(t=0)
2 + s0(t=0)+s1(t=0)

2

2
(20.6)

In the third protocol step, the remaining four nodes receive knowledge of
the information from node 0 and the data is disseminated over the complete
network. Now the cycle would start over again and node 0 would communicate
with node 1.

This pair selection method is bounded to networks of the size m = 2d. We
can generalize this approach by breaking up the strict pair-communication
restriction. Therefore, we set d = ⌈log2 m⌉ while still leaving ∆ = 2t mod d

and define that a node i sends its data to the node (i + ∆) mod m for all
i as illustrated in Figure 20.4b. This general communication rule abandons
the restriction of strict pair-based data exchange but leaves any other feature
of the aggregation protocols, like the update method, untouched. We should
again visualize that this rule is only defined so we can construct simulations
where the protocols need as few as possible steps to converge to the correct
value in order to spare us computation time.

Another important aspect also becomes obvious here: The time that an
aggregation protocol needs to converge will always depend on the number of
nodes in the (simulated) network.

20.1.4 Node Model and Simulation

As important as modeling the network is the model of the nodes it consists of.
In Figure 20.5, we illustrate an abstraction especially suitable for fast simula-
tion of aggregation protocols. A node p executing a gossip-based aggregation
protocol receives input in form of the locally known value (for example a sen-
sor reading) and also in form of messages containing data from other nodes in
the network. The output of p is on one hand the local approximation of the
aggregate value and on the other hand the information sent to its partners
in the network. The computation is done by a processor which updates the
local state by executing the update function. The local state sp of p can most
generally be represented as vector sp ∈ Rn of the dimension n, where n is the
number of memory cells available on a node.

Like in [1080], we until now have considered the states to be scalars. Gen-
eralizing them to vectors allows us to specify or evolve more complicated
protocols. The state vector contains approximations of aggregate values at
positions 1 ≤ i ≤ n. If the state only consists of a single number, the mes-
sages between two nodes will always include this single number and hence,
the complete state.

A state vector not only serves as a container for the aggregate, but also as
memory capable of accumulating information. It is probably unnecessary or

346 20 Research Applications

output: the estimate of
the aggregate value

sensor
input

processor

read from state,
compute, write to state

state

send parts of the state

receive parts of the
state of another node

other nodes in
the network

Fig. 20.5: The model of a node capable to execute a proactive aggregation
protocol.

unwanted to exchange the complete state during the communication. There-
fore we specify an index list e containing the indices of the elements to be sent
and a list r with the indices of the elements that shall receive the values of
the incoming messages. For a proper communication between the nodes, the
length of e and r must be equal and each index must occur at most once in e
and also at most once in r. Whenever a node p receives a message from node
q, the following assignment will be done, with s[i] being the ith component of
the vector:

sp[rj]←− sq[ej] ∀ j = 1 . . . |r| (20.7)

In the original form of gossip-based aggregation protocols, the state is
initialized with a static input value which is stepwise refined to approximate
the aggregate value [1080]. In our model, this restriction is no longer required.
We specify an index I pointing at the element of the state vector that will
receive the input. This allows us to grow protocols for static and for volatile
input data – in the latter case, the inputs are refreshed in each protocol step.
A node p would then perform

sp(t)[I]←− getInput(p, t) (20.8)

The function getInput(p, t) returns the input value of node p at time step
t. With this definition, the state vectors s become time-dependent, written as
s(t). Finally, update is now designed as a map Rn 7→ Rn to return the new
state vector.

20.1 Evolving Proactive Aggregation Protocols 347

sp(t + 1) = update(sp(t)) (20.9)

In the network simulation, we can put the state vectors of all nodes to-
gether to a single n ×m matrix S(t). The column k of this matrix contains
the state vector sk of the node k.

S(t) = (s1, s2, . . . , sm) (20.10)

Sj,k = sk[j] (20.11)

This notation is used in Algorithm 20.3.
In Algorithm 20.2 we specify how the model definitions that we have dis-

cussed can be used to build a network simulation for gossip-based, proactive
aggregation protocols. Here we also apply the general optimal communication
scheme explained in Section 20.1.3.

In the practical realization, we can spare creating a new matrix S(t) in
each time step t by initial using two matrices S1, S2 which we simple swap in
each turn.

20.1.5 Evaluation and Objective Values

The models described before are the basis of the evaluation of the aggregation
protocols that we breed. In general, there are two functional features that we
want to develop in the artificial evolution:

1. We want to grow aggregation protocols where the deviation between the
local estimates and the global aggregate is as small as possible, ideally 0.

2. This deviation can surely not be 0 after the first iteration at t = 1, because
the nodes do not know all data at that time. However, the way how
received data is incorporated into the local state of a node can very well
influence the speed of convergence to the wanted value. Therefore, we
want to find protocols that converge as quickly as possible.

In all use cases discussed in Section 20.1.2, we already know either the
correct aggregation values yi or the local aggregate function α : Rm 7→ R that
calculates them from data vectors of the length m. The objective is to find a
distributed protocol that computes the same aggregates in a network where
the data vector is distributed over m nodes. In our model, the estimates of
the aggregate value can be found at the positions SO,⋆ ≡ sk[O] ∀ k ∈ 1 . . . n
in the state matrix or the state vectors respectively.

The deviation ε(k, t) of the local approximation of a node k from the
correct aggregate value y(t) at a point in time t denotes its estimation error.

y(t) = α
(
(getInput(1,t),...,getInput(m,t))

′)
(20.12)

ε(k, t) = y(t)− SO,k(t) = y(t)− sk[O] (20.13)

348 20 Research Applications

Algorithm 20.2: simulateNetwork(m,T)

Input: m the number of nodes in the simulation
Input: T the maximum number of simulation steps
Input: Implicitly: update the update function
Input: Implicitly: I the index for the input values
Input: Implicitly: O the index for the output values
Input: Implicitly: e the index list for the send values
Input: Implicitly: r the index list for the receive values
Data: d communication step base according to 20.4b on page 344
Data: k a node index
Data: S(t) the simulation state matrix at time step t
Data: ∆ the communication partner offset
Data: p the communication partner node

begin1

d←− ⌈log2 m⌉2

S(0)←− new n×m Matrix3

// initialize with local values

S(0)⋆,k ←− getInput(k, 0)4

t←− 15

while t ≤ T do6

S(t)←− copyMatrix(S(t− 1))7

∆←− 2t mod d
8

// perform communication according to 20.4b on page 344

k ←− 19

while k ≤ m do10

p←− (k + ∆) mod m11

S(t)rj ,p ←− S(t− 1)ej ,k ∀ j = 1 . . . |r|12

k ←− k + 113

// set (possible) new input values and perform update

k ←− 114

while k ≤ m do15

S(t)I,k ←− getInput(k, t)16

S(t)ij ,k ←− update(S(t)⋆,k)17

// ≡ sk(t) = update(sk(t))
k ←− k + 118

t←− t + 119

end20

20.1 Evolving Proactive Aggregation Protocols 349

We have already argued that the mean square error is an appropriate
quality function for symbolic regression (see Equation 19.6). Analogously, the
mean of the squares of the errors ε over all simulated time steps and all
simulated nodes is a good criterion for the utility of an aggregation protocol.
It even tangents both functional aspects subject to optimization: The larger
it is, the greater is the deviation of the estimates from the correct value. If the
convergence speed of the protocol is low, these deviations will become smaller
more slowly by time. Hence, the mean square error will also be higher. For
any evolved update function u we define3:

f1(u, e, r) =
1

T ∗m

T∑

t=1

m∑

k=1

ε(k, t)2

∣
∣
∣
∣
∣
u,e,r

(20.14)

This rather mathematical definition is realized indirectly in Algorithm 20.3,
which returns the value of f1 for an evolved update method u. It also ap-
plies the fast, convergence-friendly communication scheme discussed in Sec-
tion 20.1.3. Its realization in the Distributed Genetic Programming Frame-
work [552] software allows us to evaluate even complex distributed protocols
in very short time: A protocol can be tested on 16 nodes for 300 protocol steps
less than 5 milliseconds on a normal, 3 GHz off-the-shelf PC.

20.1.6 Input Data

In Algorithm 20.3 we use sample α values in order to determine the errors
ε. In two of our initial use cases, we need to create these values before the
evaluation process, either with an existing protocol or with a known aggregate
function α. Here we will focus on the latter case.

If transforming a local aggregate function α to a distributed aggregation
protocol, we need to create sample data vectors for the getInput(k, t)-method.
Here we can differentiate between static and dynamic input data: for static
input data, we just need to create the samples for t = 0 since getInput(k, 0) =
getInput(k, 1) = . . . getInput(k, T) ∀ k. If we have dynamic inputs on the
other hand, we need to ensure that at least some elements of the input vectors
x(t) = getInput(⋆, t) will differ, i. e. ∃ t1, t2 : x(t1) 6= x(t2). If this difference
is too large, an aggregation protocol cannot converge. It should be noted that
it would be wrong to assume that we can measure this difference in terms

of the sample data x – restrictions like 0.9 <
∣
∣
∣

xi(t)
xi(t+1)

∣
∣
∣ < 1.1 are useless,

because their impact on the value of α is unknown. Instead, we must limit
the variations in terms of the aggregation results, like

0.9 <

∣
∣
∣
∣

α(x(t))

α(x(t))

∣
∣
∣
∣
< 1.1 (20.15)

3 where |u,e,r means “passing u, e, r as input to Algorithm 20.3”

350 20 Research Applications

Algorithm 20.3: f1(u, e, r) = evaluateAggregationProtocol(u,m, T)

Input: u the evolved protocol update function to be evaluated
Input: m the number of nodes in the simulation
Input: T the maximum number of simulation steps
Input: Implicitly: update the update function
Input: Implicitly: I the index for the input values
Input: Implicitly: O the index for the output values
Input: Implicitly: e the index list for the send values
Input: Implicitly: r the index list for the receive values
Data: d communication step base according to 20.4b on page 344
Data: k a node index
Data: S(t) the simulation state matrix at time step t
Data: ∆ the communication partner offset
Data: p the communication partner node
Data: res the variable accumulating the square errors
Output: f1(u, e, r) the sum of all square errors (deviations from the correct

aggregate) over all time steps

begin1

d←− ⌈log2 m⌉2

S(0)←− new n×m Matrix3

// initialize with local values

S(0)⋆,k ←− getInput(k, 0)4

t←− 15

while t ≤ T do6

S(t)←− copyMatrix(S(t− 1))7

. . .8

// perform communication according to 20.4b on page 344

. . .9

// set (possible) new input values and perform update

k ←− 110

while k ≤ m do11

S(t)I,k ←− getInput(k, t)12

// u is the evolved update-function and thus, used here

S(t)⋆,k ←− u(S(t)⋆,k)13

res←− res + (y(t)− S(t)O,k)214

// ≡ res←− res + (ϕ(i(t))− S(t)o,k)2

k ←− k + 115

t←− t + 116

return res17

end18

20.1 Evolving Proactive Aggregation Protocols 351

In both, the static and the dynamic case, we need to create mul-
tiple input datasets, distinguished by adding a dataset index to x(t):
x(1, t),x(2, t), . . . ,x(l, t). Only if α(x(1, t)) 6= α(x(2, t)) 6= . . . 6= α(x(l, t))
we can assure that the result are not just overfitted protocols that simple
always return one single learned value: the exact α of the sample data. The
single x(i, t) should differ in magnitude, sign, and distribution since this will
lead to large differences in the α-values:

(∣
∣
∣
∣

α(x(i, t))

α(x(j, t))

∣
∣
∣
∣
≪ 1

)

∨
(∣
∣
∣
∣

α(x(i, t))

α(x(j, t))

∣
∣
∣
∣
≫ 1

)

∀ i 6= j (20.16)

We use z such data sets to perform z runs of Algorithm 20.3 and compute
the true value of f1 as arithmetic mean of the single results.

f1(u, e, r) =
1

z

z∑

i=1

f1(u, e, r)|
xi

(20.17)

Of course, for each protocol that we evaluate we will use the same sample
data sets because otherwise the results would not be comparable.

Volatile Input Data

The specification of getInput(k, t) which returns the input value of node k at
time t ∈ [0, T] allows us to evolve aggregation protocols for static and such
for volatile input. Traditional aggregation protocols are only able to deal with
constant inputs [1080]. These protocols have good convergence properties, as
illustrated in Figure 20.6a. They always converge to the correct results but
will simple ignore changes in the input data (see Figure 20.6b).

They would need to be restarted in a real application from time to time in
order to provide up-to-date approximations of the aggregate. This approach
is good if the input values in the real application that we evolve the proto-
cols for change slowly. If they are volatile, the estimations of these protocols
become more and more imprecise. They would need to be restarted in a real
application from time to time in order to provide up-to-date approximations
of the aggregate. This approach is good if the input values in the real appli-
cation change slowly. If they are volatile, the estimations of these protocols
become more and more imprecise. The fact that an aggregation protocol needs
a certain number of cycles to converge is an issue especially in larger or mo-
bile sensor networks. One way to solve this problem is to increase the data
rate of the network accordingly and to restart the protocols more often. If
this is not feasible, because for example energy restrictions in a low-power
sensor network application prohibit increasing the network traffic, dynamic
aggregation protocols may help. They represent a sliding average of the ap-
proximated parameter and are able to cope with changing input data. In each
protocol step, they will incorporate their old state, the received information,

352 20 Research Applications

0 5 10 15 20 25

protocol steps

local estimates of the aggregate of the single nodes

correct aggregate

single sensor values

*

0.5

[2] [1]

[2]

+

e=[1], r=[2]

(a) with constant inputs

0 28 56 84 112 140

protocol steps

local estimates of the
aggregate of the single nodes

correct aggregate

single sensor values

(b) with volatile inputs

Fig. 20.6: The behavior of the distributed average protocol in different sce-
narios.

20.1 Evolving Proactive Aggregation Protocols 353

and the current input data into the calculations. A dynamic distributed av-
erage protocol like the one illustrated in Figure 20.7 is a weighted sum of
the old estimate, the received estimate, and the current value. The weights in
the sum can be determined by the Genetic Programming process according
to the speed with which the inputs change. In order to determine this speed
for the simulations, a few real sample measurements would suffice to produce
customized protocols for each application situation.

However, the incorporation of the current input value is also the draw-
back of such an approach, since it cannot fully converge to the correct result
anymore.

0 28 56 84 112 140

protocol steps

local estimates of the
aggregate of the single nodes

correct aggregate

single sensor values

[1] 0.26

*[1]

+

*+

[3] 2.9[2] -

*

[1] 0.21

[2][1]

e=[1], r=[3]

Fig. 20.7: A dynamic aggregation protocol for the distributed average.

20.1.7 Phenotypic Representations of Aggregation Protocols

We have to find a proper representation for gossip-based aggregation proto-
cols. Such a protocol consists of two parts: the evolved update function and a
specification of the properties of the state vector – the variables I, O, r, and
e.

354 20 Research Applications

Representation for the update Function

The function update as defined in the context of our basic model for aggrega-
tion protocols receives the state vectors sk(t) ∈ Rm of time step t as input. It
returns the new state vectors sk(t + 1) ∈ Rm of time step t + 1. This function
is indeed an algorithm by itself which can be represented as a list of tuples
l = [. . . , (uj , vj), . . .] of mathematical expressions uj and vector element in-
dices vj . This list l is processed sequentially for j = 1, 2, . . . , |l|. In each step j,
the result of the expression uj is computed and assigned to the vjth element
of the old state vector s(t − 1). In the simplest case, l will have the length
|l| = 1. One example for this is the well-known distributed average protocol
illustrated in Figure 20.8(a): In the single formula, the first element of s1(t),
[1], is assigned to 0.5 ∗ ([1] + [2]) which is the average of its old value and the
received information. Here the value of the first element is send to the partner
and the received message is stored in the second element, i. e. r = [2], e = [1].
The terminal set of the expressions now does not contain the simple variable
x anymore but all elements of the state vectors. Finally, after all formulas
in the list have been computed and their return values are assigned to the
corresponding memory cells, the modified old state vector sk(t) becomes the
new one sk(t + 1). Figure 20.8b shows a more complicated protocol where

*

0.5

[2] [1]

[2]

+

(a) distributed
average

[2] [1]

/ ^abs max

[1] [2] * 0.5[3] *-

[1] [2][1] [2][2] *

[1] [2][2] [3]

(b) square root of the distributed average

Fig. 20.8: Some examples for the formula series part of aggregation protocols.

update consists of |l| = 4 formulas [(u1, 1), (u2, 2), (u3, 3), (u4, 2)]. We will
not elaborate deeper on these examples but just note that both are valid re-
sults of Genetic Programming – a more elaborate discussion of them can be
found in Section 20.1.8 on page 357 and Section 20.1.8 on page 358.

The important point is that we are able to provide a form for the first part
of the aggregation protocol specification that is compatible to normal symbolic
regression and which hence can be evolved using standard operators.

Besides a sequence of formulas computed repetitively in a cycle, we also
need an additional sequence that is executed only once, in the initialization
phase. This is needed for some other protocols than the distributed minimum,

20.1 Evolving Proactive Aggregation Protocols 355

maximum, and average, which cannot assume the approximation of the esti-
mate to be the current input value. Here, another sequence of instructions is
needed which transforms the input value into an estimate which then can be
exchanged with other nodes and used as basis for subsequence calculations.
This additional sequence is evolved and treated exactly in the same way as
the set of formulas used inside the protocol cycle.

Experiments have shown that it is useful though to initialize all
state elements in the first time step with the input values. Therefore,
both Algorithm 20.2 and Algorithm 20.3, initially perform S(0)⋆,k ←−
getInput(k, 0) instead of S(0)i,k ←− getInput(k, 0). In all other time steps,
only S(t)i,k is updated.

Straightforward, we can specify a non-functional objective function f2 that
returns the number of expressions in both sets and hence puts pressure into
the direction of small protocols with less computational costs.

Representation for I, O, e, and r

Like the update function, the parameters of the data exchange, r and e, be-
come subject to evolution. I and O are only single indices; we can assume
them to be fixed as I = 1 and O = 2. Allowing them to be changed will only
result in populations of many incompatible protocols. Although we could do
the same with e and r, there is a very good reason to make them variable.
If e and r are built during the evolutionary process, different protocols with
different message lengths (|e1| 6= |e2|) can emerge. Hence, we can introduce a
non-functional objective function f3 that puts pressure into the direction of
minimal message lengths. The results of genetic programming will thus be op-
timal not only in accuracy of the results but only in terms of communication
costs.

For the lists e and r there are three possible representations. We can use
either a bit string of the fixed length 2n which contains two bits for each
element of s: the first bit determines if the value of the element should be
sent, the second bit denotes if an incoming element should be stored there.
String genomes of a fixed length are explained in detail in Section 3.4.1 on
page 124. By doing so, we implicitly define some restrictions on the message
structure since we need to define an order on the elements inside. If n = 4, a
bit string 01011010 will be translated into e = [3, 4] and r = [1, 2]. It is not
possible to obtain something like e = [3, 4] and r = [2, 1].

The second encoding scheme is to use two variable-length integer strings
which represent e and r directly. Such genomes are introduced in Section 3.4.2
on page 126. Now the latter case becomes possible. If the lengths of the two
strings differ, for example for reproduction reasons, the length of the shorter
one is used solely.

The third approach would be to, again, evolve one single string z. This
string is composed of pairs z = [(e1, r1), (e2, r2), . . . , (rl, rl)]. The second and
the third approach are somewhat equivalent,

356 20 Research Applications

In principle, all three methods are valid and correct since the impossibility
of some message structures in the first method does not necessarily imply
that certain protocol functionality cannot evolve. The standard reproduction
operators for string genomes, be it fixed or variable-length, can be applied.

When we closely examine our abstract protocol representation, we will see
that it will work with epidemic [1082] or SPIN-based [1083] communication
too, although we developed it for a gossip-based communication model.

Reproduction Operators

As already pointed out when elaborating on the representation schemes for
the two parts of the aggregation protocols, well-known reproduction operators
can be reused here.

• The formulas in the protocol obey strictly a tree form, where the root
always has two child nodes, the formula sequences for the protocol cycle
and the initialization, which, in turn, may have arbitrarily many children:
the formulas themselves. A formula is a tree node which has stored one
number, the element its results will be written to, and one child node, the
mathematical expression which is a tree of other expressions. We elaborate
on tree-shaped genomes in Section 4.3 on page 145.

• The communication behavior is described as either one fixed-length bit
string or two variable-length integer strings.

New protocols are created by first building a new formula tree and then
combining it with one (or two, according to the applied coding scheme) newly
created string chromosomes.

We define the mutation operation as follows: If an aggregation protocol
is mutated, with 80% probability its formula tree is modified and with 20%
probability its message pattern.

When performing a recombination operation, a new protocol is constructed
by recombining the formula tree as well as the message definition of both
parents with the default means.

20.1.8 Results from Experiments

For our experiments, we have used a simple elitist evolutionary algorithm
with a population size of 4096 and an archive size of 64. In the simulations,
16 virtual machines were running, each holding a state vector s with five
elements. For evaluation, we perform 22 simulation runs per protocol where
each run is granted 28 cycles in the static and 300 cycles in the dynamic case.

From all experiments, those with a tiered prevalence comparison performed
best and, hence, will be discussed in this section. Tiered prevalence compar-
ison is similar to a Pareto optimization which is performed level-wise. When
comparing two individuals, initially, the objective values of the first objective
function f1 are considered only. If one of the solution candidates has here a

20.1 Evolving Proactive Aggregation Protocols 357

better value than the other, it wins. If both values are equal, we compare the
second objective values in the same way, and so on. The comparator function
equivalently defined in Equation 20.18 and Equation 20.19 gives correctness
(f1) precedence to protocol size (f2). Its result indicates which of the two
individuals won – a negative number denotes the victory of x1, a positive one
that x2 is better. The tiered structure of cF,agg leads to optimal sets with few
members that most often (but not always) have equal objective values and
only differ in their phenotypes.

cF,agg(x1, x2) =

−1 if f1(x1) < f1(x2)
1 if f1(x1) > f1(x2)

cF,pareto(x1, x2) otherwise
(20.18)

cF,agg(x1, x2) =

−1 if (f1(x1) < f1(x2))∨
((f1(x1) = f1(x2)) ∧ (f2(x1) < f2(x2)))∨
((f1(x1) = f1(x2)) ∧ (f2(x1) = f2(x2))∧

(f3(x1) < f3(x2)))
1 if (f1(x1) > f1(x2))∨

((f1(x1) = f1(x2)) ∧ (f2(x1) > f2(x2)))∨
((f1(x1) = f1(x2)) ∧ (f2(x1) = f2(x2))∧

(f3(x1) > f3(x2)))
0 otherwise

(20.19)

We do not need more than five memory cells in our experiments. The
message size was normally one or two in all test series and if it was larger, it
converged quickly to a minimum. So the objective function f3 that minimizes
it shows no interesting behavior. It can be assumed that it will have equal
characteristics like f2 in larger problems.

Average – static

With this configuration, protocols for simple aggregates like minimum, max-
imum, and average can be obtained in just a few generation steps. We have
used the distributed average protocol which computes αavg = x in many of the
previous examples, for instance in Section 20.1.1 on page 339, Section 20.1.6
on page 351, and in Figure 20.8a.

The evolution of a static version such an algorithm is illustrated in
Figure 20.9. The graphic shows how the objective values of the first ob-
jective function (the mean square error sum) improve with the generations in
twelve independent runs of the evolutionary algorithm. All runs did converge
to the optimal solution previously discussed, most of them very quickly in less
then 50 generations.

Figure 20.10 reveals the inter-relation between the first and second objec-
tive function for two randomly picked runs. Most often, when the accurateness
of the (best known) protocols increases, so does the number of formula expres-
sions. These peaks in f2 are always followed by a recession caused by stepwise

358 20 Research Applications

0

50

100

150

200

250

300

350

400

50 100 150 200

Generation

f :1 SSe
2

Fig. 20.9: The evolutionary progress of the static average protocol.

improvement of the protocol efficiency by eliminating unnecessary expressions.
This phenomenon is rooted in the tiered comparison that we chose: A larger
but more precise protocol will always beat a smaller, less accurate one. If two
protocols have equal precision, the smaller one will prevail.

Root-Of-Average – static

In our past research, we used the evolution of the root-of-average protocol
as benchmark problem [548]. Here, a distributed average protocol for the
aggregate function αra is to be evolved:

αra(x) =
√

|x| (20.20)

One result of these experiments has already been sketched in Figure 20.8b.
Figure 20.11 is a plot of eleven independent evolution runs. It also shows a
solution found after only 84 generations in the quickest experiment. The values
of the first objective function f1, denoting the mean square error, improve
so quickly in all runs at the beginning that a logarithmic scale is needed
to display them properly. This contrasts with the simple average protocol

20.1 Evolving Proactive Aggregation Protocols 359

0
50

100
150

200
250

300 10
15

20
25

0

50

100

150

200

250

300

350

400

Generation
f : # expressions

2

f :1 SSe
2

Fig. 20.10: The relation of f1 and f2 in the static average protocol.

evolution where the measured fitness is approximately proportional to the
number of generations. The reason is the underlying aggregate function which
is more complicated and thus, harder to approximate. Therefore, the initial
errors are much higher and even small changes in the protocols can lead to
large gains in accurateness.

The example solution contains a useless initialization sequence. In the
experiments, it paradoxically did not vanish during the later course of the
evolution although the secondary (non-functional) objective function f2 puts
pressure into the direction of smaller protocols.

For the inter-relation between the first and second objective function, the
same observations can be made than in the average protocol. Improvements
in f1 often cause an increase in f2 which is followed by an almost immediate
decrease, as pictured in Figure 20.12 for the 84-generation solution.

Average – dynamic

After verifying our approach for conventional aggregation protocols with static
input data, it is time to test it with dynamically changing inputs. This may
turn out be a useful application and is more interesting, since creating proto-
cols for this scenario by hand is more complicated.

So we first repeat the “average” experiment for two different scenarios with
volatile input data. The first one is depicted with solid lines in Figure 20.13.

360 20 Research Applications

1’000

10’000

100’000

1e+6

1e+7

0 100 200 300 400 500

f :1 SSe
2

Generation

^
0.5

[4]

[2]

*
+ 0.5

[4] [3]

[4]

+[4]

[4]

+

r [3], e [4]= =

(useless init sequence) (protocol formulas)

Fig. 20.11: The evolutionary progress and one grown solution of the static
root-of-average protocol.

0
10

20
30

40
50

60
70

80

10
15

20
25

301’000

10’000

100’000

1e 6+

1e+7

Generation

f : # express
ions

2

f :1 SSe
2

Fig. 20.12: The relation of f1 and f2 in the static root-of-average protocol.

20.1 Evolving Proactive Aggregation Protocols 361

Here, the true values of the aggregate α(x(t)) can vary in each protocol step
by 1% and in one simulation by 50% in total. In the second scenario, denoted
by dashed lines, these volatility measures are increased to 3% and 70% re-
spectively. The different settings have a clear impact on the results of the

0

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250

f :1 SSe
2

Generation

volatility setting 1

(high) volatility setting 2

r [1], e [4]= =

+

[1] [4]

[2]

[4]

[4] [2]

[2]

1.9

+

[1] [2]

[1]

(protocol formulas)

[4]

[4] 1.9

no
initialization

sequence((

Fig. 20.13: The evolutionary progress of the dynamic average protocol.

error functions – the more unsteady the protocol inputs, the higher will f1 be,
as Figure 20.13 clearly illustrates. The evolved solution exhibits very simple
behavior: In each protocol step, a node first computes the average of its cur-
rently known value and the new sensor input. Then, it sets the new estimate
to the average of this value and the value received from its partner node. Each
node sends its current sensor value. This robust basic scheme seems to work
fine in a volatile environment.

The course of the evolutionary process itself has not changed significantly.
Also the interactions between of f1 and f2 stay the same, as outlined in
Figure 20.14.

362 20 Research Applications

0
50

100
150

200
250

300
350

5
10

15
20

25
30

0

500

1000

1500

2000

2500

3000

Generation
f : # expressions

2

f :1 SSe
2

Fig. 20.14: The relation of f1 and f2 in the dynamic average protocol.

Root-Of-Average – dynamic

Now we repeat the second experiment, evolving a protocol that computes the
square root of the average, with dynamic input data. Here we follow the same
approach as for the dynamic average protocol: Tests are run with the same
two volatility settings as in Section 20.1.8.

Figure 20.15 shows how f1 changes by time. Like in Figure 20.11, we have
to use a logarithmic scaling for f1 to illustrate it properly. For the tests with
the slower changing data (solid lines), an intermediate solution is included
because the final results were too complicated to be sketched here. The evolu-
tions with the highly dynamic input dataset however did not yield functional
aggregation protocols. From this we can follow that there is a threshold of
volatility from which on genetic programming is no longer able to breed sta-
ble formulas.

The relation of f1 and f2, outlined in Figure 20.16 complies with our
expectations. In every experiment run, increasing f1 is usually coupled to a
deterioration of f2 which means that the protocol formulas become larger and
include more sub-expressions. This is followed by a recreation span where the
formulas are reduced in size. After a phase of rest, where the new protocol
supposable spreads throughout the population, the cycle starts all over again
until the end of the evolution.

20.1 Evolving Proactive Aggregation Protocols 363

10’000

100’000

1e+6

1e+7

1e+8

1e+9

1e+10

(no valid solution for this setting)

50 100 150 200 250

Generation

f :1 SSe
2

volatility setting 1

(high) volatility setting 2

r [3, 3], e [2, 4]= =

(protocol formulas)

[1]

0.8

[2]

0.0 ^
+

[3]

[2]

[3]

no
initialization

sequence((

Fig. 20.15: The evolutionary progress and one grown solution of the dynamic
root-of-average protocol.

364 20 Research Applications

0
20

40

60
80

100
120

140
160

10
12 14

16
18

20
22

24
26

28

10’000

100’000

f : # expressions

2
Generation

f :1 SSe
2

Fig. 20.16: The relation of f1 and f2 in the dynamic root-of-average protocol.

Part III

Sigoa – Implementation in Java

21

Introduction

Today, there exist many different optimization frameworks. Some of them are
dedicated to special purposes like spacecraft design [228] or trading systems
[428]. Others provide multi-purpose functionality like GALib [1084], Evolu-
tionary Objects (EO) [1085, 1086] or the Java evolutionary computation li-
brary (ECJ) [664].

In this part of the book we want to introduce a new approach in form of the
Sigoa, the Simple Interface for Global Optimization Algorithms1. Using this
library, we want to demonstrate how the optimization algorithms discussed in
the previous chapters can be implemented.

We decided to use Java [1087, 1088, 1089] for this project since it is a very
common, object-oriented, and platform independent programming language.
You can find more information on Java technology either directly at their
website http://java.sun.com/ [accessed 2007-07-03] or in books like

• Javabuch [1090], the best German Java learning resource in my opinion,
is online available for download at http://www.javabuch.de/ [accessed 2007-

07-03].
• For the English reader, Thinking in Java [1091] would be more appropriate

– its free, third edition is online available at http://www.mindview.net/
Books/TIJ/ [accessed 2007-07-03].

• As well as interesting are the O’Reilly books Java in a Nutshell [1092],
Java Examples in a nutshell [1093], and Learning Java [1094].

• Java ist auch eine Insel [1095] – another good resource written in German,
is also online available at http://www.galileocomputing.de/openbook/
javainsel6/ [accessed 2007-07-03].

The source code of the software described in this book part can be
found online at http://www.sigoa.org/. All the software described here is
not only open-source, but licensed very liberally under the LGPL (see ap-

1 http://www.sigoa.org/

http://java.sun.com/
http://www.javabuch.de/
http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/
http://www.galileocomputing.de/openbook/javainsel6/
http://www.galileocomputing.de/openbook/javainsel6/
http://www.sigoa.org/
http://www.sigoa.org/

368 21 Introduction

pendix Chapter B on page 641) which allows for the integration of Sigoa into
all kinds of systems, from educational to commercial, without any restrictions.

Sigoa has features that especially support optimizing complicated types
of individuals which require time-consuming simulation and evaluation pro-
cedures. Imagine you want to grow algorithms with a genetic programming
approach. In order to determine an algorithm’s fitness, you need to simulate
the algorithm2. The evolution progresses step by step, so at first, we will not
have any algorithm that works properly for a specified problem. Some of the
solution candidates whatsoever will be able to perform some of the sub-tasks
of the problem, or will maybe solve it partly. Since they may work on some of
the inputs while failing to process other inputs correctly, a single simulation
run will not be sufficient. We rather simulate the algorithms grown multiple
times and then use the minimum, median, average, or maximum objective
values encountered.

Maybe the algorithms that we grow are no simple programs performed
by a single processor but distributed algorithms that involve interaction and
communication of multiple processors. In this case, it is again not sufficient to
simulate one processor – we need to simulate a network of many processors in
order to determine the objective values3. Hence, it is simple to imagine that
such a process may take some time.

There are many other examples of optimization problems that involve com-
plicated and time-consuming processes or simulations. Furthermore, it is often
the case that the individuals optimized are also large and costly considering
storage and mutation expenses.

A framework capable of partially dealing with such aspects in an ele-
gant manner has already been developed by the author in the past, see
[550, 551, 552]. With the Sigoa approach we use our former experiences to
create a software package that has a higher performance and is way more
versatile: One of the key features of Sigoa is the separation of specification
from implementation, which allows heavyweight implementations as required
for the evolution of the distributed algorithms as well as creating lightweight
optimization algorithms which do not need simulations at all - like numerical
minimization or such and such. This clear division not only allows for imple-
menting all the optimization algorithms introduced in the previous parts but
is good basis to include new, experimental methods that may have not been
discussed yet.

Before starting with defining the Sigoa specification, we performed a de-
tailed study on different global optimization algorithms and evolutionary al-
gorithms which is in principle provided in Chapter 2 on page 47. Additionally,
we used the lessons learned from designing the Dgpf system to write down
the following major requirements:

2 See Section 4.11 on page 196 for further discussions.
3 In Section 20.1 on page 337 you can find good example for this issue.

21.1 Requirements Analysis 369

21.1 Requirements Analysis

21.1.1 Multi-Objectivity

Almost all real-world problems involve contradicting objectives. A distributed
algorithm evolved should for example be efficient but yet simple, it should
consume not much memory and involve as little as possible communication
between different processors but on the other hand should ensure proper func-
tionality and be robust against lost or erroneous messages. The first require-
ment of an optimization framework as discussed here is thus multi-objectivity.

21.1.2 Separation of Specification and Implementation

It should easily be possible to adapt the optimization framework to other
problems or problem domains. The ability to replace the solution candidate
representation forms is therefore necessary.

Furthermore, the API must allow the implementation of all optimization
algorithms discussed in the previous chapters in an easy and elegant manner.
It should further be modular, since most of the optimization algorithms also
consist of different sub-algorithms, as we have seen for example in Chapter 2
on page 47.

From this primary requirement we deduce that the software architecture
used for the whole framework should be component based. Each component
should communicate with the others only through clearly specified interfaces.
This way, each module will be exchangeable and may be even represented by
proxies or such and such, granting a maximum of extensibility.

If we define a general interface for selection, we could modify the SPEA-
algorithm (see Section 2.6.13 on page 110) which originally uses tournament
selection to use roulette wheel selection instead (whether this would make
sense or not).

This means that we will define Java-interfaces for all parts of optimization
algorithms such as fitness assignment or clustering algorithms used for prun-
ing the optimal sets. Thus, we reach a separation of the specification from
the implementation. For all interfaces we will provide a reference implemen-
tation which, however, can easily be exchanged, allowing for different levels
of complexity in the realizations.

21.1.3 Separation of Concerns

An optimization system consists not only of the optimization algorithms them-
selves. It needs interfaces to simulators. If it is distributed, there must be a
communication subsystem. Even if the optimization system is not distributed
we will most likely make use of parallelism since the processors inside nowa-
days off-the-shelf PCs already offer supportive hyper-threading or dual-core
technology [1096, 971]. If Sigoa is used by different other software systems

370 21 Introduction

which transfer optimization tasks to it, security issues arise. These aspects are
orthogonal to the mathematical task of optimizing but vital for the system
to work. They should be specified at different places and clearly be separated
from the pure algorithms.

21.1.4 Support for Pluggable Simulations and Introspection

In most real-world scenarios, simulations are needed to evaluate the objective
values of the solution candidates. If we use the framework for multiple problem
domains, we will need to exchange these simulations or even want to rely
on external modules. In some cases, the value of an objective function is
an aggregate of everything what happened during the simulation. Therefore,
they need a clear insight into what is going. Since we separate the objective
functions from the simulations by clearly specified interfaces (as discussed in
Section 21.1.3), these interfaces need to provide this required functionality of
introspection.

In the use case of evolving a distributed algorithm, we can visualize the
combination with the separation of concerns and introspective simulations:
Besides working correctly, a distributed algorithm should use as few messages
as possible or at least has stable demands considering the bandwidth on the
communication channel. We therefore could write an objective function which
inspects the number of messages underway in the simulation and computes
a long-term average and variance. The simulation itself does not need to be
aware of that; it simple has to offer the functionality of counting the messages
currently in transmission. The catch is that we can now replace the objective
function by another one that maybe puts the pressure a little bit differently,
leading to better results, without modifying the simulation. On the other
hand, we can also use different simulation models – for example one where
transmission errors can occur and one where this is not the case – without
touching the objective function.

21.1.5 Distribution utilities

As already said, there are many applications where the simulations are very
complicated and therefore, our architecture should allow us to distribute the
arising workload to a network of many computers. The optimization process
then can run significantly faster because many optimization techniques (espe-
cially evolutionary algorithms) are very suitable for parallel and distributed
execution as discussed in Chapter 16 on page 263.

21.2 Architecture

We want to design the Sigoa optimization system based on these requirements.
In this book part, we have assigned different chapters to the classes of different
components of Sigoa and their sub-algorithms.

21.2 Architecture 371

By specifying interfaces for all aspects of optimization and implementing
them elsewhere, the versatility to exchange all components is granted, so cus-
tomized optimizers can be built to obtain the best results for different problem
domains. Furthermore, interfaces allow us to implement components in differ-
ent levels of detail: there may be applications where the evaluation of objective
functions involves massive simulations (like genetic programming) and appli-
cations, where the simple evaluation of mathematical functions enough (like
numerical minimizing). In the latter case, using a system that provides ex-
tended support for simulations may result in performance degeneration since
a lot of useless work is performed. If the mechanism that computes the ob-
jective values could be exchanged, an optimal approach can be used in each
case.

Resulting from these considerations, we divide the Sigoa architecture in org

.sigoa into two main packages: org.sigoa.spec contains the specifications and
org.sigoa.refimpl a reference implementation. Figure 21.1 illustrates this top-
level package hierarchy.

<<Import>>

org
<<Library>>

sigoa
<<Package>>

sfc
<<Library>>

spec
<<Package>>

refimpl
<<Package>> <<Import>>

Fig. 21.1: The top-level packages of the Sigoa optimization system.

The specification is given by interfaces and a few, basic utility classes
only. It is independent from any library or other software system and does
not require prerequisites. The interfaces as can therefore also be implemented
as wrappers that bridge to other, existing optimizing systems.

Most of the specification interfaces inherit from java.io.Serializable and
hence can be serialized using the Java Object Serialization mechanisms4. We

4 http://java.sun.com/javase/6/docs/technotes/guides/serialization/ [ac-

cessed 2007-07-03]

http://java.sun.com/javase/6/docs/technotes/guides/serialization/

372 21 Introduction

do so to provide the foundation for the ability to create snapshots of a run-
ning optimization algorithm. This then allows them to be started, stopped,
restarted and migrated.

The reference implementation uses an additional software package called
Sfc, the Java Software Foundation Classes5 – an open-source library (LGPL-
licensed, see appendix Chapter B on page 641) that provides some useful
classes for tasks that are needed in many applications like enhanced IO, XML
support, extended and more efficient implementations of the Java Collection
Framework6-interfaces and so on. This utility collection is not directly linked
to optimization algorithms but provides valuable services that ease the imple-
mentation of the Sigoa components.

The package hierarchy of the reference implementation is identical to the
one of the specifications. The package org.sigoa.spec.gp.reproduction for ex-
ample contains the definition of mutation and crossover operations whereas
the package org.sigoa.refimpl.gp.reproduction contains the reference imple-
mentation of these operations.

From here on we will adhere a short naming of the packages in order to
increase comprehensibility. The package org.sigoa.spec will just be called
spec in a context where it is clear that org.sigoa.spec is meant.

21.3 Subsystems

As illustrated in Figure 21.2, the Sigoa framework is constituted by nine sub-
systems:

1. The adaptation package contains mechanisms that allow components to
adapt themselves to a given situation based on rules. This can be used
for example by optimization algorithms in order to adjust their parame-
ters. A very simple application is the termination criterion7: a rule could
be defined that terminates an algorithm after a given time. A detailed
explanation on this subsystem can be found in Chapter 23 on page 387.

2. In the clustering-package, interfaces for clustering-algorithms (as defined
in Chapter 36 on page 571) are specified. Clustering algorithms can be
used to reduce a large set of solution candidates to a smaller one without
loss of generality. In Chapter 30 on page 437 more information on this
package is provided.

3. One way for optimization algorithms to report their status and statistics
to the outside world would be via events. As already said, we do the
optimization process not treat as a mere mathematical procedure – it will
always be part of some application. As such, not only the final results

5 http://sourceforge.net/projects/java-sfc/ [accessed 2007-07-03]

6 http://java.sun.com/javase/6/docs/technotes/guides/collections/ [ac-

cessed 2007-07-03]

7 see Section 1.6.2 on page 31

http://sourceforge.net/projects/java-sfc/
http://java.sun.com/javase/6/docs/technotes/guides/collections/

21.3 Subsystems 373

org.sigoa.spec
<<Package>>

stoch
<<Package>>

simulation
<<Package>>

security
<<Package>>

pipe
<<Package>>

adaptation
<<Package>>

clustering
<<Package>>

events
<<Package>>

go
<<Package>>

jobsystem
<<Package>>

Fig. 21.2: The subsystem specification of the optimization framework.

are interesting but also status messages and statistic evaluations of its
progress. The events package defines interfaces for events that can be
generated and may contain such information. The description of the Sigoa
event API can be found in Chapter 24 on page 391.

4. The largest subsystem is the go package, where all components and sub-
algorithms for global optimization are specified. Here you can find the in-
terfaces specifications that cover the all the algorithmic and mathematical
functionality of global optimization algorithms. Chapter 31 on page 445
provides a deeper insight into this subsystem.

5. In the jobsystem package, we place the specification of the means to run
optimization algorithms. An optimization algorithm may be parallelized
or run sequentially, and it therefore may use multiple threads. The al-
gorithm itself should however be separated from the parallelism issues.
Applying the definitions of the jobsystem package, algorithms may divide
their work into parallelizable pieces which can be executed as jobs. Such
jobs are then handled by the job system, which decides if they are run in
different threads or performed sequentially. This way it also possible to
manage multiple optimization algorithms and to specify which one will be
assigned to how many processors. The implementations of the job system

374 21 Introduction

specifications could also perform accounting and performance monitoring
of the work load. More details of the job system can be found in Chapter 28
on page 413.

6. The concept of pipes defined in the pipe package is a very mighty ap-
proach for realizing optimization. It does not only allow separating the
different components of an optimization algorithm completely – totally
new components, like statistic monitors can easily be inserted into a sys-
tem with minimum changes. The package pipe is explained in Chapter 29
on page 427.

7. The job system enables Sigoa to handle multiple optimization requests
at once. Since it is a plain component interface, these requests may come
from anywhere, maybe even from a web service interface built on top
of it. It must somehow be ensured that such requests do not interfere or
even perform harmful or otherwise malicious actions. Therefore, a security
concept is mandatory. In the security package we specify simple interfaces
that build on the Java Security Technology8. The security model of Sigoa
is described in Chapter 25 on page 395.

8. The behavior of solution candidates is often simulated in order to deter-
mine their objective values. The simulation package provides interfaces
that specify how simulations can be accessed, made available, and are
managed. The simulation subsystem is precisely described in Chapter 27
on page 405.

9. Stochastic evaluations are a useful tool for optimization algorithms. As
already said, the application using the Sigoa system may regularly need
information about the progress, which normally can only be given in
form some sort of statistical evaluation. This data may also be used by
the optimization algorithms themselves or by adaptation rules. Further-
more, the global optimization algorithms as discussed here are randomized
in the major. They thus need random number generators as introduced
in Section 35.7 on page 559. Such utilities are specified in the stoch pack-
age which is elaborated on in Chapter 26 on page 399.

8 http://java.sun.com/javase/6/docs/technotes/guides/security [accessed

2007-07-03]

http://java.sun.com/javase/6/docs/technotes/guides/security

22

Examples

But before we are going into detail about the different packages and utilities
of the Sigoa software, we will present some application examples hare. These
give a straightforward insight into the usage and customization of the Sigoa
components which most probably is good enough to apply them to other
problems. The more specific discussion of the Sigoa packages following after
this chapter then rounds up the view on this novel optimization system.

22.1 The 2007 DATA-MINING-CUP

As an application example for genetic algorithms, the 2007 DATA-MINING-

CUP Contest has been introduced in Section 18.1.2 on page 300. We strongly
recommend reading this section first. We there have talked about the basic
principles behind the challenge, while we here will only show how these ideas
can be realized easily using the Sigoa framework.

The objective of the contest is to classify a set of 50′000 data vectors
containing 20 features (from which only 17 are relevant) each into one of the
three groups A, B, and N. In order to build classifiers that do so, another
50′000 datasets with already known classifications are available as training
data.

First, we start by representing the three groups using a simple Java enum

like in listing 22.1.
Our approach in Section 18.1.2 was to solve the task using a modified ver-

sion of learning classifier systems C. For the contest, a function P (C) denoting
the profit that could be gained with a classifier C was already defined (see
Equation 18.1). Thus, we simple strip the LCS from its “learning” capability
and directly maximize the profit directly.

376 22 Examples

1 public enum EClasses {

2 /** class A */

3 A,

4 /** class B */

5 B,

6 /** class N */

7 N;

8 }

Listing 22.1: The enum EClasses with the possible DMC 2007 classifications.

22.1.1 The Phenotype

What remains are mere classifier systems which are the phenotypes of a genetic
algorithm. They consist of a set of rules m_rules (the single classifiers, byte

arrays containing the conditions) and rule outputs m_results (instances of
EClasses).

Listing 22.2 illustrates how the method classify works which classifies
a set of 17 relevant features data into one of the three possible EClasses

instances. It iterates over all the rules in m_rules and checks if rule m_rules[i]

fits perfectly according to the definitions in Table 18.2 on page 306. If so,
the corresponding classification m_results[i] is returned. classify keeps also
track on the rule which is violated the least by data in the variables lec and
leci. If no perfectly matching rule could be found, the 1

5 -threshold is checked:
if lec <= 3, the classification m_results[leci] belonging to the rule with the
least violations is returned. Otherwise, the class N represented by EClasses

.N is assigned to the data sample.
So this is basically what a phenotype can look like in Sigoa – you can clearly

see that, except from implementing java.io.Serializable, no further require-
ments are imposed on its structure. The method classify is not mandatory,
it is will just be part of the evaluation in this particular optimization problem;
other problems may need totally other functionality.

22.1.2 The Genotype and the Embryogeny

The genotype that belongs to the phenotypic individual representations is a
variable-length a bit string. Such genomes have been discussed in Section 3.4.2
on page 126 extensively. In Figure 18.4 we have introduced the genotype-
phenotype relation in this particular application: since there are four possible
conditions and 17 conditions plus three possible classifications (A, B, and N)
per rule, we need 17 ∗ 2 + 2 = 36 bits to encode a single classifier which is
the granularity of our genome. A classifier system in turn may consist of an
arbitrary number of such classifiers.

In Sigoa, we represent variable-length as fixed-length bit strings as byte
arrays (byte[]) for which predefined operations exist. So in principle, we do

22.1 The 2007 DATA-MINING-CUP 377

1 public class ClassifierSystem extends JavaTextable

implements Serializable {

2 ...

3 private final byte [][] m_rules;

4 private final EClasses [] m_results;

5 ...

6 public ClassifierSystem (final byte [][] rules , final

EClasses [] results) {

7 super ();

8 this.m_results = results;

9 this.m_rules = rules; }

10 ...

11 public EClasses classify(final byte[] data) {

12 byte [][] rules;

13 byte[] rule;

14 int i, j, ec , lec , leci;

15

16 rules = this.m_rules;

17 lec = Integer.MAX_VALUE;

18 leci = 0;

19

20 main: for (i = (rules.length - 1); i >= 0; i--) {

21 rule = rules[i];

22 ec = 0;

23 for (j = (rule.length - 1); j >= 0; j--) {

24 switch (rule[j]) {

25 case 0: {

26 if (data[j] != 0)

27 if ((++ec) > 3) continue main;

28 break;

29 }

30 case 1: {

31 if (data[j] < 1) // != 1

32 if ((++ec) > 3) continue main;

33 break;

34 }

35 case 2: {

36 if (data[j] <= 1)// <= 0)

37 if ((++ec) > 3) continue main;

38 break;

39 }

40 }

41 }

42 if (ec <= 0) return this.m_results[i];

43 if (ec < lec) {

44 lec = ec;

45 leci = i;

46 }

47 }

48 if (lec <= 3) return this.m_results[leci];

49 return EClasses.N;

50 }

51 ...

52 }

Listing 22.2: The structure of our DMC 2007 classifier system.

378 22 Examples

not have to deal with their reproduction directly and can concentrate on the
translation of a genotype g ∈ byte[] into a corresponding phenotype which is
an instance of ClassifierSystem. Such translations are subsumed under the
area of genotype-phenotype mapping (see Section 3.5 on page 127) and its
sub-division artificial embryogeny discussed in Section 3.5.1 for which Sigoa
offers a core interface interface IEmbryogeny (see Section 31.1.6 on page 456)
and a reference implementation Embryogeny (see Section 31.2.5 on page 474)
along with a special embryogeny extension for bitstrings, BitStringEmbryogeny
(see Section 32.2.2 on page 493) which provides special streams for input
and output from structured data from and to bit strings. We simple need
to extend this class by providing (at least) the transformation function
hatch from genotypes to phenotypes and (optionally) vice versa. Listing 22.3
shows this extension in form of the class ClassifierEmbryogeny. The constant
CLASSIFIER_EMBRYOGENY provides a globally shared instance of this new em-
bryogeny.

22.1.3 The Simulation

So now we need to find out how an evolved classifier system C behaves. There-
fore we can use the provided test datasets (or at least good share of them and
keep another part to check if our classifier systems generalize well). For these
test sets we built a matrix M(C) where the columns denote the classification
results delivered by C and the rows contain the true classes. For the, in this
case zero-based, indices we use the method ordinal() of the EClasses enum,
i. e. m2,1 would represent those elements in class N that were miss-classified
into group B – 2′799 in the example matrix Mex of Equation 22.1. From Mex

we can furthermore read that 1′087 of the samples belonging to class B were
correctly classified whereas 777 were assigned to class A and 1′462 to class
N.

Mex(C) =

4′062 856 3′794
777 1′087 1′462

5′484 2′799 29′679

 (22.1)

From such matrices we can easily compute the profit function P (C) as well
as other features, like how many As, Bs, and Ns were classified incorrectly.

What we basically do here is to simulate the behavior of the classifiers,
and for simulations, Sigoa provides the interface ISimulation (see Section 27.1
on page 405) and its standard implementation Simulation (see Section 27.2 on
page 408). This default implementation just needs to be extended so it uses
the test samples, which load somewhere else (in a class called Datasets), and
computes M . Therefore, overriding the method beginIndividual is sufficient
and other changes are not needed.

Listing 22.4 shows the most important code of the new class
ClassificationSimulation. In order to allow us to publish the new simula-
tion later to the simulation manager of the optimization job system, we also

22.1 The 2007 DATA-MINING-CUP 379

1 public class ClassifierEmbryogeny extends

BitStringEmbryogeny <ClassifierSystem > {

2 /** the classes */

3 private static final EClasses [] CLASSES =

EClasses.values ();

4 /** The globally shared instance */

5 public static final IEmbryogeny <byte[],

ClassifierSystem > CLASSIFIER_EMBRYOGENY = new

ClassifierEmbryogeny ();

6 ..

7 /** This method is supposed to compute an instance of

8 * the phenotype from an instance of the genotype.

9 * @param genotype The genotype instance to breed a

10 * phenotype from.

11 * @return The phenotype hatched from the genotype. */

12 @Override

13 public ClassifierSystem hatch(final byte[] genotype) {

14 int i, j, c;

15 byte [][] rules;

16 byte[] rule;

17 EClasses [] results;

18 BitStringInputStream bis;

19

20 if (genotype == null)

21 throw new NullPointerException ();

22 c = ((genotype.length * 8) / 36);

23 rules = new byte[c][17];

24 results = new EClasses[c];

25 bis = this.acquireBitStringInputStream ();

26 bis.init(genotype);

27

28 for (i = 0; i < c; i++) {

29 rule = rules[i];

30 for (j = 0; j < 17; j++) {

31 rule[j] = (byte) (bis.readBits (2));

32 }

33 results[i] = (CLASSES[bis.readBits (2) % 3]);

34 }

35 this.releaseBitStringInputStream(bis);

36 return new ClassifierSystem (rules , results);

37 }

38 ...

39 }

Listing 22.3: The embryogeny component of our DMC 2007 contribution.

380 22 Examples

1 public class ClassificationSimulation extends

Simulation <ClassifierSystem > {

2 /** the shared provider for this simulation */

3 public static final ISimulationProvider PROVIDER = new

SimulationProvider(ClassificationSimulation .class);

4 /** the matrix M(C) */

5 private final int [][] m_classifications;

6 ...

7 public ClassificationSimulation () {

8 super ();

9 this.m_classifications = new int [3][3]; }

10

11 /** Here the matrix M(C) is computed

12 * @param what The classifier C to be simulated. */

13 @Override

14 public void beginIndividual(final ClassifierSystem what)

15 {

16 int i;

17 int [][] x = this.m_classifications;

18 super.beginIndividual(what);

19 for (i = (x.length - 1); i >= 0; i--)

20 Arrays.fill(x[i], 0);

21 for (i = (DATA.length - 1); i >= 0; i--)

22 x[CLASSES[i]. ordinal ()][

what.classify(DATA[i]).ordinal ()]++;

23 }

24 ...

25 /** Compute the profit value P (C). */

26 public int getProfit () {

27 int [][] data = this.m_classifications;

28 return (3 * data [0][0]) + (6 * data [1][1]) -

(data [2][0] + data [2][1] + data [0][1] +

data [1][0]);

29 }

30 }

Listing 22.4: The simulation for testing the DMC 2007 classifier systems.

provide a globally shared factory in form of an ISimulationProvider-instance
with the constant PROVIDER in line 3.

22.1.4 The Objective Functions

On the foundation of the new simulation for classifier systems, we can define
the objective functions that should guide the evolution. In Section 18.1.2 on
page 306 we have introduced the two most important objective functions:

22.1 The 2007 DATA-MINING-CUP 381

1 public class ProfitObjectiveFunction extends

ObjectiveFunction <ClassifierSystem , ObjectiveState ,

Serializable , ClassificationSimulation > {

2 ...

3 /** This method is called after any simulation/

4 * evaluation is performed. It stores the negated

5 * profit −P (C) into the state -variable - that’s all.*/

6 @Override

7 public void endEvaluation(final ClassifierSystem

individual , final ObjectiveState state , final

Serializable staticState , final

ClassificationSimulation simulation) {

8 state.setObjectiveValue(-simulation.getProfit ());

9 }

10 ..

11 /**

12 * Obtain the id of the required simulator.

13 * @return The id=class of our simulator */

14 @Override

15 public Serializable getRequiredSimulationId () {

16 return ClassificationSimulation .class;

17 }

18 }

Listing 22.5: The profit objective function f1(C) = −P (C) for the DMC 2007.

one that minimizes f1(C) = −P (C) and hence, maximizes the profit, and
f2(C) = |C|, that minimizes the number of rules in the classifier systems.

All objective functions in Sigoa are instances of the interface
IObjectiveFunction (see Section 31.2.3 on page 470). They can be derived from
its default implementation ObjectiveFunction (see Section 31.2.3 on page 470)
which implements the basic functionality so only the real mathematical com-
putations need to be added.

In listing 22.5, we implement f1. The method endEvaluation needs to be
overridden. Here we store negated profit into a state record passed in. This
state record is later on used by the optimization system to compute the ob-
jective value and to store it into the individual records.

The only remaining question is: How will the optimizer system know that
our objective function needs an instance of ClassificationSimulation and that
it has to call its method beginIndividual beforehand? The question to this is
relatively simple: In line 3 we have defined an instance of SimulationProvider
for the ClassificationSimulation. This provider will later be introduced into
the optimization job system. It uses ClassificationSimulation.class as iden-
tifier per default. With the method getRequiredSimulationId on line 16, we
tell the job system that we need a simulation which is made available by an

382 22 Examples

1 public class SizeObjectiveFunction extends

ObjectiveFunction <ClassifierSystem , ObjectiveState ,

Serializable , ISimulation <ClassifierSystem >> {

2 /** This method is called after any simulation/

3 * evaluation is performed. It stores the size of

4 * the classifier system |C| into the state -

5 * variable - that’s all. */

6 @Override

7 public void endEvaluation(final ClassifierSystem

individual , final ObjectiveState state , final

Serializable staticState , final

ISimulation <ClassifierSystem > simulation) {

8 state.setObjectiveValue(Math.max(individual.getSize (),

3));

9 }

10 }

Listing 22.6: The size objective function f2(C) = |C| for the DMC 2007.

provider with exactly this id. Before passing the simulation to our objective
function, the job system will call its beginIndividual method which will in
turn build the matrix M(C) holding the information needed for its getProfit

method. Now we can query the profit from this simulation.
For the secondary objective function f2 defined in listing 22.6, we do not

need any simulation. Instead, we query directly the number of rules in the
classifier system via the method getSize. In listing 22.2, we have omitted
this routine for space reasons, it simple returns m_rules.length. Again, this
value is stored into the state record passed in from the job system’s evaluator
component which will then do the rest of the work.

22.1.5 The Evolution Process

Now the work is almost done, we just need to start the optimization process.
Listing 22.7 presents an according main-method which is called on startup of
a Java program.

First we have to decide which global optimization should be used and pick
ElitsitEA1, an elitist evolutionary algorithm (per default steady-state) with
a population size of 10 ∗ 1024 and mutation and crossover rates of 0.4 in line
8.

Then we need to construct an IOptimizationInfo-record with all the in-
formation that will guide the evolution2. To this information belongs how

1 see Section 31.3.1 on page 482
2 IOptimizationInfo is discussed in Section 31.1.9 on page 460, its reference im-

plementation OptimizationInfo in Section 31.2.9 on page 481.

22.1 The 2007 DATA-MINING-CUP 383

the solution candidates should be evaluated. Therefore we use an instance of
Evaluator3 (line 15) which is equipped with a List containing our two new
objective functions (see 10 and 12). We furthermore tell the system to per-
form a pure Pareto-optimization as discussed in Section 1.3.2 on page 14 by
passing the globally shared instance of ParetoComparator4 (line 16) into the
info record. We then define that our new embryogeny component should be
used to translate the bit string genotypes into ClassifierSystem phenotypes in
line 17. These genotypes are produced by the default reproduction operators
for variable-length bit string genomes5 added in lines 18 to 20. All of them
are created with a granularity of 36 which means that it is ensured that all
genotypes have sizes of multiples of 36 bits and that for example all crossover
operations only occur at such 36 bit boundaries.

After this is done, we instantiate SimulationManager6 and publish the
new simulation that we have developed in Section 22.1.3 on page 378 by
adding its provider to the simulation manager in line 27. The job system
that we create in line 28 allows the evaluator to access the simulation man-
ager, an instance of the interface ISimulationManager7. The evaluator will
then ask its objective functions which simulations they need – in our case a
ClassificationSimulation – and then query the simulation manager to pro-
vide them.

In line 28, we decided to use a multi-processor job system which is capable
of transparently parallelizing the optimization process. The different types of
job systems, all instances of IJobSystem specified in Section 28.1.2 on page 415,
are discussed in Section 28.2.3 on page 422. We add our optimizer to the
system in line 29 and finally start it in 30. Since have added no means to halt
the evolution, the system will basically run forever in this example.

In order to get information on its progress, we have added two special out-
put pipes (see Section 29.2.3 on page 434) in lines 23 and 24 to the optimizer’s
non-prevalence pipe. Through this pipe, in each generation all non-prevailed
(in our case, non-dominated) individuals will be written and thus, pass our
two pipes. In each generation, new text files with the information are created.
The first one, the IndividualPrinterPipe, uses the directory c and creates
files that start with a c followed by the current generation index. It writes
down the full information about all individuals. From this information, we
can later easily reconstruct the complete individuals and, for instance, inte-
grate them into the real applications. The second printer pipe, an instance of

3 The class Evaluator, discussed in Section 31.2.4 on page 473, is the default im-
plementation of the interface IEvaluator specified in Section 31.1.5 on page 456.

4 The class ParetoComparator, elaborated on in Section 31.2.1 on page 462, imple-
ments the interface IComparator defined in Section 31.1.1 on page 448.

5 These operations are introduced in Section 32.2.3 on page 493 implement the
interfaces ICreator, IMutator, and ICrossover specified in Section 31.1.2 on
page 450.

6 see Section 27.2 on page 408
7 see Section 27.1 on page 405

384 22 Examples

ObjectivePrinterPipe, stores only the objective values in a comma-separated-
values format. The output files are put into the directors bo and also start
with bo followed by the generation index. Such files are especially useful for
getting a quick overview on how the evolution progresses and can also be read
into spread sheets or graphical tools in order to produce fancy diagrams.

22.1 The 2007 DATA-MINING-CUP 385

1 public static void main(String [] args) {

2 EA <byte[], ClassifierSystem > opt;

3 IOptimizationInfo <byte[], ClassifierSystem > oi;

4 IJobSystem s;

5 SimulationManager m;

6 List <IObjectiveFunction <ClassifierSystem , ?, ?,

ISimulation <ClassifierSystem >>> l;

7

8 opt = new ElitistEA <byte[], ClassifierSystem >(10 *

1024, 0.4d, 0.4d);

9

10 l = new ArrayList <IObjectiveFunction <ClassifierSystem ,

?, ?, ISimulation <ClassifierSystem >>>();

11 l.add(new ProfitObjectiveFunction ());

12 l.add(new SizeObjectiveFunction ());

13

14 oi = new OptimizationInfo <byte[], ClassifierSystem >(

15 new Evaluator <ClassifierSystem >(l),

16 ParetoComparator .PARETO_COMPARATOR ,

17 ClassifierEmbryogeny.CLASSIFIER_EMBRYOGENY ,

18 new VariableLengthBitStringCreator (36),

19 new VariableLengthBitStringMutator (36),

20 new VariableLengthBitStringNPointCrossover (36),

21 null);

22

23 opt.addNonPrevailedPipe (new

IndividualPrinterPipe <byte[],

ClassifierSystem >(new FileTextWriterProvider(new

File("c"),"c"), false));

24 opt.addNonPrevailedPipe (new

ObjectivePrinterPipe <byte[], ClassifierSystem >(new

FileTextWriterProvider(new File("bo"), "bo"),

false));

25

26 m = new SimulationManager ();

27 m.addProvider(ClassificationSimulation .PROVIDER);

28 s = new MultiProcessorJobSystem (m);

29 s.executeOptimization (opt , new JobInfo <byte[],

ClassifierSystem >(oi));

30 s.start ();

31 }

Listing 22.7: A main method that runs the evolution for the 2007 DMC.

23

The Adaptation Mechanisms

Adaptation is an important aspect in the field of optimization algorithms
[1097, 1098, 1099, 750, 1100]. Especially interesting is self-adaptation. An
evolutionary algorithm for example has a mutation- and a crossover rate. If it
now detects for a longer time span that the crossover of created by mutation
operations if good in many cases whereas mutation yields dysfunctional in-
dividuals, it may increase the crossover- and decrease the mutation rate. An
optimization algorithm may also notice its own convergence. If the optimizer
detects that its result approximation does not change anymore, it may termi-
nate (or reset) itself. Self-termination may also be performed if a predefined
runtime elapses or if a given maximum count of iterations has been performed.

23.1 Specification

The org.sigoa.spec.adaptation package provides the means to implement
such behavior in a versatile, reusable manner. Its interface hierarchy is dis-
played in Figure 23.1.

An object that can be adapted or (auto-adapt itself) using the Sigoa adap-
tation mechanisms must implement the IAdaptable-interface. Such an object
owns a list of rules (instances of IRule) which it exposes through the getRules-
function. Rules can be added to or removed from this list, changing the ob-
ject’s adaptation behavior. It lies in the responsibility of the adaptable object
(the implementation of the IAdaptable-interface) to apply all the rules in the
list in a regular basis, i. e. to check if their conditions are met and if so, to
perform their actions on itself.

A rule consists an instances of each of the two basic interfaces ICondition

(accessed by getCondition) and IAction (accessed by getAction). ICondition
represents a condition that must be true in order for the rule to be applied.
This condition is checked by invoking the evaluate method on the adaptable
object which owns the rule. IAction represents an action executed (by invoking
the perform-method) on the object if the condition is met.

388 23 The Adaptation Mechanisms

org.sigoa.spec.adaptation
<<Package>>

<<Call>>

S

getCondition() : ICondition

getAction() : IAction

IRule
<<Interface>>

S

perform(S)

IAction
<<Interface>>

S

evaluate(S) : boolean

ICondition
<<Interface>>

S

getRules() : List

IAdaptable
< Interface>><

<<Call>> <<Call>>

Fig. 23.1: The specification of the Sigoa adaptation mechanisms.

Conditions and actions are specified separately in order to allow complex
conditions and complex actions to be reused.

23.2 Reference Implementation

The reference implementation of the Sigoa adaptation mechanisms can be
found in the package org.sigoa.refimpl.adaptation which is illustrated in
Figure 23.2. The class CompoundRule implements the IRule-interface by having
final member variables for the condition- and actions parts.

The interfaces IAction and ICondition do not require any standard imple-
mentation since the only methods they define consider their direct behavior
for which no defaults can be given. The packages conditions and actions exist
to provide some predefined, precasted conditions and actions. If an optimizer
wants to terminate after a given time for instance, it could compose a rule
of an instance of TimeCondition (which evaluates to trueafter the time span
specified in the constructor is elapsed) and AbortAction (which aborts the
activity it is invoked on).

23.2 Reference Implementation 389

actions
<<Package>>

conditions
<<Package>>

org.sigoa.refimpl.adaptation
<<Package>>

IRule
<<Interface>>

S

CompoundRule

serialVersionUID: long

m_condition: ICondition

m_action: IAction

getAction() : IAction
getCondition() : ICondition

Constructor(ICondition,IA...

ICondition
<<Interface>>

S

TimeCondition

serialVersionUID: long

m_delay :long

m_start: long

evaluate(S): boolean
reset()

Constructor(long)

IAction
<<Interface>>

S

AbortAction

serialVersionUID: long

perform(S)
Constructor()

SSS

Fig. 23.2: The reference implementation of the adaptation mechanisms.

24

The Events Package

The Sigoa framework is not stand-alone – it will be integrated into applica-
tions that make use of its optimization capabilities. It is a component that
performs its work in parallel and has its own security management. Since most
of the optimization algorithms it provides will be strongly randomized, there
is probably no deterministic behavior – optimizations of the same problem
with the same parameters will maybe produce different results and may differ
in time-consumption if executed twice in a row.

For all these features there should be a way for the application that uses
Sigoa to obtain status information, statistics, and error messages. In prin-
ciple, there exist two methods to realize information transfer for software
components: there can either be interfaces to the component allowing active
inspection from the user application or a passive interface through which the
component provides its information to the outside world.

Sigoa provides the passive mechanism, since it is more flexible and can be
realized side-effect free. As already said, the Sigoa implementations will run
asynchronously. Active introspection may result in inconsistent data since the
internal state may change between two requests belonging to the same query.

Passive information transfer means that the component (Sigoa, in this
case) invokes a method of the user application, whenever information is avail-
able. This is realized in the Sigoa system by the event API.

24.1 Specification

The event package provides the means to create events containing information,
to define objects that produce such events and to specify other objects able
to receive them. Its interface hierarchy is displayed in Figure 24.1.

A component of the Sigoa framework that is able to provide information
to the outside world implements the IEventSource-interface. It is an event
source and internally manages a list of IEventListener-instances. Objects
that implement IEventListener can be added to an event source using the

392 24 The Events Package

org.sigoa.spec.events
<<Package>>

IEvent
<<Interface>>

getEventSource() : Serializ...

getCreationTime() : long

IEventListener
< Interface>><

receiveEvent(IEvent)

<<Call>>

<<Call>>

IEventSource
<<Interface>>

addEventListener(IEventL...

removeEventListener(IEve...

IErrorEvent
< Interface>><

getError(): Throwable

Fig. 24.1: The specification of the Sigoa event objects.

addEventListener-method. Whenever the event source has new information
available, it packages it into an IEvent-record and passes this record to the
receiveEvent-methods of all its listeners. Notice that there is nothing said
about parallelism here – it may be possible that an event source provides
multiple events to an event listener in parallel. Synchronization must be per-
formed on the IEventListener-side. If an event listener does no longer want
to receive information from an event source, it can be unregistered using the
removeEventListener-method of the event source.

IEvent-records provide their creation time (getCreationTime(), in Java
time1) along with the event source identifier (getEventSource). The event
source identifier may lightly be mistaken for the event source itself. This is not
the case for a very simple reason: events may be serialized and transmitted
over a network to a remote location. This will usually be the case if the opti-
mizer is running on a different machine in order to provide full computational
power to it without interference with other components. If the event record
would store a direct reference to its (serializable) source, this would lead to
the whole event source being transmitted over the network. If the source is the

1 see System.getCurrentMillis()-documentation

24.2 Reference Implementation 393

optimizer itself, a snapshot of the whole process (probably many Mibibytes
in size) would be copied over the network with an event that maybe just says
“optimization finished”. Implementors of the Sigoa-event API should thus use
another identification scheme and store event source identifiers different from
the objects actually creating the events.

The IEvent-interface can be extended for events with different semantics;
the IErrorEvent-interface for example specifies an event that is generated
because an error was caught. This interface provides the error information
in form of a java.lang.Throwable-instance which can be obtained via the
getError-method.

24.2 Reference Implementation

The package org.sigo.refimpl.events contains the reference implementa-
tion of the Sigoa event API, the most important features are illustrated in
Figure 24.2.

The class Event implements the IEvent-interface. It inherits from java.util

.EventObject, so the standard Sigoa events are compatible with the Java event
handling2. The event source can either be set directly in the constructor or
be determined automatically with the static method getCurrentId. The auto-
matic source determination requires that the event is created inside an activity
running in a job system compatible to the Sigoa job system see Chapter 28
on page 413. It uses the automatically created, unique identifier of the cur-
rent optimization job. The event’s creation time will automatically set to the
current system time. The methods equals and toString have been overridden
and do now compare/create textual representations of the event fields.

The class ErrorEvent implements the IErrorEvent-interface and can be
used to propagate a caught exception.

IEventSources have to maintain a list of IEventListeners and forward
events to them. The class EventPropagator is a utility for this purpose: it im-
plements both interfaces. If it receives an event with its receiveEvent-method,
it forwards it to all its listeners. Instances of this class can be used by all real
event sources to manage and notify their listeners or as event-multiplexer.

The stat package provides support to transform events to other output
formats. Its EventPrinter-class for example is an IEventListener that stores
the textual representations of all the events it receives into a stream. This
utility may be useful for writing log files.

2 Examples for Java event handling are Swing and AWT-events: http://java.sun.
com/docs/books/tutorial/uiswing/learn/example2.html#handlingEvents [ac-

cessed 2007-07-03]

http://java.sun.com/docs/books/tutorial/uiswing/learn/example2.html#handlingEvents
http://java.sun.com/docs/books/tutorial/uiswing/learn/example2.html#handlingEvents

394 24 The Events Package

stat
<<Package>>

org.sigoa.refimpl.events
<<Package>>

IEvent
<<Interface>>

Event

serialVersionUID: long

m_creationTime: long

getEventSource(): Serializa...

Constructor()

Constructor(Serializable)

getCreationTime(): long

toString(): String

equals(Object): boolean

getCurrentId(): Serializable

EventPropagator

serialVersionUID: long

m_listeners: List

addEventListener(IEventL...
Constructor()

removeEventListener(IEve...
receiveEvent(IEvent)

ErrorEvent

serialVersionUID: long

m_error: Throwable

getError(): Throwable

Constructor(Throwable)

Constructor(Serializable, Th..

equals(Object): boolean

EventPrinter

receiveEvent(IEvent)

Constructor(Object)

IEventSource
<<Interface>>

IErrorEvent
<<Interface>>

java.util.EventObject

IEventListener
<<Interface>>

Fig. 24.2: The reference implementation of the Sigoa event objects.

25

The Security Concept

The applications of the Sigoa framework are manifold. It could be used as
optimization component inside a program or run on a large cluster and provide
its capabilities in the form of web services. A corporation could rent runtime
for optimization processes to users who would upload optimization jobs in the
form of jar-Archives or class files.

A wide variety of applications requires security management by nature, so
there exists a simple but efficient security concept for the Sigoa too.

25.1 Specification

Java comes already shipped with a security technology1. Its security model
is based on a class named java.lang.SecurityManager. This class can check
permissions in the form of java.security.Permission-instances. If the VM
lacks the permission requested, the security manager throws an java.lang

.SecurityException. (If) There exists one global instance of the class
SecurityManager, those of the Java-Api methods that are security-sensitive
always request permission before they perform their actions.

Sigoa extends this security model by packing the basic method of java

.lang.SecurityManager, checkPermission (and an overloaded variant of this
method), into an interface ISecurityInfo. For each optimization job, such
security information must be specified. The security information should of
course not be created by the user – a process stage between the user process
and the job system should build it. Events are a general security risk: they
are most probably processed by other threads or even sent over a network.
This could be used by the event records created by a user job to perform
malicious work. The getEventSource()-method (see also Chapter 24) could be
overridden to shut down the Java virtual machine, for example. ISecurityInfo

1 http://java.sun.com/javase/6/docs/technotes/guides/security [accessed

2007-07-03]

http://java.sun.com/javase/6/docs/technotes/guides/security

396 25 The Security Concept

therefore provides one additional method: checkEvent. With this method, all
events generated by the optimization will be checked before being passed out
of the job system. This way it is easily possible to limit the allowed events to
instances of some known, secure classes.

The Java security manager must be replaced by an instance that also im-
plements the ISecurityInfo-interface and defers its methods to those of the
current job’s security info record. This can easily be accomplished by provid-
ing the thread that executes the optimization job with the security info. This
way, the security manager just needs to obtain the current thread instance
and query its current security info record. This query is encapsulated in the
SecurityUtils-class in the static method getCurrentSecurityInfo. More infor-
mation on the structure of Sigoa execution threads can be found in Chapter 28
on page 413. The structure of the Sigoa security concept package is illustrated
in Figure 25.1.

org.sigoa.spec.security
<<Package>>

<<Call>>

ISecurityInfo
<<Interface>>

checkPermission(Permissi...,

checkPermission(Permissi...

checkEvent(IEvent)

SecurityUtils
<<Interface>>

getSecurityInfoManager():...

getCurrentSecurityInfo(): I...

Fig. 25.1: The specification of the Sigoa security concept.

25.2 Reference Implementation

The reference implementation package for the security concept, org.sigoa

.refimpl.security, is sketched in Figure 25.2.
The two basic classes SecurityInfo and SecurityInfoManager both in-

herit the behavior of their checkPermission-methods from the Java de-
fault security manager class java.lang.SecurityManager. Both implement
the ISecurityInfo-interface, but have different semantics: The SecurityInfo-
records can be created per-optimization job and represent the security in-
formation of the job they are created for, whereas the SecurityInfoManager

25.2 Reference Implementation 397

replaces the default security manager and defers its checkPermission calls to
the current security info records (If no security info record is available, the
inherited default security manager behavior is used).

org.sigoa.refimpl.security
<<Package>>

ISecurityInfo
<<Interface>>

SecurityInfo

serialVersionUID: long

EVENT_POST_PERMISS

checkPermission(Permissi...,

checkPermission(Permissi...

checkEvent(IEvent)

SecurityInfoManager

serialVersionUID: long

checkPermission(Permissi...,

checkEvent(IEvent)

checkPermission(Permissi...

Constructor()

java.lang.SecurityManager
org.sfc.security.

SfcSecurityManager

Fig. 25.2: The reference implementation of the Sigoa security concept.

26

Stochastic Utilities

Most optimization algorithms for complex problems are randomized and
therefore need random numbers. Optimization algorithms are either popu-
lation based or iterative or both. Thus it is often helpful to perform statistic
analyses in order to determine the average fitness of the solution candidates
of one population or the progress of the algorithm over time, for instance.

The mathematical foundations are explained in Chapter 35 on page 513 –
the Sigoa stochastic utility package defines interfaces to encapsulate them.

26.1 Specification

The Sigoa stochastic utility package (depicted in Figure 26.1) contains speci-
fication for both, random number generators and statistical information pre-
sentation.

26.1.1 Random Number Generators

There are two different types of random number generators: those which create
a sequence of random numbers according to a particular distribution function
and those which provide multi-purpose functionality.

The first case is represented by the IRandomNumberGenerator-interface. Its
nextDouble-method can subsequently be called and will return random num-
bers according to a certain distribution. It may be backed by a list containing
all the numbers to be returned (and thus be deterministic) or, for example,
return uniformly distributed random numbers obtained using specific algo-
rithms.

If a random number generator creates repeatable sequences of random
numbers, its getSeed-method may return a valid seed. The current seed of a
(deterministic) random number generator determines all future numbers gen-
erated by it. Thus, if the seed is stored and restored later (with setSeed),

400 26 Stochastic Utilities

org.sigoa.spec.stoch
<<Package>>

IStatisticInfo2
<<Interface>>

getQuantil25(): double

getMedian(): double

getInterquartilRange(): dou...

getQuantil75(): double

getKurtosis(): double

getSkewness(): double

IRandomNumberGenerator
<<Interface>>

getSeed(): Serializable

nextDouble(): double

setDefaultSeed()

setSeed(Serializable)

IRandomizer
<<Interface>>

nextDouble(): double

nextBoolean(): boolean

nextInt(): int

nextInt(int): int

nextNormal(double,double):..

nextGaussian(): double

nextExponential(double): d...

IStatisticInfo
<<Interface>>

getMinimum(): double

getCount(): long

getAverage(): double

getMaximum(): double

getCoefficientOfVariation()...

getVariance(): double

getSum(): double

getStdDev(): double

getRange(): double

getSumSqr(): double

Fig. 26.1: The specification of the Sigoa stochastic utilities.

the sequence of pseudorandom numbers can be created twice. This way, ex-
periments can be repeated under same random circumstances. The method
setDefaultSeed initializes the random number generator with a constant de-
fault seed.

The IRandomizer-interface extends IRandomNumberGenerator to a multi-
purpose random number generator. Its nextDouble-method is now specifi-
cally bound to create uniformly distributed random numbers in the inter-
val [0, 1). It is an implementation of the parameterless randomu() algorithm
(see Definition 176 on page 565). The specification of this method is com-

26.1 Specification 401

patible with Java’s java.util.Random.nextDouble()1. IRandomizer also defines
other methods compatible to java.util.Random, allowing implementations to
reuse the java class.

26.1.2 Statistic Data Representation

The most important statistical parameters are defined in Section 35.2 on
page 519. The aim of the statistic utilities of Sigoa is to enable objects to
provide such parameters in a structured manner. We define two interfaces,
IStatisticInfo and IStatsticInfo2, for that purpose. While IStatisticInfo

presents parameters that can be computed incrementally from a stream of data
without needed access to all data elements (see Table 26.1), IStatisticInfo
extends it by additionally representing those which can only be computed
with immediate access to all data elements (seeTable 26.2).

Table 26.1: The methods of IStatisticInfo

method stat. parameter definition

getCount count Definition 140 on page 520
getMinimum minimum Definition 141 on page 520
getMaximum maximum Definition 142 on page 520
getRange range Definition 143 on page 521
getSum sum Definition 145 on page 521
getAverage arithmetic mean Definition 146 on page 521
getSumSqr sum of squares Definition 148 on page 522
getVariance variance Definition 147 on page 522
getStdDev standard deviation Definition 149 on page 523
getCoefficientOfVariation coefficient of variation Definition 150 on page 523

Table 26.2: The (additional) methods of IStatisticInfo2

method stat. parameter definition

getSkewness skewness Definition 154 on page 524
getKurtosis kurtosis Definition 155 on page 524
getMedian median Definition 156 on page 524
getQuantil25 quantil25100 Definition 157 on page 525
getQuantil75 quantil75100 Definition 157 on page 525
getInterquartilRange interquartile range Definition 158 on page 526

1 http://java.sun.com/javase/6/docs/api/java/util/Random.html [accessed

2007-07-03]

http://java.sun.com/javase/6/docs/api/java/util/Random.html

402 26 Stochastic Utilities

The author currently does not know any method to compute the param-
eters skewness or kurtosis on the fly on a data stream. It may be possible
that there is one and we’ll find out some day. In this case we’ll move this
method to the IStatisticInfo-interface.

Notice that it may be very useful if an IRandomNumberGenerator, which
works according to a certain probability distribution function, would also
implement the statistic interfaces (IStatisticInfo or IStatisticInfo2). The
random number generator could this way provide information about the pa-
rameters of the underlying distribution function.

26.2 Reference Implementation

The structure of the Sigoa stochastic utilities reference implementation pack-
age org.sigoa.refimpl.stoch is sketched in figure Figure 26.2.

26.2.1 Random Number Generators

The default random number generator type for Sigoa optimizers is imple-
mented in the Randomizer class. It extends the Java class java.util.Random by
the additional methods defined in the IRandomizer-interface. Other than in-
stances of Random, those of Randomizer are not synchronized. All calls to them
either have to happen in a single thread or need to by synchronized manually.
Waive the synchronization in the Randomizer class increases its performance
up to three times.

In order to obtain uniformly distributed pseudorandom numbers, a lin-
ear congruent generation scheme is applied, as discussed in Section 35.7.1
on page 561. In order to generate normally distributed random numbers in
the method nextGaussian, the Box Muller method is applied as mentioned
in Section 35.7.2 on page 562.

26.2.2 Statistic Data Representation

We define two classes for statistic data collection: StatisticInfo,
which implements IStatisticInfo, and StatisticInfo2 which implements
IStatisticInfo2. StatisticInfo works on a stream of data: by repeatedly call-
ing the append-method, the internal data is steadily updated and made avail-
able through the IStatisticInfo-methods. StatisticInfo2 needs full access to
all data elements in order to provide parameters like the median and the other
two quartiles. Such records thus cannot be filled incrementally. To abstract
from the data access in we define the interface IValueExtractor-interface. An
implementation of this interface provides the means to access one special col-
lection type. An implementation for double[] is already defined as a constant
(DOUBLE_ARRAY_VE) in StatisticInfo2. Such instances can be passed to the

26.2 Reference Implementation 403

IStatisticInfo
<<Interface>>

java.util.Random

IStatisticInfo2
<<Interface>>

IRandomizer
<<Interface>>

CollectionType

getValue(CollectionType,int)

IValueExtractor
<<Interface>>

StatisticInfo

append(double)

Constructor()

serialVersionUID: long

getMinimum(): double

getCount(): long

get...

Constructor()

getRange(): double

assign(IStatisticInfo)

clear()

equals(Object)

clone()

serialVersionUID: long
m_count: long
m_...

StatisticInfoBase

StatisticInfo2

getMedian(): double

Constructor()

get...

getKurtosis(): double

gatherInfoSorted<Collectio...

clear()

assign(IStatisticInfo)

gatherInfoUnsorted<Coll...

equals(Object)

serialVersionUID: long
m_med: double
m_...
DOUBLE_ARRAY_VE...

Randomizer

serialVersionUID: long
m_seed: long
s_seed: long
FIXED_SEED: long

Constructor(long)

Constructor()

getSeed(): Serializable

setSeed(Serializable)

next(int): int

setDefaultSeed()

nextExponential(double): d...

nextNormal(double,double):..

<<Call>>

org.sigoa.refimpl.stoch
<<Package>>

Fig. 26.2: The reference implementation of the Sigoa stochastic utilities.

404 26 Stochastic Utilities

methods gatherInfoSorted and gatherInfoUnSorted along with an instance of
the collection-type they are intended for in order to read the data into the
StatisticInfo2-object. Both, StatisticInfo and StatisticInfo2, inherit from
the package-internal (invisible-for-the-outside-world) class StatisticInfoBase

which additionally provides the means to copy the records (via clone), to clear
them (via clear) to copy the content of one record into another, existing one
(via assign) and to compare them for equality (using equals).

27

The Simulation Interface

Many optimization problems require complex evaluation of their individuals.
Objective functions can often not be computed by just evaluating a mathe-
matical expression. Instead, the individuals provide some sort of model which
behavior needs to be determined using a complex simulation. Evolving a
hardware/software-codesign [1101, 1102] may require simulating a VHDL1-
design, the fitness of a wind turbine can only be determined with a complex
physical simulation [1103], and a pattern recognition system grown [1104]
needs to be checked against many test samples. There are even optimiza-
tion algorithms that require human interaction in order to test their solution
candidates like the evolution of music [1105] or images [1106]. If we apply
multi-objective optimization, it may become possible that different objective
functions require different simulations. If optimizing the design of a steel bar,
one it is important to know how much weight a specific design can hold. An-
other objective function may further designs that are capable to withstand
short but heavy impacts and thus needs another sort of simulation. A third
objective would be to construct steel bars in a way that they can be stored and
transported properly and therefore may test if they fit into certain containers
or through the holes of some machines.

The Sigoa simulation interface allows arbitrary simulations to be managed
and accessed by in a structured manner.

27.1 Specification

The specification package of the Sigoa simulation interface, org.sigoa.spec

.simulation, is outlined in Figure 27.1.

1 http://en.wikipedia.org/wiki/Vhdl [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Vhdl

406 27 The Simulation Interface

org.sigoa.spec.simulation
<<Package>>

ISimulationManager
<<Interface>>

removeProvider(ISimula...

addProvider(ISimulationP...

getSimulations(Serializa...

getSimulation(Serializa...

returnSimulation(ISimula...

PP extends Serializable

ISimulation
<<Interface>>

endSimulation()

beginSimulation()

endIndividual()

beginIndividual(PP)

ISimulationProvider
<<Interface>>

destroy (ISimu...)Simulation

createSimulation(): ISim...

getMaxSimulations(): int

getSimulationId(): Seriali...

<<Call>>

<<Call>>

<<Call>>

getSimulationId(): Serializ...

simulate(long): boolean

Fig. 27.1: The specification of the Sigoa simulation interface.

27.1.1 The Simulations

ISimulation represents the basic interface to a simulation. In Sigoa, simula-
tions are reusable objects. Simulating an individual will always proceed in
three steps.

1. Before a simulator is used, it is initialized with the method
beginIndividual which also receives the solution candidate as a parameter
to be tested as parameter. This method is called only once per individual.

2. The single simulations are initialized with a call to beginSimulation. The
simulation now can set up internal data structures. This method is called
for each simulation run and thus, possible multiple times per individual.

27.1 Specification 407

3. The simulate-method is called with a long-parameter containing the count
of steps to perform in the simulation. This method may be called multiple
times. Simulations in Sigoa can always be performed in discrete steps.
simulate returns a boolean value which is trueif further simulating would
possible change the state of the simulation, and falseif the simulation
has come to a final, terminal state which cannot change anymore.
If we simulate for example how a steel bar breaks, we have to use discrete
time steps. simulate may be called several times. At some point in (sim-
ulated) time, the (simulated) steel bar breaks. After the bar is broken,
further simulating makes no sense and simulate will always return false.
Although this is a good method to detect whenever a simulation is done, it
is not always a good idea to call simulate until it returns false. Sometimes
you will want to limit the simulated time steps - if a program simulated, for
instance, it may contain an unconditional loop and run infinitely. There-
fore, can specify a count of steps to be performed in each call to simulate.

4. After the simulation has been performed long enough so that the objec-
tive functions could come to a conclusion about their values, a call to
endSimulation tells the simulator that it may free all the simulation data.

5. Before being handed back to the simulation manager, the method
endIndividual is invoked, again exactly once per solution candidate. This
method should perform a final cleanup.

More information on how simulations are incorporated in the process of
determining objective functions can be found in Section 31.1.4 on page 453.

27.1.2 Simulation Provider and Simulation Manager

Simulations come with a unique identifier, the simulation id which can
be obtained using the getSimulationId-method. codeiliISimulationProvider-
instances act as factories for simulations. A new instance of a simulation may
be created using their createSimulation-method. If the (reusable) simulation
created by this method is no longer needed, it may be freed with an invo-
cation to destroySimulation. Each simulation provider is responsible for one
single type of simulation which id it makes available by also implementing
the getSimulationId-method (this method must be consistently return the
same id as the getSimulationId-method of the simulation type represented).
Using the simulation provider, many instances of a simulation type may be
created and used in parallel. This can provide a speed-up if the optimizer runs
on a multi-processor machine, for example. One could also imagine that the
ISimulation-instances created are just local proxies for remote servers that
actually perform the simulation work. It would make sense to create such a
simulation-proxy for each remote server, so all servers could be equally loaded.
To create more simulation-proxies however would not yield any gain of speed,
if the computer running the optimizer had more processors. Therefore, the
getMaxSimulations-method of the simulation provider can be used to limit
the count of simulation instances created.

408 27 The Simulation Interface

The third interface provided by the simulation-package is ISimulationManager.
Instances of this interface are intended to manage multiple simulation
providers and cache simulations, in order to provide them to other modules
with high performance. Simulation providers may be added to a simulation
manager using addProvider and removed using the removeProvider-method.
A module that wants to perform a simulation calls getSimulation, passing
in the id of the simulation required. The simulation manager will first check
if it can provide the wanted simulation. If yes, it checks if it has a cached
simulation instance of the given type available. If there is no unused, cached
instance, a new one can be created and returned if the maximum count of
active instances of the given type has not yet been exceeded. If (due to the
getMaxSimulation-restriction) no new instance can be created, getSimulation
will block until an instance in use has been returned. Simulations are returned
to the simulation manager using returnSimulation when they’re no longer
needed (usually after a call to endSimulation). If, for some reason, more than
one simulation type is needed in order to evaluate the objective functions,
the getSimulations-method allows to query multiple, different simulations at
once. It will block until instance of all simulation types requested are avail-
able. One should mention that the caching of simulations, as described here,
is just a suggestion. The behavior of ISimulationManager could as well be re-
alized without such a mechanism, though it could provide strong performance
gains, especially if the simulation objects are quite heavy-weight (like one can
imagine the simulators for steel bar physics to be).

27.2 Reference Implementation

The reference implementation of the Sigoa simulation interface can be found
in the package org.sigoa.spec.simulation, sketched in Figure 27.2.

27.2.1 The Simulation

The base class Simulation realizes the ISimulation-interface. It does not pro-
vide any special simulation capabilities. The only thing is does is to store the
solution candidate passed into beginIndividual into an internal variable and
making it available through the method getSimulated.

The id system of the Sigoa simulation interface implementation is class
based –the getSimulationId-method of an instance of Simulation will return
its class.

27.2.2 Simulation Provider and Simulation Manager

SimulationProvider, the standard implementation for simulation providers,
takes a Class-object as parameter in its constructor. This class is used as

27.2 Reference Implementation 409

ISimulationManager
<<Interface>>

ISimulationProvider
<<Interface>>

ISimulation
<<Interface>>

PP extends Serializable

PP extends Serializable

Simulation

serialVersionUID: long

m_what: PP

endIndividual()

getSimulated(): PP

getSimulationId(): Serializ...

simulate(long): boolean

beginSimulation()

Constructor() SimulationProvider

serialVersionUID: long

m_clazz: Class

destroy (ISimu...)Simulation

createSimulation(): ISim...

getMaxSimulations(): int

getSimulationId(): Seriali...

equals(Object)

Constructor(Class)

SimulationManager

removeProvider(ISimula...

addProvider(ISimulationP...

getSimulations(Serializa...

getSimulation(Serializa...

returnSimulation(ISimula...

destroy()

Constructor()

serialVersionUID: long

org.sigoa.refimpl.simulation
<<Package>>

beginIndividual(PP)

endSimulation()

Fig. 27.2: The reference implementation of the Sigoa simulation interface.

410 27 The Simulation Interface

simulation id and also in its createSimulation-method, where the instances of
this class created with Java reflection2 and returned. Thus, the class passed in
to the constructor needs to be a class of an implementation of the ISimulation-
interface which has a parameterless constructor itself.

The simulation manager default implementation SimulationManager pro-
vides the full functionality discussed in the specification section. Arbitrary
simulation providers (ISimulationProvider-instances) may be added to it, not
limited to instances of SimulationProvider. Their ids also may be arbitrary
objects, not limited to classes.

27.2.3 Simulation Inheritance

Using classes as simulation ids however has a striking advantage: the support
of inheritance. Figure 27.3 demonstrates a case where this feature can be used.
Imagine we perform genetic programming and let algorithms grow. In order

VMNetworkSimulation

IVMState
<<Interface>>

getStepCount(): long

SingleVMSimulation

Fig. 27.3: Simulation inheritance in the reference implementation.

to determine their fitness for a specific purpose, we have to simulate them.
Of course we want algorithms that run fast, so we add an objective function
that minimizes the count of algorithm steps performed. Therefore, we add a
function getStepCount to our simulation that returns this step count. When
applying genetic programming, you will normally grow algorithms that are in-
terpreted on one single (virtual) machine. What if we now want to evolve dis-
tributed algorithms? Well, instead simulating a single virtual machine running

2 http://java.sun.com/javase/6/docs/technotes/guides/reflection/ [accessed

2007-07-03]

http://java.sun.com/javase/6/docs/technotes/guides/reflection/

27.2 Reference Implementation 411

the algorithm, we would have to simulate a whole network of such virtual ma-
chines. Again, algorithms that need lesser steps to come to a result should be
preferred. Normally, we would re-implement the objective function discussed
above. Using the simulation inheritance how ever, we can choose another op-
tion: we define an interface IVMState which provides the getStepCount-method.
Now we implement this interface into both simulations, the one for the single
virtual machine (SingleVMSimulation and into the one for the whole network
VMNetworkSimulation), where it would simple add up the steps performed by
all nodes in the simulated network. Our objective function now would only
query a simulation that provides the IVMState-interface and could be applied
to both cases. The simulation manager would look up which of the ids of
the simulations it can provide is a class that is assignment-compatible to
IVMState. Besides that more complicated example, a simple other application
of simulation inheritance is to make simulations exchangeable. If a distributed
algorithm should be simulated, we also need to simulate a network. Simulat-
ing a network can either be done very precisely using tools like ns2 3 or very
simple without regarding latency, possible data loss and interference and such
and such. If an objective function needs access to such network simulation
data, we can simple define a base class for virtual machine network simulators
that is derived for both cases. Now we can exchange the simulations whenever
we want without interfering with the objective function which works on the
base class for network simulation.

The reference implementation of the simulation manager supports such
simulation inheritance. It whatsoever can, as already said, still process simu-
lations with id types other from classes.

3 The Network Simulator – ns-2 http://www.isi.edu/nsnam/ns/ [accessed 2007-07-03]

http://www.isi.edu/nsnam/ns/

28

The Job System

The job system is the backbone of the Sigoa optimization framework. It ab-
stracts from parallelization and separates all aspects concerning this from the
optimization algorithms. It provides a basic API with two main features:

1. Each optimization request is handled as one separate job which is pro-
cessed by the job system. The job system may be able to assign worker
threads/processors to the optimization according to the some internal
strategy.

2. Optimization requests may often be considered as a set of tasks. In a
population-based algorithm, the evaluation of the objective functions for
each individual may be treated as such a task. The job system provides
the optimization requests with an interface that allows them to execute
such tasks in a transparent manner.

Transparency is one the main feature of the job system. The job system
may own a simple queue for optimization requests and handle all of them
sequentially. It may be implemented in a way that it can use multiple proces-
sors and thus execute tasks on each processor in parallel. The job system also
may just be a gateway to a network of computational resources and directly
distribute optimization requests to that network.

28.1 Specification

28.1.1 The Activity Model

Definition 85 (Activity). An activity is an entity that may run or may be
run in parallel. It can (but does not necessarily need to) be executed on a
(virtual) processor.

The job system package defines a default model for all Sigoa activities.
This definition includes the states through which an activity may transcend

414 28 The Job System

together with their semantics and the methods that lead to the state tran-
sitions (see Figure 28.1). The job system itself and all optimization requests
are instances of Sigoa activities, and so will are all the other parallel-running
parts like communication facilities and threads that regularly perform some
tasks.

RUNNING TERMINATEDINITIALIZED TERMINATING

IAc
tiv

ity
2::

sta
rt

IAc
tiv

ity
::a

bor
t

Fig. 28.1: The states and life cycles of an activity.

• INITIALIZED After the activity has been created, it will be in the state
INITIALIZED (if it is an instance of the interface IActivity2). By calling
the start-method, the activity will transcend to RUNNING. start normally
can only be called for activities in the state INITIALIZED, if it is called
for activities in another state a java.lang.IllegalStateException will be
thrown. Therefore, start can be called at most once. Of course, an activity
can be aborted (with a call to abort) directly before being started. In this
case, the next state will be TERMINATING.

• RUNNING After being start, the activity performs its work while being in the
state RUNNING. Notice that instances of IActivity which do not implement
the IActivity2-interface enter this state directly after their construction.
The RUNNING-state can only be left be transcending into the transitional
state TERMINATING. This transition can be performed either because the
activity has been aborted (by a call to abort) or because the activity has
finished its work and wants to terminate itself.

• TERMINATING The transitional state TERMINATING denotes that the activity
is terminating, either due to being aborted or due to having finished its
work. The activity will dwell in this state until all sub-activities and all
threads or processes started by it have terminated too. After everything
run by the activity is finished, it will transcend to the state TERMINATED.

• TERMINATED This is the final state of an activity. It will be reached after all
activities and all threads or processes started by it have terminated too.
All other threads that wait for the activity (with waitFor) will now be
notified and released. Normally, the activity will never leave this state. In
some cases it may however bear advantages making heavy-weight activities
reusable. In that cases, manual a transition to INITIALIZED may be allowed.

The basic interfaces of the activity model are illustrated in Figure 28.2. The
possible states of an activity as discussed above are defined by the enumerate

28.1 Specification 415

EActivityState. IWaitable provides the method waitFor which waits for the
activity to be terminated (i. e. reaches the state TERMINATED). If its boolean

parameter interruptible is trueand the waiting is somehow interrupted, this
method will return true. Otherwise, it returns false. IActivity provides
methods to query the current state of the activity.

• isRunning returns trueif and only if the activity is currently in the state
RUNNING.

• isFinal returns trueif the activity has entered one of the two final states
TERMINATING or TERMINATED.

• isTerminated becomes trueif the activity has terminated, i. e. is in the
state TERMINATED.

With the method abort a transition into the state TERMINATING can be initi-
ated at any given time and is thus the way to end an activity manually in a
graceful manner. Activities that can and must explicitly be started support
the IActivity2-interface.

28.1.2 The Job System Interface

A job system can be accessed through the IJobSystem-interface. It extends the
IActivity2-interface discussed before and the IEventSource-interface discussed
in Chapter 24 on page 391). Inheriting from these two interfaces provides the
functionality to start and stop job processing as well as a port to receive events
generated by the system and the jobs that it runs.

A new optimization job is handed over to the job system with the
executeOptimization-method. Additional to the job itself, this method needs
some additional information which defines how the optimization job is han-
dled. The method returns an instance of IOptimizationHandle which extends
IWaitable and enables the user to wait for the job’s completion. Furthermore,
the job system assigns a unique identifier to each job it processes, which
can be obtained by the getId-method of the optimization handle. This id
will also be the source of all events created by the job systems (again, see
Chapter 24). The job information passed to executeOptimization is packed
into an IJobInfo-record (see Figure 28.3). This job information record pro-
vides three other information sets:

1. IExecutionInfo basically provides the information for the job system how
to treat an optimization job. The basic version of this interface comes
with one method: getMaxProcessorCount returns the maximum number of
processors (working-threads) to assign to the job. The interface could be
extended in order to support priorities, runtime restrictions and such and
such.

2. We the ISecurityInfo-record is discussed in Chapter 25. The security
information assigned to an optimization job defines what operations the
optimization job is allowed to do.

416 28 The Job System

org.sigoa.spec.jobsystem
<<Package>>

IActivity2
<<Interface>>

start()

IWaitable
<<Interface>>

waitFor(boolean): boolean

IActivity
<<Interface>>

isRunning(): boolean

abort()

EActivityState
<<Enumeration>>

INITIALIZED
RUNNING
TERMINATING
TERMINATED

IJobSystem
<<Interface>>

getSimulationManager(): IS..

executeOptimization<G,PP>(..

org.sigoa.spec.events.IEventSource
<<Interface>>

isFinal(): boolean

isTerminated(): boolean

Fig. 28.2: The specification Sgioa activity model.

3. The IOptimizationInfo-record contains all the information that is used by
the optimization job. It is discussed in Section 31.1.9 on page 460.

Each job system is equipped with a simulation manager (accessible via the
getSimulationManager-method) by which it provides the optimization tasks it
runs with access to simulations as discussed in Chapter 27 on page 405.

28.1.3 The Interface to the Optimization Tasks

The job system provides all optimization tasks that it runs with an internal
access interface: the IHost (see Figure 28.4).

But how can an optimization job running access this interface? Well, if
it runs its tasks sequentially, in parallel or in a distributed manner, each

28.1 Specification 417

org.sigoa.spec.jobsystem
<<Package>>

<<Call>>

<<Call>>

<<Call>>

IJobInfo
<<Interface>>

getSecurityInfo(): ISecurityI..

getOptimizationInfo(): IOp...

getExecutionInfo(): IExecu..

PP extends Serializable

G extends Serializable

IExecutionInfo
<<Interface>>

getMaxProcessorCount(): int

IJobSystem
<<Interface>>

getSimulationManager(): IS..

executeOptimization<G,PP>(..

<<Call>>

IOptimizationHandle
<<Interface>>

getId(): Serializable

PP extends Serializable

IOptimiztationInfo
<<Interface>>

G extends Serializable

org.sigoa.spec.go
<<Package>>

org.sigoa.spec.security
<<Package>>

ISecurityInfo
<<Interface>>

IWaitable
<<Interface>>

<<Call>>

Fig. 28.3: The job system information record.

job system must use threads in order to do so. All these worker threads
that possible execute optimization code must implement the IHost-interface.
Similar to Java’s Thread.currentThread-method there is a utility class called
JobSystemUtils with a method getCurrentHost-method which returns the cur-
rent host interface (which is identical to the current thread if called from
within an optimization task, and null in all other cases).

The IHost-interface provides access to the IJobInfo-record passed
to executeOptimization via its getJobInfo-method. Events posted to its
receiveEvent-method are forwarded to the job system and can be received
by all event listeners registered. The simulation manager of the job system
can be obtained by calling getSimulationManager and the optimization job id
which has been assigned by the job system and should be used as event source
is made available through the getOptimizationId-method. Furthermore, the
host thread also provides an instance of IRandomizer for random number gen-
eration to the jobs it runs (see Section 26.1.1 on page 399).

418 28 The Job System

org.sigoa.spec.jobsystem
<<Package>>

<<Call>>

IJobInfo
<<Interface>>

getSecurityInfo(): ISecurityI..

getOptimizationInfo(): IOp...

getExecutionInfo(): IExecu..

PP extends Serializable

G extends Serializable

IHost
<<Interface>>

executeJob(Runnable)

flushJobs()

getJobInfo<G,PP>(): IJobIn..

getSimulationManager(): IS..

receiveEvent(IEvent)

defer()

getOptimizationId(): Seria..

JobSystemUtils

NO_WAIT_WAITABLE: ...

getCurrentHost(): IHost

<<Call>>

getRandomizer(): IRandomi..

Fig. 28.4: The interface of the job system to the jobs.

The main task of the job system, to provide transparent parallelization, is
constituted by three methods:

1. With executeJob, an optimization tasks can pass a job in form of an
instance of java.lang.Runnable-instance to the job system. This sub-job
then may be executed by the job system in any given way, sequentially, in
parallel or even distributed (see Section 28.1.4 on the facing page) to an-
other computational resource in a network. executeJob returns an instance
of IWaitable which can be used to wait for the sub-job’s completion.

2. If an optimization task creates many sub-jobs in a row, it normally does
not want to use each single IWaitable-returned. Instead, it may call the
flushJobs-method. This method waits until all sub-tasks created by the
calling tasks have finished.

3. If an optimization job has nothing to do or waits for the completion of an
outside event, it may release the processor temporarily by calling defer

which has quite similar semantics like Thread.yield.

The interesting feature of this form of transparent parallelization is that
sub-tasks can be nested arbitrarily. Since all tasks can access their host using
JobSystemUtils.getCurrentHost, no additional parameters have to be passed
to the tasks. Furthermore, since optimization jobs also implement the java

28.1 Specification 419

.lang.Runnable-interface, they can also be executed as sub-jobs, allowing op-
timization algorithms to use other optimization algorithms as back-ends.

The host is also the primary access point for the Sigoa security system
(see Chapter 25 on page 395).

28.1.4 Notes on Distribution

If the job system works in a distributed manner, i.e. assigns the jobs it receives
to different machines, a few things have to be regarded:

1. If a whole optimization job is to be send to a server which will perform
it, the job information record also has to be sent along. Furthermore,
there must be a proxy pipe installed to receive the jobs results (since the
job would write them out on the wrong machine, see Section 31.1.8 on
page 459).

2. It is completely possible that the server chosen to carry out the job misses
some classes needed, so these need to be send to it and have to be loaded
before.

3. If even sub-jobs (i. e. those received via the hosts with executeJob) are
distributed, the optimization information record also has to be present
on the executing machines. Also, the sub-jobs must not interact directly
with other objects of the optimization job, since these would not be present
there.

28.1.5 Using a Job System

In order to use a job system, one first needs to get an instance of IJobSystem.
Reference implementations of this interface are discussed in Section 28.2.3 on
page 422.

After creating this job system instance, we need to start it. This is done
by invoking start since IJobSystem inherites from IActivity2.

Tasks are passed to the job system using the executeOptimization-method.
This method takes an instance of IOptimizer and a IJobInfo-record as param-
eters. The job system now may queue the job internally and processes it as
soon as there is free computation capacity. The optimization job can be re-
stricted in the amount of processors it can get assigned to in parallel with the
getMaxProcessorCount-method which is part of the IExecutionInfo-interface
which in turn can be accessed via the method getExecutionInfo of the job
info record.

When the job system has performed everything we want it to perform we
can either let it run infinitely or abort it using abort. Invoking this method
will order the job system to terminate all its internal threads, to abort all
tasks currently performed or in an internal task queue, and to free all internal
stores. If we want to wait until the job system is completely terminated, we
can use the method waitFor which returns after all internal activities have
terminated.

420 28 The Job System

28.2 Reference Implementation

28.2.1 The Activity Model

The reference implementation of the Sigoa job system including the activ-
ity model can be found in the org.sigoa.refimpl.jobsystem-package illus-
trated in Figure 28.5. A handy base class which can be used to derive

org.sigoa.spec.jobsystem.
IActivity2

<<Interface>>

org.sigoa.refimpl.jobsystem
<<Package>>

Activity

isFinal(): boolean

abort()

Constructor()

start()

waitFor(boolean): boolean

doStart()

doAbort()

finished()

isTerminated(): boolean

isRunning(): boolean

JobSystem

m_events: EventPropagator

m_simulationManager: IS...

Constructor()

Constructor(ISimulationM...)

createEventPropagator(): IE..

addEventListener(IEventL...

removeEventListener(IEve...

getSimulationManager(): IS...

propagateEvent(Serializab...

getEventPropagator(): IEv...

doAbort()

checkExecuteOptimization<G

createRandomizer(): IRando.

ThreadActivity

createThreadGroup(String):..

getThreadGroup(): ThreadG..

doAbort()

doStart()

createRandomizer(): IRando.

waitFor(boolean): boolean

addThread(SfcThread)

removeThread(SfcThread)

abortThreads()

Constructor(ThreadGroup)

org.sigoa.spec.jobsystem.
IJobSystem
<<Interface>>

org.sfc.parallel.Activity org.sfc.parallel.ThreadActivity

Fig. 28.5: The reference implementation of the Sgioa activity model.

activities in the Sigoa environment is the class Activity which implements
the IActivity2-interface. It is derived directly from the Sfc-class org.sfc

.parallel.Activity which realizes the exact same activity model as speci-
fied in Section 28.1.1. Here we will discuss the methods inherited from this
utility class and illustrated in Figure 28.5. A new instance of Activity is
always in the state INITIALIZED. The internally synchronized method start

first checks whether the activity is currently in the state INITIALIZED. If so,

28.2 Reference Implementation 421

it invokes the protected method doStart, otherwise it throws an java.lang

.IllegalStateException (see Section 28.1.1 on page 413). doStart can be over-
ridden by derived classes in order to provide specific startup behavior. abort
also checks the internal state. If it is INITIALIZED or RUNNING, the state will be
set to TERMINATING and doAbort will be invoked. Nothing will be done otherwise
(assuming that the activity is either already shutting down (terminating) or
terminated fully). This doAbort-method must be overridden by derived classes
in order to provide shutdown behavior, and, most important, call finished.
The also protected method finished sets the state of the activity to TERMINATED

and releases all threads that wait for this activity using the waitFor-method.
If the activity may terminate itself without enforcing the use of abort, it must
call finished at the end as well. This would for example be the case if the
activity is a thread that does some work and terminates after that work is
finished.

The class ThreadActivity inherits its behavior from the Sfc utility org

.sfc.parallel.ThreadActivity. This class realizes the specification of an
activity that consists of any number of threads. Threads can be added
to the activity using the protected method addThread and removed via
removeThread. The method doStart will start all threads added to the ac-
tivity and doAbort will stop them. waitFor will not return until all threads
have terminated. ThreadActivity also stores a thread group which can be ac-
cessed via getThreadGroup. This thread group can either be specified in the
constructor, or is otherwise created by the method createThreadGroup.

28.2.2 The Job System Base Classes

The class JobSystem can be used as base for IJobSystem-implementations. It
is a subclass of ThreadActivity and provides additional utilities:

• It uses an internal instance of EventPropagator (see Section 24.2 on
page 393) which manages the event listeners that register to the job system.
This internal event propagator can be accessed via getEventPropagator.
Events are send to the listeners over the event propagator using the
propagateEvent-method which takes the id of the sending optimization
job as well as the event itself as parameter. The org.sigoa.spec.events

.IEventSource-interface (which is one of the super-interfaces of IJobInfo)
is realized using this internal event propagator: the addEventListener and
removeEventListener forward to it. The event propagator is created by the
createEventPropagator-method which can be overridden if an instance of
a class derived from EventPropagator should be used instead of the default
implementation.

• All job systems need to create at least one thread in order to obey to
the specification properly. All threads of a job system should belong to a
single thread group. This thread group is provided by the getThreadGroup-
method inherited from ThreadActivity. If a normal java.lang.ThreadGroup

422 28 The Job System

does not suffice for some reasons, the method createThreadGroup may be
overridden in order to provide another class.

• A job system has to offer a simulation manager via the method
getSimulationManager. This simulation manager can either be passed in
the constructor of JobSystem or it uses the default simulation manager
implementation (org.sigoa.refimpl.simulation.SimulationManager).

• The checkExecuteOptimization-method which can be used by derived
classes performs default tests on a job to be executed. If everything is ok
it simple returns. In the case of an error, it throws the correct exception.

• The host threads need to provide random number generators in the form
of instances of IRandomizer. Therefore JobSystem provides the method
createRandomizer which creates such a randomizer. This method returns
a new instance Randomizer (see Section 26.2.1 on page 402).

The reference implementation of the job system information records is
sketched in Figure 28.6. The getMaxProcessorCount-method of ExecutionInfo
always returns java.lang.Integer.MAX_VALUE so optimization jobs will utilize
all available processors. The default implementation of the IJobInfo-interface,
JobInfo, comes with two constructors. The first one takes three parameters:
an instance of org.sigoa.spec.security.ISecurityInfo, an instance of org

.sigoa.spec.jobsystem.IExecutionInfo, and an instance of org.sigoa.spec

.go.OptimizationInfo. These parameters can later be accessed through the
getSecurityInfo, getExecutionInfo and getOptimizationInfo-methods. The
second constructor only takes the mandatory IOptimizationInfo-instance as
variable and creates new instances of ExecutionInfo and org.sigoa.refimpl

.SecurityInfo.
Another class of information objects provided is JobId. As already stated

in Section 28.1.2 on page 415, unique identifiers will automatically be assigned
to new jobs by the job system. JobId represents a 128-bit identifier which can
be used for that purpose. Instances of this class will always be unique inside
a single Java virtual machine and have high probability of also being unique
in a set of different Java VMs. JobId also re-implements the equals, hashCode,
and toString-methods so job ids are comparable and have a human readable
representation.

28.2.3 Job System Implementations

The Sigoa reference implementation provides two basic job systems as
shown in Figure 28.7. The SingleProcessorJobSystem uses one single worker
thread and thus executes all optimization jobs sequentially whereas the
MultiProcessorJobSystem is able to start multiple workers and can perform
different jobs (and sub-jobs) in parallel.

28.2 Reference Implementation 423

IExecutionInfo
<<Interface>>

JobInfo

PP extends Serializable

G extends Serializable

m_execInfo: IExecutionInfo

m_securityInfo: ISecurityI...

m_optimizationInfo: IOpti...

Constructor(IExecutionInfo,.

Constructor(IOptimizationI...

getSecurityInfo(): ISecurityI..

getOptimizationInfo(): IOp...

getExecutionInfo(): IExecu..

ExecutionInfo

getMaxProcessorCount(): int

JobId

equals(Object): boolean

Constructor(IJobSystem)

toStringBuilder(StringBu...)

toString(): string

hashCode: int

serialVersionUID: long

SYNC: Object

s_idCnt: long

m_rest: long

m_uniqueNumber: long

IJobInfo
<<Interface>>

org.sigoa.spec.jobsystem
<<Package>>

org.sigoa.refimpl.jobsystem
<<Package>>

Fig. 28.6: The implementation of the job system info records.

The Single-Processor Job System

On computers with only one processor or in Java virtual machines that make
use of only one processor, a job system that also uses only exact one processor
will perform best. Furthermore, managing concurrent worker threads is more
complicated and needs more control data structures so it makes only sense in
an environment where parallelization will yield substantial performance gain.
Such data and control structures are spared in the SingleProcessorJobSystem

which exists to provide maximum performance in cases where only one pro-
cessor is available for executing the optimization jobs.

424 28 The Job System

org.sigoa.refimpl.jobsystem.singleprocessor
<<Package>>

org.sigoa.refimpl.jobsystem.multiprocessor
<<Package>>

MultiProcessorJobSystem

m_jobs: List

Constructor()

Constructor(ISimulationM...)

getNextThreadId(): int

waitFor(boolean): boolean

executeOptimization<G,PP>(

createThreads()

createThread(): MPJSThread

getOptimalThreadCount(): in

SingleProcessorJobSystem

m_job: SPJSJob

Constructor()

Constructor(ISimulationM...)

createThread(): SPJSThread

waitFor(boolean): boolean

executeOptimization<G,PP>(

org.sigoa.spec.jobsystem.
IJobSystem
<<Interface>>

org.sigoa.refimpl.jobsystem.
JobSystem

org.sigoa.spec.jobsystem.
IOptimizationHandle

<<Interface>>

MPJSJobBase

waitFor(boolean): boolean

MPJSJob

getId(): Serializable

SPJSJob

waitFor(boolean): boolean
getId(): Serializable

SPJSThread

m_js: SingleProcessorJobSy..

m_job: SPJSJob

executeJob(Runnable): IWai..

Constructor(String, MultiPr..

defer()

getOptimizationId(): Seriali..

receiveEvent(IEvent)

getJobInfo<G,PP>(): IJobIn..

getSimulationManager(): IS..

getRandomizer(): IRandom..

m_randomizer: IRandomize

org.sigoa.spec.jobsystem.IHost
<<Interface>>

MPJSThread

m_js: MultiProcessorJobSy..

m_jobBase: JobBase

executeJob(Runnable): IWai..

Constructor(String, MultiPr..

defer()

getOptimizationId(): Seriali..

receiveEvent(IEvent)

getJobInfo<G,PP>(): IJobIn..

getSimulationManager(): IS..

getRandomizer(): IRandom..

m_randomizer: IRandomize

Fig. 28.7: The two basic job system reference implementations.

28.2 Reference Implementation 425

All such optimization jobs passed to the single-processor job system are
put in a simple LIFO1-queue. Each SingleProcessorJobSystem uses exactly
one SPJSThread which performs all the work. The worker thread of the single-
processor job system is created using the internal createThread-method. It
can be overridden in order to provide worker threads with enhanced behavior.

The SPJSThread will take the jobs out of the job system’s internal job
queue and work on them. Furthermore, it also represents the interface to
the optimization jobs by implementing the IHost-interface (see Section 28.1.3
on page 416). Through this IHost-interface, an optimizer running may send
events or execute sub-jobs. Of course, since the job system is intended to
run as a single thread, the sub-job executing method executeJob(java.lang

.Runnable) simple invokes the Runnable’s run-method directly. Since all sub-
jobs are executed directly, the flush-method of SPJSThread does nothing –
there can never be sub-jobs to wait for. Another features is its internal excep-
tion handling: if a job causes a java.lang.Throwable, the exception is caught,
put into an IErrorEvent-record2 which is propagated to all event listeners
subscribed to the job system. The erroneous job then is terminated.

A job passed to a single-processor job system is internally represented by
an instance of SPJSJob. Instances of this internal class realize the org.sigoa

.spec.jobsystem.IOptimizationHandle-interface and are therefore returned by
executeOptimization. The application that handed the optimization job over
to the job system can wait for its completion using this handle.

The optimization Ids generated by this job system are instances of the
class JobId discussed in the previous section.

The Multi-Processor Job System

The MultiProcessorJobSystem uses multiple worker threads in order to provide
high performance in environments where more than one processor is available.
When it is constructed, it uses the internal getOptimalThreadCount method
to determine the count of threads to use. In the standard implementation,
this method returns Runtime.getRuntime().availableProcessors()–the count
of available to the Java virtual machine. It then creates that many MPJSThreads
via its createThread-method. Like in of SingleProcessorJobSystem, the worker
threads implement the IHost-interface and act as a gateway to the job sys-
tem for the running optimization jobs. It also comes with the same internal
exception handling, and, exactly like SPJSThread, inherits from DefaultThread

discussed in Section 33.1.1 on page 497.
The optimization jobs are represented by instances of MPJSJob-instances

which implements the IOptimizationHandle-interface. Unlike in the jobs of
the single-processor job system they are not kept in a LIFO-queue but in a
list to which processing power is assigned in a scheduling algorithm similar to

1 Last In First Out, http://en.wikipedia.org/wiki/LIFO [accessed 2007-07-03]

2 see Section 24.1 on page 391

http://en.wikipedia.org/wiki/LIFO

426 28 The Job System

Round Robin3. The MPJSJob however are instances of another internal class,
MPJSJobBase. Instances of this class represent a single sub-job but also contain
a LIFO-queue of again, instances of MPJSJobBase. This allows the optimiza-
tion job to execute sub-jobs, which in turn can again execute sub-jobs and
so on. The flush-method of MPJSThread waits until all sub-jobs of the calling
(sub-)job are executed. executeJob always returns the instance of MPJSJobBase
assigned to the sub-job, since MPJSJobBase implements the org.sigoa.spec

.jobsystem.IWaitable-interface. The waitFor-method of this interface will re-
turn when the sub-job it is belongs to has finished. This way, an optimization
tasks can wait for specific sub-jobs to be completed.

3 http://en.wikipedia.org/wiki/Round-robin_scheduling [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Round-robin_scheduling

29

The Pipeline System

Optimization algorithms in the Sigoa framework are realized as a concatena-
tion of pipes according to the pipes and filters1 design pattern [1107, 1108,
1109]. Pipes and filters means basically that a stream of data is processed in
a form very similar to the way work is done at an assembly line: there are sev-
eral stations (filters) in a row each performing one special task, illustrated in
Figure 29.1. These stations are connected by pipes which transport the data.
If we apply this principle to genetic algorithms as depicted in Figure 3.1 on

Filter A Filter B Filter ...

Data
pipe

Fig. 29.1: The pipes and filters software design pattern.

page 119, for example, we can model the selection, reproduction and evalua-
tion phases as filters. The evaluation filter then would determine the fitness
of the incoming solution candidates. The selection filter only allows so and so
many individuals to pass. In the reproduction phase, the solution candidates
are replaced by their offspring. The only difference to the normal pipes and
filters approach is that the solution candidates that come out of the end of
the pipeline are put back into its beginning. Such a realization of an evolu-
tionary algorithm in the form of a pipes and filters-based system is illustrated
in Figure 29.2.

1 http://de.wikipedia.org/wiki/Pipes_and_Filters [accessed 2007-07-03]

http://de.wikipedia.org/wiki/Pipes_and_Filters

428 29 The Pipeline System

Evaluation

Reproduction

Selection
Reprodu-

ction
Evalua-

tion
Solution
candidate

pipe
Selection

Fig. 29.2: A evolutionary algorithm realized with pipes and filter.

29.1 Specification

The pipeline in Sigoa transports solution candidates in form of individual
records (org.sigoa.spec.go.IIndividual, see Section 31.1.1 on page 445).
Each filter in has an entry and an exit interface. The stream of individuals
enters the codeiliIPipeIn-interface through the write-method. Whenever all
solution candidates have been written, eof is called in order to tell the filter
that it has received a complete chunk of data. The codeiliIPipeOut-interface
provides the methods codeilisetOutputPipe and codeiligetOutputPipe. Using
setOutputPipe, an IPipeIn-instance can be specified to which the IPipeOut-
object should write all the individuals that come out of it to. Both interfaces
are combined in IPipe. Implementors of that interface are the stations of the
pipe, the filters. An arbitrary count of IPipe-instances can be concatenated
together and form a pipeline. There are many options what an instance of
IPipe can do with the individuals written to it, some of them are:

1. it can modify the incoming individuals and put out the result
2. it can copy them directly to its output while only gathering statistical

information
3. it can have secondary output destinations and fork the individual stream
4. it can have secondary output destinations and copy the individual stream

to both
5. it may buffer all individuals and process all them together at once when

receiving a call to eof before them putting out

Calls to eof will normally be propagated from pipe stage to pipe stage. Multi-
ple instances of IPipeOut can have set the same instance of IPipeIn as output
destination – joining multiple individual streams into one. In this case it may
be useful not to propagate all the eofs but only one single eof after all input
pipes have reported the end of their input data. It should be noted that an
invocation eof does not mean that no data will follow in future – it simple
stands for the end of one data chunk. A sequence of new individual records
can be written right after calling eof and after its end, eof can be called again.

The specification package of the Sigoa pipeline system, org.sigoa.spec

.pipe, is outlined in Figure 29.3. Additional to the default pipeline system
it contains the IPipeSource-interface that may be implemented by all entities

29.2 Reference Implementation 429

org.sigoa.spec.pipe
<<Package>>

IPipeIn
<<Interface>>

eof()

write(IIndividual<G,PP>)

PP extends Serializable

G extends Serializable

IPipeOut
<<Interface>>

getOutputPipe(): IPipeIn<G,..

setOutputPipe(IPipeIn<G,..>)

PP extends Serializable

G extends Serializable

IPipeSource
<<Interface>>

writeToPipe(IPipeIn<G,PP>)

PP extends Serializable

G extends Serializable

IPipe
<<Interface>>

PP extends Serializable

G extends Serializable

<<Call>>

<<Call>>

Fig. 29.3: The specification of the Sigoa pipeline system.

that own a set of solution candidates which can be written to an instance of
IPipeIn. On the other hand, there also may be entities that solely implement
IPipeIn. A collection of individuals which implements this interface can mark
the end of a pipeline – all solution candidates can be appended to it that way
without the need of passing them along to a subsequent pipe stage.

29.2 Reference Implementation

29.2.1 Basic Classes

The basic classes of the pipe system reference implementation are depicted in
Figure 29.4. The interface IPipeOut, which represents the output-end of a pipe

430 29 The Pipeline System

org.sigoa.refimpl.pipe
<<Package>>

PipeOut

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_output: IPipeIn<G,PP>;

setOutputPipe(IPipeIn<G,..>)

eof()

getOutputPipe(): IPipeIn<G,..

output(IIndividual<G,PP>)

Constructor()Pipe

PP extends Serializable

G extends Serializable

serialVersionUID: long

write(IIndividual<G,PP>)

Constructor()

PP extends Serializable

G extends Serializable

BufferedPipe

serialVersionUID: long

m_removeDuplicates: boole..

write(IIndividual<G,PP>)

Constructor()

bufferIndividuals(List<IInd..

doEof()

Constructor(boolean)

bufferIndividual(IIndivid...

setRemoveDuplicates(boolea..

process(IIndividual<..>[], int)

isRemovingDuplicates(): boo..

PP extends Serializable

G extends Serializable

BufferedPipeBase

serialVersionUID: long

m_buffer: IIndividual<...>[]

m_bufferSize: int

eof()

Constructor()

bufferIndividuals(List<IInd..

doEof()

org.sigoa.spec.pipe
<<Package>>

IPipe
<<Interface>>

PP extends Serializable

G extends Serializable

IPipeOut
<<Interface>>

PP extends Serializable

G extends Serializable

Fig. 29.4: The classes of the pipeline system reference implementation.

29.2 Reference Implementation 431

stage, is implemented in the PipeOut-class which additionally comes with the
methods eof and output. Both are used for the communication with the next
pipe stage (which can be set by setOutputPipe). The method output writes
an individual record to it (by calling the write-method) while eof invokes its
eof-method, telling that one stream of individuals is finished. (Remember at
this point that a call to eof does not mean that no future data will follow,
see Section 29.1 on page 428 for more information).

The class Pipe extends PipeOut by also implementing the IPipe-interface. It
is therefore equipped with the method write, which simple passes the individ-
ual it receives directly to the inherited output-method. The default behavior
of all classes that are descendants of Pipe is thus

• propagate calls to eof directly to the next pipe stage
• propagate individuals received via write directly to the next pipe stage

In order to provide some special behavior, like mutating all incoming individ-
uals, the method write has to be overridden in subclasses.

Pipes realize sequential processing. One individual is worked on, passed
to the next stage, and then the next individual is dealt with. Under many
circumstances, such a sequential approach is insufficient. If we want to per-
form a selection for example, we need to compare the solution candidates to
determine which one survives. In order to do so, we must access the whole
set of individuals of a generation. At this point, the method eof comes into
play. As already stated, it denotes the end of a chunk of solution candidates –
the end of a generation, for instance. We now buffer all incoming individuals
(that we receive through out write-method) internally and wait until eof is
called. We can now process them as a whole in eof and pass on the selected
ones to output (which then invokes write of the next pipe stage). After all
work is done, we clear our buffer and propagate the eof-call, again to the next
pipe stage.

This behavior is realized by the class BufferedPipe. It stores all individ-
uals it receives in an internal array, optionally removing duplicates2 on the
way. When eof is invoked, it calls the protected method doEof which in turn
invokes process if at least one individual was buffered. After that, the in-
ternal array is cleared and eof of the next pipe stage is invoked. process

must be overridden in subclasses in order to provide the wanted behavior, like
performing a selection, for example. isRemovingDuplicates tells whether the
automatic duplicate removing is applied, which can be turned on and off with
setRemoveDuplicates. Additional to the now buffering write-method, a list of
individuals can be buffered using bufferIndividuals.

To ease the editing of long concatenations of pipes, the class Pipeline is
introduced. Pipes attached naturally to each other form linked lists3. Pipeline

2 individuals that are referencial identical, are that same instances, do not mix up
with value equality

3 http://en.wikipedia.org/wiki/Linked_list [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Linked_list

432 29 The Pipeline System

presents this list through the Java Collections Framework4-interface java.util

.List, as sketched in Figure 29.5.

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.pipe.Pipeline

serialVersionUID: long

IPipe<G,PP>: m_first

IPipeIn<G,PP>: m_out

getOutputPipe(): IPipeIn<G,..

setOutputPipe(IPipeIn<G,...)

eof()

write(IIndividual<G,PP>)

Constructor()

get(int)

remove(int)

set(int, IPipe<G,PP)

add(IPipe<G,PP>)

...

org.sigoa.spec.pipe.IPipe
<<Interface>>

PP extends Serializable

G extends Serializable

java.util.List<IPipe<G,PP>>
<<Interface>>

Fig. 29.5: The utility class Pipeline.

29.2.2 Some Basic Pipes

The package org.sigoa.refimpl.pipe provides some predefined pipes (illus-
trated in Figure 29.6) for reoccurring tasks. The simplest one is the NoEofPipe

which alters the behavior of the normal pipe by not propagating the eof-calls.
This can be useful if solution candidates enter the optimizer from the outside
in an asynchronous way, from an internet connection, for example. They can
then be integrated into the optimization process without interfering with its
normal flow.

While this was an instance for union of two individual flows, it is sometimes
useful to fork a flow into two pipes. An evolutionary algorithm with elitism
(see Definition 37 on page 55) for example will fork the population into two
streams. One of them will be used for the next generation, the other one will be

4 http://java.sun.com/javase/6/docs/technotes/guides/collections/ [ac-

cessed 2007-07-03]

http://java.sun.com/javase/6/docs/technotes/guides/collections/

29.2 Reference Implementation 433

org.sigoa.refimpl.pipe
<<Package>>

Pipe

PP extends Serializable

G extends Serializable

NoEofPipe

PP extends Serializable

G extends Serializable

serialVersionUID: long

eof()

Constructor()

PP extends Serializable

G extends Serializable

NonPrevalenceFilter

serialVersionUID: long

write(IIndividual<G,PP>)

Constructor()

bufferIndividuals(List<IInd..

doEof()

bufferIndividual(IIndivid...

PP extends Serializable

G extends Serializable

BufferedPipeBase

PP extends Serializable

G extends Serializable

CopyPipe

serialVersionUID: long

m_cpy: IPipeIn<G,PP>

Constructor()

setCopyPipe(IPipeIn<G,PP>)

eof()

write(IIndividual<G,PP>)

getCopyPipe(): IPipeIn<G,...>

Fig. 29.6: Some other pipeline classes.

stripped of all prevailed individuals (see Section 1.3.5 on page 20), letting only
the non-prevailed ones remain, and stored into the archive. For the purpose of
forking an individual stream, the CopyPipe is used. All incoming individuals
are copied to both, the next pipe stage and to a secondary destination which
can be obtained with getCopyPipe and set by setCopyPipe.

In order to allow only the non-prevailed individuals to pass, a
NonPrevalenceFilter can be used. It first buffers all the solution candidates
of one chunk, deletes the prevailed ones and then writes the rest to the next
pipe stage.

434 29 The Pipeline System

29.2.3 Pipes for Persistent Output

The persistent output of a stream of individuals is another task special pipes
are provided for (see Figure 29.7). They could be attached to the optimizer to

org.sigoa.refimpl.pipe.stat
<<Package>>

org.sigoa.refimpl.pipe.Pipe

PP extends Serializable

G extends Serializable

G extends Serializable

PrinterPipe

PP extends Serializable

eof()

Destructor()

provideWriter(long): T

write(IIndividual<G,PP>)

Constructor(IWriterProvid...

onIterationBegin(T, long)

outputIndividual(IIndividu...

onIterationEnd(T, long)

serialVersionUID: long

m_out: T

m_provider: ITextWriterP...

G extends Serializable

IndividualPrinterPipe

PP extends Serializable

Constructor(ITextWriterPro..

outputIndividual(IIndividu...

onIterationEnd(TextWriter,..

serialVersionUID: long

m_start: long

m_itc: int

m_startIt: long

G extends Serializable

ObjectivePrinterPipe

PP extends Serializable

Constructor(ITextWriterPro..

outputIndividual(IIndividu...

onIterationBegin(TextWrit...

serialVersionUID: long

IWriterProvider
<<Interface>>

provideWriter(long): T

<<Call>>

T extends Writer

T extends Writer

FileSAXWriterProvider

Constructor(Object, String)

provideWriter(long): SAXW..

serialVersionUID: long

m_directory: CanonicalFile

m_prefix: String

FileTextWriterProvider

Constructor(Object, String)

provideWriter(long): TextW..

serialVersionUID: long

m_directory: CanonicalFile

m_prefix: String

Fig. 29.7: Pipe stages that print out statistical data.

29.2 Reference Implementation 435

store its results or be plugged right into the optimization algorithms internal
pipe to print all the solution candidates evaluated in its course.

The package org.sigoa.refimpl.pipe.stat contains such utility classes.
Their base is the PrinterPipe, especially suitable for iterative algorithms and
has three methods, all parameterized with the current iteration index and
a java.io.Writer to write to, that can be overridden for solution candidate
processing:

1. onIterationBegin is called at the beginning of each iteration. Here some
stuff like the start time or headlines could be printed.

2. For each individual that passes through the pipe, outputIndividual is
called. (The individuals will automatically be written to the next pipe
stage, this is done elsewhere outside of outputIndividual.)

3. At the end of each iteration, an invocation of onIterationEnd is issued.
This method provides the opportunity to print some statistics of the iter-
ation.

An iteration is defined as the time between two eofs. For each of these
iterations, PrinterPipe uses provideWriter to obtain a writer to which the
data should be written. This method is also parameterized with the current
iteration index which could for example be used to create the names of the
destination files.

In order to make PrinterPipe a very versatile class, we define the interface
IWriterProvider which specifies the aforementioned method provideWriter.
The printer pipe now uses such an IWriterProvider-instance to create the
Writers it uses in the single iterations. We now can use writers that store
their contents into a file or such that transmit the data over a TCP/IP5-
connection. On the other hand, PrinterPipe is generic in terms of the type of
the Writer to be used. This allows us to make use of the special utility classes
provided by the Software Foundation Classes library, such as

• sfc.io.TextWriter is an extension of java.io.Writer with methods that al-
low us to write the primitive types like int or double, for Base646-encoded
output of raw binary data, for writing times and time differences in human-
readable format, and so on.
The provider for TextWriters that write their content into files is called
FileTextWriterProvider which creates new files named after the iteration
index in a specified directory.

• Derived from TextWriter is the class org.sfc.xml.sax.SAXWriter.
SAXWriter is the reversion of the Java SAX7. Instead of using SAX to

5 http://en.wikipedia.org/wiki/Tcp/ip [accessed 2007-07-03]

6 http://en.wikipedia.org/wiki/Base64 [accessed 2007-07-03]

7 http://en.wikipedia.org/wiki/Simple_API_for_XML [accessed 2007-07-03], http://
java.sun.com/javase/6/docs/api/ [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Tcp/ip
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/Simple_API_for_XML
http://java.sun.com/javase/6/docs/api/
http://java.sun.com/javase/6/docs/api/

436 29 The Pipeline System

read XML8 it is here applied to write it. With SAXWriter you can create
XML files plus use all the functionality of TextWriter inside the tags.
The provider for SAXWriters that write their content into files is called
FileSAXWriterProvider which creates new files named after the iteration
index in a specified directory.

Two subclasses of PrinterPipe are provided: the ObjectivePrinterPipe

stores the values of the objective functions of the individuals in form comma-
separated values9 whereas IndividualPrinterPipe stores the complete data
provided by the individual records (objective values, fitness value, genotype,
. . .) in a text file.

8 http://en.wikipedia.org/wiki/Xml [accessed 2007-07-03]

9 http://en.wikipedia.org/wiki/Comma-separated_values [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/Comma-separated_values

30

Clustering

In Chapter 36 on page 571 we have discussed the different clustering algo-
rithms. A clustering algorithm divides a set A of elements a into disjoint
subsets b = {a1, a2, ...} ∈ B. The unison of all the sets b then again equals
A (see Definition 182). Optimization algorithms may use clustering in order
to reduce large sets of solution candidates with a minimum loss of diversity.
Clustering is applied in order to receive groups of individuals. From these,
representative individuals are chosen and kept while the rest is disposed. Bas-
ing on the Sigoa pipelining architecture elaborated in Chapter 29, we provide
the basic means to implement clustering algorithms for that purpose.

30.1 Specification

Figure 30.1 displays the class diagram of the clustering algorithm specification.
In Sigoa, we use clustering only for the purpose of downsizing sets of individ-
uals. Therefore, clustering can be implemented as a pipe stage. The imple-
mentation of IClusteringAlgorithm is thus a filter where some individuals go
in and fewer individuals come out. It subclasses the IPassThroughParameters-
interface from the package org.sigoa.spec.go which provides methods to get
and set the count of individuals allowed to pass as well as the interface
IIndividualDistanceMeasureParameters which allows to get/set an individual
distance measure.

Distance measures are in Section 36.1 on page 574. In Sigoa, they are
denoted by the interface IDistanceMeasure providing the method distance.
distance returns the distance between two instances of T in the form of a
double value. T is a generic parameter which allows distance measures to be
specified for arbitrary entities.

One possible replacement for T is the individual record IIndividual, as
in the IIndividualDistanceMeasure interface. Its implementors compute the
distance between two solution candidates. This could be the euclidean dis-

438 30 Clustering

org.sigoa.spec.clustering
<<Package>>

java.util.List<IIndividual<G,PP>>
<<Interface>>

IDistanceMeasure
<<Interface>>

distance(T, T): double

T

IIndividualDistanceMeasure
<<Interface>>

getNucleus(List): IIndividu...

PP extends Serializable

G extends Serializable

IClusteringAlgorithm
<<Interface>>

PP extends Serializable

G extends Serializable

IIndividualDistanceParameters
<<Interface>>

getIndividualDistanceMeas...

setIndividualDistanceMea...

PP extends Serializable

G extends Serializable

IClusterDistanceParameters
<<Interface>>

getClusterDistanceMeasure():

setClusterDistanceMeasure(..

PP extends Serializable

G extends Serializable

<<Call>>

org.sigoa.spec.go.
IPassThroughParameters

<<Interface>>
org.sigoa.spec.IPipe

<<Interface>>

<<Call>>

<<Call>>

Fig. 30.1: The specification of clustering algorithm interfaces.

tance1 of their objective values, the Hamming2 distance of their genotypes,
the difference of their fitness values, etc. A special function provided by this
interface is the method getNucleus. Taking a list of individuals, it returns the
most representative one according to the distance measure, according to the
function nucleus defined in Section 36.2 on page 577.

In the terms of the clustering module of Sigoa, we consider clusters as lists
of individual records. Thus, distance measures that work on clusters instead

1 see Definition 188 on page 574
2 see Definition 186 on page 574

30.2 Reference Implementation 439

of single individuals, as introduced in Section 36.1.3 on page 576, can be
implemented by replacing T with List<IIndividual<G,PP>>. The

Clustering algorithms that make use of cluster distances like linkage clus-
tering (see Section 36.3.4 on page 579) should additionally implement the
interface IClusterDistanceParameters which defines functions for getting and
setting a cluster distance measure.

30.2 Reference Implementation

In Figure 30.2 the base classes of the reference implementation of the Sigoa
clustering algorithms are illustrated.

ClusteringAlgorithm implements the interface IClusteringAlgorithm. It is
simple a class to derive real clustering algorithms from since it itself does not
provide any functionality itself. It is derived from BufferedPassThroughPipe

discussed in Section 31.2.1 on page 467 and therefore indirectly inherits from
BufferedPipe (see Section 29.2.1 on page 429). Therefore, subclasses have
to override the method process in which they have access to all solution
candidates in order to implement a clustering algorithm. If such an algorithm
also needs a distance measure for clusters instead of using on one for solution
candidates only, it should be derived from ClusteringAlgorithm2 rather than
ClusteringAlgorithm.

A special utility class is ObjectiveCluster which basically is a list of in-
dividuals, a cluster. It additionally provides the method getCenterIndividual

which returns an individual record with the objective values that mark the
center of the multi-dimensional objective space spanned by its single elements
(see Definition 184 on page 573). This individual record will not contain any
other data, like a phenotype or a fitness value, only its objective values are
set. ObjectiveCluster should be used by clustering algorithms that need to
perform computations involving the cluster centers. It computes the center
incrementally internally and can save a lot of processing time and thus reduce
algorithmic complexity.

30.2.1 Clustering Algorithms

Some default clustering algorithms are provided in the package org

.sgioa.refimpl.clustering.algorithms and illustrated in Figure 30.3.
NNearestNeighborClustering realizes the nth nearest neighbor clustering al-
gorithm introduced in Section 36.3.3 on page 578. NearestNeighborClustering
bases on the same algorithm but sets n = 1 and represents a very fast solution
for this special case.

Using also cluster distance measures, LinkageClustering is an example
subclass of ClusteringAlgorithm2 and implements the linkage clustering algo-
rithm defined in Section 36.3.4 on page 579. Its performance however is not
very good, it normally runs very slow.

440 30 Clustering

org.sigoa.refimpl.clustering
<<Package>>

ClusteringAlgorithm

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_indDist: IIndividualDis...

getIndividualDistanceMeas...

setIndividualDistanceMea...

Constructor(int, IIndividua...

ClusteringAlgorithm2

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_clsDist: IDistanceMeasu..

setClusterDistanceMeasure(..
setIndividualDistanceMea...
Constructor(int, IIndividua...

getClusterDistanceMeasure():

ObjectiveCluster

PP extends Serializable

G extends Serializable

serialVersionUID: long
m_sum: double[]
m_center: IIndividual<G,PP

set(int, IIndividual<G,PP>)
get(int): IIndividual<G,PP>
Constructor()

add(IIndividual<G,PP>)

remove(int)

getCenterIndividual(): IIndi..

...

org.sigoa.refimpl.pipe.
BufferedPipe

org.sigoa.spec.go.

<<Interface>>
IPassThroughParameters

org.sigoa.refimpl.go.
BufferedPassThroughPipe

org.sigoa.spec.clustering
IClusterDistanceParameters

<<Interface>>

org.sigoa.spec.clustering
IClusteringAlgorithm

<<Interface>>

Fig. 30.2: Bases classes for clustering algorithms.

30.2 Reference Implementation 441

org.sigoa.refimpl.clustering.algorithms
<<Package>>

NearestNeighborClustering

NNearestNeighborClustering LinkageClustering

org.sigoa.refimpl.
ClusteringAlgorithm

org.sigoa.refimpl.
ClusteringAlgorithm2

Fig. 30.3: Some clustering algorithms provided in Sigoa.

30.2.2 Distance Measures

In the package org.sigoa.refimpl.clustering.distanceMeasures we define
some standard distance measures as shown in Figure 30.4. Section 36.1 on
page 574 describes that distance measures can be defined for elements as well
as for clusters of elements. We reflect this by specifying two sub-packages,
individual, for element-based distance measures and cluster for cluster-based
ones. Of course, the elements in our context are individual records.

In the package individual, the class ObjectiveDistanceMeasure is defined
as base for all distance measures that use objective values. It defines the
function getNucleus in a way that returns the individual closest to the cluster’s
objective centroid (see Definition 184 on page 573) according the distance
measure.

Derived from this class is ObjectivePNorm which defines the p-norm on
the objective space (see Definition 189 on page 575). Whereas ObjectivePNorm

provides all possible p-norms, ObjectiveNorms holds some very common special
cases like the euclidian, the manhattan distance and the infinity norm.

Distance measures for clusters, found in the cluster-package, will normally
be derived from ClusterDistanceMeasure. They use a secondary distance mea-
sure which can be obtained/set by the methods getIndividualDistanceMeasure
and setIndividualDistanceMeasure. ClusterCenterDistance for example uses
this secondary measure to determine the distance between the centers of two
clusters whereas ClusterMaxDistance uses it to return the longest distance
between any element of the first and any element of the second cluster.

442 30 Clustering

org.sigoa.spec.clustering.

<<Interface>>
IDistanceMeasure

org.sigoa.spec.clustering.

<<Interface>>
IIndividualDistanceMeasure

PP extends Serializable

ClusterDistanceMeasure

m_indDist: IIndividualDist...

getIndividualDistanceMeasu...
setIndividualDistanceMeasu...

Constructor(IIndividualDist..)

G extends Serializable

ClusterCenterDistance

ClusterMaxDistance

PP extends Serializable

ObjectiveDistanceMeasure

m_indDist: IIndividualDist...

G extends Serializable

getNucleus(List<IInd..>): IIn..
Constructor()

ObjectiveNorms

EUCLIDIAN_DISTANCE
INFINITY_NORM_DIST...
MANHATTAN_DISTANCE

ObjectivePNorm

individual
<<Package>>

cluster
<<Package>>

org.sigoa.refimpl.clustering.distanceMeasures
<<Package>>

DistanceUtils

DEFAULT_INDIVIDUA...

createDefaultClusteringDM(..

<<Call>><<Call>>

<<Call>>

Fig. 30.4: Some distance measures provided in Sigoa.

30.2 Reference Implementation 443

The class DistanceUtils provides the default distance measures to be used
for both, individual and cluster distance calculation.

31

Global Optimization

The intent of the Sigoa framework is to provide interfaces allowing to imple-
ment the optimization algorithms introduced in Part I on page 3. Furthermore,
the interface architecture enables the programmer to replace all modules with
realization different from the reference implementation. The global optimiza-
tion package uses the pipe-technology provided by the package pipe discussed
in Chapter 29. We regard optimization algorithms as composition of different
filters that can be exchanged, removed or to which new ones can be attached,
making the composition of specialized optimizers very simple.

In this chapter we introduce the optimization core of Sigoa.

31.1 Specification

31.1.1 Basic Interfaces

We strictly concentrate on multi-objective, prevalence-based optimization
since it is the most general optimization technique (see Section 1.3 on page 12).
Single-objective optimization, pareto-optimization and most other methods
are special cases that can easily be realized with it. Figure 31.1 illustrates the
basic interfaces of the Sigoa global optimization specification package.

The Individual Records

The crux of the whole Sigoa framework is the interface IIndividual. An indi-
vidual record stores one solution candidate along with all information about
it (see Table 31.1).

The solution candidate itself is described by the phenotype x ∈ X̃, which
is parameter of the objective functions. Reproduction operations1 may work
on another representation of the individual, the genotype g ∈ G. This is

1 see Section 2.5 on page 99

446 31 Global Optimization

org.sigoa.spec.go
<<Package>>

<<Call>>

IIndividual
<<Interface>>

PP extends Serializable

G extends Serializable

clear()

clearEvaluation()

setGenotype(G)

getGenotype(): G

setPhenotype(P)

getPhenotype(): P

getObjectiveValue(int): doub..

getObjectiveValueCount(): int

getFitness(): double

setObjectiveValue(int,double)

setFitness(double)

IComparator
<<Interface>>

preciseCompare(....): double

compare(IIndividual,IIndiv..

IPopulation
<<Interface>>

PP extends Serializable

G extends Serializable

IIndividualFactory
<<Interface>>

PP extends Serializable

G extends Serializable

createIndividual(IIndividu...

createIndividual(int): IIndi...

createIndividual(IIn...,IInd..

formatObjectiveValue(double

OptimizationUtils

WORST: double

WORST_NUMERIC: double

BEST: double

BEST_NUMERIC: double

FITNESS_COMPARATOR:

FITNESS_COMPARATOR:

FITNESS_COMPARATOR:
<<Call>>

<<Call>>

java.util.List
<<Interface>>

org.sigoa.spec.pipe.IPipeIn
<<Interface>>

org.sigoa.spec.pipe.IPipeSource
<<Interface>>

java.util.Comparator
<<Interface>>

org.sigoa.spec.go.
IPassThroughParameters

<<Interface>>

getPassThroughCount(): int

setPassThroughCount(int)

<<Call>>

<<Call>>

Fig. 31.1: The basic interfaces of the Sigoa global optimization package.

31.1 Specification 447

Table 31.1: The properties of IIndividual

property discussed in section getter setter

genotype Chapter 3 on page 117 getGenotype setGenotype

phenotype Chapter 3 on page 117 getPhenotype setPhenotype

objective values Section 34.6.3 on page 510 getObjectiveValue setObjectiveValue

fitness Section 2.3 on page 65 getFitness setFitness

the case for genetic algorithms (introduced in Chapter 3 on page 117), for
instance. Many other optimization methods do not need such a distinction -
their reproduction methods use the same input data as the objective functions.
In such instances, the genotype and the phenotype stored in the individual
record will reference the same object.

A solution candidate can be rated with n objective values, where n
must be specified at the individual record creation and can be obtained via
getObjectiveValueCount. The objective values will normally be computed by
the objective functions f ∈ F, |F | = n and subsequently be stored into the
individual record.

Instead of using the vector of the objective values directly, optimization
algorithms often first compute a fitness value and compare individuals based
on this fitness. If needed, an individual record also stores the fitness of the
solution candidate.

IIndividual is just a container for the solution candidate information. Its
data can be read and written by arbitrary modules. It is thus not specified
where the values of its properties will come from. It is for example entirely
possible not to use objective functions at all and fill in the objective values
with numbers obtained according to a whole other method. Also, one could
maybe refrain from using objective values at all by computing the fitness
directly.

An individual record filled with one solution candidates data can be reused
by clearing its fields using clear and filling it up with data of another indi-
vidual. If an optimization process receives solution candidates in the form of
individual records from another process, it may want to re-evaluate them.
Therefore, it is sufficient to clear only the data that is concerned with the
solution candidates evaluation by calling clearEvaluation.

An optimization algorithm will use an IIndividualFactory2 in order to cre-
ate the individual records it needs. The implementation of IIndividual can ar-
bitrarily be exchanged every optimizers. The individual factory provides three
overloaded3 functions with the name createIndividual. The first one takes the

2 factory design pattern: http://en.wikipedia.org/wiki/Factory_object [accessed

2007-07-03]

3 overloading functions: http://en.wikipedia.org/wiki/Function_overloading

[accessed 2007-07-03]

http://en.wikipedia.org/wiki/Factory_object
http://en.wikipedia.org/wiki/Function_overloading

448 31 Global Optimization

count of objective functions as argument and is thus good for creating new
records4. One single individual is passed into the second method which cre-
ates a new individual record for the same count of objective values as needed
in the mutate and duplicate functions5. The last createIndividual-method is
intended for the use in the crossover6-operation needs two individual records
as parameters and again, creates a new individual record for the same count
of objective values.

A default implementation of IIndividualFactory would create new, empty
individual records in all three methods. Another imaginable idea would be
to have individual records that store inheritance information, i. e. which so-
lution candidate is offspring of which other one. This can easily be done by
implementing the three methods accordingly.

IComparator and Prevalence

In Section 1.3.5 on page 20 we discussed the prevalence optimization in which
a comparator function cF is defined up on the prevalence relation≻. cF (x1, x2)
becomes negative if solution candidate x1 ∈ X̃ prevails over (“is better than”)
solution candidate x2 ∈ X̃. It is zero if both individuals are equally good and
positive if x1 “is worse than” x2. In Definition 18 on page 20, cF inherently
makes use of the objective functions f ∈ F . Instead of computing the objective
values anew in each comparison, the IComparator works on those stored in-
side an individual record. In the mathematical definition, considerations about
complexity were not needed. IComparator extends the Java interface java.util

.Comparator defining an order over a class of objects (in our case individual
records). This interface provides the method compare which compares two ob-
jects o1 and o2 (individual records) and returns an int value as result. This
integer is negative if o1 comes before o2 in the defined order, positive if o1

comes after o2, and zero if no precedence is defined between o1 and o2. This
conforms perfectly to the definition of cF . Additional to the inherited method
compare, IComparator specifies the method preciseCompare with exactly the
same parameters. While codeilicompare returns an int, preciseCompare re-
turns a double precision floating point number. Per definition, both methods
must match in their outputs for the same individuals and have to hold the
following assumptions:

compare(o1,o2) < 0⇔ preciseCompare(o1,o2) < 0 (31.1)

compare(o1,o2) > 0⇔ preciseCompare(o1,o2) > 0 (31.2)

compare(o1,o2) = 0⇔ preciseCompare(o1,o2) = 0 (31.3)

compare(o1,o2) < 0⇔ compare(o2,o1) > 0 (31.4)

compare(o1,o2) > 0⇔ compare(o2,o1) < 0 (31.5)

4 see Definition 42 on page 99
5 see Definition 43 on page 99 and Definition 44 on page 100
6 see Definition 45 on page 101

31.1 Specification 449

compare(o1,o2) = 0⇔ compare(o2,o1) = 0 (31.6)

Furthermore, good a recommendation for their return values is that

compare(o1,o2) ≈ preciseCompare(o2,o1) (31.7)

One important final note: Instances of IComparator must only work on objec-
tive values.

The Optimization Utils

The class OptimizationUtils defines the general conditions for the optimiza-
tion. Since we want to define reusable comparators (instances of IComparator
representing cF functions), we need to specify the direction of the opti-
mization. In global optimization, minimization is most often applied. We
therefore define here that the values of all objective functions as well as
possible assigned fitness values are the better the smaller they are, i. e.
are subject to minimization. The best possible objective value is therefore
OptimizationUtils.BEST == Double.NEGATIVE_INFINITY and the worst one is
OptimizationUtils.WORST == Double.POSITIVE_INFINITY. The best not-infinite
objective value is OptimizationUtils.BEST_NUMERIC == -Double.MAX_VALUE and
the worst numerical objective value is OptimizationUtils.WORST_NUMERIC ==

Double.MAX_VALUE.

The Populations

The interface IPopulation defines the functionality of sets of individuals, so-
called populations. It extends the Java collection interface java.util.List

and the Sigoa pipe interfaces IPipeIn and IPipeSource. Thus, it can act as a
receiving end of a pipeline as well as a source that flushes all the individuals
stored to a pipe.

The Pass-Through Parameters

The interface IPassThroughParameters in the clustering Chapter 30 on
page 437. It is common to all algorithms that have a specific maximum count
of solution candidates that may pass them. Later we will discuss that in se-
lection algorithms (instances of ISelectionAlgorithm, see Section 31.1.6) for
example, this count is enforced by omitting individuals that have not been
selected while to few individuals simple are ignored. The ICreatorPipe ex-
plained in Section 31.1.2 does the opposite: it ignores if too many individuals
pass but reacts on too few solution candidates by creating additional ones.

The pass-through count is set with the method setPassThroughCount and
can be obtained via getPassThroughCount.

450 31 Global Optimization

31.1.2 Reproduction

The Sigoa reproduction facilities are defined in package org.sigoa.spec.go

.reproduction and depicted in Figure 31.2. There are two types of interfaces

org.sigoa.spec.go.reproduction
<<Package>>

org.sigoa.spec.go.
IPassThroughParameters

<<Interface>>

getPassThroughCount(): int

setPassThroughCount(int)

ICreatorPipe
<<Interface>>

PP extends Serializable

G extends Serializable

IMutatorPipe
<<Interface>>

PP extends Serializable

G extends Serializable

ICrossoverPipe
<<Interface>>

PP extends Serializable

G extends Serializable

IMutator
<<Interface>>

G extends Serializable

mutate(G,IRandomizer): G

ICreator
<<Interface>>

G extends Serializable

create(IRandomizer): G

ICrossover
<<Interface>>

G extends Serializable

crossover(G,G,IRando...): G

IMutatorParameters
<<Interface>>

getMutationRate(): double

setMutationRate(double)

ICrossoverParameters
<<Interface>>

getCrossoverRate(): double

getCrossoverRate(double)

org.sigoa.spec.pipe.IPipe
<<Interface>>

PP extends Serializable

G extends Serializable

Fig. 31.2: The Sigoa reproduction facilities specifications.

in the reproduction-package: those which provide the operations introduced
in Section 2.5 on page 99 and those which combine them with the pipe concept
of Chapter 29 on page 427.

31.1 Specification 451

Interfaces that Provide Reproduction Operations

The reproduction operations are defined similar to those in Section 2.5 but
take an additional parameter: By creating a new solutions candidate, things
have most often to be carried out in a randomized manner. Therefore, an in-
stance of IRandomizer (see Section 26.1.1 on page 399) has to be provided to
the reproduction methods. The reproduction interfaces a generically parame-
terized with the type G which represents G, the set of possible genotypes.

• ICreator defines the method create which corresponds to the operation
create7. It creates a new individual g ∈ G with randomized content.

• IMutator mutates an existing instance of G ≡ G in its method mutate which
obeys the Definition 44 of mutate on page 100.

• The method crossover of the interface ICrossover combines two instances
of G in order to create a new offspring. It represents the crossover-
operation8.

Reproduction Pipes

Following the spirit of the Sigoa pipe architecture, we define special pipe
stages for the reproduction operations. Each pipe stage has parameters set
which define what it should do. Notice that the pipe stages are defined sep-
arately from the operations – the interfaces of the previous paragraph rather
specify how reproduction should be done and can be used to create compatible
implementations than strict rules. Pipe stages for reproduction may also base
on different reproduction operation definitions (but should not, for the sake
of compatibility).

• The ICreatorPipe is a filter that basically counts all solution candidates
that pass through it without modifying them. When its eof-method is
invoked, it compares their number to the predefined pass-through count.
If at least that many individuals passed the pipe then everything is ok.
Otherwise, the creator pipe should create the remaining count of individ-
uals. These new solution candidates (for instance products of an instance
of ICreator) are written to the next pipe stage before its eof-method is
invoked. ICreatorPipe is a sub-interface of IPassThroughParameters which
resides directly in the go-package and provides methods to get/set the
pass-through count.

• IMutatorPipe is a sub-interface of IMutatorParameters. IMutatorParameters
defines a mutation rate with getters and setters. The mutator pipe has to
modify approximately this fraction of the individuals that are written to it
and pass on the modified offspring. If the mutation rate is for example 0.34,
then approximately 34% of the individuals should undergo a mutation.

7 see Definition 42 on page 99
8 Definition 45 on page 101

452 31 Global Optimization

This can be done by drawing a uniformly between in [0, 1) distributed
random number for each individual that enters the pipe. If it is < 0.34,
a mutated copy of the individual is written to the next pipe stage, the
original is passed on otherwise.

• ICrossoverPipe works very similar: it uses a crossover rate defined by its
parent interface ICrossoverParameters in order to determine the fraction
of incoming solution candidates to be recombined. It may use a storage
that can hold one individual. For each solution candidate received, again a
random number can be drawn. If it is smaller than the crossover rate, the
individual will be recombined. We first check now if the storage is empty.
If yes, we store the solution candidate. Otherwise, we create two offspring
of it and the stored individual, pass these two on and discard the stored
one.

31.1.3 Objective Functions

The default definition of objective functions in Sigoa which can be found in
the package org.sigoa.spec.go.objectives makes use of the simulations in-
terface for individual evaluation. Its specification is outlined in Figure 31.3.
In Sigoa, objective functions are instances of IObjectiveFunction. They are
not just applied to mathematical optimization – the Artificial Ant example
of Section 17.4 on page 284 has already shown that there can be very com-
plex problems to be tackled. Such problems may involve simulating a solution
candidate multiple times where simulation takes many steps. It is even pos-
sible that the objective function has to inspect the course of the simulations,
performing introspective inspections after each nth step.

In Section 28.2.3 on page 422 we gave an example for job systems that
utilize multiple processors in order to increase the performance of the opti-
mization algorithms. Therefore, an instance of IObjectiveFunction may check
multiple solution candidates in parallel. Since synchronizing the evaluation
process would make no sense – it is the time consuming operation brings per-
formance gains when parallelized – IObjectiveFunctions must not have any
member variables. They have to be provided with containers for their state
by the underlying system. Such containers can be created for each parallel
thread. Now objective functions may be executed in parallel and have their
states stored in the container that belongs to their hosting thread. No inter-
ference or race-conditions may occur.

The interface IObjectiveFunction is generic, it has the parameters

PP corresponding to the type of solution candidate evaluated – see X̃
in Definition 1 on page 3.

ST The per-evaluation state which extends IObjectiveState. The evaluation
of an individual’s objective values may need multiple rounds (called evalu-
ations in the context of Sigoa). After each single evaluation, the objective
function has to store the score of the individual into such a record. For
each single evaluation, a single instance of ST is provided.

31.1 Specification 453

org.sigoa.spec.go.objectives
<<Package>>

IObjectiveState
<<Interface>>

getObjectiveValue(): double

clear()

IObjectiveFunction
<<Interface>>

PP extends Serializable

ST extends IObjectiveSt

SS extends Serializable

SI extends ISimulation

beginIndividual(PP,ST)

beginEvaluation(PP,ST,SS,

createState(SS): ST

computeObjectiveValue(dou..

destroyState(ST,SS)

createStaticState(): SS

endEvaluation(PP,ST,SS,SI)

destroyStaticState(SS)

getRequiredSimulationId():..

endIndividual(PP,SS)

inspect(PP,ST,SS,SI)

getRequiredSimulationSteps(

sanityCheck(PP,SS): boolean

IObjectiveValueComputer
<<Interface>>

computeObjectiveValue(dou

<<Call>>

Fig. 31.3: The default specification for objective functions.

SS The static state per-individual state. One instances of this class is provided
for all single evaluations. The objective function may use this record to
aggregate values over all single evaluations.

SI The simulation type which extends ISimulation (specified in Section 27.1
on page 405). If the objective function makes use of a simulation in order
to determine a solution candidate’s fitness, it needs to specify the SI-
parameter accordingly. Then, each single evaluation will involve one single
simulation, being probably comprised of many simulation steps.

From this, you can see that the objective function itself obeys the factory
design pattern9 for its state and static state containers.

31.1.4 Computing an Objective Value

The computation of an objective value by an IObjectiveFunction proceeds as
defined in Figure 31.4. In the following text, we define the order of the calls

9 http://en.wikipedia.org/wiki/Factory_object [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Factory_object

454 31 Global Optimization

:IObjectiveFunction :ISimulation:ISimulationManager

sanityCheck

getRequired-
SimulationId

getSimulation

passed

failed

simulation Id is not null
simulations are used=

simulation Id is
no simulation needed

null

fo
r

ea
ch

 i
n

di
vi

du
al

, p
er

fo
rm

 n
 s

in
gl

e
ev

al
u

at
io

n
s

beginIndividual

beginSimulation

getRequired-
SimulationSteps

beginEvaluation

simulate

inspect

endEvaluation endSimulation

beginEvaluation

endEvaluation

returnSimulation

beginIndividual

endIndividual

compute-
ObjectiveValue

endIndividual

perform simulation steps and
subsequent inspections until the
required count of steps is done

single evaluation finished

all evaluations finished, simulations used

all evaluations finished,
no simulations used

Fig. 31.4: The activity diagram of the evaluation of an individual.

31.1 Specification 455

to the methods of IObjectiveFunction in order to compute the fitness of a
solution candidate.

Whenever the objective value of an individual has to be determined, we
first perform a small sanity check with the method sanityCheck. No special
simulations or evaluations are performed here – we just test if the solution
candidate could possible be a valid solution.

If this is not the case, sanityCheck returns falseand the objective value is
set to OptimizationUtils.WORST. At this stage, you should keep in mind that
we most probably perform a multi-objective optimization. A good approach in
this case is to call the sanityCheck-methods of all objective functions involved
before proceeding any further.

Only if all of them return true, the evaluation process begins with a
call to beginIndividual. In this function, some initialization of the static
state discussed before may be performed. After this is done, the id of
the simulation which is needed for the evaluations is obtained by invoking
getRequiredSimulationId.

If this id is null, no simulation is required. This means that the objective
value can be computed directly from the individual data and there is only one
single evaluation run needed.

Otherwise, a simulation of the requested Id is queried from the instance of
ISimulationManager provided by the current host. This simulation is initial-
ized via its method beginIndividual which receives the solution candidate as
parameter.

Each single simulation run – since simulations may be randomized, mul-
tiple runs are possible required – begins with a call to beginSimulation. Here
the simulation may set up round specific data.

It is now time to request the count of simulation steps that are needed by
the objective function with an invocation to getRequiredSimulationSteps.

Then the evaluation is initialized by calling beginEvaluation which returns
the number of simulation steps to be performed until the first inspection or
0 if no inspections are needed. In this case, the whole number of simulation
steps specified by getRequiredSimulationSteps will be performed at with one
single call to the method simulate of the ISimulation-instance.

Otherwise, simulate will only be called with as many steps as returned
by beginSimulation and then the method inspect of the objective function is
invoked. inspect can take a look into the simulation and maybe store some
values in the objective state or the static state object. It returns the number
of steps that have to be performed until the next inspection.

The evaluation cycle ends after all simulating is done and the num-
ber of steps returned by getRequiredSimulationSteps has elapsed. Then, the
method endIndividual of the objective functions is called which writes the
result, the objective value computed in during the simulation round, into the
IObjectiveState-record passed in.

456 31 Global Optimization

Afterwards, the simulation is notified that it is done via endSimulation.
This process of simulation and evaluation may, as already said, be performed
multiple times in order to get stable results.

endIndividual of the simulation is called so the simulator has a
chance to perform some cleanup. Then, the simulation is returned to the
ISimulationManager with returnSimulation. Now endIndividual is invoked on
the objective function. It also may clean up here its static state.

During each single evaluation, the objective function filled in one objective
value into an IObjectiveState-record. These values are now put into an array
of double, are sorted, and are passed to computeObjectiveValue which combines
them to a single result.

In order to provide some predefined routines for doing so, the interface
IObjectiveValueComputer is defined. The objective function may use an in-
stance of it to compute the final objective value.

To the scheme defined here, some extensions are possible. It is for exam-
ple possible to call getRequiredSimulationId at any time before the solution
candidate evaluations and its result can be stored and reused. In the context
of multi-objective optimization, one may as well use one single simulation
for all objective functions that require a compatible simulation Id. The ref-
erence implementation of Sigoa does exactly this to reduce processing time
remarkable.

31.1.5 The Evaluator

Figure 31.5 outlines the package org.sigoa.spec.go.evaluation containing
the interfaces that can be implemented to perform the aforementioned work.
IEvaluator is implemented by classes that are capable to evaluate individuals.
It therefore provides the method evaluate which takes an individual record
as parameter. Its purpose is to fill in the objective values. Notice that there
is no direct link to the interface IObjectiveFunction. Although it is the rec-
ommended way that an evaluator uses a set of instances of this interface, it
also may apply any other technique to fill in fitness values. One strict require-
ment is however that the method getObjectiveValueCount returns the count
of objective values that are specified per individual.

The interface IEvaluatorPipe is used to tag pipe stages that fill in objective
values into individual records. The general contract of IEvaluatorPipe is that
all individual records that pass it are evaluated in some way and their objective
values are computed and stored. If it uses an instance of IEvaluator to do so,
it would call its evaluate method for each instance of IIndividual it receives
via write.

31.1.6 Embryogeny

We entitle the process of transforming genotypes and phenotypes into each
other as embryogeny and provide the package org.sigoa.spec.go.embryogeny,

31.1 Specification 457

org.sigoa.spec.go.objectives.evaluation
<<Package>>

IEvaluator
<<Interface>>

getObjectiveValueCount(): i..

evaluate(IIndividual<PP>)

PP extends Serializable

org.sigoa.spec.pipe.IPipe
<<Interface>>

PP extends Serializable

G extends Serializable

IEvaluatorPipe
<<Interface>>

PP extends Serializable

G extends Serializable

Fig. 31.5: The evaluation interfaces.

org.sigoa.spec.go.objectives.embryogeny
<<Package>>

org.sigoa.spec.pipe.IPipe
<<Interface>>

PP extends Serializable

G extends Serializable

IEmbryogenyPipe
<<Interface>>

PP extends Serializable

G extends Serializable
IEmbryogeny
<<Interface>>

regress(PP): G

hatch(G): PP

PP extends Serializable

G extends Serializable

Fig. 31.6: The embryogeny specification of Sigoa.

458 31 Global Optimization

illustrated in Figure 31.6, which contains according specifications. The in-
terface IEmbryogeny has two methods: hatch performs the hatch-operation
specified in Definition 57 on page 128 whereas regress represents the opera-
tion regress (see Definition 58). hatch must always be defined properly, but
regress may return null if the hatching cannot be reversed.

The IEmbryogenyPipe takes a look into each individual record written to it.
If no phenotype is stored (but a genotype is available) it fills in the phenotype
that belongs to the genotype found. This is done best by using an instance of
IEmbryogeny.

31.1.7 Fitness Assignment and Selection

As shown in Figure 31.7, two other predefined pipe stages are avail-
able. The fitness assignment processes elaborated on in Section 2.3 on

org.sigoa.spec.pipe.IPipe
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.selection.
ISelectionAlgorithm

<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.fitnessAssignment.
IFitnessAssigner

<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.
IPassThroughParameters

<<Interface>>

Fig. 31.7: Other predefined pipe stages

page 65 can be encapsulated in instances of IFitnessAssigner. Such a pipe
stage fills fitness values into individual records. It represents the operation
assignF itness(Xpop,Xarc) whereas Xpop is implicitly given by the individ-
ual records written to the pipe stage between two calls to eof. These can be
accumulated and later processed as one chunk, if needed.

Remember that, as of Definition 39 on page 65, fitness values must always
be in R+.

Incorporating Xarc is more complicated. If an archive is needed for the
fitness assignment process, the optimization algorithm itself must maintain it
(Where else should it come from?). This archive must then be made available
to the fitness assignment process via some additional mechanism. Per default,
only the solution candidate stream is used. Most often, the fitness values will
be based on the objective values previously determined by an evaluator.

ISelectionAlgorithm encapsulates the operation select(Xsel, n) introduced
in Section 2.4 on page 78. The parameter Xsel again is implicitly given

31.1 Specification 459

by the individual records written to the pipe stage. n is represented
by the pass-through count defined in the IPassThroughAlgorithm-interface
ISelectionAlgorithm inherits from. Selection algorithms may either use fit-
ness values previously computed by a fitness assignment process or directly
involve objective values set by an evaluator.

31.1.8 The Optimizer

The optimization system is connected to the job system via two inter-
faces: IOptimizer and IOptimizationInfo (see Figure 31.8). The interface

IOptimizationInfo
<<Interface>>

PP extends Serializable

G extends Serializable

getEvaluator(): IEvaluator<P

getComparator(): IComparat..

getIndividualFactory(): IInd.

getEmbryogeny(): IEmbryog

getMutator(): IMutator<G>

getCreator(): ICreator<G>

getCrossover(): ICrossover<G>

IOptimizer
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go
<<Package>>

java.lang.Runnable
<<Interface>>

org.sigoa.spec.pipe.IPipeOut
<<Interface>>

PP extends Serializable

G extends Serializable

Fig. 31.8: Optimizer and Optimization Info Record

IOptimizer represents a global optimization algorithm. It inherits from java

.lang.Runnable so it can be executed by host threads. Thus, its code resides in
an implementation of the method run. IOptimizer also inherits from IPipeOut

and thus represents the output end of a pipeline. Per definition it will write
out the best solutions found through this interface when the optimization
process is finished (or aborted).

An implementation of IOptimizer could (but does not necessarily need to)
also implement the interface IActivity. If doing so, the optimization process
could be gracefully aborted if needed. Furthermore, additionally implementing

460 31 Global Optimization

IPipe would allow individual records to be written to the optimizer which then
could integrate them into the optimization process.

31.1.9 The Optimization Info Record

The optimization info record, IOptimizationInfo, guides the optimization pro-
cess by making functional components public to all its sub-activities, as enu-
merated in Table 31.2.

Table 31.2: The functional components provided by IOptimizationInfo

component discussed in section getter

comparator Section 31.1.1 on page 448 getComparator

creator Section 31.1.2 on page 451 getCreator

crossover Section 31.1.2 on page 451 getCrossover

evaluator Section 31.1.5 on page 456 getEvaluator

embryogeny Section 31.1.6 on page 456 getEmbryogeny

individual factory Section 31.1.1 on page 445 getIndividualFactory

mutator Section 31.1.2 on page 451 getMutator

The optimization info record is handed over to the job system together
with the optimizer at job creation. It is part of the IJobInfo-record discussed
in Section 28.1.2 on page 415 which can be accessed through the method
getJobInfo method of the host-threads.

31.1.10 Predefined Algorithm Interfaces

In the package org.sigoa.spec.go.algorithms you can find the predefined
optimizers illustrated in Figure 31.9. IIterativeAlgorithm is an inter-
face common to all algorithms that proceed iteratively and defines the
method getIteration which returns the index of the current iteration. Al-
gorithms that use an archive in order to perform some sort of elitism,
the interface IElitistAlgorithm defines the methods getMaxArchiveSize and
setMaxArchiveSize that get/set the size of this archive.

Although these two interfaces could be implemented by any sort of al-
gorithm with the specified semantics (not only optimizers), the IEA inter-
face is a good base to define evolutionary algorithms10 and inherits directly
from IOptimizer. It is furthermore derived from IIterativeAlgorithm (since
evolutionary algorithms are always iterative) and from IMutationParameters

and ICrossoverParameters (since evolutionary algorithms usually support the
mutation and crossover operations and thus need to maintain mutation and
crossover rates).

10 see Chapter 2 on page 47

31.2 Reference Implementation 461

org.sigoa.spec.go.algorithms
<<Package>>

IEA
<<Interface>>

PP extends Serializable

G extends Serializable

setNextPopulationSize(int)

getPopulationSize(): int

getNextPopulationSize(): int

org.sigoa.spec.go.IOptimizer
<<Interface>>

PP extends Serializable

G extends Serializable

IIterativeAlgorithm
<<Interface>>

getIteration(): long

IElitistAlgorithm
<<Interface>>

getMaxArchiveSize(): int

setMaxArchiveSize(int)

org.sigoa.spec.go.reproduction.
IMutatorParameters

<<Interface>>

org.sigoa.spec.go.reproduction.
ICrossoverParameters

<<Interface>>

Fig. 31.9: Predefined optimization algorithms.

31.2 Reference Implementation

The reference implementation of the Sigoa global optimization techniques can
be found in the package org.sigoa.refimpl.go.

31.2.1 Basic Classes

The Implementation Base

As basis for most of the implementations of the global optimization in-
terfaces we use the class ImplementationBase illustrated in Figure 31.10.
The pipe implementation root class, PipeOut, for example is derived from
it. ImplementationBase provides protected methods which grant access to
the information provided by the host threads. This way, working with
JobSystemUtils.getCurrentHost has been replaced by a more elegant, indi-
rect way to access the host data. Testing of algorithms or pipe stages also

462 31 Global Optimization

org.sigoa.refimpl.go.
ImplementationBase

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.pipe.
PipeOut

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.pipe.
Pipe

PP extends Serializable

G extends Serializable

getComparator(): IComparat..

getCreator(): ICreator<G>

getCrossover(): ICrossover<G>

getEvaluator(): IEvaluator<P

getHost(): IHost

getEmbryogeny(): IEmbryog..

getIndividualFactory(): IInd..

getJobInfo(): IJobInfo<G,PP>

getMutator(): IMutator<G>

getObjectiveValueCount(): in

getOptimizationId(): Seriali..

getOptimizationInfo(): IOpt..

getSimulationManager(): IS..

getRandomizer(): IRandomiz

Fig. 31.10: The class ImplementationBase.

becomes easier since the methods defined in ImplementationBase can be over-
ridden in a way that does not longer require the tested code to run inside a
host environment.

The Individual Records

The interfaces IIndividual and IIndividualFactory are implemented by the
classes Individual and IndividualFactory as you can see in Figure 31.11. An
Individual-record is created by passing the count of objective functions into
the constructor. It overrides the toString in order to provide a human readable
representation of the individual record. More important, it overrides equals,
so individual records can be compared for equality. equals now compares
all objective and fitness values as well as the genotypes and phenotypes for
sameness.

The IndividualFactory creates instances of Individual, using the param-
eters of its createIndividual-methods to obtain the count of objective values
needed. An instance of IndividualFactory that can globally be shared can be
found in the static final variable DEFAULT_INDIVIDUAL_FACTORY.

The Predefined Comparators

We predefine some prevalence comparator functions in the package org

.sigoa.refimpl.go.comparators illustrated in Figure 31.12. The utility class
ComparatorUtils contains useful helper functions. preciseToNormal transforms

31.2 Reference Implementation 463

org.sigoa.refimpl.go
<<Package>>

<<Call>>

IndividualFactory

PP extends Serializable

G extends Serializable

createIndividual(IIndividu...

createIndividual(int): IIndi...

createIndividual(IIn...,IInd..

serialVersionUID: long

DEFAULT_INDIVIDUA..

org.sigoa.spec.go.IIndividual
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.IIndividualFactory
<<Interface>>

PP extends Serializable

G extends Serializable

ImplementationBase

PP extends Serializable

G extends Serializable
Individual

PP extends Serializable

G extends Serializable

clear()

clearEvaluation()

setGenotype(G)

getGenotype(): G

setPhenotype(P)

getPhenotype(): P

getObjectiveValue(int): doub..

getObjectiveValueCount(): int

getFitness(): double

setObjectiveValue(int,double)

setFitness(double)

toString(): String

toStringBuilder(StringBui...)

Constructor(int)

serialVersionUID: long

m_fitness: double

m_genotype: G

m_objectiveValues: double[]

m_phenotype: PP

equals(Object): boolean

Fig. 31.11: The class Individual and IndividualFactory.

the results of the function preciseCompare (a double) to an int as returned in
compare. Some comparators may perform their calculations in preciseCompare

rather than in compare and thus need a way to converse the result. Using
preciseToNormal for that purpose, the contract of Section 31.1.1 on page 448
is ensured.

ComparatorUtils also defines two fallback functions (compareFallback and
preciseCompareFallback) for the case that a comparison fails. A comparison
may fail if the resulting value would be Double.NaN. Instead of returning that,
one should return the values computed by the fallbacks. The fallbacks use the
MajorityComparator also discussed in the section.

464 31 Global Optimization

org.sigoa.refimpl.go.comparators
<<Package>>

SumComparator

SUM_COMPARATOR

FitnessComparator

FITNESS_COMPARATOR

ParetoComparator

PARETO_COMPARATOR

MajorityComparator

MAJORITY_COMPARAT..

TieredParetoComparator WeightedSumComparator

org.sigoa.refimpl.go.
ImplementationBase

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.IComparator
<<Interface>>

preciseCompare(....): double

compare(IIndividual,IIndiv..

ComparatorUtils

preciseCompareFallback(IInd

compareFallback(IIndiv,IIn.

preciseToNormal(double):int

Fig. 31.12: Some predefined comparator functions.

31.2 Reference Implementation 465

All comparator functions specified here inherit from ImplementationBase

and realize the interface IComparator. Some of the comparators have a be-
havior that has no parameters and is independent of the count of objective
values. For these, we can define globally shared default instances in the form
of public static final-constants. Some fundamental comparators are

1. ParetoComparator which compares the objective values of two solution
candidates according to the pareto-principle introduced in Section 1.3.2 on
page 14. It thus corresponds to the preto-realization of prevalence defined
in Equation 1.16 on page 21. The default instance of this comparator is
PARETO_COMPARATOR.

2. The MajorityComparator takes another approach: the individual that wins
in most of the objectives also wins the comparison. The result obeys the
Equation 31.8. This comparison method does not necessarily yield all
possible optimal solutions since it grants a higher weight to individuals
that dominate other (maybe also optimal) individuals in more points than
vice versa. The default instance of this comparator is MAJORITY_COMPARATOR.

cF,major(x1, x2) =

n∑

i=1

−1 if fi(x1) < fi(x2)
1 if fi(x1) > fi(x2)
0 else

(31.8)

3. SumComparator simple adds up all objective values of the individuals and
thus returns the result of Equation 31.9. It realizes the most primitive
version of weighted sum prevalence with all weights set to 1. The default
instance of this comparator is SUM_COMPARATOR.

cF,weightedS(x1, x2) =

n∑

i=1

(fi(x1)− fi(x2)) (31.9)

If the sum comparison fails, i.e. the sum is Double.NaN, the fall back defined
in ComparatorUtils is used.

4. Weighted sum prevalence (see Section 1.3.1 on page 13 and Equation 1.15
on page 21) is implemented in the WeightedSumComparator. This construc-
tor comparator takes an d array of double as parameter. This array is
copied, and all objective values fi are weighted with the values d[i]. If
the weighted sum comparison fails, i. e. the sum is Double.NaN, the fall
back defined in ComparatorUtils is used.

5. The TieredParetoComparator is an extension to the standard pareto com-
parison. Here we define levels of objective functions. The comparison
works as follows: first, only the set of objective functions in the lowest
level (0) is used. If in this set one individual dominates the other one, it
also wins the comparison. If no pareto-domination could be found, then
the next tier (1) is taken into consideration and so on. If neither of the
two solution candidates dominates the other one in any of the levels, it is
a tie. The levels can be configured freely by passing an array of int to the
constructor which holds their (strictly monotonic increasing) borders.

466 31 Global Optimization

6. We also define an implementation of IComparator which compares individ-
uals according to their fitness as specified in Equation 31.10. Normally,
comparators must only use the objective values to compare individuals.
The fitness of a solution candidate is determined by a fitness assignment
process and will most probably be initially not available. There is how-
ever one instance where comparison on the basis of fitness values may
be needed: in selection algorithms. A selection algorithm may be depen-
dent on the previous fitness assignment and thus use a FitnessComparator.
Notice that defining this class, although being a minor breach of the
prevalence-paradigma, allows selection algorithms to be defined using
comparators instead of strictly adhering to fitness values. A selection
scheme that uses instances of IComparator does not necessarily need a
fitness assignment process but may as well be based on, for example, di-
rect pareto relations. If the fitness comparison fails, i. e. the sum is Double

.NaN, the fall back defined in ComparatorUtils is used. The default instance
of this comparator is FITNESS_COMPARATOR.

cF,fitness(x1, x2) = f(x1)− f(x2) (31.10)

The Populations

The default implementation of IPopulation is the class Population. It uses
the default Sfc list implementation, DefaultList to derive the java.util.List-
functionality, as outlined in Figure 31.13.

org.sigoa.refimpl.go.Population

PP extends Serializable

G extends Serializable

Constructor(int)

Constructor()

eof()

serialVersionUID: long

write(IIndividual<G,PP>)

writeToPipe(IPipeIn<G,PP>)

org.sigoa.spec.go.IPipulation
<<Interface>>

PP extends Serializable

G extends Serializable

org.sfc.collections.lists.DefaultList

T

Fig. 31.13: The class Population.

31.2 Reference Implementation 467

PassThroughPipe and BufferedPassThroughPipe

In Figure Figure 31.14, PassThroughPipe and BufferedPassThroughPipe, the
base classes for pass-through algorithms, are depicted. Both classes imple-

org.sigoa.refimpl.go
<<Package>>

org.sigoa.spec.go.

<<Interface>>
IPassThroughParameters

BufferedPassThroughPipe

PP extends Serializable

G extends Serializable

getPassThroughCount(): int

setPassThroughCount(int)

serialVersionUID: long

m_count: int

BufferedPassThrough...(int)

PassThroughPipe

PP extends Serializable

G extends Serializable

getPassThroughCount(): int

setPassThroughCount(int)

serialVersionUID: long

m_count: int

PassThroughAlgorithm(int)

org.sigoa.refimpl.pipe.BufferedPipe

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.pipe.Pipe

PP extends Serializable

G extends Serializable

<<Indirect>>

Fig. 31.14: The base classes for pass-through algorithms.

ment the interface IPassThroughAlgorithm. BufferedPassThroughPipe inherits
from BufferedPipe and decides which individuals should pass by the means
of investigating the whole set of solution candidates at once. Such behavior
is ideal for selection algorithms, for example. PassThroughPipe on the other
hand is a direct descendant of Pipe and performs such decisions on the run.

31.2.2 Reproduction

The reference implementation of Sigoa reproduction facilities can be found in
the package org.sigoa.refimpl.go.reproduction.

468 31 Global Optimization

Classes that Implement the Reproduction Operations

The (partly abstract) base classes that implement the reproduction opera-
tions discussed in Section 31.1.2 on page 451 are sketched in Figure 31.15.
Creator, Mutator and Crossover are such base classes. They implement the

org.sigoa.refimpl.go.reproduction
<<Package>>

Creator

G extends Serializable

Constructor()

Crossover

G extends Serializable

Constructor()

crossover(G,G): G,IRandom..

serialVersionUID: long

Mutator

G extends Serializable

Constructor()

mutate(G,IRandomizer): G

serialVersionUID: long

MultiCrossover

G extends Serializable

Constructor(ICrossover<G>,...)

crossover(G,G): G,IRandom..

serialVersionUID: long

MultiMutator

G extends Serializable

Constructor(IMutator<G>,d...)

mutate(G): G,IRandomizer

serialVersionUID: long

MultiCreator

G extends Serializable

Constructor(ICreator<..>,do...)

create(): GIRandomizer

serialVersionUID: long

org.sigoa.spec.go.reproduction.
IMutator

<<Interface>>

G extends Serializable
org.sigoa.spec.go.reproduction.

ICreator
<<Interface>>

G extends Serializable
org.sigoa.spec.go.reproduction.

ICrossover
<<Interface>>

G extends Serializable

org.sigoa.refimpl.utils.Selector

PP extends Serializable

G extends Serializable

T

org.sigoa.refimpl.go.
ImplementationBase

PP extends Serializable

Fig. 31.15: The base classes that implement the reproduction interfaces.

interfaces ICreator, IMutator, and ICrossover, respectively. Of course, since
they are generic with the parameter G denoting the genotype, their operations
do not yet return anything. Creator even is abstract, and Mutator as well as
Crossover return the input solution candidates as output in their dedicated

31.2 Reference Implementation 469

operation methods. However, deriving the operations for your genotypes from
such classes means using a common foundation providing utility functions
(by inheriting from ImplementationBase) and ensuring compatibility to future
versions of the Sigoa.

Very useful classes are also the operation multiplexers MultiCreator,
MultiMutator, and MultiCrossover. The inherite from the class Selector dis-
cussed in Section 33.1.2 on page 497. Their constructors takes an array of
either ICreator, IMutator, or ICrossover plus an array of double. While the
first array contains the operations to multiplex to, the second one contains
their weight. Let us consider the fixed-length string chromosomes introduced
in Section 3.4.1 on page 124 for genotypes. We can now implement a one
point, a two point, and a n point crossover operation. By passing these op-
erators in an array to the constructor of MultiCrossover along with {1,2,3},
the resulting multiplexing crossover operation would defer in one of six cases
to the single point, in two of three cases to the double point and in half of the
invocations to the n point crossover operators. The three multiplexers make
it thus very easy to combine different reproduction operators.

Reproduction Pipes

The reference implementation classes of the reproduction pipe specifications
from Section 31.1.2 on page 451 are outlined in Figure 31.16. CreatorPipe is a
specialization of the PassThroughPipe and implements ICreatorPipe. It counts
how many individuals are written to it while passing them straight on to the
next pipe stage. If eof is invoked, it checks whether at least the pass-through
count of solution candidates passed it. If not, it uses the default creator spec-
ified in the optimization information record (see Section 31.1.8 on page 459,
obtained via the method getCreator inherited from ImplementationBase) to
create the missing number.

MutatorPipe derives from Pipe and implements the interface IMutatorPipe.
It stores the mutation rate and whenever a solution candidate passes it, it
generates a random number uniformly distributed in [0, 1). If this number
is lower than the mutation rate, the individual will be mutated – otherwise
it is just passed on. Mutation is done by querying the active mutator, the
individual factory, as well as the randomizer from the host thread via the
inherited methods from ImplementationBase. These are then used to create a
randomized offspring of the solution candidate and to package it into a new
individual record.

CrossoverPipe also inherits from Pipe and realizes the interface
ICrossoverPipe. It works very much like the MutatorPipe with one exception:
it needs two individuals to perform its operation. Thus, instead of creating
a new offspring each time an individual is passed in and a random number
below the crossover rate is generated, it creates two new children of two parent
solution candidates. It therefore has a buffer with space for a single individ-
ual record into which the first of the two parents is stored. Whenever the

470 31 Global Optimization

CreatorPipe

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_passed: int

Constructor(int)

eof()

write(IIndividual<G,PP>)

MutatorPipe

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_rate: double

Constructor(double)

getMutationRate(): double

setMutationRate(double)

write(IIndividual<G,PP>)

CrossoverPipe

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_rate: double

Constructor(double)

getCrossoverRate(): double

setCrossoverRate(double)

write(IIndividual<G,PP>)

m_buffer: IIndividual<G,PP

org.sigoa.spec.go.reproduction.
ICreatorPipe
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.reproduction.
IMutatorPipe
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.reproduction.
ICrossoverPipe

<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.go.reproduction
<<Package>>

org.sigoa.refimpl.go.
ReproductionPipe

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.pipe.Pipe

PP extends Serializable

G extends Serializable

Fig. 31.16: The reproduction pipes.

second solution candidate is selected for crossover, it is combined twice with
the buffered one, creating two offspring. Afterwards, the buffer is cleared. If
eof is called while an individual is still in the buffer, it is passed on before
propagating the call.

31.2.3 Objective Functions

In this section we discuss the reference implementation of the Sigoa concept
of objective functions discussed in Section 31.2.3. Figure 31.17 illustrates the
hierarchy of the package org.sigoa.refimpl.go.objectives which contains this
reference implementation. ObjectiveState realizes the single-evaluation state
of an objective function specified in the interface IObjectiveState. Basically,
it is just a container for one double value denoting the objective value. If
needed, classes with more specific fields should be derived from it.

The default implementation of the interface IObjectiveFunction is the
class ObjectiveFunction. It implements all the necessary methods with-

31.2 Reference Implementation 471

org.sigoa.refimpl.go.objectives
<<Package>>

org.sigoa.refimpl.go.
ImplementationBase

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_ovc: IObjectiveValueCo..

ObjectiveFunction

PP extends Serializable

ST extends IObjectiveSt

SS extends Serializable

SI extends ISimulation

beginIndividual(PP,ST)

beginEvaluation(PP,ST,SS,

createState(SS): ST

computeObjectiveValue(dou..

destroyState(ST,SS)

createStaticState(): SS

endEvaluation(PP,ST,SS,SI)

destroyStaticState(SS)

getRequiredSimulationId():..

endIndividual(PP,SS)

inspect(PP,ST,SS,SI)

getRequiredSimulationSteps(

sanityCheck(PP,SS): boolean

Constructor(IObjectiveValu..

Constructor()

serialVersionUID: long

StaticObjectiveFunction

PP extends Serializable

ST extends IObjectiveSt

SS extends StaticObjec..

SI extends ISimulation

beginIndividual(PP,ST)

computeObjectiveValue(dou..

createStaticState(): SS

Constructor()

Constructor(IObjectiveValu..

computeValue(PP,SS): doub.

ObjectiveState

clear()

getObjectiveValue(): double

serialVersionUID: long

m_value: double

Constructor()

setObjectiveValue(double)

StaticObjectiveState

clear()

getValue(): double

serialVersionUID: long

m_value: double

Constructor()

setValue(double)

ObjectiveUtils

AVG_OVC: IObjectiveValu..

BEST_OVC: IObjectiveVal..

truncate(double,double):dou..

WORST_OVC: IObjectiveV..

org.sigoa.spec.go.IObjectiveState
<<Interface>>

org.sigoa.spec.go.IObjectiveFunction
<<Interface>>

PP extends Serializable

G extends Serializable

SS extends Serializable

SI extends ISimulation

<<Call>>

<<Call>>

<<Call>>

Fig. 31.17: The reference implementation of the objective functions.

472 31 Global Optimization

out performing any specific functionality. Its method createState returns
a new instance of the aforementioned class ObjectiveState. The method
getRequiredSimulationId as well as createStaticState both return null and
must be overridden if a simulation or a static state is needed. sanityCheck al-
ways returns trueand getRequiredSimulationSteps returns 0. The constructor
of ObjectiveFunction optionally takes an instance of IObjectiveValueComputer
as argument which is used computeObjectiveValue. This method is always
called after all (single) evaluations of a solution candidate have been per-
formed in order to determine the final objective value. This could be the av-
erage, worst or best of all single runs. The behavior of doing so is outsourced
to the instance of IObjectiveValueComputer. If no such instance is specified,
the AVG_OVC constant specified in ObjectiveUtils is used.

ObjectiveUtils provides useful utilities for the objective functions, like
some default objective value computers:

1. AVG_OVC returns the arithmetic mean (see Definition 146 on page 521) of
all objective values that are the results of single evaluations.

2. WORST_OVC returns the worst of all the objective values – the highest of
them.

3. BEST_OVC returns the best of all the objective values – the smallest of them.

Furthermore, it provides the static function truncate which realizes a
simple rounding mechanism. If evaluations/simulations are randomized, their
results may contain noise. truncate helps to reduce the bandwidth of a floating
point variable. Obeying the Equation 31.13, it takes two doubles as arguments,
the value (a in the equation) and the precision (p in the equation) it should
be limited to. With this equation, we allow only a given count of powers of
e for the contents of return value. It is very much like expressing a natural
number with, let’s say, four bits. If the number is 70′00, for example, the
closest we can get is to say 70′000 ≈ 73′728 = 1∗216 +0∗215 +0∗214 +1∗213.
This means that at least all number ins [70′000, 73′728] are all mapped to a
single one, removing possible noise of a magnitude of ca. 3′000. The function
truncate does exactly the same, but uses powers of e instead of powers of 2
(since we have only a built-in ln function in Java).

∀a ≥ 0, a ∈ R ⇒ round(a) =

{
⌊a⌋ a− ⌊if a⌋ < 0.5
⌊a⌋+ 1 else

(31.11)

∀a < 0, a ∈ R ⇒ round(a) = −round(−a) (31.12)

truncate(a, p) =

−truncate(−a, p) if a < 0
0 if a = 0
round(a∗ep−round(ln a))

ep−round(ln a) else

(31.13)

A special derivate of ObjectiveFunction is StaticObjectiveFunction. This
special function should be used to describe objective values that do not de-
pend on simulations and are not randomized in any way. If deriving a pro-

31.2 Reference Implementation 473

gram for the artificial ant as described in Section 17.4 on page 284, the code
size would be such an objective value. While this is a very simple exam-
ple, a more complicated one would be the percentage of code that is actu-
ally reachable. This value can be computed by analyzing the program. It
makes no sense to do so for every single evaluation – performing this calcu-
lation only once for each individual is enough. Therefore we introduce the
class StaticObjectiveState which, very similar to ObjectiveState, holds ex-
actly one double and is filled with the result of the method computeValue

of StaticObjectiveFunction. This function is called exactly once per indi-
vidual. The overridden version of computeObjectiveValue then returns this
value and the overridden version of createStaticState returns an instance of
StaticObjectiveState. Hence, we save performing the same computation over
and over again.

31.2.4 The Evaluator

The reference implementation of the evaluator interfaces specified
in Section 31.1.5 on page 456 can be found in the package org.sigoa.refimpl

.go.evaluation depicted in Figure 31.18. Evaluator is the standard realization

org.sigoa.refimpl.go.evaluation
<<Package>>

org.sigoa.refimpl.go.
ImplementationBase

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.evaluation.
IEvaluatorPipe

<<Interface>>

PP extends Serializable

G extends Serializable

ParallelEvaluatorPipe

PP extends Serializable

G extends Serializable

eof()

ParallelEvaluatorPipe()

write(IIndividual<G,PP>)

serialVersionUID: long

Evaluator

PP extends Serializable

Constructor(List<IObje..>,int)

Constructor(List<IObjecti...>)

evaluate(IIndividual<?,PP>)

serialVersionUID: long

...

getObjectiveValueCount():int

SequentialEvaluatorPipe

PP extends Serializable

G extends Serializable

ParallelEvaluatorPipe()

write(IIndividual<G,PP>)

serialVersionUID: long

org.sigoa.spec.go.evaluation.IEvaluator
<<Interface>>

PP extends Serializable

Fig. 31.18: The reference implementation of the evaluation interfaces.

of the interface IEvaluator. It is constructed with a list of objective functions

474 31 Global Optimization

to work on along with an optional integer denoting the count of single evalu-
ation runs to be performed per solution candidate. If this int is not provided,
a single evaluation run is performed.

When created, the Evaluator divides the objective functions into groups,
for each compatible simulation id. The simulation id compatibility is checked
according to the elaborations in Section 27.2.3 on page 410: If simulation ids
are classes, we can check their inheritance and find compatible ids not only by
equal ids but also by the generalization/specialization in the class hierarchy.
Each group of objective functions is dealt with separately when evaluating a
solution candidate.

To allow for parallelization, the Evaluator builds containers which hold the
objective function states and the static states. These containers are stored in
a linked list. Whenever an evaluation is to be performed, the first container in
the list is used. If none is available, a new one is created. After the evaluation,
the containers again are inserted in to the list. The removing and adding
of containers to the list are small critical sections which are synchronized.
With this technique, the state objects of the objective functions are effectively
reused.

We furthermore define two default evaluator pipes: SequentialEvaluatorPipe
and ParallelEvaluatorPipe, both implementing the interface IEvaluatorPipe.
While SequentialEvaluatorPipe evaluates each individual written to it di-
rectly in its write-method, ParallelEvaluatorPipe instead creates a new java

.lang.Runnable which is inserted into the host’s job queue via executeJob

(see Section 28.1.3 on page 416). In its eof-method, it just has to use flush

in order to ensure that all jobs are performed before propagating the eof-call.
Each such job evaluates the solution candidate and subsequently writes the
individual record to the next pipe stage.

31.2.5 Embryogeny

In Section 31.1.6 on page 456 we discussed the specification of the embryogenic
operations – the transformation of genotypes into phenotypes. Like in the ba-
sic reproduction classes, we cannot specify any concrete functionality, since it
will depend on the genotypes/phenotypes subsequently chosen/implemented.
Figure 31.19 outlines the package org.sigoa.refimpl.go.embryogeny contain-
ing the basic embryogenic classes. The EmbryogenyPipe realizes the interface
IEmbryogenyPipe. Each individual record to it is checked if its phenotype is
null. If so, and if a non-null genotype is found, we use the method hatch of
current embryogeny (obtained from host) to compute and set the phenotype
to the individual record. The same is done vice versa for the genotype using
the method regress, if needed.

Although implementing IEmbryogeny, Embryogeny does not provide real
hatching/regressing functionality. Both methods simple assume that the geno-
type and phenotype are equal (X̃ = G) and return their parameter. For dif-
ferent genotypes/phenotypes, both have to be overridden.

31.2 Reference Implementation 475

org.sigoa.refimpl.pipe.Pipe

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.go.
ImplementationBase

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.go.embryogeny
<<Package>>

serialVersionUID: long

Embryogeny

PP extends Serializable

G extends Serializable

hatch(G): PP

regress(PP): G

Constructor()

serialVersionUID: long

EmbryogenyPipe

PP extends Serializable

G extends Serializable

write(IIndividual<G,PP>)

Constructor()

org.sigoa.spec.go.embryogeny.
IEmbryogenyPipe

<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.embryogeny.
Embryogeny
<<Interface>>

PP extends Serializable

G extends Serializable

Fig. 31.19: The embryogeny classes.

31.2.6 Fitness Assignment

Figure 31.20 illustrates the contents of the package org.sigoa.refimpl.go

.fitnessAssignment – some default fitness assignment algorithms. Fitness
assignment algorithms have been introduced in Section 2.3 on page 65 and
their functionality from the Sigoa point of view is specified in Section 31.1.7
on page 458. A fitness assigner is basically a pipe stage that sets the field
fitness of the individual records. Most often an algorithm needs access to
the whole chunk of solution candidates and would thus be implemented as
BufferedPipe. For this case, we specify a default base class to derive from:
FitnessAssigner which both inherits from BufferedPipe and implements the
interface IFitnessAssigner. In the other instances, where the global view onto
the solution candidates is not required, the normal Pipe-class can be extended.
In Table 31.3 you can find the fitness assignment algorithms predefined in the
package org.sigoa.refimpl.go.fitnessAssignment along with references to the
algorithms they realize. The SumFitnessAssigner is a special case of weighted
sum fitness assignment where all weights equal 1 (wi = 1∀i ∈ [1, |F |]).

476 31 Global Optimization

org.sigoa.refimpl.pipe.Pipe

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.go.fitnessAssignment
<<Package>>

org.sigoa.spec.go.fitnessAssignment
IFitnessAssigner

<<Interface>>

PP extends Serializable

G extends Serializable

serialVersionUID: long

FitnessAssigner

PP extends Serializable

G extends Serializable

Constructor()

serialVersionUID: long

SumFitnessAssigner

PP extends Serializable

G extends Serializable

write(IIndividual<G,PP>)

Constructor()

SUM_FITNESS_ASSIGN..

serialVersionUID: long

WeightedSumFitnessAssigner

PP extends Serializable

G extends Serializable

write(IIndividual<G,PP>)

Constructor(double[])

m_weights: double[]

serialVersionUID: long

PrevalenceFitnessAssigner1

PP extends Serializable

G extends Serializable

process(IIndividual<..>[],int)

serialVersionUID: long

PrevalenceFitnessAssigner2

PP extends Serializable

G extends Serializable

process(IIndividual<..>[],int)

serialVersionUID: long

RankBasedFitnessAssigner

PP extends Serializable

G extends Serializable

process(IIndividual<..>[],int)

org.sigoa.refimpl.pipe.BufferedPipe

PP extends Serializable

G extends Serializable

Fig. 31.20: Some default fitness assigners.

Table 31.3: The predefined fitness assigners.

class realized algorithm definition

WeightedSumFitnessAssigner weightedSumFitnessAssign Section 2.3.1 on page 66
SumFitnessAssigner weightedSumFitnessAssign Section 2.3.1 on page 66
PrevalenceFitnessAssigner1 prevalenceF itnessAssign1 Section 2.3.2 on page 66
PrevalenceFitnessAssigner2 prevalenceF itnessAssign2 Section 2.3.2 on page 66
RankBasedFitnessAssigner1 rankBasedF itnessAssign Section 2.3.3 on page 67

31.2 Reference Implementation 477

31.2.7 Selection

In Section 31.1.7 on page 458 we have specified the interface
ISelectionAlgorithm which is common to all pipe stages that perform a selec-
tion. Their reference realization is found in the package org.sigoa.refimpl

.go.selection shown in Figure 31.21. Since ISelectionAlgorithm inher-

org.sigoa.refimpl.go.selection
<<Package>>

org.sigoa.spec.go.selection
ISelectionAlgorithm

<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.go.
BufferedPassThroughPipe

PP extends Serializable

G extends Serializable

serialVersionUID: long

SelectionAlgorithm

PP extends Serializable

G extends Serializable

isFitnessBased(): boolean

m_fitnessBased: boolean

Constructor(boolean,int)

getComparator(): ICompara...

serialVersionUID: long

TruncationSelectionR

PP extends Serializable

G extends Serializable

process(IIndividual<..>[],int)

Constructor(boolean,int)

serialVersionUID: long

RandomSelectionR

PP extends Serializable

G extends Serializable

process(IIndividual<..>[],int)

Constructor(boolean,int)

serialVersionUID: long

TournamentSelectionR

PP extends Serializable

G extends Serializable

process(IIndividual<..>[],int)

Constructor(boolean,int)

m_tournamentSize: int

Fig. 31.21: The predefined selection algorithms package

its from IPipe and IPassThroughParameters, the base class of the selec-
tion algorithms of the reference implementation, SelectionAlgorithm, inher-
its from BufferedPassThroughPipe, a pipe that provides the pass-through
parameters. Selection algorithms may either be based on prevalence com-
parison or on a preceding fitness assignment process. The constructor of
SelectionAlgorithm takes therefore a boolean parameter fitnessBased which
determines which of the both possibilities is valid. The method getComparator

inherited from ImplementationBase is overridden accordingly: If fitnessBased

478 31 Global Optimization

is true, the getComparator will return org.sigoa.refimpl.go.comparators

.FitnessComparator.FITNESS_COMPARATOR (discussed in Section 31.2.1 on
page 462) and the current comparator otherwise.

Table 31.4: The predefined selection algorithms.

class realized algorithm definition

TruncationSelectionR truncationSelectr Section 2.4.1 on page 80
RandomSelectionR rndSelectr Section 2.4.2 on page 80
TournamentSelectionR tournamentSelectr,k Section 2.4.3 on page 81

31.2.8 The Optimizer

In Section 31.1.8 we have specified the optimization interfaces. Their refer-
ence implementations can be found in the root package of the global opti-
mization system, org.sigoa.refimpl.go, as illustrated in Figure 31.22. The
class Optimizer is the foundation of all implementations of global optimization
algorithms (at least, of those relying on the Sigoa reference implementation).

A realization of IOptimizer is always also a realization of java.lang

.Runnable and IPipeOut, since IOptimizer inherits from them. Optimizer fur-
thermore additionally implements IAdaptable (see Section 23.1 on page 387),
IActivity (see Section 28.1.1 on page 413), and, by extending Pipe, also IPipe

(see Chapter 29 on page 427).
The work of an optimization algorithm is always performed in the method

doRun which is called by run (of Runnable). This indirection is needed in order
to support the IActivity operations. Since Optimizer already inherits from
Pipe, it cannot also extend Activity. Anyhow, in order to provide the cor-
rect semantics and functionality of its methods, we use an internal class that
derives from Activity. The calls to abort, isRunning, isFinal, isTerminated,
waitFor, and finished are then deferred to an instance of this class. In turn,
the methods doStart and doAbort of the Optimizer. The Optimizer-instance
calls start of its member variable at first in its run method before invoking
doRun and finished afterwards. This more or less complex approach helps
us to achieve two goals: we can provide doStart, abort, doAbort, finished,
isRunning, isFinal, isTerminated, and waitFor with exactly the same seman-
tics as in the class Activity introduced in Section 28.2.1 on page 420 but
do not need to re-implement them and thus ensure their consistent behav-
ior. They can be used or overridden in order to introduce new functionality
in exactly the same way as in Activity. The only difference is that there is
no method start since an Optimizer is not a independent activity with own
threads but run by a job system. The functionality of start is thus part of
the run-method, as already stated.

31.2 Reference Implementation 479

org.sigoa.refimpl.go
<<Package>>

org.sigoa.spec.go.IOptimizationInfo
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.IOptimizer
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.adaptation.
IAdaptable
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.jobsystem.IActivity
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.pipe.Pipe

PP extends Serializable

G extends Serializable

ImplementationBase

PP extends Serializable

G extends Serializable

OptimizationInfo

PP extends Serializable

G extends Serializable

Constructor(IEvaluator<PP>,.

Constructor(IEvaluator<PP>,.

getCreator(): ICreator<G>

serialVersionUID: long

m_comparator: IComparator

m_crossover: ICrossover<G>

m_creator: ICreator<G>

m_evaluator: IEvaluator<PP

m_embryonic: IEmbryogeny

m_individualFactory: IIndi..

m_mutator: IMutator<G>

getEvaluator(): IEvaluator<..

getCrossover(): ICrossover<G>

getEmbryogeny(): IEmbryog...

getMutator(): IMutator<G>

getIndividualFactory(): IInd..

getComparator(): IComparat..

Optimizer

PP extends Serializable

G extends Serializable

abort()

isRunning(): boolean

reset()

getRules(): List<IRule<...>>

reuse()

run()

waitFor(boolean)

serialVersionUID: long

m_innerActivity: InnerAct..

m_rules: List<IRule<...>>

Constructor()

applyRules()

doAbort()

doRun()

doStart()

finished()

isFinal(): boolean

isTerminated(): boolean

Fig. 31.22: The classes Optimizer and OptimizationInfo.

480 31 Global Optimization

The second advantage is that we can mage Optimizers reusable. If a normal
activity reaches the state TERMINATED, it also reaches the end of its lifecycle.
Optimizer however comes with the method reuse which simple replaces the in-
ternal activity by a new one – and thus brings the optimization algorithm back
into the state before its run-method was executed. Of course, doing so is only
possible if being in the state TERMINATED, reusing an activity that is currently
running or terminating will lead to a java.lang.IllegalStateException being
thrown. The method reuse needs to be overridden if internal data structures
need to be reset when putting the algorithm back into its initial state.

The semantics of reset are a little bit different from reuse. reuse will put
the whole Optimizer into its initial state, including the rules, metadata like
iteration counters, all statistic information and so on. reset only clears its
current state. Imagine the following scenario: All Optimizers implement the
interface IPipeOut in order to output their solutions when done. An optimizer
may also be used to improve and refine a single solution candidate – there is
no rule against that. So basically, one may want to chain optimizers together
to form hybrid algorithms. An evolutionary algorithm may use a hill climber
in order to refine its solutions. The hill climber would then be executed as a
sub-job of the evolutionary algorithm once for each individual and could for
example be limited in the count of iterations to perform. It is no problem to
write a special pipe for that. In this case, one would need to reuse the hill
climber multiple times. On the other hand, an evolutionary algorithm or a hill
climber may reach a dead end, where no further improvements are possible. A
rule could detect that no progress is made and reset the algorithm. reset could
still preserve the best individuals and it could leave some counters, statistics,
and such and such untouched. This is not what we want when reusing it. It
is however imaginable to combine both scenarios.

reuse always needs to clear at least the same fields and data structures as
reset, thus it invokes reset per default.

Since Optimizer implements IAdaptable, it also manages a set of rules. This
set can be accessed by the method getRules, which returns an instance of java
.util.List containing them. If the protected method applyRules is invoked,
all the rules in the list are applied to the Optimizer as defined in Chapter 23.
It should periodically be invoked in the method doRun of the Optimizer.

An Optimizer is a special Pipe. When it is done with its work, the best
solution candidates found will be written to its output. This must be done
by its subclasses, and the best point to do it is by overriding the method
finished.

But a pipe has also an input end. An Optimizer may not support receiving
new solution candidates as input in order to incorporate them into its course.
This can be very useful for a number of reasons:

• It would allow optimization algorithms to be effectively chained, like in
the scenario discussed before. An Optimizer used by another receives the
solution candidates it should optimize through its input. It will then be ex-

31.3 Predefined Algorithms 481

ecuted as a sub job, writing its results to its output when done. This could
be realized now very simple as a pipe stage. By this approach, arbitrary
optimizers could be concatenated in arbitrary levels.

• When distributing optimizers over a network, many population based al-
gorithms may run in parallel. These parallel instances could exchange indi-
viduals using for example the island model paradigm (see Section 16.2.2 on
page 267). From time to time, they would select some solution candidates
and send them to another algorithm instance on another machine. This
other instance could incorporate them asynchronously by simple writing
them to the input of the optimization algorithm.

• Integrating individuals received over the network into an optimization pro-
cess is just a special case, if viewed more closely. By providing the IPipeIn-
capabilities, any source of solution candidates can be utilized. It becomes
for example also possible to store individual records to a file and later read
them again directly into the optimizer, as maybe useful for snap-shooting.

31.2.9 The Optimization Info Record

The class OptimizationInfo is the reference implementation of the optimiza-
tion information record specified in Section 31.1.9 on page 460. It stores all
properties which can be accessed through getters in member variables which
are initialized by the constructors. Basically, all of them are final and hold
parameters passed into the constructors. The constructors thus require a cre-
ation, a mutation, and a crossover operation, an evaluator, and an embryo-
geny to be passed to them. The difference between the two constructors is that
one also takes an individual factory and a comparator as argument, whereas
the other one simple uses the default individual factory (see Section 31.2.1 on
page 462) and the pareto-comparator (specified in Section 31.2.1 on page 462).

31.3 Predefined Algorithms

In this section we discuss some of the algorithms provided which are
based on the predefined algorithm interfaces defined in Section 31.1.10 on
page 460. As indicated by Figure 31.23, the package org.sigoa.refimpl.go

.algorithms contains the class IterativeOptimizer realizing the interface
IIterativeAlgorithm. The method doRun of IterativeOptimizer now performs
a loop. In each step, the methods applyRules, beforeIteration, iteration, and
afterIteration are called in exactly that order. applyRules already has been
discussed in Section 31.2.8 on the facing page. beforeIteration, iteration,
and afterIteration per default do nothing – they are to be overridden by
derived classes in order to implement some useful behavior. They all receive
the index of the current iteration as parameter.

At the end of each iteration step, this current iteration index as well as
the count of total iterations is incremented by one. They are both zero-based

482 31 Global Optimization

org.sigoa.refimpl.go.algorithms.
IterativeOptimizer

PP extends Serializable

G extends Serializable

Constructor()

serialVersionUID: long

getIteration(): long

getTotalIterations(): long

reset()

reuse()

m_iteration: long

m_totalIteration: long

afterIteration(long)

beforeIteration(long)

doRun()

iteration(long)

org.sigoa.refimpl.go.Optimizer

PP extends Serializable

G extends Serializable

org.sigoa.refimpl.go.algorithms.
IIterativeAlgorithm

<<Interface>>

Fig. 31.23: The classes IterativeOptimizer.

(meaning that first iteration has the index zero) and can be obtained by the
methods getIteration and getTotalIterations respectively. The difference
between the two counters is that the current iteration index will be set to
zero if by reset whereas the total iteration counter remains untouched. This
allows rules to reset optimization algorithms any number of times while still
preserving knowledge of the total count of iterations completed. This total
iteration count is, of course, also set to zero again by reuse.

31.3.1 Implementing Evolutionary Algorithms

The package org.sigoa.refimpl.go.algorithms.ea contains implementations
of evolutionary algorithms. The two classes EA and ElitistEA, sketched in
Figure 31.24, are the Sigoa foundation for evolutionary algorithms.

EA - the Evolutionary Algorithm Implementation

Figure 31.25 shows that both are basically concatenations of pipes. The inter-
nal pipeline of the EA objects can be accessed by calling the protected method
getPipeline and is built in the method createPipeline, which in turn uses
the following methods:

1. createFitnessAssigner creates the fitness assignment algorithm to be
used. It returns per default an instance of PrevalenceFitnessAssigner2

(see Table 31.3 on page 476).
2. createSelectionAlgorithm returns the selection algorithm to be used – a

binary tournament selection with replacement (see TournamentSelectionR

in Table 31.4 on page 478) is created per default.

31.3 Predefined Algorithms 483

org.sigoa.refimpl.go.algorithms.ea
<<Package>>

EA

PP extends Serializable

G extends Serializable

eof()

serialVersionUID: long

m_pop1: IPopulation<G,PP>

m_pop1: IPopulation<G,PP>

Constructor(int,double,dou...)

afterIteration(long)

beforeIteration(long)

createCreatorPipe(): ICreator

createCrossoverPipe(): ICross

createEvaluatorPipe(): IEval

createFitnessAssigner(): IFit

getMutationRate(): double

getNextPopulationSize(): int

reset()

getCrossoverRate(): double

setCrossoverRate(double)

setMutationRate(double)

setNextPopulationSize(int)

write(IIndividual<G,PP>)

m_innerPipe: Pipeline<G,...

...

createEmbryogenyPipe(): IE

createMutatorPipe(): IMutat

createPipeline(): Pipeline

createSelectionAlgorithm(): I

finished()

getPipeline(): Pipeline<G,PP>

iteration(long)

outputResults(IPipeIn<G,PP>

ElitistEA

PP extends Serializable

G extends Serializable

serialVersionUID: long

m_arch1: IPopulation<G,PP>

m_arch1: IPopulation<G,PP>

Constructor(int,double,dou...)

Constructor(int,double,doubl.

createArchiveOutput(): IPip..

createArchivePipeline(): Pip

createClusteringAlgorithm():

getArchivePipeline(): Pipelin

getMaxArchiveSize(): int

m_archivePipe: Pipeline<G,..

...

iteration(long)

outputResults(IPipeIn<G,PP>

reuse()

setMaxArchiveSize(int)

org.sigoa.spec.go.algorithms.IEA
<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.algorithms.
IElitistAlgorithm

<<Interface>>

PP extends Serializable

G extends Serializable

org.sigoa.spec.go.algorithms.
IterativeOptimizer

PP extends Serializable

G extends Serializable

Fig. 31.24: The default evolutionary algorithm implementations of Sigoa.

484 31 Global Optimization

IFitnessAssigner

ISelectionAlgorithm

ICrossoverPipe

IMutatorPipe

ICreatorPipe

IEmbryogenyPipe

IEvaluatorPipe

pop(t+1):IPopulation

pop(t):IPopulation

:NonPrevalenceFilter

IClusteringAlgorithm

arch(t):IPopulation

:NoEofPipe

arch(t+1):IPopulation

Evolutionary Algorithm
EA

Elitist Evolutionary Algorithm
ElitistEA

Fig. 31.25: The individual flow through a default EA pipe

3. createCrossoverPipe is used to obtain an instance of ICrossoverPipe

(see Section 31.1.2). The standard implementation of this returns an
CrossoverPipe.

4. createMutatorPipe returns a new IMutatorPipe (see Section 31.1.2), an
instance of MutatorPipe per default,

5. createCreatorPipe provides instances of ICreatorPipe (again, see Sec-
tion 31.1.2). In its original form, this method returns a brent new
CreatorPipe.

31.3 Predefined Algorithms 485

6. createEmbryogenyPipe returns the IEmbryogenyPipe to be used by the
evolutionary algorithm. It returns an Embryogeny-object per default
(see Section 31.1.6 on page 456).

7. createEvaluatorPipe creates an instance of IEvaluatorPipe. The standard
implementation returns an SequentialEvaluatorPipe-object – the stan-
dard evolutionary algorithms make no use of parallelism or multiple pro-
cessors. If a parallel evolutionary algorithm is required, this method should
be overridden in order to return an instance of ParallelEvaluatorPipe

(see Section 31.2.4 on page 474) instead.

Figure 31.25 on the preceding page shows how the individuals flow through
the pipe construction built by these methods. One may be surprised that the
fitness assignment is the first stage in the pipe. In the first iteration, the
population pop(0) = ∅ is empty, and thus, no individuals pass the stages up
to the creator pipe. This stage creates the count of individuals needed to fill up
to the wanted population size and passes them on to the embryogeny and the
evaluator. In the second iteration step, the individuals now enter the fitness
assignment and will subsequently take part in a selection. Thus, constructing
the pipeline this way is no error but correct and efficient.

Although we work with populations called pop(t) and pop(t + 1) in
Figure 31.25, in fact only two instances of IPopulation are needed: One that
is written to the input end of the pipe and one to receive its outputs. These
two are swapped after each iteration step.

In order to perform the work of the evolutionary algorithm, the
methods afterIteration, beforeIteration and iteration are overridden.
afterIteration calls flushJobs of its host, so all pending jobs in the queue
will be finished by this method.

We implement the IEA interface in EA and thus need to specify methods
to get and set mutation and crossover rates as well as the next population
size are required. This is done be first holding these in internal variables ini-
tialized first in the constructor. While the getters just return the values of
these variables, the setter methods have to browse the pipeline for stages
that need these values. The population size setter, setNextPopulationSize,
passes the new value to all instances of IPassThroughParameters (that are,
for example selection algorithms and creator pipe stages). Notice the current
population size returned by getPopulationSize may differ from the values set
using setNextPopulationSize since these become operative not before the next
iteration – and even if so, the real population size also depends on the con-
struction of the pipeline. setMutationRate and setCrossoverRate propagate
the new values to IMutatorParameters and ICrossoverParameter instances re-
spectively.

When an evolutionary algorithm has finished, its method codeilifinished is
invoked. Now it is time to find the best solutions created so far and write the to
the output of the optimizer. finished therefore creates a NonPrevalenceFiler

attached to a NoEofPipe. The output of this structure is than attached to

486 31 Global Optimization

the output of the output of the evolutionary algorithm while its input end is
passed to outputResults. The method outputResults is now to write all the
individual records it knows to the IPipeIn instance it receives as parameter.
In standard EA instances, these are the contents of the two, internally used
populations.

ElitistEA - the Elitist Evolutionary Algorithm Implementation

ElitistEA extends EA by an additional internal pipeline, the archive pipeline.
The archive pipeline can be accessed via getArchivePipeline and is built using
the method createArchivePipeline. createArchivePipeline simple attaches
the result of createClusteringAlgorithm, an instance of IClusterAlgorithm

(an instance of NNearestNeighborClustering with n =
√

|archive| per default,
see Section 30.2.1 on page 439) to the output of a NonPrevalenceFilter (since
archives normally contain only non-prevailed individuals).

Over a CopyPipe, the output of the archive is copied to an NoEofPipe which
writes it to fitness assigner inside the main population pipeline. Both, the in-
dividuals from this main pipe as well as those residing in the archive of the last
iteration step enter the archive pipe in its input end. Only the non-prevailed
are will pass the first filter. If too many individuals remain, the clustering
algorithm reduces them to a smaller but still significant set according to the
archive size set and passes them to the next level. In the standard elitist EA,
this is the end of the archive pipeline, attached to the archive of the current
time step.

Like in EA objects, we only need two instances of IPopulation (which are
switched in each iteration step) in order to represent the archives.

The size of the archive (initially
√

|population|) can be set using
setMaxArchiveSize and is available via getMaxArchiveSize. The real size of
the archive, obtained by using getArchiveSize, may be lower – it can only
contain as much individuals as are non-prevailed at most.

32

Genotypes

Figure 32.1 gives an overview about the package org.sigoa.refimpl.genotypes

containing the standard genotypes and phenotypes provided by the Sigoa
framework. In this chapter, we want to elaborate on these default genotypes,

reproduction
<<Package>>

embryogeny
<<Package>>

reproduction
<<Package>>

doubleVector
<<Package>>

bitString
<<Package>>

org.sigoa.refimpl.genomes
<<Package>>

Fig. 32.1: The utility classes of the Sigoa reference implementation.

phenotypes, and the operations defined on them.

488 32 Genotypes

32.1 Vectors of Real Numbers

The package org.sigoa.refimpl.genomes.doubleVector provides vectors of real
numbers, in other words, arrays of double, as genotype and phenotype. In
Figure 32.2 we illustrate the classes that concentrate on the phenotypic aspects
of this doubleArray genome. If the phenotype is the set of real numbers, i. e.

org.sigoa.refimpl.genomes.doubleArray
<<Package>>

<<Call>>

DoubleArrayFunctionEvaluator

evaluate(IIndividual<?,dou...)

Constructor(IDoubleVectorF..

getObjectiveValueCount(): int

serialVersionUID: long

m_functions: IDoubleVecto..

org.sigoa.spec.go.evaluation.
IEvaluator
<<Interface>>

PP extends Serializable

DoubleArrayObjectiveFunction

computeValue(double[],static

Constructor(IDoubleVectorF..

serialVersionUID: long

m_f: IDoubleVectorFunction

IDoubleArrayFunction
<<Interface>>

compute(double[])

<<Call>>

org.sigoa.refimpl.go.objectives.
StaticObjectiveFunction

PP extends Serializable

ST extends IObjectiveSt

SS extends StaticObjec..

SI extends ISimulation

Fig. 32.2: The phenotypic aspects of the double array genome.

X̃ = Rn, the objective functions are often mathematical functions. In many
of these cases the optimization algorithm is just used to minimize/maximize
them [1110, 1111, 1112, 226, 1113].

32.1.1 The Evaluation Scheme for Functions of Real Vectors

For this reason, we provide an interface which encapsulates such mathematical
functions y ∈ R = f(x) : x ∈ Rn. The method compute of the interface

32.1 Vectors of Real Numbers 489

IDoubleArrayFunction accepts an array of double, the closest we can get to Rn

in Java, and returns again a double.
An interesting fact is that in the case of sole function optimiza-

tion, the Evaluator and the whole concept of objective functions and
simulations as illustrated in Figure 31.4 on page 454 would be a total
overkill. A simplified evaluation process is therefore provided by the class
DoubleArrayFunctionEvaluator. Instead of performing stepwise evaluation and
using IObjectiveFunctions (see Section 31.2.3 on page 470), it simple owns a
list of IDoubleArrayFunctions. The length of this list is also the count of ob-
jective values. Whenever an individual (in this case, a double[]) is evaluated,
these functions are computed. The result of each function is stored as an ob-
jective value in the individual record. This is, of course, much, much faster
than the approach applied normally. Notice however that the length of the
vectors of real numbers is not correlated in any way with the count of objec-
tive values – we may have five objective functions f1. . .f5(x) : x ∈ R2 where
each one takes a real vector of the length 2 as argument.

There may be, however, occasions, where the computation of a function
of vectors of real numbers is only part of the evaluation of an individual. The
real vector could be a set of coordinates describing a certain structural compo-
nent. An instance of IDoubleArrayFunction could compute its volume and thus
material cost. Another objective function may however simulate the compo-
nent and returns e.g. the lifetime expectancy. In this case, we cannot use the
DoubleArrayFunctionEvaluator but have to stick with the good old Evaluator

(see Section 31.1.5 on page 456). In order to make IDoubleArrayFunctions
usable with the Evaluator, we define the class DoubleArrayObjectiveFunction.
This is a descendent of StaticObjectiveFunction and its computeValue method
is overridden in a way that it returns the result of the meth compute of the
IDoubleArrayFunction it contains. Now we can combine the evaluation of in-
stances IDoubleArrayFunction with normal objective functions easily.

32.1.2 Reproduction Operators for Real Vectors

In Figure 32.3 we outline the package org.sigoa.refimpl.genomes.doubleArray

.reproduction containing the reproduction operators for real number vec-
tor genomes. An internal base class, DoubleArrayReproducer, which extends
ImplementationBase takes two arrays of double as parameters in its construc-
tor. Each array is as long as the real vectors in the genome. The first ar-
ray represents the lower border of the values of the vector and the second
one the upper border. All operators that inherit from DoubleArrayReproducer

can thus use this range information and confine the values in the produced
genotype instances accordingly. Let us assume that we have the set of real
vectors X = R3. We want to investigate a subset of this three dimen-
sional space by defining the genome X̃ ⊂ X that consists of the vectors
x = (x1, x2, x3) ∈ X̃ ⇔ x1 ∈ [0, 1] ∧ x2 ∈ [−100, 100] ∧ x3 ∈ [4, 5]. Hence, we
will provide the constructor of the reproduction operator with the two arrays

490 32 Genotypes

org.sigoa.refimpl.genomes.doubleArray.reproduction
<<Package>>

Constructor(double[],double[]

serialVersionUID: long

m_min: double[]

m_max: double[]

m_span: double[]

DoubleArrayReproducer

DoubleArrayCreator

create(IRandomizer): double[

Constructor(double[],double[]

serialVersionUID: long

DoubleArrayMutator

mutator(double[],IRandomi..

Constructor(double[],double[]

serialVersionUID: long

DoubleArrayCrossover

crossover(double[],double[],I..

Constructor(double[],double[]

serialVersionUID: long

org.sigoa.spec.go.reproduction.
IMutator

<<Interface>>

G extends Serializable
org.sigoa.spec.go.reproduction.

ICrossover
<<Interface>>

G extends Serializable
org.sigoa.spec.go.reproduction.

ICreator
<<Interface>>

G extends Serializable
org.sigoa.spec.go.reproduction.

ICreator
<<Interface>>

G extends Serializable

Fig. 32.3: The reproduction operators for the double array genome.

{0,-100,4} and {1,100,5}. The semantics of the operator guarantee that all
vectors created will be in X̃.

The class DoubleArrayCreator is the first of such reproduction operators.
The real vectors it creates are uniformly distributed over the confined space
X̃.

The DoubleArrayMutator selects one place of the double array passed in.
This place will undergo a mutation by computing a random number that is
normally distributed (see Section 35.4.2 on page 537). The normal distribution
has two parameters, µ, denoting its center, and σ, the standard deviation,
describing how much the distribution function is stretched. If we set µ to the
original value of the vector place that we want to mutate, the IRandomizer

will us return a value that is spread around this value. σ is set using a bit
more complicated strategy: we define some standard σ-values according to the
possible range of the vector place. From these, we chose randomly.

The crossover operator for double vectors, DoubleArrayCrossover, utilizes
two different approaches. It creates a new real vector xn ∈ X̃ from two existing
ones x1, x2 ∈ X̃. For each place i in the vector, it decides whether xn,i should
be x1,i, x2,i, or (γx1,i) + ((1 − γ)x2,i randomly. In the last case, γ ∈ [0, 1) is

32.2 Bit String Genomes 491

a uniformly distributed random number γ = randomu() and xn,i would thus
be assigned to a weighted mean of x1,i and x2,i.

32.2 Bit String Genomes

Bit string genomes are a special case of the string chromosomes discussed
in Section 3.4 on page 124. Inside of the Java environment, we can define bit
strings as arrays of byte, where each byte holds eight bits.

Other than real vectors, bit strings rarely are used as phenotypes and rep-
resent in most cases the genotypes only. Thus, embryongenesis, the encoding
and decoding of information into and from the genome, is an important aspect
here.

32.2.1 Encoding and Decoding Data in Bit String Genomes

In the package org.sigoa.refimpl.genomes.bitString, sketched in Figure 32.4,
therefore contains versatile helper classes. Instances of the class
BitStringInputStream can be initialized with an array of byte via the two init-
methods. This byte array is then treated as a string of consecutive bits that can
be read from. The same instance of BitStringInputStream can be reused and
initialized multiple times. BitStringInputStream implements all the methods
of the interface java.io.DataInput that read bytes, shorts, ints, longs, floats,
doubles, characters, character Strings, and boolean values from the bit string.
In BitStringInputStream, all these method use the routine readBits. readBits
can be called with an integer parameter with a value of 1 . . . 32, specifying
how many bits should actually be read. It returns an int which is filled with
bits read and increments the internal position counter accordingly. Analo-
gously to the method available, which returns the count of remaining bytes
in the stream, availableBits returns the remaining count of bits. To sum it
up, with BitInputStream, all the primitive types of Java can be decoded from
a bit string in any combination and order.

While BitStringInputStream allows the dencoding of all primitive types
from a bit string, with BitStringOutputStream they can be encoded into
one. By implementing java.io.DataOutput, BitStringOutputStream is, like
BitStringInputStream, compatible to the Java I/O1 and provides the methods
needed to write data to a bit string. These methods all delegate to writeBits

which takes an int containing the binary data to be written and another one
holding the count of bits that should be used from that data. After writ-
ing all the information to be encoded to the BitStringOutputStream, the ar-
ray of byte holding their binary representation can be obtained using the
method getOutput. Notice that getOutput returns an array of byte and one
thus cannot deduce the number of bits actually written from this return value

1 http://java.sun.com/javase/6/docs/technotes/guides/io/

http://java.sun.com/javase/6/docs/technotes/guides/io/

492 32 Genotypes

org.sigoa.refimpl.genomes.bitString
<<Package>>

BitStringInputStream

available(): int

Constructor()

serialVersionUID: long
m_buf: byte[]
m_last: int
m_mark: int
m_pos: int

availableBits(): int

clear()

init(byte[],int,int)

init(byte[])

read(): int

readBits(int): int

readBoolean(): boolean

readDouble(): double

...

BitStringOutputStream

clear()

Constructor()

serialVersionUID: long
m_buffer: byte[]
m_pos: int

flush()

getOutput(): byte[]

getBitCount(): int

writeBits(int,int)

write(byte[])

writeDouble(double)

writeUTF(String)

...

GrayCodedBitStringInputStream

Constructor()

readBits(int): int

GrayCodedBitStringOutputStream

Constructor()

writeBits(int,int)

org.sfc.io.
ReferenceCountedInputStream

org.sfc.io.
ReferenceCountedOutputStream

java.io.DataInput
<<Interface>>

java.io.DataOutput
<<Interface>>

Fig. 32.4: Bit string encoding and decoding classes.

(since one byte) holds eight bits). Therefore, the method getBitCount is pro-
vided which returns this number. An instance of BitStringOutputStream can
also be reused by simply deleting all the data written to it by invoking the
method clear. The classes BitStringInputStream and BitStringOutputStream

are compatible, meaning that any data encoded in a bit string using
BitStringInputStream can be decoded correctly using BitStringOutputStream.
Also, data decoded from a bit string with BitStringInputStream and re-
encoded with BitStringOutputStream will produce exactly the same bit string
again, with some minor exceptions (e.g. the NaN values of double).

32.2 Bit String Genomes 493

Sometimes the usage of Gray-code for bit string genomes is of advantage, as
discussed in Section 3.4 on page 124. The class GrayCodedBitStringInputStream
extends BitStringInputStream for this purpose. In the overridden method
readBits, it applies a Gray code to binary conversation after calling its in-
herited pendant and returns the result. GrayCodedBitStringOutputStream does
the same with BitStringOutputStream – it encodes all bits written to it into
Gray code before passing them on to the inherited writeBits method. Again,
both classes are compatible and data written with one can correctly read by
the other and vice versa.

32.2.2 Embryogeny of Bit String Genomes

In Figure 32.5, the BitStringToDoubleArrayEmbryogeny is introduced. It

org.sigoa.refimpl.genomes.
bitString.embryogeny

BitStringToDoubleArrayEmbryogeny

hatch(byte[]): double[]

Constructor(boolean)

serialVersionUID: long

m_bos: BitStringOutputStre..

m_bis: BitStringInputStrea..

regress(double[]): byte[]

org.sigoa.refimpl.go.embryogeny.
Embryogeny

PP extends Serializable

G extends Serializable

Fig. 32.5: The definition of BitStringToDoubleArrayEmbryogeny

builds the bridge of bit string genomes to the real vector phenotypes in-
troduced in Section 32.1. This special embryogeny uses the aforementioned
BitStringInputStream and BitStringOutputStream classes for the transforma-
tion. Its constructor can be supplied with a boolean value indicating if Gray
code should be used or not.

32.2.3 Reproducing Bit Strings

In the package org.sigoa.refimpl.genomes.bitString.reproduction we spec-
ify some basic reproduction operations of bit strings. Figure 32.6 also includes
the packages fixedLength and variableLength which contain specialized oper-
ators for bit strings of fixed and variable length.

Both sorts of bit strings however can be mutated by toggling one to n
bits, as discussed in Section 3.4.1 on page 124. For this purpose, three basic
mutation operators are provided:

1. The BitStringToggleOneBitMutator simple toggles a randomly picked bit
in the genotype (by xoring it with 1). The default, globally shared instance
of this operator is the constant BIT_STRING_TOGGLE_ONE_BIT_MUTATOR.

494 32 Genotypes

org.sigoa.refimpl.genomes.bitString
<<Package>>

BitStringCreator

create(IRandomizer): byte[]

serialVersionUID: long

m_granularity: int

getGranularity(): int

getNewLength(IRandomizer

Constructor(int)

BitStringCrossover

crossover(byte[],byte[],IRand.

serialVersionUID: long
m_granularity: int

getGranularity(): int

getCrossoverPoints(int,int,IR.

Constructor(int)

m_bis: BitStringInputStrea..
m_bos: BitStringOutputStre

Constructor(int,int)

getSplitCount(IRandomizer,i.

BitStringOneToggleBit

mutate(byte[], IRandomizer):

serialVersionUID: long

BIT_STRING_TOGGLE_.

Constructor()

BitStringToggleNConcescutiveBits

mutate(byte[], IRandomizer):

serialVersionUID: long

BIT_STRING_TOGGLE_.

Constructor()

BitStringToggleNRandomBits

mutate(byte[], IRandomizer):

serialVersionUID: long

BIT_STRING_TOGGLE_.

Constructor()

VariableLengthBitString-
InsertMutator

VariableLengthBitStringCreator

VariableLengthBitString-
NPointCrossover

VariableLengthBitString-
DeleteMutator

VariableLengthBitString-
Mutator

variableLength
<<Package>>

FixedLengthBitString-
1PointCrossover

FixedLengthBitString-
2PointCrossover

FixedLengthBitString-
NPointCrossover

FixedLengthBitStringCreator

fixedLength
<<Package>>

Fig. 32.6: The reproduction facilities for bit strings.

32.2 Bit String Genomes 495

2. BitStringToggleNRandomBits repeats this operation n times, where n is
picked randomly. It draws n locations in the string and toggles the bits
at these locations. The default, globally shared instance of this operator
is the constant BIT_STRING_TOGGLE_N_RANDOM_BIT_MUTATOR

3. BitStringToggleNConsecutiveBits toggles all bits in a consecutive group
of the length n, where both n and the location of the group are picked
randomly. The default, globally shared instance of this operator is the
constant BIT_STRING_TOGGLE_N_CONSECTIVE_BIT_MUTATOR

The operations creation and crossover however differ for fixed and variable
length strings. The base class BitStringCreator provides the means to create
a randomly initialized bit string. Its method getNewLength has to be overrid-
den in order to provide the length of the string to be created. Its descendant
FixedLengthBitStringCreator here always returns the same number (speci-
fied in its constructor), whereas VariableLengthBitStringCreator returns a
random value which is at least as big as a minimal size (also specified in
its constructor). BitStringCreator has another important feature: it supports
a granularity value which can be obtained via the getGranularity method.
The granularity value (1 per default) is the measurement unit of the length
of the bit strings. In other words, the string lengths will always be multi-
ples of the granularity. This is realized by multiplying the values returned by
getNewLength with the granularity before actually creating the new genotype.

Similar to BitStringCreator, the base class for bit string crossover supports
a granularity value. Here, all crossover points will be at bit indexes that are
multiples of this value. BitStringCreator specifies two protected methods that
have to be overridden to define the functionality of the crossover operation:
getSplitCount returns the number of crossover points and getCrossoverPoints

fills their locations into arrays of int (one per parent). For fixed-length bit
string genomes we base on the foundation of this class

1. single-point crossover operation in FixedLengthBitString1PointCrossover

2. two-point crossover operation in FixedLengthBitString2PointCrossover

3. n-point crossover operation in FixedLengthBitStringNPointCrossover

For variable-length bit strings we also define an n-point crossover operator in
the class VariableLengthBitStringNPointCrossover. In the fixed-length forms,
the crossover points are the same for both parents and thus, the child genome
has the same length as the parent genomes. For variable-length genomes the
crossover points may differ and so will the length of the child genome from
the length of the parent genome.

If the length of the chromosomes is not fixed, two additional mu-
tation operators become available as mentioned in Section 3.4.2 on
page 126: the insertion and the deletion of bits. The first one is
done in the VariableLengthBitStringInsertMutator and the later in the
VariableLengthBitStringDeleteMutator. Again, both apply a granularity value
which is used as a multiplier for the count of bits to insert/delete as well as
for the insertion/deletion point.

496 32 Genotypes

To ease working with mutation of variable-length genomes, we spec-
ify the class VariableLengthBitStringMutator which is a specialization of
MultiplexingMutator elaborated on in Section 31.2.2 on page 468. It utilizes
all the operators defined here with a default probability distribution. An in-
stance of this class can be created by specifying a granularity value which will
be used to initialize the mutators internally used.

33

Utility Classes

In this chapter we want to have a closer look on the utility classes used by
the Sigoa system.

33.1 The Utility Classes of the Reference
Implementation

The utility classes of the reference implementation of the Sigoa reside in the
package org.sigoa.refimpl.utils depictured in Figure 33.1.

33.1.1 The Default Thread Class

DefaultThread is a thread equipped with the IActivity2-interface (see Sec-
tion 28.1.1). The worker threads of the job system for example are derived
from this class, as described in Section 28.2.3. DefaultThread inherits from org

.sfc.parallel.SfcThread which in turn is conform to the Sigoa activity model
discussed in Section 28.1.1. Thus, we can provide the the methods start,
abort, waitFor, isRunning, isTerminated and isFinished of IActivity2 as well
as the protected doAbort and doStart routines with the same semantics as in
the class Activity of the job system. This is achieved already in SfcThread by
utilizing the same technique as in the Optimizer of Section 31.2.8 on page 478
– an internal activity instance to provide their functionality. Additionally, the
method run delegates now to the new abstract method doRun. This call is how-
ever encapsulated in a try. . . catch-clause. If an error is caught, it is passed
to the method onError, which may then for example create an ErrorEvent or
such and such, but per default only checks if the error had probably something
to do with memory shortage, and, if so, invokes the garbage collector.

33.1.2 The Selector

The class Selector is used by the multiplexing reproduction operations in
Section 31.2.2. A Selector is parameterized with the type T and takes an

498 33 Utility Classes

org.sigoa.refimpl.utils
<<Package>>

org.sigoa.spec.jobSystem.IActivity2
<<Interface>>

org.sigoa.parallel.SfcThread

org.sigoa.refimpl.go.
ImplementationBase

PP extends Serializable

G extends Serializable

Selector

PP extends Serializable

G extends Serializable

select(IRandomizer): T

Constructor(T[], double[])

serialVersionUID: long

m_data: T[]

T

m_weights: double[]

DefaultThread

PP extends Serializable

G extends Serializable

abort()

interrupt()

isRunning(): boolean

run()

waitFor(boolean): boolean

start()

Constructor()

Constructor(String)

Constructor(ThreadGroup,S..)

doAbort()

doStart()

doRun()

onError(Throwable)

isFinal(): boolean

isTerminated(): boolean

Fig. 33.1: The utility classes of the Sigoa reference implementation.

array of instances of T along with a same-length array of double (the weights)
when being constructed. Each of this instances of T is assigned the double at
the same position in the second array as weight. Whenever the method select

is invoked, it randomly picks one of the Ts with a probability proportional to
its weight and returns it. Let us for example assume that T was String, the
first array was “A”,“B”,“C”, and that the second array was 1, 2, 3. In one
out of six calls to select, it would thus probably return “A”, in two it would
return “B” and in the rest of the cases, “C” would returned.

Part IV

Background

34

Set Theory

Set theory1 [1114, 1115, 1116] is an important part of the mathematical theory.
Numerous other disciplines like algebra, analysis and topology are based up on
it. Set theory can be divided into näıve set theory2 and axiomatic set theory3.
The first form, the näıve set theory, is inconsistent and therefore not regarded
in this book.

Definition 86 (Set). A set is a collection of objects considered as a whole4.
The objects of a set are called elements or members. They can be anything,
from numbers and vectors, to complex data structures, algorithms, or even
other sets. Sets are conventionally denoted with capital letters, A, B, C, etc.
while their elements are usually referred to with small letters a, b, c.

34.1 Set Membership

The expression a ∈ A means that the element a is a member of the set A
while y 6∈ A means that y is not a member of A. A set can contain an element
only once. There are three common forms to define sets:

• With their elements in braces: A = {1, 2, 3} defines a set A containing the
three elements 1, 2, and 3.

• The same set can be specified using logical operators to describe its ele-
ments: ∀b ∈ N : (b ≥ 1) ∧ (b < 4)⇔ b ∈ B.

• A shortcut for the previous form is to denote the logical expression in
braces, like C = {(c ≥ 1) ∧ (c < 4), c ∈ N}.
The cardinality of a set A is written as |A| and stands for the count of

elements in the set.

1 http://en.wikipedia.org/wiki/Set_theory [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Naive_set_theory [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Axiomatic_set_theory [accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Set_%28mathematics%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Naive_set_theory
http://en.wikipedia.org/wiki/Axiomatic_set_theory
http://en.wikipedia.org/wiki/Set_%28mathematics%29

502 34 Set Theory

34.2 Relations between Sets

Two sets A and B are said to be equal, written A = B, if they have the
same members. They are not equal (A 6= B) if either a member of A is not
an element of B or an element of B is not a member of A. If all elements of
the set A are also elements of the set B, A is called subset of B and B is the
superset of A. We write A ⊂ B if A is a (true) subset of but not equal to B.
A ⊆ B means the A is a subset of B and may be equal to B. If A is no subset
of but may be equal to B, A 6⊂ B is written. A 6⊆ B means that A is neither
a subset of nor equal to B.

A = B : x ∈ A⇔ x ∈ B (34.1)

A 6= B : (∃x : x ∈ A ∧ x 6∈ B) ∨ (∃y : y ∈ B ∧ y 6∈ A) (34.2)

A ⊆ B : x ∈ A⇒ x ∈ B (34.3)

A ⊂ B : A ⊆ B ∧ ∃y : y ∈ B ∧ y 6∈ A (34.4)

A 6⊆ B : ∃x : x ∈ A ∧ x 6∈ B (34.5)

A 6⊂ B : (A = B) ∨ (∃x : x ∈ A ∧ x 6∈ B) (34.6)

34.3 Special Sets

Special sets used in the context of this book are

• The empty set ∅ = {} contains no elements (|∅| = 0).
• The natural numbers N include all whole numbers bigger than 0. (N =
{1, 2, 3, ...})

• The natural numbers including 0 (N0) include all whole numbers bigger
than or equal to 0. (N0 = {1, 2, 3, ...})

• Z is the set of all integers, positive and negative. (Z =
{...,−2,−1, 0, 1, 2, ...})

• The rational numbers Q are defined as Q =
{

a
b

: a, b ∈ Z, b 6= 0
}

.
• All real numbers are members of R.
• R+ denotes the positive real numbers including 0 (R+ = [0,∞)).

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R (34.7)

N ⊂ N0 ⊂ R+ ⊂ R (34.8)

For these numerical sets, special subsets, so called intervals, can be spec-
ified. [1, 5) is a set containing all the numbers starting from (including) 1 up
to (exclusive) 5. (1, 5] on the other hand contains all numbers bigger than
1 inclusive 5. In order to avoid ambiguities, such sets will always used in a
context where it is clear if the numbers in the set are natural or real.

34.4 Operations on Sets 503

34.4 Operations on Sets

A

B

A B\

B A\

A BÈ

A BÇ

A

B

A

Fig. 34.1: Set operations performed on sets A and B inside a set A

In this section we define the possible unary and binary operations on sets,
some of which are illustrated in Figure 34.1.

Definition 87 (Set Union). The union5 C of two sets A and B is written
as A ∪ B and contains all the objects that are element of at least one of the
sets.

C = A ∪B ⇔ ((c ∈ A) ∨ (c ∈ B)⇔ (c ∈ C)) (34.9)

A ∪B = B ∪A (34.10)

A ∪ ∅ = A (34.11)

A ∪A = A (34.12)

A ⊆ A ∪B (34.13)

Definition 88 (Set Intersection). The intersection6 D of two sets A and
B, denoted by A∩B, contains all the objects that are elements of both of the

5 http://en.wikipedia.org/wiki/Union_%28set_theory%29 [accessed 2007-07-03]

6 http://en.wikipedia.org/wiki/Intersection_%28set_theory%29 [accessed 2007-

07-03]

http://en.wikipedia.org/wiki/Union_%28set_theory%29
http://en.wikipedia.org/wiki/Intersection_%28set_theory%29

504 34 Set Theory

sets. If A∩B = ∅, meaning that A and B have no elements in common, they
are called disjoint.

D = A ∩B ⇔ ((d ∈ A) ∧ (d ∈ B)⇔ (d ∈ D)) (34.14)

A ∩B = B ∩A (34.15)

A ∩ ∅ = ∅ (34.16)

A ∩A = A (34.17)

A ∩B ⊆ A (34.18)

Definition 89 (Set Difference). The difference E of two sets A and B,
A \B, contains the objects that are element of A but not of B.

E = A \B ⇔ ((e ∈ A) ∧ (e 6∈ B)⇔ (e ∈ E)) (34.19)

A \ ∅ = A (34.20)

∅ \A = ∅ (34.21)

A \A = ∅ (34.22)

A \B ⊆ A (34.23)

Definition 90 (Set Complement). The complementary set A of the set A
in a set A includes all the elements which are in A but not element of A:

A ⊆ A⇒ A = A \A (34.24)

Definition 91 (Cartesian Product). The Cartesian product7 P of two sets
A and B, denoted P = A×B is the set of all ordered pairs (a, b) whose first
component is an element from A and the second is an element of B.

P = A×B ⇔ P = {(a, b) : a ∈ A, b ∈ B} (34.25)

Definition 92 (Countable Set). A set S is called countable8 if there exists
an injective function9 ∃f : S ⇒ N.

Definition 93 (Uncountable Set). A set is uncountable if it is not count-
able, i. e. no such function exists for the set. N, Z, and Q are countable, R and
R+ are not.

Definition 94 (Power Set). The power set10 P(A) is the set of all subsets
of A.

∀p ∈ P(A)⇔ p ⊆ A (34.26)

7 http://en.wikipedia.org/wiki/Cartesian_product [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Countable_set [accessed 2007-07-03]

9 see definition of function on page 510
10 http://en.wikipedia.org/wiki/Axiom_of_power_set [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Axiom_of_power_set

34.5 Tuples and Lists 505

34.5 Tuples and Lists

A tuple11 is an ordered, finite sequence of elements, each of a special type.
Other than sets, tuples may contain the same element twice. We define tuples
with parenthesis ((x)) whereas we define sets with braces ({x}). Each item of
a tuple may have another type, (Monday, 23, {a, b, c}) for example is a valid
tuple.

Definition 95 (Tuple Type). To formalize this relation, we define the tuple
type T . T defines the basic sets for the elements of its tuples and we write
t ∈ T if a tuple t meets the constraints imposed to its values by T .

T = 〈T1, T2, . . . Tn〉, n ∈ N

t = (t1, t2, . . . tn) ∈ T ⇔ ti ∈ Ti∀0 < i ≤ n (34.27)

[List] Lists12 are abstract data types which can bee regarded as special
tuples or sets. They are sequences where every item is of the same type. We
introduce functions that will add elements to or remove elements from lists;
that sort lists or search within them. Like tuples, lists can be defined using
parenthesis. The single elements of a list are accessed by their index written
in brackets ((a, b, c)[1] = b) where the first element has the index 0 and the
last element has the index n− 1 (while n is the count of elements in the list:
n = (a, b, c) = |(a, b, c)| = 3).

Definition 96 (createList). The l = createList(n, q) method creates a new
list l of the length n filled with the item q. If a list of the length 0 is created,
the parameter q may be omitted. Such a creation of an empty list could be
abbreviated like l = createList(0, 0) ≡ ().

l = createList(n, q)⇔ |l| = n ∧ ∀0 ≤ i < n⇒ l[i] = q (34.28)

Definition 97 (insertListItem). The function m = insertListItem(l, i, q)
creates a new list m by inserting one element q in a list l at the index 0 ≤ i ≤ |l|
shifting all the elements already in the list from this index on forwards.

m = insertListItem(l, i, q)⇔ |m| = |l|+ 1 ∧m[i] = q ∧
∀j : 0 ≤ j < i⇒ m[j] = l[j]

∀j : i ≤ j < |l| ⇒ m[j + 1] = l[j](34.29)

Definition 98 (addListItem). The addListItem method is a shortcut for
inserting one item at the end of a list:

addListItem(l, q) ≡ insertList(l, |l|, q) (34.30)

11 http://en.wikipedia.org/wiki/Tuple [accessed 2007-07-03]

12 http://en.wikipedia.org/wiki/List_%28computing%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/List_%28computing%29

506 34 Set Theory

Definition 99 (appendList). The appendList(l1, l2) method is a shortcut for
adding all the elements of a list l2 to a list l1. We define it recursively as:

appendList(l1, l2) ≡

l1 if |l2| = 0
appendList(addListItem(l1, l2[0]),

deleteListItem(l2, 0)) otherwise
(34.31)

Definition 100 (deleteListItem). The method deleteListItem(l, i) creates
a new list m by removing the element at index 0 ≤ i < |l| from the list l
(|l| ≥ i + 1).

m = deleteListItem(l, i)⇔ |m| = |l| − 1 ∧
∀j : 0 ≤ j < i⇒ m[j] = l[j]

∀j : i < j < |l| ⇒ m[j − 1] = l[j] (34.32)

Definition 101 (deleteListRange). The method m = deleteListRange(l, i, c)
creates a new list m by removing c elements beginning at index 0 ≤ i < |l|
from the list l (|l| ≥ i + c).

m = deleteListRange(l, i, c)⇔ |m| = |l| − c ∧
∀j : 0 ≤ j < i⇒ m[j] = l[j]

∀j : i + c ≤ j < |l| ⇒ m[j − c] = l[j] (34.33)

Definition 102 (countItemOccurrences). The function countItemOcurences(x, l)
returns the number of occurrences of the element x in the list l.

countItemOcurences(x, l) = |{i ∈ 0 . . . |l| − 1 : l[i] = x}| (34.34)

Definition 103 (subList). The method subListRange(l, i, c) extracts c ele-
ments from the list l beginning at index i and returns them as a new list.

subList(l, i, s) ≡ deleteListRange(deleteListRange(l, 0, i), c, |l| − i− c)
(34.35)

Definition 104 (Sorting). It is often useful to have sorted lists13. Thus we
define the functions S = sorta(U, s) and S = sortd(U, s) which sort a list U in
ascending and descending order using a comparison function s(u1, u2) which
returns a negative value if u1 is smaller than u2, a positive number if u1 is
greater than u2, and 0 if both are equal. Sorting is done in O(n log n) time.
For concrete algorithm examples, see [1117, 957, 1118].

S = sorta(U, s) (34.36)

∀u ∈ U ∃i ∈ [0, |U | − 1] : S[i] = u (34.37)

|S| = |U | (34.38)

∀0 ≤ i < |U | ⇒ s(S[i], S[i + 1]) ≤ 0 (34.39)

13 http://en.wikipedia.org/wiki/Sorting_algorithm [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Sorting_algorithm

34.5 Tuples and Lists 507

For sortd, only Equation 34.39 changes, the rest stays valid:

S = sortd(U, s) (34.40)

∀0 ≤ i < |U | ⇒ s(S[i], S[i + 1]) ≥ 0 (34.41)

Definition 105 (Searching in Unsorted Lists). Searching an element u
in an unsorted list U means walking through it until either the element is
found or the end of the whole list has been scanned.

searchu(u,U) =

{
i : U [i] = u if u ∈ U

−1 otherwise
(34.42)

Definition 106 (Searching in Sorted Lists). Searching an element s in
sorted list S means to perform a binary search14 returning the index of the
element if it is contained in S. If s 6∈ S, a negative number is returned indi-
cating the position where the element could be inserted into the list without
violating its order. The function searchas searches in an ascending sorted list,
searchds searches in a descending sorted list. Searching in a sorted list is done
in O(logn) time. For concrete algorithm examples, again see [1117, 957, 1118].

searchas(s, S) =

i : S[i] = s if s ∈ S
(−i− 1) : (∀j ≥ 0, j < i⇒ S[j] ≤ s)∧

(∀j < |S|, j ≥ i⇒ S[j] > s) otherwise
(34.43)

searchds(s, S) =

i : S[i] = s if s ∈ S
(−i− 1) : (∀j ≥ 0, j < i⇒ S[j] ≥ s)∧

(∀j < |S|, j ≥ i⇒ S[j] < s) otherwise
(34.44)

Definition 107 (removeListItem). The method removeListItem finds one
occurrence of an element q in a list l by using the appropriate search algorithm
and deletes it (returning a new list m).

m = removeListItem(l, q)⇔
{

l if search(q, l) < 0
deleteListItem(l, search(q, l)) otherwise

(34.45)

We define transformation functions for sets and lists:

Y = setToList(set X)⇒ ∀x ∈ X ∃i : Y [i] = x ∧
∀i ∈ [0, |Y | − 1]⇒ Y [i] ∈ X (34.46)

|tuple(X)| = |X| (34.47)

X = listToSet(tuple Y)⇒ ∀i ∈ [0, |Y | − 1]⇒ Y [i] ∈ X ∧
∀x ∈ X ∃i : Y [i] = x (34.48)

|set(Y)| ≤ |Y | (34.49)

14 http://en.wikipedia.org/wiki/Binary_search [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Binary_search

508 34 Set Theory

34.6 Binary Relations

Definition 108 (Binary Relation). A binary15 relation16 R is defined as
an ordered triple (X,Y,G) where X and Y are arbitrary sets, and G is a
subset of the Cartesian product X × Y (see Equation 34.25). The sets X and
Y are called the domain and codomain, respectively, of the relation, and G is
called its graph. The statement (x, y) ∈ G is read “x is R-related to y” and is
denoted by R(x, y). The order of the elements in each pair of G is important:
if a 6= b, then R(a, b) and R(a, b) can be trueor false, independently of each
other.

Some types and possible properties of binary relations are listed below and
illustrated in Figure 34.2. A binary relation can be

left-total
surjective
non-injective
functional
non-bijective

X Y

left-total
surjective
injective
functional
bijective

X Y

left-total
surjective
injective
non-functional
non-bijective

X Y

left-total
non-surjective
injective
functional
non-bijective

X Y

not left-total
non-surjective
injective
functional
non-bijective

X Y

left-total
non-surjective
non-injective
functional
non-bijective

X Y

not left-total
non-surjective
non-injective
non-functional
non-bijective

X Y

Fig. 34.2: Properties of a binary relation R ∈ X × Y .

• left-total if ∀x ∈ X ∃y ∈ Y : R(x, y).

15 http://en.wikipedia.org/wiki/Binary_relation [accessed 2007-07-03]

16 http://en.wikipedia.org/wiki/Relation_%28mathematics%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Relation_%28mathematics%29

34.6 Binary Relations 509

• surjective17 or right-total if ∀y ∈ Y ∃x ∈ X : R(x, y).
• injective18 if ∀x, z ∈ X, y ∈ Y : R(x, y) ∧R(z, y)⇒ x = z.
• functional if ∀x ∈ X, y, z ∈ Y : R(x, y) ∧R(x, z)⇒ y = z.
• bijective19 if it is left-total, right-total and functional.
• transsititve20 if ∀x, y ∈ X, y, z ∈ Y : R(x, y) ∧R(y, z)⇒ R(x, z). [1119]

34.6.1 Order relations

Besides functions, which are discussed in the next section, there is another
important group of relations – order relations21.

Definition 109 (Partial Order). On the set X the binary relation R defines
a (non-strict, reflexive) partial order if and only if it is

1. reflexive: R(x, x) ∀ x ∈ X (34.50)
2. antisymmetric: R(x, y) ∧R(y, x)⇒ x = y ∀ x, y ∈ X (34.51)
3. transitive: R(x, y) ∧R(y, z)⇒ R(x, z) ∀ x, y, z ∈ X. (34.52)

The relation R thus plays the role of the ≤-operator, i. e. R(x, y) ≡ x ≤ y.

The definition above can be compared with the ≤ operator. In some con-
texts, partial orders are used more in the sense of <. Such partial orders are
called strict. The Pareto dominance relation (see Definition 16 on page 15) is
an example for such a strict partial order.

Definition 110 (Strict Partial Order). A relation R defined on the set X
is a strict (or irreflexive) partial order relation R if it is

1. irreflexive: 6 ∃x ∈ X : R(x, x)
2. asymmetric: R(x, y)⇒ ¬R(y, x) ∀x, y
3. transitive: (see definition of reflexive partial order)

Definition 111 (Total Order). A total order22 (or linear order, simple or-
der) R on the set X is a partial order which is complete/total.

R(x, y) ∨R(y, x) ∀ x, y ∈ X (34.53)

The real numbers R for example are totally ordered whereas on the set of
complex numbers C, only (strict or reflexive) partial (non-total) orders can
be defined (because it is continuous in two dimensions).

17 http://en.wikipedia.org/wiki/Surjective [accessed 2007-07-03]

18 http://en.wikipedia.org/wiki/Injective [accessed 2007-07-03]

19 http://en.wikipedia.org/wiki/Bijective [accessed 2007-07-03]

20 http://en.wikipedia.org/wiki/Transitive_relation [accessed 2007-07-03]

21 http://en.wikipedia.org/wiki/Order_relation [accessed 2007-07-03]

22 http://en.wikipedia.org/wiki/Total_order [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Surjective
http://en.wikipedia.org/wiki/Injective
http://en.wikipedia.org/wiki/Bijective
http://en.wikipedia.org/wiki/Transitive_relation
http://en.wikipedia.org/wiki/Order_relation
http://en.wikipedia.org/wiki/Total_order

510 34 Set Theory

34.6.2 Equivalence Relations

Another important class of relations are equivalence relations23 [1120, 1121]
which are often abbreviated with ≡ or ∼, i. e. x ≡ y and x ∼ y mean R(x, y)
for the equivalence relation R on X and x, y ∈ X.

Definition 112 (Equivalence Relation). On the set X the binary relation
R defines an equivalence relation if and only if it is

1. reflexive: R(x, x) ∀ x ∈ X (34.54)
2. symmetric: R(x, y)⇒ R(x, y) ∀ x, y ∈ X (34.55)
3. transitive: R(x, y) ∧R(y, z)⇒ R(x, z) ∀ x, y, z ∈ X. (34.56)

Definition 113 (Equivalence Class). If an equivalence relation R is de-
fined on a set X, the subset A ⊆ X of X is an equivalence class24 if and only
if ∀ a, b ∈ A⇒ R(a, b) (= a ∼ b).

34.6.3 Functions

Definition 114 (Function). A function f is a binary relation with the prop-
erty that for an element x of the domain X there is no more than one element
y of the codomain Y such that x is related to y. This uniquely determined
element y is denoted by f(x). In other words, a function is a functional binary
relation.

∀x ∈ X, y, z ∈ Y : f(x, y) ∧ f(x, z)⇒ y = z

The set of inputs X of a function f is called its domain25. While the
codomain Y is the set of the possible output values of f , the set of all actual
outputs {f(x) : x ∈ X} is called range. A function maps one element of Y to
each element of X. The function f = 1

x
has the domain x = R \ {0} instead

of R since it is undefined at x = 0.

Monotonicity

Real functions are monotone, i. e. have the property of monotonicity26, if they
preserve a given order.

Definition 115 (Monotonically Increasing). A function f : X 7→ Y that
maps a subset of the real numbers X ⊆ R to a subset of the real numbers
Y ⊆ R is called monotonic, monotonically increasing, increasing, or non-
decreasing, if and only if Equation 34.57 holds.

∀ x < y ∈ X ⇒ f(x) ≤ f(y) (34.57)

23 http://en.wikipedia.org/wiki/Equivalence_relation [accessed 2007-07-28]

24 http://en.wikipedia.org/wiki/Equivalence_class [accessed 2007-07-28]

25 http://en.wikipedia.org/wiki/Domain_%28mathematics%29 [accessed 2007-07-03]

26 http://en.wikipedia.org/wiki/Monotonic_function [accessed 2007-08-08]

http://en.wikipedia.org/wiki/Equivalence_relation
http://en.wikipedia.org/wiki/Equivalence_class
http://en.wikipedia.org/wiki/Domain_%28mathematics%29
http://en.wikipedia.org/wiki/Monotonic_function

34.6 Binary Relations 511

Definition 116 (Monotonically Decreasing). A function f : X 7→ Y that
maps a subset of the real numbers X ⊆ R to a subset of the real numbers
Y ⊆ R is called monotonically decreasing, decreasing, or non-increasing, if
and only if Equation 34.58 holds.

∀ x < y ∈ X ⇒ f(x) ≥ f(y) (34.58)

35

Stochastic Theory

The stochastic1 theory includes the probability2 theory3 which is is the math-
ematical study of phenomena characterized by randomness or uncertainty as
well as statistics4 dealing with the collection, analysis, interpretation, and
presentation of data [1122, 1123, 1124, 1125].

35.1 Probability

Probability theory is used to determine the likeliness of the occurrence of an
event under ideal mathematical conditions. [1126, 1127]

Definition 117 (Random Experiment). Random experiments can be re-
peated arbitrary often, their results cannot be predicted.

Definition 118 (Elementary Event). The possible outcomes of random
situations are called elementary events or samples ω.

Definition 119 (Sample Space). The set of all possible outcomes (ele-
mentary events, samples) of a random situation is the sample space Ω =
{ωi : i ∈ 1..N}. When throwing dice5, for example, Ω will be Ω =
{ω1, ω2, ω3, ω4, ω5, ω6} whereas ωi means that the number i was thrown.

Definition 120 (Random Event). A random event A is a subset of the
sample space Ω (A ⊆ Ω). If ω ∈ A occurs, then A is occurs too.

Definition 121 (Certain Event). The certain event is the random event
will occur in each repetition of a random situation, it is defined as A = Ω.

1 http://en.wikipedia.org/wiki/Stochastic [accessed 2007-07-03]

2 http://en.wikipedia.org/wiki/Probability [accessed 2007-07-03]

3 http://en.wikipedia.org/wiki/Probability_theory [accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Statistics [accessed 2007-07-03]

5 Throwing a dice is discussed as example for stochastic extensively in Section 35.5
on page 548.

http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics

514 35 Stochastic Theory

Definition 122 (Impossible Event). The impossible event will never occur
any repetition of a random situation, it is defined as A = ∅.

Definition 123 (Absolute Frequency). If repeating a random experiment,
the number an event A occurred in this repetitions is its absolute frequency6.

Definition 124 (Conflicting Events). Two conflicting events A1 and A2

can never occur together in a random situation. Therefore, A1 ∩A2 = ∅.

35.1.1 Probabily as defined by Bernoulli (1713)

Under the assumption that no previous knowledge exists it can also be as-
sumed that all elementary events have the same probability. All elementary
events of a sample space are equally probable if P (ω) = 1

N
∀ω ∈ Ω holds

(Laplace assumption, [1128]). Under this circumstances, the probability of an
event A can be defined as:

P (A) =
number for event in favour for A

number of possible events
=

nA

n
= h(A,n) (35.1)

For some of the random experiments of this type, we can use combina-
torics7 in order to determine the number of possible outcomes. Therefore we
introduce the factorial and the combinations as follows:

Definition 125 (Factorial). The factorial8 n! of n ∈ N is the product of n
and all natural numbers smaller then n:

n! =
n∏

i=1

i (35.2)

0! = 1 (35.3)

See also Gamma Function in Section 35.9.1 on page 570.

Definition 126 (Combinations). The number of possible combinations9

of n ∈ N elements out of a set Ω with M = |Ω| ≥ n is

C(M,n) =

(
M
n

)

=
M !

n!(n− r)!
(35.4)

C(M + 1, n) = C(M,n) + C(M,n− 1) = (35.5)
(

M + 1
n

)

=

(
M
n

)

+

(
M

n− 1

)

(35.6)

6 http://en.wikipedia.org/wiki/Frequency_%28statistics%29 [accessed 2007-07-03]

7 http://en.wikipedia.org/wiki/Combinatorics [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Factorial [accessed 2007-07-03]

9 http://en.wikipedia.org/wiki/Combinations_and_permutations [accessed 2007-

07-03]

http://en.wikipedia.org/wiki/Frequency_%28statistics%29
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Combinations_and_permutations

35.1 Probability 515

• Permutation with repetition: when order matters and an element ω ∈ Ω
can be chosen more than once, the number of different permutations is
Mn.

• Permutation without repetition: when the order matters and an element
ω ∈ Ω can be chosen more than once, the number of different permutations
is M !

(M−n)! .

• Combination without repetition: when order does not matter and each
element ω ∈ Ω can be chosen exactly once, the number of different com-

binations is C(M,n) =

(
M
n

)

.

• Combination with repetition: when order does not matter and each el-
ement ω ∈ Ω can be chosen more than once, the number of different

combinations is (M+n−1)!
n!(M−1)! =

(
M + n− 1

n

)

=

(
M + n− 1

M − 1

)

35.1.2 The Metrical Method of Van Mises (1919)

Definition 127 (Relative Frequency). The relative frequency of an event
A is its absolute frequency normalized to the number of total events. The
relative frequency has the following properties:

h(A,n) =
nA

n
(35.7)

0 ≤ h(A,n) ≤ 1 (35.8)

h(Ω,n) = 1 (35.9)

A ∩B = ∅ ⇒ h(A ∪B,n) =
nA + nB

n
= h(A,n) + h(B,n) (35.10)

The (statistical) probability P (A) as result of a process of metering is
the limit of the relative frequency h of the event A. This is the limit of the
quotient of the number of elementary events favouring A and the number of
all possible elementary events for infinite many repetitions. [1129]

P (A) = lim
n→∞

h(A,n) = lim
n→∞

nA

n
(35.11)

35.1.3 The Axioms of Kolmogorov

Definition 128 (σ-algebra). A subset S of the power set P(Ω) is called
σ-algebra10, if it holds the following axioms:

Ω ∈ S (35.12)

∅ ∈ S (35.13)

A ∈ S ⇔ A ∈ S (35.14)

A ∈ S ∧B ∈ S ⇒ (A ∪B) ∈ S (35.15)

10 http://en.wikipedia.org/wiki/Sigma-algebra [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Sigma-algebra

516 35 Stochastic Theory

From this axioms others can be deduced, for example:

A ∈ S ∧B ∈ S ⇒ A ∈ S ∧B ∈ S (35.16)

⇒ A ∪B ∈ S

⇒ A ∪B ∈ S
⇒ A ∩B ∈ S

(35.17)

A ∈ S ∧B ∈ S ⇒ (A ∩B) ∈ S (35.18)

Definition 129 (Probability Space). A probability space (or random ex-
periment) is defined by the triple (Ω,S, P) whereas

• Ω is a set of events,
• S is a σ-algebra defined on Ω, and
• P (ω) defines a probability measure11 that determines an occurrence prob-

ability for each event ω ∈ Ω. (Kolmogorov axioms12 [1130])

Definition 130 (Probability). A mapping P which maps a real number to
each elementary event ω ∈ Ω is called probability measure if and only if the
σ-algebra S on Ω holds:

∀A ∈ S ⇒ 0 ≤ P (A) ≤ 1 (35.19)

P (Ω) = 1 (35.20)

∀disjointAi ∈ S ⇒ P (A) = P

(
⋃

∀i

Ai

)

=
∑

∀i

P (Ai) (35.21)

From this axioms can be deduced:

P (∅) = 0 (35.22)

P (A) = 1− P (A) (35.23)

P (A ∩B) = P (A)− P (A ∩B) (35.24)

P (A ∪A) = P (A) + P (B)− P (A ∩B) (35.25)

35.1.4 Conditional Probability

Definition 131 (Conditional Probability). Conditional probability13 is
the probability of some event A, given the occurrence of some other event B.
Conditional probability is written P (A|B), and is read ”the probability of A,
given B”.

11 http://en.wikipedia.org/wiki/Probability_measure [accessed 2007-07-03]

12 http://en.wikipedia.org/wiki/Kolmogorov_axioms [accessed 2007-07-03]

13 http://en.wikipedia.org/wiki/Conditional_probability [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Probability_measure
http://en.wikipedia.org/wiki/Kolmogorov_axioms
http://en.wikipedia.org/wiki/Conditional_probability

35.1 Probability 517

P (A|B) =
P (A ∩B)

P (B)
(35.26)

P (A ∩B) = P (A|B)P (B) (35.27)

Definition 132 (Statistical Independence). Two events A and B are (sta-
tistical) independent if and only if P (A ∩ B) = P (A)P (B) holds. From this,
we can deduce:

P (A ∩B) = P (A)P (B) (35.28)

P (A|B) = P (A) (35.29)

P (B|A) = P (B) (35.30)

35.1.5 Random Variable

Definition 133 (Random Variable). The function X which relates the
sample space Ω to the real numbers R is called random variable14 in the
probability space (Ω,S, P).

X : Ω → R (35.31)

Using such a random variable, we can replace the sample space Ω with the
new sample space ΩX . Furthermore, the σ-algebra S can be replaced by an
σ-algebra SX , which consists of subsets of ΩX instead of Ω. Last but not least
we replace the probability measure P which relates the ω ∈ Ω to the interval
[0, 1] by a new probability measure PX which relates the real numbers R to
this interval.

Definition 134 (Probability Space of a Random Variable). Is X : Ω 7→
R a random variable, then probability space of this random variable is defined
as the triplet

(ΩX = R, SX , PX) (35.32)

One example for such a new probability measure would be the probability
that a random variable X takes on a real value which is smaller or equal a
value x:

PX(X ≤ x) = P ({ω : ω ∈ Ω ∧X(ω) ≤ x}) (35.33)

35.1.6 Cumulative Distribution Function

Definition 135 (Cumulative Distribution Function). If X is a random
variable of a probability space (ΩX = R, SX , PX), we call the function FX :
R→ [0, 1] with

14 http://en.wikipedia.org/wiki/Random_variable [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Random_variable

518 35 Stochastic Theory

FX := PX(X ≤ x)
︸ ︷︷ ︸

definition by rnd. var.

≡ P ({ω : ω ∈ Ω ∧X(ω) ≤ x})
︸ ︷︷ ︸

definition by prob. space

(35.34)

the (cumulative) distribution function15 (CDF) of the random variable X.

A cumulative distribution function has the following properties:

• FX(X) is normalized:

lim
x→−∞

FX(x) = 0
︸ ︷︷ ︸

impossible event

, lim
x→+∞

FX(x) = 1
︸ ︷︷ ︸

certain event

(35.35)

• FX(X) is monotonously16 growing:

FX(x1) ≤ FX(x2) ∀x1 ≤ x2 (35.36)

• FX(X) is (right-sided) continuous17:

lim
h→0

FX(x + h) = FX(x) (35.37)

• The probability that the random variable X takes on values in the interval
x0 ≤ X ≤ x1 can be computed using the CDF:

P (x0 ≤ X ≤ x1) = FX(x1)− FX(x0) (35.38)

• The probability that the random variable X takes on the value of a single
random number x:

P (X = x) = FX(x)− lim
h→0

FX(x− h) (35.39)

We further distinguish between discrete18 and continuous19 random vari-
ables.

Definition 136 (Discrete Random Variable). A random variable X (and
its probability measure PX respectively) is called discrete if it takes on at
most countable infinite many values and the cumulative distribution function
FX(X) therefore has the shape of a stairway.

Definition 137. A random variable X (and its probability measure PX re-
spectively) is called continuous if it takes on uncountable infinite many values
and the cumulative distribution function FX(X) is also continuous.

15 http://en.wikipedia.org/wiki/Cumulative_distribution_function [accessed

2007-07-03]

16 http://en.wikipedia.org/wiki/Monotonicity [accessed 2007-07-03]

17 http://en.wikipedia.org/wiki/Continuous_function [accessed 2007-07-03]

18 http://en.wikipedia.org/wiki/Discrete_random_variable [accessed 2007-07-03]

19 http://en.wikipedia.org/wiki/Continuous_probability_distribution

[accessed 2007-07-03]

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Monotonicity
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Discrete_random_variable
http://en.wikipedia.org/wiki/Continuous_probability_distribution

35.2 Properties of Distributions and Statistics 519

35.1.7 Probability Mass Function

The probability mass function20 (PMF) exists for discrete distributions only.
It assigns a probability to each value the random variable X can take on.

Definition 138 (Probability Mass Function). If a random variable X
takes on only discrete values, its probability mass function fX is defined as

fX : Z→ [0, 1] : fX(x) := PX(X = x) (35.40)

Therefore, we can specify the relation between the PMF and its according
(discrete) CDF as done in Equation 35.41 and Equation 35.41. We can further
define the probability of an event A in Equation 35.43.

P (X ≤ x) = FX(x) =

x∑

i=−∞

fX(x) (35.41)

P (X = x) = fX(x) = FX(x)− FX(x− 1) (35.42)

PX(A) =
∑

∀x∈A

fX(x) (35.43)

35.1.8 Probability Density Function

The probability density function21 (PDF) is the counterpart of the PMF for
continuous distributions. The PDF does not represent the probabilities of the
single values of a random variable. Since a continuous random variable can
take on uncountable many values, each distinct value has the probability 0.

Definition 139 (Probability Density Function). If a random variable X
is continuous, its probability density function fX is defined as

fX : R→ [0,∞) : FX(x) =

∫ +∞

−∞

fX(ξ)dξ ∀x ∈ R (35.44)

35.2 Properties of Distributions and Statistics

Each random variable X obeying a probability distribution may or may not
have certain properties such as a maximum or a minimum value, a mean
or value which will most often be taken on by X. If the distribution of X is
known, these values can most often be computed directly from its parameters.

20 http://en.wikipedia.org/wiki/Probability_mass_function [accessed 2007-07-03]

21 http://en.wikipedia.org/wiki/Probability_density_function [accessed 2007-07-

03]

http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Probability_density_function

520 35 Stochastic Theory

On the other hand, it is possible that one only knows some values a ∈ A
which X took on in the past. From this sample A, we can approximate the
properties of the underlying (most often unknown) distribution of X using
statistical methods. Statistics22 is the mathematical science of collecting, an-
alyzing, interpreting, explaining, and presenting of data.

In the following we will elaborate on the properties random variable X ∈ R

both, from the standpoint of knowing the PMF/PDF fX(x) and the CDF
FX(x) as well as from the statistical perspective, where only a sample A of
past values of X is known. In the latter case, we define the sample as a list A
with the length n = |A| and the elements ai = A[i]∀i ∈ [0, n− 1].

35.2.1 Count, Min, Max and Range

Definition 140 (Count). n = |A| is called the item count.

It does only exist in statistics and for samples, because random variables rep-
resent experiments which can infinitely be repeated and thus always produce
infinitely many values. This should not be mixed up with the possible count
of different values the random variable may take on which may limited. A
however can contain the same value b multiple times. If throwing a dice seven
times, one may throw A = [1, 4, 3, 3, 2, 6, 1], for example23.

Definition 141 (Minimum). There exists no smaller element α in A than
the minimum (or the minima if the minimum element is included multiple
times) ǎ ≡ min(A). This definition is identical with the definition of the global
minimum, Definition 10 on page 9. If the random variable X has a smallest
value x̌ it can take on, its minimum equals this value (Equation 35.47), oth-
erwise its minimum is infinitely for in the negative (Equation 35.47). (see
also Definition 7 on page 9 and Definition 10 on page 9)

min(A) ≡ ǎ ∈ A : ∀b ∈ A ∧ α 6= ǎ⇒ ǎ < α (35.45)

∃ x̌ = min(X)⇔ fX(x̌) > 0 ∧ fX(y) = 0 ∀y < x̌ (35.46)

6 ∃ x̌⇔ min(X) = −∞ (35.47)

Definition 142 (Maximum). There exists no bigger element α in A than
the maximum (or the maxima if the maximum element is included multiple
times) â ≡ min(A). This definition is identical with the definition of the global
maximum, Definition 9 on page 9. If the random variable X has a largest value
x̂ it can take on, its maximum equals this value (Equation 35.50), otherwise its
minimum is infinitely large (Equation 35.50). (see also Definition 6 on page 8
and Definition 9 on page 9)

22 http://en.wikipedia.org/wiki/Statistics [accessed 2007-07-03]

23 Throwing a dice is discussed as example for stochastic extensively in Section 35.5
on page 548.

http://en.wikipedia.org/wiki/Statistics

35.2 Properties of Distributions and Statistics 521

max(A) ≡ â ∈ A : ∀α ∈ A ∧ α 6= â⇒ â > α (35.48)

∃ x̂ = max(X)⇔ fX(x̂) > 0 ∧ fX(y) = 0 ∀y > x̂ (35.49)

6 ∃ x̂⇔ max(X) =∞ (35.50)

Definition 143 (Range).
The range range(A) of the data set A is the difference of the maximum

and the minimum of a data set and therefore represents the width of the span
covered with data. If a random variable X is limited in both directions, it has
a finite range, otherwise its range is infinite.

range(A) = â− ǎ = max(A)−min(A) (35.51)

range(X) = x̂− x̌ = max(X)−min(X) (35.52)

35.2.2 Expected Value and Arithmetic Mean

Definition 144 (Expected Value). The expected value24 of a random vari-
able X the sum of the probability of each possible outcome of the experiment
multiplied by the outcome value. It is abbreviated by EX or µ and is often also
called the mean or arithmetic mean value (see Definition 146). For discrete
distributions it can be computed using Equation 35.53 and for continuous
ones Equation 35.54 holds.

EX =

∞∑

i=−∞

ifX(i) (35.53)

EX =

∫ ∞

−∞

xfX(x)dx (35.54)

For the expected value EX of a random variable X, the following state-
ments are valid:

Y = a + X ⇒ EY = a + EX (35.55)

Z = bX ⇒ EZ = bEX (35.56)

Definition 145 (Sum). The sum(A) represents the sum of all elements in
A. This value does, of course, not exist for random variables.

sum(A) =
n−1∑

i=0

ai (35.57)

Definition 146 (Arithmetic Mean). The arithmetic mean25 a is the sum
of all elements in A divided by their count. It corresponds to the expected

24 http://en.wikipedia.org/wiki/Expected_value [accessed 2007-07-03]

25 http://en.wikipedia.org/wiki/Arithmetic_mean [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Arithmetic_mean

522 35 Stochastic Theory

value a ≡ EX. The arithmetic mean of a sample data set approximates the
expected value of the random variable that produced the sample.

a =
sum(A)

n
=

1

n

n−1∑

i=0

ai (35.58)

35.2.3 Variance and Standard Deviation

Definition 147 (Variance). The variance26 D2X ≡ var(X) is a measure of
statistical dispersion. It illustrates how close the elements a ∈ A are to their
arithmetical mean a. The variance is defined for both, random variables (where
it is often abbreviated with σ2 and samples (where it is often abbreviated with
s2).

var(X) = D2X = var(X) = E((X − EX)2) = EX2 − (EX)2 (35.59)

The variance of a discrete random variable X can be computed us-
ing Equation 35.60 and the one of a continuous distribution will obey
Equation 35.61.

D2X =

∞∑

−∞

fX(i)(i− EX)2 (35.60)

D2X =

∫ ∞

−∞

x2fX(x)dx−
[∫ ∞

−∞

xfX(x)dx

]2

=

∫ ∞

−∞

x2fX(x)dx− (EX)2 (35.61)

For the variance D2X of a random variable X, the following statements
are valid:

Y = a + X ⇒ D2Y = D2X (35.62)

Z = bX ⇒ D2Z = b2D2X (35.63)

Definition 148 (Sum of Squares). The sumSqr(A) represents the sum
of the squares all elements in A. This property does not exist for random
variables.

sumSqr(A) =
n−1∑

i=1

a2
i (35.64)

We define the (unbiased) estimator27 s2 of the variance of the random
variable which produced the sample values a ∈ A according to Equation 35.65.
The variance is zero for all samples with n ≤ 1.

26 http://en.wikipedia.org/wiki/Variance [accessed 2007-07-03]

27 see Definition 167 on page 551

http://en.wikipedia.org/wiki/Variance

35.2 Properties of Distributions and Statistics 523

s2 = 1
n−1

∑n−1
i=0 (ai − a)2

= 1
n−1

(

sumSqr(A)− (sum(A))2

n

) (35.65)

Definition 149 (Standard Deviation). The standard deviation28 DX is
the square root of the variance. It is also often referred to as σ (random
variables) or s (sample data sets).

DX =
√

D2X (35.66)

The standard deviation is zero for all samples with n ≤ 1.

Definition 150 (Coefficient of Variation). The coefficient of variation29

cv is the ratio of the standard deviation by the arithmetic mean. For sample
sets A, cv can be computed as specified in Equation 35.68.

cv =
DX

EX
≡ σ

µ
(35.67)

cv =
n

sum(A)

√

sumSqr(A)− (sum(A))2

n

n− 1
(35.68)

35.2.4 Moments

Definition 151 (Statistical Moment). The kth moment is the expected
value raised to the kth power.

µ′
k = E

[
xk
]

(35.69)

Definition 152 (Central Moment). The kth moment about the mean (or
central moment)30 is the expected value of the difference between elements
and their expected value raised to the kth power.

µk = E
[

(X − EX)
k
]

(35.70)

Definition 153 (Standardized Moment). The kth standardized moment
is written the quotient of the kth central moment by the standard deviation
raised to the kth power.

µk

σk
(35.71)

28 http://en.wikipedia.org/wiki/Standard_deviation [accessed 2007-07-03]

29 http://en.wikipedia.org/wiki/Coefficient_of_variation [accessed 2007-07-03]

30 http://en.wikipedia.org/wiki/Moment_about_the_mean [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Coefficient_of_variation
http://en.wikipedia.org/wiki/Moment_about_the_mean

524 35 Stochastic Theory

35.2.5 Skewness and Kurtosis

Definition 154 (Skewness). The skewness31 γ1 is a measure of asymmetry
of a probability distribution. If γ1 > 0, the right part of the distribution
function is either longer or fatter (positive skew, right-skewed). If γ1 < 0, the
distribution’s left part is longer or fatter.

γ1 =
µ3

σ3
(35.72)

For sample data A the skewness of the underlying random variable is ap-
proximated with the estimator G1 where s is the estimated standard deviation.
The sample skewness is only defined for sets with at least three elements.

G1 =
n

(n− 1)(n− 2)

n−1∑

i=0

(
ai − a

s

)3

(35.73)

Definition 155 (Kurtosis). The excess kurtosis γ2 is a measure for the
sharpness of a distribution’s peak. A distribution with a high kurtosis has a
sharper “peak” and fatter “tails”, while a distribution with a low kurtosis has
a more rounded peak with wider “shoulders”. The normal distribution (see
Section 35.4.2) has a zero kurtosis.

γ2 =
µ4

σ3
− 3 (35.74)

For sample data A represents only a sample of a greater dataset, the sample
kurtosis can be approximated with the estimator G2 where s is the estimate
of the sample’s standard deviation. The kurtosis is only defined for sets with
at least four elements.

G2 =

{

n(n + 1)

(n− 1)(n− 2)(n− 3)

n−1∑

i=0

(
ai − a

s

)4
}

− 3(n− 1)2

(n− 2)(n− 3)
(35.75)

35.2.6 Median, Quantiles, and Mode

Definition 156 (Median). The median m = med(X) is the value right
in the middle of a sample or distribution, dividing it into two equal halves.
Therefore, the probability of drawing an element less then med(X) is equal
to the probability of drawing an element larger than m.

P (X ≤ m) ≥ 1

2
∧ P (X ≥ m) ≥ 1

2
∧ P (X ≤ m) ≤ P (X ≥ m) (35.76)

31 http://en.wikipedia.org/wiki/Skewness [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Skewness

35.2 Properties of Distributions and Statistics 525

We can solve Equation 35.77 for continuous distributions and
Equation 35.78 for discrete distributions in order to obtain the median m.

1

2
=

∫ m

−∞

fX(x)dx (35.77)

m−1∑

i=−∞

fX(x) ≤ 1

2
≤

m∑

i=−∞

fX(x) (35.78)

(35.79)

If a sample A has an odd element count, the median m is the element in
the middle, otherwise (in a set with an even element count there exists no
single “middle”-element), the arithmetic mean of the two middle elements.
The median represents the dataset in an unbiased manner. If you have, for
example, the dataset A = (1, 1, 1, 1, 1, 2, 2, 2, 500′000), the arithmetic mean,
biased by the large element 500′000 would be very high (55556.7). The median
however would be 1 and thus representing the sample better. The median of
a sample can be computed as:

As ≡ sort(A) (35.80)

med(A) =

{
As

[
⌊n

2 ⌋
]

if n is odd
1
2

(
As

[
n
2

]
+ As

[
n
2 − 1

])
otherwise

(35.81)

Definition 157 (Quantile). Quantiles32 are points taken at regular inter-
vals from a sorted dataset (or a cumulative distribution function). q-quantile
divide a distribution/sample A into q parts Ai with equal probability. They
can be regarded as the generalized median, or, in other words, the median is
the 2-quantile.

∀ a ∈ R, i ∈ [0, q − 1]⇒ 1

q
≤ P (a ∈ Ai) (35.82)

A sorted data sample is divided into q subsets of equal length by the
q-quantiles. The cumulative distribution function of a random variable A is
divided by the q-quantiles into q subsets of equal area. The quantiles are the
boundaries between the subsets. Therefore, the kth q-quantile is the value ζ
so that the probability that the random variable (or an element of the data
set) will take on a value less than ζ is at most k

q
and the probability that it

will take on a value less than or equal to ζ is at least k
q
. There exist q − 1

q-quantiles (k spans from 1 to q − 1).
The kth q-quantile quantilek

q (A) of a dataset A can be computed as:

As ≡ sort(A) (35.83)

quantilek
q (A)) = As

[

⌊k ∗ n

q
⌋
]

(35.84)

32 http://en.wikipedia.org/wiki/Quantiles [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Quantiles

526 35 Stochastic Theory

Table 35.1: Special Quantiles

q name

100 percentiles
10 deciles
9 noniles
5 quintiles
4 quartiles
2 median

Definition 158 (Interquartile Range). The interquartile range33 is the
range between the first and the third quartile and defined as quantile3

4(X)−
quantile1

4(X).

Definition 159 (Mode). The mode34 is the value that most often occurs in a
data sample or is most frequently assumed by a random variable. There exist
unimodal distributions/samples that have one mode value and multimodal
distributions/samples with multiple modes.

In [1131, 1132] you can find further information of the relation between the
mode, the mean and the skewness.

35.2.7 Entropy

Definition 160 (Entropy). The information entropy35 H(X), first defined
by Shannon [1133], is often referred as measure of uncertainty.

The entropy of a discrete distribution with a finite number of possible
values is given by Equation 35.85 whereas Equation 35.86 defines the entropy
of a continuous distribution function.

H(X) =

n∑

i=1

fX(xi) log2

(
1

fX(xi

)

= −
n∑

i=1

fX(x1) log2 fX(xi) (35.85)

H(X) = −
∫ ∞

−∞

fX(x) ln fX(x)dx (35.86)

33 http://en.wikipedia.org/wiki/Inter-quartile_range [accessed 2007-07-03]

34 http://en.wikipedia.org/wiki/Mode_%28statistics%29 [accessed 2007-07-03]

35 http://en.wikipedia.org/wiki/Information_entropy [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Inter-quartile_range
http://en.wikipedia.org/wiki/Mode_%28statistics%29
http://en.wikipedia.org/wiki/Information_entropy

35.3 Some Discrete Distributions 527

35.2.8 The Law of Large Numbers

The law of large numbers combines statistic and probability by stating that
if an event e with the probability P (e) = p is observed in n independent
repetitions of a random experiment, its relative frequency H(e, n) (see Defi-
nition 127) converges to its probability p if n becomes larger.

The weak law of large numbers states that for each positive real number
ε > 0, ε ∈ R the mean X of an infinite sequence of independent random
numbers Xi with all the same expected value EX and variance converges to
EX,

X =
X1 + . . . + Xn

n
,EX1 = . . . = EXn = EX,D2X1 = . . . = D2Xn

⇒ lim
n→∞

P (|X − µ| < ε) = 1 (35.87)

The mean X of a sequence X1, . . . ,Xn of equally distributed and pair-
wise independent random variables converges to their expected value EX =
EX1 = . . . = EXn for infinite large n according to the strong law of large
numbers.

P (lim
n→∞

X = µ) = 1 (35.88)

The law of large numbers implies that the accumulated results of each
random experiment will approximate the underlying distribution function if
repeated infinitely under the condition that there exists an invariable under-
lying distribution function.

35.3 Some Discrete Distributions

In this section we will introduce some common discrete distributions. Contin-
uous distributions assign probabilities to the elements of a finite (or, at most,
countable infinite) set of discrete events/outcomes of a random experiment.

Parts of the information provided in this and the following section have
been obtained from Wikipedia [2].

35.3.1 Discrete Uniform Distribution

The uniform distribution exists in a discrete36 as well as in a continuous form.
In this section we want to discuss the discrete form whereas the continuous
form is elaborated on in Section 35.3.1.

All possible outcomes ω ∈ Ω of a uniform distribution have exactly the
same probability. In the discrete uniform distribution, Ω has at most count-
able infinite elements although normally being finite. The best example for this

36 http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29

[accessed 2007-07-03]

http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29

528 35 Stochastic Theory

distribution is throwing an ideal dice. This experiment has six possible out-
comes ωi where each has the same probability p(ωi) = 1

6 . Throwing ideal coins
and drawing an item out of n possible ones are other instances of the uniform
distribution. Table 35.2 contains the characteristics of the discrete uniform
distribution. In Figure 35.1 you can find some example uniform probability
density functions and in Figure 35.2 the according cumulative distribution
functions.

Table 35.2: Parameters of the discrete uniform distribution.

parameter definition

parameters a, b ∈ Z, a ≥ b (35.89)
|Ω| |Ω| = r = range = b− a + 1 (35.90)

PMF P (X = x) = fX(x) =

{
1
r
∀a ≤ x ≤ b, x ∈ N

0 otherwise
(35.91)

CDF P (X ≤ x) = FX(x) = ⌊x−a+1
r
⌋ (35.92)

mean EX = a+b
2

(35.93)
median med = a+b

2
(35.94)

mode mod = ∅ (35.95)

variance D2X = r2−1
12

(35.96)
skewness γ1 = 0 (35.97)

kurtosis γ2 = − 6(r2+1)

5(r2−1)
(35.98)

entropy H(X) = ln r (35.99)

mgf MX(t) = eat−e(b+1)t

r(1−et)
(35.100)

char. func. ϕX(t) = eiat−ei(b+1)t

r(1−eit)
(35.101)

35.3 Some Discrete Distributions 529

0

0.1

0.2

x

f
(x

)
X

5 10 15 20 25

1/n 0,11=

1/n 0,22=

n 101=
n2=5

n b a 101= -1 1=

single, discrete point
discontinuous point

a1 b1 a2 b2

n b a2= -2 2=5

Fig. 35.1: The PMFs of some discrete uniform distributions

0

0.1

1

x

F
(x

)
X

5 10 15 20 25

n 101= n2=5 discontinuous point

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a1 b1
a2 b2

n b a2= -2 2=5

n b a 101= -1 1=

Fig. 35.2: The CDFs of some discrete uniform distributions

530 35 Stochastic Theory

35.3.2 Poisson Distribution πλ

The Poisson distribution37 πλ [1134] applies to the reference model telephone
switchboard. It describes a process where the number of events that occur
(independently of each other) in a certain time interval only depends on its
duration and not of its position (prehistory). Events do not have any after-
math and thus, there is no mutual influence of non-overlapping time intervals
(homogenity). Events have no duration and in infinite short time intervals
no event occurs. The features of the Poisson distribution are listed in Ta-
ble 35.338 and examples for its PDF and CDF are illustrated in Figure 35.3
and Figure 35.4.

Table 35.3: Parameters of the Poisson distribution.

parameter definition

parameters λ = µt > 0 (35.102)

PMF P (X = x) = fX(x) = (µt)x

x!
e−µt = λx

x!
e−λ (35.103)

CDF P (X ≤ x) = FX(x) = Γ (k+1,λ)
k!

=
∑x

i=0
e−λλi

i!
(35.104)

mean EX = µt = λ (35.105)
median med ≈ ⌊λ + 1

3
− 1

5λ
⌋ (35.106)

mode mod = ⌊λ⌋ (35.107)
variance D2X = µt = λ (35.108)

skewness γ1 = λ− 1
2 (35.109)

kurtosis γ2 = 1
λ

(35.110)

entropy H(X) = λ(1− ln λ) + e−λ∑∞
k=0

λk ln(k!)
k!

(35.111)

mgf MX(t) = eλ(et−1) (35.112)

char. func. ϕX(t) = eλ(eit−1) (35.113)

Poisson Process

The Poisson process39 [1135] is a process that obeys the Poisson distribution –
just like the example of the telephone switchboard mentioned before. Instead
of the directly calculating with the λ-values, we use µ, the intensity of the
process, which normally describes a frequency, for example 1

min
, and t, the

time (for example 1 min) in practical scenarios. Both, the expected value as
well as the variance of the Poisson process are λ = µt. In Equation 35.114,
the probability that k events occur in a Poisson process in a time interval of
the length t is denoted.

37 http://en.wikipedia.org/wiki/Poisson_distribution [accessed 2007-07-03]

38 More information on the gamma function (Γ) used in Equation 35.104 can be
found in Section 35.9.1 on page 570.

39 http://en.wikipedia.org/wiki/Poisson_process [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Poisson_process

35.3 Some Discrete Distributions 531

4
8

12
16

20
24

28
l=1

l=6
l=20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 f (x)X

x

l=1

l=3

l=6

l=10

l=20

l

Fig. 35.3: The PMFs of some Poisson distributions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)
X

5 10 15 20 25 30

l=1

l=3

l=6

l=10

l=20

discontinuous point

Fig. 35.4: The CDFs of some Poisson distributions

532 35 Stochastic Theory

P (Xt = k) =
(µt)k

k!
e−µt =

λk

k!
e−λ (35.114)

The probability that in a time interval [t, t + ∆t]

• no events occur is 1− λ∆t + o(∆t).
• exactly one event occurs is λ∆t + o(∆t).
• multiple events occur o(∆t).

We abuse the small-o notation40 here a little bit by simply saying the o(∆t)
is much smaller than ∆t. In principle the above equations imply that in an
infinite small time span either no or one event occurs, i. e. events do not arrive
simultaneously:

lim
t→0

P (Xt > 1) = 0 (35.115)

The Relation between the Poisson Process and the Exponential
Distribution

It is important to know that the (time) distance between two events of the
Poisson process is exponentially distributed (Section 35.4.3). The expected
value of the count of events to arrive per time unit in a Poisson process is
EXpois, then the expected value of the time between two events 1

EXpois
. Since

this is the excepted value EXexp = 1
EXpois

of the exponential distribution, its

λexp-value is λexp = 1
EXexp

= 1
1

EXpois

= EXpois. Therefore, the λexp-value of

the exponential distribution equals the λpois-value of the Poisson distribution
λexp = λpois = EXpois. In other words, the time interval between (neighbor-
ing) events of the Poisson process is exponentially distributed with the same
lambda value as the Poisson process, as illustrated in Equation 35.116.

Xi ∼ πλ ⇔ (t(Xi+1)− t(Xi)) ∼ exp(λ) ∀i ∈ N (35.116)

35.3.3 Binomial Distribution B(n, p)

The binomial distribution41 B(n, p) is the probability distribution of successes
of n independent experiments with the success probability p. Such an experi-
ment is called Bernoulli experiment or Bernoulli trial. For n = 1, the binomial
distribution is a Bernoulli distribution42.

40 See Section 37.1.3 on page 589 and Definition 206 on page 590 for a detailed
elaboration on the small-o notation. The statement that f ∈ o(ξ) ⇒ |f(x)| ≪
|ξ(x)| is generally only valid for x→∞, which is not the case here.

41 http://en.wikipedia.org/wiki/Binomial_distribution [accessed 2007-10-01]

42 http://en.wikipedia.org/wiki/Bernoulli_distribution [accessed 2007-10-01]

http://en.wikipedia.org/wiki/Binomial_distribution
http://en.wikipedia.org/wiki/Bernoulli_distribution

35.3 Some Discrete Distributions 533

Table 35.443 points out some of the properties of the binomial distribution.
Some examples for PMFs and CDFs of different binomial distributions are
given in Figure 35.5 and Figure 35.6.

Table 35.4: Parameters of the Binomial distribution.

parameter definition

parameters n ∈ N0, 0 ≤ p ≤ 1, p ∈ R (35.117)

PMF P (X = x) = fX(x) =

(
n
x

)

px(1− p)n−x (35.118)

CDF P (X ≤ x) = FX(x) =
∑⌊x⌋

i=0 fX(x) = I1−p (n− ⌊x⌋, 1 + ⌊x⌋) (35.119)
mean EX = np (35.120)
median med is one of {⌊np⌋ − 1, ⌊np⌋, ⌊np⌋+ 1} (35.121)
mode mod = ⌊(n + 1)p⌋ (35.122)
variance D2X = (np)(1− p) (35.123)
skewness γ1 = 1−2p√

np(1−p)
(35.124)

kurtosis γ2 = 1−6p(1−p)
np(1−p)

(35.125)

entropy H(X) = 1
2

ln (2πnep(1− p)) + O
(

1
n

)
(35.126)

mgf MX(t) = (1− p + pet)n (35.127)
char. func. ϕX(t) = (1− p + peit)n (35.128)

For n → ∞, the binomial distribution approaches a normal distribution.
For large n, B(n, p) can therefore often be approximated with the normal
distribution (see Section 35.4.2) N(np, np(1−p)). Whether this approximation
is good or not can be found out by rules of thumb, some of them are:

np > 5 ∧ n(1− p) > 5

µ± 3σ ≈ np± 3
√

np(1− p) ∈ [0, n]

In case these rules hold, we still need to transform a continuous distribution
to a discrete one. In order to do so, we add 0.5 to the x values, i.e. FX,bin(x) ≈
FX,normal(x + 0.5).

43 I1−p in Equation 35.119 denotes the regularized incomplete beta function.

534 35 Stochastic Theory

0

0.02

f
(x

)
X

5 10 15 20 25
single, discrete point

x 35

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
n=20,p=0.3

n=20,p=0.6

n=30,p=0.6

n=40,p=0.6

Fig. 35.5: The PMFs of some binomial distributions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)
X

discontinuous point

n=20,p=0.3

n=20,p=0.6

n=30,p=0.6

n=40,p=0.6

0 5 10 15 20 25 x 35

Fig. 35.6: The CDFs of some binomial distributions

35.4 Some Continuous Distributions 535

35.4 Some Continuous Distributions

In this section we will introduce some common continuous distributions. Un-
like the discrete distributions, continuous distributions have an uncountable
infinite large set of possible outcomes of random experiments. Thus, the PDF
does not assign probabilities to certain events. Only the CDF makes state-
ments about the probability of a sub-set of possible outcomes of a random
experiment.

35.4.1 Continuous Uniform Distribution

After discussing the discrete uniform distribution in Section 35.3.1, we now
elaborate on its continuous form44.

In a uniform distribution, all possible outcomes in a range [a, b], b > a have
exactly the same probability. The characteristics of this distribution can be
found in Table 35.5. Examples of its probability density function is illustrated
in Figure 35.7 whereas the according cumulative density functions are outlined
Figure 35.8.

Table 35.5: Parameters of the continuous uniform distribution.

parameter definition

parameters a, b ∈ R, a ≥ b (35.129)

PDF fX(x) =

{
1

b−a
∀x ∈ [a, b]

0 else
(35.130)

CDF P (X ≤ x) = FX(x) =

0 ∀x < a
x−a
b−a
∀x ∈ [a, b]

1 ∀x > b
(35.131)

mean EX = 1
2
(a + b) (35.132)

median med = 1
2
(a + b) (35.133)

mode mod = ∅ (35.134)
variance D2X = 1

12
(b− a)2 (35.135)

skewness γ1 = 0 (35.136)
kurtosis γ2 = − 6

5
(35.137)

entropy H(X) = ln(b− a) (35.138)

mgf MX(t) = etb−eta

t(b−a)
(35.139)

char. func. ϕX(t) = eitb−eita

it(b−a)
(35.140)

44 http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 [ac-

cessed 2007-07-03]

http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29

536 35 Stochastic Theory

0

0.1

0.2

x

f
(x

)
X

5 10 15 20 25

a 51= b 51=1 a2=20 b2=25

1/(b -a)1 1

1/(b -a)2 2

a 5, b 15= =
a 20, b 25= =

Fig. 35.7: The PDFs of some continuous uniform distributions

0

1

x

f
(x

)
X

5 10 15 20 25

a 51= b 51=1 a2=20 b2=25

a 5, b 15= =
a 20, b 25= =

Fig. 35.8: The CDFs of some continuous uniform distributions

35.4 Some Continuous Distributions 537

35.4.2 Normal Distribution N(µ, σ2)

Many phenomena in nature like the size of chicken eggs, noise, errors in
measurement, and such and such can be approximated by the normally dis-
tributed45 N(µ, σ2) [1136]. Its probability density function, shown for some
example values in Figure 35.9, is symmetric to the expected value µ and be-
comes flatter the higher the standard deviation σ gets. The cumulative density
function is outline for the same example values in Figure 35.10. Other char-
acteristics of the normal distribution can be found in Table 35.6.

Table 35.6: Parameters of the normal distribution.

parameter definition

parameters µ ∈ R, σ ∈ R+ (35.141)

PDF fX(x) = 1

σ
√

2π
e
− (x−µ)2

2σ2 (35.142)

CDF P (X ≤ x) = FX(x) = 1

σ
√

2π

∫ x

−∞ e
− (z−µ)2

2σ2 dz (35.143)

mean EX = µ (35.144)
median med = µ (35.145)
mode mod = µ (35.146)
variance D2X = σ2 (35.147)
skewness γ1 = 0 (35.148)
kurtosis γ2 = 0 (35.149)

entropy H(X) = ln(σ
√

2πe) (35.150)

mgf MX(t) = eµt+ σ2t2

2 (35.151)

char. func. ϕX(t) = eµit+ σ2t2

2 (35.152)

Definition 161 (Standard Normal Distribution).
For the sake of simplicity, the standard normal distribution N(0, 1) with

the CDF Φ(x) is defined with µ = 0 and σ = 1. Values of this function are
listed in tables. You can compute the CDF of any normal distribution using
the one of the standard normal distribution by applying Equation 35.153.

Φ(x) =
1√
2π

∫ x

−∞

e−
z2

2 dz (35.153)

P (X ≤ x) = Φ

(
x− µ

σ

)

(35.154)

You can find some values of Φ(x) in Table 35.7. For the sake of saving space
by using two dimensions, we compose the values of x as a sum of a row and
column value. If you want to look up Φ(2.13) for example, you’d go to the row
which starts with 2.1 and the column of 0.03, so you’d find Φ(2.13) ≈ 0.9834.

45 http://en.wikipedia.org/wiki/Normal_distribution [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Normal_distribution

538 35 Stochastic Theory

0.2

0.4

x

f
(x

)
X

m= s=0, 1

m= s=0, 5

m= s=3, 1

m= s=3, 5

m= s=6, 1

m= s=6, 50.1

0.15

0.25

0.3

0.35

0.05

-15 -10 -5 0 5 10 15 20m

standard normal
distribution: m= s=0, 1

Fig. 35.9: The PDFs of some normal distributions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5-10-15 5 10 15 20

F (x)X

x

m= s=0, 1

m= s=0, 5

m= s=3, 1

m= s=3, 5

m= s=6, 1

m= s=6, 5

the CDF of the
standard normal
distribution:

F

m= s=0, 1

Fig. 35.10: The CDFs of some normal distributions

35.4 Some Continuous Distributions 539

Table 35.7: Some values of the standardized normal distribution.

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Definition 162 (Probit). The inverse cumulative distribution function of
the standard normal distribution is called probit function. It is also often
denoted as z-quantil of the standard normal distribution.

z(y) ≡ probit(y) ≡ Φ−1(y) (35.155)

y = Φ(x) ⇒ Φ−1(y) = z(y) = x (35.156)

The probability density function PDF of the multivariate normal distribu-
tion46 [1137, 1138, 1139] is illustrated in Equation 35.157 and Equation 35.158

46 http://en.wikipedia.org/wiki/Multivariate_normal_distribution [accessed

2007-07-03]

http://en.wikipedia.org/wiki/Multivariate_normal_distribution

540 35 Stochastic Theory

in the general (where Σ is the covariance matrix) and in Equation 35.159 in the
uncorrelated form. If the distributions, additional to being uncorrelated, also
have the same parameters σ and µ, the probability density function of the mul-
tivariate normal distribution can be expressed as it is done in Equation 35.160.

fX(x) =

√
Σ−1

(2π)
n
2

e−
1
2 (x−µ)T

Σ
−1(x−µ) (35.157)

=
1

(2π)
n
2 Σ

1
2

e−
1
2 (x−µ)T

Σ
−1(x−µ) (35.158)

fX(x) =

n∏

i=1

1√
2πσi

e
−

(xi−µi)
2

2σ2
i (35.159)

fX(x) =

n∏

i=1

1√
2πσ

e−
(xi−µi)

2

2σ2

=

(
1

2πσ2

)n
2

e−
∑n

i=1(xi−µ)2

2σ2 (35.160)

35.4.3 Exponential Distribution exp(λ)

The exponential distribution47 exp(λ) [1140] is especially if the probabilities of
lifetimes of apparatuses, half-life periods of radioactive elements, or the time
between two events in the Poisson process (see Section 35.3.2 on page 532)
has to be determined. Its PDF is sketched in Figure 35.11 for some example
values of λ the according cases of the CDF are illustrated Figure 35.12. The
most important characteristics of the exponential distribution can be obtained
from Table 35.8.

47 http://en.wikipedia.org/wiki/Exponential_distribution [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Exponential_distribution

35.4 Some Continuous Distributions 541

Table 35.8: Parameters of the exponential distribution.

parameter definition

parameters λ ∈ R+ (35.161)

PDF fX(x) =

{
0 ∀x ≤ 0

λe−λx ∀x > 0
(35.162)

CDF P (X ≤ x) = FX(x) =

{
0 ∀x ≤ 0

1− e−λx ∀x > 0
(35.163)

mean EX = 1
λ

(35.164)
median med = ln 2

λ
(35.165)

mode mod = 0 (35.166)
variance D2X = 1

λ2 (35.167)
skewness γ1 = 2 (35.168)
kurtosis γ2 = 6 (35.169)
entropy H(X) = 1− ln λ (35.170)

mgf MX(t) =
(
1− t

λ

)−1
(35.171)

char. func. ϕX(t) =
(
1− it

λ

)−1
(35.172)

0

0.5

1

1.5

2

2.5

3

l=0.3

l=0.5

l=1

l=2

l=3

0.5 1 1.5 2 2.5 3 3.5

f (x)X

x

1/l

Fig. 35.11: The PDFs of some exponential distributions

542 35 Stochastic Theory

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5x

F (x)X

l=0.3

l=0.5

l=1

l=2

l=3

Fig. 35.12: The CDFs of some exponential distributions

35.4.4 Chi-square Distribution

The chi-square (or χ2) distribution48 is a steady probability distribution on
the set of positive real numbers. It is a so-called sample distribution which
is used for the estimation of parameters like the variance of other distribu-
tions. It is also used to describe the sum of independent standardized normal
distributions. Its sole parameter, n, denotes the degrees of freedom.

In Table 35.949, the characteristic parameters of the χ2 distribution are
outlined. A few examples for the PDF and CDF of the χ2 distribution are
illustrated in Figure 35.13 and Figure 35.14.

Table 35.10 provides some selected values of χ2 distributions with n de-
grees of freedom. The table’s headline contains results of the cumulative distri-
bution function FX(x) of a χ2 distribution with n degrees of freedom (values
in the first column). The cells now denote the x values that belong to these
(n, FX(x)) combinations.

48 http://en.wikipedia.org/wiki/Chi-square_distribution [accessed 2007-09-30]

49 γ(n, z) in Equation 35.175 is the lower incomplete Gamma function and Pγ(n, z)
is the regularized Gamma function.

http://en.wikipedia.org/wiki/Chi-square_distribution

35.4 Some Continuous Distributions 543

Table 35.9: Parameters of the χ2 distribution.

parameter definition

parameters n ∈ R+, n > 0 (35.173)

PDF fX(x) =

{

0 ∀x ≤ 0
1

2n/2Γ (n/2)
xn/2−1e−x/2 ∀x > 0

(35.174)

CDF P (X ≤ x) = FX(x) = γ(n/2,x/2)
Γ (n/2)

= Pγ(n/2, x/2) (35.175)

mean EX = n (35.176)
median med =≈ n− 2

3
(35.177)

mode mod = n− 2 if n ≥ 2 (35.178)
variance D2X = 2n (35.179)

skewness γ1 =
√

8
n

(35.180)

kurtosis γ2 = 12
n

(35.181)
entropy H(X) = n

2
+ ln (2Γ (n/2)) + (1− n/2)Ψ(n/2) (35.182)

mgf MX(t) = (1− 2t)−n/2 for 2t < 1 (35.183)

char. func. ϕX(t) = (1− 2it)−n/2 (35.184)

0.05

0.1

0.15

0.2

0.3

0.25

0.4

0.35

0.5

f (x)X

876543210 x 10

n 1=
n 2=
n 4=
n 7=
n 10=

Fig. 35.13: The PDFs of some χ2 distributions

544 35 Stochastic Theory

Table 35.10: Some values of the χ2 distribution.

n 0.995 .99 .975 .95 .9 .1 .05 .025 .01 .005

1 – – 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169

35.4 Some Continuous Distributions 545

0

n 1=
n 2=
n 4=
n 7=
n 10=

87654321 x 10

0.1

0.2

0.3

0.4

0.6

0.5

0.8

0.7

1

F (x)X

Fig. 35.14: The CDFs of some χ2 distributions

35.4.5 Student’s t-Distribution

The Student’s t-distribution50 is based on the insight that the mean of a
normally distributed feature of a sample is no longer normally distributed
if the variance is unknown and needs to be estimated from the data samples
[1141, 1142, 1143]. It has been design by William Sealy Gossett who published
it under the pseudonym Student.

The parameter n of the distribution denotes the degrees of freedom of
the distribution. If n approaches infinity, the t-distribution approaches the
standard normal distribution.

The characteristic properties of Student’s t-distribution are outlined in Ta-
ble 35.1151 and examples for its PDF and CDF are illustrated in Figure 35.15
and Figure 35.16.

Table 35.12 provides some selected values for quantiles t1−α,n of t-
distributions with n degrees of freedom (one-sided confidence intervals,
see Section 35.6.3 on page 556). The table’s headline contains results of the
cumulative distribution function FX(x) of a Student’s t-distribution with n

50 http://en.wikipedia.org/wiki/Student%27s_t-distribution [accessed 2007-09-30]

51 More information on the gamma function (Γ) used in Equation 35.186
and Equation 35.187 can be found in Section 35.9.1 on page 570. 2F4

in Equation 35.187 stands for the hypergeometric function, Ψ and B in
Equation 35.194 are the digamma and the beta function.

http://en.wikipedia.org/wiki/Student%27s_t-distribution

546 35 Stochastic Theory

degrees of freedom (values in the first column). The cells now denote the x
values that belong to these (n, FX(x)) combinations.

Table 35.11: Parameters of Student’s t-distribution.

parameter definition

parameters n ∈ R+, n > 0 (35.185)

PDF fX(x) = Γ ((n+1)/2)√
nπΓ (n/2)

(
1 + x2/n

)−(n+1)/2
(35.186)

CDF P (X ≤ x) = FX(x) = 1
2

+
xΓ ((n+1)/2) 2F1

(

1
2

,(n+1)/2; 3
2
;− x2

n

)

√
nπΓ (n/2)

(35.187)

mean EX = 0 (35.188)
median med = 0 (35.189)
mode mod = 0 (35.190)
variance D2X = n

n−2
for n > 2 (35.191)

skewness γ1 = 0 for n > 3 (35.192)
kurtosis γ2 = 6

n−4
for n > 4 (35.193)

entropy H(X) = n
2

[
Ψ
(

n+1
2

)
− Ψ

(
n
2

)]
+ log

[√
nB

(
n
2
, 1

2

)]
(35.194)

mgf undefined (35.195)

x3210-1-2-3-4 5

0.05

0.1

0.15

0.2

n 1=
n 2=
n 5=
normal distribution

The Student’s t-distribution
approaches the normal
distribution N(0,1)
for n .®¥

0.3

0.25

f (x)X0.4

0.35

Fig. 35.15: The PDFs of some Student’s t-distributions

35.4 Some Continuous Distributions 547

Table 35.12: Table of Student’s t-distribution with right-tail probabilities.

n 0.75 .8 .85 .875 .9 .95 .975 .99 .995 .9975 .999 .9995

1 1.000 1.376 1.963 2.414 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.605 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.423 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.344 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.301 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.273 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.254 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.240 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.230 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.221 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.214 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.209 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.204 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.200 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.197 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.194 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.191 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.189 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.688 0.861 1.066 1.187 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.185 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.183 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.182 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.180 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.685 0.857 1.059 1.179 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.178 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.177 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.176 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.175 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.174 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.173 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.167 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.164 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.162 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.159 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.158 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
120 0.677 0.845 1.041 1.157 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ 0.674 0.842 1.036 1.150 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

548 35 Stochastic Theory

x3210-1-2-3-4 5

n 1=
n 2=
n 5=
normal distribution

0.1

0.2

0.3

0.8

0.7

0.6

0.5

0.9

1
F (x)X

0.4

The Student’s t-distribution
approaches the normal
distribution N(0,1)
for n .®¥

Fig. 35.16: The CDFs of some Student’s t-distributions

35.5 Example - Throwing a Dice

Let us now discuss the different parameters of a random variable at the ex-
ample of throwing a dice. On the dice, the numbers one to six are written and
the result of throwing a dice is the number written on the side facing upwards.
If a dice is perfect, the numbers one to six will show up with exactly the same
probability, 1

6 . The set of all possible outcomes of throwing a dice Ω is thus

Ω =
{

1 , 2 , 3 , 4 , 5 , 6
}

(35.196)

We define a random variable X : Ω 7→ R that assigns real numbers to the
possible outcomes of throwing the dice in a way that the value of X matches
the number on the dice:

X ∈ {1, 2, 3, 4, 5, 6} (35.197)

It is obviously a uniformly distributed discrete random variable (see Section 35.3.1
on page 527) that can take on six states. We can now define the probability
mass function PMF and the according cumulative distribution function CDF
as follows (see also Figure 35.17):

FX = P (X ≤ x) =

0 if x < 1
x
6 if 1 ≤ x ≤ 6
1 otherwise (x > 6)

(35.198)

35.6 Estimation Theory 549

fX = P (X = x) =

0 if x < 1
1
6 if 1 ≤ x ≤ 6
0 otherwise (x > 6)

(35.199)

0

1/3

x1 2 3

CDF of the dice throwing experiment
PMF of the dice throwing experiment
single, discrete point
discontinuous point

1/6

5/6

1

1/2

2/3

4 5 6

Fig. 35.17: The PMF and CMF of the dice throw

We now can discuss the statistical parameters of this experiment. This is
a good opportunity to compare the real parameters and their estimates. We
therefore assume that the dice was thrown ten times (n = 10) in an experi-
ment. The following numbers have been thrown as illustrated in Figure 35.18):

A = {4, 5, 3, 2, 4, 6, 4, 2, 5, 3} (35.200)

Table 35.13 outlines how the parameters of the random variable are com-
puted. The real value of the parameters are defined using the PMF or CDF
functions while the estimations are based on the sample data obtained from
our experiment solely.

As you can see, the estimations of the parameters sometimes differ sig-
nificantly from their true values. More information about estimation can be
found in the following section.

35.6 Estimation Theory

Estimation theory is the science of estimating the values of parameters based
on measurements or otherwise obtained sample data [1144, 1145, 1146, 1147,

550 35 Stochastic Theory

0

1

2

3

4

5

6

Fig. 35.18: The numbers thrown in the dice example

Table 35.13: The statistical parameters of the dice throw experiment

parameter true value estimation

count non existent n = |A| = 10
minimum a = min{x : fX(x) > 0} = 1 a = min{a ∈ A} = 2
maximum b = max{x : fX(x) > 0} = 6 b = max{a ∈ A} = 6
range range = r = b− a + 1 = 6 range = r = b− a + 1 = 6

mean EX = a+b
2

= 7
2

= 3.5 a = 1
n

∑n−1
i=0 ai = 19

5

median med = a+b
2

= 7
2

= 3.5 med =
sort(A)[n

2]+sort(A)[n
2
−1]

2
= 4

mode mod = ∅ mod = 4

variance D2X = r2−1
12

= 35
12
≈ 2.917 s2 = 1

n−1

∑n−1
i=0 (ai − a)2 = 26

15
≈ 1.73

skewness γ1 = 0 G1 ≈ 0.0876

kurtosis γ2 = − 6(r2+1)

5(r2−1)
= − 222

175
≈ −1.269 G2 ≈ −0.7512

1148]. The center of this branch of statistics is to find good estimators in order
to approximate the real values the parameters as good as possible.

Definition 163 (Estimator). An estimator52 θ̃ is a rule (most often a math-
ematical function) that takes a set of sample data as input and returns an
estimation of one parameter θ of this data set.

We have already discussed some estimators in Section 35.2 – the arithmetic
mean of a sample data set (see Definition 146 on page 521) for example is
an estimator for the expected value (see Definition 144 on page 521) and

52 http://en.wikipedia.org/wiki/Estimator [accessed 2007-07-03], http://

mathworld.wolfram.com/Estimator.html [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Estimator
http://mathworld.wolfram.com/Estimator.html
http://mathworld.wolfram.com/Estimator.html

35.6 Estimation Theory 551

in Equation 35.65 on page 523 we have introduced an estimator for the sample
variance.

Obviously, the estimator θ̃ is the better the closer its results (the estimates)
come to the real values of the parameter θ.

Definition 164 (Point Estimator). We define a point estimator θ̃ to be
an estimator which is a mathematical function θ̃ : Rn 7→ R. This function
takes the real vector x ∈ Rn representing the sample data set as input and
returns the estimate in the form of a real, scalar value.

Definition 165 (Error). The (estimation) error ε53 is the difference be-
tween the value returned by a point estimator θ̃ of a parameter θ for a certain
input x and its real value. Notice that the error ε can be zero, positive, or
negative.

ε(θ̃,x) = θ̃(x)− θ (35.201)

Definition 166 (Bias). The bias Bias(θ̃) of an estimator θ̃ is the expected
value of the difference of the estimate and the real value. This mean error is
null for all unbiased estimators.

Bias(θ̃) = Eθ̃ − θ = E ε(θ̃) (35.202)

Definition 167 (Unbiased Estimator). An unbiased estimator has a zero
bias.

Bias(θ̃) = Eθ̃ − θ = E ε(θ̃) = 0⇔ Eθ̃ = θ (35.203)

Definition 168 (Mean Square Error). The mean square error54 MSE(θ̃)
of an estimator θ̃ is the expected value of the square of the error ε. It is also
the sum of the variance of the estimator and the square of its bias. The MSE
represents how much an estimator differs from the quantity to be estimated.

MSE(θ̃) = E
(

(θ̃ − θ)2
)

= E
(

ε(θ̃)2
)

(35.204)

MSE(θ̃) = D2θ̃ +
(

Bias(θ̃)
)2

(35.205)

Notice that the MSE of unbiased estimators coincides with the variance
of θ̃.

For estimating the mean square error of an estimator ˜theta, we use the
sample mean:

˜MSE(θ̃) =
1

n

n∑

i=1

(

θ̃i − θ
)

(35.206)

53 http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics [ac-

cessed 2007-07-03]

54 http://en.wikipedia.org/wiki/Mean_squared_error [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Mean_squared_error

552 35 Stochastic Theory

35.6.1 Likelihood and Maximum Likelihood Estimators

Definition 169 (Likelihood). Likelihood55 is a mathematical expression
complementary to probability. Whereas probability allows us to predict the
outcome of a random experiment based on known parameters, likelihood al-
lows us to predict unknown parameters based on the outcome of experiments.

Definition 170 (Likelihood Function). The likelihood function L returns
a value that is proportional to the probability of a postulated underlying law or
probability distribution ϕ according to an observed outcome (denoted as the
vector y). Notice that L not necessarily represents a probability density/mass
function and its integral also does not necessarily equal to 1.

L(ϕ|y) ∝ P (y|ϕ) (35.207)

In many sources, L is defined in dependency of a parameter θ instead of
the function ϕ. We preferred the latter notation since it is a more general
superset of the first one.

Observation of an Unknown Process ϕ

We are given a finite set S of n sample data points.

S = {(x1, y1), (x2,y 2), . . . , (xn, yn)}, xi, yi ∈ R (35.208)

The xi are known inputs or parameters of an unknown process defined
by the function ϕ : R 7→ R. By observing the corresponding outputs of the
process we have obtained the yi values. During our observations, we make the
measurement errors56 ηi.

yi = ϕ(xi) + ηi ∀0 < i ≤ n (35.209)

About this measurement error η we make the following assumptions:

Eη = 0 (35.210)

η ∼ N(0, σ2) : 0 < σ <∞ (35.211)

cov(ηi, ηj) = 0 ∀i 6= j, 0 < i ≤ n, 0 < j ≤ n (35.212)

• The expected values of η in Equation 35.210 are all zero. Our measurement
device thus gives us, in average, unbiased results. If the expected value of
η was not zero, we could simple recalibrate our (imaginary) measurement
equipment in order to subtract Eηi from all measurements and would
obtain unbiased observations.

55 http://en.wikipedia.org/wiki/Likelihood [accessed 2007-07-03]

56 http://en.wikipedia.org/wiki/Measurement_error [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Likelihood
http://en.wikipedia.org/wiki/Measurement_error

35.6 Estimation Theory 553

• Furthermore, Equation 35.211 states that the ηi are normally distributed
around the zero point with an unknown, nonzero variance σ2. To suppose
measurement errors to be normally distributed is quite common and cor-
rect in most cases. The white noise57 in transmission of signals for example
is often modeled with Gaussian distributed58 amplitudes. This second as-
sumption includes, of course, the first one: being normally distributed with
N(µ = 0, σ2) implies a zero expected value.

• With Equation 35.212, we expect the errors ηi of the single measurements
to be stochastically independent. If there existed a connection between
them, it would be part of the underlying physical law ϕ and could be
incorporated in our measurement device and again be subtracted.

Objective: Estimation

Assume that we can choose from a, possible infinite large, set of functions
(estimators) f ∈ F .

f ∈ F ⇒ f : R 7→ R (35.213)

From this set we want to pick the function f⋆ ∈ F with f : R 7→ R that
resembles ϕ the best close (i. e. better than all other f ∈ F : f 6≡ f⋆). ϕ is not
necessarily an element of F , so we cannot always presume to find a f⋆ ≡ ϕ.

Each estimator f deviates by the estimation error ε(f) (see Definition 165
on page 551) from yi-values. The estimation error depends on f and may vary
for different estimators.

yi = f(xi) + εi(f) ∀0 < i ≤ n (35.214)

We can regard all f ∈ F as estimators for ϕ and simple look for the one
that “fits best”. We now can combine Equation 35.214 with Equation 35.209:

f(xi) + εi(f) = yi = ϕ(xi) + ηi ∀0 < i ≤ n (35.215)

We do not know ϕ and thus, cannot determine the ηi. According to the
likelihood method, we pick the function f ∈ F that would have most prob-
ably produced the outcomes yi. In other words, we have to maximize the
likelihood of the occurrence of the εi(f). The likelihood here is defined under
the assumption that the true measurement errors ηi are normally distributed
(see Equation 35.211). In other words, what we can do is to determine the εi

in a way that their occurrence is most probable according to the distribution
of the random variable that created the ηi, N(0, σ2). In the best case, the
εi(f

⋆) = ηi and thus, f⋆ ≡ ϕ(xi).

57 http://en.wikipedia.org/wiki/White_noise [accessed 2007-07-03]

58 http://en.wikipedia.org/wiki/Gaussian_noise [accessed 2007-07-03]

http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Gaussian_noise

554 35 Stochastic Theory

Maximizing the Likelihood

Therefore, we can regard the εi(f) as outcomes of independent random exper-
iments, as uncorrelated random variables, and combine them to a multivariate
normal distribution.

For the ease of notation, we define the εi(f) to be the vector containing
all the single εi(f).

ε(f) =

ε1(f)
ε2(f)

...
εn(f)

(35.216)

The probability density function of a multivariate normal distribution
with independent variables εi that have the same variance σ2, as defined
in Equation 35.160 on page 540, looks like this:

fX(ε(f)) =

(
1

2πσ2

)n
2

e−
∑n

i=1(εi(f)−µ)2

2σ2 (35.217)

=

(
1

2πσ2

)n
2

e−
∑n

i=1 εi(f)2

2σ2 (35.218)

Amongst all possible vectors ε(f) : f ∈ F we need to find the most
probable one ε⋆ = ε(f)⋆ according to Equation 35.218. The function f⋆ that
produces it will then be the one that most probably matches to ϕ.

In order to express how likely the observation of some outcomes is under
a certain set of parameters, we have defined the likelihood function L in Def-
inition 170. Here we can use the probability density fX , since the maximal
values of fX are those that are most probable to occur.

L(ε(f)|f) = fX(ε(f)) =

(
1

2πσ2

)n
2

e−
∑n

i=1 εi(f)2

2σ2 (35.219)

f⋆ ∈ F : L(ε(f⋆)|f⋆) = max
∀f∈F

L(ε(f)|f) (35.220)

= max
∀f∈F

(
1

2πσ2

)n
2

e−
∑n

i=1 εi(f)2

2σ2 (35.221)

Finding a f⋆ that Maximizes the function fX however is equal to find a
f⋆ that minimizes the sum of the squares of the ε-values.

f⋆ ∈ F :

n∑

i=1

εi(f
⋆)2 = min

∀f∈F

n∑

i=1

εi(f)2 (35.222)

According to Equation 35.214 we can now substitute the εi-values with
the difference between the observed outcomes yi and the estimates f(xi).

35.6 Estimation Theory 555

n∑

i=1

εi(f)2 =

n∑

i=1

(yi − f(xi))
2 (35.223)

Definition 171 (Maximum Likelihood Estimator). A maximum like-
lihood estimator59 [1149] f⋆ is an estimator which fits with maximum like-
lihood to a given set of sample data S. Under the particular assumption of
uncorrelated error terms normally distributed around zero, a MLE minimizes
Equation 35.224.

f⋆ ∈ F :

n∑

i=1

(yi − f⋆(xi))
2 = min

∀f∈F

n∑

i=1

(yi − f(xi))
2 (35.224)

Minimizing the sum of the difference between the observed yi and the
estimates f(xi) also minimizes their mean, so with this we have also shown
that the estimator that minimizes mean square error MSE (see Definition 168)
is the best estimator according to the likelihood of the produced outcomes.

f⋆ ∈ F :
1

n

n∑

i=1

(yi − f⋆(xi))
2 = min

∀f∈F

1

n

n∑

i=1

(yi − f(xi))
2 (35.225)

f⋆ ∈ F : MSE(f⋆) = min
∀f∈F

MSE(f) (35.226)

The term (yi − f(xi))
2 is often justified by the statement that large de-

viations of f from the y-values are punished harder than smaller ones. The
correct reason why we minimize the square error is however, that we maximize
the likelihood of the resulting estimator.

At this point, one should also notice that the xi could be replaced with
vectors xi ∈ Rm without any further implications or modifications of the
equations.

In most practical cases the set F of possible functions is defined very
closely. It usually contains one type of parameterized function so we only have
to determine the unknown parameters in order to find f⋆. If we for example
specify F = {∀ f(x) = ax + b : a, b ∈ R}, we have minimize Equation 35.227
for a and b.

MSE(f(x|a, b) =
1

n

n∑

i=1

(axi + b− yi)
2 (35.227)

If we could find a perfect estimator f⋆
p and our data would be free of any

measurement error, all parts of the sum would become zero. This perfect esti-
mator would be the solution of the over-determined system of linear equations
illustrated in Equation 35.228.

59 http://en.wikipedia.org/wiki/Maximum_likelihood [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Maximum_likelihood

556 35 Stochastic Theory

0 = ax1 + b− y1

0 = ax2 + b− y2

.
0 = axn + b− yn

(35.228)

Since it is normally not possible to obtain such a perfect estimator (because
there are measurement errors or other uncertainties like unknown dependen-
cies), the system in Equation 35.228 often cannot be solved and only mini-
mized.

35.6.2 Best Linear Unbiased Estimators

The Gauss-Markov Theorem60 defines BLUEs (best linear unbiased estima-
tors) according to the facts just discussed:

Definition 172 (BLUE). In a linear model in which the measurement errors
ηi are uncorrelated and are all normally distributed with an expected value
of zero and the same variance, the best linear unbiased estimators (BLUE) of
the (unknown) coefficients are the least-square estimators [1150].

Hence, for the best linear unbiased estimator also the same three assump-
tions (Equation 35.210, Equation 35.211, and Equation 35.212 on page 552)
as for the maximum likelihood estimator hold.

35.6.3 Confidence Intervals

Definition 173 (Confidence Interval). Unlike point estimators, which ap-
proximate a parameter of a data sample with a single value, confidence inter-
valls61 (CIs) are estimations that give certain upper and lower boundaries in
which the parameter will be with a predefined probability. [1151, 1152]

The advantage of confidence intervals is that we can directly derive the
significance of the data samples from them – the larger the intervals are, the
less reliable is the sample. Narrow confidence intervals for high predefined
probabilities, the more profound, i. e. significant, will the conclusions drawn
from them be.

Example

Imagine we run a farm and own 25 chickens. Each chicken lays an egg a day.
We collect all the eggs in the morning and weigh them in order to find the
average weight of the eggs produced by our farm. Assume our sample contains
the values (in g):

60 http://en.wikipedia.org/wiki/Gauss-Markov_theorem [accessed 2007-07-03],
http://www.answers.com/topic/gauss-markov-theorem [accessed 2007-07-03]

61 http://en.wikipedia.org/wiki/Confidence_interval [accessed 2007-10-01]

http://en.wikipedia.org/wiki/Gauss-Markov_theorem
http://www.answers.com/topic/gauss-markov-theorem
http://en.wikipedia.org/wiki/Confidence_interval

35.6 Estimation Theory 557

A =
{ 120, 121, 119, 116, 115, 122, 121, 123, 122, 120

119, 122, 121, 120, 119, 121, 123, 117, 118, 121 } (35.229)

n = |A| = 20 (35.230)

From these measurements, we can determine the arithmetic mean a
and the sample variance s2 according to Equation 35.58 on page 522
and Equation 35.65 on page 523:

a =
1

n

n−1∑

i=0

A[i] =
2400

20
= 120 (35.231)

s2 =
1

n− 1

n−1∑

i=0

(ai − a)2 =
92

19
(35.232)

The question that arises now is if the mean of 120 is a significant value
and in which intervals we can expect the egg weights generally to be. Now
confidence intervals come into play. First, we need to find out what the under-
lying distribution of the random variable producing A as sample output is. In
case of chicken eggs, we safely can assume that it is the normal distribution
discussed in Section 35.4.2 on page 537. Knowing that, we can now calculate
an interval which includes the unknown parameter µ (i. e. the real expected
value) with a confidence probability of γ. γ = 1 − α is the so-called confi-
dence coefficient and α is the probability that the real value of the estimated
parameter lies not inside the confidence interval.

Let us compute the interval including the expected value µ of the chicken
egg weights with a probability of γ = 1−α = 95%. Thus, α = 0.05. Therefore,
we have to pick the right formula from Section 35.6.3 on the next page (here it
is Equation 35.245 on the following page) and substitute in the proper values:

µγ ∈
[

a± t1−α
2 ,n−1

s√
n

]

(35.233)

µ95% ∈

120± t0.975,19 ∗

√
92
19√
19

 (35.234)

µ95% ∈ [120± 2.093 ∗ 0.5048] (35.235)

µ95% ∈ [118.94, 121.06] (35.236)

The value of t19,0.025 can easiliy be obtained from Table 35.12 on page 547
which contains the respective quantiles of Student’s t-distribution discussed
in Section 35.4.5 on page 545.

Let us repeat the procedure in order to find the interval that will contain
µ with probabilities 1− α = 99%⇒ α = 0.01 and 1− α = 90%⇒ α = 0.1

µ99% ∈ [120± t0.995,19 ∗ 0.5048] (35.237)

558 35 Stochastic Theory

µ99% ∈ [120± 2.861 ∗ 0.5048] (35.238)

µ99% ∈ [118.56, 121.44] (35.239)

µ90% ∈ [120± t0.95,19 ∗ 0.5048] (35.240)

µ90% ∈ [120± 1.729 ∗ 0.5048] (35.241)

µ90% ∈ [119.13, 120.87] (35.242)

(35.243)

As you can see, the higher the confidence probabilities we specify the larger
become the intervals in which the parameter is contained. We can be to 99%
sure that the expected value of laid eggs is somewhere between 118.56 and
121.44. If we narrow the interval down to [119.13, 120.87], we can only be 90%
confident that the real expected value falls in it based on the data samples
which we have gathered.

Some Hand-Picked Confidence Intervals

The following confidence intervals are two-sided, i. e. we receive a range pγ ∈
[p′ − x, p′ + x] that contains the parameter p with γ probability based on the
estimate p′. If you need a one-sided confidence interval like pγ ∈ (−∞, p′ + x]
or pγ ∈ [p′ − x,∞), replace 1− α

2 with 1− α in the equations.

Expected Value of a Normal Distribution

With known variance σ2: If the exact variance σ2 of the distribution under-
lying our data samples is known, and we have an estimate of the expected
value µ by the arithmetic mean x according to Equation 35.58 on page 522,
the two-sided confidence interval (of probability γ) for the expected value of
the normal distribution is:

µγ ∈
[

x± z
(

1− α

2

) σ√
n

]

(35.244)

Where z(y) ≡ Φ−1(y) is the y-quantil of the standard normal distribution
(see Definition 162 on page 539) which can for example be looked up in Ta-
ble 35.7.

With estimated sample variance s2: If the true variance of the distribution
is not known and instead estimated with the sample variance s2 according
to Equation 35.65 on page 523. The two-sided confidence interval (of proba-
bility γ) for the expected value can then be computed using the arithmetic

mean x and the estimate of the standard deviation s =
√

s2 of the sample
and the tn−1,1−α

2
quantil of Student’s t-distribution which can be looked up

in Table 35.12 on page 547.

µγ ∈
[

x± t1−α
2 ,n−1

s√
n

]

(35.245)

35.7 Generating Random Numbers 559

Variance of a Normal Distribution

The two-sided confidence interval (of probability γ) for the variance of a nor-
mal distribution can computed using sample variance s2 and the χ2(p, k)-
quantil of the χ2 distribution which can be looked up in Table 35.10 on
page 544.

σ2
γ ∈

[

(n− 1)s2

χ2
(
1− α

2 , n− 1
) ,

(n− 1)s2

χ2
(

α
2 , n− 1

)

]

(35.246)

Success Probability p of a B(1, p) Binomial Distribution

The two-sided confidence interval (of probability γ) of the success probability
p of a B(1, p) binomial distribution can be computed as follows:

pγ ∈

n

n + z2
1−α

2

x +
1

2n
z2
1−α

2
± z2

1−α
2

√

x(1− x)

n
+

(
1

2n
z2
1−α

2

)2

(35.247)

Expected Value of an Unknown Distribution with Sample Variance

The two-sided confidence interval (of probability γ) of the expected value µ of
an unknown distribution with an unknown real variance σ2 can be determined
using the arithmetic mean x and the sample variance s2 if the sample data
set contains more than n = 50 elements.

µγ ∈
[

xz
(

1− α

2

) s√
n

]

(35.248)

35.7 Generating Random Numbers

Definition 174 (Random Number). Random numbers are the values
taken on by a random variable. A random number generator62 produces a
sequence r = (r1, r2, . . .) of random numbers ri as result of independent rep-
etitions of the same random experiment.

Since the numbers ri are all produced by the same random experiment,
they approximate a certain random distribution obeying the law of large num-
bers (see Section 35.2.8 on page 527).

62 http://en.wikipedia.org/wiki/Random_number_generator [accessed 2007-07-03],
http://en.wikipedia.org/wiki/Random_number_generation [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Random_number_generator
http://en.wikipedia.org/wiki/Random_number_generation

560 35 Stochastic Theory

For true random number generators, there exists no function or algorithm
f(i) = ri or f(ri−n+1, ri−n+2, . . . , ri) = ri+1 that can produce this sequence
in a deterministic manner with or without knowledge of the random numbers
previously returned from the generator. Such behavior can be achieved by
obtaining the numbers ri from measurements of a physical process. Today,
there exist many such so-called hardware random number generators 63 [1153,
1154, 1155, 1156].

Of course, most computers are not equipped with special hardware for ran-
dom number production, although some standard devices can be utilized for
that purpose. One could, for example, measure the white noise of soundcards
or the delays between the user’s keystrokes. Such methods however require the
presence of and access to such components. Furthermore, the speed of them is
limited since you cannot produce random numbers faster than the recording
speed of the soundcard or faster than the user is typing.

35.7.1 Generating Pseudorandom Numbers

In security-sensitive areas like cryptography, we need true random numbers
[1157, 1156, 1158]. For normal PC applications and most scientific purposes
pseudorandom number generators64 are sufficient.

The principle of pseudorandom number generators is to produce a sequence
of numbers r = (r1, r2, . . . , ri), rj ∈ R ∀j ∈ N, R ⊆ R which are not obviously
interdependent, i. e. if knowing a number ri there is not a simple way to find
out the value of ri+1.

Of course, since the values ri are no real random numbers, there is an
algorithm or function f : V → R × V where R is the set of possible numbers
and V is the space of some internal variable. This variable is referred to as
seed and normally changes whenever a new number is produced. Often the
seed is initialized with either a true random number or the current system
time. In the first case, it is also practicable to re-initialize the seed from time
to time with new true random values.

Pseudorandom numbers are attractive to all not security-critical applica-
tions where we need some sort of unpredictable behavior. They are often used
in games or simulations, since they usually can be generated much quicker.
On the other hand, especially in scientific applications the “degree” of ran-
domness is very important. There are many incidents, for example in physical
simulation, where the inappropriate use of pseudorandom number generators
of poor quality lead to wrong conclusions [1159, 1160, 1161]. It should be

63 http://en.wikipedia.org/wiki/Hardware_random_number_generator [accessed

2007-07-03]

64 http://en.wikipedia.org/wiki/Pseudorandom_number_generator [accessed 2007-

07-03], http://en.wikipedia.org/wiki/Pseudorandomness [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Pseudorandomness

35.7 Generating Random Numbers 561

noted that there also exist cryptographically secure pseudorandom number
generators65 which here could provide a valuable alternative.

There exists a variety of algorithms that generate pseudorandom numbers
[1162, 1163, 1164, 1165] and many implementations for different programming
languages and architectures [1166, 1167, 1168].

Linear Congruential Generator (LCG)

The linear congruential generator66 (LCG) was first proposed by Lehmer
[1169, 1170] and is one of the most frequently used and simplest pseudo ran-
dom number generators. It updates an internal integer number v ∈ V =
(0 . . . (m− 1)),m ∈ N in each step according to Equation 35.249. The modu-
lus m is a natural number which defines the maximum count of values v can
take on. a and b are both constants. Therefore, v will periodically take on
the same values – at most after m steps. The pseudorandom numbers ri are
uniformly distributed in the interval [0,m) (see Section 35.3.1) and can be
computed as proposed in Equation 35.250.

vi = (avi−1 + b)mod m (35.249)

ri =
vi

m
(35.250)

If the full period can really be reached depends a lot on the parameters a,
b, and m. There are many constellations known where only a small fraction
of the period m is utilized [1171]. In order to produce the full period, the
following requirements should be met according to wikipedia.

• b and m are relatively prime
• a− 1 is divisible by all prime factors of m
• a− 1 is a multiple of 4 if m is a multiple of 4
• m > max(a, b, v0)
• a > 0, b > 0

Good standard values for the constants are a = 1′664′525, b =
1′013′904′223, and m = 232. Knuth describes the realization of LCGs in
[1172]. In Java, the class java.util.Random uses this approach with the settings
a = 25′214′903′917, b = 11, and m = 248.

35.7.2 Converting Random Numbers to other Distributions

There are occasions where random numbers of a different distribution than
available are needed. We could, for example, have a random number generator

65 http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

[accessed 2007-07-03]

66 http://en.wikipedia.org/wiki/Linear_congruential_generator [accessed 2007-

07-03]

http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator

562 35 Stochastic Theory

for uniformly distributed random numbers like elaborated in Section 35.7.1
but may need normally distributed random numbers.

Uniform Distribution → Uniform Distribution

If we have random numbers ri distributed uniformly in the interval [a1, b1)
and need random numbers si uniformly distributed in the interval [a2, b2),
they can be converted really simple according to

si = a2 + (b2 − a2)
ri − a1

b1 − a1
(35.251)

Uniform Distribution → Normal Distribution

In order to transform random numbers uniformly distributed in the interval
[0, 1) to standard-normally distributed random numbers (µ = 0, σ2 = 1),
we can apply the Box-Muller67 transformation [1173]. This approach creates
two standard-normally distributed random numbers n1, n2 from two random
numbers r1, r2 uniformly distributed in [0, 1) according to Equation 35.252.
In both formulas, the terms

√
−2 ln r1 and 2πr2 are used. The performance

can be increased if both terms are computed only once and reused.

n1 =
√

−2 ln r1 cos(2πr2)

n2 =
√

−2 ln r1 sin(2πr2) (35.252)

The polar form of this method, illustrated as Algorithm 35.1, is not only
faster, but also numerically more robust [1140]. Creates two independent ran-
dom numbers uniformly distributed in [−1, 1) and computes their product w.
This is repeated until w ∈ (0, 1). With this value we can now compute two
independent, standard-normally distributed random numbers. Effectively, we
have traded a trigonometric operation and a multiplication against a division
compared to the original method in Equation 35.252.

The implementation of this algorithm is discussed in [1172] which is the
foundation of the method nextGaussian of the Java-class java.util.Random.

Normal Distribution → Normal Distribution

With Equation 35.253, a normally distributed random number n1 ∼ N(µ1, σ
2
1)

needs to be transformed to another normally distributed random number n2 ∼
N(µ2, σ

2
2).

n2 = µ2 + σ2 ∗
n1 − µ1

σ1
(35.253)

67 http://en.wikipedia.org/wiki/Box_muller [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Box_muller

35.7 Generating Random Numbers 563

Algorithm 35.1: (n1, n2) = randomn,p()

Data: n1,n2 the intermediate and result variables
Data: w the polar radius
Output: A tuple (n1, n2) of two values n1 ∼ N(0, 1), n2 ∼ N(0, 1)

begin1

repeat2

n1 ←− randomu(−1, 1)3

n2 ←− randomu(−1, 1)4

w ←− (n1 ∗ n1) + (n2 ∗ n2)5

until (w > 0) ∧ (w < 1)6

w ←−
√

−2 ln w
w7

return (n1 ∗ w, n2 ∗ w)8

end9

Uniform Distribution → Exponential Distribution

With Equation 35.254, a random number r uniformly distributed in the inter-
val (0, 1) (0 is excluded) can be transformed into a exponentially distributed
random number s ∼ exp(λ).

s =
− ln r

λ
(35.254)

Exponential Distribution → Exponential Distribution

With Equation 35.255, an exponentially distributed random number r1 ∼
exp(λ1) can be transformed to an exponentially distributed number r2 ∼
exp(λ2).

r2 =
λ1

λ2
r1 (35.255)

Uniform Distribution → Bell-shaped Distribution

The bases of many numerical optimization algorithms is the modification of
a value x by adding some random number to it. If the probability density
function of the underlying distribution producing number is bell-shaped, the
result will be smaller or larger than x with the same probability and results
which are close to x are more likely than such that are very distant. One
example for such a distribution is the normal distribution. Another example is
the bell-shaped random number generator used by Wongpoowarak [880, 881],
defined here as Algorithm 35.2. It is algorithmically close to the polar form of

564 35 Stochastic Theory

the Box-Muller transform for the normal distribution (see Algorithm 35.1 on
the previous page) but differs in the way the internal variable w is created.
The function randombs(µ, σ) creates a new random number according to this
distribution, with an expected value µ and the standard deviation σ.

Algorithm 35.2: y = randombs(µ, σ)

Input: µ the mean value of the bell-shaped distribution
Input: σ the standard deviation of the bell-shaped distribution
Data: w a uniformely distributed random number w ∈ (0, 1)
Output: A bell-shaped distributed random number y

begin1

repeat2

w ←− randomu()3

until (w > 0) ∧ (w < 1)4

y ←− µ + σ ∗ 0.5513 ∗ ln
(

1−r
r

)
5

return r6

end7

You may have wondered about the factor 0.5513 in the algorithm. This
number “normalizes” the standard deviation of the bell-shaped distribution,

since D2X
(

r(y) = ln
(

1−y
y

))

6= 1. We can show this by first determining

the cumulative distribution function FX(x) for r(y) in Equation 35.258 and
then differentiating in order to obtain the probability density function fX(x)
(Equation 35.260).

FX(x) ≡ r−1(0, 1) (35.256)

x = r(y) = ln

(
y

1− y

)

(35.257)

FX(x) = y =
ex

1 + ex
(35.258)

fX(x) = F ′
X(x) = FX(x)

dx

dy
(35.259)

(
ex

1 + ex

)′

=
ex (1 + ex)− ex (ex)

(1 + ex)
2

fX(x) =
ex

(1 + ex)
2 (35.260)

Unfortunately, here it stops. We can neither apply Equation 35.54 on
page 521 or Equation 35.61 on page 522 in order to determine the expected
value or the variance, since both will result in integrals that the author cannot

35.7 Generating Random Numbers 565

1 long i, max;

2 double sum2 , v;

3

4 max = 10000000;

5 sum2 = 0;

6 v = 0;

7

8 // distribution is symmetric -> iterate one wing

9 for (i = (max >>1); i < max; i++) {

10 v = Math.log (((double) (max - i)) / ((double) i));

11 sum2 += (v * v); //sum up the squares of the single terms

12 }

13

14 System.out.print(sum2 / (max - (max >>1)));

Listing 35.1: Approximating D2X of r(y).

compute. However, it is easy to see that EX = 0, since r(y) is point symmet-
ric around 0.5. The value D2X ≈ 3.28984 I can only determine numerically
with the small Java program 35.1 which bases on the idea that we can assume
the uniform random numbers to be uniformly distributed in (0, 1) (of course).
Hence we can simulate a “complete sample” by iterating over codeili = 1 to
T-1 and take i/T as input for r(y). Since we step over all i from 1 to T-1,
this resembles an uniform distribution and also leaves away the special cases
y = 0 (∼i=0) and y = 1 (∼i=T). Furthermore, we can skip half of the steps
since our distribution is symmetric. Well, EX = 0 if µ = 0 and therefore
we can simplify D2X = EX2 − (EX)2 (see Equation 35.59 on page 522) to
D2X = EX2.

This method is, of course, very crude and subject to numerical errors
in the floating point computations. However, with D2X ≈ 3.28984 and
DX =

√
D2X ≈ 1.8138 we know that we have to scale r(y) by 1

DX
≈ 0.5513

(see Equation 35.63 on page 522) so the standard deviation the bell-shaped
distribution randombs will become DX randombs(µ, σ) ≈ σ.

35.7.3 Definitions of Random Functions

Definition 175 (Random Function). A random function random is a con-
struct that eases the utilization of random numbers and random variables
in the algorithms of this book. It represents access to a random process,
an infinite sequence of random variables Xi all distributed according to the
same distribution function. Starting with X1, each time a random function is
evaluated, it returns the value of the next random variable in the sequence
(i = 1, 2, 3, . . .).

Definition 176 (Uniform Distributed Random Number Generator).
We define the function randomu(rmin, rmax) to draw uniformly distributed

566 35 Stochastic Theory

(see Section 35.4.1 on page 535) random numbers from the interval with the
boundaries rmin (inclusive) and rmax (exclusive). The parameter-less function
randomu() will return an uniformly distributed number from the interval
spanning from 0 inclusively to 1 exclusively.

randomu(rmin, rmax) ∈ [rmin, rmax) ⊆ R, rmin ∈ R, rmax ∈ R(35.261)

randomu(rmax ∈ R) ≡ randomu(0, rmax) (35.262)

randomu() ≡ randomu(0, 1) (35.263)

The randomu-function can be realized with, for example, linear congru-
ential pseudorandom number generators as described in Section 35.7.1.

Definition 177 (Normal Distributed Random Number Generator).
We define the function randomn(µ, σ2) to draw normally distributed

(see Section 35.4.2 on page 537) random numbers with the expected value
µ and the variance σ2. The parameter-less function randomn() will return a
normally distributed number with µ = 0 and σ2 = 1.

randomn(µ, σ2) ∼ N(µ, σ2) (35.264)

randomn() ≡ randomn(0, 1) (35.265)

Cut-off Random Functions

We use random processes and random functions to model or simulate a certain
features of a real system. If we, for example, simulate a chicken farm, we might
be interested in the size of the eggs laid by the hens. We can assume this weight
to be normally distributed68 around some mean µ with a variance σ2 6= 0. In
the simulation, a series of eggs weights is created simply be drawing subsequent
such random numbers by calling randomn(µ, σ2) repeatedly. Although the
normal distribution is a good model for egg weights, it has a serious drawback:
no matter how we chose µ or σ, there is still a positive probability of drawing
zero, negative, or extremely large (> 10tons) weights. In reality however, such
has not yet been observed.

What we need here is a cut-off mechanism for our random function
randomn that still preserves as many of its properties as possible. Given a
random function random, the function randoml, defined as Algorithm 35.3,
ensures that low ≤ randoml(random, low, high) < high).

68 see Section 35.4.2 on page 537

35.8 Density Estimation 567

Algorithm 35.3: r = randoml(random, low, high)

Input: random a random function (maybe with further implicit parameters)
Input: low ∈ R the inclusive, lower bound of the random result
Input: high ∈ R, high > low the exclusive, upper bound of the random result
Data: r the intermediate random value
Output: a value r returned by random with low ≤ r < high

begin1

repeat2

r ←− random()3

until (r≥low) ∨ (r < high)4

return r5

end6

35.8 Density Estimation

In this section we discuss density estimation69 techniques [1174, 1175] which
are used by several optimization algorithms in order to check how crowded
areas of the solution space are, for instance.

Definition 178 (Density Measure). A density estimation ρ(x) approxi-
mates an unobservable probability density function fX(x) (see Section 35.1.8
on page 519) using a set of sample data Xs (see Equation 35.44).

ρ(x) ≈ fX(x) (35.266)

ρ : R→ [0,∞) (35.267)

35.8.1 Histograms

TODO

35.8.2 The kth Nearest Neighbor Method

Definition 179 (kth Nearest Neighbor Distance). The kth nearest neigh-
bor distance function distfnn,k is the distance of one element x to its kth near-
est neighbor in the set of all elements Xs. It relys on a distance measure (here
called dist) to compute the element distances. See Section 36.1 on page 574
for more details.

distfnn,k(x,Xs) = dist(x, xk) : |∀xs ∈ Xs : dist(xs, x) < dist(xk, x)| = k − 1
(35.268)

69 http://en.wikipedia.org/wiki/Density_estimation [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Density_estimation

568 35 Stochastic Theory

Using the kth nearest neighbor method [1176], the PDF of an element x
is estimated by its distance to its kth nearest neighbor xk in the test set Xs

(with k < |Xs|). K nearest neighbor uses internally the Euclidian distance
measure disteucl ≡ distn,2 (see Definition 188 on page 574), but theoretically
any other one of the distance measures presented in Section 36.1 could also
be applied.

ρnn,k(x) =
k

2 |Xs| distknn(x,Xs)
(35.269)

Normally, k is chosen to be
√

|Xs|.

35.8.3 Crowding Distance

Crowding distance [347] treats every element x ∈ Xs as n-dimensional vector
(where each dimension will represent an objective subject to optimization in
the context of this book). The crowding distance is not a distance measure
as its name may suggest but a base for a density estimate. When computing
the crowding distance of an element x we regard every single dimension i of
the element x separately. For each of its dimensions, we determine the nearest
neighbor to the left xl and the nearest neighbor to the right xr. The crowding
distance of the element x in the dimension i is then xr

i −xl
i, the distance of the

(objective) values of the left and right neighbors of x in the dimension i. This
distance is normalized so that the maximum crowding distance of all elements
in Xs is 1. If an element has no left or no right neighbor in this dimension,
meaning that it is situated on either end of the spectrum represented by all
elements in the test set Xs, its crowding distance in the dimension is also set
to 1.

The original source [347] does not mention normalization explicitly and
sets the crowding distance of edge elements to ∞, which both is problematic.
If no normalization is performed, dimensions with large crowding distances
will outweigh those with smaller values – they will play no role in the crowding
density value finally computed. With normalization, each dimension has the
same weight. If the crowding distance of edge elements is set to ∞, they will
have a very outstanding position in Xs which could influence processes relying
on the crowding distance in a very strong way.

The total crowding distance of an element x is the sum of the distance val-
ues corresponding to each dimension. Algorithm 35.4 on the facing page com-
putes a function cd(x) which relates each element x to its crowding distance.
Since computing the crowding distance can be performed best by sorting the
individuals according to their values in the single dimensions, we define the
sorting function dsi(a, b) as follows:

dsi(a, b) =

−1 if ai < bi

0 if ai = bi

1 if ai > bi, a, b ∈ Xs

(35.270)

35.8 Density Estimation 569

Algorithm 35.4: cd(x) = computeCrowdingDistance(Xs)

Input: Xs the set of sample data
Data: dd a list used as store for the crowind distances of the single

dimensions
Data: Xo the list representation of Xs

Data: dim the dimension counter
Data: j the element counter
Data: max the maximum crowding distance of the current dimension
Output: the crowding distance function cd

begin1

dd←− createList(|Xs|, 0)2

dd[0]←− 13

dd[|Xs| − 1]←− 14

Xo ←− setToList(Xs)5

dim←− n6

while dim > 0 do7

Xo ←− sorta(Xo, dsdim)8

max←− 09

j ←− |Xs| − 210

while j > 0 do11

dd[j]←− Xo[j + 1]dim −Xo[j − 1]dim12

if dd[j] > max then max←− dd[j]13

j ←− j − 114

if max > 0 then15

j ←− |Xs| − 216

while j > 0 do17

dd[j]←− dd[j]/max18

j ←− j − 119

j ←− |Xs| − 120

while j ≥ 0 do21

cd(Xo[j])←− cd(Xo[j]) + dd[j]22

j ←− j − 123

dim←− dim− 124

return cd25

end26

The crowding distance can now be used as density estimate whereas indi-
viduals with large crowding distance values are in a sparsely covered region
while small values of cd indicate dense portions of Xs. A density estimate
derived from the crowding distance will therefore be inversely proportional to
it. We thus define ρcd as the difference of 1 and cd(x) divided by n, obtaining
a value in [0, 1] that is big if x is crowded region and small if it is situated
in a sparsely covered area. This density estimate is mathematically not fully
correct, it only displays the crowding information.

570 35 Stochastic Theory

ρcd(x) = 1− cd(x)

n
(35.271)

35.8.4 Parzen Window / Kernel Density Estimation

Another density estimation is the Parzen window method70, also called kernel
density estimation [1177].

TODO

35.9 Functions Often used in Statistics

35.9.1 Gamma Function

Definition 180 (Gamma Function). The Gamma function71 Γ : C 7→ R

is the extension of the factorial (see Definition 125 on page 514) to the real
and complex numbers. For complex numbers z ∈ C with a positive real part
Re(z) > 0 it is defined as:

Γ (z) =

∫ ∞

0

tz−1e−tdt (35.272)

Γ (z + 1) = zΓ (z) (35.273)

Γ (1) = 1 (35.274)

Γ (z) = (z − 1)! ∀ z ∈ N (35.275)

Γ (z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
(35.276)

Γ (z) =
eγz

z

∞∏

n=1

(

1 +
z

n

)−1

e
z
n (35.277)

γ in Equation 35.277 denotes the Euler-Mascheroni constant72.

70 http://en.wikipedia.org/wiki/Parzen_window [accessed 2007-07-03]

71 http://en.wikipedia.org/wiki/Gamma_function [accessed 2007-09-30]

72 http://en.wikipedia.org/wiki/Euler-Mascheroni_constant [accessed 2007-09-30]

http://en.wikipedia.org/wiki/Parzen_window
http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Euler-Mascheroni_constant

36

Clustering

Clustering algorithms1 divide a dataset into several disjoint subsets. All ele-
ments in a subset share common features like, for example, spatial proximity.
Clustering has many different applications like:

• data mining [1178, 1179, 1180, 1181],
• information processing and management [1182, 1183, 1184, 1185],
• pattern recognition [1186, 1187, 1188],
• image processing [1018, 1189], and
• medicine [1190, 1191, 1192].

Definition 181 (Clustering). Clustering is the unsupervised classification
of patterns (observations, data items, or feature vectors) into groups (clusters)
[1193]. With clustering, one dataset is partitioned into subsets (clusters), so
that the data in each subset (ideally) share some common trait - often prox-
imity according to some defined distance measure. Figure 36.1 illustrates a
possible result B of the application of a clustering algorithm to a set A of
elements with two features.

b B2Î

b B1Î

b B3Î

b B4Î

A

B cluster(A)=

Fig. 36.1: A clustering algorithm applied to a two-dimensional dataset A.

1 http://en.wikipedia.org/wiki/Data_clustering [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Data_clustering

572 36 Clustering

In the field of global optimization there is another application for clustering
algorithms. For many problems the set of optimal solutions X⋆ is very large
or even infinite. An optimization algorithm then cannot be able to store or
return it on the whole. Therefore, clustering techniques are often used in order
to reduce the optimal set while not losing its characteristics – the diversity
of the individuals included is preserved, just their number is reduced. This
is especially the case in elitist evolutionary algorithms (see Definition 37 on
page 55) which maintain an archive of the best individuals currently known.

Data clustering algorithms are either hierarchical or partitional. A hierar-
chical algorithm uses previously established clusters to find successively new
clusters. The result of such an algorithm is a hierarchy of clusters. Partitional
algorithms on the other hand determine all clusters at once. In the context of
this book we do only need the division of a set into clusters – a hierarchy of
this division is unnecessary.

There also exist so-called fuzzy clustering2 [1194, 1195] methods that do
not create clear divisions but assign a vector of probabilities to each element.
This vector contains a component for each cluster that denotes the probability
of the element to belong to it. Again, in the context of this book, we only
regard clustering algorithms that group each data element to exactly one
single cluster. Therefore, we define a clustering algorithm as follows:

Definition 182 (Clustering Algorithm). A clustering algorithm cluster
constructs a set B which elements are disjoint subsets of a set A and, if united,
cover A completely (see also Figure 36.1).

B = cluster(A) ⇒ ∀b ∈ B,∀a ∈ b⇒ a ∈ A ∧
∀b1 6= b2, b1, b2 ∈ B ⇒ b1 ∩ b2 = ∅ ∧
∀a ∈ A ∃b ∈ B : a ∈ b (36.1)

deduced:
⋃

∀b∈B

= A (36.2)

deduced: B ⊂ P(A) (36.3)

For the last deduced formula see the definition of the power set P, Definition 94
on page 504.

There is however one important fact that must not be left unsaid here:
Although we define clustering algorithms in terms of sets for simplicity, they
are actually applied to lists. A set can contain the same element only once,
hence {1, 2, 1} = {1, 2}. A clustering algorithm however may receive an input
A that contains equal elements. This is our little dirty backdoor here, we con-
sider A = {a1, a2, . . . , an} as the input set and allow its elements to have equal
values, such as a1 = 1,a2 = 2, and a3 = 1. When performing the clustering,
we only consider the symbols a1 . . . an. This allows us to use straightforward

2 http://en.wikipedia.org/wiki/Fuzzy_clustering [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Fuzzy_clustering

36 Clustering 573

and elegant set-based definitions as done in Definition 182 without loss of
generality.

Definition 183 (Partitions in Clustering). We define the set B of all
possible partitions of A into clusters B. Furthermore, the subset Bk ⊆ B is the
set of all partitions of A into k clusters. The count of possible configurations
Bk for a given k equals the Sterling number S(|A|, k) [1196].

∀B ∈ B⇔ ∀b ∈ B,∀a ∈ b⇒ a ∈ A ∧
∀b1, b2 ∈ B ⇒ b1 ∩ b2 = ∅ ∧
∀a ∈ A ∃b ∈ B : a ∈ b (36.4)

B ∈ Bk ⇔ B ∈ B ∧ |B| = k (36.5)

|B|k = S(|A|, k) =
1

k!

k∑

i=1

(−1)k−i

(
k
i

)

in (36.6)

|B| =

n∑

k=1

|Bk| =
n∑

k=1

S(|A|, k) (36.7)

On the elements a of the set A which are subject to clustering we impose
an simple restriction: Although we allow any sort of elements a in the set A,
we assume that to each such element a there is assigned exactly one single
α(a) ∈ Rn. In other words, there exists a function α : A 7→ Rn which relates
the features of each element a of A to a vector of real numbers. This allows
us to apply distance metrics and such and such.

In the context of global optimization, a would for example be solution
candidates like evolved programs and the function α(a) then would correspond
to the values of their objective functions f ∈ F .

From now on we will be able treat the elements a like vectors of real
numbers (if needed) without loss of generality. Note that even though we
assume that there exists a binary relation which assigns a real vector to each
element of A, this is not necessarily the case for the opposite direction. Picking
up the previous example it most probably not possible to have for each fitness
configuration for a given problem one program that scores exactly this fitness.

Definition 184 (Centroid). The centroid3 [1197] of a cluster is its center,
the average of all its points to put it plain and simple.

centroid(b) =
1

|b|
∑

∀a∈b

a (36.8)

3 http://en.wikipedia.org/wiki/Centroid [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Centroid

574 36 Clustering

36.1 Distance Measures

Each clustering algorithm needs some form of distance measuring, be it be-
tween two elements or between two clusters. Therefore we define the prototype
of a distance measurement function as follows:

Definition 185 (Distance Measure). A distance measurement function
dist rates the distance between two elements of the same type (set) as posi-
tive real number which is the bigger the bigger the distance between the two
elements is.

dist(a1, a2) ∈ R+, a1 ∈ A, a2 ∈ A (36.9)

36.1.1 Distance Measures for Strings of Equal Length

Definition 186 (Hamming Distance). The Hamming Distance4 [1198]
distham(a1, a2) denotes the number of positions for which the corresponding
symbols are different. The Hamming distance is used in many error-correction
schemes, since it also equals to the number of single substitutes required to
change one string into another one.

The Hamming distance of ”100101” and ”101001” is 2 whereas the Ham-
ming distance of ”Hello World.” and ”Hello Earth.” is 5.

36.1.2 Distance Measures for Real-Valued Vectors

As already mentioned in Chapter 36, we assume that there is a real-values
vector in Rn assigned to each element a ∈ A by an implicit α : A ⇐ Rn-
function. Therefore, the distance measures introduced here can be used for all
A subject to clustering.

Definition 187 (Manhattan Distance). The Manhattan distance5

distman(a1, a2) denotes the sum of the absolute distances of the coordinates
of the two vectors.

distman(a1, a2) =

n∑

i=1

|a1,i − a2,i| ∀a1, a2 ∈ A ⊆ Rn (36.10)

Thus, the Manhattan distance of (1, 2, 3)T and (3, 2, 1)T is 4.

Definition 188 (Euclidian Distance). The Euclidian distance6 disteucl(a1, a2)
is the ”ordinary” distance of two points (denoted by the two vectors a1 and a2)

4 http://en.wikipedia.org/wiki/Hamming_distance [accessed 2007-07-03]

5 http://en.wikipedia.org/wiki/Manhattan_distance [accessed 2007-07-03]

6 http://en.wikipedia.org/wiki/Euclidean_distance [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Manhattan_distance
http://en.wikipedia.org/wiki/Euclidean_distance

36.1 Distance Measures 575

in Euclidian space. This value is obtained by application of the Pythagorean
theorem7.

disteucl(a1, a2) =

√
√
√
√

n∑

i=1

(a1,i − a2,i)
2 ∀a1, a2 ∈ A (36.11)

Therefore, the Euclidian distance of (1, 2, 3)T and (3, 2, 1)T is
√

8.

Definition 189 (Norm). A vector norm8, denoted by ||a|| is a function
which assigns a positive length or size to all vectors a in a vector space, other
than the zero vector.

Some common norms of the element ai ∈ A are:

• The Manhattan norm9:

||ai||1 =
n∑

j=1

|ai,j |

• The Euclidian norm:

||ai||2 =

√
√
√
√

n∑

j=1

(ai,j)2

• The p-norm is a generalization of the two examples above:

||ai||p =

n∑

j=1

(ai,j)p

1
p

• The infinity norm10 is the special case of the p-norm for p→∞:

||ai||∞ = max {|ai,1|, |ai,2|, ..., |ai,n|}

Such norms can be used as distance measures, and we hence define a new
distance measurement function as:

distn,p(a1, a2) = ||a1 − a2||p ∀a1, a2 ∈ A ⊆ Rn (36.12)

distman ≡ distn,1 (36.13)

disteucl ≡ distn,2 (36.14)

If the places of the vectors a have different ranges, for example a·,1 ∈ [0...1]
and a·,2 ∈ [0...100000], a norm of the difference of two such vectors may not

7 http://en.wikipedia.org/wiki/Pythagorean_theorem [accessed 2007-07-03]

8 http://en.wikipedia.org/wiki/Vector_norm [accessed 2007-07-03]

9 http://en.wikipedia.org/wiki/Taxicab_geometry [accessed 2007-07-03]

10 http://en.wikipedia.org/wiki/Maximum_norm [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Vector_norm
http://en.wikipedia.org/wiki/Taxicab_geometry
http://en.wikipedia.org/wiki/Maximum_norm

576 36 Clustering

represent their true distance. Therefore, an additional distance measure, the
distnorm2,p-distance is used which normalizes the vector places before finally
computing the norm.

spanj = max {|ai1,j − ai2,j |, ai1 , ai2 ∈ A} (36.15)

divisorj =

{
spanj if spanj > 0

1 else
(36.16)

distn2,p(a1, a2) =

(
n∑

i=1

(
a1,i − a2,i

divisori

)p
) 1

p

(36.17)

36.1.3 Distance Measures Between Clusters

In order to determine the distance between two clusters, again distance mea-
sures can be applied. Such distance measures usually will compute the dis-
tance between two clusters as a function of the distances between their ele-
ments which is, in turn, computed using a secondary distance function. We
will abbreviate this secondary distance function by dist2 whereas dist2 can be
replaced by any of the functions named in the above subsections. We assume
it to be an implicit parameter with the default value dist = disteucl ≡ distn,2.
Let b1 and b2 be two clusters ∈ B, than we can define the following distance
measures between them:

• The maximum distance between the elements of the two clusters (also
called complete linkage):

distmax = max {dist2(a1, a2), a1 ∈ b1, a2 ∈ b2}

• The minimum distance between the elements of the two clusters (also
called single linkage):

distmin = min {dist2(a1, a2), a1 ∈ b1, a2 ∈ b2}

• The mean distance between the elements of the two clusters (also called
average linkage):

distavg =
1

|b1| ∗ |b2|
∑

a1∈b1

∑

a2∈b2

dist2(a1, a2)

• The increase in variance distvar for the cluster being merged.
• The distance of their centers:

distcent = dist2(centroid(b1), centroid(b2))

• The distance of their nuclei computed by the nucleus function nucleus (see
the definition of nucleus in Section 36.2):

distnuc = dist2(nucleus(b1), nucleus(b2))

36.3 Clustering Algorithms 577

36.2 Elements Representing a Cluster

On page 573 we stated that there is not necessarily assigned an a ∈ A to each
real vector in Rn. Thus, there also does not necessarily exist an a in the center
of a cluster b. For our purposes to come later in this book, we are however
interested in elements representing clusters. Since I have not found any other
in literature, we will call such elements nuclei. We can find different functions
nucleus(b ∈ B) to compute such nuclei which, in turn, depend on a distance
measure. We will abbreviate this distance function by dist whereas dist is an
implicit parameter (again the default value dist = disteucl ≡ distn,2) which
can be replaced by any of the functions named in the above subsections.

The first possible method would be to take the element which is closest to
the centeroid c = centroid(b) of the cluster b:

n ∈ b = nucleusc(b)⇔ ∀a ∈ b⇒ dist(a, c) ≥ dist(n, c) (36.18)

Another definition is that we take the element with the lowest average
distance to all other elements in the cluster.

n ∈ b = nucleusd(b)⇔ ∀a ∈ b⇒
∑

∀β∈b

dist(a, β) ≥
∑

∀β∈b

dist(n, β) (36.19)

36.3 Clustering Algorithms

36.3.1 Cluster Error

The most commonly used partitional clustering strategies are based on the
square error criterion. The general aim is to obtain a partition which minimizes
the square error for a given number k [1199] which we generalize to fit any
given distance measure dist:

Definition 190 (Clustering Error). Therefore, we define the error errorc

inside a cluster as the sum of the distances of its elements from its center
basing on a distance measure function. The total error of a partition errorp is
then the sum of all the errors of the clusters included. Normally, we will use
disteucl ≡ distn,2 as distance measure.

errorc(b) =
∑

∀a∈b

dist(a, centroid(b)) (36.20)

errorp(B) =
∑

∀b∈B

errorc(b) =
∑

∀b∈B

∑

∀a∈b

dist(a, centroid(b)) (36.21)

Normally, this error is minimized under the premise of a fixed count of
clusters k = |B|. Then, an optimum configuration Bopt is searched within
the set B of all possible partitions of a into clusters B. This optimum Bopt

578 36 Clustering

is defined by eg(Bopt) = min{eg(B) ∀B ∈ B}. Since testing all possible con-
figurations B is to expensive (see Equation 36.7), finding the optimum Bopt

is an optimization tasks itself. Here we will introduce some algorithms which
approximate good B.

36.3.2 k-means Clustering

k-means clustering11 [1200, 1022, 1201] partitions the data points a ∈ A into
k disjoint subsets b ⊆ A, b ∈ B. It tries to minimize the sum of all distance
of the data points and the centers of the clusters they belong to. In general,
the algorithm does not achieve a global minimum of over the assignments.
Despite this limitation, k-means clustering is used frequently as a result of its
ease of implementation. [1202]

k-means clustering works approximately as follows [1199]:

Step 1 Select an initial partition of k clusters.
Step 2 Create a new partition by assigning each a ∈ A to the cluster with the

closest center. Repeat this until the partition does not change anymore.
Step 3 Modify the cluster set by merging, dividing, deleting or creating clus-

ter. If the clustering error of the new partition is smaller than the error
of the previous one then go back to step 2.

In order to perform the modification of the cluster set, we introduce a
function called kMeansModify.

Bnew = kMeansModify(B)⇒ ∀a ∈ b1 ∈ B ∃b2 ∈ Bnew : a ∈ b2 ∧
∀a ∈ b2 ∈ Bnew ∃b1 ∈ B : a ∈ b1 (36.22)

One example for an implementation of kMeansModify is Algorithm 36.1.
We demonstrate how k-means clustering works in Algorithm 36.2. As dis-

tance measure dist (lines 0, 22 and 24) usually the Euclidian distance between
the centroids of the clusters, distcent,eucl, see page 576, is used.

36.3.3 nth Nearest Neighbor Clustering

The nth nearest neighbor clustering algorithm creates at most k clusters where
the first k − 1 clusters contain exactly one element and the while the rest is
included in the remaining cluster. The elements of the single-element clusters
are those which have the shortest distance to their nth-nearest neighbor. This
clustering algorithm is suitable for reducing a large set to a smaller one which
contains still the most significant elements (those in the single-element clus-
ters). It has relatively low complexity and thus runs fast, but on the other
hand has the setback that far-away aggregations of ≤ n elements will be put
into the “rest elements”-cluster. For n, normally a value of n =

√
k is used.

11 http://en.wikipedia.org/wiki/K-nearest-neighbor_estimator [accessed 2007-

07-03]

http://en.wikipedia.org/wiki/K-nearest-neighbor_estimator

36.3 Clustering Algorithms 579

Algorithm 36.1: Bnew = kMeansModifyk(B)

Input: Implicit: k the count of clusters wanted, k ≤ |A|
Input: Implicit: dist the distance measure between clusters to be used
Input: B the list of clusters b to be modified
Data: m index of the cluster B[m] with the lowest error
Data: n index of the cluster B[n] nearest to B[m]
Data: s index of the cluster B[s] with the highest error
Output: the modified tuple of clusters Bnew

begin1

m←− m : error(B[m]) = min{error(B[i]) ∀i ∈ [0, k − 1]}2

n←− n : dist(B[m], B[n]) = min{dist(B[m], B[i]) ∀i ∈ [0, k − 1] \ {m}}3

s←− s : error(B[s]) = max{error(B[i])∀i ∈ [0, k − 1] \ {m, n}}4

B[m]←− B[m] ∪B[n]5

B[n]←− a ∈ B[s]6

B[s]←− B[s] \B[n]7

return B8

end9

nth nearest neighbor clustering uses the kth nearest neighbor distance func-
tion distfnn,k introduced in Definition 179 on page 567. The parameter k of
distfnn,k is set to n and we apply distfnn,n which relies on a secondary dis-
tance measure.

Notice that Algorithm 36.4 assumes that all elements a ∈ A are unique (i.e.
there exists no two equal elements in A) which, per definition, true for all sets.
In a real implementation, clustering may be performed on a list containing
the same elements multiple times. Since all equal elements all have the same
distance to their nth neighbor, it is possible that the result of the clustering
is very unsatisfying since one element may occur multiple times whereas a
variety of different other elements is ignored. Therefore, we can remove all
duplicates before clustering which has the drawback that we could possible
obtain a set B with less than k clusters. In the Sigoa system’s implementation
of the nth nearest neighbor clustering, only one instance of each group of equal
elements in A is permitted to become a single-node cluster per run, an multiple
runs are performed until k clusters have been created (see Section 30.2.1 on
page 439).

36.3.4 Linkage Clustering

The linkage method [115, 349] is used to create a set B of clusters b with at
most k clusters. This algorithm initially creates a cluster of each single element
in the set A. After that, it reduces the set of cluster B by melting together
the two closest clusters iteratively. Again, the distance measure function dist
(see lines 0 and 11 of Algorithm 36.4) used can be any of distance measures
already introduced.

580 36 Clustering

Algorithm 36.2: B = kMeansClusterk(A)

Input: A the set of elements a to be clustered
Input: Implicit: k the count of clusters wanted, k ≤ |A|
Input: Implicit: dist and dist2 the distance measures between clusters and

elements to be used
Input: Implicit: kMeansModify a function that modifies the cluster set
Data: B the tuple of clusters b computed, |B| = k
Data: Acpy a temporary copy of A used for initialization
Data: Bold the cluster set of the previous inner iteration
Data: Bnew the cluster set of the current inner iteration
Data: i a counter variable for the loops
Data: d the distance between the cluster {a} and the current cluster in Bold

Data: dmin the minimum distance between {a} and any cluster in Bold

Data: imin the index of that cluster with the minimum distance in Bold

Output: the set of clusters b computed - all the items of the tuple B
represented as set

begin1

Acpy ←− A2

Bnew ←− createList(min{k, |A|}, ∅)3

i←− |Bnew| − 14

while i > 0 do5

Bnew[i]←− {a ∈ Acpy}6

Acpy ←− Acpy \B[i]7

i←− i− 18

Bnew[0]←− Acpy9

repeat10

B ←− Bnew11

Bnew ←− kMeansModifyk(Bnew)12

repeat13

Bold ←− Bnew14

i←− |Bnew| − 115

while i > 0 do16

Bnew[i]←− ∅17

i←− i− 118

foreach a ∈ A do19

i←− |Bnew| − 120

imin ←− 021

dmin ←− dist({a}, Bold[0])22

while i > 0 do23

d←− dist({a}, Bold[i])24

if d < dmin then25

dmin ←− d26

imin ←− i27

i←− i− 128

Bnew[imin]←− Bnew[imin] ∪ {a}29

until Bold = Bnew30

until errorp(B) < errorp(Bnew)31

return B[i]32

end33

36.3 Clustering Algorithms 581

Algorithm 36.3: B = nNearestNeighborClustern
k (A)

Input: A the set of elements a to be clustered
Input: Implicit: k the count of clusters wanted (k > 0)
Input: Implicit: n index for the nearest neighbors
Input: Implicit: dist the distance measure to be used
Data: L the sorted list of elements
Data: i the counter variable
Output: B the set of clusters b computed, |B| = k

begin1

L←− sorta(setToList(A), s(x1, x2) ≡ distfnn,n(x1)− distfnn,n(x2))2

i←− min{k, |L|}3

B ←− ∅4

while i > 0 do5

B ←− B ∪ {L[i]}6

A←− A \ L[i]7

i←− i− 18

return B ∪ {A}9

end10

According to the cluster distance measure dist2 chosen, linkageCluster
realizes different types of linkage clustering algorithms12 (see Section 36.1.3
on page 576):

• If dist2 denotes the maximum distance of the elements in two clusters,
complete linkage clustering is performed.

• If dist2 denotes the mean distance of the elements in two clusters, average
linkage clustering is performed.

• If dist2 denotes the minimum distance of the elements in two clusters,
single linkage clustering is performed.

36.3.5 Leader Clustering

The leader clustering algorithm is a very simple one-pass method to create
clusters. Basically, they begin with an empty leader list and an empty set
of clusters. Step by step elements a are extracted from the set A subject to
clustering. a is compared to the elements in the leader list in order to find one
leader l with dist(a, l) smaller than a specified maximum distance D. If such
a leader exists, a is added to its cluster, otherwise a becomes leader of a new
cluster containing only itself. The leader clustering can either be performed
by using the first best leader l found with dist(a, l) < D and assign a to its
cluster ([338], Algorithm 36.5) or by comparing a to all possible leaders and

12 http://en.wikipedia.org/wiki/Data_clustering#

Agglomerative_hierarchical_clustering [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Data_clustering#Agglomerative_hierarchical_clustering
http://en.wikipedia.org/wiki/Data_clustering#Agglomerative_hierarchical_clustering

582 36 Clustering

Algorithm 36.4: B = linkageClusterk(A)

Input: A the set of elements a to be clustered
Input: Implicit: k the count of clusters wanted (k > 0)
Input: Implicit: dist the distance measure to be used
Input: Implicit: dist2 the distance measure between elements a to be used

by dist
Data: b1 the first cluster to investigate
Data: b2 the second cluster to investigate
Data: d the distance between the clusters r1 and r2 currently investigated
Data: dmin the minimum distance between two clusters br1, br2 found in the

current iteration
Data: br1 the first cluster of the nearest cluster pair
Data: br2 the second cluster of the nearest cluster pair
Output: B the set of clusters b computed, |B| = k

begin1

B ←− ∅2

foreach a ∈ A do B ←− B ∪ {a}3

while |B| > k do4

dmin ←−∞5

br1 ←− ∅6

br2 ←− ∅7

foreach b1 ∈ B do8

foreach b2 ∈ B do9

if b1 6= b2 then10

d←− dist(b1, b2)11

if d ≤ dmin then12

dmin ←− d13

br1 ←− b114

br2 ←− b215

B ←− B \ br116

B ←− B \ br217

B ←− B ∪ {br1 ∪ br2}18

return B19

end20

thus finding the leader closest to a dist(l, a) < dist(l2, a) ∀l2 ∈ leaders ([1203],
Algorithm 36.6).

36.3 Clustering Algorithms 583

Algorithm 36.5: B = leaderClusterf
D(A)

Input: A the set of elements a to be clustered
Input: Implicit: D the maximum distance between an element an a cluster’s

leader
Input: Implicit: dist the distance measure to be used
Data: a an element in A
Data: i a counter variable
Data: L the list of cluster leaders
Output: B the set of clusters b computed

begin1

L←− ()2

B ←− ()3

foreach a ∈ A do4

i←− |L| − 15

while i ≥ 0 do6

if dist(L[i], a) ≤ D then7

B[i]←− B[i] ∪ {a}8

i←− −29

i←− i− 110

if i ≥ −1 then11

L←− addListItem(L, a)12

B ←− addListItem(B, {a})13

return listToSet(B)14

end15

584 36 Clustering

Algorithm 36.6: B = leaderClustera
D(A)

Input: A the set of elements a to be clustered
Input: Implicit: D the maximum distance between an element an a cluster’s

leader
Input: Implicit: dist the distance measure to be used
Data: a an element in A
Data: i a counter variable
Data: L the list of cluster leaders
Output: B the set of clusters b computed

begin1

L←− ()2

B ←− ()3

foreach a ∈ A do4

i←− |L| − 15

j ←−6

while i > 0 do7

if dist(L[i], a) < dist(L[j], a) then j ←− i8

if dist(L[j], a) ≤ D then9

B[j]←− B[j] ∪ {a}10

else11

L←− addListItem(L, a)12

B ←− addListItem(B, {a})13

return listToSet(B)14

end15

37

Theoretical Computer Science

Theoretical computer science1 is the branch of computer science2 that deals
with the rather mathematical, logical, and abstract aspects of computing. It
subsumes areas like algorithmic theory, complexity, the structure program-
ming languages, and the solvability of problems.

37.1 Algorithms

In this and the following section we want to gain insight into the topic of
algorithms, both in local and distributed systems. Any global optimization
technique which we will discuss in this book is an algorithm. Often even a
rather complicated one. Sometimes we even want to use several computes to
solve an optimization problem cooperatively. Thus, we should know about the
properties and theory of algorithms as well as of distributed systems.

The second reason is that the humble author tries to earn his scientific
merits, by applying global optimization techniques to distributed computing.
Therefore, many example applications discussed in this book will concern the
automated syntheses of distributed algorithms. To understand these, knowl-
edge of the features of distributed algorithms is valuable.

37.1.1 What are Algorithms?

The term algorithm comprises essentially all forms of “directives what to do
to reach a certain goal”. A culinary receipt is an algorithm, for example, since
it tells how much of what is to be added to the meal in what sequence and
how it should be heated. The commands inside the algorithms can be very

1 http://en.wikipedia.org/wiki/Theoretical_computer_science [accessed 2007-07-

03]

2 http://en.wikipedia.org/wiki/Computer_science [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Computer_science

586 37 Theoretical Computer Science

concise or very imprecise, depending on the area of application. How accurate
can we, for instance, carry out the instruction “Add a tablespoon of sugar.”?

Hence, algorithms are such a wide field that there exist numerous different,
rather fuzzy definitions for the word algorithm [1204, 1205, 1206, 957, 1207]:

Definition 191 (algorithm). According to Whatis.com3, an algorithm is a
procedure or formula for solving a problem. The word derives from the name of
the mathematician, Mohammed ibn-Musa al-Khwarizmi, who was part of the
royal court in Baghdad and who lived from about 780 to 850. Al-Khwarizmi’s
work is the likely source for the word algebra as well.

Definition 192 (algorithm). Wikipedia4 says that in mathematics, com-
puting, linguistics, and related disciplines, an algorithm is a procedure (a finite
set of well-defined instructions) for accomplishing some task which, given an
initial state, will terminate in a defined end-state. The computational complex-
ity and efficient implementation of the algorithm are important in computing,
and this depends on suitable data structures.

Definition 193 (algorithm). An algorithm is a computable set of steps to
achieve a desired result according to the National Institute of Standards and
Technology5.

Definition 194 (algorithm). Wolfram MathWorld6 defines algorithm as a
specific set of instructions for carrying out a procedure or solving a problem,
usually with the requirement that the procedure terminate at some point.
Specific algorithms sometimes also go by the name method, procedure, or
technique. The word ”algorithm” is a distortion of al-Khwarizmi, a Persian
mathematician who wrote an influential treatise about algebraic methods. The
process of applying an algorithm to an input to obtain an output is called a
computation.

Whereas an algorithm is a set of directions in a representation that is
especially understandable for human beings, programs are intended to be
processed by machines and are therefore expressed in a more machine-friendly
form. Originally, this was machine code. But for more than sixty years [1208],
huge effort is being spent to allow us to write programs in more and more
comprehensible syntax. One could say that a program is basically an algorithm
realized for a given computer, as illustrated in Figure 37.1. The difference
between programs and algorithm hence today lies primarily in the intention.

Definition 195 (Program). A program7 is a set of instructions that de-
scribe a task or an algorithm to be carried out on a computer. Therefore, the

3 http://searchvb.techtarget.com/sDefinition/0,,sid8_gci211545,00.html

[accessed 2007-07-03]

4 http://en.wikipedia.org/wiki/Algorithm [accessed 2007-07-03]

5 http://www.nist.gov/dads/HTML/algorithm.html [accessed 2007-07-03]

6 http://mathworld.wolfram.com/Algorithm.html [accessed 2007-07-03]

7 http://en.wikipedia.org/wiki/Computer_program [accessed 2007-07-03]

http://searchvb.techtarget.com/sDefinition/0,,sid8_gci211545,00.html
http://en.wikipedia.org/wiki/Algorithm
http://www.nist.gov/dads/HTML/algorithm.html
http://mathworld.wolfram.com/Algorithm.html
http://en.wikipedia.org/wiki/Computer_program

37.1 Algorithms 587

X createPop(n)pop =

Input: n the size of the population to be created

Data: i a counter variable

Output: X the new, random population (|X | n)pop pop =

begin1

X ()pop2

i n3

while i 0 do>4

Xpop appendList(X , create())pop5

i i 1-6

return Xpop7

end8

Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

PROC createPop
push eax
push eax
call ArrayList::create
pop ecx
@loop
push ecx
push eax

call create
push eax
call ArrayList::add
pop eax
pop ecx
loop @loop

RET EAX
END PROC

push eax

Program
(Schematic Assembly Language)

1

2

3

4

5

6

7

8

List<IIndividual> createPop(n) {
List<Individual> Xpop;
Xpop = new ArrayList<IIndividual>(n);
for(int i=n; i>0; i--) {
Xpop.add(create());
}

return Xpop;
}

Program
(Schematic Java, High-Level Language)

50 01 9A 10 38 33 83
8F 03 50 03 50 01 50 01 9A
10 38 32 00 8F 01 8F 03 E2
11 11 00 00 C3 00

50 01

Program
(Schematic Machine Language)

programming

pr
og

ra
m

m
in

g

program
m

ing

com
pilin

g
assem

blin
g

Fig. 37.1: The relation between algorithms and programs.

instructions must be present in either a form that the machine can process
directly (machine code8 [1209]), a form that can be translated (1:1) into such
code (assembly language [1210], Java byte code [1087], etc.), or in a high-level
programming language9 [1211] which can be translated (n:m) into the latter
using special software (compiler) [1212].

Definition 196 ((Software) Process). In terms of software, a process10 is
a program that is currently executed. While a program only is a description
of what to do, a process is the procedure of actually doing it. In a program
for example the number and types of variables are described – in a process
they are allocated and used.

Here we should also mention one of the most fundamental principle of
electronic data processing11, the IPO Model12. As sketched in Figure 37.2, it
consists of three parts:

• The input (IPO) is an external information or stimulus that enters the
system.

8 http://en.wikipedia.org/wiki/Machine_code [accessed 2007-07-04]

9 http://en.wikipedia.org/wiki/High-level_programming_language [accessed

2007-07-03]

10 http://en.wikipedia.org/wiki/Process_%28computing%29 [accessed 2007-07-03]

11 http://en.wikipedia.org/wiki/Electronic_data_processing [accessed 2007-07-03]

12 http://en.wikipedia.org/wiki/IPO_Model [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Electronic_data_processing
http://en.wikipedia.org/wiki/IPO_Model

588 37 Theoretical Computer Science

Process
(running Program)

outputinput

Fig. 37.2: A process in the IPO model.

• The processing (IPO) is the set of all actions taken upon/using the input.
In terms of software, these actions are performed by a process which is the
running instance of a program.

• The output (IPO) comprises the results of the processing that leave the
system.

37.1.2 Properties of Algorithms

Besides these definitions, algorithms all share the following properties with
only few exceptions that we also will elaborate on.

Definition 197 (Abstraction). An algorithm describes the process of solv-
ing a problem on a certain level of abstraction which is determined by the
elementary algorithms, elementary objects and the applied formalism. One
of the most important method of abstraction is the definition and reuse of
sub-algorithms.

Definition 198 (Discrete). A discrete algorithm works step-wise, i. e. is
build of atomic executable instructions.

Definition 199 (Finite). The definition of a (static) finite algorithm has a
limited length. The sequence of instructions of static finite algorithms is thus
finite. During its execution, a (dynamic) finite algorithm uses only a limited
amount of memory to store its interim results.

Definition 200 (Termination). Each execute of an algorithm terminates
after a finite number of steps and returns its results.

Definition 201 (Determinism). At each execution step of a deterministic
algorithm, there exists at most one way to proceed. If no way to proceed
exists, the algorithm has terminated.

Deterministic algorithms do not contain instructions that use random
numbers in order to decide what to do or to modify data. Most of the
optimization techniques included in this book are randomized algorithms.
They hence are not deterministic. We give an introduction into this matter
in Definition 208 on page 591.

Definition 202 (Determined). An algorithm is determined if it always
yields the same results (outputs) for the same inputs.

37.1 Algorithms 589

37.1.3 Complexity of Algorithms

For most problems, there exists more than one approach that will lead to a
correct solution. In order to find out which one is the “best”, we need some
sort of metrics which we can compare [1213, 1214].

The most important measures obtained by analyzing an algorithm13 are
the time that it takes to produce the wanted outcome and the storage space
they need for internal data [957]. We call them the space complexity and the
time complexity dimensions. The time-complexity denotes how many steps
algorithms need until they return their results. The space complexity deter-
mines how much memory an algorithm consumes at most in one run to store
intermediate values in order to produce the results. Of course, these measures
depend on the input values passed to the algorithm. If we have an algorithm
that should decide whether a given number is prime or not, the number of
steps needed to find that out will differ if the inputs are 1 or 232582657 − 1.
Therefore, for both dimensions, the best-case, average-case, and the worst-case
complexity exist.

In order to compare the time and space requirements of algorithms, some
approximative notations have been introduced [1215, 721, 1212]. As we just
have seen, the time and space requirements of an algorithm normally depend
on the size of its inputs. We can describe this dependency as a function of
this size. In real systems however, the knowledge of the exact dependency is
not needed. If we, for example, know that sorting n data elements with the
Quicksort algorithm14 [1216, 1117] takes in average something about n log2 n
steps is good enough, even if the correct number is 2n ln n ≈ 1.39nlog2n.

The Big-O-family notations allow us to group functions together that rise
at approximately the same speed.

Definition 203 (Big-O notation). The big-O15 notation is a mathematical
notation used to describe the asymptotical upper bound of functions.

f(x) ∈ O(g(x))⇔ ∃ x0,m ∈ R : m > 0 ∧ |f(x)| ≤ m|g(x)| ∀ x > x0 (37.1)

In other words, a function f(x) is in O of another function g(x) if and only
if there exists a real number x0 and a constant, positive factor m so that the
absolute value of f(x) is smaller (or equal) than m-times the absolute value
of g(x) for all x that are greater than x0.

Therefore, x3 + x2 + x + 1 = f(x) ∈ O(x3) since for m = 5 and x0 = 2
since 5x3 > x3 + x2 + x + 1 ∀ x ≥ 2.

In terms of algorithmic complexity, we specify the amount of steps or
memory an algorithm needs in dependency on the size of its inputs in the
big-O notation. A discussion of this topic and some examples can be found in
Table 37.1.

13 http://en.wikipedia.org/wiki/Analysis_of_algorithms [accessed 2007-07-03]

14 http://en.wikipedia.org/wiki/Quicksort [accessed 2007-07-03]

15 http://en.wikipedia.org/wiki/Big_O_notation [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Big_O_notation

590 37 Theoretical Computer Science

Table 37.1: Some examples of the big-O notation

class examples description

O(1) f1(x) = 2222, f2(x) =
sinx

Algorithms that have constant runtime for all
inputs are O(1).

O(log n) f3(x) = log x,
f4(x) = f4(

x
2
) +

1; f4(x < 1) = 0

Logarithmic complexity is often a feature of al-
gorithms that run on binary trees or search al-
gorithms in ordered sets. Notice that O(log n)
implies that only parts of the input of the al-
gorithm is read/regarded, since the input has
length n and we only perform m log n steps.

O(n) f5(x) = 23n + 4,
f6(x) = n

2

Algorithms of O(n) require to access and pro-
cess their input a constant number of times.
This is for example the case when searching in
a linked list.

O(n log n) f7(x) = 23x+x log 7x Many sorting algorithms like quicksort and
mergesort are O(n log n).

O(n2) f8(x) = 34x2,
f9(x) =

∑x+3
i=0 x− 2

Some sorting algorithms like selection sort have
this complexity. For many problems, O(n2)-
solutions are acceptable good.

O(ni), i >
1, i ∈ R

f10(x) = x5 − x2 The general polynomial complexity. In this
group we find many algorithms that work on
graphs.

O(2n) f11(x) = 23 ∗ 2x Algorithms with exponential complexity per-
form slowly and fast become unfeasible with in-
creasing input size. For many hard problems,
there exist only algorithms of this class. Their
solution can otherwise only be approximated by
the means of randomized global optimization
techniques.

Definition 204 (Big-Ω notation). The big-Ω notation is a mathematical
notation used to describe the asymptotical lower bound of functions.

f(x) ∈ Ω(g(x))⇔ ∃ x0,m ∈ R : m > 0 ∧ |f(x)| ≥ m|g(x)| ∀ x > x0(37.2)

f(x) ∈ Ω(g(x))⇔ g(x) ∈ O(f(x))(37.3)

Definition 205 (Θ notation). The Θ notation is a mathematical notation
used to describe both, an upper and a lower asymptotical bound of functions.

f(x) ∈ Θ(g(x))⇔ f(x) ∈ O(g(x)) ∧ f(x) ∈ Ω(g(x)) (37.4)

Definition 206 (Small-o notation). The small-o notation is a mathemati-
cal notation used to define that a function is asymptotical negligible compared
to another one.

f(x) ∈ o(g(x))⇔ lim
n→∞

∣
∣
∣
∣

f(x)

g(x)

∣
∣
∣
∣

= 0 (37.5)

37.1 Algorithms 591

Definition 207 (Small-ω notation). The small-ω notation is a mathemat-
ical notation used to define that another function is asymptotical negligible
compared to a special function.

f(x) ∈ ω(g(x))⇔ lim
n→∞

∣
∣
∣
∣

f(x)

g(x)

∣
∣
∣
∣

=∞ (37.6)

f(x) ∈ ω(g(x))⇔ g(x) ∈ o(f(x)) (37.7)

37.1.4 Randomized Algorithms

Deterministic algorithms16 will always produce the same results when given
the same inputs. If nothing else is stated, algorithms are considered to be
deterministic.

For many problems however, deterministic algorithms are unfeasible. In
global optimization (see Section 1.1.1 on page 4), the search space is often
extremely large and the relation of an element’s structure and its utility as
solution is not directly known. Hence, the search space often cannot be parti-
tioned wisely and an exhaustive search would be the only deterministic option
left. Such an approach would take an arbitrary long time. Here, using a ran-
domized algorithm can help.

Definition 208 (Randomized Algorithm). A randomized algorithm17 in-
cludes at least one instruction that acts on the basis of random numbers.
In other words, a randomized algorithm violates the constraint of determin-
ism. Randomized algorithms are also often called probabilistic algorithms
[1217, 1218, 1219, 1220, 1221].

There are two general classes of randomized algorithms: Las Vegas algo-
rithms and the Monte Carlo algorithms.

Definition 209 (Las Vegas Algorithm). A Las Vegas algorithm18 is a
randomized algorithm that never returns a false result [1205, 1217, 1218, 1220].

It either returns the correct result, reports a failure, or does not return
at all. If the Las Vegas algorithm returns, its outcome is deterministic (but
not the algorithm itself). The termination (see Definition 200 on page 588)
however cannot be guaranteed. There usually exists an expected runtime limit
for such algorithms – their actual execution however may take arbitrarily long.
In summary, we can say that a Las Vegas algorithm terminates with a positive
probability and is (partially) correct.

16 http://en.wikipedia.org/wiki/Deterministic_computation [accessed 2007-07-03],
see also Definition 201 on page 588

17 http://en.wikipedia.org/wiki/Randomized_algorithm [accessed 2007-07-03]

18 http://en.wikipedia.org/wiki/Las_Vegas_algorithm [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Deterministic_computation
http://en.wikipedia.org/wiki/Randomized_algorithm
http://en.wikipedia.org/wiki/Las_Vegas_algorithm

592 37 Theoretical Computer Science

Definition 210 (Monte Carlo Algorithm). A Monte Carlo algorithm19

is a numerical Monte Carlo method used to find solutions for mathematical
problems especially suitable for high-dimensional problems. It always returns
a result that may be correct or incorrect [1217, 1218, 1220].

In contrast to Las Vegas algorithms, Monte Carlo algorithms always ter-
minate but are (partially) correctly only with a positive probability.

Definition 211 (Monte Carlo Method). Monte Carlo methods20 are a
class of Monte Carlo algorithms used for simulating the behavior of systems
of different types. Therefore, Monte Carlo methods are nondeterministic and
often incorporate random numbers [1222, 1223, 1224, 1225].

37.2 Distributed Systems and Distributed Algorithms

A distributed system is a system of autonomous computers that are connected
loosely by a network and communicate by the exchange of messages in order
to together perform a common functionality. (Gero Mühl)

Distributed algorithms [1226, 967, 966] are algorithms that are performed
by multiple computers in such a distributed systems. The instances of the
algorithm, running on different computers, do not share the same view on the
global state. They exchange information by the means of communication. The
differences in the view on the global state may result from the fact that in
most cases no common, global time exists. It is also due to the fact that com-
munication involves usually latency discussed in Section 37.2.3 on page 612
– one node sends a message to another one and it takes some time t for the
message to reach that node. In the mean time, the message is regarded as
sent by the first node and not yet known to the second one. Furthermore,
networks may induce arbitrary errors into the message’s content and mes-
sages can even get lost. The nodes in a distributed system are not necessarily
homogeneous and thus can provide different computational power. This in
turn will lead to different speed of progression of the single instances of the
distributed algorithm.

Distributed algorithms can be distinguished from sequential algorithms
because they run on multiple nodes in parallel in order to cooperatively solve
one problem. They can be distinguished from parallel algorithms since on
every node runs an instance of the same algorithm with a different view on
the global state.

Distributed algorithms can provide the following advantages depending on
their respective design:

1. modularity

19 http://en.wikipedia.org/wiki/Monte_carlo_algorithm [accessed 2007-07-03], see
also Definition 211

20 http://en.wikipedia.org/wiki/Monte_Carlo_method [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Monte_carlo_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_method

37.2 Distributed Systems and Distributed Algorithms 593

2. flexibility
3. resource-sharing
4. no central point of failure because of decentralization
5. scalability because of decentralization
6. robustness
7. availability
8. fault-tolerance

Distributed algorithms may come with the following drawbacks depending
on their respective design:

1. high complexity
2. no common view on the global state
3. no global time
4. processes may fail
5. latency in communication (see Section 37.2.3 on page 612)
6. faults in communication (Section 37.2.3 on page 610 and Section 37.2.3)
7. problems in termination detection
8. phantom/pseudo-deadlocks
9. race conditions

The quality of a distributed algorithm can be determined by its commu-
nications complexity, i. e. how many messages need to be exchanged, or by its
time complexity, i. e. how many computational steps need to be performed on
the single nodes.

Definition 212 (Scalability). Scalability is a measure describing how good
a system can grow or be extended for processing a higher computational load.

Definition 213 (Central Point Of Failure). A central (or single) point of
failure is a subsystem or process that, if it fails, leads to the collapse of the
whole distributed system. An example for central point of failures is central
servers.

Definition 214 (Bottleneck). The bottleneck21 of a distributed applica-
tion the part that has the most limiting influence on its performance. In
hourglass, the bottleneck is the dilution in its center that limits the amount
of sand that can fall down per time unit.

37.2.1 Network Topologies

Definition 215 (Network Topology). Network topology22 is the study of
arrangement and mapping of the components of a network such as connections
and nodes. One may also refer to a network arrangement as a topology, i. e.
you can say “The topology of our network is a star.”

21 http://en.wikipedia.org/wiki/Bottleneck [accessed 2007-07-03]

22 http://en.wikipedia.org/wiki/Network_topology [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Bottleneck
http://en.wikipedia.org/wiki/Network_topology

594 37 Theoretical Computer Science

A computer network has exactly one physical topology which is the layout
of its physical components (computers, cables). On that, several virtual/overly
topologies may be built. In the further text, we will use the term edge syn-
onymously for link and connection and the term vertex as synonym for node
or computer since topology is closely related to graph theory.

Definition 216 (Overlay Network). An overlay network23 is a virtual net-
work which is built on top of another computer network. The nodes in the
overlay network are connected by virtual or logical links [1227].

A peer-to-peer network is an overlay network because it runs on top of the
internet. Several distributed algorithms require the nodes to be arranged in
special topologies like stars or rings. This can be achieved in arbitrary net-
works by defining an overlay structure.

When speaking of topology, one would normally think about a hard-
wired network of computers, connected with each other through Ethernet
cabling and such and such. If we take a wireless sensor network, as described
in Definition 220 on page 599, on the other hand, there is of course no such
thing as cabling. But still, there is a certain topology: not all nodes may be
able to directly contact each other since their radio transmission ranges are
limited. They instead may be able to directly talk with some nodes in their
physical neighborhood only. Hence, we can span a graph over this network,
where each node is connected to his neighbors in communication range only.
This graph then defines the topology.

Unrestricted

In an unrestricted network topology as the one sketched in Figure 37.3a, we
make only the general assumption that there is no network partition. In other
words, for all nodes n in the network there exists at least one path to each
other node in the network. This path may, of course, consist of multiple hops
over multiple connections.

Bus

All nodes in a bus system (illustrated in Figure 37.3b) are connected to the
same transmission medium in a linear arrangement. All messages send over
the medium can be regarded as broadcasts that potentially can be received by
all nodes more or less simultaneously. The transmission medium has exactly
two ends.

23 http://en.wikipedia.org/wiki/Overlay_network [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Overlay_network

37.2 Distributed Systems and Distributed Algorithms 595

(a) unrestricted topology (b) bus (c) star

(d) ring (e) hierarchy (f) grid

(g) fully con-
nected

Fig. 37.3: Some simple network topologies.

Star

Figure 37.3c shows an example for a star topology. Here, all nodes are con-
nected to a single node in the center of the network. This center could, for
example, be an Ethernet hub24 or switch25 that retransmits the messages re-
ceived to their correct destination. It could as well be a server that performs
some specific tasks for the notes. For a detailed discussion of the client-server
architecture see Section 37.2.2 on the following page.

24 http://en.wikipedia.org/wiki/Ethernet_hub [accessed 2007-07-03]

25 http://en.wikipedia.org/wiki/Ethernet_switch [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Ethernet_hub
http://en.wikipedia.org/wiki/Ethernet_switch

596 37 Theoretical Computer Science

Ring

In this topology, each node is connected to exactly two other nodes in a way
that no partition exists. Thus, it is like a bus where the first and the last node
are connected with each other. An instance of the ring topology is illustrated
in Figure 37.3d.

Hierarchy

Figure 37.3e illustrates a hierarchical topology where the nodes of the network
are arranged in form of a tree.

Grid

The nodes in a grid are laid out in a two-dimensional lattice so that each node,
except those on the border of the grid, is connected with four neighbors: one to
the left, one to the right, one above and one below. Figure 37.3f is an instance
of such a topology.

Fully Connected

In a fully connected network, as outlined in Figure 37.3g, each node is directly
connected with each other node.

37.2.2 Some Architectures of Distributes Systems

Client-Server

Definition 217 (Client-Server). Client-server26 is a network architecture
that separates two types of nodes: the client(s) and the server(s). A client27

utilizes a service provided by the server28. It does so by sending a request
to the server. This request contains details of the task to be carried out by
the server, for example an URL of a website to be returned. The server then
executes appropriate actions and, in most cases, sends a response to the client.
Usually, there is a small number of servers (normally one) which servers many
clients.

The client-server architecture illustrated in Figure 37.4 is the most basic
and the most common application logical architecture in distributed comput-
ing [1228, 1226, 1229]. It is part of almost all internet applications like:

26 http://en.wikipedia.org/wiki/Client_server [accessed 2007-07-03]

27 http://en.wikipedia.org/wiki/Client_%28computing%29 [accessed 2007-07-03]

28 http://en.wikipedia.org/wiki/Server_%28computing%29 [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Client_server
http://en.wikipedia.org/wiki/Client_%28computing%29
http://en.wikipedia.org/wiki/Server_%28computing%29

37.2 Distributed Systems and Distributed Algorithms 597

client

server

client

clientclient

query/request

response

query/request

response

Fig. 37.4: Multiple clients connected with one server

• Websites29 in the world wide web30 are obtained by using the HTTP31

protocol for communication between a web browser32 and a web server33.
• Application servers34 contain the business logic of corporations. They for

example support online shops35 with an underlying business model.
• Database servers36 provide computers in a network with access to large

data sets. Furthermore, they allow their clients to send structured queries
that allow aggregation and selection of specific data.

• . . .

The major advantages of client-server systems are their simplicity. Local
algorithms can often be integrated into servers without too many problems
while their adaptation to more complicated architectures is more difficult and
error-prone. The heaviest weakness of the client-server scheme is that the
server represents a bottleneck (see Definition 213) and a single point of failure
(see Definition 213 on page 593).

Peer-to-Peer Networks

Definition 218 (Peer-to-Peer Network). Instead of being composed of
client and server nodes, a peer-to-peer37 network consists only of equal peer
nodes. A peer node functions as a server for its fellow peers by providing cer-
tain functionality and simultaneous acts as client utilizing an similar service

29 http://en.wikipedia.org/wiki/Website [accessed 2007-07-03]

30 http://en.wikipedia.org/wiki/Www [accessed 2007-07-03]

31 http://en.wikipedia.org/wiki/Http [accessed 2007-07-03]

32 http://en.wikipedia.org/wiki/Web_browser [accessed 2007-07-03]

33 http://en.wikipedia.org/wiki/Web_server [accessed 2007-07-03]

34 http://en.wikipedia.org/wiki/Application_server [accessed 2007-07-03]

35 http://en.wikipedia.org/wiki/Online_shop [accessed 2007-07-03]

36 http://en.wikipedia.org/wiki/Database_server [accessed 2007-07-03]

37 http://en.wikipedia.org/wiki/Peer-to-peer [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Website
http://en.wikipedia.org/wiki/Www
http://en.wikipedia.org/wiki/Http
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/Online_shop
http://en.wikipedia.org/wiki/Database_server
http://en.wikipedia.org/wiki/Peer-to-peer

598 37 Theoretical Computer Science

from its peers [1228, 1226, 1229, 1230, 1231]. Therefore, a peer node is of-
ten also called servent38, a combination of the words server and client. The
expression peer-to-peer is often abbreviated by P2P.

peer

peer

peer

peerpeer

query/request

response

query/request

response

peer

query/request

response

peer

peer

Fig. 37.5: A peer-to-peer system in an unstructured network

Peer-to-peer networks may have an arbitrary structure like the one
sketched in Figure 37.5. While client-server systems are limited to provid-
ing communication between the clients and the server solely, peer-to-peer
networks may resemble any sort of underlying communication graph.

Peer-to-peer architectures circumvent the existence of single points of fail-
ures and can be constructed to be very robust against bottlenecks. They
furthermore often are ad hoc, i. e. new peers may join the network at any time
and leave it whenever they decide to. This can also be regarded as a drawback
since the structure (and thus, its computational power and connectivity) of
network may fluctuate heavily as well as the availability of data provided by
the peers.

If obeying the definition exactly, there are no centralized components in a
peer-to-peer network. There however exist hybrid networks where the clients
for example register by a server which keeps track on the users online. Also,
there may exist different hierarchical or non-hierarchical overlay networks.

Important peer-to-peer-based applications are

38 http://en.wikipedia.org/wiki/Servent [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Servent

37.2 Distributed Systems and Distributed Algorithms 599

• File and content sharing systems [1232, 1233] are the most influential and
wide-spread p2p systems. Millions of users today share music, videos, doc-
uments and software over networks like Gnutella39, Bittorrent40, apple-
Juice41 and the famous but shut-down Napster42 network.

• Many scientific applications like Seti@home43, Einstein@home44, and Fold-
ing@home45 rely on users all over the world that voluntarily provide their
unused computational power. They are most often constructed as screen-
savers that, after becoming active, download some pieces of data from a
server and perform computations on them. After finishing the work on the
received data, a response is issued to the server.

• Many instant messaging46 systems like talk47 utilize peer-to-peer protocols
. Most often, the clients need to log on and send status information to a
server. Communication then either works client-server based or in p2p-
manner. Especially when audio or video chats come into play, peer-to-peer
approaches are chosen.

• . . .

Sensor Networks

Definition 219 (Sensor Network). A sensor network48 [1234, 1235, 1236,
1237] is a network of autonomous devices which are equipped with sensors
and together measure an physical entity like temperature, sound, vibrations,
pressure, or motion.

Definition 220 (Wireless Sensor Network). A wireless sensor network
(WSN) [1238, 1239, 1240, 1241, 1242] is a sensor network where the sin-
gle nodes are connected wireless, using techniques like wireless LAN49, Blue-
tooth50, or radio51.

Figure 37.6 sketches the building blocks of a sensor node. Since they are
autonomous devices, sensor nodes have to be equipped with some sort of
energy source. For communication with other nodes, bare short range radios,
Bluetooth, or wireless LAN adapters are often added. The core of a sensor

39 http://en.wikipedia.org/wiki/Gnutella [accessed 2007-07-03]

40 http://en.wikipedia.org/wiki/BitTorrent [accessed 2007-07-03]

41 http://www.applejuicenet.de/ [accessed 2007-07-03]

42 http://en.wikipedia.org/wiki/Napster [accessed 2007-07-03]

43 http://en.wikipedia.org/wiki/Seti_at_home [accessed 2007-07-03]

44 http://en.wikipedia.org/wiki/Einstein%40Home [accessed 2007-07-03]

45 http://en.wikipedia.org/wiki/Folding%40home [accessed 2007-07-03]

46 http://en.wikipedia.org/wiki/Instant_messaging [accessed 2007-07-03]

47 http://en.wikipedia.org/wiki/Talk_%28Unix%29 [accessed 2007-07-03]

48 http://en.wikipedia.org/wiki/Sensor_network [accessed 2007-07-03]

49 http://en.wikipedia.org/wiki/Wireless_lan [accessed 2007-07-03]

50 http://en.wikipedia.org/wiki/Bluetooth [accessed 2007-07-03]

51 http://en.wikipedia.org/wiki/Radio [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/BitTorrent
http://www.applejuicenet.de/
http://en.wikipedia.org/wiki/Napster
http://en.wikipedia.org/wiki/Seti_at_home
http://en.wikipedia.org/wiki/Einstein%40Home
http://en.wikipedia.org/wiki/Folding%40home
http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Talk_%28Unix%29
http://en.wikipedia.org/wiki/Sensor_network
http://en.wikipedia.org/wiki/Wireless_lan
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Radio

600 37 Theoretical Computer Science

Micro-controller

Memory

Energy
Source

Communi-cation

Sensors

+

-

3.5” Diskette HDD

Fig. 37.6: A block diagram outlining building blocks of a sensor node.

node is a microcontroller attached with RAM and ROM memory for code
and data. The purpose of senor networks is to measure some environmental
parameters like temperature, humidity, or brightness. Thus, a sensor node has
always one or multiple sensors attached.

In order to allow free or even random deployment of sensor networks there
is usually no cabling. Wireless communication and an independent power sup-
ply are hence part of many sensor node designs. Chemical batteries are used
to store energy, but often power scavenging units [1243, 1244, 1245, 1246]
like, for example, solar cells [1247, 1248, 1249], thermal [1250] or kinetic en-
ergy harvesters [1251, 1252, 1253] are added. The field of energy supply of
sensor nodes is critical and subject to active research [1254, 1255, 1256, 1257].
Batteries have limited capacity and are hard to replace after the network has
been deployed. If no additional power scavenging unit is available, the sen-
sor nodes will eventually stop functioning and become useless after all their
energy is consumed. For extending this lifetime, energy intense operations
like communication via radio transmissions need to be reduced as much as
possible.

The size of the sensor nodes ranges from shoe box to matchbox dimensions.
There is a strong affinity for smaller nodes. Small sensors are recognized less
obviously and blend better in their environment. Since they require less raw
material, they might become much cheaper then their larger pendants. On
the other hand, with this movement in the direction of sensor that are really
tiny, some hard constraints arise. The size of the battery limits the amount of

37.2 Distributed Systems and Distributed Algorithms 601

energy that can be stored, as well as the extent of a solar cell limits its energy
production. It also limits the dimensions of the memory and the sensors of
the node [1258].

Other important research topics are data fusion and transportation in a
WSN [1259, 1260] as deployment and maintenance [1261, 1262].

Widespread sensor node architectures are:

• BTNodes52 are autonomous wireless communication and computing plat-
forms based on a Bluetooth radio and a microcontroller. Developed at the
ETH Zurich, BTNodes serve especially as demonstration, teaching, and
research platforms. Figure 37.7a shows a BTNode.

• Crossbow’s MICA2 53 motes are multipurpose nodes. These systems are
applied widely real-world applications like environmental control in agri-
culture and outdoor sports as well as for indoor sports and military pur-
poses. A picture of the Mica2Dot platform can be found in Figure 37.7b.

• Scatterweb54 provide both, a research platform (MSB nodes, illustrated
in Figure 37.7c) and an industrial sensor network (ScatterNodes).

• Dust Networks55 provide their SmartMesh for building wireless solutions
for the global market. Their nodes provide the Time Synchronized Mesh
Protocol and middle-range radio to provide the reliability of a typical
WLAN in their sensor networks. Figure 37.7d shows a Dust Networks
Evaluation Mote.

• . . .

A small example application demonstrating the use of sensor networks is
discussed in Section 20.1 on page 337.

Properties of Peer-To-Peer and Sensor Networks

• Current peer-to-peer networks are often large-scale, with tens of thousands
[1233] up to millions [1263] of users/nodes online. Although networks of
thousands of sensors are a future goal, the number of nodes in sensor
networks has not yet reached this extent. However, systems of several
hundreds of nodes are already deployed [1264, 1265].

• Since wireless sensor networks have limited transmission range, it is pos-
sible that not all nodes in a network can communicate directly with each
other. The same issue exists in the internet but is solved and made trans-
parent by routers. In sensor networks however, no such thing as dedicated
hardware routers exist (since the sensors are uniform). Therefore, special

52 http://www.btnode.ethz.ch/ [accessed 2007-07-03]

53 http://www.xbow.com/Products/productdetails.aspx?sid=156 [accessed 2007-07-

03]

54 http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/ [accessed 2007-07-

03] and http://www.scatterweb.com/ [accessed 2007-07-03]

55 http://www.dustnetworks.com/ [accessed 2007-07-03]

http://www.btnode.ethz.ch/
http://www.xbow.com/Products/productdetails.aspx?sid=156
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/
http://www.scatterweb.com/
http://www.dustnetworks.com/

602 37 Theoretical Computer Science

(a) BTNode (b) Mica2Dot (c) MSB Mote

(d) Dust Net-
works Evalua-
tion Mote

Fig. 37.7: Images of some sensor network platforms.

routing protocols [1266, 1267, 1268] are applied. Here we see a strong rela-
tion between sensor networks and peer-to-peer systems: each sensor may
act as sender of a message as well as router, there is no generic hierarchy
or division between senders or routers.

• Especially in peer-to-peer applications there are strong fluctuations in the
network membership. In content sharing networks for example, new users
continuously join and leave the network. In sensor networks on the other
hand, volatility in the network structure arises from newly deployed nodes
or nodes that become inactive because they ran out of battery power. A
sensor node spends much of its time in sleep mode (so do I) and may be
regarded as inactive in this time. When it triggers back to active mode, it
again becomes member of the network.

• Since sensor networks utilize sleep cycles in order to reduce energy con-
sumption, messages that are routed my arbitrarily be delayed or can get
lost.

• P2P networks often represent very heterogeneous environments, consisting
of computers of different architectures and operating systems.

37.2 Distributed Systems and Distributed Algorithms 603

37.2.3 Modeling Distributed Systems

In this section we will discuss how to model the features of distributed systems.
Models are needed to prove the properties of distributed algorithms and are
the foundation for any form simulation.

Communication Operations

We start with modeling by defining some basic communication operations to
be used in the definition of distribution algorithms. In these definitions, we
treat nodes and messages as objects with no further descriptions or contents.

Definition 221 (sendTo). The sendTo(n,m) operation sends a message m
to the node n. sendTo incorporates routing if needed. sendTo does not block
the sender asynchronously transmits the message m according to the model
parameters to n. n can obtain it with receiveFrom or receiveAny.

Definition 222 (broadcast). The operation broadcast(m) sends the mes-
sage m to all nodes directly attached and reachable by the invoking node.
Like sendTo, broadcast does not block.

Definition 223 (receiveFrom). With the statement m = receiveFrom(n),
the invoking node waits until a message is received from the node n. The first
message from n that comes in is returned in m. This operation is blocking, it
will not return until a message from n has been received.

Definition 224 (receiveAny). With the statement m = receiveAny(), the
invoking node waits until a message is received, not caring about the sender.
The first message that comes in from any node is returned in m. This operation
is blocking, it will not return until a message has been received.

Definition 225 (getSender). The function getSender(m) returns the note
from that has sent the message m. If, for example, the node n has broadcasted
m with broadcast(m), each node that received (m = receiveAny()) will be
able to determine its source (n = getSender(m)).

Definition 226 (getReceivers). The function getReceivers(m) returns the
set of nodes to which the message m was sent. Each node that received a
message using receiveFrom or receiveAny will be part of this set.

In order to allow us to make general statements about the order of mes-
sages, let us further define the global time where messages are sent and re-
ceived. These times are normally not available to the nodes and just serve us
as aid.

Definition 227 (getSendTime). The function getSendT ime(m) returns
the global time where the message m was sent, i. e. handed down from the
sending application to the operating system or communication middleware.
This is the instant where sendTo(x,m) or broadcast(m) was called.

604 37 Theoretical Computer Science

Definition 228 (getReceiveTime). The function getReceiveT ime(n,m)
returns the global time where the node n has received the message m, i. e. the
moment where the message m is handed up from the communication middle-
ware or the operating system. This is the same instant where receiveFrom(x)
or receiveAny have returned m. The getReceiveT ime(ε, n) of a message ε not
received by n is positive infinite.

By the laws of logic, a message can only be received after it has been sent.
If we define a model with instant communication, the send and the receive
time can at least be equal.

∀messages m : ∀ n ∈ getReceivers(m)⇒
getReceiveT ime(n,m) ≥ getSendT ime(m) (37.8)

Equation 37.8 subsumes these axioms which have currently not yet been
refuted by physicists, although they are trying.

Modeling Parallelism

In reality, the distributed algorithms on the nodes of a network all run in
parallel in an unpredictable manner. We now need to find a model that allows
us to explore this parallel behavior in a formalized fashion.

In simulations, it is complicated to model time continuous and thus, phys-
ically correct. A discretization of time simplifies many aspects of a parallel
system. It can be justified by the fact that time, as a continuum, can be
split into infinite small units. Analogical to our elaborations on the Poisson
process in Section 35.3.2 on page 532 for ∆t approaching zero, we make the
assumptions that in such a time step either

1. nothing happens or
2. exactly one node of the modeled systems performs exactly one elementary

action of the distributed algorithm.

With this simplification we also indirectly have sequenced in our model all
elementary/atomic actions in the running system. Furthermore, if the data
exchange of the distributed algorithms can be modeled as instantaneous with
discrete time, we can disregard the time steps where nothing happens in our
considerations.

Each distributed algorithm to be analyzed now needs to be broken up
into atomic actions. How we do this has severe impact on the complexity
of the analysis. Let us take Algorithm 37.1 for example, a very simple and
näıve graph coloring algorithm. The graph coloring problem is defined on
unrestricted graphs of arbitrary structure. The objective is to find a coloring
where no node has the same color as any other node it is directly connected
with. Our sample algorithm tries to solve this by first selecting a random color
for the node it runs on and broadcasting this color to each of its neighbors. If

37.2 Distributed Systems and Distributed Algorithms 605

a node now receives a message (containing the color of one of its neighbors),
it checks if it has the same color set. If so, it randomly selects another one
and again, informs its neighbors about its choice. From the looking, we could
divide this algorithm into at least eight elementary decisions or actions. Since
these consist of high-level constructs like if or while, we probably would
have to further split them up and transform them into jumps in some sort of
pseudo-assembler that we can simulate properly. Making formal statements
about such aggregations of instructions in the context of parallelism however
gets more and more cumbersome the more instructions have to be taken into
account.

Algorithm 37.1: distributedGraphColoring

Input: colors a set of colors to choose from
Data: color the color of the node
Data: msg a message received from another node, containing the other

node’s color

begin1

color ←− colors[randomu(|colors|)]2

broadcast(color)3

while true do4

msg = receive()5

if msg = color then6

while msg = color do color ←− colors[randomu(|colors|)]7

broadcast(color)8

end9

Reasoning about the features of our sample algorithm becomes way sim-
pler when recognizing that we only need to decompose it into two pieces. The
initialization part (line 2 and 3) and the update part (lines 5 to 8). We can do
this because only the sequence of those algorithm steps where a node receives
or sends a message do matter in global sequence. Everything in between is
local to the single node and has no influence on the progress of the algo-
rithm instances on the other nodes. Therefore, we can assume the message
sending/receiving actions together with all the actions in between them as
elementary and atomic from the global standpoint.

Reducing the atomic pieces of a distributed algorithm also reduces the
number of relations to be taken into consideration and thus, eases its analysis
significantly. The same goes for its simulation, since it is much more cumber-
some to build interpreters for assembler-style elementary instructions than
simple simulating a few statements in form of compound, high-level expres-
sions.

After splitting up the algorithms into their elementary building blocks, we
can classify parallelism models according to their degree of concurrency.

606 37 Theoretical Computer Science

Synchronous Models

In synchronously running distributed algorithms, all nodes proceed with ex-
actly the same speed. We model this by executing elementary algorithm steps
according to the round robin principle56. From the view of a single node, all its
neighbors are always as fast as it is itself. This becomes clear when visualizing
that the time where a node “does nothing”, where none of its atomic instruc-
tions is executed, does not exist for the node. From the global perspective,
runtime is assigned to the nodes as illustrated in Figure 37.8.

1

2

4

3

5

1 2 43 5 ... t

n
od

es

Fig. 37.8: Synchronous parallelism in a model of a network of five nodes.

Asynchronous Models

In some cases it may be sufficient to regard a distributed system as syn-
chronous – most real networks however are not. They consist of computers
that run highly asynchronous, maybe even at different speeds that can change
over time. Such behavior can be modeled in a surprisingly simple fashion. In-
stead of assigning the runtime to the nodes using to the round robin principle,
in each time step one node is picked randomly according to the uniform dis-
tribution (see Section 35.3.1 on page 527). Thus, in each time step each node
has exactly the same probability of executing one action. In average over in-
finite time, all nodes will execute the same amount of algorithm steps. For a
given time period however, it is possible that one node can execute five steps
while another one just proceeds by two, as outlined in Figure 37.9. It is obvi-
ous that in this time period, node one progresses with more than double the
speed than node four. On the other hand, during the following twenty time
units, this ratio may as well be exactly reverted. We hence can model different
and changing execution speeds. All nodes still have the same average speed,
as it would be in a homogeneous network of computers of the same type. In
case this is not wanted, we simple need to adjust the probability with which
the nodes are picked and deviate from the uniform distribution.

56 http://en.wikipedia.org/wiki/Round-robin_scheduling [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Round-robin_scheduling

37.2 Distributed Systems and Distributed Algorithms 607

The single nodes start at different points in time with their execution, one
node can be done with its work before another one gets assigned that first time
step. If the distributed algorithms furthermore do not contain infinite loops
or similar constructs and thus, finish at some point of time, this will result in
a dynamic network topology where nodes join and leave the computation in
an arbitrary manner.

1

2

4

3

5

1 2 43 5 ... t

n
od

es

Fig. 37.9: Asynchronous parallelism in a model of a network of five nodes.

Modeling Topology

If we want to find out about the features of a distributed algorithm, we need
to define a certain topology in which the nodes are arranged. There are al-
gorithms that only work on specific topologies while others may work on any
(partition-free) network layout. In most cases however, the network topology
has severe impact on the convergence/progression speed of the distributed
algorithms. In terms of modeling or simulation, we usually only pay attention
to the top-level overlay topology, if there is any, and to the network layout
otherwise.

Static Topology

If our topology is static and thus, does not change by time, we can for example
commit our model to one specific topology mentioned in Section 37.2.1 on
page 593. Under the premise that the algorithms that we want to examine
do not depend on a special arrangement of the nodes, we basically have three
choices for a proper topological model.

• If the algorithms are topology-independent, we can define the topology
of our model to be unrestricted (see Section 37.2.1). The strength of the
unrestricted topology is that properties of a distributed algorithm observed
will be valid for all other topologies. We do not assume that all nodes
are able to communicate directly with each other. Therefore, this model
is optimal to study algorithms that are used to spread information over a

608 37 Theoretical Computer Science

network since it allows us to study the data dissemination behavior. On the
other hand, this topology requires some inherent routing of information-
spreading technique in the algorithms. For protocols that do not primarily
deal with this issue, the unspecified topology is not suitable.

• For such algorithms, a fully connected network layout (see Section 37.2.1
on page 596) should be used. Here, we can obtain information about their
behavior without interferences possible induced by additional routing func-
tionality.

• If we need to perform really fast simulations, unspecified topologies
have the drawback of being arbitrary graph structures which compli-
cates the computations performed by the simulation environment. There-
fore, it should be replaced by a two-dimensional grid topology dis-
cussed Section 37.2.1 on page 596. Here we can arrange the simulated
nodes in regular lattice which is simpler to access and to simulate.

Dynamic Topology

A dynamic topology like it could occur in a peer-to-peer network
(see Section 37.2.2 on page 597) is implicitly be modeled by parallelism (see
Section 37.2.3). In Figure 37.10 six nodes, granted the same runtime, are mod-
eled/simulated. Since the time unites are assigned randomly to them, node 1
has spent up all his ticks before nodes 4 to 6 did even start. The network hence
first consisted only of the node 1, then later of the nodes 1 to 3 and transcends
over consisting of the nodes 4 to 6 to its final state where only the node 6
remains. Dynamic topologies should, in general, be regarded as unrestricted

2

3

4

5

1

6

t

Fig. 37.10: Dynamic topology due to overlapping active times of nodes.

topologies. For the ease of simulation implementation, we can however define
a grid topology as basis where nodes are considered as switched on and off
according to the random consumption of their runtime.

Static and Dynamic Partitions

Definition 229 (Static Partition). A static partition in a network N =
(p1, p2, . . .) containing the nodes pi exists if we can divide the network in at

37.2 Distributed Systems and Distributed Algorithms 609

least two disjoint subsets N1 ∪ N2 = N in way that there does not exist a
connection between any node in N1 and a node in N2.

If a network is statically partitioned, there exist at least two nodes that,
even with routing over arbitrary many stations, will never be able to exchange
data in any way. Such configurations are not interesting for simulations and
models, since distributed algorithms cannot work on them properly. The mod-
eler or simulation designer thus has to take care that network partitions do
not occur.

Communication

Every distributed algorithm requires some form of communication.

Number of Receivers

In a network, a node may be connected to n other nodes. Communication
forms can be divided into three categories according to how many receivers
are reached with one transmission.

S

(a) Unicast

S

(b) Multicast

S

(c) Broadcast

Fig. 37.11: The three different message transmission types.

Definition 230 (Unicast). Unicast57 means sending a message to one single
recipient only, as illustrated in Figure 37.11a.

Definition 231 (Multicast). Figure 37.11b outlines the multicast58 trans-
mission scheme. A multicast message is sent to a subset of m recipients (in a
group of n possible receivers), where 1 ≤ m ≤ n.

Definition 232 (Broadcast). To broadcast59 a message means to send it to
all n possible recipients at once. Figure 37.11c sketches a broadcast message
that is received by all destinations that are directly linked with the sender.

57 http://en.wikipedia.org/wiki/Unicast [accessed 2007-07-03]

58 http://en.wikipedia.org/wiki/Multicast [accessed 2007-07-03]

59 http://en.wikipedia.org/wiki/Broadcasting_%28networks%29 [accessed 2007-07-

03]

http://en.wikipedia.org/wiki/Unicast
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Broadcasting_%28networks%29

610 37 Theoretical Computer Science

If the group of possible recipients only has n ≤ 1 members, there is no
distinctions between unicast, multicast, or broadcast. In general, we could
regard broadcasts as a special case of multicast that is send to all possible
destinations. Furthermore, one could model unicasts as multicasts with only
one recipient.

Reliability of Transmissions

The reliability of transmissions is another aspect that should be thought of
when modeling the environment of a distributed algorithm. We can distinct
between two different types of faults in communication, message loss and
message modification. In addition, there is the message delay/latency which
can also take on the characteristics of an error.

When modeling a network in order to derive properties of a distributed
algorithm, we have to decide which of these faults are relevant and which are
not. If we, for example, examine an algorithm that runs in an environment
where communication is secured by underlying protocol levels, message loss
may be irrelevant. Also, message modification can be omitted from our model
if our algorithm is not security-related and runs on top of a protocol that
uses checksums and such and such to secure data integrity later in the real
implementation.

If our model bases on broadcast or multicast, we also have to decide if
possible faults occur per message or per packet on a connection. As already
discussed before, we can think of a network as a graph where each node
is represented by a vertex. A node is connected to all n nodes that it can
directly broadcast to by an edge. A broadcast message would be split up into
n identical packets, each traveling on one connection. Here we should distinct
if we model a hard-wired network, where errors would occur packet-wise since
they are usually bound to a single connection, or if we have a wireless network
where an error would probably influence the whole transmission. The following
considerations may be applied in either way.

Message Loss Messages may vanish on the way to their recipient.

• This is most often caused by a collision60 with another transmission on
the same medium.

• The sending node may not be directly connected to the receiving one.
Then, its messages have to be routed over some intermediate nodes. If one
of these stations gets congested and its in or output buffers are overflowing,
it may discard the message.

• Messages can also be caused to disappear by a third party that intrudes
the communication channel with malicious intend of deprive the receiver
of information.

60 http://en.wikipedia.org/wiki/Collision_%28telecommunications%29 [ac-

cessed 2007-07-03]

http://en.wikipedia.org/wiki/Collision_%28telecommunications%29

37.2 Distributed Systems and Distributed Algorithms 611

• A connection between two nodes may be broken and all messages on this
connection will be lost.

The loss of a message can be detected on the receiving side if the commu-
nication source sending a strictly increasing sequence number along with the
payload. Well known protocols like TCP61 utilize this mechanism.

If we need to model this mechanism, we can do so by simple determining a
probability 0 ≤ ε≤1 with which transmissions fail. Then, whenever a message
is sent by node, we use draw a random number e uniformly distributed in
[0, 1). If e < ε then the transmission is lost, otherwise it will get through.
This is a rather crude approach but has the advantage that it can easily be
understood and analyzed using mathematical methods.

In order to add the possibility of connection break down, we can also draw
such a random number at each time step for each connection in order to
determine if it will fail or not. A failing connection then will stay broken for
a time determined using the exponential distribution.

Message Modification There are two possible causes why messages could be
modified in transmission.

• Accidental modification due to physical interference like power surges or
other signals.

• Again, a third party may be responsible for the change of the message’s
content. The intention could be to deceive the receiver.

If we can assume that the distributed algorithms can rely on an underlying
protocol with error detection capabilities, like the IP62 that therefore uses a
checksum63, message modification does not need to be modeled.

Otherwise, we can regard a message m as a sequence of n bits m =
(b1, b2, . . . , bn).

Definition 233 (Error Burst). An error burst64 is a very common error
scheme in telecommunications. It denotes a continuous sequence of symbols
(in our case, bits) over a data transmission channel or part of a message such
that this sequence contains not a single correct (i. e. unaltered) symbol.

We can simulate such errors with Algorithm 37.2 by first defining a fault
probability 0 ≤ ε≤1. For each message we draw a uniformly distributed ran-
dom number from [0, 1). If this number is smaller than ε, the message will
be modified. Therefore we first randomly determine the length of the error
burst in line 3 and then its position. In Algorithm 37.2, we simple draw the
error burst length from a normally distributed random variable with mean µ

61 http://en.wikipedia.org/wiki/Transmission_Control_Protocol [accessed 2007-

07-03]

62 http://en.wikipedia.org/wiki/Internet_Protocol [accessed 2007-07-03]

63 http://en.wikipedia.org/wiki/Checksum [accessed 2007-07-03]

64 http://en.wikipedia.org/wiki/Error_burst [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Error_burst

612 37 Theoretical Computer Science

and variance σ2 which have to be chosen carefully. In order to limit the burst
length to a positive, natural number smaller or equal to the message length,
we apply the cut-off function randoml

65 and round down.

Algorithm 37.2: mε = errorBurst(m)

Input: m the original message
Data: l the random length of the error burst
Data: p the position where the error burst occurs
Output: me the message after passing the transmission channel

begin1

mε ←− m if randomu() < ε then2

l = ⌊randoml(randomn(µ, σ2), 1, |m|+ 1))⌋3

p = ⌊randomu(0, |m| − l + 1)⌋+ l − 14

while l > 0 do5

mε[p]←− ¬m[p]6

l←− l − 17

p←− p− 18

return mε9

end10

Message Latency

Definition 234 (Latency). Latency66 is the time difference between the mo-
ment where something is initiated and the moment of its effects becoming
observable [1269].

In a real distributed application, messages are constructed and sent by a
software process running on a node. We consider the moment when they are
passed down to the operating system or to the middleware as the moment
when they are sent. From there, however, they have to be passed to the com-
munication hardware and from there they are transmitted over a medium.
Now physical effects will delay the message from arriving instantly at the re-
ceiver side – the speed of light still cannot efficiently surpassed. This delay
induced by physical laws is however normally negligible. Yet it is observable
in satellite communication, for example when a host of a news show talks with
a reporter on the other side of the globe.

If the node sending a message is not directly connected to the recipient,
the message will be routed over some intermediate nodes. Each of these nodes
needs to analyze the message’s destination in order to find out where to send

65 see Section 35.7.3 on page 566
66 http://en.wikipedia.org/wiki/Network_Latency [accessed 2007-07-03], http://en.

wikipedia.org/wiki/Lag [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Network_Latency
http://en.wikipedia.org/wiki/Lag
http://en.wikipedia.org/wiki/Lag

37.2 Distributed Systems and Distributed Algorithms 613

it next needing some processing time. Furthermore, congestion may lead to
additional delay. After the message arrives on its destination, it has again
to be dealt with by the hardware, operating system, and middleware before
being passed to the application, which marks the arrival time.

The time a message needs to travel will of course also depend on its size. We
may however assume that message size is negligible in our model by simple
defining that large messages will be broken down into chunks of equal size
before transmission.

The most problematic fact is that there is no upper limit for message
latency, i. e. we cannot determine if a message was lost or is still delayed in
transmission.

Since the latency in a real network depends on so many factors [1269],
it is hard to simple approximate it with a simple probability distribution. In
principle, we can choose between three candidates: the exponential, the nor-
mal, and the uniform distribution. Additionally, latency can also be modeled
deterministically as a function of the distance between the sender and the
receiver [1270].

• Many experiments indicate that network latency is loosely exponentially
distributed. On page three in [1271], the latency/probability diagram (Fig-
ure 2) remotely resembles the exponential distribution. It is therefore often
used in models and simulations [1272]. Here, a positive cut-off should be ap-
plied to prevent messages from traveling with zero delay (see Section 35.7.3
on page 566).

• Since the exact form of the distribution of latency may vary from appli-
cation to application, it also makes sense to approximate it with a normal
distribution. A normally distributed random number can take on zero
or negative values with a non-zero probability. Therefore, again a cut-off
should be applied in the model or simulation according to Section 35.7.3.

• Drawing uniformly distributed random numbers is the most crude and
simple way to determine message latency. The idea of choosing it is that
in most models, the exact distribution of the message delays plays no role.
The only thing that counts is that messages can be delayed in a way that
allows them to outpace each other or to allow some nodes to receive them
early than others. These are the most critical scenarios for distributed
algorithms and we can create them with the uniform distribution as well
as with every other one.

• Another attractive approach to modeling latency is to make it a function
of the distance between the sender and the receiver [1270]. If we consider
a routed network and assume a constant delay per router passed by the
message, this method is very elegant. Additionally, one could allow a bit
of deviation by adding a small random number to each deterministically
computed delay.

614 37 Theoretical Computer Science

Reliability of Nodes

So far we have considered errors that may happen during message transmis-
sion. Now we want to discuss the errors that may happen before – the possible
faults on the single nodes. Especially important in the context of distributed
systems are Byzantine faults.

Definition 235 (Byzantine Fault). Byzantine faults67 are errors that oc-
cur during the execution of a distributed algorithm in a network due to
one or multiple nodes deviating from the prescribed flow of the algorithm
[1273, 1274, 1275].

Constructing systems that are able to deal with such problems is subject
to research since the 1980s [1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283].

Byzantine faults cover node crashes, incorrect execution of algorithm steps,
and the execution of wrong steps as well as nodes that intentionally send
incorrect and misleading messages. Including Byzantine faults in the model of
a distributed system in principle only needed in the last case, since the effects
of the others can as well be reached by modeling communication faults.

37.3 Grammars and Languages

Languages are used for communication between higher animals 68. They also
define the formats for data being stored by or exchanged between computers
and/or human beings. When analyzing a statement in a given language, we
distinguish between its syntax and semantic.

Definition 236 (Syntax). The syntax69 of a language is the set of rules
that governs its structure. Each valid statement of a language must obey its
syntactical structure. The sentence “I am reading a book.” is a sequence of a
subject, a predicate, and an object.

Definition 237 (Semantic). The semantic70 refers to the meaning of a
statement. The sentence “I am reading a book.” has the meaning that the
writer of it is visually obtaining information from a set of bounded pages
filled with written words.

37.3.1 Syntax and Formal Languages

Let us now take a closer look on the syntax of formal languages [1284, 1285].

67 http://en.wikipedia.org/wiki/Byzantine_fault_tolerance [accessed 2007-07-03]

68 http://en.wikipedia.org/wiki/Language [accessed 2007-07-04]

69 http://en.wikipedia.org/wiki/Syntax [accessed 2007-07-03]

70 http://en.wikipedia.org/wiki/Semantics [accessed 2007-07-03]

 http://en.wikipedia.org/wiki/Byzantine_fault_tolerance
http://en.wikipedia.org/wiki/Language
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/Semantics

37.3 Grammars and Languages 615

Definition 238 (Alphabet). A finite set Σ of symbols (characters) α ∈ Σ
with a total order (see Section 34.6.1 on page 509) defined on it is called an
alphabet.

Definition 239 (Character String). A character string71 (or word) over Σ
is any finite sequence of symbols α ∈ Σ. Character strings have the following
properties:

1. The empty character string ε is a character string over Σ.
2. If x is a character string over Σ, then αx is also a character string over Σ

for all α ∈ Σ.
3. β is a character string over Σ if and only if it can be created using the

two rules above.

Definition 240 (Concatenation). The concatenation72 α ◦ β of two char-
acter strings α = α1α2α3. . .αn and β = β1β2β3. . .βm over the alphabet Σ is
the character string α ◦ β = α1α2α3. . .αnβ1β2β3. . .βm which begins with α
immediately followed (and ended by) β.

The set of all strings of length l over Σ is called Σl with Σ0 = {ε} ∀ Σ.
The set of all strings on Σ is called Σ∗, i. e. Σ∗ = ∪∞l=0Σ

l. It is also called
Kleene star73 (or Kleene closure).

Definition 241 (Lexeme). A lexeme74 is the lowest level of syntactical unit
of a language [1284]. It denotes a set of words that have the same meaning,
like run, runs, ran, and running in English. A lexeme belongs to a particular
syntactical category and has a semantic meaning.

Based on these definitions, we can consider a sentence to be a sequence of
lexemes which, in turn, are string of characters over some alphabet.

Definition 242 (Language). A language L over the alphabet Σ is a subset
of Σ∗ [1285]. L is the set of all sentences over an alphabet Σ that are valid
according to its rules in syntax (the grammar) [1286].

When describing the formal syntax of a language, there are two possible
approaches:

1. Recognizers that determine the structure of a sentence and can decide if
it belongs to the language or not. Recognizers are, for instance, used in
compilers [1287].

2. A generative grammar can build all sentences of a language.

71 http://en.wikipedia.org/wiki/Character_string [accessed 2007-07-03]

72 http://en.wikipedia.org/wiki/Concatenation [accessed 2007-07-10]

73 http://en.wikipedia.org/wiki/Kleene_star [accessed 2007-07-03]

74 http://en.wikipedia.org/wiki/Lexeme [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Character_string
http://en.wikipedia.org/wiki/Concatenation
http://en.wikipedia.org/wiki/Kleene_star
http://en.wikipedia.org/wiki/Lexeme

616 37 Theoretical Computer Science

37.3.2 Generative Grammars

A generative grammar G of a language L is able to construct every single
sentence in L by applying recursive replacement rules. Therefore, we define
non-terminal symbols (also called variables) which do not occur in the lan-
guage’s text and terminal symbols that do. One example of such a grammar
is:

1 sentence −→ subject verb object

2 subject −→ Alice ∨ Bob

3 verb −→ writes ∨ reads

4 object −→ cipher -text ∨ plain text

Listing 37.1: A simple generative grammar.

Here we have four productions, the terminal symbols Alice, Bob, writes,
reads, cipher-text, and plain-text, and five non-terminal symbols
(sentence, subject, verb, and object).

Definition 243 (Formal Grammar). A formal grammar75 G =
(N,Σ,P, S) is a 4-tuple consisting of:

• a finite set N of non-terminal symbols (variables),
• the alphabet Σ, a finite set of terminal symbols,
• a finite set P of productions (also called rules), and
• at least one start symbol S ∈ N which belongs to the set of non-terminal

symbols N .

Additionally, we call the set V = N ∪Σ including terminal and non-terminal
symbols the grammar symbols.

The Chomsky Hierarchy

The Chomsky hierarchy stands for a hierarchy of formal grammars that gen-
erate a formal language. It was first described by the linguist Noam Chomsky
in 1956 [1288, 1289, 1290] and distinguishes four different classes of grammars.
Starting with an unbounded grammar (type-0), more and more restrictions
are imposed on the allowed production rules. Hence, each type contains all
grammar types on higher levels fully.

In Table 37.2 illustrates the Chomsky hierarchy, V is the set of all terminal
and non-terminal symbols (V = N ∪Σ) and V ∗ is its Kleene closure.

37.3.3 Derivation Trees

A derivation tree76 is a common way to describe how a sentence in a context-
free language can be derived from the start symbol of a given generative

75 http://en.wikipedia.org/wiki/Formal_grammar [accessed 2007-07-03]

76 http://en.wikipedia.org/wiki/Context-free_grammar#

Derivations_and_syntax_trees [accessed 2007-07-16]

http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Context-free_grammar#Derivations_and_syntax_trees
http://en.wikipedia.org/wiki/Context-free_grammar#Derivations_and_syntax_trees

37.3 Grammars and Languages 617

Table 37.2: The Chomsky Hierarchy

Grammar Allowed Rules Languages

Type-0 α→ β,α, β ∈ V ∗, α 6= ε recursive enumerable

Type-1 αAβ → αγβ, A ∈ N , α, β, γ ∈ V ∗, γ 6= ε context-sensitive
(CSG)

Type-2 A→ γ, A ∈ N , γ ∈ V ∗ context-free ()
Type-3 A→ aB (right-regular) or A→ Ba (left-

regular), A→ a, A, B ∈ N , a ∈ Σ
regular

grammar. The inner nodes of a derivation tree are the non-terminal symbols
in N , the root is the start symbol S, and the leaves are the terminal symbols
(Σ). Each edge constitutes one expansion according to a production of the
grammar.

Assume an example grammar G = (N,Σ,P, S) with N = {T}, Σ =
{1, +, a}, S = T, and the productions P defined the below.

1 T −→ T+T

2 T −→ 1

3 T −→ a

Listing 37.2: An example context-free generative grammar G.

With this grammar we can construct the following sentence:

1 T −→ T+T

2 T+T −→ T+T+T

3 T+T+T −→ a+T+T

4 a+T+T −→ a+1+T

5 a+1+T −→ a+1+a

Listing 37.3: An example expansion of G.

Figure 37.12 illustrates the derivation tree that belongs to this example
expansion of the example grammar G.

37.3.4 Backus-Naur Form

The Backus-Naur (BNF) form77 is a metasyntax used to express context-free
grammars [1291, 1292]. Such Chomsky Type-2 grammars are the theoretical
basis of most common programming languages and data formats, like for
example C and XML78. It allows specifying production rules in simple, human
and machine-understandable manner.

77 http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form [accessed 2007-07-03]

78 http://www.w3.org/TR/2006/REC-xml-20060816/ [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
http://www.w3.org/TR/2006/REC-xml-20060816/

618 37 Theoretical Computer Science

S

S S

S S

a 1 a

non-terminal
Symbols (N)

terminal
Symbols ()S

Fig. 37.12: The derivation of the example expansion of the grammar G.

In BNF specifications, each rule consists of two parts: a non-terminal
symbol on the left-hand side and an expansion on the right-hand side. Non-
terminal symbols are contained in arrow brackets and terminal symbols are
written plain. For expansions, the BNF provides two constructs: a sequence
of symbols and the alternative which is denoted with a pipe character “|”.

Starting with S, the example below allows us to generate natural numbers
N. A nonZero is either 1,2,. . . , or 9 and a normal number may also be zero.
A natural number is either a nonZero or a natural number with a number

at the end. Notice that expanding nonZero will always lead to the first digit
always being a non-zero digit since a fully expanded rule cannot contain any
variables (non-terminal symbols). As start symbol S we use natural.

1 <nonZero > ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

2 <number > ::= 0 | <nonZero >

3 <natural > ::= <nonZero > | <natural > <number >

4 <S> ::= <natural >

Listing 37.4: Natural numbers – a small BNF example.

37.3.5 Extended Backus-Naur Form

The extended Backus-Naur form79 is an extension of the BNF metasyntax
that provides additional operators and simplifications [1293, 1294, 1285].

Unlike in the Backus-Naur form, the terminal symbols are included in
quotation marks and the non-terminal symbols are written without arrow
brackets. The items of sequences can now be separated by commas and each
rule ends with a semicolon. The EBNF adds options, which are denoted by
square brackets. The sequence inside those may either occur zero or one time

79 http://en.wikipedia.org/wiki/Ebnf [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Ebnf

37.3 Grammars and Languages 619

in the expanded rule. Curly brackets define expressions that can be left away
or repeated arbitrary often during expansion.

The example below demonstrates the application of these new features
by providing a grammar for natural numbers equal to the one shown for the
BNF. The rules natural and natural2 are equivalent. Here we also specify a
rule for all integer numbers Z by prefixing a natural number with an optional
−.

1 nonZero ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" |

2 "8" | "9" ;

3 number ::= "0" | nonZero ;

4 natural ::= nonZero | natural , number ;

5 natural2 ::= nonZero | nonZero , {number} ;

6 integer ::= ["-"], natural | "0" ;

7 S ::= integer ;

Listing 37.5: Integer numbers – a small EBNF example.

The ISO norm ISO/IEC 14977 [1293] for EBNF defines additional exten-
sion mechanisms which we will not discuss here.

37.3.6 Attribute Grammar

An attribute grammar80 (AG) is a context-free grammar enriched with at-
tributes, rules, and conditions for these attributes [1295, 1296, 1297, 1298].
With attributes attached to non-terminal symbols, it becomes possible to pro-
vide context-sensitive information. They are used in compilers to check rules
that cannot be validated with the means of mere context-free grammars. With
attribute grammars, syntax trees can be translated directly into intermediate
languages or into code for some specific machine.

An attribute grammar AG = (G,A,R) consists of three components:

1. a context-free grammar G, where G = (N,Σ,P, S) as specified
in Definition 243 on page 616,

2. a finite set of attributes A where each attribute a ∈ A has a set of possible
values a = {a1, a2, . . . , an}, and

3. a set of semantic rules R.

To each grammar symbol X ∈ V a finite set of attributes A(X) ⊆ A
is associated. This set is partitioned into two disjoint subsets, the inherited
attributes I(X) ⊆ A(X) and the synthesized attributes T (X) ⊆ A(X). A
synthesized attribute gets its value from the attributes attached to the children
of the symbol it is assigned to. Inherited attributes get their value from the
parent or siblings of the symbols they belong to. The start symbol S ∈ N and
the terminal symbols Σ do not have inherited attributes (T (S) = ∅,∀ σ ∈
Σ ⇒ T (σ) = ∅). In Knut’s original definition [1295], this was the other way
round but the here discussed form has prevailed [1298].

80 http://en.wikipedia.org/wiki/Attribute_grammar [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Attribute_grammar

620 37 Theoretical Computer Science

A good example for synthesized attributes is given in [1299] from where
I will borrow. AGs are most often not used as generative grammars but as
guidelines for parsers that read for instance source code of a programming
language.

Let us consider a simple grammar for integer mathematics with the two
expressions + and ∗.

1 E ::= F "+" E |

2 F

3 F ::= integer "*" F |

4 integer

Listing 37.6: A simple context-free grammar.

For each symbol X in V let X.val be the numeric value associated with it.
For terminal symbols of the type integer, this is simply the lexeme provided
by the lexical analyzer. The two other terminal characters + and ∗ have no
value assigned. The values of the non-terminal symbols E and F should be
the results of the expressions defined by them. These attributes are computed
(synthesized) by the semantic rules from the attributes of their child nodes.

1 Production Rule

2 E ::= F "+" E | E.val = F.val + E2.val

3 F E.val = F.val

4 F ::= integer "*" F | F.val = integer.val * F2.val

5 integer F.val = integer.val

Listing 37.7: A small example for attribute grammars.

E .val F .val E .val1 3 2= + 210=

F .val integer .val F .val3 7 4= * 21=

F .val integer .val4 8= 3=

E .val F .val2 5= 10=

F .val integer .val F .val5 9 6= * 10=

F .val integer .val6 0= 5=

integer .val 77 =

integer .val 38 =

integer .val 29 =

integer .val 50 =

E1

int.8

F5

int.0

7 3 2 5* *+

+

*

*int.9

F4

E2F3

int.7

F6

Fig. 37.13: An instantiation of the grammar from listing 37.7.

37.3 Grammars and Languages 621

Figure 37.13 illustrates a sentence of the simple attribute grammar from
listing 37.7. The non-terminal symbols are sometimes annotated with sub-
script numbers (like E2) which have no meaning and only serve for clearity.
While this listing 37.7 is an example for the usage of synthesized attributes,
symbol tables used in compilers are instances of inherited attributes.

A special form of attribute grammars, the reflective attribute grammar, is
the basis of the Gads 2 genetic programming system discussed in Section 4.5.6
on page 169.

L-Attributed Grammars

L-attributed grammars81 are a class of attribute grammars that can be parsed
in one left-to-right traversal of the abstract syntax tree (see Section 4.1 on
page 141). Such grammars are the foundations for many programming lan-
guages and allow convenient top-down parsing82.

S-Attributed Grammars

An attribute grammar is called S-attributed83 if it allows only synthesized
attributes [1300]. Because of this restriction, such grammars can be parsed
top-down as well as directly bottom-up84 and are supported by various tools
like Bison85 and Flex86.

37.3.7 Extended Attribute Grammars

Extended attribute grammars developed by Watt and Madsen (EAGs)
[1301, 1302, 662] are a form of attribute grammars where the semantic
(attribute-concerning) rules are no longer separated from the syntax produc-
tions. Instead, both are combined into a declarative form where each non-
terminal symbol is accompanied by its attributes listed in a predetermined
order. The new syntax for non-terminal symbols is

1 <n la lb lc ...>

While n ∈ N is a non-terminal symbol and a, b, and c, are values of at-
tributes α, β, and γ represented as expressions over their respective attribute
value domain. In an extended attribute grammar, we can define a set of in-
herited attributes I(n) and a set of synthesized attributes T (n) for each non-
terminal symbol n. In the initial blueprint, l therefore has to be replaced with

81 http://en.wikipedia.org/wiki/L-attributed_grammar [accessed 2007-07-04]

82 http://en.wikipedia.org/wiki/Top-down_parsing [accessed 2007-07-04]

83 http://en.wikipedia.org/wiki/S-attributed_grammar [accessed 2007-07-04]

84 http://en.wikipedia.org/wiki/Bottom-up_parsing [accessed 2007-07-04]

85 http://en.wikipedia.org/wiki/GNU_Bison [accessed 2007-07-04]

86 http://en.wikipedia.org/wiki/Flex_lexical_analyser [accessed 2007-07-04]

http://en.wikipedia.org/wiki/L-attributed_grammar
http://en.wikipedia.org/wiki/Top-down_parsing
http://en.wikipedia.org/wiki/S-attributed_grammar
http://en.wikipedia.org/wiki/Bottom-up_parsing
http://en.wikipedia.org/wiki/GNU_Bison
http://en.wikipedia.org/wiki/Flex_lexical_analyser

622 37 Theoretical Computer Science

either ↓ which means that the following attribute is inherited (↓ a⇔ α ∈ I(n))
or ↑ denoting a synthesized attribute (↑ a⇔ α ∈ T (n.parent)). Terminal sym-
bols cannot have attributes. Again, notice that the identifiers a, b, and c do
not denote the attribute names but expressions that define their values. At-
tributes in EAGs are solely identified by their position in the non-terminal
symbol specifications.

How this approach works is best understood using a simple example bor-
rowed from [662]. Assume the grammar G1 = (N,Σ,P, S) with the non-
terminal symbols N = {S,X, Y, Z}, the alphabet Σ = {x, y, z, ε}, produc-
tions P as defined below and the start symbol S. Additionally, X,Y , and Z
are equipped with one synthesized attribute v ∈ N0.

1 <S> ::= <X ↑v><Y ↑v><Z ↑v>
2 <X ↑v+1> ::= <X ↑v>"x"
3 <Y ↑v+1> ::= <Y ↑v>"y"
4 <Z ↑v+1> ::= <Z ↑v>"z"
5 <X ↑0> ::= ε
6 <Y ↑0> ::= ε
7 <Z ↑0> ::= ε

Listing 37.8: The small example G1 for extended attribute grammars.

In the listing, below a typical expansion of G1 is illustrated. Since the
same attribute v occurs in all three non-terminals X, Y , and Z, the terminal
symbols x, y, and z will always occur equally often. The context-sensitive
grammar specified in 37.8 thus defines sentences in the form xnynzn.

1 <S> −→ <X ↑2><Y ↑2><Z ↑2> −→ <X ↑1>x<Y ↑2><Z ↑2>
2 −→ <X ↑0>xx <Y ↑2><Z ↑2> −→ xx <Y ↑2><Z ↑2>
3 −→ xx <Y ↑1>y<Z ↑2> −→ xx <Y ↑0>yy <Z ↑2>
4 −→ xxyy <Z ↑2> −→ xxyy <Z ↑1>z −→ xxyy <Z ↑0>zz
5 −→ xxyyzz

Listing 37.9: A typical expansion of G1.

Another example for extended attribute grammars, again borrowed from
[662], are the binary numbers. We can define a grammar G2 = (N,Σ,P, S) for
all binary numbers where the start symbol S will have an attribute including
the value of number represented by the generated sentence. Here we need
three non-terminal symbols N = {S, T,B} and only two terminal symbols
Σ = {0, 1}. The productions P are specified as follows:

1 <S ↑b> ::= <T ↓0 ↑b>
2 <T ↓a ↑b> ::= <B ↓a ↑b>
3 <T ↓a ↑b+c> ::= <T ↓a+1 ↑b><B ↓a ↑c>
4 <B ↓a ↑0> ::= "0"

5 <B ↓a ↑2a> ::= "1"

Listing 37.10: An extended attribute grammar G2 for binary numbers.

37.3 Grammars and Languages 623

Figure 37.14 illustrates one possible expansion of the start symbol S with
the extended attribute grammar G2. As you can see, S has attached the (dec-
imal) value 10 corresponding to the (binary) value 1010 of the binary string
represented by the generated sentence.

<S 10>

<T 0 10>

<B 0 0><T 1 10>

<B 3 8>

<B 2 0><T 3 8>

<B 1 2><T 2 8>

“1” “0” “1” “0”

Fig. 37.14: One possible expansion of the example grammar G2.

Extended attribute grammars are sufficient to specify the syntax and se-
mantics of many programming languages [1303].

37.3.8 Adaptable Grammar

Definition 244 (Adaptable Grammar). An adaptable grammar87 G =
(N,Σ,P, S) is a formal grammar in which the set of non-terminal symbols N ,
the set of terminal symbols Σ and the set of productions P may vary during
parsing [662].

87 See http://en.wikipedia.org/wiki/Adaptive_grammar [accessed 2007-07-13], but
notice that they call it “adaptive grammars” and even refer to John Shut’s mas-
ters thesis [662] where they are called “adaptable grammars”.

http://en.wikipedia.org/wiki/Adaptive_grammar

624 37 Theoretical Computer Science

Shutt furthermore discusses recursive adaptable grammars (RAG) which
are a turning powerful formalism but yet retain the elegance of context-free
grammars.

37.3.9 Christiansen Grammars

Christiansen introduces an adaptable grammar model that combines extended
attribute grammars with the ability to adapt according to Definition 244
[665, 1304, 1305].

Unfortunately, Christiansen calls his adaptable attribute grammars
“generative grammars” [1306, 1307] which has already another meaning
(see Section 37.3.2 on page 616). We therefore resort to the term “Chris-
tiansen Grammars” coined by Shutt [662] from whom we again will borrow
the examples. As described in [665, 1305], a Christiansen grammar is an ex-
tended attribute grammar where the first attribute of each non-terminal sym-
bol n ∈ N is inherited and a Christiansen grammar itself. This attribute is
called language attribute and the expansion of the non-terminal symbol it
belongs to must be done according to the grammar represented by it.

1 <n ↓g la lb ...>

The statement X<n ↓g la . . .>Z ::= XYZ (with X, Y, Z ∈ V and n ∈ N)
hence only holds if <n ↓g la . . .>::= Y according to the grammar attribute
g.

Let us start with a simple example grammar G1 = (N,Σ,P, S) with the
non-terminal symbols alpha-list and alpha, the Latin alphabet as set of ter-
minal symbols Σ, the alpha-list as start symbol S and the set of productions
P as specified below.

1 <alpha -list ↓g ↑w> ::= <alpha ↓g ↑w>
2 <alpha -list ↓g ↑w1◦w2 > ::= <alpha ↓g ↑w1 ><alpha -list ↓g ↑w2 >
3 <alpha ↓g ↑"a"> ::= "a"

4 . . .
5 <alpha ↓g ↑"z"> ::= "z"

Listing 37.11: Christiansen grammar creating character strings.

It clearly generates the character strings over the Latin alphabet. The start
symbol has two attributes, the inherited Christiansen grammar g which will
be handed down to all generated symbols. The attribute w on the other hand
is synthesized from these symbols and contains the character string generated.

Basing on this grammar which still is a mere EAG in principle, we build
the Christiansen grammar G2 = (N,Σ,P, S) for a subset of the C (or Java)
programming language where all value assignments are valid:

1 . . .
2 <program ↓g0 > ::= "{"<decl -list ↓g0 ↑g1 >
3 <stmnt -list ↓g1 >"}"
4 <decl -list ↓g ↑g> ::= ε

37.3 Grammars and Languages 625

5 <decl -list ↓g0 ↑g2 > ::= <decl ↓g0 ↑g2 ><decl -list ↓g1 ↑g2 >
6 <decl ↓g ↑g+new -rule > ::= "int" <alpha -list ↓g ↑w> ";"

7 where new -rule is <id ↓h> ::= w

8 <stmnt -list ↓g> ::= ε
9 <stmnt -list ↓g> ::= <stmnt ↓g><stmnt -lst ↓g>

10 <stmnt ↓g> ::= <id ↓g> "=" <id ↓g> ";"

Listing 37.12: Christiansen grammar for a simple programming language.

Whenever the non-terminal symbol decl is expanded, it also adds a new
rule to the grammar. By introducing a new production for the symbol id, the
declared variable becomes available in stmt since the grammar is synthesized
upwards to the production for program and then inherited downwards into
stmt-lst. A more thorough example of Christiansen grammars in the context
of genetic programming can be found in listing 4.7.

37.3.10 Tree-Adjoining Grammar

Tree-adjoining grammars88 (TAG, also called tree-adjunct grammars) are
another method for defining formal grammars developed by Aravind Joshi
[1308, 1309, 1310]. Different than BNF and EBNF, they are based on trees
instead of plain strings. The inner nodes of the (fully expanded) trees corre-
spond to non-terminal symbols and the leaf to terminal symbols.

S

NP VP

V NP

John likes Lyn

correspond to non-terminal symbols

correspond to terminal symbols

Fig. 37.15: An example TAG tree.

The simple TAG tree illustrated in Figure 37.15 is borrowed from [1310]
as well as some of the following examples.

The tree structure of tree-adjoining grammar has one striking advantage
compared to the flat rules in context-free grammars: an increased domain of
locality [1309]. If we process for example an EBNF rule, we can only expand
the non-terminal symbols at our current “level”. Below we show that a text in
an EBNF grammar similar to the one of Figure 37.15 could be resolved step

88 http://en.wikipedia.org/wiki/Tree-adjoining_grammar [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Tree-adjoining_grammar

626 37 Theoretical Computer Science

by step. The variable VP expanded in line 8 for instance cannot be accessed
or modified in line 10 anymore, although it is clearly part of the sentence
construction.

1 S ::= NP , VP ;

2 NP ::= "John" | "Lyn" ;

3 VP ::= V, NP ;

4 V ::= "likes" ;

5

6 text −→ S

7 text −→ NP VP

8 text −→ "John" VP

9 text −→ "John" V NP

10 text −→ "John" "likes" NP

11 text −→ "John" "likes" "Lyn"

Listing 37.13: Another simple context-free grammar.

The extended domain of locality () in TAG trees is utilized with the two
modification operators substitution and adjunction.

We can substitute a tree β into a tree α if there is a non-terminal leaf
symbol ν in α that has the same label as the root of β. The stump of β then
replaces the node ν in α. In Figure 37.16 we outline how two trees β1 and β2

are substituted into a TAG tree α and a new tree α′ is created.
Substitution is equivalent to the non-terminal expansion in BNF. The

adjunction operator however adds access to the aforementioned layers which
are burried in context-free grammars. In order to perform an adjunction, the
tree α has to include one non-terminal symbol ν at some random place. The
root of the auxiliary tree is also labeled with ν and so is at least one of its
leafs. We now can replace the node marked with ν in α with tree β. Whatever
was attached to ν before now replaces the leaf node ν in β. The leaf node ν in
beta often is additionally marked with an asterisk (∗). Figure 37.17 sketches
such a replacement, with the result that the new sentence α′ now contains the
word “really”.

With adjunction, TAGs are somewhere in between context-sensitive and
context-free grammars.

In the definition of a tree-adjoining grammar G = (N,Σ,A, I, S), A is the
set of auxiliary trees to be used in the adjunction operations. I is the set of
initial trees that can be substituted into existing trees. The unison of I and
A, E = I ∪ A is called the set of elementary trees and replaces the set of
productions P used in Chomsky grammars. N and Σ retain their meaning
as set of non-terminal and terminal symbols respectively. Trees with the non-
terminal symbol X ∈ N as root are called X-type trees. S ∈ N denotes the
starting symbol and there must be at least one S-type elementary tree.

Definition 245 (Lexicalized Tree-adjoining Grammar). A lexicalized
tree-adjoining grammar (LTAG) is a tree-adjoining grammar where each el-

37.3 Grammars and Languages 627

b2

NP

Lyn

NP

John

b1

S

NP VP

V NP

likes

a

S

NP VP

V NP

John likes Lyn

a

Fig. 37.16: An example for the substitution operation.

ementary tree t ∈ E contains a terminal symbol X ∈ Σ. Although they are
more restricted, LTAGs are equivalent to TAGs.

A discussion on derivation trees of tree-adjoining grammars can be found
in Section 4.5.8 on page 174.

37.3.11 S-Expressions

S-expressions89 (where S stands for symbolic) or sexp are data structures for
presenting complex data. They are probably best known for their usage in the
Lisp90 [1311, 1312, 1313] and Scheme91 [1314] programming languages. Their

89 http://en.wikipedia.org/wiki/S-expression [accessed 2007-07-03]

90 http://en.wikipedia.org/wiki/Lisp_programming_language [accessed 2007-07-03]

91 http://en.wikipedia.org/wiki/Scheme_%28programming_language%29 [accessed

2007-07-03]

http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/Lisp_programming_language
http://en.wikipedia.org/wiki/Scheme_%28programming_language%29

628 37 Theoretical Computer Science

John likes Lynreally

NP

VP

V

VP

S

NP

a

S

NP VP

V NP

John likes Lyn

a

VP

VPreally

b

*

Fig. 37.17: An example for the adjunction operation.

most common feature is that they are parenthesized prefix notations (often
also known as Polish notation92).

In 1997, Ron Rivest handed in a standardization draft [1315] for S-
expressions to be considered for publication as RFC. It was however never
approved but is still the foundation for many other publications and RFCs.

1 (defun fibonacci (N)

2 (if (or (zerop N) (= N 1))

3 1

92 http://en.wikipedia.org/wiki/Polish_notation [accessed 2007-07-04]

http://en.wikipedia.org/wiki/Polish_notation

37.3 Grammars and Languages 629

4 (+ (fibonacci (- N 1)) (fibonacci (- N 2)))))

Listing 37.14: A small Lisp-example: How to compute Fibonacci numbers.

Part V

Appendices

A

GNU Free Documentation License (FDL)

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

A.1 Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document ”free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program should
come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is instruction
or reference.

A.2 Applicability and Definitions

This License applies to any manual or other work, in any medium, that con-
tains a notice placed by the copyright holder saying it can be distributed

634 A GNU Free Documentation License (FDL)

under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The ”Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as ”you”. You ac-
cept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related mat-
ters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a mat-
ter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does
not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent
image formats include PNG, XCF and JPG. Opaque formats include propri-
etary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally

A.4 Copying in Quantity 635

available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, ”Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as ”Acknowledgements”, ”Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a section when
you modify the Document means that it remains a section ”Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

A.3 Verbatim Copying

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in Section A.4.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

A.4 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.

636 A GNU Free Documentation License (FDL)

You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

A.5 Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of Section A.3 and Section A.43 above, provided that you release
the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to

the other copyright notices.

A.5 Modifications 637

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled ”History”, Preserve its Title, and add to it

an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled ”Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one

638 A GNU Free Documentation License (FDL)

of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

A.6 Combining Documents

You may combine the Document with other documents released under this
License, under the terms defined in Section A.5 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multi-
ple identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History”
in the various original documents, forming one section Entitled ”History”;
likewise combine any sections Entitled ”Acknowledgements”, and any sections
Entitled ”Dedications”. You must delete all sections Entitled ”Endorsements.”

A.7 Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

A.10 Termination 639

A.8 Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of Section A.4 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

A.9 Translation

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of Section A.5. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the origi-
nal version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (Section A.5) to Preserve its Title (Sec-
tion A.2) will typically require changing the actual title.

A.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically termi-
nate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

640 A GNU Free Documentation License (FDL)

A.11 Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents
To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices
just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts.
A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combi-
nation of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

B

GNU Lesser General Public License (LPGL)

Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts as the

successor of the GNU Library Public License, version 2, hence the version
number 2.1]

B.1 Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenses are intended to
guarantee your freedom to share and change free software–to make sure the
software is free for all its users.

This license, the Lesser General Public License, applies to some specially
designated software packages–typically libraries–of the Free Software Founda-
tion and other authors who decide to use it. You can use it too, but we suggest
you first think carefully about whether this license or the ordinary General
Public License is the better strategy to use in any particular case, based on
the explanations below.

When we speak of free software, we are referring to freedom of use, not
price. Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for this service if
you wish); that you receive source code or can get it if you want it; that you
can change the software and use pieces of it in new free programs; and that
you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distribu-
tors to deny you these rights or to ask you to surrender these rights. These

642 B GNU Lesser General Public License (LPGL)

restrictions translate to certain responsibilities for you if you distribute copies
of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a
fee, you must give the recipients all the rights that we gave you. You must make
sure that they, too, receive or can get the source code. If you link other code
with the library, you must provide complete object files to the recipients, so
that they can relink them with the library after making changes to the library
and recompiling it. And you must show them these terms so they know their
rights.

We protect your rights with a two-step method: (1) we copyright the li-
brary, and (2) we offer you this license, which gives you legal permission to
copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is
no warranty for the free library. Also, if the library is modified by someone
else and passed on, the recipients should know that what they have is not the
original version, so that the original author’s reputation will not be affected
by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restrictive license from a patent holder.
Therefore, we insist that any patent license obtained for a version of the library
must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License. This license, the GNU Lesser General Public
License, applies to certain designated libraries, and is quite different from the
ordinary General Public License. We use this license for certain libraries in
order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a
shared library, the combination of the two is legally speaking a combined
work, a derivative of the original library. The ordinary General Public License
therefore permits such linking only if the entire combination fits its criteria
of freedom. The Lesser General Public License permits more lax criteria for
linking other code with the library.

We call this license the ”Lesser” General Public License because it does
Less to protect the user’s freedom than the ordinary General Public License.
It also provides other free software developers Less of an advantage over com-
peting non-free programs. These disadvantages are the reason we use the or-
dinary General Public License for many libraries. However, the Lesser license
provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage
the widest possible use of a certain library, so that it becomes a de-facto stan-
dard. To achieve this, non-free programs must be allowed to use the library.
A more frequent case is that a free library does the same job as widely used
non-free libraries. In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.

B.2 Terms and Conditions for Copying, Distribution and Modification 643

In other cases, permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software. For
example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, as well as its
variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’
freedom, it does ensure that the user of a program that is linked with the
Library has the freedom and the wherewithal to run that program using a
modified version of the Library.

The precise terms and conditions for copying, distribution and modifica-
tion follow. Pay close attention to the difference between a ”work based on
the library” and a ”work that uses the library”. The former contains code de-
rived from the library, whereas the latter must be combined with the library
in order to run.

B.2 Terms and Conditions for Copying, Distribution and
Modification

1. This License Agreement applies to any software library or other program
which contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Lesser General
Public License (also called ”this License”). Each licensee is addressed as
”you”.
A ”library” means a collection of software functions and/or data prepared
so as to be conveniently linked with application programs (which use some
of those functions and data) to form executables.
The ”Library”, below, refers to any such software library or work which
has been distributed under these terms. A ”work based on the Library”
means either the Library or any derivative work under copyright law: that
is to say, a work containing the Library or a portion of it, either verbatim
or with modifications and/or translated straightforwardly into another
language. (Hereinafter, translation is included without limitation in the
term ”modification”.)
”Source code” for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the
library.
Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running a
program using the Library is not restricted, and output from such a pro-
gram is covered only if its contents constitute a work based on the Library
(independent of the use of the Library in a tool for writing it). Whether

644 B GNU Lesser General Public License (LPGL)

that is true depends on what the Library does and what the program that
uses the Library does.

2. You may copy and distribute verbatim copies of the Library’s complete
source code as you receive it, in any medium, provided that you conspic-
uously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and distribute a copy of
this License along with the Library.
You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Library or any portion of it,
thus forming a work based on the Library, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating

that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to

all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of

data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then
you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still
operates, and performs whatever part of its purpose remains mean-
ingful.
(For example, a function in a library to compute square roots has a
purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied func-
tion or table used by this function must be optional: if the application
does not supply it, the square root function must still compute square
roots.)
These requirements apply to the modified work as a whole. If identifi-
able sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Library.

B.2 Terms and Conditions for Copying, Distribution and Modification 645

In addition, mere aggregation of another work not based on the Li-
brary with the Library (or with a work based on the Library) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

4. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do this,
you must alter all the notices that refer to this License, so that they refer
to the ordinary GNU General Public License, version 2, instead of to this
License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies
and derivative works made from that copy.
This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

5. You may copy and distribute the Library (or a portion or derivative of
it, under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange.
If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code
from the same place satisfies the requirement to distribute the source code,
even though third parties are not compelled to copy the source along with
the object code.

6. A program that contains no derivative of any portion of the Library, but
is designed to work with the Library by being compiled or linked with it,
is called a ”work that uses the Library”. Such a work, in isolation, is not
a derivative work of the Library, and therefore falls outside the scope of
this License.
However, linking a ”work that uses the Library” with the Library cre-
ates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a ”work that uses the library”. The
executable is therefore covered by this License. Section 6 states terms for
distribution of such executables.
When a ”work that uses the Library” uses material from a header file that
is part of the Library, the object code for the work may be a derivative
work of the Library even though the source code is not. Whether this is
true is especially significant if the work can be linked without the Library,
or if the work is itself a library. The threshold for this to be true is not
precisely defined by law.
If such an object file uses only numerical parameters, data structure lay-
outs and accessors, and small macros and small inline functions (ten lines

646 B GNU Lesser General Public License (LPGL)

or less in length), then the use of the object file is unrestricted, regardless
of whether it is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute
the object code for the work under the terms of Section 6. Any executables
containing that work also fall under Section 6, whether or not they are
linked directly with the Library itself.

7. As an exception to the Sections above, you may also combine or link a
”work that uses the Library” with the Library to produce a work contain-
ing portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the
customer’s own use and reverse engineering for debugging such modifica-
tions.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright notice
for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-
readable source code for the Library including whatever changes were
used in the work (which must be distributed under Sections 1 and
2 above); and, if the work is an executable linked with the Library,
with the complete machine-readable ”work that uses the Library”,
as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the
contents of definitions files in the Library will not necessarily be able
to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library.
A suitable mechanism is one that (1) uses at run time a copy of the
library already present on the user’s computer system, rather than
copying library functions into the executable, and (2) will operate
properly with a modified version of the library, if the user installs one,
as long as the modified version is interface-compatible with the version
that the work was made with.

c) Accompany the work with a written offer, valid for at least three years,
to give the same user the materials specified in Subsection 6a, above,
for a charge no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified
materials from the same place.

e) Verify that the user has already received a copy of these materials or
that you have already sent this user a copy.

B.2 Terms and Conditions for Copying, Distribution and Modification 647

For an executable, the required form of the ”work that uses the Library”
must include any data and utility programs needed for reproducing the
executable from it. However, as a special exception, the materials to be
distributed need not include anything that is normally distributed (in ei-
ther source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless
that component itself accompanies the executable.
It may happen that this requirement contradicts the license restrictions of
other proprietary libraries that do not normally accompany the operating
system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

8. You may place library facilities that are a work based on the Library side-
by-side in a single library together with other library facilities not covered
by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other
library facilities is otherwise permitted, and provided that you do these
two things:
a) Accompany the combined library with a copy of the same work based

on the Library, uncombined with any other library facilities. This must
be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part
of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

9. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense, link with, or distribute the Library is void,
and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in
full compliance.

10. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Library or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Library (or any work based on the Library), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

11. Each time you redistribute the Library (or any work based on the Library),
the recipient automatically receives a license from the original licensor to
copy, distribute, link with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties with this License.

12. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are

648 B GNU Lesser General Public License (LPGL)

imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from
the conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at
all. For example, if a patent license would not permit royalty-free redistri-
bution of the Library by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license prac-
tices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent appli-
cation of that system; it is up to the author/donor to decide if he or she
is willing to distribute software through any other system and a licensee
cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

13. If the distribution and/or use of the Library is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Library under this License may add an explicit geo-
graphical distribution limitation excluding those countries, so that distri-
bution is permitted only in or among countries not thus excluded. In such
case, this License incorporates the limitation as if written in the body of
this License.

14. The Free Software Foundation may publish revised and/or new versions
of the Lesser General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Library spec-
ifies a version number of this License which applies to it and ”any later
version”, you have the option of following the terms and conditions ei-
ther of that version or of any later version published by the Free Software
Foundation. If the Library does not specify a license version number, you
may choose any version ever published by the Free Software Foundation.

15. If you wish to incorporate parts of the Library into other free programs
whose distribution conditions are incompatible with these, write to the au-
thor to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we some-
times make exceptions for this. Our decision will be guided by the two

B.4 How to Apply These Terms to Your New Libraries 649

goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

B.3 No Warranty

1. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY ”AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.

2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY
OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

B.4 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible
use to the public, we recommend making it free software that everyone can
redistribute and change. You can do so by permitting redistribution under
these terms (or, alternatively, under the terms of the ordinary General Public
License).

To apply these terms, attach the following notices to the library. It is safest
to attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the ”copyright” line
and a pointer to where the full notice is found.

650 B GNU Lesser General Public License (LPGL)

one line to give the library’s name and an idea of what it does. Copyright
(C) year name of author

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.

This library is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ”copyright disclaimer” for the library, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library ‘Frob’
(a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990 Ty Coon, President of Vice

That’s all there is to it!

C

Credits and Contributors

In this section I want to give credits to whom they deserve. So its props to:

Stefan Achler
For working together at the 2007 DATA-MINING-CUP Contest.
see Section 18.1.2 on page 300

Steffen Bleul
For working together at the 2006 and 2007 Web Service Challenge.
see Section 18.2 on page 312

Distributed Systems Group, University of Kassel
To the whole Distributed Systems Group at the University of Kassel for be-
ing supportive and coming over again and again with new ideas and helpful
advices.
Each and every research project described in this book.

Gan Min
For careful reading and pointing out inconsistencies and spelling mistakes.
Especially in the Pareto optimization area Section 1.3.2 on page 14.

Kurt Geihs
For being supportive and contributing to many of my research projects.
see for example Section 18.1.2 on page 300 and [551, 552, 548, 1055, 1056]

Martin Göb
For working together at the 2007 DATA-MINING-CUP Contest.
see Section 18.1.2 on page 300

Ibrahim Ibrahim
For careful proofreading.
see Chapter 1 on page 3

Roland Reichle

652 C Credits and Contributors

For discussing with me the relation of maximum likelihood estimation and
symbolic regression.
see Section 35.6.1 on page 552

Richard Seabrook
For pointing out mistakes in some of the set theory definitions.
see Chapter 34 on page 501

Christian Voigtmann
For working together at the 2007 DATA-MINING-CUP Contest.
see Section 18.1.2 on page 300

Wibul Wongpoowarak
For valuable suggestions in different areas, like including random optimization.
see Section 35.7.1 on page 560 [880], Chapter 9 on page 227

Michael Zapf
For helping me to make many sections more comprehensible.
See for instance Section 20.1.1 on page 337, Section 18.1.2 on page 300,
and Section 4.5 on page 159.

D

Citation Suggestion

@book{W2008GOEB,
author = {Thomas Weise},
title = {Global Optimization Algorithms – Theory and Application},
year = {2008},
month = jan # {~4,},
howpublished = {Online as e-book},
edition = {2008-1-4},
institution = {University of Kassel, Distributed Systems Group},
organization = {University of Kassel, Distributed Systems Group},
publisher = {Thomas Weise},
copyright = {Copyright (c) 2006-2008 Thomas Weise, licensed under GNU

FDL},
keywords = {global optimization, evolutionary computation, evolutionary

algorithms, genetic algorithms, genetic programming,
evolution strategy, learning classifier systems, Sigoa, Dgpf,
Java},

language = {en},
url = {http://www.it-weise.de/},
url = {http://www.sigoa.org/},
url = {http://www.vs.uni-kassel.de/staff/researchers/weise/},
note = {Online available at http://www.it-weise.de/}

}

%0 Book
%A Weise, Thomas
%T Global Optimization Algorithms – Theory and Application
%F Thomas Weise: “Global Optimization Algorithms – Theory and Application”
%I Thomas Weise
%D 2008-1-4
%8 2008-1-4
%7 2008-1-4
%9 Online available as e-book at http://www.it-weise.de/

http://www.it-weise.de/
http://www.sigoa.org/
http://www.vs.uni-kassel.de/staff/researchers/weise/
http://www.it-weise.de/
http://www.it-weise.de/

References

[1] Jörg Heitkötter and David Beasley, editors. Hitch-Hiker’s Guide
to Evolutionary Computation: A List of Frequently Asked Ques-
tions (FAQ). ENCORE (The EvolutioNary Computation REpos-
itory Network), 1998. USENET: comp.ai.genetic. Online available
at http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm and http://

alife.santafe.edu/~joke/encore/www/ [accessed 2007-07-03].
[2] Wikipedia. Online available at http://en.wikipedia.org/ [accessed 2008-

1-4].
[3] Linus Pauling. The Nature of the Chemical Bond. Cornell Univ. Press,

Ithaca, New York, ISBN: 0-8014-0333-2, 1960. Online available at
http://osulibrary.oregonstate.edu/specialcollections/coll/

pauling/ [accessed 2007-07-12].
[4] Herbert Spencer. The Principles of Biology, volume 1. Lon-

don & Edinburgh: Williams and Norgate, first edition, 1864 and
1867. Online available at http://www.archive.org/details/

ThePrinciplesOfBiology [accessed 2007-08-05].
[5] Charles Darwin. On the Origin of Species. John Murray, sixth edi-

tion, November 1859. Online available at http://www.gutenberg.

org/etext/1228 [accessed 2007-08-05].
[6] Arnold Neumaier. Global optimization and constraint satisfaction. In

I. Bomze, I. Emiris, Arnold Neumaier, and L. Wolsey, editors, Pro-
ceedings of GICOLAG workshop (of the research project Global Opti-
mization, Integrating Convexity, Optimization, Logic Programming and
Computational Algebraic Geometry), December 2006. Online available
at http://www.mat.univie.ac.at/~neum/glopt.html [accessed 2007-07-

12].
[7] P. M. Pardalos, Nguyen Van Thoai, and Reiner Horst. Introduction to

Global Optimization. Nonconvex Optimization and Its Applications.
Springer, second edition, ISBN: 978-0792367567, December 31, 2000.
First edition: June 30, 1995, ISBN: 978-0792335566.

http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
http://alife.santafe.edu/~joke/encore/www/
http://alife.santafe.edu/~joke/encore/www/
http://en.wikipedia.org/
http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/
http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/
http://www.archive.org/details/ThePrinciplesOfBiology
http://www.archive.org/details/ThePrinciplesOfBiology
http://www.gutenberg.org/etext/1228
http://www.gutenberg.org/etext/1228
http://www.mat.univie.ac.at/~neum/glopt.html

656 REFERENCES

[8] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern
Heuristics. Springer, second, revised and extended edition, ISBN: 978-
3540224945, December 2004.

[9] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, edi-
tors. Modern Heuristic Search Methods. Wiley, ISBN: 978-0471962809,
December 1996.

[10] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. The Addison-Wesley series in artificial intelligence.
Addison-Wesley Pub (Sd), ISBN: 978-0201055948, April 1984.

[11] John R. Koza. Genetic Programming, On the Programming of Com-
puters by Means of Natural Selection. A Bradford Book, The MIT
Press, Cambridge, Massachusetts, 1992 first edition, 1993 second edi-
tion, ISBN: 0262111705, 1992.

[12] Sewall Wright. The roles of mutation, inbreeding, crossbreeding
and selection in evolution. In Proceedings of the Sixth Annual
Congress of Genetics, 1932, volume 1, pages 356–366. Online available
at http://www.blackwellpublishing.com/ridley/classictexts/

wright.pdf [accessed 2007-08-11].
[13] Stuart Alan Kauffman. The Origins of Order: Self-Organization and

Selection in Evolution. Oxford University Press, ISBN: 0195079515,
May 1993.

[14] Sergey Gavrilets. Fitness Landscapes and the Origin of Species. Num-
ber MPB-41 in Monographs in Population Biology. Princeton Univer-
sity Press, ISBN: 069111983X, July 2004.

[15] Niko Beerenwinkel, Lior Pachter, and Bernd Sturmfels. Epistasis and
shapes of fitness landscapes, 2006. Eprint arXiv:q-bio/0603034. Online
available at http://arxiv.org/abs/q-bio.PE/0603034 [accessed 2007-08-

05].
[16] Richard Dawkins. Climbing Mount Improbable. Penguin Books (UK)

and W.W. Norton & Company (USA), London, 1 edition, ISBN:
0670850187 and 0140179186, ASIN: 0393039307 and 0393316823, 1996.

[17] Melanie Mitchell. An Introduction to Genetic Algorithms. Complex
Adaptive Systems. The MIT Press, reprint edition, ISBN: 0-2626-3185-
7, February 1998.

[18] William B. Langdon and Riccardo Poli. Foundations of Genetic Pro-
gramming. Springer, Berlin, first edition, ISBN: 3540424512, January
2002.

[19] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary
Computing. Natural Computing Series. Springer, first edition, ISBN:
978-3540401841, November 2003.

[20] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Al-
gorithms. Wiley Interscience Series in Systems and Optimization. John
Wiley & Sons, Inc., New York, NY, USA, ISBN: 978-0471873396, May
2001.

http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf
http://arxiv.org/abs/q-bio.PE/0603034

REFERENCES 657

[21] Carlos Artemio Ceollo Coello. An updated survey of evolutionary
multiobjective optimization techniques: State of the art and future
trends. In 1999 Congress on Evolutionary Computation, 1999, pages
3–13. See proceedings [249]. Online available at http://citeseer.

ist.psu.edu/coellocoello99updated.html [accessed 2007-08-25].
[22] Carlos M. Fonseca and Peter J. Fleming. Multiobjective opti-

mization and multiple constraint handling with evolutionary algo-
rithms – part i: A unified formulation. IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans,
28(1):26–37, 1998. Online available at http://citeseer.ist.psu.

edu/fonseca98multiobjective.html [accessed 2007-07-29]. See also [42].
[23] Kalyanmoy Deb. Evolutionary algorithms for multi-criterion optimiza-

tion in engineering design. In Kaisa Miettinen, Marko M. Mäkelä,
Pekka Neittaanmäki, and Jacques Periaux, editors, Evolutionary Al-
gorithms in Engineering and Computer Science, pages 135–161. John
Wiley & Sons, Ltd, Chichester, UK, 1999. Online available at http://
citeseer.ist.psu.edu/deb99evolutionary.html and http://www.

lania.mx/~ccoello/EMOO/deb99.ps.gz [accessed 2007-08-25].
[24] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory.

The MIT Press, ISBN: 0-2626-5040-1, July 1994.
[25] Drew Fudenberg and Jean Tirole. Game Theory. The MIT Press,

ISBN: 0-2620-6141-4, 978-0-262-06141-4, August 1991.
[26] Vira Chankong and Yacov Y. Haimes. Multiobjective Decision Making

Theory and Methodology. North-Holland, Elsevier, Dover Publications,
New York, ISBN: 978-0444007100, 978-0486462899, January 1983.

[27] Ralph E. Steuer. Multiple Criteria Optimization: Theory, Computa-
tion and Application. Krieger Pub Co, reprint edition, ISBN: 978-
0894643934, August 1989.

[28] Yacov Y. Haimes and Ralph E. Steuer, editors. Proceedings of the 14th
International Conference on Multiple Criteria Decision Making: Re-
search and Practice in Multi Criteria Decision Making (MCDM’1998),
University of Virginia, Charlottesville, Virginia, USA, June 12-18,
1998, volume 487 of Lecture Notes in Economics and Mathematical Sys-
tems. Springer, ISBN: 978-3540672661. See http://www.virginia.

edu/~risk/mcdm98.html [accessed 2007-09-10]. Published June 15, 2000.
[29] E. A. Galperin. Pareto analysis vis-à-vis balance space approach

in multiobjective global optimization. Journal of Optimization
Theory and Applications, 93(3):533–545, June 1997. Online available
at http://www.springerlink.com/content/m71638106736h581/

fulltext.pdf and http://dx.doi.org/10.1023/A:1022639028824

[accessed 2007-09-10].
[30] Aharon Ben-Tal. Characterization of pareto and lexicographic optimal

solutions. In Proceedings of the Third Conference on Multiple Crite-
ria Decision Making: Theory and Application, 1979, pages 1–11. See
proceedings [153].

http://citeseer.ist.psu.edu/coellocoello99updated.html
http://citeseer.ist.psu.edu/coellocoello99updated.html
http://citeseer.ist.psu.edu/fonseca98multiobjective.html
http://citeseer.ist.psu.edu/fonseca98multiobjective.html
http://citeseer.ist.psu.edu/deb99evolutionary.html
http://citeseer.ist.psu.edu/deb99evolutionary.html
http://www.lania.mx/~ccoello/EMOO/deb99.ps.gz
http://www.lania.mx/~ccoello/EMOO/deb99.ps.gz
http://www.virginia.edu/~risk/mcdm98.html
http://www.virginia.edu/~risk/mcdm98.html
http://www.springerlink.com/content/m71638106736h581/fulltext.pdf
http://www.springerlink.com/content/m71638106736h581/fulltext.pdf
http://dx.doi.org/10.1023/A:1022639028824

658 REFERENCES

[31] T. Satoh, Tadashi Ishihara, and H. Inooka. Systematic design via the
method of inequalities. Control Systems Magazine, IEEE, 16:57–65,
October 1996.

[32] J. F. Whidborne, D.-W. Gu, and I. Postlethwaite. Algorithms for the
method of inequalities – a comparative study. In Procedings of the
1995 American Control Conference, Seattle, Washington, 1995, pages
3393–3397.

[33] P. Zhang and A.H. Coonick. Coordinated synthesis of pss parameters in
multi-machine power systems using the method of inequalities applied
to genetic algorithms. IEEE Transactions on Power Systems, 15:811–
816, May 2000.

[34] P. B. Wilson and M. D. Macleod. Low implementation cost iir digital
filter design using genetic algorithms. In Proceedings of the IEE/IEEE
Workshop on Natural Algorithms in Signal Processing, Chelmsford,
UK, 1993, pages 1–8.

[35] Abraham Charnes and William Wager Cooper. Management Models
and Industrial Applications of Linear Programming. John Wiley &
Sons Inc, New York, ISBN: 978-0471148500, December 1961.

[36] Kay Chen Tan, Eik Fun Khor, Tong Heng Lee, and Rama-
subramanian Sathikannan. An evolutionary algorithm with ad-
vanced goal and priority specification for multi-objective opti-
mization. Journal of Artificial Intelligence Research, 18:183–
215, February 2003. Online available at http://www.jair.org/

media/842/live-842-1969-jair.pdf and http://citeseer.ist.

psu.edu/tan03evolutionary.html [accessed 2007-08-25].
[37] Kalyanmoy Deb. Nonlinear goal programming using multi-objective

genetic algorithms. Journal of the Operational Research Society,
52(3):291–302, March 2001. Online available at http://www.lania.

mx/~ccoello/EMOO/deb01d.ps.gz [accessed 2007-08-25].
[38] Kalyanmoy Deb. Solving goal programming problems using multi-

objective genetic algorithms. In Proceedings of Congress on Evolu-
tionary Computation, 1999, volume 1, pages 77–84. See proceedings
[249].

[39] Ruhul A. Sarker, Hussein Abbas, and Samin Karim. An evolution-
ary algorithm for constrained multiobjective optimization problems.
In Proceedings of the 5th Australia-Japan Joint Workshop on In-
telligent & Evolutionary Systems (AJWIS’2001), The University of
Otago, Dunedin, New Zealand, November 2001, pages 113–122. Online
available at http://www.lania.mx/~ccoello/EMOO/sarker01a.pdf.

gz [accessed 2007-08-25].
[40] Hartmut Pohlheim. Geatbx introduction – evolutionary al-

gorithms: Overview, methods and operators. Technical re-
port, November 2005. Documentation for GEATbx version
3.7 (Genetic and Evolutionary Algorithm Toolbox for use with

http://www.jair.org/media/842/live-842-1969-jair.pdf
http://www.jair.org/media/842/live-842-1969-jair.pdf
http://citeseer.ist.psu.edu/tan03evolutionary.html
http://citeseer.ist.psu.edu/tan03evolutionary.html
http://www.lania.mx/~ccoello/EMOO/deb01d.ps.gz
http://www.lania.mx/~ccoello/EMOO/deb01d.ps.gz
http://www.lania.mx/~ccoello/EMOO/sarker01a.pdf.gz
http://www.lania.mx/~ccoello/EMOO/sarker01a.pdf.gz
http://www.GEATbx.com#GEATbx.com.,

REFERENCES 659

Matlab). Online available at http://www.geatbx.com/download/

GEATbx_Intro_Algorithmen_v38.pdf [accessed 2007-07-03].
[41] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary

algorithms in multiobjective optimization. Evolutionary Computation,
3(1):1–16, 1995. Online available at http://citeseer.ist.psu.edu/
108172.html [accessed 2007-07-29].

[42] Carlos M. Fonseca and Peter J. Fleming. Multiobjective optimization
and multiple constraint handling with evolutionary algorithms – part
ii: Application example. IEEE Transactions on Systems, Man, and
Cybernetics, Part A, 28(1):38–47, 1998. Online available at http://

citeseer.ist.psu.edu/27937.html [accessed 2007-09-19]. See also [22].
[43] Carlos M. Fonseca. Decision making in evolutionary optimization (ab-

stract of invited talk). In 4th International Conference on Evolutionary
Multi-Criterion Optimization, 2007. See proceedings [265].

[44] Carlos M. Fonseca and Peter J. Fleming. Multiobjective optimiza-
tion and multiple constraint handling with evolutionary algorithms. In
Practical Approaches to Multi-Objective Optimization, 2004. See pro-
ceedings [256]. Online available at http://drops.dagstuhl.de/opus/
volltexte/2005/237/ [accessed 2007-09-19].

[45] Carlos M. Fonseca. Preference articulation in evolutionary multiob-
jective optimisation – plenary talk. In Proceedings of the Seventh In-
ternational Conference on Hybrid Intelligent Systems, HIS 2007, 2007.
See proceedings [132].

[46] Eik Fun Khor, Kay Chen Tan, Tong Heng Lee, and C. K. Goh. A
study on distribution preservation mechanism in evolutionary multi-
objective optimization. Artificial Intelligence Review, 23(1):31–33,
March 2005. Online available at http://www.springerlink.com/

content/h3w111g418gn1045/fulltext.pdf [accessed 2007-08-25].
[47] J. Shekel. Test functions for multimodal search techniques. In

Proceedings of the Fifth Annual Princeton Conference on Informa-
tion Science and Systems, Princeton, NJ, USA, 1971. See also
http://en.wikipedia.org/wiki/Shekel_function [accessed 2007-11-06]

and http://www-optima.amp.i.kyoto-u.ac.jp/member/student/

hedar/Hedar_files/TestGO_files/Page2354.htm [accessed 2007-11-06].
[48] Anatas Žilinskas. Algorithm as 133: Optimization of one-dimensional

multimodal functions. Applied Statistics, 27(3):367–375, 1978.
[49] Rasmus K. Ursem. Models for Evolutionary Algorithms and Their Ap-

plications in System Identification and Control Optimization. PhD the-
sis, Department of Computer Science, University of Aarhus, Denmark,
April 2003. Online available at http://www.daimi.au.dk/~ursem/

publications/RKU_thesis_2003.pdf and http://citeseer.ist.

psu.edu/572321.html [accessed 2007-08-14].
[50] J. David Schaffer, Larry J. Eshelman, and Daniel Offutt. Spurious

correlations and premature convergence in genetic algorithms. In Pro-

http://www.geatbx.com/download/GEATbx_Intro_Algorithmen_v38.pdf
http://www.geatbx.com/download/GEATbx_Intro_Algorithmen_v38.pdf
http://citeseer.ist.psu.edu/108172.html
http://citeseer.ist.psu.edu/108172.html
http://citeseer.ist.psu.edu/27937.html
http://citeseer.ist.psu.edu/27937.html
http://drops.dagstuhl.de/opus/volltexte/2005/237/
http://drops.dagstuhl.de/opus/volltexte/2005/237/
http://www.springerlink.com/content/h3w111g418gn1045/fulltext.pdf
http://www.springerlink.com/content/h3w111g418gn1045/fulltext.pdf
http://en.wikipedia.org/wiki/Shekel_function
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2354.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2354.htm
http://www.daimi.au.dk/~ursem/publications/RKU_thesis_2003.pdf
http://www.daimi.au.dk/~ursem/publications/RKU_thesis_2003.pdf
http://citeseer.ist.psu.edu/572321.html
http://citeseer.ist.psu.edu/572321.html

660 REFERENCES

ceedings of the First Workshop on Foundations of Genetic Algorithms
(FOGA), June 1990, pages 102–112. See proceedings [439].

[51] Günter Rudolph. Self-adaptive mutations may lead to premature con-
vergence. IEEE Transactions on Evolutionary Computation, 5(4):410–
414, 2001. Also: technical report CI–73/99 of Fachbereich Informatik,
Universität Dortmund, 44221 Dortmund, Germany. Online available at
http://citeseer.ist.psu.edu/444363.html [accessed 2007-07-28].

[52] Larry J. Eshelman and J. David Schaffer. Preventing premature con-
vergence in genetic algorithms by preventing incest. In ICGA, Proceed-
ings of the 4th International Conference on Genetic Algorithms, 1991,
pages 115–122. See proceedings [445].

[53] Shana Shiang-Fong Smith. Using multiple genetic operators to reduce
premature convergence in genetic assembly planning. Computers in
Industry, 54(1):35–49, 2004.

[54] John Henry Holland. Genetic algorithms. Scientific American,
267(1):44–50, July 1992. Online available at http://www.econ.

iastate.edu/tesfatsi/holland.GAIntro.htm and http://www.cc.

gatech.edu/~turk/bio_sim/articles/genetic_algorithm.pdf [ac-

cessed 2007-08-29].
[55] Agoston E. Eiben and C. A. Schippers. On evolutionary ex-

ploration and exploitation. Fundamenta Informaticae, 35(1-4):35–
50, 1998. Online available at http://www.cs.vu.nl/~gusz/

papers/FunInf98-Eiben-Schippers.ps and http://citeseer.ist.

psu.edu/eiben98evolutionary.html [accessed 2007-08-22].
[56] Nitin Muttil and Shie-Yui Liong. Superior exploration–exploitation

balance in shuffled complex evolution. Journal of Hydraulic Engineer-
ing, 130(12):1202–1205, December 2004.

[57] Heni Ben Amor and Achim Rettinger. Intelligent exploration for ge-
netic algorithms: Using self-organizing maps in evolutionary computa-
tion. In GECCO 05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, 2005, pages 1531–1538. See proceedings
[299]. Online available at http://doi.acm.org/10.1145/1068009.

1068250 [accessed 2007-08-29].
[58] Kalyanmoy Deb. Genetic algorithms for optimization. Techni-

cal report, Kanpur Genetic Algorithms Laboratory (KanGAL), Kan-
pur, PIN 208 016, India, KanGAL, Kanpur, PIN 208 016, India,
2001. KanGAL Report Number 2001002, Online available at http://
citeseer.ist.psu.edu/604908.html and http://www.iitk.ac.in/

kangal/papers/isna.ps.gz [accessed 2007-07-28].
[59] Gulshan Singh and Kalyanmoy Deb. Comparison of multi-modal op-

timization algorithms based on evolutionary algorithms. In GECCO
’06: Proceedings of the 8th annual conference on Genetic and evolu-
tionary computation, 2006, pages 1305–1312. See proceedings [298].
Online available at http://doi.acm.org/10.1145/1143997.1144200
[accessed 2007-09-10].

http://citeseer.ist.psu.edu/444363.html
http://www.econ.iastate.edu/tesfatsi/holland.GAIntro.htm
http://www.econ.iastate.edu/tesfatsi/holland.GAIntro.htm
http://www.cc.gatech.edu/~turk/bio_sim/articles/genetic_algorithm.pdf
http://www.cc.gatech.edu/~turk/bio_sim/articles/genetic_algorithm.pdf
http://www.cs.vu.nl/~gusz/papers/FunInf98-Eiben-Schippers.ps
http://www.cs.vu.nl/~gusz/papers/FunInf98-Eiben-Schippers.ps
http://citeseer.ist.psu.edu/eiben98evolutionary.html
http://citeseer.ist.psu.edu/eiben98evolutionary.html
http://doi.acm.org/10.1145/1068009.1068250
http://doi.acm.org/10.1145/1068009.1068250
http://citeseer.ist.psu.edu/604908.html
http://citeseer.ist.psu.edu/604908.html
http://www.iitk.ac.in/kangal/papers/isna.ps.gz
http://www.iitk.ac.in/kangal/papers/isna.ps.gz
http://doi.acm.org/10.1145/1143997.1144200

REFERENCES 661

[60] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zit-
zler. On the convergence and diversity-preservation properties
of multi-objective evolutionary algorithms. Technical Report 108,
Computer Engineering and Networks Laboratory (TIK), Depart-
ment of Electrical Engineering, Swiss Federal Institute of Technol-
ogy (ETH) Zurich and Kanpur Genetic Algorithms Laboratory (Kan-
GAL), Department of Mechanical Engineering, Indian Institute of
Technology Kanpur, Gloriastrasse 35, CH-8092 Zurich, Switzerland,
2001. Online available at http://e-collection.ethbib.ethz.ch/

browse/alph/zitzlereckart.html and http://citeseer.ist.psu.

edu/laumanns01convergence.html [accessed 2007-08-14].
[61] Simon Ronald. Preventing diversity loss in a routing genetic algorithm

with hash tagging. Complexity International, 2, 1995. Online available
at http://www.complexity.org.au/ci/vol02/sr_hash/ [accessed 2007-

07-28].
[62] Simon Ronald. Genetic Algorithms and Permutation-Encoded Prob-

lems. Diversity Preservation and a Study of Multimodality. PhD thesis,
University Of South Australia. Department of Computer and Informa-
tion Science, 1996.

[63] Daniel N. Wilke, Schalk Kok, and Albert A. Groenwold. Comparison
of linear and classical velocity update rules in particle swarm optimiza-
tion: notes on diversity. International Journal for Numerical Methods
in Engineering, 70(8):962–984, 2007. Online available at http://doi.
wiley.com/10.1002/nme.1867 and 2007-08-20 [accessed .]

[64] Krasimir Kolarov. Landscape ruggedness in evolutionary algorithms.
In Proceedings of The IEEE Conference on Evolutionary Compu-
tation, 1997, pages 19–24. See proceedings [251]. Online avail-
able at http://citeseer.ist.psu.edu/14650.html and http://de.

scientificcommons.org/27191 [accessed 2007-08-19].
[65] Henrick Flyvbjerg and Benny Lautrup. Evolution in a rugged fit-

ness landscape. Physical Review, pages 6714–6723, March 1992.
Online available at http://citeseer.ist.psu.edu/26647.html and
http://prola.aps.org/abstract/PRA/v46/i10/p6714_1 [accessed 2007-

08-14].
[66] Edward D. Weinberger. Correlated and uncorrelatated fitness land-

scapes and how to tell the difference. Biological Cybernetics, 63:325–
336, 1990.

[67] S. Verel, P. Collard, and M. Clergue. Measuring the evolvability land-
scape to study neutrality. In GECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, 2006, pages 613–
614. See proceedings [298]. Online available at http://portal.acm.

org/citation.cfm?id=1144107 [accessed 2007-08-13].
[68] Albert Donally Bethke. Genetic algorithms as function optimizers.

PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1980. Order
No. AAI8106101, Dissertation Abstracts International, 41(9), 3503B

http://e-collection.ethbib.ethz.ch/browse/alph/zitzlereckart.html
http://e-collection.ethbib.ethz.ch/browse/alph/zitzlereckart.html
http://citeseer.ist.psu.edu/laumanns01convergence.html
http://citeseer.ist.psu.edu/laumanns01convergence.html
http://www.complexity.org.au/ci/vol02/sr_hash/
http://doi.wiley.com/10.1002/nme.1867
http://doi.wiley.com/10.1002/nme.1867
2007-08-20
http://citeseer.ist.psu.edu/14650.html
http://de.scientificcommons.org/27191
http://de.scientificcommons.org/27191
http://citeseer.ist.psu.edu/26647.html
http://prola.aps.org/abstract/PRA/v46/i10/p6714_1
http://portal.acm.org/citation.cfm?id=1144107
http://portal.acm.org/citation.cfm?id=1144107

662 REFERENCES

(University Microfilms No. 8106101). See also http://hdl.handle.

net/2027.42/3572 [accessed 2007-10-28].
[69] David E. Goldberg. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, first edition, ISBN: 0201157675, January 1989.

[70] Gunar E. Liepins and Michael D. Vose. Deceptiveness and genetic algo-
rithm dynamics. In Proceedings of the First Workshop on Foundations
of Genetic Algorithms (FOGA), 1991, pages 36–50. See proceedings
[439]. Online available at http://www.osti.gov/bridge/servlets/

purl/6445602-CfqU6M/ [accessed 2007-11-05].
[71] Andreas Wagner. Robustness, evolvability, and neutrality. FEBS

Lett, 579(8):1772–1778, March 2005. Online available at http://

www.citeulike.org/user/timflutre/article/297788 and http://

dx.doi.org/10.1016/j.febslet.2005.01.063 [accessed 2007-08-05].
[72] Andreas Wagner. Robustness and Evolvability in Living Systems.

Princeton Studies in Complexity. Princeton University Press, ISBN:
0691122407, August 2005.

[73] Lionel Barnett. Tangled webs: Evolutionary dynamics on fit-
ness landscapes with neutrality. Master’s thesis, School of Cogni-
tive Science, University of East Sussex, Brighton, Brighton, 1997.
Supervisor: Inman Harvey. Online available at http://citeseer.

ist.psu.edu/barnett97tangled.html and ftp://ftp.cogs.susx.

ac.uk/pub/users/inmanh/lionelb/ [accessed 2007-08-13].
[74] Bart Naudts. Het meten van GA-hardheit – Measuring GA-hardness.

PhD thesis, Universitaire Instelling Antwerpen, Antwerpen, Nether-
lands, June 1998. Supervisor: Alain Verschoren. Online available
at http://citeseer.ist.psu.edu/185231.html and http://libra.

msra.cn/paperdetail.aspx?id=322506 [accessed 2007-07-29].
[75] Günter P. Wagner and Lee Altenberg. Complex adaptations and the

evolution of evolvability. Evolution, 50(3):967–976, 1996. Online avail-
able at http://citeseer.ist.psu.edu/437225.html [accessed 2007-08-05].

[76] R. J. Riedl. A systems-analytical approach to macroevolutionary phe-
nomena. Quarterly Review of Biology, pages 351–370, 1977.

[77] M. Kirschner and J. Gerhart. Evolvability. Proceedings of the Na-
tional Academy of Science of the USA (PNAS), 95(15):8420–8427, July
1998. Online available at http://www.pnas.org/cgi/content/full/
95/15/8420 [accessed 2007-08-05].

[78] Richard Dawkins. The evolution of evolvability. In Christopher G.
Langton, editor, ALIFE, Los Alamos, New Mexico, USA, 1987, pages
201–220, Redwood City, CA. Addison-Wesley.

[79] Lee Altenberg. Genome growth and the evolution of the genotype-
phenotype map. In Evolution and Biocomputation, Computational
Models of Evolution, 1992, pages 205–259, ISBN: 3-540-59046-3, 0-387-
59046-3. See proceedings [335]. Online available at http://citeseer.
ist.psu.edu/254722.html [accessed 2007-07-29].

http://hdl.handle.net/2027.42/3572
http://hdl.handle.net/2027.42/3572
http://www.osti.gov/bridge/servlets/purl/6445602-CfqU6M/
http://www.osti.gov/bridge/servlets/purl/6445602-CfqU6M/
http://www.citeulike.org/user/timflutre/article/297788
http://www.citeulike.org/user/timflutre/article/297788
http://dx.doi.org/10.1016/j.febslet.2005.01.063
http://dx.doi.org/10.1016/j.febslet.2005.01.063
http://citeseer.ist.psu.edu/barnett97tangled.html
http://citeseer.ist.psu.edu/barnett97tangled.html
ftp://ftp.cogs.susx.ac.uk/pub/users/inmanh/lionelb/
ftp://ftp.cogs.susx.ac.uk/pub/users/inmanh/lionelb/
http://citeseer.ist.psu.edu/185231.html
http://libra.msra.cn/paperdetail.aspx?id=322506
http://libra.msra.cn/paperdetail.aspx?id=322506
http://citeseer.ist.psu.edu/437225.html
http://www.pnas.org/cgi/content/full/95/15/8420
http://www.pnas.org/cgi/content/full/95/15/8420
http://citeseer.ist.psu.edu/254722.html
http://citeseer.ist.psu.edu/254722.html

REFERENCES 663

[80] Tom Smith, Phil Husbands, Paul Layzell, and Michael O’Shea. Fitness
landscapes and evolvability. Evolutionary Computation, 10(1):1–34,
Spring 2002. Online available at http://wotan.liu.edu/docis/dbl/
evocom/2002_10_1_1_FLAE.html [accessed 2007-07-28].

[81] Rob Shipman, Marc Shackleton, Marc Ebner, and R. Watson. Neutral
search spaces for artificial evolution: a lesson from life, 2000. Submitted
to Artificial Life, VII. Online available at http://citeseer.ist.psu.
edu/shipman00neutral.html and http://www.demo.cs.brandeis.

edu/papers/alife7_shipman.ps.gz [accessed 2007-07-29].
[82] Vesselin K. Vassilev and Julian F. Miller. The advantages of landscape

neutrality in digital circuit evolution. In ICES ’00: Proceedings of
the Third International Conference on Evolvable Systems, Edinburgh,
Scotland, UK, April 17-19, 2000, volume 1801/2000, pages 252–263.
Springer-Verlag, London, UK, ISBN: 3-540-67338-5, ISSN: 0302-9743
(Print) 1611-3349 (Online). Online available at http://citeseer.

ist.psu.edu/vassilev00advantages.html [accessed 2007-11-02].
[83] Tina Yu and Julian Francis Miller. Finding needles in haystacks is

not hard with neutrality. In EuroGP ’02: Proceedings of the 5th
European Conference on Genetic Programming, 2002, pages 13–25.
See proceedings [573]. Online available at http://citeseer.ist.

psu.edu/yu02finding.html and http://www.cs.mun.ca/~tinayu/

index_files/addr/public_html/EuroGP2002.pdf [accessed 2007-11-02].
[84] Jürgen Branke, Erdem Salihoğlu, and Şima Uyar. Towards an analysis

of dynamic environments. In GECCO ’05: Proceedings of the 2005 con-
ference on Genetic and evolutionary computation, 2005, pages 1433–
1440. See proceedings [299]. Online available at http://doi.acm.org/
10.1145/1068009.1068237 and http://www.citeulike.org/user/

denizinho/article/995596 [accessed 2007-08-19].
[85] Ronald Walter Morrison and Kenneth Alan De Jong. A test prob-

lem generator for non-stationary environments. In Proceedings of the
1999 Congress on Evolutionary Computation, CEC 99, 1999, volume 3,
pages 2047–2053. See proceedings [249].

[86] Hendrik Richter. Behavior of evolutionary algorithms in chaotically
changing fitness landscapes. In Proceedings of 8th International Con-
ference on Parallel Problem Solving from Nature, PPSN VIII, 2004,
pages 111–120. See proceedings [324].

[87] Jürgen Branke. The moving peaks benchmark. Technical report,
Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Ger-
many, 1999. Online available at http://www.aifb.uni-karlsruhe.

de/~jbr/MovPeaks/ [accessed 2007-08-19].
[88] Shengxiang Yang, Yew-Soon Ong, and Yaochu Jin, editors. Evolu-

tionary Computation in Dynamic and Uncertain Environments, vol-
ume 51 of Studies in Computational Intelligence. Springer, ISBN:
978-3-540-49772-1, 2007. Presentation online available at http://www.
soft-computing.de/Jin_CEC04T.pdf.gz [accessed 2007-08-19].

http://wotan.liu.edu/docis/dbl/evocom/2002_10_1_1_FLAE.html
http://wotan.liu.edu/docis/dbl/evocom/2002_10_1_1_FLAE.html
http://citeseer.ist.psu.edu/shipman00neutral.html
http://citeseer.ist.psu.edu/shipman00neutral.html
http://www.demo.cs.brandeis.edu/papers/alife7_shipman.ps.gz
http://www.demo.cs.brandeis.edu/papers/alife7_shipman.ps.gz
http://citeseer.ist.psu.edu/vassilev00advantages.html
http://citeseer.ist.psu.edu/vassilev00advantages.html
http://citeseer.ist.psu.edu/yu02finding.html
http://citeseer.ist.psu.edu/yu02finding.html
http://www.cs.mun.ca/~tinayu/index_files/addr/public_html/EuroGP2002.pdf
http://www.cs.mun.ca/~tinayu/index_files/addr/public_html/EuroGP2002.pdf
http://doi.acm.org/10.1145/1068009.1068237
http://doi.acm.org/10.1145/1068009.1068237
http://www.citeulike.org/user/denizinho/article/995596
http://www.citeulike.org/user/denizinho/article/995596
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/
http://www.soft-computing.de/Jin_CEC04T.pdf.gz
http://www.soft-computing.de/Jin_CEC04T.pdf.gz

664 REFERENCES

[89] Krzysztof Trojanowski. Evolutionary Algorithms with Redundant Ge-
netic Material for Non-Stationary Environments. PhD thesis, In-
stytut Podstaw Informatyki PAN, Institute of Computer Science,
Warsaw, University of Technology, Poland, 1994. Advisor: Zbigniew
Michalewicz.

[90] Claus O. Wilke. Evolutionary Dynamics in Time-Dependent Envi-
ronments. PhD thesis, Fakultät für Physik und Astronomie, Ruhr-
Universität Bochum, July 1999, ISBN: 978-3826561993. Online avail-
able at http://wlab.biosci.utexas.edu/~wilke/ps/PhD.ps.gz [ac-

cessed 2007-08-19].
[91] Jürgen Branke. Evolutionary Optimization in Dynamic Environments.

PhD thesis, Universität Karlsruhe (TH), Fakultät für Wirtschaftswis-
senschaften, Universität Karlsruhe (TH), Institut AIFB, D-76128 Karl-
sruhe, 2000. Advisors: H. Schmeck and G. Bol and Lothar Thiele. See
also [92].

[92] Jürgen Branke. Evolutionary Optimization in Dynamic Environ-
ments, volume 3 of Genetic Algorithms and Evolutionary Computation.
Kluwer Academic Publishers, ISBN: 978-0792376316, December 2001.
See also [91].

[93] Ronald Walter Morrison. Designing Evolutionary Algorithms for Dy-
namic Environments. PhD thesis, George Mason University, USA,
2002. Advisor: Kenneth Alan De Jong. See also [94].

[94] Ronald Walter Morrison. Designing Evolutionary Algorithms for Dy-
namic Environments, volume 24 of Natural Computing. Springer,
Berlin, ISBN: 978-3540212317, ISSN: 0263-5747, June 2004. See also
[93].

[95] Victoria S. Aragón and Susana C. Esquivel. An evolutionary algo-
rithm to track changes of optimum value locations in dynamic envi-
ronments. Journal of Computer Science & Technology, 4(3), Octo-
ber 2004. Online available at http://journal.info.unlp.edu.ar/

Journal/journal12/papers.html [accessed 2007-08-19].
[96] Anthony Jack Carlisle. Applying the Particle Swarm Optimizer to Non-

Stationary Environments. PhD thesis, Graduate Faculty of Auburn
University, December 2002. Advisors: Gerry V. Dozier. Online available
at http://antho.huntingdon.edu/publications/default.html [ac-

cessed 2007-08-19].
[97] Anthony Jack Carlisle and Gerry V. Dozier. Tracking changing ex-

trema with adaptive particle swarm optimizer. In Proceedings of the 5th
Biannual World Automation Congress, WAC 2002, Orlando, Florida,
USA, June 9-13, 2002, volume 13, pages 265–270. Online available
at http://antho.huntingdon.edu/publications/default.html [ac-

cessed 2007-08-19].
[98] Xiaodong Li, Jürgen Branke, and Tim Blackwell. Particle swarm with

speciation and adaptation in a dynamic environment. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary

http://wlab.biosci.utexas.edu/~wilke/ps/PhD.ps.gz
http://journal.info.unlp.edu.ar/Journal/journal12/papers.html
http://journal.info.unlp.edu.ar/Journal/journal12/papers.html
http://antho.huntingdon.edu/publications/default.html
http://antho.huntingdon.edu/publications/default.html

REFERENCES 665

computation, 2006, pages 51–58. See proceedings [298]. Online available
at http://doi.acm.org/10.1145/1143997.1144005 [accessed 2007-08-19].

[99] Guanyu Pan, Quansheng Dou, and Xiaohua Liu. Performance of two
improved particle swarm optimization in dynamic optimization envi-
ronments. In ISDA ’06: Proceedings of the Sixth International Confer-
ence on Intelligent Systems Design and Applications (ISDA’06), Jinan,
China, 2006, volume 2, pages 1024–1028, Washington, DC, USA. IEEE
Computer Society, ISBN: 0-7695-2528-8.

[100] Tim Blackwell. Particle swarm optimization in dynamic environments.
In Shengxiang Yang, Yew-Soon Ong, and Yaochu Jin, editors, Evolu-
tionary Computation in Dynamic and Uncertain Environments, vol-
ume 51 of Studies in Computational Intelligence, ISBN: 978-3-540-
49772-1, chapter 2, pages 29–52. Springer, 2007. See [88]. Online avail-
able at http://igor.gold.ac.uk/~mas01tb/papers/PSOdynenv.pdf
[accessed 2007-08-19].

[101] Rui Mendes and Arvind S. Mohais. Dynde: a differential evolu-
tion for dynamic optimization problems. In Proceedings of 2005
IEEE Congress on Evolutionary Computation, 2005, volume 3, pages
2808–2815. See proceedings [243]. Online available at http://

www.di.uminho.pt/~rcm/publications/DynDE.pdf and http://en.

scientificcommons.org/8412355 [accessed 2007-08-13].
[102] Nelson Wu. Differential evolution for optimisation in dynamic envi-

ronments. Technical report, School of Computer Science and Informa-
tion Technology, RMIT University, November 2006. Online available
at http://yallara.cs.rmit.edu.au/~newu/portfolio.html [accessed

2007-08-19].
[103] Michael Guntsch and Martin Middendorf. Pheromone modification

strategies for ant algorithms applied to dynamic tsp. In Proceed-
ings of the EvoWorkshops on Applications of Evolutionary Com-
puting, 2001, pages 213–222. See proceedings [282]. Online avail-
able at http://pacosy.informatik.uni-leipzig.de/pv/Personen/
middendorf/Papers/ [accessed 2007-08-19].

[104] Michael Guntsch, Martin Middendorf, and Hartmut Schmeck. An
ant colony optimization approach to dynamic TSP. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-
2001), 2001, pages 860–867. See proceedings [310]. Online available at
http://citeseer.ist.psu.edu/693476.html [accessed 2007-08-19].

[105] Tom Dietterich. Overfitting and undercomputing in machine learning.
ACM Computing Surveys (CSUR), 27(3):326–327, 1995. Online avail-
able at http://doi.acm.org/10.1145/212094.212114 and http://

citeseer.ist.psu.edu/dietterich95overfitting.html [accessed 2007-

09-13].
[106] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. Neural

network studies, 1. comparison of overfitting and overtraining. Journal
of Chemical Information and Computer Sciences, 35(5):826–833, 1995.

http://doi.acm.org/10.1145/1143997.1144005
http://igor.gold.ac.uk/~mas01tb/papers/PSOdynenv.pdf
http://www.di.uminho.pt/~rcm/publications/DynDE.pdf
http://www.di.uminho.pt/~rcm/publications/DynDE.pdf
http://en.scientificcommons.org/8412355
http://en.scientificcommons.org/8412355
http://yallara.cs.rmit.edu.au/~newu/portfolio.html
http://pacosy.informatik.uni-leipzig.de/pv/Personen/middendorf/Papers/
http://pacosy.informatik.uni-leipzig.de/pv/Personen/middendorf/Papers/
http://citeseer.ist.psu.edu/693476.html
http://doi.acm.org/10.1145/212094.212114
http://citeseer.ist.psu.edu/dietterich95overfitting.html
http://citeseer.ist.psu.edu/dietterich95overfitting.html

666 REFERENCES

[107] Charles X. Ling. Overfitting and generalization in learning discrete
patterns. Neurocomputing, 8(3):341–347, August 1995. Optimization
and Combinatorics, Part I-III, Online available at http://dx.doi.

org/10.1016/0925-2312(95)00050-G and http://citeseer.ist.

psu.edu/514876.html [accessed 2007-09-13].
[108] Steve Lawrence and C. Lee Giles. Overfitting and neural networks:

Conjugate gradient and backpropagation. In Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks
(IJCNN’00), Como, Italy, July 24-27, 2000, volume 1, pages 1114–1119.
IEEE Computer Society, ISSN: 1098-7576. Online available at http://
citeseer.ist.psu.edu/lawrence00overfitting.html [accessed 2007-09-

13].
[109] Warren S. Sarle. Stopped training and other remedies for overfitting.

In Proceedings of the 27th Symposium on the Interface: Computing
Science and Statistics, Pittsburgh, Pennsylvania, June 23, 1995. Online
available at http://citeseer.ist.psu.edu/71530.html and ftp://

ftp.sas.com/pub/neural/inter95.ps.Z [accessed 2007-09-13].
[110] Paul L. Rosin and Freddy Fierens. Improving neural network gen-

eralisation. In Proceedings of the International Geoscience and
Remote Sensing Symposium, IGARSS’95, Florenz, Italy, July 10-
14, 1995, volume 1. Online available at http://citeseer.

ist.psu.edu/165458.html and http://users.cs.cf.ac.uk/Paul.

Rosin/resources/papers/overfitting.pdf [accessed 2007-09-13].
[111] Felix Streichert. Evolutionäre algorithmen: Implementation und an-

wendungen im asset-management-bereich (evolutionary algorithms
and their application to asset management). Master’s thesis, Institut A
für Mechanik, Universitä Stuttgart, August 2001. Supervisors: Arnold
Kirstner and Werner Koch. Online available at http://www-ra.

informatik.uni-tuebingen.de/mitarb/streiche/ [accessed 2007-08-17].
[112] Parag C. Pendharkar and Gary J. Koehler. A general steady state

distribution based stopping criteria for finite length genetic algo-
rithms. European Journal of Operational Research, 176(3):1436–
1451, 2007. Online available at http://linkinghub.elsevier.com/

retrieve/pii/S0377221705008581 [accessed 2007-07-28].
[113] Karin Zielinski and Rainer Laur. Stopping criteria for con-

strained optimization with particle swarms. In Proceedings of
the Second International Conference on Bioinspired Optimization
Methods and their Application, BIOMA 2006, 2006, pages 45–54.
See proceedings [239] and (for an extended version) [114]. On-
line available at http://www.item.uni-bremen.de/staff/zilli/

zielinski06stopping_PSO.pdf [accessed 2007-09-13].
[114] Karin Zielinski and Rainer Laur. Stopping criteria for a con-

strained single-objective particle swarm optimization algorithm.
Informatica, 31:51–59, 2007. Extended version of [113]. On-
line available at http://www.item.uni-bremen.de/staff/zilli/

http://dx.doi.org/10.1016/0925-2312(95)00050-G
http://dx.doi.org/10.1016/0925-2312(95)00050-G
http://citeseer.ist.psu.edu/514876.html
http://citeseer.ist.psu.edu/514876.html
http://citeseer.ist.psu.edu/lawrence00overfitting.html
http://citeseer.ist.psu.edu/lawrence00overfitting.html
http://citeseer.ist.psu.edu/71530.html
ftp://ftp.sas.com/pub/neural/inter95.ps.Z
ftp://ftp.sas.com/pub/neural/inter95.ps.Z
http://citeseer.ist.psu.edu/165458.html
http://citeseer.ist.psu.edu/165458.html
http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/overfitting.pdf
http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/overfitting.pdf
http://www-ra.informatik.uni-tuebingen.de/mitarb/streiche/
http://www-ra.informatik.uni-tuebingen.de/mitarb/streiche/
http://linkinghub.elsevier.com/retrieve/pii/S0377221705008581
http://linkinghub.elsevier.com/retrieve/pii/S0377221705008581
http://www.item.uni-bremen.de/staff/zilli/zielinski06stopping_PSO.pdf
http://www.item.uni-bremen.de/staff/zilli/zielinski06stopping_PSO.pdf
http://www.item.uni-bremen.de/staff/zilli/zielinski07informatica.pdf

REFERENCES 667

zielinski07informatica.pdf and http://www.informatica.si/

vols/vol31.html [accessed 2007-09-13].
[115] Joel N. Morse. Reducing the size of the nondominated set: Pruning by

clustering. Computers & Operations Research, 7:55–66, 1980.
[116] Heidi A. Taboada, Fatema Baheranwala, David W. Coit, and Narue-

mon Wattanapongsakorn. Practical solutions for multi-objective opti-
mization: An application to system reliability design problems. Relia-
bility Engineering & System Safety, 92(3):314–322, March 2007. On-
line available at http://www.rci.rutgers.edu/~coit/RESS_2007.

pdf [accessed 2007-09-10].
[117] David W. Coit and Fatema Baheranwala. Solution of stochas-

tic multi-objective system reliability design problems using genetic
algorithms. In Proceedings of the European safety and reliability
conference (ESREL), Gdansk, Poland, June 2005, pages 391–398.
Online available at http://www.engr.rutgers.edu/ie/research/

working_paper.html [accessed 2007-07-29].
[118] Jonathan E. Fieldsend, Richard M. Everson, and Sameer Singh.

Using unconstrained elite archives for multi-objective optimisation.
IEEE Transactions on Evolutionary Computing, 7(3):305–323, 2003.
This document supersedes the manuscript [381]. Online available
at http://citeseer.ist.psu.edu/543052.html and http://www.

lania.mx/~ccoello/EMOO/fieldsend03.pdf.gz [accessed 2007-08-25].
[119] Heidi A. Taboada and David W. Coit. Data clustering of solu-

tions for multiple objective system reliability optimization problems.
Quality Technology and Quantitative Management Journal, 4:35–54,
June 2007. Online available at http://www.soe.rutgers.edu/ie/

research/working_paper/paper05-019.pdf [accessed 2007-09-10].
[120] Joshua D. Knowles and David W. Corne. Properties of an adaptive

archiving algorithm for storing nondominated vectors. IEEE Transac-
tions on Evolutionary Computation, 7:100–116, April 2003.

[121] V. Bhaskar, Santosh K. Gupta, and A.K. Ray. Applications of multi-
objective optimization in chemical engineering. Reviews in Chemical
Engineering, 16(1):1–54, 2000.

[122] Nikolaos V. Sahinidis and Mohit Tawarmalani. Applications of global
optimization to process and molecular design. Computers and Chem-
ical Engineering, 24:2157–2169, October 1, 2000. Online available at
http://citeseer.ist.psu.edu/397733.html [accessed 2007-09-01].

[123] Christodoulos A. Floudas and P. M. Pardalos, editors. Frontiers in
Global Optimization. Nonconvex Optimization and Its Applications.
Springer US, ISBN: 978-1402076992, November 30, 2003.

[124] Christodoulos A. Floudas, editor. Deterministic Global Optimization:
Theory, Methods and Applications, volume 37 of Nonconvex Optimiza-
tion and Its Applications. Springer-Verlag GmbH, ISBN: 978-0-7923-
6014-8, 1999.

http://www.item.uni-bremen.de/staff/zilli/zielinski07informatica.pdf
http://www.informatica.si/vols/vol31.html
http://www.informatica.si/vols/vol31.html
http://www.rci.rutgers.edu/~coit/RESS_2007.pdf
http://www.rci.rutgers.edu/~coit/RESS_2007.pdf
http://www.engr.rutgers.edu/ie/research/working_paper.html
http://www.engr.rutgers.edu/ie/research/working_paper.html
http://citeseer.ist.psu.edu/543052.html
http://www.lania.mx/~ccoello/EMOO/fieldsend03.pdf.gz
http://www.lania.mx/~ccoello/EMOO/fieldsend03.pdf.gz
http://www.soe.rutgers.edu/ie/research/working_paper/paper 05-019.pdf
http://www.soe.rutgers.edu/ie/research/working_paper/paper 05-019.pdf
http://citeseer.ist.psu.edu/397733.html

668 REFERENCES

[125] Lothar Birk, Günther F. Clauss, and June Y. Lee. Practical ap-
plication of global optimization to the design of offshore struc-
tures. In Proceedings of OMAE04, 23rd International Conference
on Offshore Mechanics and Arctic Engineering, Vancouver, British
Columbia, Canada, June 20-25, 2004. OM AE2004-51225. On-
line available at http://130.149.35.79/downloads/publikationen/
2004/OMAE2004-51225.pdf [accessed 2007-09-01].

[126] G. Dzemyda, V. Saltenis, and A. Zilinskas, editors. Stochastic and
Global Optimization. Nonconvex Optimization and Its Applications.
Springer-Verlag GmbH, ISBN: 978-1402004841, March 1, 2002.

[127] Max Jerrell. Applications of public global optimization software to dif-
ficult econometric functions. In Computing in Economics and Finance
200, Departament d’Economia i Empresa, Universitat Pompeu Fabra,
Ramon Trias Fargas, 25,27, 08005, Barcelona, Spain, 2000. Society for
Computational Economics. Number 161. Online available at http://

econpapers.repec.org/paper/scescecf0/161.htm [accessed 2007-09-01].
[128] E. A. Galperin and E. J. Kansa. Application of global optimization

and radial basis functions to numerical solutions of weakly singular
volterra integral equations. Computers & Mathematics with Applica-
tions, 43:491–499, February-March 2002. Online available at http://

dx.doi.org/10.1016/S0898-1221(01)00300-5 [accessed 2007-09-01].
[129] Saswatee Banerjee and Lakshminarayan N. Hazra. Thin lens design

of cooke triplet lenses: application of a global optimization technique.
In Kevin D. Bell, Michael K. Powers, and Jose M. Sasian, editors,
Proceedings of SPIE, Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference – Novel Optical Systems and Large-Aperture
Imaging, December 1998, volume 3430, pages 175–183.

[130] Chao-Hsi Tsao and Jyh-Long Chern. Application of a global opti-
mization process to the design of pickup heads for compact and digital
versatile disks. Optical Engineering, 45:103001, October 2006.

[131] Yacov Y. Haimes, Warren Hall, and Herbert T. Freedman. Multiob-
jective Optimization in Water Resource Systems. Elsevier, New York,
1975. ASIN: B000UUMGXE.

[132] Andreas König, Mario Köppen, Ajith Abraham, Christian Igel, and
Nikola Kasabov, editors. 7th International Conference on Hy-
brid Intelligent Systems (HIS 2007), Fraunhofer-Center, University
of Kaiserslautern, Kaiserslautern, Germany, September 17-19, 2007.
IEEE Computer Society, ISBN: 0-7695-2946-1. Library of Congress
Number 2007936727, Product Number E2946. see http://his07.

hybridsystem.com/ [accessed 2007-09-01].
[133] 6th International Conference on Hybrid Intelligent Systems (HIS

2006), AUT Technology Park, Auckland, New Zealand, December 13-
15, 2006. IEEE Computer Society, ISBN: 0-7695-2662-4. see http://

his06.hybridsystem.com/ [accessed 2007-09-01].

http://130.149.35.79/downloads/publikationen/2004/OMAE2004-51225.pdf
http://130.149.35.79/downloads/publikationen/2004/OMAE2004-51225.pdf
http://econpapers.repec.org/paper/scescecf0/161.htm
http://econpapers.repec.org/paper/scescecf0/161.htm
http://dx.doi.org/10.1016/S0898-1221(01)00300-5
http://dx.doi.org/10.1016/S0898-1221(01)00300-5
http://his07.hybridsystem.com/
http://his07.hybridsystem.com/
http://his06.hybridsystem.com/
http://his06.hybridsystem.com/

REFERENCES 669

[134] Nadia Nedjah, Luiza de Macedo Mourelle, Ajith Abraham, and Mario
Köppen, editors. 5th International Conference on Hybrid Intelligent
Systems (HIS 2005), Pontifical Catholic University of Rio de Janeiro:
PUC-Rio, Rio de Janeiro, Brazil, November 6-9, 2005. IEEE Computer
Society, ISBN: 0-7695-2457-5. see http://his05.hybridsystem.com/

[accessed 2007-09-01].
[135] 4th International Conference on Hybrid Intelligent Systems (HIS

2004), Kitakyushu, Japan, December 5-8, 2005. IEEE Computer Soci-
ety, ISBN: 0-7695-2291-2.

[136] Ajith Abraham, Mario Köppen, and Katrin Franke, editors. Design and
Application of Hybrid Intelligent Systems, HIS03, Proceedings of the
Third International Conference on Hybrid Intelligent Systems, Monash
Conference Centre, Level 7, 30 Collins Street, Melbourne, Australia,
December 14-17, 2003, volume 105 of Frontiers in Artificial Intelligence
and Applications. IOS Press, ISBN: 1-58603-394-8. see http://his03.
hybridsystem.com/ [accessed 2007-09-01].

[137] Ajith Abraham, Javier Ruiz del Solar, and Mario Köppen, editors.
Soft Computing Systems – Design, Management and Applications, HIS
2002, Santiago, Chile, December 1-4, 2002, volume 87 of Frontiers in
Artificial Intelligence and Applications. IOS Press, ISBN: 1-58603-297-
6.

[138] Ajith Abraham and Mario Köppen, editors. Hybrid Information Sys-
tems, Proceedings of the First International Workshop on Hybrid In-
telligent Systems, Adelaide University’s main campus, Adelaide, Aus-
tralia, December 11-12, 2002, Advances in Soft Computing. Physica-
Verlag, ISBN: 3-7908-1480-6. see http://his01.hybridsystem.com/

[accessed 2007-09-01].
[139] Matthias Ehrgott, editor. Proceedings of the 19th International Con-

ference on Multiple Criteria Decision Making: MCDM for Sustain-
able Energy and Transportation Systems (MCDM’2008), Auckland,
New Zealand, June 7-12, 2008. See https://secure.orsnz.org.nz/

mcdm2008/ [accessed 2007-09-10].
[140] Constantin Zopounidis, editor. Proceedings of the 18th International

Conference on Multiple Criteria Decision Making (MCDM’2006),
MAICh (Mediterranean Agronomic Institute of Chania) Conference
Centre, Chania, Crete, Greece, June 9-13, 2006. See http://www.

dpem.tuc.gr/fel/mcdm2006/ [accessed 2007-09-10].
[141] Bill Wedley, editor. Proceedings of the 17th International Conference

on Multiple Criteria Decision Making (MCDM’2004), Whistler Con-
ference Center, Whistler, British Columbia, Canada, August 6-9, 2004.
See http://www.bus.sfu.ca/events/mcdm/ [accessed 2007-09-10].

[142] Mikulas Luptacik and Rudolf Vetschera, editors. Proceedings of the
First MCDM Winter Conference, 16th International Conference on
Multiple Criteria Decision Making (MCDM’2002), Hotel Panhans,

http://his05.hybridsystem.com/
http://his03.hybridsystem.com/
http://his03.hybridsystem.com/
http://his01.hybridsystem.com/
https://secure.orsnz.org.nz/mcdm2008/
https://secure.orsnz.org.nz/mcdm2008/
http://www.dpem.tuc.gr/fel/mcdm2006/
http://www.dpem.tuc.gr/fel/mcdm2006/
http://www.bus.sfu.ca/events/mcdm/

670 REFERENCES

Semmering, Austria, February 12-22, 2002. See http://orgwww.bwl.

univie.ac.at/mcdm2002 [accessed 2007-09-10].
[143] Murat Köksalan and Stanley Zionts, editors. Proceedings of the 15th

International Conference on Multiple Criteria Decision Making: Mul-
tiple Criteria Decision Making in the New Millennium (MCDM’2000),
Middle East Technical University, Ankara, Turkey, July 10-14, 2000,
volume 507 of Lecture Notes in Economics and Mathematical Sys-
tems. Springer, ISBN: 978-3540423775. See http://mcdm2000.ie.

metu.edu.tr/ [accessed 2007-09-10]. Published November 9, 2001.
[144] Theo Stewart, editor. Proceedings of the 13th International Conference

on Multiple Criteria Decision Making: Trends in Multicriteria Deci-
sion Making (MCDM’1997), University of Cape Town, Cape Town,
South Africa, January 6-10, 1997, volume 465 of Lecture Notes in
Economics and Mathematical Systems. Springer-Verlag Telos, ISBN:
978-3540647416. See http://www.uct.ac.za/depts/maths/mcdm97

[accessed 2007-09-10]. Published January 15, 1999.
[145] Günter Fandel, Thomás Gál, and Thomas Hanne, editors. Proceed-

ings of the 12th International Conference on Multiple Criteria Decision
Making (MCDM’1995), Hagen, Germany, 1995, volume 448 of Lecture
Notes in Economics and Mathematical Systems. Springer, ISBN: 978-
3540620976. Published on March 21, 1997.

[146] João Climaco, editor. Proceedings of the 11th International Con-
ference on Multiple Criteria Decision Making: Multicriteria Analysis
(MCDM’1994), Coimbra, Portugal, August 1-6, 1994. Springer, ISBN:
978-3540620747. Published in May 1997.

[147] G. H. Tzeng, Herbert F. Wang, U. P. Wen, and Po-Lung Yu, editors.
Proceedings of the 10th International Conference on Multiple Criteria
Decision Making: Expand and Enrich the Domains of Thinking and
Application (MCDM’1992), Taipei, Taiwan, 1992. Springer, ISBN: 978-
0387942971. Published in June 1994.

[148] Richard Soland, Ambrose Coicoechea, L. Duckstein, and Stanley
Zionts, editors. Proceedings of the 9th International Conference on
Multiple Criteria Decision Making: Theory and Applications in Busi-
ness, Industry, and Government (MCDM’1990), Fairfax, USA, 1990.
Springer, ISBN: 978-0387978055. Published in July 1992.

[149] A. Geoff Lockett and Gerd Islei, editors. Proceedings of the 8th Inter-
national Conference on Multiple Criteria Decision Making: Improv-
ing Decision Making in Organizations (MCDM’1988), Manchester,
UK, 1988, Lecture Notes in Economics and Mathematical Systems.
Springer, ISBN: 978-0387517957. Published in December 1989.

[150] H. Nakayama and Y. Sawaragi, editors. Proceedings of the
7th International Conference on Multiple Criteria Decision Making
(MCDM’1986), Kyoto, Japan, 1986.

[151] Yacov Y. Haimes, editor. Proceedings of the 6th International Con-
ference on Multiple Criteria Decision Making: Decision Making with

http://orgwww.bwl.univie.ac.at/mcdm2002
http://orgwww.bwl.univie.ac.at/mcdm2002
http://mcdm2000.ie.metu.edu.tr/
http://mcdm2000.ie.metu.edu.tr/
http://www.uct.ac.za/depts/maths/mcdm97

REFERENCES 671

Multiple Objectives (MCDM’1984), Cleveland, Ohio, USA, June 4-6,
1984, volume 242 of Lecture Notes in Economics and Mathematical Sys-
tems. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, ISBN:
978-3540152231. Published December 31, 1985.

[152] Pierre Hansen, editor. Proceedings of the 5th International Conference
on Multiple Criteria Decision Making: Essays and Surveys on Multiple
Criteria Decision Making (MCDM’1982), Mons, Belgium, 1982, vol-
ume 209 of Lecture Notes in Economics and Mathematical Systems.
Springer, ISBN: 978-0387119915. Published in March 1983.

[153] Joel N. Morse, editor. Proceedings of the 4th International Conference
on Multiple Criteria Decision Making: Organizations, Multiple Agents
With Multiple Criteria (MCDM’1980), Newark, Delaware, USA, 1980,
Lecture Notes in Economics and Mathematical Systems. Springer,
ISBN: 978-0387108216. Published in July 1981.

[154] Günter Fandel and Thomás Gál, editors. Proceedings of the 3rd In-
ternational Conference on Multiple Criteria Decision Making: The-
ory and Application (MCDM’1979), Hagen/Königswinter, (West) Ger-
many, August 20-24, 1979, volume 17 of Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag, Berlin, Germany, ISBN:
978-0387099637. Published in May 1980.

[155] Stanley Zionts, editor. Proceedings of the 2nd International Conference
on Multiple Criteria Decision Making (MCDM’1977), Buffalo, New
York, USA, 1977.

[156] Herve Thiriez and Stanley Zionts, editors. Proceedings of the
1st International Conference on Multiple Criteria Decision Mak-
ing (MCDM’1975), Jouy-en-Josas, France, May 21-23, 1975, Lecture
notes in economics and mathematical systems. Springer, ISBN: 978-
0387077949. Published in 1976.

[157] Proceedings of the 13th International Conference on Soft Computing,
MENDEL’07, Prague, Czech Republic, September 5-7, 2007.

[158] Proceedings of the 12th International Conference on Soft Computing,
MENDEL’06, Brno University of Technology, Brno, Czech Republic,
May 31-June 2, 2006, ISBN: 80-214-3195-4.

[159] Proceedings of the 11th International Conference on Soft Computing,
MENDEL’05, Brno University of Technology, Brno, Brno, Czech Re-
public, June 15-17, 2005, ISBN: 80-214-2961-5.

[160] Proceedings of the 10th International Conference on Soft Computing,
MENDEL’04, Brno University of Technology Faculty of Mechanical
Engeneering, Brno, Brno, Czech Republic, June 16-18, 2004, ISBN:
80-214-2676-4.

[161] Proceedings of the 9th International Conference on Soft Computing,
MENDEL’03, Brno University of Technology, Brno, Czech Republic,
2003, ISBN: 80-214-2411-7.

672 REFERENCES

[162] Proceedings of the 8th International Conference on Soft Computing,
MENDEL’02, Brno University of Technology, Brno, Czech Republic,
June 5-7, 2002, ISBN: 80-214-2135-5.

[163] Proceedings of the 7th International Conference on Soft Computing,
Evolutionary Computation, Genetic Programing, Fuzzy Logic, Rough
Sets, Neural Networks, Fractals, Bayesian Methods, MENDEL 2001,
Brno University of Technology, Brno, Czech Republic, June 6-8, 2001,
ISBN: 80-7248-107-X.

[164] Pavel Osmera, editor. Proceedings of the 6th International Conference
on Soft Computing, MENDEL 2000, Brno University of Technology,
Brno, Czech Republic, June 7-9, 2000, ISBN: 80-214-1609-2.

[165] Proceedings of the 3rd International Conference on Genetic Algorithms,
Brno University of Technology, Brno, Czech Republic, June 1997,
ISBN: 80-214-1131-7.

[166] Proceedings of the 4th International Mendel Conference on Genetic
Algorithms, Optimisation Problems, Fuzzy Logic, Neural Networks,
Rough Sets, Technical University of Brno, Faculty of Mechanical Engi-
neering, Brno, Czech Republic, June 24-26, 1998, ISBN: 80-214-1131-7.

[167] Proceedings of the 2nd International Mendel Conference on Genetic Al-
gorithms, MENDEL 1997, Brno University of Technology, Brno, Czech
Republic, June 26-28, 1997, ISBN: 80-214-0769-7.

[168] Proceedings of the 2nd International Mendel Conference on Genetic Al-
gorithms, MENDEL 1996, Brno University of Technology, Brno, Czech
Republic, June 26-28, 1996, ISBN: 80-214-0769-7.

[169] Proceedings of Mendel’95, the 1st International Mendel Conference on
Genetic Algorithms, Brno, Czech Republic, September 1995.

[170] The Seventh Metaheuristics International Conference, Montreal,
Canada, June 25-29, 2007. See http://www.mic2007.ca/ [accessed 2007-

09-12].
[171] 6th Metaheuristics International Conference (MIC2005), Vienna, Aus-

tria, August 22-26, 2005. See http://www.mic2005.org/ [accessed 2007-

09-12].
[172] Toshihide Ibaraki, Koji Nonobe, and Mutsunori Yagiura, editors. Fifth

Metaheuristics International Conference (MIC2003) – Metaheuristics:
Progress as Real Problem Solvers, Kyoto International Conference Hall,
Kyoto, Japan, August 25-28, 2003, volume 32 of Operations Research/-
Computer Science Interfaces. Springer, Berlin Heidelberg New York,
ISBN: 0-387-25382-3. Published in 2005. See http://www-or.amp.i.

kyoto-u.ac.jp/mic2003/ [accessed 2007-09-12].
[173] Mauricio G. C. Resende and Jorge Pinho de Sousa, editors. 4th

Metaheuristics International Conference (MIC2001) – Metaheuristics:
Computer Decision-Making, Porto, Portugal, July 16-20, 2001, vol-
ume 86 of Applied Optimization, Boston, USA. Kluwer Academic Pub-
lishers, ISBN: 1-4020-7653-3. Published in November 30, 2003. See
http://paginas.fe.up.pt/~gauti/MIC2001/ [accessed 2007-09-12].

http://www.mic2007.ca/
http://www.mic2005.org/
http://www-or.amp.i.kyoto-u.ac.jp/mic2003/
http://www-or.amp.i.kyoto-u.ac.jp/mic2003/
http://paginas.fe.up.pt/~gauti/MIC2001/

REFERENCES 673

[174] Celso C. Ribeiro and Pierre Hansen, editors. 3rd Metaheuristics Inter-
national Conference (MIC’99) – Essays and Surveys in Metaheuristics,
Angra dos Reis, Brazil, July 19-23, 1999, volume 15 of Operations Re-
search/Computer Science Interfaces, Boston, USA. Kluwer Academic
Publishers, ISBN: 0-7923-7520-3. Published in 2001.

[175] Stefan Voss, Silvano Martello, Ibrahim H. Osman, and Cathérine Rou-
cairol, editors. 2nd Metaheuristics International Conference (MIC’97)
– Meta-Heuristics: Advances and Trends in Local Search Paradigms
for Optimization, Sophia Antipolis, France, July 21-24, 1997, Boston,
USA. Kluwer Academic Publishers, ISBN: 0-7923-8369-9. Published
in 1998.

[176] H. Osman Ibrahim and James P. Kelly, editors. 1st Metaheuristics In-
ternational Conference (MIC’95) – Meta-Heuristics: The Theory and
Applications, Breckenridge, Colorado, USA, July 22-26, 1995, Boston,
USA. Kluwer Academic Publishers, ISBN: 0-7923-9700-2. Published
in 1996.

[177] Xavier Gandibleux, Marc Sevaux, Kenneth Sörensen, and Vincent
T’kindt, editors. Metaheuristics for Multiobjective Optimisation, vol-
ume 535 of Lecture Notes in Economics and Mathematical Systems.
Springer, Berlin, ISBN: 354020637X, 978-3540206378, January 2004.

[178] David Corne, Marco Dorigo, and Fred Glover, editors. New Ideas in
Optimisation. McGraw-Hill’s Advanced Topics In Computer Science
Series. McGraw-Hill Education, Maidenhead, UK, England, ISBN:
0077095065, 978-0077095062, May 1999.

[179] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evo-
lution Strategies, Evolutionary Programming, Genetic Algorithms. Ox-
ford University Press, ISBN: 0195099710, January 1996.

[180] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors.
Handbook of Evolutionary Computation. Computational Intelligence
Library. Oxford University Press in cooperation with the Institute
of Physics Publishing, Bristol, New York, ringbound edition, ISBN:
0750303921, April 1997.

[181] Thomas Bäck, Ulrich Hammel, and Hans-Paul Schwefel. Evolu-
tionary computation: comments on the history and current state.
IEEE Transactions on Evolutionary Computation, 1:3–17, April 1997.
Online available at http://sci2s.ugr.es/docencia/doctobio/

EC-History-IEEETEC-1-1-1997.pdf and http://citeseer.ist.

psu.edu/601414.html [accessed 2007-08-24].
[182] Ernst Mayr. The Growth of Biological Thought. Harvard University

Press, ISBN: 0-674-36446-5, 1982.
[183] J. Koen van der Hauw. Evaluating and improving steady state evo-

lutionary algorithms on constraint satisfaction problems. Master’s
thesis, Computer Science Department of Leiden University, August
1996. supervisors: Guszti Eiben and Han La Poutré. Online available
at http://citeseer.ist.psu.edu/128231.html [accessed 2007-08-24].

http://sci2s.ugr.es/docencia/doctobio/EC-History-IEEETEC-1-1-1997.pdf
http://sci2s.ugr.es/docencia/doctobio/EC-History-IEEETEC-1-1-1997.pdf
http://citeseer.ist.psu.edu/601414.html
http://citeseer.ist.psu.edu/601414.html
http://citeseer.ist.psu.edu/128231.html

674 REFERENCES

[184] Carlos Artemio Ceollo Coello. A comprehensive survey of evolutionary-
based multiobjective optimization techniques. Knowledge and In-
formation Systems, 1(3):269–308, August 1999. Online available
at http://www.lania.mx/~ccoello/EMOO/informationfinal.ps.gz
and http://citeseer.ist.psu.edu/coello98comprehensive.html

[accessed 2007-08-25].
[185] David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms:

Classifications, Analyses, and New Innovations. PhD thesis, Air
Force Institute of Technology, Air University, Wright-Patterson Air
Force Base, Ohio, May 1999. AFIT/DS/ENG/99-01. Online avail-
able at http://handle.dtic.mil/100.2/ADA364478 and http://

citeseer.ist.psu.edu/vanveldhuizen99multiobjective.html [ac-

cessed 2007-08-17].
[186] Sanaz Mostaghim. Multi-objective Evolutionary Algorithms: Data

structures, Convergence and, Diversity. PhD thesis, Fakultät für
Elektrotechnik, Informatik und Mathematik, Universität Paderborn,
Deutschland (Germany), 2004. Online available at http://deposit.

ddb.de/cgi-bin/dokserv?idn=974405604 and http://ubdata.

uni-paderborn.de/ediss/14/2004/mostaghi/disserta.pdf [accessed

2007-08-17].
[187] Mark Ridley. Evolution. Blackwell Publishing Limited, eighth (october

1, 2003) edition, ISBN: 978-1405103459, 1996.
[188] Norman R. Paterson. Genetic programming with context-sensitive

grammars. PhD thesis, Saint Andrew’s University, September
2002. Online available at ftp://ftp.dcs.st-and.ac.uk/pub/

norman/GPwCSG.ps.gz [accessed 2007-09-09].
[189] Carlos Artemio Ceollo Coello. A short tutorial on evolutionary mul-

tiobjective optimization. In First International Conference on Evo-
lutionary Multi-Criterion Optimization, 2001, pages 21–40. See pro-
ceedings [268]. Online available at http://citeseer.ist.psu.edu/

coellocoello01short.html [accessed 2007-07-29].
[190] Nadia Nedjah, Enrique Alba, and Luiza De Macedo Mourelle, edi-

tors. Parallel Evolutionary Computations, volume 22/2006 of Studies
in Computational Intelligence. Springer Berlin / Heidelberg, ISBN:
9783540328377, ISSN: 1860-949X (Print) 1860-9503 (Online), June
2006.

[191] Masaya Shinkai, Hern’an Aguirre, and Kiyoshi Tanaka. Mutation strat-
egy improves gas performance on epistatic problems. In Proceedings
of the 2002 Congress on Evolutionary Computation, CEC ’02, 2002,
volume 1, pages 968–973. See proceedings [246].

[192] Adam Prügel-Bennett and Alex Rogers. Modelling ga dynamics. In
Leila Kallel, Bart Naudts, and Alex Rogers, editors, Theoretical Aspects
of Evolutionary Computing, Natural Computing Series, ISBN: 978-3-
540-67396-5, pages 59–86. Springer, Berlin, Germany, 2001. Original:

http://www.lania.mx/~ccoello/EMOO/informationfinal.ps.gz
http://citeseer.ist.psu.edu/coello98comprehensive.html
http://handle.dtic.mil/100.2/ADA364478
http://citeseer.ist.psu.edu/vanveldhuizen99multiobjective.html
http://citeseer.ist.psu.edu/vanveldhuizen99multiobjective.html
http://deposit.ddb.de/cgi-bin/dokserv?idn=974405604
http://deposit.ddb.de/cgi-bin/dokserv?idn=974405604
http://ubdata.uni-paderborn.de/ediss/14/2004/mostaghi/disserta.pdf
http://ubdata.uni-paderborn.de/ediss/14/2004/mostaghi/disserta.pdf
ftp://ftp.dcs.st-and.ac.uk/pub/norman/GPwCSG.ps.gz
ftp://ftp.dcs.st-and.ac.uk/pub/norman/GPwCSG.ps.gz
http://citeseer.ist.psu.edu/coellocoello01short.html
http://citeseer.ist.psu.edu/coellocoello01short.html

REFERENCES 675

1999, Online available at http://eprints.ecs.soton.ac.uk/13205/
[accessed 2007-07-28].

[193] Hsien-Chung Wu. Evolutionary Computation. Department of Mathe-
matics, National Kaohsiung Normal University, Kaohsiung 802, Tai-
wan, February 2005. Lecture notes. Online available at http://

nknucc.nknu.edu.tw/~hcwu/pdf/evolec.pdf [accessed 2007-07-16].
[194] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary

algorithms for parameter optimization. Evolutionary Computation,
1(1):1–23, Spring 1993.

[195] Gareth Jones. Genetic and evolutionary algorithms. In Paul von
Ragué Schleyer and Johnny Gasteiger, editors, Encyclopedia of Compu-
tational Chemistry, volume III - Databases and Expert Systems, ISBN:
978-0471965886, chapter 29. John Wiley & Sons, Ltd., September 1998.
Online available at http://www.wiley.com/legacy/wileychi/ecc/

samples/sample10.pdf [accessed 2007-08-17].
[196] Claudio Rossi, Elena Marchiori, and Joost N. Kok. An adaptive evolu-

tionary algorithm for the satisfiability problem. In SAC ’00: Proceed-
ings of the 2000 ACM symposium on Applied computing, Como, Italy,
2000, volume 1, pages 463–469, New York, NY, USA. ACM Press,
ISBN: 1-58113-240-9. Online available at http://doi.acm.org/10.

1145/335603.335912 and http://citeseer.ist.psu.edu/335101.

html [accessed 2007-08-24].
[197] Frank Hoffmeister and Thomas Bäck. Genetic algorithms and evolution

strategies – similarities and differences. In PPSN I: Proceedings of the
1st Workshop on Parallel Problem Solving from Nature, 1990, pages
455–469. Published 1991. See proceedings [331] and also [198].

[198] Frank Hoffmeister and Thomas Bäck. Genetic algorithms and evolution
strategies – similarities and differences. Technical Report SYS-1/92,
University of Dortmund - Systems Analysis, 1992. See also [197].

[199] Hans-Paul Schwefel. Evolution and Optimum Seeking: The Sixth Gen-
eration. John Wiley & Sons, Inc., Wiley Interscience, New York, NY,
USA, ISBN: 0471571482, Har/Dsk: 978-0471571483, 1993. Har/Dsk
edition, January 1995.

[200] Alex Rogers and Adam Prügel-Bennett. Modelling the dynamics of
a steady-state genetic algorithm. In Foundations of Genetic Algo-
rithms 5, 1998, pages 57–68. See proceedings [435]. Online available
at http://eprints.ecs.soton.ac.uk/451/02/FOGA.ps and http://

citeseer.ist.psu.edu/rogers99modelling.html [accessed 2007-08-28].
[201] Brian D. Davison and Khaled Rasheed. Effect of global par-

allelism on a steady state ga. In Erick Cantu-Paz and Bill
Punch, editors, Evolutionary Computation and Parallel Process-
ing, 1999, pages 167–170, Orlando, Florida, USA. Workshop
part of GECCO 1999, see proceedings [314]. Online available
at http://citeseer.ist.psu.edu/davison99effect.html [accessed

http://www.cse.lehigh.edu/ brian/pubs/1999/cec99/pgado.pdf]2007-08-28.

http://eprints.ecs.soton.ac.uk/13205/
http://nknucc.nknu.edu.tw/~hcwu/pdf/evolec.pdf
http://nknucc.nknu.edu.tw/~hcwu/pdf/evolec.pdf
http://www.wiley.com/legacy/wileychi/ecc/samples/sample10.pdf
http://www.wiley.com/legacy/wileychi/ecc/samples/sample10.pdf
http://doi.acm.org/10.1145/335603.335912
http://doi.acm.org/10.1145/335603.335912
http://citeseer.ist.psu.edu/335101.html
http://citeseer.ist.psu.edu/335101.html
http://eprints.ecs.soton.ac.uk/451/02/FOGA.ps
http://citeseer.ist.psu.edu/rogers99modelling.html
http://citeseer.ist.psu.edu/rogers99modelling.html
http://citeseer.ist.psu.edu/davison99effect.html

676 REFERENCES

[202] David Noever and Subbiah Baskaran. Steady-state vs. generational
genetic algorithms: A comparison of time complexity and convergence
properties. Technical Report 92-07-032, Santa Fe Institute, 1992.

[203] Deepti Chafekar, Jiang Xuan, and Khaled Rasheed. Constrained
multi-objective optimization using steady state genetic algorithms.
In Proceedings of Genetic and Evolutionary Computation GECCO
2003, 2003, pages 813–824. See proceedings [304]. Online available at
http://citeseer.ist.psu.edu/591279.html and http://www.cs.

uga.edu/~khaled/papers/385.pdf [accessed 2007-07-28].
[204] Gilbert Syswerda. A study of reproduction in generational and steady

state genetic algorithms. In Proceedings of the First Workshop on
Foundations of Genetic Algorithms FOGA, July 1990, pages 94–101.
See proceedings [439].

[205] L. Darrell Whitley. The GENITOR algorithm and selective pres-
sure: Why rank-based allocation of reproductive trials is best. In
Proceedings of the 3rd International Conference on Genetic Algo-
rithms, 1989, pages 116–121. See proceedings [371]. Online available at
http://citeseer.ist.psu.edu/531140.html and http://www.cs.

colostate.edu/~genitor/1989/ranking89.ps.gz [accessed 2007-08-21].
[206] Josh Jones and Terry Soule. Comparing genetic robustness in gen-

erational vs. steady state evolutionary algorithms. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolution-
ary computation, 2006, pages 143–150. See proceedings [298]. Online
available at http://doi.acm.org/10.1145/1143997.1144024 [accessed

2007-08-24].
[207] Dipti Srinivasan and Lily Rachmawati. An efficient multi-objective evo-

lutionary algorithm with steady-state replacement model. In GECCO
’06: Proceedings of the 8th annual conference on Genetic and evolution-
ary computation, 2006, pages 715–722. See proceedings [298]. Online
available at http://doi.acm.org/10.1145/1143997.1144122 [accessed

2007-08-24].
[208] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of

selection schemes used in genetic algorithms. In Proceedings of the
First Workshop on Foundations of Genetic Algorithms FOGA, 1990,
pages 69–93. See proceedings [439]. Online available at http://www.

cse.unr.edu/~sushil/class/gas/papers/Select.pdf [accessed 2007-08-

24].
[209] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic

adaptive systems. PhD thesis, Computer and Communication Sciences,
University of Michigan, August 1975. Order number AAI7609381. Doc-
toral Committee: John Henry Holland, Larry K. Flanigan, Richard
A. Volz, Berhard P. Zeigler. Online available at http://cs.gmu.edu/

~eclab/kdj_thesis.html [accessed 2007-08-17].
[210] Marco Laumanns, Eckart Zitzler, and Lothar Thiele. A unified model

for multi-objective evolutionary algorithms with elitism. In Proceed-

http://citeseer.ist.psu.edu/591279.html
http://www.cs.uga.edu/~khaled/papers/385.pdf
http://www.cs.uga.edu/~khaled/papers/385.pdf
http://citeseer.ist.psu.edu/531140.html
http://www.cs.colostate.edu/~genitor/1989/ranking89.ps.gz
http://www.cs.colostate.edu/~genitor/1989/ranking89.ps.gz
http://doi.acm.org/10.1145/1143997.1144024
http://doi.acm.org/10.1145/1143997.1144122
http://www.cse.unr.edu/~sushil/class/gas/papers/Select.pdf
http://www.cse.unr.edu/~sushil/class/gas/papers/Select.pdf
http://cs.gmu.edu/~eclab/kdj_thesis.html
http://cs.gmu.edu/~eclab/kdj_thesis.html

REFERENCES 677

ings of the 2000 Congress on Evolutionary Computation CEC00, 2000,
pages 46–53. See proceedings [248]. Online available at http://

citeseer.ist.psu.edu/laumanns00unified.html [accessed 2007-08-27].
[211] John Henry Holland. Adaptation in Natural and Artificial Systems.

The University of Michigan Press, Ann Arbor, ISBN: 978-026258111,
1975. Reprinted by MIT Press, April 1992.

[212] Karsten Weicker. Evolutionäre Algorithmen. Leitfäden der Informatik.
B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden, ISBN: 3-519-
00362-7, March 2002.

[213] Nicholas J. Radcliffe. Non-linear genetic representations. In Par-
allel problem solving from nature 2, 1992, pages 259–268. See pro-
ceedings [330]. Online available at http://citeseer.ist.psu.edu/

radcliffe92nonlinear.html and http://users.breathe.com/njr/

papers/ppsn92.pdf [accessed 2007-09-05].
[214] Nicolas J. Radcliffe. The algebra of genetic algorithms. Annals of

Maths and Artificial Intelligence, 10, 1994. Also technical report
TR92-11, 1992 from Edinburgh Parallel Computing Centre, Univer-
sity of Edinburgh, Kings Buildings, EH9 3JZ, Scotland. Online avail-
able at http://citeseer.ist.psu.edu/radcliffe94algebra.html

and http://users.breathe.com/njr/formaPapers.html [accessed 2007-

07-28].
[215] Patrick David Surry. A Prescriptive Formalism for Constructing

Domain-specific Evolutionary Algorithms. PhD thesis, University of
Edinburgh, 1998. Online available at http://citeseer.ist.psu.

edu/radcliffe94algebra.html [accessed 2007-07-28].
[216] Nicholas J. Radcliffe. Equivalence class analysis of genetic algorithms.

Complex Systems, 5:183–205, 1991. Online available at http://

citeseer.ist.psu.edu/608745.html [accessed 2007-07-28].
[217] Nicholas J. Radcliffe. Forma analysis and random respectful recom-

bination. In Proceedings of the Fourth International Conference on
Genetic Algorithms, 1991, pages 222–229. See proceedings [445]. On-
line available at http://users.breathe.com/njr/formaPapers.html
[accessed 2007-07-28].

[218] Nicholas J. Radcliffe and Patrick David Surry. Fitness variance of
formae and performance prediction. In Foundations of Genetic Al-
gorithms 3, 1994, pages 51–72. See proceedings [437]. Online avail-
able at http://citeseer.comp.nus.edu.sg/radcliffe94fitness.

html [accessed 2007-07-28].
[219] Michael D. Vose. Generalizing the notion of schema in genetic algo-

rithms. Artificial Intelligence, 50(3):385–396, 1991.
[220] John J. Greffenstette and James E. Baker. How genetic algorithms

work: A critical look at implicit parallelism. In Proceedings of the third
International Conference on Genetic Algorithms ICGA, 1989, pages
20–27. See proceedings [371].

http://citeseer.ist.psu.edu/laumanns00unified.html
http://citeseer.ist.psu.edu/laumanns00unified.html
http://citeseer.ist.psu.edu/radcliffe92nonlinear.html
http://citeseer.ist.psu.edu/radcliffe92nonlinear.html
http://users.breathe.com/njr/papers/ppsn92.pdf
http://users.breathe.com/njr/papers/ppsn92.pdf
http://citeseer.ist.psu.edu/radcliffe94algebra.html
http://users.breathe.com/njr/formaPapers.html
http://citeseer.ist.psu.edu/radcliffe94algebra.html
http://citeseer.ist.psu.edu/radcliffe94algebra.html
http://citeseer.ist.psu.edu/608745.html
http://citeseer.ist.psu.edu/608745.html
http://users.breathe.com/njr/formaPapers.html
http://citeseer.comp.nus.edu.sg/radcliffe94fitness.html
http://citeseer.comp.nus.edu.sg/radcliffe94fitness.html

678 REFERENCES

[221] John J. Grefenstette. Conditions for implicit parallelism. In Founda-
tions of genetic algorithms, 1990, pages 252–261. See proceedings [439].
Online available at http://citeseer.ist.psu.edu/41022.html [ac-

cessed 2007-07-29].
[222] Alberto Bertoni and Marco Dorigo. Implicit parallelism in genetic al-

gorithms. Artificial Intelligence, 61(2):307–314, 1993. Online available
at http://citeseer.ist.psu.edu/bertoni93implicit.html [accessed

2007-07-29].
[223] Michael D. Vose and Alden H. Wright. Form invariance and implicit

parallelism. Evolutionary Computation, 9(3):355–370, 2001. Online
available at http://citeseer.ist.psu.edu/610097.html [accessed 2007-

07-29].
[224] Fernando Jiménez, José L. Verdegay, and Antonio F. Gómez-Skarmeta.

Evolutionary techniques for constrained multiobjective optimization
problems. In Kalyanmoy Deb, editor, Multi-criterion Optimization Us-
ing Evolutionary Methods, 1999, pages 115–116. See proceedings [314].
Online available at http://citeseer.ist.psu.edu/208779.html [ac-

cessed 2007-08-24].
[225] Mihai Oltean. Evolving evolutionary algorithms for function op-

timization. In Proceedings of the 5th International Workshop on
Frontiers in Evolutionary Algorithms, 2003, pages 295–298. See
proceedings [291]. Online available at http://www.cs.ubbcluj.ro/

~moltean/oltean_fea2003_1.pdf and http://citeseer.ist.psu.

edu/640208.html [accessed 2007-08-24].
[226] Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolu-

tionary approach to function optimization. In Parallel Problem Solv-
ing from Nature - PPSN III, International Conference on Evolution-
ary Computation. The Third Conference on Parallel Problem Solving
from Nature, 1994, pages 249–257. See proceedings [329]. Online avail-
able at http://citeseer.ist.psu.edu/potter94cooperative.html
[accessed 2007-08-24].

[227] Peter A. N. Bosman and Dirk Thierens. A thorough documentation
of obtained results on real-valued continuous and combinatorial multi-
objective optimization problems using diversity preserving mixture-
based iterated density estimation evolutionary algorithms. Techni-
cal Report UU-CS-2002-052, Institute of Information and Comput-
ing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht,
The Netherlands, December 2002. Online available at http://www.

cs.uu.nl/research/techreps/repo/CS-2002/2002-052.pdf [accessed

2007-08-24].
[228] Alex S. Fukunaga and Andre D. Stechert. An evolutionary

optimization system for spacecraft design. In IEA/AIE’1997:
Proceedings of the 10th international conference on Industrial
and Engineering Applications of Artificial Intelligence and Ex-
pert Systems, Atlanta, Georgia, 1997, pages 1–6. Goose Pond

http://citeseer.ist.psu.edu/41022.html
http://citeseer.ist.psu.edu/bertoni93implicit.html
http://citeseer.ist.psu.edu/610097.html
http://citeseer.ist.psu.edu/208779.html
http://www.cs.ubbcluj.ro/~moltean/oltean_fea2003_1.pdf
http://www.cs.ubbcluj.ro/~moltean/oltean_fea2003_1.pdf
http://citeseer.ist.psu.edu/640208.html
http://citeseer.ist.psu.edu/640208.html
http://citeseer.ist.psu.edu/potter94cooperative.html
http://www.cs.uu.nl/research/techreps/repo/CS-2002/2002-052.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2002/2002-052.pdf

REFERENCES 679

Press, ISBN: 905-6996-150. Online available at http://alexf04.

maclisp.org/Fukunaga-Stechert-IEA-1997.pdf and http://de.

scientificcommons.org/17874369 [accessed 2007-08-24].
[229] Charles D. Day. Application of an evolutionary algorithm to multi-

variate optimal allocation in stratified sample designs. In SOI Tax
Stats – Papers – 2006 American Statistical Association Conference,
Joint Statistical Meeting 2006, Seattle, Washington, August 2006. Tax
Stats. Internal Revenue Service. United States Department of the Trea-
sury. An Application of Genetic Algorithms to Multivariate Optimal
Allocation in Stratified Sample Designs. Online available at http://

www.irs.gov/pub/irs-soi/06asaday.pdf [accessed 2007-08-27].
[230] Thomas Weise, Stefan Achler, Martin Göb, Christian Voigtmann,

and Michael Zapf. Evolving classifiers - evolutionary algorithms
in data mining. Kasseler Informatikschriften (KIS) 2007, 4, Uni-
versity of Kassel, University of Kassel, September 28, 2007. Per-
sistent Identifier: urn:nbn:de:hebis:34-2007092819260. Online avail-
able at http://www.it-weise.de/documents/files/WAGVZ2007DMC.
pdf and http://kobra.bibliothek.uni-kassel.de/handle/urn:

nbn:de:hebis:34-2007092819260 [accessed 2007-10-04].
[231] Oscar Cordón, Francisco Herrera, and Luciano Sánchez. Evolution-

ary learning processes for data analysis in electrical engineering ap-
plications. In D. Quagliarella, J. Périaux, C. Poloni, and G. Win-
ter, editors, Genetic Algorithms and Evolution Strategy in Engineering
and Computer Science, pages 205–224. John Wiley and Sons, Chich-
ester, 1998. Online available at http://citeseer.ist.psu.edu/

64737.html and ftp://decsai.ugr.es/pub/arai/tech_rep/ga-fl/

eurogen97.ps.Z [accessed 2007-08-25].
[232] Charles L. Karr and Eric Wilson. A self-tuning evolutionary algo-

rithm applied to an inverse partial differential equation. Applied Intel-
ligence, 19:147–155, November 2003. Online available at http://www.
springerlink.com/content/x7t26442h41q0221/fulltext.pdf and
http://dx.doi.org/10.1023/A:1026097605403 [accessed 2007-08-27].

[233] Swagatam Das, Amit Konar, and Uday K. Chakraborty. An effi-
cient evolutionary algorithm applied to the design of two-dimensional
iir filters. In GECCO ’05: Proceedings of the 2005 conference on
Genetic and evolutionary computation, 2005, pages 2157–2163. See
proceedings [299]. Online available at http://doi.acm.org/10.1145/
1068009.1068364 [accessed 2007-08-27].

[234] Martin Damsbo, Brian S. Kinnear, Matthew R. Hartings, Peder T.
Ruhoff, Martin F. Jarrold, and Mark A. Ratner. Application of evo-
lutionary algorithm methods to polypeptide folding: Comparison with
experimental results for unsolvated ac-(ala-gly-gly)5-lysh+. Proceed-
ings of the National Academy of Science of the United States of Amer-
ica, 101:7215–7222, May 2004. Online available at http://www.pnas.

http://alexf04.maclisp.org/Fukunaga-Stechert-IEA-1997.pdf
http://alexf04.maclisp.org/Fukunaga-Stechert-IEA-1997.pdf
http://de.scientificcommons.org/17874369
http://de.scientificcommons.org/17874369
http://www.irs.gov/pub/irs-soi/06asaday.pdf
http://www.irs.gov/pub/irs-soi/06asaday.pdf
http://www.it-weise.de/documents/files/WAGVZ2007DMC.pdf
http://www.it-weise.de/documents/files/WAGVZ2007DMC.pdf
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007092819260
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007092819260
http://citeseer.ist.psu.edu/64737.html
http://citeseer.ist.psu.edu/64737.html
ftp://decsai.ugr.es/pub/arai/tech_rep/ga-fl/eurogen97.ps.Z
ftp://decsai.ugr.es/pub/arai/tech_rep/ga-fl/eurogen97.ps.Z
http://www.springerlink.com/content/x7t26442h41q0221/fulltext.pdf
http://www.springerlink.com/content/x7t26442h41q0221/fulltext.pdf
http://dx.doi.org/10.1023/A:1026097605403
http://doi.acm.org/10.1145/1068009.1068364
http://doi.acm.org/10.1145/1068009.1068364
http://www.pnas.org/cgi/reprint/101/19/7215.pdf?ck=nck

680 REFERENCES

org/cgi/reprint/101/19/7215.pdf?ck=nck and http://www.pnas.

org/content/vol101/issue19/ [accessed 2007-08-27].
[235] Elena Marchiori and Adri G. Steenbeek. An evolutionary algorithm

for large scale set covering problems with application to airline crew
scheduling. In Proceedings of Real-World Applications of Evolution-
ary Computing, EvoWorkshops 2000, 2000, pages 367–381. See pro-
ceedings [287]. Online available at http://citeseer.ist.psu.edu/

marchiori00evolutionary.html [accessed 2007-08-27].
[236] C. S. Chang and Chung Min Kwan. Evaluation of evolutionary al-

gorithms for multi-objective train schedule optimization. In AI 2004:
Advances in Artificial Intelligence, 2004, volume 3339/2004 of Lecture
Notes in Artificial Intelligence, subseries of Lecture Notes in Com-
puter Science (LNCS), pages 803–815. Springer-Verlag, ISBN: 978-3-
540-24059-4, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[237] Chung Min Kwan and C. S. Chang. Application of evolutionary al-
gorithm on a transportation scheduling problem – the mass rapid
transit. In Proceedings of the 2005 IEEE Congress on Evolutionary
Computation (CEC’2005), 2005, volume 2, pages 987–994. See pro-
ceedings [243]. Online available at http://www.lania.mx/~ccoello/

EMOO/kwan05.pdf.gz [accessed 2007-08-27].
[238] Pascal Côté, Tony Wong, and Robert Sabourin. Application of a hy-

brid multi-objective evolutionary algorithm to the uncapacitated exam
proximity problem. In Edmund K. Burke and Michael Trick, edi-
tors, Proceedings of the 5th International Conference on Practice and
Theory of Automated Timetabling (PATAT 2004), 2004, pages 151–
168. Online available at http://citeseer.ist.psu.edu/653221.

html and http://www.asap.cs.nott.ac.uk/patat/patat04/151.

pdf [accessed 2007-08-27].
[239] Bogdan Filipič and Jurij Šilc, editors. Proceedings of the Second Inter-

national Conference on Bioinspired Optimization Methods and their
Application, BIOMA 2006, Jožef Stefan International Postgraduate
School, Ljubljana, Slovenia, October 9-10, 2006. Jožef Stefan Institute,
ISBN: 978-961-6303-81-1.

[240] Bogdan Filipič and Jurij Šilc, editors. Proccedings of the International
Conference on Bioinspired Optimization Methods and their Applica-
tions (BIOMA 2004), Jožef Stefan International Postgraduate School,
Ljubljana, Slovenia, October 11-12, 2004. Jožef Stefan Institute.

[241] Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2007, Swissôtel The Stamford, Singapore, September25-28, 2007, 445
Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA. IEEE
Press. See http://cec2007.nus.edu.sg/ [accessed 2007-08-06].

[242] Gary G. Yen, Simon M. Lucas, Gary Fogel, Graham Kendall,
Ralf Salomon, Byoung-Tak Zhang, Carlos A. Coello Coello, and
Thomas Philip Runarsson, editors. Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2000, Vancouver, BC, Canada,

http://www.pnas.org/cgi/reprint/101/19/7215.pdf?ck=nck
http://www.pnas.org/content/vol101/issue19/
http://www.pnas.org/content/vol101/issue19/
http://citeseer.ist.psu.edu/marchiori00evolutionary.html
http://citeseer.ist.psu.edu/marchiori00evolutionary.html
 http://www.lania.mx/~ccoello/EMOO/kwan05.pdf.gz
 http://www.lania.mx/~ccoello/EMOO/kwan05.pdf.gz
http://citeseer.ist.psu.edu/653221.html
http://citeseer.ist.psu.edu/653221.html
http://www.asap.cs.nott.ac.uk/patat/patat04/151.pdf
http://www.asap.cs.nott.ac.uk/patat/patat04/151.pdf
http://cec2007.nus.edu.sg/

REFERENCES 681

July 16-21, 2006, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-
1331, USA. IEEE Press, ISBN: 0-7803-9487-9.

[243] David Corne, Zbigniew Michalewicz, Bob McKay, Gusz Eiben, David
Fogel, Carlos Fonseca, Garrison Greenwood, Gunther Raidl, Kay Chen
Tan, and Ali Zalzala, editors. Proceedings of the IEEE Congress
on Evolutionary Computation, CEC2005, Edinburgh, Scotland, UK,
September 2-5, 2005, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ
08855-1331, USA. IEEE Press, ISBN: 0-7803-9363-5.

[244] Proceedings of the IEEE Congress on Evolutionary Computation,
CEC2004, Portland, Oregon, June 20-23, 2004, 445 Hoes Lane, P.O.
Box 1331, Piscataway, NJ 08855-1331, USA. IEEE Press, ISBN: 0-
7803-8515-2.

[245] Ruhul Sarker, Robert Reynolds, Hussein Abbass, Kay Chen Tan, Bob
McKay, Daryl Essam, and Tom Gedeon, editors. Proceedings of the
IEEE Congress on Evolutionary Computation, CEC2003, Canberra,
Australia, December 8-12, 2003, 445 Hoes Lane, P.O. Box 1331, Pis-
cataway, NJ 08855-1331, USA. IEEE Press, ISBN: 0-7803-7804-0. CEC
2003 - A joint meeting of the IEEE, the IEAust, the EPS, and the IEE.

[246] David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Greenwood,
Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors. Proceedings
of the IEEE Congress on Evolutionary Computation, CEC2002, Hon-
olulu, HI, USA, May 12-17, 2002, 445 Hoes Lane, P.O. Box 1331, Pis-
cataway, NJ 08855-1331, USA. IEEE Press, ISBN: 0-7803-7278-6. CEC
2002 - A joint meeting of the IEEE, the Evolutionary Programming
Society, and the IEE. Held in connection with the World Congress on
Computational Intelligence (WCCI 2002).

[247] Proceedings of the IEEE Congress on Evolutionary Computa-
tion, CEC2001, COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea, May 27-30, 2001, 445 Hoes Lane, P.O.
Box 1331, Piscataway, NJ 08855-1331, USA. IEEE Press, ISBN: 0-
7803-6658-1. CEC-2001 - A joint meeting of the IEEE, Evolutionary
Programming Society, Galesia, and the IEE. IEEE Catalog Number:
01TH8546C.

[248] Proceedings of the IEEE Congress on Evolutionary Computation,
CEC00, La Jolla Marriott Hotel, La Jolla, California, USA, July 6-
9, 2000, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331,
USA. IEEE Press, ISBN: 0-7803-6375-2. CEC-2000 - A joint meet-
ing of the IEEE, Evolutionary Programming Society, Galesia, and the
IEE. IEEE Catalog Number: 00TH8512, Library of Congress Number:
00-018644.

[249] Peter John Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao,
and Ali Zalzala, editors. Proceedings of the IEEE Congress on Evo-
lutionary Computation, CEC99, Mayflower Hotel, Washington D.C.,
USA, July 6-9, 1999, volume 1-3, 445 Hoes Lane, P.O. Box 1331, Pis-
cataway, NJ 08855-1331, USA. IEEE Press, ISBN: 0-7803-5536-9, 0-

682 REFERENCES

7803-5537-7. CEC-99 - A joint meeting of the IEEE, Evolutionary
Programming Society, Galesia, and the IEE. Library of Congress Num-
ber: 99-61143.

[250] The 1998 IEEE International Conference on Evolutionary Com-
putation, Proceedings of IEEE World Congress on Computational
Intelligence, CEC98, Anchorage, Alaska, USA, May 4-9, 1998.
IEEE Press. See http://ieeexplore.ieee.org/servlet/opac?

punumber=5621 [accessed 2007-09-06].
[251] Thomas Bäck, Zbigniew Michalewicz, and X. Yao, editors. IEEE In-

ternational Conference on Evolutionary Computation, CEC97, Indi-
anapolis, IN, USA, April 13-16, 1997. IEEE Press, Piscataway, NJ,
ISBN: 0-7803-3949-5. See http://ieeexplore.ieee.org/servlet/

opac?punumber=4619 [accessed 2007-09-06].
[252] Proceedings of IEEE International Conference on Evolutionary Com-

putation, CEC96, Nagoya, Japan, May 20-22, 1996. IEEE Press,
Piscataway, NJ. See http://ieeexplore.ieee.org/servlet/opac?

punumber=3838 [accessed 2007-09-06].
[253] IEEE International Conference on Evolutionary Computation, ICEC

’95, Perth, Australia, November 29-December 1, 1995, volume 1-
2. IEEE Press. See http://ieeexplore.ieee.org/servlet/opac?

punumber=3507 [accessed 2007-09-06]. CEC-95 Editors not given by IEEE,
Organisers David Fogel and Chris deSilva.

[254] Zbigniew Michalewicz, J. David Schaffer, Hans-Paul Schwefel, David B.
Fogel, and H. Kitano, editors. Proceedings of the First IEEE Confer-
ence on Evolutionary Computation, IEEE World Congress on Compu-
tational Intelligence, Orlando, Florida, USA, June 27-29, 1994. IEEE
Press, Piscataway, New Jersey, ISBN: 0-7803-1899-4. See http://

ieeexplore.ieee.org/servlet/opac?punumber=1125 [accessed 2007-09-

06].
[255] Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Slowin-

ski, editors. Practical Approaches to Multi-Objective Optimiza-
tion, Dagstuhl, Germany, December 10-15, 2006, number 06501
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany
IBFI, ISSN: 1862-4405. Published in 2007. Online available at http://
drops.dagstuhl.de/portals/index.php?semnr=06501 and http://

www.dagstuhl.de/de/programm/kalender/semhp/?semnr=06501 [ac-

cessed 2007-09-19].
[256] Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Ralph E.

Steuer, editors. Practical Approaches to Multi-Objective Optimiza-
tion, Dagstuhl, Germany, November 7-12, 2004, number 04461 in
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany
IBFI, ISSN: 1862-4405. Published in 2005. Online available at http://
drops.dagstuhl.de/portals/index.php?semnr=04461 and http://

http://ieeexplore.ieee.org/servlet/opac?punumber=5621
http://ieeexplore.ieee.org/servlet/opac?punumber=5621
http://ieeexplore.ieee.org/servlet/opac?punumber=4619
http://ieeexplore.ieee.org/servlet/opac?punumber=4619
http://ieeexplore.ieee.org/servlet/opac?punumber=3838
http://ieeexplore.ieee.org/servlet/opac?punumber=3838
http://ieeexplore.ieee.org/servlet/opac?punumber=3507
http://ieeexplore.ieee.org/servlet/opac?punumber=3507
http://ieeexplore.ieee.org/servlet/opac?punumber=1125
http://ieeexplore.ieee.org/servlet/opac?punumber=1125
http://drops.dagstuhl.de/portals/index.php?semnr=06501
http://drops.dagstuhl.de/portals/index.php?semnr=06501
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=06501
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=06501
http://drops.dagstuhl.de/portals/index.php?semnr=04461
http://drops.dagstuhl.de/portals/index.php?semnr=04461
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=04461

REFERENCES 683

www.dagstuhl.de/de/programm/kalender/semhp/?semnr=04461 [ac-

cessed 2007-09-19].
[257] Proceedings of the 7th International Conference on Artificial Evolution,

Evolution Artificielle, EA 2005, Tours, France, October 29-31, 2007,
ISSN: 0302-9743 (Print) 1611-3349 (Online). See http://ea07.hant.

li.univ-tours.fr/ [accessed 2007-09-09].
[258] El-Ghazali Talbi, Pierre Liardet, Pierre Collet, Evelyne Lutton, and

Marc Schoenauer, editors. Revised Selected Papers of the 8th Inter-
national Conference on Artificial Evolution, Evolution Artificielle, EA
2005, Lille, France, October 26-28, 2005, volume 3871 of Lecture Notes
in Computer Science (LNCS). Springer Berlin/Heidelberg, ISBN: 3-
540-33589-7, ISSN: 0302-9743 (Print) 1611-3349 (Online). Published
in 2006.

[259] Pierre Liardet, Pierre Collet, Cyril Fonlupt, Evelyne Lutton, and Marc
Schoenauer, editors. Proceedings of the 6th International Confer-
ence on Artificial Evolution, Evolution Artificielle, EA 2003, Mar-
seilles, France, October 27-30, 2003, volume 2936 of Lecture Notes in
Computer Science (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-
21523-9, ISSN: 0302-9743 (Print) 1611-3349 (Online). Published in
2003.

[260] Pierre Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, and Marc
Schoenauer, editors. Selected Papers of the 5th International Con-
ference on Artificial Evolution, Evolution Artificielle, EA 2001, Le
Creusot, France, October 29-31, 2001, volume 2310 of Lecture Notes
in Computer Science (LNCS). Springer Berlin/Heidelberg, ISBN: 3-
540-43544-1, ISSN: 0302-9743 (Print) 1611-3349 (Online). Published
in 2002.

[261] Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, Edmund M. A. Ronald,
and Marc Schoenauer, editors. Selected Papers of the 4th Euro-
pean Conference on Artificial Evolution, AE’99, Dunkerque, France,
November 3-5, 1999, volume 1829 of Lecture Notes in Computer Sci-
ence (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-67846-8, ISSN:
0302-9743 (Print) 1611-3349 (Online). Published in 2000.

[262] Jin-Kao Hao, Evelyne Lutton, Edmund M. A. Ronald, Marc Schoe-
nauer, and Dominique Snyers, editors. Selected Papers of the Third
European Conference on Artificial Evolution, AE’97, Nı̂mes, France,
October 22-24, 1997, volume 1363 of Lecture Notes in Computer Sci-
ence (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-64169-6, ISSN:
0302-9743 (Print) 1611-3349 (Online). Published in May 1998.

[263] Jean-Marc Alliot, Evelyne Lutton, Edmund M. A. Ronald, Marc Schoe-
nauer, and Dominique Snyers, editors. Selected Papers of the European
Conference on Artificial Evolution, AE 95, Brest, France, September 4-
6, 1995, volume 1063 of Lecture Notes in Computer Science (LNCS).
Springer Berlin/Heidelberg, ISBN: 3-540-61108-8, ISSN: 0302-9743
(Print) 1611-3349 (Online). Published in 1996.

http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=04461
http://ea07.hant.li.univ-tours.fr/
http://ea07.hant.li.univ-tours.fr/

684 REFERENCES

[264] Jean-Marc Alliot, Evelyne Lutton, and Marc Schoenauer, editors. Eu-
ropean Conference on Artificial Evolution, AE 94, Toulouse, France,
1994. Cepadues, ISBN: 9782854284119. Published in January 1995.

[265] Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroy-
asu, and Tadahiko Murata, editors. Proceedings of the Fourth In-
ternational Conference on Evolutionary Multi-Criterion Optimization
(EMO’2007), Matsushima/Sendai, Japan, March 5-8, 2007, volume
4403/2007 of Lecture Notes in Computer Science (LNCS). Springer-
Verlag, Berlin, ISBN: 978-3-540-70927-5, ISSN: 0302-9743 (Print) 1611-
3349 (Online). See http://www.is.doshisha.ac.jp/emo2007/ [accessed

2007-09-11].
[266] Carlos A Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler,

editors. Proceedings of the Third International Conference on Evolu-
tionary Multi-Criterion Optimization (EMO’05), Guanajuato, Mexico,
March 9-11, 2005, volume 3410 of Lecture Notes in Computer Sci-
ence (LNCS). Springer-Verlag, Berlin, ISBN: 978-3-540-24983-2, ISSN:
0302-9743 (Print) 1611-3349 (Online).

[267] Carlos M. Fonseca, Peter J. Fleming Fleming, Eckart Zitzler, Kalyan-
moy Deb, and Lothar Thiele, editors. Proceedings of the Second In-
ternational Conference on Evolutionary Multi-Criterion Optimization
(EMO’03), Faro, Portugal, April 8-11, 2003, volume 2632/2003 of
Lecture Notes in Computer Science (LNCS). Springer-Verlag, Berlin,
ISBN: 978-3-540-01869-8, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[268] Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello,
and David Corne, editors. Evolutionary Multi-Criterion Optimiza-
tion, Proceedings of the First International Conference on Evolu-
tionary Multi-Criterion Optimization (EMO’01), Zurich, Switzerland,
March 7-9, 2001, volume 1993/2001 of Lecture Notes in Computer
Science (LNCS). Springer-Verlag, Berlin, ISBN: 3-540-41745-1, ISSN:
0302-9743 (Print) 1611-3349 (Online). See http://www.tik.ee.ethz.
ch/emo/ [accessed 2007-09-11].

[269] Proceedings of the Seventh Conference on Evolutionary and Determin-
istic Mehtods for Design, Optimization and Control with Applications
to Indutsrial and Societal Problems, EUROGEN2007, University of
Jyväskylä, Jyväskylä, Finland, June 11-13, 2007. See http://www.

mit.jyu.fi/scoma/Eurogen2007/ [accessed 2007-09-16].
[270] R. Schilling, W. Haase, J. Periaux, and H. Baier, editors. Proceedings

of the Sixth Conference on Evolutionary and Deterministic Mehtods for
Design, Optimization and Control with Applications to Indutsrial and
Societal Problems, EUROGEN2005, TU München, Munich, Germany,
September 12-14, 2005. TU München. in association with ECCO-
MAS and ERCOFTAC. See http://www.flm.mw.tum.de/EUROGEN05/
[accessed 2007-09-16].

[271] Proceedings of the EUROGEN2003 Conference: Evolutionary Meth-
ods for Design Optimization and Control with Applications to Indus-

http://www.is.doshisha.ac.jp/emo2007/
http://www.tik.ee.ethz.ch/emo/
http://www.tik.ee.ethz.ch/emo/
http://www.mit.jyu.fi/scoma/Eurogen2007/
http://www.mit.jyu.fi/scoma/Eurogen2007/
http://www.flm.mw.tum.de/EUROGEN05/

REFERENCES 685

trial Problems, Barcelona, Spain, September 15-17, 2003, ISBN: 84-
95999-33-1. Published on CD. See http://congress.cimne.upc.es/

eurogen03/ [accessed 2007-09-16].
[272] K. C. Giannakoglou, D. T. Tsahalis, J. Périaux, K. D. Papailiou, and

T. Fogarty, editors. Proceedings of the EUROGEN2001 Conference:
Evolutionary Methods for Design Optimization and Control with Appli-
cations to Industrial Problems, Athens, Greece, September 19-21, 2001.
International Center for Numerical Methods in Engineering (Cmine),
Gran Capitan s/n, 08034 Barcelona, Spain, ISBN: 84-89925-97-6. Pub-
lished in 2002. See http://www.mech.ntua.gr/~eurogen2001 [accessed

2007-09-16].
[273] European Short Course on Genetic Algorithms and Evolution Strate-

gies, EUROGEN 1999, Univeristy of Jyväskylä, Jyväskylä, Finland,
May 30-June 3, 1999.

[274] D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors. Ge-
netic Algorithms and Evolution Strategy in Engineering and Computer
Science: Proceedings of the 2nd European Short Course on Genetic
Algorithms and Evolution Strategies, EUROGEN 1997, Triest, Italy,
November 28-December 4, 1997, Recent Advances in Industrial Appli-
cations. Wiley & Sons, ISBN: 978-0471977100.

[275] Genetic Algorithms in Engineering and Computer Science, European
Short Course on Genetic Algorithms and Evolution Strategies, EURO-
GEN 1995, Las Palmas de Gran Canaria, Spain, 1995. John Wiley &
Sons.

[276] Carlos Cotta and Jano I. van Hemert, editors. Proceedings of the
7th European Conference on Evolutionary Computation in Combina-
torial Optimization, EvoCOP 2007, Valencia, Spain, April 11-13, 2007,
volume 4446/2007 of Lecture Notes in Computer Science (LNCS).
Springer, ISBN: 978-3-540-71614-3, ISSN: 0302-9743 (Print) 1611-3349
(Online).

[277] Jens Gottlieb and Günther R. Raidl, editors. Proceedings of the 6th
European Conference on Evolutionary Computation in Combinatorial
Optimization, EvoCOP 2006, Budapest, Hungary, April 10-12, 2006,
volume 3906/2006 of Lecture Notes in Computer Science (LNCS).
Springer, ISBN: 3-540-33178-6, ISSN: 0302-9743 (Print) 1611-3349
(Online).

[278] Günther R. Raidl and Jens Gottlieb, editors. Proceedings of the 5th
European Conference on Evolutionary Computation in Combinato-
rial Optimization, EvoCOP 2005, Lausanne, Switzerland, March 30-
April 1, 2005, volume 3448/2005 of Lecture Notes in Computer Sci-
ence (LNCS). Springer, ISBN: 3-540-25337-8, ISSN: 0302-9743 (Print)
1611-3349 (Online).

[279] Jens Gottlieb and Günther R. Raidl, editors. Proceedings of the 4th Eu-
ropean Conference on Evolutionary Computation in Combinatorial Op-
timization, EvoCOP 2004, Coimbra, Portugal, April 5-7, 2004, volume

http://congress.cimne.upc.es/eurogen03/
http://congress.cimne.upc.es/eurogen03/
http://www.mech.ntua.gr/~eurogen2001

686 REFERENCES

3004/2004 of Lecture Notes in Computer Science (LNCS). Springer,
ISBN: 3-540-21367-8, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[280] Günther R. Raidl, Jean-Arcady Meyer, Martin Middendorf, Stefano
Cagnoni, Juan J. Romero Cardalda, David Corne, Jens Gottlieb, Agnès
Guillot, Emma Hart, Colin G. Johnson, and Elena Marchiori, editors.
Proceedings of Applications of Evolutionary Computing, EvoWork-
shop 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and
EvoSTIM, University of Essex,Essex, UK, April 14-16, 2003, volume
2611/2003 of Lecture Notes in Computer Science (LNCS). Springer,
ISBN: 3-540-00976-0, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[281] Stefano Cagnoni, Jens Gottlieb, Emma Hart, Martin Middendorf, and
Günther R. Raidl, editors. Proceedings of Applications of Evolutionary
Computing, EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/Evo-
PLAN, Kinsale, Ireland, April 3-4, 2002, volume 2279/2002 of Lecture
Notes in Computer Science (LNCS). Springer, ISBN: 3-540-43432-1,
ISSN: 0302-9743 (Print) 1611-3349 (Online).

[282] Egbert J. W. Boers, Jens Gottlieb, Pier Luca Lanzi, Robert E.
Smith, Stefano Cagnoni, Emma Hart, Günther R. Raidl, and H. Ti-
jink, editors. Proceedings of Applications of Evolutionary Comput-
ing, EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn,
and EvoSTIM, Lake Como, Milan, Italy, April 18-20, 2001, volume
2037/2001 of Lecture Notes in Computer Science (LNCS). Springer,
ISBN: 3-540-41920-9, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[283] Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni Di
Caro, Rolf Drechsler, Muddassar Farooq, Andreas Fink, Evelyne Lut-
ton, Penousal Machado, Stefan Minner, Michael O’Neill, Juan Romero,
Franz Rothlauf, Giovanni Squillero, Hideyuki Takagi, Sima Uyar, and
Shengxiang Yang, editors. Applications of Evolutionary Computing,
EvoWorkshops 2007: EvoCoMnet, EvoFIN, EvoIASP, EvoINTERAC-
TION, EvoMUSART, EvoSTOC and EvoTransLog, Valencia, Spain,
April 11-13, 2007, volume 4448/2007 of Lecture Notes in Computer
Science (LNCS). Springer, ISBN: 978-3-540-71804-8, ISSN: 0302-9743
(Print) 1611-3349 (Online).

[284] Franz Rothlauf, Jürgen Branke, Stefano Cagnoni, Ernesto Costa, Car-
los Cotta, Rolf Drechsler, Evelyne Lutton, Penousal Machado, Ja-
son H. Moore, Juan Romero, George D. Smith, Giovanni Squillero, and
Hideyuki Takagi, editors. Proceedings of Applications of Evolution-
ary Computing, EvoWorkshops 2006: EvoBIO, EvoCOMNET, Evo-
HOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC,
Budapest, Hungary, April 10-12, 2006, volume 3907/2006 of Lecture
Notes in Computer Science (LNCS). Springer, ISBN: 3-540-33237-5,
ISSN: 0302-9743 (Print) 1611-3349 (Online).

[285] Franz Rothlauf, Jürgen Branke, Stefano Cagnoni, David W. Corne,
Rolf Drechsler, Yaochu Jin, Penousal Machado, Elena Marchiori, Juan
Romero, George D. Smith, and Giovanni Squillero, editors. Pro-

REFERENCES 687

ceedings of Applications of Evolutionary Computing, EvoWorkshops
2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART,
and EvoSTOC, Lausanne, Switzerland, March 30-April 1, 2005, vol-
ume 3449/2005 of Lecture Notes in Computer Science (LNCS).
Springer, ISBN: 3-540-25396-3, 978-3-540-25396-9, ISSN: 0302-9743
(Print) 1611-3349 (Online).

[286] Günther R. Raidl, Stefano Cagnoni, Jürgen Branke, David Corne, Rolf
Drechsler, Yaochu Jin, Colin G. Johnson, Penousal Machado, Elena
Marchiori, Franz Rothlauf, George D. Smith, and Giovanni Squillero,
editors. Proceedings of Applications of Evolutionary Computing,
EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP,
EvoMUSART, and EvoSTOC, Coimbra, Portugal, April 5-7, 2004,
volume 3005/2004 of Lecture Notes in Computer Science (LNCS).
Springer, ISBN: 3-540-21378-3, ISSN: 0302-9743 (Print) 1611-3349
(Online).

[287] Stefano Cagnoni, Riccardo Poli, Yun Li, George D. Smith, David
Corne, Martin J. Oates, Emma Hart, Pier Luca Lanzi, Egbert J. W.
Boers, Ben Paechter, and Terence C. Fogarty, editors. Proceedings
of Real-World Applications of Evolutionary Computing, EvoWork-
shops 2000: EvoIASP, EvoSCONDI, EvoTel, EvoSTIM, EvoROB, and
EvoFlight, Edinburgh, Scotland, UK, April 17, 2000, volume 1803/200
of Lecture Notes in Computer Science (LNCS). Springer, ISBN: 3-540-
67353-9, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[288] Riccardo Poli, Hans-Michael Voigt, Stefano Cagnoni, David Corne,
George D. Smith, and Terence C. Fogarty, editors. Proceedings of
the First European Workshops on Evolutionary Image Analysis, Signal
Processing and Telecommunications,, EvoIASP’99 and EuroEcTel’99,
Göteborg, Sweden, May 26-27, 1999, volume 1596/1999 of Lecture
Notes in Computer Science (LNCS). Springer, ISBN: 3-540-65837-8,
ISSN: 0302-9743 (Print) 1611-3349 (Online).

[289] Phil Husbands and Jean-Arcady Meyer, editors. Proceedings of the
First European Workshop on Evolutionary Robotics, EvoRbot98, Paris,
France, April 16-17, 1998, volume 1468/1998 of Lecture Notes in Com-
puter Science (LNCS). Springer, ISBN: 3-540-64957-3, ISSN: 0302-
9743 (Print) 1611-3349 (Online).

[290] Proceedings of the Eighth Joint Conference on Information Science
(JCIS 2005), Section: The Sixth International Workshop on Fron-
tiers in Evolutionary Algorithms (FEA 2005), Salt Lake City Mariott
City Center, Salt Lake City, Utah, USA, July 21-16, 2005. Workshop
held in conjunction with Eighth Joint Conference on Information Sci-
ences. See http://fs.mis.kuas.edu.tw/~cobol/JCIS2005/jcis05/

Track4.html [accessed 2007-09-16].
[291] Ken Chen et al., editor. Proceedings of the Seventh Joint Conference

on Information Science (JCIS 2003), Section: The Fifth International
Workshop on Frontiers in Evolutionary Algorithms (FEA 2003), Em-

http://fs.mis.kuas.edu.tw/~cobol/JCIS2005/jcis05/Track4.html
http://fs.mis.kuas.edu.tw/~cobol/JCIS2005/jcis05/Track4.html

688 REFERENCES

bassy Suites Hotel and Conference Center, Cary, North Carolina, USA,
September 26-30, 2003. Workshop held in conjunction with Seventh
Joint Conference on Information Sciences.

[292] H. John Caulfield, Shu-Heng Chen, Heng-Da Cheng, Richard J. Duro,
Vasant Honavar, Etienne E. Kerre, Mi Lu, Manuel Grana Romay, Tim-
othy K. Shih, Dan Ventura, Paul P. Wang, and Yuanyuan Yang, edi-
tors. Proceedings of the Sixth Joint Conference on Information Science
(JCIS 2002), Section: The Fourth International Workshop on Fron-
tiers in Evolutionary Algorithms (FEA 2002), Research Triangle Park,
North Carolina, USA, March 8-13, 2002. JCIS / Association for Intel-
ligent Machinery, Inc., ISBN: 0-9707890-1-7. Workshop held in con-
junction with Sixth Joint Conference on Information Sciences.

[293] Paul P. Wang, editor. Proceedings of the Fifth Joint Conference on
Information Science (JCIS 2000), Section: The Third International
Workshop on Frontiers in Evolutionary Algorithms (FEA 2000), At-
lantic City, NJ, USA, February 27-March 3, 2000. The Association for
Intelligent Machinery. Workshop held in conjunction with Fifth Joint
Conference on Information Sciences.

[294] Proceedings of the Fourth Joint Conference on Information Science
(JCIS 1998), Section: The Second International Workshop on Fron-
tiers in Evolutionary Algorithms (FEA 1998), Research Triangle Park,
North Carolina, USA, October 24-28, 1998, volume 2. The Association
for Intelligent Machinery. Workshop held in conjunction with Fourth
Joint Conference on Information Sciences.

[295] Proceedings of the Third Joint Conference on Information Science
(JCIS 1997), Section: The First International Workshop on Frontiers
in Evolutionary Algorithms (FEA 1998), Sheraton Imperial Hotel &
Convention Center, Research Triangle Park, North Carolina, USA,
March 1-5, 1997. Workshop held in conjunction with Third Joint Con-
ference on Information Sciences.

[296] Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke,
John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb,
Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason
Moore, Frank Neumann, Martin Pelikan, Riccardo Poli, Kumara Sas-
try, Kenneth Owen Stanley, Thomas Stutzle, Richard A Watson, and
Ingo Wegener, editors. Proceedings of Genetic and Evolutionary Com-
putation Conference, GECCO 2007, University College London, Gower
Street, London WC 1E 6BT, London, UK, July 7-12, 2007. ACM Press,
New York, NY, USA, ISBN: 978-1-59593-697-4. See also [297].

[297] Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke,
John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb,
Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Ja-
son Moore, Frank Neumann, Martin Pelikan, Riccardo Poli, Kumara
Sastry, Kenneth Owen Stanley, Thomas Stutzle, Richard A Watson,
and Ingo Wegener, editors. Genetic and Evolutionary Computation

REFERENCES 689

Conference - Companion Material, GECCO 2007, University College
London, Gower Street, London WC 1E 6BT, London, UK, July 7-12,
2007. ACM Press, New York, NY, USA, ISBN: 978-1-59593-698-1. See
also [296], ACM Order Number 910071.

[298] Mike Cattolico, editor. GECCO ’06: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, Renaissance
Seattle Hotel, 515 Madison Street, Seattle, Washington 98104, USA,
July 8-12, 2006, New York, NY, USA. ACM Press, ISBN: 1-59593-186-
4. ACM order number 910060.

[299] Hans-Georg Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang
Banzhaf, Christian Blum, Eric W. Bonabeau, Erick Cantú-Paz, Di-
pankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D. de
Jong, Hod Lipson, Xavier Llorà, Spiros Mancoridis, Martin Pelikan,
Guenther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Wat-
son, and Eckart Zitzler, editors. Proceedings of Genetic and Evolution-
ary Computation Conference, GECCO 2005, Loews L’Enfant Plaza
Hotel, 480 L’enfant Plaza Sw, Washington, D.C. 20024, USA, June 25-
29, 2005, Washington DC, USA. ACM Press, ISBN: 1-59593-010-8.
GECCO-2005 A joint meeting of the fourteenth international confer-
ence on genetic algorithms (ICGA-2005) and the tenth annual genetic
programming conference (GP-2005). ACM Order Number 910052. See
also [300, 301].

[300] Hans-Georg Beyer and Una-May O’Reilly, editors. Workshop Proceed-
ings of Genetic and Evolutionary Computation Conference, GECCO
2005, Loews L’Enfant Plaza Hotel, 480 L’enfant Plaza Sw, Washing-
ton, D.C. 20024, USA, June 25-29, 2005. ACM. See also [299, 301].

[301] Franz Rothlauf, editor. Late Breaking Papers at Genetic and Evolu-
tionary Computation Conference, GECCO 2005, Loews L’Enfant Plaza
Hotel, 480 L’enfant Plaza Sw, Washington, D.C. 20024, USA, June 25-
29, 2005. See also [299, 300]. Also distributed on CD-ROM at GECCO-
2005.

[302] Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer,
Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario Flo-
reano, James A. Foster, Mark Harman, Owen Holland, Pier Luca
Lanzi, Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andrew M.
Tyrrell, editors. Proceedings of Genetic and Evolutionary Computation
- GECCO 2004, Genetic and Evolutionary Computation Conference,
Part I, Red Lion Hotel, 1415 5th Avenue, Seattle, WA 98101, USA,
June 26-30, 2004, volume 3102/2004 of Lecture Notes in Computer
Science (LNCS). Springer Berlin/Heidelberg, ISBN: 978-3-540-22344-
3, ISSN: 0302-9743 (Print) 1611-3349 (Online). see also [303, 660].

[303] Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer,
Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario Flo-
reano, James A. Foster, Mark Harman, Owen Holland, Pier Luca
Lanzi, Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andrew M.

690 REFERENCES

Tyrrell, editors. Proceedings of Genetic and Evolutionary Computation
- GECCO 2004, Genetic and Evolutionary Computation Conference,
Part II, Red Lion Hotel, 1415 5th Avenue, Seattle, WA 98101, USA,
June 26-30, 2004, volume 3103/2004 of Lecture Notes in Computer
Science (LNCS). Springer Berlin/Heidelberg, ISBN: 978-3-540-22343-
6, ISSN: 0302-9743 (Print) 1611-3349 (Online). see also [302, 660].

[304] Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis,
Rajkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K. Stan-
dish, Graham Kendall, Stewart W. Wilson, Mark Harman, Joachim
Wegener, Dipankar Dasgupta, Mitchell A. Potter, Alan C. Schultz,
Kathryn A. Dowsland, Natasa Jonoska, and Julian F. Miller, edi-
tors. Proceedings of Genetic and Evolutionary Computation - GECCO
2003, Genetic and Evolutionary Computation Conference, Part I, The
Holiday Inn Chicago – Mart Plaza, 350 N. Orleans St., Chicago, IL
60654, USA, July 12-16, 2003, volume 2723/2003 of Lecture Notes in
Computer Science (LNCS). Springer Berlin/Heidelberg, ISBN: 978-
3-540-40602-0, ISSN: 0302-9743 (Print) 1611-3349 (Online). see also
[305, 661].

[305] Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis,
Rajkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K. Stan-
dish, Graham Kendall, Stewart W. Wilson, Mark Harman, Joachim
Wegener, Dipankar Dasgupta, Mitchell A. Potter, Alan C. Schultz,
Kathryn A. Dowsland, Natasa Jonoska, and Julian F. Miller, edi-
tors. Proceedings of Genetic and Evolutionary Computation - GECCO
2003, Genetic and Evolutionary Computation Conference, Part II, The
Holiday Inn Chicago – Mart Plaza, 350 N. Orleans St., Chicago, IL
60654, USA, July 12-16, 2003, volume 2724/2003 of Lecture Notes in
Computer Science (LNCS). Springer Berlin/Heidelberg, ISBN: 978-
3-540-40603-7, ISSN: 0302-9743 (Print) 1611-3349 (Online). see also
[304, 661].

[306] William B. Langdon, Erick Cantú-Paz, Keith E. Mathias, Rajku-
mar Roy, David Davis, Riccardo Poli, Karthik Balakrishnan, Vasant
Honavar, Günter Rudolph, Joachim Wegener, Larry Bull, Mitchell A.
Potter, Alan C. Schultz, Julian F. Miller, Edmund K. Burke, and
Natasa Jonoska, editors. GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, The Roosevelt Hotel, 45th and
Madison Avenue, New York, NY, USA, July 9-13, 2002. Morgan Kauf-
mann Publishers Inc., ISBN: 1-55860-878-8. see also [307, 309, 308].

[307] Erick Cantú-Paz, editor. Late Breaking papers at the Genetic and Evo-
lutionary Computation Conference (GECCO-2002), The Roosevelt Ho-
tel, 45th and Madison Avenue, New York, NY, USA, July 9-13, 2002.
AAAI. see also [306, 309, 308].

[308] Alwyn M. Barry, editor. GECCO 2002: Proceedings of the Bird of a
Feather Workshops, Genetic and Evolutionary Computation Confer-

REFERENCES 691

ence, The Roosevelt Hotel, 45th and Madison Avenue, New York, NY,
USA, July 8, 2002. AAAI, 445 Burgess Drive, Menlo Park, CA 94025.

[309] Michael O’Neill and Conor Ryan, editors. Grammatical Evolution
Workshop (GEWS 2002), New York, NY, USA, July 9, 2002. Part
of GECCO, see [306] and also http://www.grammatical-evolution.

com/gews2002/ [accessed 2007-09-10].
[310] Lee Spector, Erik D. Goodman, Annie Wu, William B. Langdon,

Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram
Pezeshk, Max H. Garzon, and Edmund Burke, editors. Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO ’01),
Holiday Inn Golden Gateway Hotel, San Francisco, California, USA,
July 7-11, 2001. Morgan Kaufmann, ISBN: 978-1558607743. see also
[311].

[311] Erik D. Goodman, editor. Late Breaking Papers at Genetic and Evo-
lutionary Computation Conference (GECCO ’01), Holiday Inn Golden
Gateway Hotel, San Francisco, California, USA, July 7-11, 2001. see
also [310].

[312] L. Darrell Whitley, David Goldberg, Erick Cantú-Paz, Lee Spector,
Ian C. Parmee, and Hans-Georg Beyer, editors. Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’00), The
Riviera Hotel and Casino, Las Vegas, Nevada, USA, July 8-12, 2000.
Morgan Kaufmann, ISBN: 978-1558607088. see also [313].

[313] L. Darrell Whitley, editor. Late Breaking Papers at Genetic and Evo-
lutionary Computation Conference (GECCO ’00), The Riviera Hotel
and Casino, Las Vegas, Nevada, USA, July 8-12, 2000. see also [312].

[314] Wolfgang Banzhaf, Jason M. Daida, Agoston E. Eiben, Max H. Gar-
zon, Vasant Honavar, Mark J. Jakiela, and Robert E. Smith, editors.
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 1999), Orlando, Florida, USA, July 13-17, 1999. Morgan
Kaufmann, ISBN: 1-55860-611-4. see also [315].

[315] Late Breaking Papers at Genetic and Evolutionary Computation Con-
ference (GECCO 1999), Orlando, Florida, USA, July 13-17, 1999. see
also [314].

[316] Bart lomiej Beliczyński, Andrzej Dzieliński, Marcin Iwanowski, and
Bernardete Ribeiro, editors. Proceedings of Adaptive and Natu-
ral Computing Algorithms, 8th International Conference, ICANNGA
2007, Part I, Warsaw University of Technology, Warsaw, Poland,
April 11-14, 2007, volume 4431/2007 of Lecture Notes in Computer
Science (LNCS). Springer Berlin Heidelberg New York, ISBN: 978-
3-540-71589-4, ISSN: 0302-9743. see also [317], http://icannga07.
ee.pw.edu.pl/ [accessed 2007-08-31], and http://www.springerlink.com/

content/978-3-540-71590-0/ [accessed 2007-08-31].
[317] Bart lomiej Beliczyński, Andrzej Dzieliński, Marcin Iwanowski, and

Bernardete Ribeiro, editors. Proceedings of Adaptive and Natu-
ral Computing Algorithms, 8th International Conference, ICANNGA

http://www.grammatical-evolution.com/gews2002/
http://www.grammatical-evolution.com/gews2002/
http://icannga07.ee.pw.edu.pl/
http://icannga07.ee.pw.edu.pl/
http://www.springerlink.com/content/978-3-540-71590-0/
http://www.springerlink.com/content/978-3-540-71590-0/

692 REFERENCES

2007, Part II, Warsaw University of Technology, Warsaw, Poland,
April 11-14, 2007, volume 4432/2007 of Lecture Notes in Computer
Science (LNCS). Springer Berlin Heidelberg New York, ISBN: 978-
3-540-71590-0, ISSN: 0302-9743. see also [316], http://icannga07.
ee.pw.edu.pl/ [accessed 2007-08-31], and http://www.springerlink.com/

content/978-3-540-71589-4/ [accessed 2007-08-31].
[318] Bernadete Ribeiro, Rudolf F. Albrecht, Andrej Dobnikar, David W.

Pearson, and Nigel C. Steele, editors. Proceedings of the 7th Inter-
national Conference on Adaptive and Natural Computing Algorithms,
ICANNGA 2005, Department of Informatics Engineering, Faculty of
Science and Technology, University of Coimbra, Coimbra, Portugal,
March 21-23, 2005. Springer, Wien, ISBN: 978-3-211-24934-5 (Print)
978-3-211-27389-0 (Online). see http://icannga05.dei.uc.pt/ [ac-

cessed 2007-08-31].
[319] David W. Pearson, Nigel C. Steele, and Rudolf F. Albrecht, editors.

Proceedings of the 6th International Conference on Artificial Neural
Nets and Genetic Algorithms, Roanne, France, 2003. Springer Verlag,
ISBN: 978-3-211-00743-3.

[320] Vera Kurkova, Nigel C. Steele, Roman Neruda, and Miroslav Karny,
editors. Proceedings of the 5th International Conference on Artifi-
cial Neural Networks and Genetic Algorithms, Prague, Czech Republic,
2001, Berlin. Springer Verlag, ISBN: 978-3-211-83651-4.

[321] Andrej Dobnikar, Nigel C. Steele, David W. Pearson, and Rudolf F. Al-
brecht, editors. Proceedings of the 4th International Conference on Ar-
tificial Neural Nets and Genetic Algorithms, Portoroz, Slovenia, 1999.
Springer, ISBN: 978-3-211-83364-3.

[322] George D. Smith, Nigel C. Steele, and Rudolf F. Albrecht, editors.
Proceedings of the International Conference on Artificial Neural Nets
and Genetic Algorithms, Norwich, England, U.K., 1997, ISBN: 978-3-
211-83087-1.

[323] Thomas Philip Runarsson, Hans-Georg Beyer, Edmund K. Burke, Juan
J. Merelo Guervós, L. Darrell Whitley, and Xin Yao, editors. Proceed-
ings of 9th International Conference on Parallel Problem Solving from
Nature – PPSN IX, University of Iceland, Reykjavik, Iceland, Septem-
ber 9-13, 2006, volume 4193/2006 of Lecture Notes in Computer Sci-
ence (LNCS). Springer, ISBN: 3-540-38990-3, ISSN: 0302-9743 (Print)
1611-3349 (Online). See http://ppsn2006.raunvis.hi.is/ [accessed

2007-09-05].
[324] Xin Yao, Edmund K. Burke, José Antonio Lozano, Jim Smith, Juan

J. Merelo Guervós, John A. Bullinaria, Jonathan E. Rowe, Peter
Tiño, Ata Kabán, and Hans-Paul Schwefel, editors. Proceedings of the
8th International Conference on Parallel Problem Solving from Na-
ture – PPSN VIII, Birmingham, UK, September 18-22, 2004, volume
3242/2004 of Lecture Notes in Computer Science (LNCS). Springer,

http://icannga07.ee.pw.edu.pl/
http://icannga07.ee.pw.edu.pl/
http://www.springerlink.com/content/978-3-540-71589-4/
http://www.springerlink.com/content/978-3-540-71589-4/
http://icannga05.dei.uc.pt/
http://ppsn2006.raunvis.hi.is/

REFERENCES 693

ISBN: 3-540-23092-0, ISSN: 0302-9743 (Print) 1611-3349 (Online). See
http://events.cs.bham.ac.uk/ppsn04/ [accessed 2007-09-05].

[325] Juan J. Merelo Guervós, Panagiotis Adamidis, Hans-Georg Beyer,
José Luis Fernández-Villacañas Mart́ın, and Hans-Paul Schwefel, edi-
tors. Proceedings of the 7th International Conference on Parallel Prob-
lem Solving from Nature – PPSN VII, Granada, Spain, September 7-
11, 2002, volume 2439/2002 of Lecture Notes in Computer Science
(LNCS). Springer, ISBN: 3-540-44139-5, ISSN: 0302-9743 (Print) 1611-
3349 (Online). See http://ppsn2002.ugr.es/index.html [accessed 2007-

09-05].
[326] Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Eve-

lyne Lutton, Juan J. Merelo Guervós, and Hans-Paul Schwefel, edi-
tors. Proceedings of the 6th International Conference on Parallel Prob-
lem Solving from Nature – PPSN VI, Paris, France, September 18-
20, 2000, volume 1917/2000 of Lecture Notes in Computer Science
(LNCS). Springer, ISBN: 3-540-41056-2, ISSN: 0302-9743 (Print) 1611-
3349 (Online).

[327] Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-Paul
Schwefel, editors. Proceedings of the 5th International Conference on
Parallel Problem Solving from Nature – PPSN V, Amsterdam, The
Netherlands, September 27-30, 1998, volume 1498/1998 of Lecture
Notes in Computer Science (LNCS). Springer, ISBN: 3-540-65078-4,
ISSN: 0302-9743 (Print) 1611-3349 (Online).

[328] Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberger, and Hans-
Paul Schwefel, editors. Parallel Problem Solving from Nature – PPSN
IV, International Conference on Evolutionary Computation. Proceed-
ings of the 4th International Conference on Parallel Problem Solv-
ing from Nature, Berlin, Germany, September 22-24, 1996, volume
1141/1996 of Lecture Notes in Computer Science (LNCS). Springer,
ISBN: 3-540-61723-X, ISSN: 0302-9743 (Print) 1611-3349 (Online).
See http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn4/

ppsn4.html [accessed 2007-09-05].
[329] Yuval Davidor, Hans-Paul Schwefel, and Reinhard Männer, editors.

Parallel Problem Solving from Nature – PPSN III, International Con-
ference on Evolutionary Computation. Proceedings of the Third Confer-
ence on Parallel Problem Solving from Nature, Jerusalem, Israel, Octo-
ber 9-14, 1994, volume 866/1994 of Lecture Notes in Computer Science
(LNCS). Springer, ISBN: 3-540-58484-6, ISSN: 0302-9743 (Print) 1611-
3349 (Online). See http://ls11-www.informatik.uni-dortmund.

de/PPSN/ppsn3/ppsn3.html [accessed 2007-09-05].
[330] Reinhard Männer and Bernard Manderick, editors. Proceedings of

Parallel Problem Solving from Nature 2, PPSN II, Brussels, Belgium,
September 28-30, 1992. Elsevier. See http://ls11-www.informatik.

uni-dortmund.de/PPSN/ppsn2/ppsn2.html [accessed 2007-09-05].

http://events.cs.bham.ac.uk/ppsn04/
http://ppsn2002.ugr.es/index.html
http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn4/ppsn4.html
http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn4/ppsn4.html
http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn3/ppsn3.html
http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn3/ppsn3.html
http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn2/ppsn2.html
http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn2/ppsn2.html

694 REFERENCES

[331] Hans-Paul Schwefel and Reinhard Männer, editors. Proceedings of
the 1st Workshop on Parallel Problem Solving from Nature, PPSN I,
FRG, Dortmund, Germany, October 1-3, 1990, volume 496/1991 of
Lecture Notes in Computer Science (LNCS). Springer, ISBN: 3-540-
54148-9, ISSN: 0302-9743 (Print) 1611-3349 (Online). Published 1991.
See http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn1/

ppsn1.html [accessed 2007-09-05].
[332] David B. Fogel, editor. Evolutionary Computation: The Fossil Record.

Wiley-IEEE Press, ISBN: 978-0780334816, May 1, 1998.
[333] Peter J. Bentley, editor. Evolutionary Design by Computers. Mor-

gan Kaufmann, San Francisco, USA, ISBN: 1-55860-605-X, June 15,
1999. See also http://www.cs.ucl.ac.uk/staff/P.Bentley/evdes.

html [accessed 2007-10-03].
[334] Franz Rothlauf. Representations for Genetic and Evolutionary Algo-

rithms. Physica-Verlag, ISBN: 978-3790814965, August 2002. Foreword
by David E. Goldberg.

[335] Wolfgang Banzhaf and Frank H. Eeckman, editors. Evolution and Bio-
computation – Computational Models of Evolution, Monterey, Califor-
nia, USA, July 1992, volume 899 of Lecture Notes in Computer Science
(LNCS). Springer-Verlag, London, UK, ISBN: 3-540-59046-3, 0-387-
59046-3. Published 1995.

[336] Shu-Heng Chen, editor. Evolutionary Computation in Economics and
Finance, volume 100 of Studies in Fuzziness and Soft Computing.
Physica-Verlag Heidelberg, ISBN: 3790814768, August 5, 2002.

[337] Peter A. N. Bosman and Dirk Thierens. Multi-objective optimiza-
tion with diversity preserving mixture-based iterated density estima-
tion evolutionary algorithms. International Journal Approx. Reason-
ing, 31(3):259–289, 2002.

[338] Peter A. N. Bosman and Dirk Thierens. The naive MidEa: A baseline
multi-objective ea. In Proceedings of the Third International Confer-
ence on Evolutionary Multi-Criterion Optimization, 2005, pages 428–
442. See proceedings [266]. Online available at http://springerlink.
metapress.com/content/m01x9t6l2bwd/?p_o=20 [accessed 2007-08-22].

[339] Haiming Lu. State-of-the-art Multiobjective Evolutionary Algorithms
– Pareto Ranking, Density Estimation and Dynamic Population. PhD
thesis, Faculty of the Graduate College of the Oklahoma State Uni-
versity, Stillwater, Oklahoma, August 2002. Advisor: Gary G. Yen.
Publication Number AAT 3080536. Online available at http://www.

lania.mx/~ccoello/EMOO/thesis_lu.pdf.gz [accessed 2007-08-25].
[340] Jinyun Ke, Mieko Ogura, and William S-Y. Wang. Modeling evolution

of sound systems with genetic algorithm. Computational Linguistics,
29(1):1–18, 2003. Online available at http://www.isrl.uiuc.edu/

~amag/langev/paper/ke_GAModelSound.html [accessed 2007-07-29].
[341] Garrison W. Greenwood, Xiaobo Sharon Hu, and Joseph G.

D’Ambrosio. Fitness functions for multiple objective optimization

http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn1/ppsn1.html
http://ls11-www.informatik.uni-dortmund.de/PPSN/ppsn1/ppsn1.html
http://www.cs.ucl.ac.uk/staff/P.Bentley/evdes.html
http://www.cs.ucl.ac.uk/staff/P.Bentley/evdes.html
http://springerlink.metapress.com/content/m01x9t6l2bwd/?p_o=20
http://springerlink.metapress.com/content/m01x9t6l2bwd/?p_o=20
http://www.lania.mx/~ccoello/EMOO/thesis_lu.pdf.gz
http://www.lania.mx/~ccoello/EMOO/thesis_lu.pdf.gz
http://www.isrl.uiuc.edu/~amag/langev/paper/ke_GAModelSound.html
http://www.isrl.uiuc.edu/~amag/langev/paper/ke_GAModelSound.html

REFERENCES 695

problems: Combining preferences with pareto rankings. In Founda-
tions of Genetic Algorithms 4, 1996, pages 437–455. See proceedings
[436].

[342] David E. Goldberg and Jon Richardson. Genetic algorithms with shar-
ing for multimodal function optimization. In Proceedings of the Second
International Conference on Genetic Algorithms on Genetic algorithms
and their application, 1987, pages 41–49. See proceedings [446].

[343] Kalyanmoy Deb. Genetic algorithms in multimodal function optimiza-
tion. Master’s thesis, The Clearinghouse for Genetic algorithms, Uni-
versity of Alabama, Tuscaloosa, 1989. TCGA Report No. 89002.

[344] Kalyanmoy Deb. An introduction to genetic algorithms. Sadhana,
24(4-5):293–315, 1999. Online available at http://www.iitk.ac.in/

kangal/papers/sadhana.ps.gz [accessed 2007-07-28].
[345] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A niched

pareto genetic algorithm for multiobjective optimization. In Proceed-
ings of the First IEEE Conference on Evolutionary Computation, 1994,
volume 1, pages 82–87. See proceedings [254]. Also: IEEE Sympo-
sium on Circuits and Systems, pp. 2264–2267, 1991, Online available
at http://citeseer.ist.psu.edu/horn94niched.html and http://

www.lania.mx/~ccoello/EMOO/horn2.ps.gz [accessed 2007-08-28].
[346] N. Srinivas and Kalyanmoy Deb. Multiobjective optimization using

nondominated sorting in genetic algorithms. Evolutionary Computa-
tion, 2(3):221–248, 1995. Online available at http://citeseer.ist.

psu.edu/srinivas94multiobjective.html [accessed 2007-07-28].
[347] Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan.

A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II. In Proceedings of the Parallel Prob-
lem Solving from Nature VI Conference, 2000, pages 849–858. See pro-
ceedings [326]. Online available at http://citeseer.ist.psu.edu/

deb00fast.html [accessed 2007-07-28].
[348] António Gaspar Lopes da Cunha and José António Colaço Gomes Co-

vas. RPSGAe – reduced pareto set genetic algorithm: Application to
polymer extrusion. In Metaheuristics for Multiobjective Optimisation,
pages 221–249. Springer, 2004. See collection [177].

[349] Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for
multiobjective optimization: The strength pareto approach. Tech-
nical Report 43, Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology Zürich (ETH), Glori-
astrasse 35, CH-8092 Zurich, Switzerland, May 1998. Online avail-
able at http://www.tik.ee.ethz.ch/sop/publicationListFiles/

zt1998a.pdf and http://citeseer.ist.psu.edu/225338.html [ac-

cessed 2007-07-29].
[350] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2:

Improving the Strength Pareto Evolutionary Algorithm. Techni-
cal Report 103, Computer Engineering and Networks Laboratory

http://www.iitk.ac.in/kangal/papers/sadhana.ps.gz
http://www.iitk.ac.in/kangal/papers/sadhana.ps.gz
http://citeseer.ist.psu.edu/horn94niched.html
http://www.lania.mx/~ccoello/EMOO/horn2.ps.gz
http://www.lania.mx/~ccoello/EMOO/horn2.ps.gz
http://citeseer.ist.psu.edu/srinivas94multiobjective.html
http://citeseer.ist.psu.edu/srinivas94multiobjective.html
http://citeseer.ist.psu.edu/deb00fast.html
http://citeseer.ist.psu.edu/deb00fast.html
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zt1998a.pdf
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zt1998a.pdf
http://citeseer.ist.psu.edu/225338.html

696 REFERENCES

(TIK), Swiss Federal Institute of Technology (ETH) Zurich, Glori-
astrasse 35, CH-8092 Zurich, Switzerland, May 2001. Online avail-
able at http://www.tik.ee.ethz.ch/sop/publicationListFiles/

zlt2001a.pdf and http://citeseer.ist.psu.edu/514031.html [ac-

cessed 2007-07-29].
[351] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improv-

ing the strength pareto evolutionary algorithm for multiobjective opti-
mization. In Evolutionary Methods for Design, Optimisation and Con-
trol with Application to Industrial Problems. Proceedings of the EU-
ROGEN2001 Conference, 2001, pages 95–100. See proceedings [272].
Online available at http://citeseer.ist.psu.edu/514031.html and
http://de.scientificcommons.org/526554 [accessed 2007-07-29].

[352] Tobias Blickle and Lothar Thiele. A comparison of selection schemes
used in evolutionary algorithms. Evolutionary Computation, 4(4):361–
394, 1996. Online available at http://citeseer.ist.psu.edu/

blickle97comparison.html [accessed 2007-08-24].
[353] Kumara Sastry and David E. Goldberg. Modeling tournament se-

lection with replacement using apparent added noise. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-
2001), 2001, page 781. See proceedings [310]. Also: IlliGAL report
2001014, January 2001, Illinois Genetic Algorithms Laboratory (Illi-
GAL), Department of General Engineering, University of Illinois at
Urbana-Champaign, Online available at http://citeseer.ist.psu.

edu/439887.html [accessed http://citeseer.ist.psu.edu/501944.html]2007-08-25.
[354] A. F. Bissell. Ordered random selection without replacement. Applied

Statistics, 35(1):73–75, 1986.
[355] David E. Goldberg. A note on Boltzmann tournament selection for ge-

netic algorithms and population-oriented simulated annealing. TCGA
Report 90003, Department of Engineering Mechanics, University of
Alabama, 1990.

[356] Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament
selection, and the effects of noise. Complex Systems, 9:193–212, 1995.
Online available at http://citeseer.ist.psu.edu/86198.html [ac-

cessed 2007-07-28].
[357] Tobias Blickle and Lothar Thiele. A mathematical analysis of

tournament selection. In Proceedings of the Sixth International
Conference on Genetic Algorithms, 1995, pages 9–16. See pro-
ceedings [443]. Online available at http://citeseer.ist.psu.edu/

blickle95mathematical.html [accessed 2007-07-29].
[358] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of

selection schemes used in genetic algorithms. In Proceedings of Foun-
dations of Genetic Algorithms, 1990, pages 69–93. See proceedings
[439]. Online available at http://www.cse.unr.edu/~sushil/class/
gas/papers/Select.pdf [accessed 2007-07-29].

http://www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf
http://citeseer.ist.psu.edu/514031.html
http://citeseer.ist.psu.edu/514031.html
http://de.scientificcommons.org/526554
http://citeseer.ist.psu.edu/blickle97comparison.html
http://citeseer.ist.psu.edu/blickle97comparison.html
http://citeseer.ist.psu.edu/439887.html
http://citeseer.ist.psu.edu/439887.html
http://citeseer.ist.psu.edu/86198.html
http://citeseer.ist.psu.edu/blickle95mathematical.html
http://citeseer.ist.psu.edu/blickle95mathematical.html
http://www.cse.unr.edu/~sushil/class/gas/papers/Select.pdf
http://www.cse.unr.edu/~sushil/class/gas/papers/Select.pdf

REFERENCES 697

[359] Jinghui Zhong, Xiaomin Hu, Jun Zhang, and Min Gu. Comparison of
performance between different selection strategies on simple genetic al-
gorithms. In CIMCA ’05: Proceedings of the International Conference
on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies
and Internet Commerce Vol-2 (CIMCA-IAWTIC’06), November 28-
30, 2005, pages 1115–1121, Washington, DC, USA. IEEE Computer
Society, ISBN: 0-7695-2504-0-02.

[360] L. Darell Whitley. A genetic algorithm tutorial. Statistics and
Computing, 4(2):65–85, June 1994. Online available at http://

samizdat.mines.edu/ga_tutorial/ga_tutorial.ps and http://

www.citeulike.org/user/Bc91/article/1449453 [accessed 2007-08-12].
Also published as technical report [1316].

[361] Chang Wook Ahn and R. S. Ramakrishna. Augmented compact genetic
algorithm. In Roman Wyrzykowski, Jack Dongarra, Marcin Paprzy-
cki, and Jerzy Wasniewski, editors, PPAM 2003: Proceedings of 5th
International Conference on Parallel Processing and Applied Math-
ematics, revised papers, Czestochowa, Poland, September 2003, vol-
ume 3019/2004 of Lecture Notes in Computer Science (LNCS), pages
560–565. Springer Berlin / Heidelberg, ISBN: 978-3-540-21946-0, ISSN:
0302-9743 (Print) 1611-3349 (Online). Published 2004.

[362] Tobias Blickle and Lothar Thiele. A comparison of selection schemes
used in genetic algorithms. Technical Report 11, Computer Engi-
neering and Communication Networks Lab (TIK), Swiss Federal Insti-
tute of Technology (ETH), Gloriastrasse 35, 8092 Zurich, Switzerland,
1995. Online available at http://citeseer.ist.psu.edu/16412.

html and http://www.tik.ee.ethz.ch/~tec/publications/bt95a/

[accessed 2007-07-28].
[363] J. David Schaffer. Multiple Objective Optimization with Vector Evalu-

ated Genetic Algorithms. PhD thesis, Vanderbilt University, 1984.
[364] J. David Schaffer. Multiple objective optimization with vector evalu-

ated genetic algorithms. In Proceedings of the 1st International Con-
ference on Genetic Algorithms and Their Applications, 1985, pages
93–100. See proceedings [447].

[365] Kalyanmoy Deb and Tushar Goel. Controlled elitist non-dominated
sorting genetic algorithms for better convergence. In EMO ’01:
Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization, 2001, pages 67–81. See proceedings
[268]. Online available at http://citeseer.ist.psu.edu/450660.

html and http://www.lania.mx/~ccoello/EMOO/deb01a.ps.gz [ac-

cessed 2007-08-29].
[366] David W. Corne, Joshua D. Knowles, and Martin J. Oates. The Pareto

Envelope-based Selection Algorithm for Multiobjective Optimization.
In Proceedings of the Parallel Problem Solving from Nature VI Confer-
ence, 2000, pages 839–848. See proceedings [326]. Online available at

http://samizdat.mines.edu/ga_tutorial/ga_tutorial.ps
http://samizdat.mines.edu/ga_tutorial/ga_tutorial.ps
http://www.citeulike.org/user/Bc91/article/1449453
http://www.citeulike.org/user/Bc91/article/1449453
http://citeseer.ist.psu.edu/16412.html
http://citeseer.ist.psu.edu/16412.html
http://www.tik.ee.ethz.ch/~tec/publications/bt95a/
http://citeseer.ist.psu.edu/450660.html
http://citeseer.ist.psu.edu/450660.html
http://www.lania.mx/~ccoello/EMOO/deb01a.ps.gz

698 REFERENCES

http://www.lania.mx/~ccoello/EMOO/corne00.ps.gz and http://

citeseer.ist.psu.edu/386119.html [accessed 2007-07-29].
[367] David W. Corne, Nick R. Jerram, Joshua D. Knowles, and Mar-

tin J. Oates. PESA-II: Region-based selection in evolutionary mul-
tiobjective optimization. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2001), 2001, pages 283–
290. See proceedings [310]. Online available at http://citeseer.ist.
psu.edu/corne01pesaii.html and http://dbkgroup.org/knowles/

GA247.ps.gz [accessed 2007-07-29].
[368] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-

objective optimization using genetic algorithms: A tutorial. Re-
liability Engineering & System Safety, 91(9):992–1007, Septem-
ber 2006. Online available at http://www.rci.rutgers.edu/

~coit/RESS_2006_MOGA.pdf and http://www.soe.rutgers.edu/ie/

research/working_paper/paper05-008.pdf [accessed 2007-08-29].
[369] Shinya Watanabe, Tomoyuki Hiroyasu, and Mitsunori Miki. Ncga:

Neighborhood cultivation genetic algorithm for multi-objective opti-
mization problems. In GECCO Late Breaking Papers; Late Break-
ing papers at the Genetic and Evolutionary Computation Con-
ference (GECCO-2002), 2002, pages 458–465. See proceedings
[307]. Online available at http://citeseer.ist.psu.edu/595343.

html and http://www.lania.mx/~ccoello/EMOO/watanabe02.pdf.

gz [accessed 2007-07-29].
[370] Jon T. Richardson, Mark R. Palmer, Gunar E. Liepins, and Mike R.

Hilliard. Some guidelines for genetic algorithms with penalty func-
tions. In Proceedings of the 3rd International Conference on Genetic
Algorithms ICGA, 1989, pages 191–197. See proceedings [371].

[371] J. David Schaffer, editor. Proceedings of the 3rd International Confer-
ence on Genetic Algorithms, George Mason University, Fairfax, Vir-
ginia, USA, June 1989, San Francisco, CA. Morgan Kaufmann, ISBN:
1-55860-066-3.

[372] Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for
multiobjective optimization: Formulation, discussion and generaliza-
tion. In Proceedings of the 5th International Conferenceo on Ge-
netic Algorithms, 1993, pages 416–423. See proceedings [444]. On-
line available at http://citeseer.ist.psu.edu/fonseca93genetic.
html and http://www.lania.mx/~ccoello/EMOO/fonseca93.ps.gz

[accessed 2007-08-29].
[373] Peter A. N. Bosman and Edwin D. de Jong. Exploiting gradient in-

formation in numerical multi-objective evolutionary optimization. In
GECCO ’05: Proceedings of the 2005 conference on Genetic and evo-
lutionary computation, 2005, pages 755–762. See proceedings [299].
Online available at http://doi.acm.org/10.1145/1068009.1068138
[accessed 2007-08-22].

http://www.lania.mx/~ccoello/EMOO/corne00.ps.gz
http://citeseer.ist.psu.edu/386119.html
http://citeseer.ist.psu.edu/386119.html
http://citeseer.ist.psu.edu/corne01pesaii.html
http://citeseer.ist.psu.edu/corne01pesaii.html
http://dbkgroup.org/knowles/GA247.ps.gz
http://dbkgroup.org/knowles/GA247.ps.gz
http://www.rci.rutgers.edu/~coit/RESS_2006_MOGA.pdf
http://www.rci.rutgers.edu/~coit/RESS_2006_MOGA.pdf
http://www.soe.rutgers.edu/ie/research/working_paper/paper 05-008.pdf
http://www.soe.rutgers.edu/ie/research/working_paper/paper 05-008.pdf
http://citeseer.ist.psu.edu/595343.html
http://citeseer.ist.psu.edu/595343.html
http://www.lania.mx/~ccoello/EMOO/watanabe02.pdf.gz
http://www.lania.mx/~ccoello/EMOO/watanabe02.pdf.gz
http://citeseer.ist.psu.edu/fonseca93genetic.html
http://citeseer.ist.psu.edu/fonseca93genetic.html
http://www.lania.mx/~ccoello/EMOO/fonseca93.ps.gz
http://doi.acm.org/10.1145/1068009.1068138

REFERENCES 699

[374] Jeffrey Horn and Nicholas Nafpliotis. Multiobjective optimization
using the niched pareto genetic algorithm. Technical Report Illi-
GAl Report 93005, Illinois Genetic Algorithms Laboratory (IlliGAL),
Department of Computer Science, Department of General Engineer-
ing, University of Illinois at Urbana-Champaign, Urbana, Illinois,
USA, June 1993. Online available at http://citeseer.ist.psu.edu/
horn93multiobjective.html and http://www.lania.mx/~ccoello/

EMOO/93005.ps.gz [accessed 2007-07-28].
[375] Jeffrey Horn. The Nature of Niching: Genetic Algorithms and the

Evolution of Optimal, Cooperative Populations. PhD thesis, Illi-
nois Genetic Algorithms Laboratory (IlliGAL), Department of Com-
puter Science, Department of General Engineering, University of
Illinois at Urbana-Champaign, Champaign, IL, USA, 1997. Advi-
sor: David E. Goldberg. Online available at http://www.lania.mx/

~ccoello/EMOO/hornthesis.ps.gz and http://citeseer.ist.psu.

edu/horn97nature.html [accessed 2007-07-28].
[376] Mark Erickson, Alex Mayer, and Jeffrey Horn. The niched pareto ge-

netic algorithm 2 applied to the design of groundwater remediation
systems. In Proceedings of the First International Conference on Evo-
lutionary Multi-Criterion Optimization, 2001, pages 681–695. See pro-
ceedings [268].

[377] Joshua D. Knowles and David W. Corne. The pareto archived evo-
lution strategy: A new baseline algorithm for pareto multiobjective
optimisation. In Proceedings of the Congress on Evolutionary Compu-
tation, 1999, volume 1, pages 98–105. See proceedings [249]. Online
available at http://citeseer.ist.psu.edu/knowles99pareto.html

[accessed 2007-08-27]. Some additional resources can be found at http://

dbkgroup.org/knowles/multi/ [accessed 2007-08-27].
[378] António Gaspar Lopes da Cunha and José António Colaço Gomes

Covas. RPSGAe - reduced pareto set genetic algorithm: a multiob-
jectiv algorithm with elistim: application to polymer extrusion. In
Xavier Gandibleux, Marc Sevaux, Kenneth Sörensen, and Vincent
T’kindt, editors, MOMH Workshop on Multiple Objective Metaheuris-
tics, Carré des Sciences, Paris, France, November 4-5, 2002. Poster
on the joint PM2O-EU/ME meeting. Online available at http://

www2.lifl.fr/PM2O/Reunions/04112002/gaspar.pdf [accessed 2007-09-

21], slides available at http://webhost.ua.ac.be/eume/workshops/

momh/momh_gaspar_cunha.pdf [accessed 2007-09-21].
[379] António Gaspar Lopes da Cunha, Pedro Oliveira, and José António

Colaço Gomes Covas. Use of genetic algorithms in multicriteria opti-
mization to solve industrial problems. In Thomas Bäck, editor, ICGA,
Proceedings of the 7th International Conference on Genetic Algorithms,
1997, pages 682–688. See proceedings [442].

[380] F. de Toro Negro, E. Ros J. Ortega, B. Paechter S. Mota, and J. M.
Mart́ın. Psfga: parallel processing and evolutionary computation for

http://citeseer.ist.psu.edu/horn93multiobjective.html
http://citeseer.ist.psu.edu/horn93multiobjective.html
http://www.lania.mx/~ccoello/EMOO/93005.ps.gz
http://www.lania.mx/~ccoello/EMOO/93005.ps.gz
http://www.lania.mx/~ccoello/EMOO/hornthesis.ps.gz
http://www.lania.mx/~ccoello/EMOO/hornthesis.ps.gz
http://citeseer.ist.psu.edu/horn97nature.html
http://citeseer.ist.psu.edu/horn97nature.html
http://citeseer.ist.psu.edu/knowles99pareto.html
http://dbkgroup.org/knowles/multi/
http://dbkgroup.org/knowles/multi/
http://www2.lifl.fr/PM2O/Reunions/04112002/gaspar.pdf
http://www2.lifl.fr/PM2O/Reunions/04112002/gaspar.pdf
http://webhost.ua.ac.be/eume/workshops/momh/momh_gaspar_cunha.pdf
http://webhost.ua.ac.be/eume/workshops/momh/momh_gaspar_cunha.pdf

700 REFERENCES

multiobjective optimisation. Parallel Computing, 30(5-6):721–739,
2004. Online available at http://hera.ugr.es/doi/15057690.pdf

[accessed 2007-07-29].
[381] Jonathan E. Fieldsend, Richard M. Everson, and Sameer Singh. Ex-

tensions to the strength pareto evolutionary algorithm. IEEE Trans-
actions on Evolutionary Computation, 2001. submitted, superseded
by [118]. Online available at http://www.dcs.ex.ac.uk/people/

reverson/pubs/espea.ps.gz and http://citeseer.ist.psu.edu/

fieldsend01extensions.html [accessed 2007-08-25].
[382] Nils Aaall Barricelli. Esempi numerici di processi di evoluzione. Metho-

dos, pages 45–68, 1954.
[383] Nils Aaall Barricelli. Symbiogenetic evolution processes realized by

artificial methods. Methodos, 9:35–36, 1957.
[384] Nils Aaall Barricelli. Numerical testing of evolution theories. part

i. theroetical introduction and basic tests. Acta Biotheoretica,
16(1/2):69–98, March 1962. Received: 27 November 1961, see also
[385]. Online available at http://www.springerlink.com/content/

y502315688024453/fulltext.pdf [accessed 2007-10-31].
[385] Nils Aaall Barricelli. Numerical testing of evolution the-

ories. part ii. preliminary tests of performance. symbiogene-
sis and terrestrial life. Acta Biotheoretica, 16(3/4):99–126,
September 1963. Received: 27 November 1961, see also
[384]. Online available at http://www.springerlink.com/content/

h85817217u25w6q7/fulltext.pdf [accessed 2007-10-31].
[386] Hans J. Bremermann. Optimization through evolution and recom-

bination. Self-Organizing systems, pages 93–10, 1962. Online avail-
able at http://holtz.org/Library/Natural%20Science/Physics/

[accessed 2007-10-31].
[387] Woodrow “Woody” Wilson Bledsoe. Lethally dependent genes using

instant selection. Technical Report PRI 1, Panoramic Research Inc.,
Palo Alto, California, USA, 1961.

[388] Woodrow “Woody” Wilson Bledsoe. The use of biological concepts in
the analytical study of systems. Technical Report PRI 2, Panoramic
Research, Inc., Palo Alto, California, USA, 1961. Presented at ORSA-
TIMS National Meeting, San Francisco, California, November 10, 1961.

[389] Woodrow “Woody” Wilson Bledsoe. An analysis of genetic popula-
tions. Technical report, Panoramic Research Inc., Palo Alto, Califor-
nia, USA, 1962.

[390] Woodrow “Woody” Wilson Bledsoe. The evolutionary method in hill
climbing: Convergence rates. Technical report, Panoramic Research
Inc., Palo Alto, California, USA, 1962.

[391] Woodrow “Woody” Wilson Bledsoe and I. Browning. Pattern recog-
nition and reading by machine. In Proceedings of the Eastern Joint
Computer Conference (EJCC), 1959, pages 225–232.

http://hera.ugr.es/doi/15057690.pdf
http://www.dcs.ex.ac.uk/people/reverson/pubs/espea.ps.gz
http://www.dcs.ex.ac.uk/people/reverson/pubs/espea.ps.gz
http://citeseer.ist.psu.edu/fieldsend01extensions.html
http://citeseer.ist.psu.edu/fieldsend01extensions.html
http://www.springerlink.com/content/y502315688024453/fulltext.pdf
http://www.springerlink.com/content/y502315688024453/fulltext.pdf
http://www.springerlink.com/content/h85817217u25w6q7/fulltext.pdf
http://www.springerlink.com/content/h85817217u25w6q7/fulltext.pdf
http://holtz.org/Library/Natural%20Science/Physics/

REFERENCES 701

[392] John Daniel Bagley. The Behavior of Adaptive Systems which employ
Genetic and Correlation Algorithms. PhD thesis, The University of
Michigan, College of Literature, Science, and the Arts, Computer and
Communication Sciences Department, Ann Arbor, MI, USA, December
1967. Order No. AAI6807556. Published as Technical Report and in
Dissertations International 28(12), 5106B, University Microfilms No.
68-7556. Online available at http://hdl.handle.net/2027.42/3354

[accessed 2007-10-31].
[393] Daniel Joseph Cavicchio, Jr. Adaptive Search using Simulated Evolu-

tion. PhD thesis, The University of Michigan, College of Literature,
Science, and the Arts, Computer and Communication Sciences De-
partment, Ann Arbor, Michigan, USA, August 1970. Published as
Technical Report. Chairman: John Henry Holland. Online available at
http://hdl.handle.net/2027.42/4042 [accessed 2007-10-31].

[394] Daniel Raymond Frantz. Nonlinearities in Genetic Adaptive Search.
PhD thesis, The University of Michigan, Ann Arbor, MI, USA, Septem-
ber 1972. Order No. AAI7311116. Chairman: John Henry Holland.
Published as Technical Report Nr. 138 and in Dissertations Interna-
tional 33(11), 5240B-5241B, University Microfilms No. 73-11116. On-
line available at http://hdl.handle.net/2027.42/4950 [accessed 2007-10-

31].
[395] John Henry Holland. Outline for a logical theory of adaptive systems.

Journal of the ACM, 9(3):297–314, 1962. Online available at http://
portal.acm.org/citation.cfm?id=321128 [accessed 2007-07-28].

[396] Jack L. Crosby. Computer Simulation in Genetics. John Wiley and
Sons Ltd, ISBN: 0-4711-8880-8, January 1973.

[397] D. Quagliarella, J. Periaux, C. Poloni, and G. Winter. Genetic Algo-
rithms and Evolution Strategy in Engineering and Computer Science:
Recent Advances and Industrial Applications. John Wiley & Sons Ltd,
ISBN: 978-0471977100, January 1998.

[398] Jason D. Lohn and Silvano P. Colombano. A circuit representa-
tion technique for automated circuit design. IEEE Transactions
on Evolutionary Computation (IEEE-EC), 3(3):205, September 1999.
Online available at http://ic.arc.nasa.gov/people/jlohn/bio.

html and http://citeseer.ist.psu.edu/lohn99circuit.html [ac-

cessed 2007-08-07].
[399] Jason D. Lohn, Silvano P. Colombano, Garyl L. Haith, and Dimitris

Stassinopoulos. A parallel genetic algorithm for automated electronic
circuit design. In Proceedings of the Computational Aerosciences Work-
shop, NASA Ames Research Center, February 2000. Online available
at http://ic.arc.nasa.gov/people/jlohn/bio.html and http://

citeseer.ist.psu.edu/lohn00parallel.html [accessed 2007-08-07].
[400] Jason D. Lohn, Garyl L. Haith, Silvano P. Colombano, and Dimitris

Stassinopoulos. Towards evolving electronic circuits for autonomous
space applications. In Proceedings of the 2000 IEEE Aerospace Con-

http://hdl.handle.net/2027.42/3354
http://hdl.handle.net/2027.42/4042
http://hdl.handle.net/2027.42/4950
http://portal.acm.org/citation.cfm?id=321128
http://portal.acm.org/citation.cfm?id=321128
http://ic.arc.nasa.gov/people/jlohn/bio.html
http://ic.arc.nasa.gov/people/jlohn/bio.html
http://citeseer.ist.psu.edu/lohn99circuit.html
http://ic.arc.nasa.gov/people/jlohn/bio.html
http://citeseer.ist.psu.edu/lohn00parallel.html
http://citeseer.ist.psu.edu/lohn00parallel.html

702 REFERENCES

ference, Big Sky, MT, March 2000. Online available at http://ic.

arc.nasa.gov/people/jlohn/bio.html and http://citeseer.ist.

psu.edu/336276.html [accessed 2007-08-07].
[401] Carlos Artemio Coello Coello. An updated survey of ga-based

multiobjective optimization techniques. ACM Computing Sur-
veys, 32(2):109–143, 2000. Online available at http://citeseer.

ist.psu.edu/coello98updated.html and http://portal.acm.org/

citation.cfm?id=358923.358929 [accessed 2007-07-28].
[402] Hideyuki Takagi. Active user intervention in an ec search. In

Proceedings of International Conference on Information Sciences
(JCIS2000), 2000, pages 995–998. See proceedings [293]. Online avail-
able at http://www.kyushu-id.ac.jp/~takagi/TAKAGI/IECpaper/

JCIS2K_2.pdf [accessed 2007-08-29].
[403] Hideyuki Takagi. Interactive evolutionary computation: Fusion of the

capacities of ec optimization and human evaluation. Proceedings of the
IEEE, 89:1275–1296, 2001. Online available at http://www.design.

kyushu-u.ac.jp/~takagi/TAKAGI/IECsurvey.html [accessed 2007-08-29].
[404] Alex Kosorukoff. Human-based genetic algorithm. In Proceedings of

the 2001 IEEE International Conference on Systems, Man, and Cyber-
netics, Tucson, AZ, USA, January 2001, volume 5, pages 3464–3469,
ISBN: 0-7803-7087-2. Also: IlliGAL Report No. 2001004, Online avail-
able at http://citeseer.ist.psu.edu/kosorukoff01human.html

and http://citeseer.ist.psu.edu/441929.html [accessed 2007-07-28].
[405] Michelle Okaley Hammond and Terence Claus Fogarty. Co-

operative oulipian generative literature using human based evolution-
ary computing. In Late breaking paper at Genetic and Evolution-
ary Computation Conference (GECCO’2005), 2005. See proceed-
ings [301]. Distributed on CD-ROM at GECCO-2005. Online avail-
able at http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005lbp/

papers/56-hammond.pdf [accessed 2007-08-29].
[406] David Levine. Application of a hybrid genetic algorithm to air-

line crew scheduling. Computers & Operations Research, 23:547–558,
1996. Online available at http://www.citeulike.org/user/ilapla/
article/1443054 and http://citeseer.ist.psu.edu/178394.html

[accessed 2007-07-29].
[407] Gary A. Cleveland and Stephen F. Smith. Using genetic algorithms to

schedule flow shop releases. In ICGA, Proceedings of the third Inter-
national Conference on Genetic Algorithms, 1989, pages 160–169. See
proceedings [371].

[408] Raymond S. K. Kwan, Ann S. K.Kwan, and Anthony Wren.
Driver scheduling using genetic algorithms with embedded com-
binatorial traits. In Proceedings of 7th International Conference
on Computer-Aided Scheduling of Public Transport, Cambridge/-
Boston, MA, USA, August 1997, volume 471, pages 81–102. Springer,
Berlin, ISBN: 3-540-65775-4, ISSN: 0075-8442. Online available

http://ic.arc.nasa.gov/people/jlohn/bio.html
http://ic.arc.nasa.gov/people/jlohn/bio.html
http://citeseer.ist.psu.edu/336276.html
http://citeseer.ist.psu.edu/336276.html
http://citeseer.ist.psu.edu/coello98updated.html
http://citeseer.ist.psu.edu/coello98updated.html
http://portal.acm.org/citation.cfm?id=358923.358929
http://portal.acm.org/citation.cfm?id=358923.358929
http://www.kyushu-id.ac.jp/~takagi/TAKAGI/IECpaper/JCIS2K_2.pdf
http://www.kyushu-id.ac.jp/~takagi/TAKAGI/IECpaper/JCIS2K_2.pdf
http://www.design.kyushu-u.ac.jp/~takagi/TAKAGI/IECsurvey.html
http://www.design.kyushu-u.ac.jp/~takagi/TAKAGI/IECsurvey.html
http://citeseer.ist.psu.edu/kosorukoff01human.html
http://citeseer.ist.psu.edu/441929.html
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005lbp/papers/56-hammond.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005lbp/papers/56-hammond.pdf
http://www.citeulike.org/user/ilapla/article/1443054
http://www.citeulike.org/user/ilapla/article/1443054
http://citeseer.ist.psu.edu/178394.html

REFERENCES 703

at http://www.citeulike.org/user/ilapla/article/1443013 and
http://citeseer.ist.psu.edu/kwan97driver.html [accessed 2007-07-29].

[409] Steven J. Beaty. Genetic algorithms for instruction sequencing and
scheduling. In Workshop on Computer Architecture Technology and
Formalism for Computer Science Research and Applications, April
1992. Online available at http://citeseer.ist.psu.edu/16699.

html and http://emess.mscd.edu/~beaty/Dossier/Papers/italy.

pdf [accessed 2007-07-29].
[410] Yong L. Xiao and Donald E. Williams. Game: Genetic algorithm for

minimization of energy, an interactive program for three-dimensional
intermolecular interactions. Computers & Chemistry, 18(2):199–201,
1994.

[411] António Gaspar Lopes da Cunha. A multi-objective evolutionary al-
gorithm for solving traveling salesman problems: Application to the
design of polymer extruders. In Proceedings of the 7th International
Conference on Adaptive and Natural Computing Algorithms, ICAN-
NGA 2005, Part II, 2005, pages 189–193. See proceedings [318].

[412] António Gaspar Lopes da Cunha, José António Colaço Gomes Co-
vas, and Pedro Oliveira. Optimization of polymer extrusion with ge-
netic algorithms. IMA Journal of Mathematics Applied in Business &
Industry, pages 267–277, 1998. Online available at http://imaman.

oxfordjournals.org/cgi/reprint/9/3/267.pdf [accessed 2007-07-28].
[413] D. M. Deaven and K.M. Ho. Molecular geometry optimization with a

genetic algorithm. Physical Review Letters, 75:288–291, July 1995.
eprint arXiv:mtrl-th/9506004. Online available at http://adsabs.

harvard.edu/abs/1995mtrl.th...6004D and http://prola.aps.

org/abstract/PRL/v75/i2/p288_1 [accessed 2007-09-05].
[414] A. Cagnoni, A. Dobrzeniecki, R. Poli, and J. Yanch. Genetic algorithm-

based interactive segmentation of 3D medical images. Image and Vi-
sion Computing, 17(12):881–895, October 1999. Online available at
http://citeseer.ist.psu.edu/cagnoni99genetic.html [accessed 2007-

07-29].
[415] Rafal Smigrodzki, Ben Goertzel, Cassio Pennachin, Lucio Coelho,

Francisco Prosdocimi, and W. Davis Parker Jr. Genetic algorithm
for analysis of mutations in parkinson’s disease. Artificial Intelligence
in Medicine, 35:227–241, November 2005. Online available at http://
dx.doi.org/10.1016/j.artmed.2004.11.006 [accessed 2007-08-05].

[416] Hongmei Yan, Yingtao Jiang, Jun Zheng, Chenglin Peng, and
Shouzhong Xiao. Discovering critical diagnostic features for heart
diseases with a hybrid genetic algorithm. In Faramarz Valafar and
Homayoun Valafar, editors, Proceedings of the International Confer-
ence on Mathematics and Engineering Techniques in Medicine and Bi-
ological Scienes, METMBS ’03, Las Vegas, Nevada, USA, June 2003,
pages 406–409. CSREA Press, ISBN: 1-932415-04-1.

http://www.citeulike.org/user/ilapla/article/1443013
http://citeseer.ist.psu.edu/kwan97driver.html
http://citeseer.ist.psu.edu/16699.html
http://citeseer.ist.psu.edu/16699.html
http://emess.mscd.edu/~beaty/Dossier/Papers/italy.pdf
http://emess.mscd.edu/~beaty/Dossier/Papers/italy.pdf
http://imaman.oxfordjournals.org/cgi/reprint/9/3/267.pdf
http://imaman.oxfordjournals.org/cgi/reprint/9/3/267.pdf
http://adsabs.harvard.edu/abs/1995mtrl.th...6004D
http://adsabs.harvard.edu/abs/1995mtrl.th...6004D
http://prola.aps.org/abstract/PRL/v75/i2/p288_1
http://prola.aps.org/abstract/PRL/v75/i2/p288_1
http://citeseer.ist.psu.edu/cagnoni99genetic.html
http://dx.doi.org/10.1016/j.artmed.2004.11.006
http://dx.doi.org/10.1016/j.artmed.2004.11.006

704 REFERENCES

[417] Staal A. Vinterbo and Lucila Ohno-Machado. A genetic algorithm ap-
proach to multi-disorder diagnosis. Artificial Intelligence in Medicine,
18:117–132, 2000. Online available at http://dx.doi.org/10.1016/

S0933-3657(99)00036-6 [accessed 2007-09-05].
[418] Hokey Min, Tomasz G. Smolinski, and Grzegorz M. Boratyn. A ge-

netic algorithm-based data mining approach to profiling the adopters
and non-adopters of e-purchasing. In W. W. Smari, editor, Informa-
tion Reuse and Integration, Third International Conference, IRI-2001,
2001, pages 1–6. International Society for Computers and Their Appli-
cations (ISCA). Online available at http://citeseer.ist.psu.edu/
min01genetic.html [accessed 2007-07-29].

[419] Ali Kamrani, Wang Rong, and Ricardo Gonzalez. A genetic algorithm
methodology for data mining and intelligent knowledge acquisition.
Computers & Industrial Engineering, 40:361–377, September 2001.

[420] Janaki Gopalan, Reda Alhajj, and Ken Barker. Discovering accurate
and interesting classification rules using genetic algorithm. In Sven F.
Crone, Stefan Lessmann, and Robert Stahlbock, editors, Proceedings
of the 2006 International Conference on Data Mining, DMIN 2006,
Las Vegas, Nevada, USA, June 2006, pages 389–395. CSREA Press,
ISBN: 1-60132-004-3. Online available at http://ww1.ucmss.com/

books/LFS/CSREA2006/DMI5509.pdf [accessed 2007-07-29].
[421] George G. Szpiro. A search for hidden relationships: Data min-

ing with genetic algorithms. Computational Economics, 10(3):267–
277, August 1997. Online available at http://citeseer.

ist.psu.edu/459445.html and http://ideas.repec.org/a/kap/

compec/v10y1997i3p267-77.html [accessed 2007-07-03].
[422] Jinxiang Chai and Songde Ma. Robust epipolar geometry estimation

using genetic algorithm. Pattern Recognition Letters, 19(9):829–838,
July 1998. See also [423].

[423] Jinxiang Chai and Songde Ma. Robust epipolar geometry estimation
using genetic algorithm. In Roland T. Chin and Ting-Chuen Pong, edi-
tors, ACCV, Proceedings of Computer Vision - ACCV’98, Third Asian
Conference on Computer Vision, Volume I, Hong Kong, China, Jan-
uary 1998, volume 1351 of Lecture Notes in Computer Science (LNCS),
pages 272–279. Springer, ISBN: 3-540-63930-6. See also [422].

[424] Adel Jedidi, Alexandre Caminada, and Gerd Finke. 2-objective opti-
mization of cells overlap and geometry with evolutionary algorithms.
In Applications of Evolutionary Computing, EvoWorkshops 2004, 2004,
pages 130–139. See proceedings [286].

[425] Ian Hsieh, Kiat-Choong Chen, and Cao An Wang. A genetic algorithm
for the minimum tetrahedralization of a convex polyhedron. In CCCG
Proceedings of the 15th Canadian Conference on Computational Ge-
ometry, CCCG’03, Halifax, Canada, August 2003, pages 115–119.

[426] Sourav Kundu, Kazuto Seto, and Shigeru Sugino. Genetic algorithm
based design of passive elements for vibration control. In Proceed-

http://dx.doi.org/10.1016/S0933-3657(99)00036-6
http://dx.doi.org/10.1016/S0933-3657(99)00036-6
http://citeseer.ist.psu.edu/min01genetic.html
http://citeseer.ist.psu.edu/min01genetic.html
http://ww1.ucmss.com/books/LFS/CSREA2006/DMI5509.pdf
http://ww1.ucmss.com/books/LFS/CSREA2006/DMI5509.pdf
http://citeseer.ist.psu.edu/459445.html
http://citeseer.ist.psu.edu/459445.html
http://ideas.repec.org/a/kap/compec/v10y1997i3p267-77.html
http://ideas.repec.org/a/kap/compec/v10y1997i3p267-77.html

REFERENCES 705

ings of 4th MOVIC Conference (Conference On Motion and Vibra-
tion Control), August 1998, volume 3, pages 1183–1188. Online avail-
able at http://citeseer.ist.psu.edu/349539.html and http://

en.scientificcommons.org/362076 [accessed 2007-08-13].
[427] Sourav Kundu, Kazuto Seto, and Shigeru Sugino. Genetic algorithm

application to vibration control of tall flexible structures. In Proceed-
ings of The First IEEE International Workshop on Electronic Design,
Test and Applications (DELTA ’02), Christchurch, New Zealand, Jan-
uary 29-31, 2002, pages 333–337, Los Alamitos, CA, USA. IEEE Com-
puter Society, ISBN: 0-7695-1453-7.

[428] D. Yuret and M. Maza. A genetic algorithm system for predicting the
oex. Technical Analysis of Stocks & Commodities, pages 58–64, June
1994. Online available at http://www.denizyuret.com/pub/tasc94.
ps.gz and http://citeseer.ist.psu.edu/yuret94genetic.html

[accessed 2007-08-24].
[429] Khaled El-Fakihy, Hirozumi Yamaguchiz, and Gregor v. Bochmann.

A method and a genetic algorithm for deriving protocols for dis-
tributed applications with minimum communication cost. In Pro-
ceedings of Eleventh IASTED International Conference on Paral-
lel and Distributed Computing and Systems, Boston, USA, Novem-
ber 3-6, 1999. Online available at http://citeseer.ist.psu.

edu/430349.html and http://www-higashi.ist.osaka-u.ac.jp/

~h-yamagu/resource/pdcs99.pdf [accessed 2007-09-14].
[430] Lidia A. R. Yamamoto and Christian Tschudin. Genetic evolution

of protocol implementations and configurations. In IFIP/IEEE In-
ternational workshop on Self-Managed Systems and Services (SelfMan
2005), Nice, France, 2005. Online available at http://cn.cs.unibas.
ch/pub/doc/2005-selfman.pdf [accessed 2007-09-17].

[431] Christopher R. Stephens, Marc Toussaint, Darrell L. Whitley, and Pe-
ter F. Stadler, editors. Revised Selected Papers of the 9th International
Workshop on Foundations of Genetic Algorithms IX, FOGA 2007,
Ciudad Universitaria (”University City”), Universidad Nacional Au-
tonoma de Mexico, Mexico City, Mexico, January 8-11, 2007, volume
4436/2007 of Lecture Notes in Computer Science (LNCS), Berlin Hei-
delberg. Springer, ISBN: 978-3-540-73479-6, ISSN: 0302-9743 (Print)
1611-3349 (Online). see http://www.sigevo.org/foga-2007/index.

html [accessed 2007-09-01].
[432] Alden H. Wright, Michael D. Vose, Kenneth Alan De Jong, and

Lothar M. Schmitt, editors. Revised Selected Papers of the 8th Interna-
tional Workshop on Foundations of Genetic Algorithms, FOGA 2005,
Aizu-Wakamatsu City, Japan, January 5-9, 2005, volume 3469/2005
of Lecture Notes in Computer Science (LNCS), Berlin Heidelberg.
Springer Verlag, ISBN: 978-3-540-27237-3, ISSN: 0302-9743 (Print)
1611-3349 (Online). Published August 22, 2005. see http://www.cs.

umt.edu/foga05/ [accessed 2007-09-01].

http://citeseer.ist.psu.edu/349539.html
http://en.scientificcommons.org/362076
http://en.scientificcommons.org/362076
http://www.denizyuret.com/pub/tasc94.ps.gz
http://www.denizyuret.com/pub/tasc94.ps.gz
http://citeseer.ist.psu.edu/yuret94genetic.html
http://citeseer.ist.psu.edu/430349.html
http://citeseer.ist.psu.edu/430349.html
http://www-higashi.ist.osaka-u.ac.jp/~h-yamagu/resource/pdcs99.pdf
http://www-higashi.ist.osaka-u.ac.jp/~h-yamagu/resource/pdcs99.pdf
http://cn.cs.unibas.ch/pub/doc/2005-selfman.pdf
http://cn.cs.unibas.ch/pub/doc/2005-selfman.pdf
http://www.sigevo.org/foga-2007/index.html
http://www.sigevo.org/foga-2007/index.html
http://www.cs.umt.edu/foga05/
http://www.cs.umt.edu/foga05/

706 REFERENCES

[433] Kenneth Alan De Jong, Riccardo Poli, and Jonathan E. Rowe, editors.
Foundations of Genetic Algorithms 7, Torremolinos, Spain, Septem-
ber 4-6, 2002, San Mateo, CA, USA. Morgan Kaufmann, ISBN: 0-12-
208155-2. Published 2003.

[434] William M. Spears and Worthy N. Martin, editors. Proceedings of
the Sixth Workshop on Foundations of Genetic Algorithms, Char-
lottesville, VA, USA, July 21-23, 2000, San Mateo, CA, USA. Mor-
gan Kaufmann, ISBN: 1-55860-734-X. see http://www.cs.uwyo.edu/

~wspears/foga00/index.html [accessed 2007-09-01].
[435] Wolfgang Banzhaf and Colin R. Reeves, editors. Proceedings of the

Fifth Workshop on Foundations of Genetic Algorithms, Madison, WI,
USA, July 22-25, 1998, San Mateo, CA, USA. Morgan Kaufmann,
ISBN: 1-55860-559-2. Published April 2, 1991.

[436] Richard K. Belew and Michael D. Vose, editors. Proceedings of the 4th
Workshop on Foundations of Genetic Algorithms, University of San
Diego, San Diego, CA, USA, August 5, 1996, San Francisco, California,
USA. Morgan Kaufmann, ISBN: 1-55860-460-X. Published March 1,
1997.

[437] L. Darrell Whitley and Michael D. Vose, editors. Proceedings of the
Third Workshop on Foundations of Genetic Algorithms, Estes Park,
Colorado, USA, July 31-August 2, 1994, San Francisco, CA, USA. Mor-
gan Kaufmann, ISBN: 1-55860-356-5. Published June 1, 1995.

[438] L. Darrell Whitley, editor. Proceedings of the Second Workshop on
Foundations of Genetic Algorithms, Vail, Colorado, USA, July 26-29,
1992, San Mateo, CA, USA. Morgan Kaufmann, ISBN: 1-55860-263-1.
Published February 1, 1993.

[439] Gregory J. E. Rawlins, editor. Proceedings of the First Workshop on
Foundations of Genetic Algorithms, Indiana University, Bloomington
Campus, Indiana, USA, July 15-18, 1990, San Mateo, CA, USA. Mor-
gan Kaufmann, ISBN: 1-55860-170-8. Published July 1, 1991.

[440] Proceedings of the 2nd IEE GALESIA Conference, Strathclyde, Glas-
gow, UK, September 2-4, 1997, ISBN: 0-85296-693-8, ISSN: 0537-9989.

[441] A. M. S. Zalzala, editor. First International Conference on Ge-
netic Algorithms in Engineering Systems: Innovations and Applica-
tions (GALESIA), Scheffield, UK, September 12-14, 1995, volume 414.
IEE Conference Publication, Institution of Engineering and Technol-
ogy, ISBN: 978-0852966501.

[442] Thomas Bäck, editor. Proceedings of The Seventh International
Conference on Genetic Algorithms ICGA’97, Michigan State Univer-
sity, East Lansing, Michigan, USA, July 19-23, 1997, San Francisco,
CA, USA. Morgan Kaufmann Publishers, ISBN: 1-55860-487-1. see
http://garage.cse.msu.edu/icga97/ [accessed 2007-09-01].

[443] Larry J. Eshelman, editor. Proceedings of the Sixth International Con-
ference on Genetic Algorithms, Pittsburgh, PA, USA, July 15-19, 1995,
San Francisco, CA. Morgan Kaufmann, ISBN: 1-55860-370-0.

http://www.cs.uwyo.edu/~wspears/foga00/index.html
http://www.cs.uwyo.edu/~wspears/foga00/index.html
http://garage.cse.msu.edu/icga97/

REFERENCES 707

[444] Stephanie Forrest, editor. Proceedings of the 5th International Confer-
ence on Genetic Algorithms, Urbana-Champaign, IL, USA, June 1993,
San Francisco, CA. Morgan Kaufmann, ISBN: 1-55860-299-2.

[445] Richard K. Belew and Lashon B. Booker, editors. Proceedings of the 4th
International Conference on Genetic Algorithms, San Diego, CA, USA,
July 1991, San Francisco, CA. Morgan Kaufmann, ISBN: 1-55860-208-
9.

[446] John J. Grefenstette, editor. Proceedings of the 2nd International Con-
ference on Genetic Algorithms, Cambridge, MA, USA, July 1987, Mah-
wah, NJ, USA. Lawrence Erlbaum Associates, ISBN: 0-8058-0158-8.

[447] John J. Grefenstette, editor. Proceedings of the 1st International Con-
ference on Genetic Algorithms and their Applications, Carnegie-Mellon
University, Pittsburgh, PA, USA, July 24-26, 1985, Mahwah, NJ, USA.
Lawrence Erlbaum Associates, Inc., ISBN: 0-8058-0426-9.

[448] Mitsuo Gen and Runwei Chen. Genetic Algorithms (Engineering De-
sign and Automation). Wiley Series in Engineering Design and Au-
tomation. John Wiley and Sons Ltd, ISBN: 978-0-471-31531-5, Febru-
ary 2001.

[449] Tomasz Dominik Gwiazda. Crossover for single-objective numerical
optimization problems, volume 1 of Genetic Algorithms Reference. Lo-
mianki, e-book: Tomasz Dominik Gwiazda, ISBN: 83-923958-3-2, May
2006.

[450] Hans Winkler. Verbreitung und Ursache der Parthenogenesis im
Pflanzen- und Tierreiche. Verlag Gustav Fischer, Jena, 1920.

[451] Joshua Lederberg and Alexa T. McCray. ’ome sweet ’omics - a ge-
nealogical treasury of words. The Scientist, 15(7):8, April 2001. On-
line available at http://lhncbc.nlm.nih.gov/lhc/docs/published/
2001/pub2001047.pdf [accessed 2007-08-06].

[452] James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann,
Michael Levine, and Richard Losick. Molecular Biology of the Gene.
Benjamin Cummings, fifth (december 3, 2003) edition, ISBN: 978-
0805346350, 1987.

[453] Sanza Kazadi. Conjugate schema and basis representation of
crossover and mutation. Evolutionary Computation, 6(2):129–160,
September 1998. Online available at http://www.jisan.org/

research_collaborators/former_research/conjugate_schemata/

papers/CONJUGATE98.PDF [accessed 2007-08-29].
[454] Richard A. Caruana and J. David Schaffer. Representation and hidden

bias: Gray vs. binary coding for genetic algorithms. In John E. Laird,
editor, Machine Learning, Proceedings of 5th International Conference
on Machine Learning, Ann Arbor, Michigan, USA, June 1988, pages
153–161, San Mateo, California. Morgan Kaufmann, ISBN: 0-934613-
64-8.

[455] Nicol N. Schraudolph and Richard K. Belew. Dynamic param-
eter encoding for genetic algorithms. Machine Learning, 9:9–21,

http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf
http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf
http://www.jisan.org/research_collaborators/former_research/conjugate_schemata/papers/CONJUGATE98.PDF
http://www.jisan.org/research_collaborators/former_research/conjugate_schemata/papers/CONJUGATE98.PDF
http://www.jisan.org/research_collaborators/former_research/conjugate_schemata/papers/CONJUGATE98.PDF

708 REFERENCES

June 1992. Online available at http://citeseer.ist.psu.edu/

schraudolph92dynamic.html and http://www.springerlink.com/

content/u68407l468r0x423/fulltext.pdf [accessed 2007-08-29].
[456] Wolfgang Banzhaf. Genotype-phenotype-mapping and neutral vari-

ation – A case study in genetic programming. In Parallel Prob-
lem Solving from Nature III, 1994, pages 322–332. See pro-
ceedings [329]. Online available at http://citeseer.ist.psu.edu/

banzhaf94genotypephenotypemapping.html [accessed 2007-09-09].
[457] Tina Yu and Peter Bentley. Methods to evolve legal phenotypes. In

PPSN V: Proceedings of the 5th International Conference on Paral-
lel Problem Solving from Nature, 1998, pages 280–291. See proceed-
ings [327]. Online available at http://www.cs.ucl.ac.uk/staff/p.

bentley/YUBEC2.pdf [accessed 2007-08-17].
[458] Steven Manos, Leon Poladian, Peter J. Bentley, and Maryanne Large.

A genetic algorithm with a variable-length genotype and embryogeny
for microstructured optical fibre design. In GECCO ’06: Proceedings
of the 8th annual conference on Genetic and evolutionary computa-
tion, 2006, pages 1721–1728. See proceedings [298]. Online available at
http://portal.acm.org/citation.cfm?id=1144278 [accessed 2007-08-17].

[459] Kenneth O. Stanley and Risto Miikkulainen. A taxonomy for
artificial embryogeny. Artificial Life, 9(2):93–130, 2003. On-
line available at http://nn.cs.utexas.edu/downloads/papers/

stanley.alife03.pdf [accessed 2007-08-17].
[460] Gregory Beurier, Fabien Michel, and Jacques Ferber. A morpho-

genesis model for multiagent embryogeny. In ALIFE X, Tenth
International Conference on the Simulation and Synthesis of Liv-
ing Systems, June 2006, Bloomington, Indiana, USA. Online
available at http://leri.univ-reims.fr/~fmichel/publi/pdfs/

beurier06alifeX.pdf [accessed 2007-08-17].
[461] Sanjeev Kumar and Peter J. Bentley. Computational embryology: past,

present and future. In Ashish Ghosh and Shigeyoshi Tsutsui, editors,
Theory and Application of Evolutionary Computation: Recent Trends,
ISBN: 9783540433309, pages 461–477. Springer-Verlag New York, Inc.,
New York, NY, USA, 2003. Online available at http://www.cs.ucl.

ac.uk/staff/P.Bentley/KUBECH1.pdf [accessed 2007-08-17].
[462] Chris P. Bowers. Simulating evolution with a computational model of

embryogeny: Obtaining robustness from evolved individuals. In Math-
ieu S. Capcarrère, Alex Alves Freitas, Peter J. Bentley, Colin G. John-
son, and Jon Timmis, editors, Advances in Artificial Life, Proceedings
of 8th European Conference, Canterbury, UK, September 2005, vol-
ume 3630 of Lecture Notes in Computer Science (LNCS), pages 149–
158. Springer, ISBN: 354-0288-481. Online available at http://www.

cs.bham.ac.uk/~cpb/publications/ecal05_bowers.pdf [accessed 2007-

08-17].

http://citeseer.ist.psu.edu/schraudolph92dynamic.html
http://citeseer.ist.psu.edu/schraudolph92dynamic.html
http://www.springerlink.com/content/u68407l468r0x423/fulltext.pdf
http://www.springerlink.com/content/u68407l468r0x423/fulltext.pdf
http://citeseer.ist.psu.edu/banzhaf94genotypephenotypemapping.html
http://citeseer.ist.psu.edu/banzhaf94genotypephenotypemapping.html
http://www.cs.ucl.ac.uk/staff/p.bentley/YUBEC2.pdf
http://www.cs.ucl.ac.uk/staff/p.bentley/YUBEC2.pdf
http://portal.acm.org/citation.cfm?id=1144278
http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf
http://leri.univ-reims.fr/~fmichel/publi/pdfs/beurier06alifeX.pdf
http://leri.univ-reims.fr/~fmichel/publi/pdfs/beurier06alifeX.pdf
http://www.cs.ucl.ac.uk/staff/P.Bentley/KUBECH1.pdf
http://www.cs.ucl.ac.uk/staff/P.Bentley/KUBECH1.pdf
http://www.cs.bham.ac.uk/~cpb/publications/ecal05_bowers.pdf
http://www.cs.bham.ac.uk/~cpb/publications/ecal05_bowers.pdf

REFERENCES 709

[463] Bastien Chevreux. Genetische algorithmen zur
molekülstrukturoptimierung. Master’s thesis, Universität Heidel-
berg/Fachhochschule Heilbronn, Deutsches Krebsforschungszentrum
Heidelberg, July 2001. Online available at http://chevreux.org/

diplom/diplom.html [accessed 2007-07-29].
[464] John J. Grefenstette. Deception considered harmful. In Pro-

ceedings of the Second Workshop on Foundations of Genetic Algo-
rithms, 1992, pages 75–91. See proceedings [438]. Online available
at http://citeseer.ist.psu.edu/grefenstette92deception.html
[accessed http://www.citeulike.org/user/pduval/article/1433820]2007-08-12.

[465] Melanie Mitchell, Stephanie Forrest, and John Henry Holland. The
royal road for genetic algorithms: Fitness landscapes and GA perfor-
mance. In Francisco J. Varela and Paul Bourgine, editors, Towards a
Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, 1991, 1992, pages 245–254, Paris. A
Bradford book, The MIT Press, ISBN: 0-262-72019-1. Online avail-
able at http://citeseer.ist.psu.edu/mitchell91royal.html and
http://web.cecs.pdx.edu/~mm/ecal92.pdf [accessed 2007-10-15].

[466] Xuan Hoai Nguyen. A Flexible Representation for Genetic Program-
ming: Lessons from Natural Language Processing. PhD thesis, School of
Information Technology and Electrical Engineering University College,
University of New South Wales, Australian Defence Force Academy,
December 2004. Online available at http://www.cs.bham.ac.

uk/~wbl/biblio/gp-html/hoai_thesis.html and http://www.cs.

ucl.ac.uk/staff/W.Langdon/ftp/papers/hoai_thesis.tar.gz [ac-

cessed 2007-07-15].
[467] Charles Campbell Palmer and Aaron Kershenbaum. Repre-

senting trees in genetic algorithms. In Proceedings of the
First IEEE Conference on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, 1994, volume 1, pages
379–384. See proceedings [254]. Also: Handbook of Evolution-
ary Computation, 1997, Institute of Physics Publishing and Ox-
ford University Press, Bristol, Thomas Bäck and David B. Fogel
and Zbigniew Michalewicz. New YorkOnline available at http://

citeseer.ist.psu.edu/palmer94representing.html and http://

www.cs.cinvestav.mx/~constraint/ [accessed 2007-08-12].
[468] Charles Campbell Palmer. An approach to a problem in network de-

sign using genetic algorithms. PhD thesis, Polytechnic University, New
York, NY, April 1994. Supervisors: Aaron Kershenbaum, Susan Flynn
Hummel, Richard M. Van Slyke, Robert R. Boorstyn. UMI Order
No. GAX94-31740. Appears also as article in Wiley InterScience, Net-
works, Volume 26, Issue 3, Pages 151–163, Online available at http://
citeseer.ist.psu.edu/palmer95approach.html [accessed 2007-08-12].

[469] Simon Ronald. Robust encodings in genetic algorithms: A survey of
encoding issues. In IEEE Forth International Conference on Evolu-

http://chevreux.org/diplom/diplom.html
http://chevreux.org/diplom/diplom.html
http://citeseer.ist.psu.edu/grefenstette92deception.html
http://citeseer.ist.psu.edu/mitchell91royal.html
http://web.cecs.pdx.edu/~mm/ecal92.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/hoai_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/hoai_thesis.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/hoai_thesis.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/hoai_thesis.tar.gz
http://citeseer.ist.psu.edu/palmer94representing.html
http://citeseer.ist.psu.edu/palmer94representing.html
http://www.cs.cinvestav.mx/~constraint/
http://www.cs.cinvestav.mx/~constraint/
http://citeseer.ist.psu.edu/palmer95approach.html
http://citeseer.ist.psu.edu/palmer95approach.html

710 REFERENCES

tionary Computation (IEEE/ICEC’97), 1997, pages 43–48. See pro-
ceedings [251].

[470] Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. Frommann-Holzboog
Verlag, Stuttgart, ISBN: 978-3772803741, 1973. his dissertation from
1970.

[471] Justinian P. Rosca and Dana H. Ballard. Causality in genetic program-
ming. In Proceedings of the 6th International Conference on Genetic
Algorithms (ICGA95), 1995, pages 256–263. See proceedings [443]. On-
line available at http://citeseer.ist.psu.edu/rosca95causality.
html [accessed 2007-08-12].

[472] Stefan Droste and Dirk Wiesmann. On representation and genetic
operators in evolutionary algorithms. Technical Report CI–41/98,
Fachbereich Informatik, Universität Dortmund, 44221 Dortmund, June
1998. Online available at http://citeseer.ist.psu.edu/323494.

html and http://en.scientificcommons.org/336032 [accessed 2007-08-

12].
[473] Reinhard Lohmann. Structure evolution and incomplete induction.

Biological Cybernetics, 69(4):319–326, August 1993. Online available
at http://www.springerlink.com/content/q2q668316m771073/

fulltext.pdf [accessed 2007-08-12].
[474] Christian Igel. Causality of hierarchical variable length representa-

tions. In Proceedings of the 1998 IEEE World Congress on Compu-
tational Intelligence, 1998, pages 324–329, Anchorage, Alaska, USA.
IEEE Press. Online available at http://www.neuroinformatik.

ruhr-uni-bochum.de/PEOPLE/igel/CoHVLR.ps.gz and http://

citeseer.ist.psu.edu/61421.html [accessed 2007-08-12].
[475] Bernhard Sendhoff, Martin Kreutz, and Werner von Seelen. A

condition for the genotype-phenotype mapping: Causality. In Pro-
ceedings of the Seventh International Conference on Genetic Algo-
rithms (ICGA97), 1997. See proceedings [442]. Online available
at http://citeseer.ist.psu.edu/sendhoff97condition.html and
http://arxiv.org/abs/adap-org/9711001 [accessed 2007-08-12].

[476] Peter Stagge and Christian Igel. Structure optimization and iso-
morphisms. In Leila Kallel, Bart Naudts, and Alex Rogers, editors,
Theoretical Aspects of Evolutionary Computing, ISBN: 3-540-67396-2,
pages 409–422. Springer, Berlin/London, UK, 2000. Online available
at http://citeseer.ist.psu.edu/520775.html [accessed 2007-08-13].

[477] William Bateson. Mendel’s Principles of Heredity. Cambridge Uni-
versity Press, Cambridge, ISBN: 9781428648197, 1909. 1930: fourth
impression of the 1909 edition.

[478] Jay L. Lush. Progeny test and individual performance as indicators of
an animal’s breeding value. Journal of Dairy Science, 18(1):1–19, Jan-
uary 1935. Online available at http://jds.fass.org/cgi/reprint/

18/1/1 [accessed 2007-11-27].

http://citeseer.ist.psu.edu/rosca95causality.html
http://citeseer.ist.psu.edu/rosca95causality.html
http://citeseer.ist.psu.edu/323494.html
http://citeseer.ist.psu.edu/323494.html
http://en.scientificcommons.org/336032
http://www.springerlink.com/content/q2q668316m771073/fulltext.pdf
http://www.springerlink.com/content/q2q668316m771073/fulltext.pdf
http://www.neuroinformatik.ruhr-uni-bochum.de/PEOPLE/igel/CoHVLR.ps.gz
http://www.neuroinformatik.ruhr-uni-bochum.de/PEOPLE/igel/CoHVLR.ps.gz
http://citeseer.ist.psu.edu/61421.html
http://citeseer.ist.psu.edu/61421.html
http://citeseer.ist.psu.edu/sendhoff97condition.html
http://arxiv.org/abs/adap-org/9711001
http://citeseer.ist.psu.edu/520775.html
http://jds.fass.org/cgi/reprint/18/1/1
http://jds.fass.org/cgi/reprint/18/1/1

REFERENCES 711

[479] Lee Altenberg. Nk fitness landscapes. In Handbook of Evolutionary
Computation, chapter B2.7.2. Oxford University Press, November 27,
1996. See collection [180]. Online available at http://citeseer.

ist.psu.edu/704814.html and http://dynamics.org/Altenberg/

FILES/LeeNKFL.pdf [accessed 2007-11-27].
[480] Yuval Davidor. Epistasis variance: A viewpoint on GA-hardness. In

Proceedings of the First Workshop on Foundations of Genetic Algo-
rithms, 1990, pages 23–35. See proceedings [439].

[481] Bart Naudts and Alain Verschoren. Epistasis on finite and infi-
nite spaces. In Proceedings of the 8th International Conference on
Systems Research, Informatics and Cybernetics, 1996, pages 19–23.
Online available at http://en.scientificcommons.org/155291 and
http://citeseer.ist.psu.edu/142750.html [accessed 2007-08-13].

[482] Bart Naudts, Dominique Suys, and Alain Verschoren. Generalized
royal road functions and their epistasis. Computers and Artificial In-
telligence, 19(4), 2000. Original: March 5, 1997. Online available at
http://citeseer.ist.psu.edu/111356.html [accessed 2007-08-13].

[483] Bart Naudts and Alain Verschoren. Epistasis and deceptivity. Bul-
letin of the Belgian Mathematical Society, 6(1):147–154, 1999. Zen-
tralblatt Math identifier: 0915.68143, Mathematical Reviews number
(MathSciNet): MR1674709. Online available at http://citeseer.

ist.psu.edu/14550.html and http://projecteuclid.org/euclid.

bbms/1103149975 [accessed 2007-11-05].
[484] Marc Toussaint and Christian Igel. Neutrality: A necessity for self-

adaptation. In Proceedings of the IEEE Congress on Evolution-
ary Computation (CEC 2002), 2002, pages 1354–1359. See pro-
ceedings [246]. Online available at http://citeseer.ist.psu.edu/

toussaint02neutrality.html [accessed 2007-07-28].
[485] Rob Shipman. Genetic redundancy: Desirable or problematic for evo-

lutionary adaptation? In Proceedings of the 4th International Confer-
ence on Artificial Neural Nets and Genetic Algorithms, 1999, pages
1–11. See proceedings [321]. Online available at http://citeseer.

ist.psu.edu/shipman99genetic.html [accessed 2007-07-29].
[486] Mark Shackleton, Rob Shipman, and Marc Ebner. An investigation

of redundant genotype-phenotype mappings and their role in evolu-
tionary search. In Proceedings of the 2000 Congress on Evolutionary
Computation CEC00, 2000, pages 493–500. See proceedings [248]. On-
line available at http://citeseer.ist.psu.edu/409243.html [accessed

2007-07-29].
[487] Rob Shipman, Mark Shackleton, and I. Harvey. The use of neutral

genotype-phenotype mappings for improved evolutionary search. BT
Technology Journal, 18(4):103–111, 2000. Online available at http://
citeseer.ist.psu.edu/shipman00use.html [accessed 2007-07-29].

[488] Richard M. Friedberg. A learning machine: Part i. IBM Jour-
nal of Research and Development, 2:2–13, November 1958. On-

http://citeseer.ist.psu.edu/704814.html
http://citeseer.ist.psu.edu/704814.html
http://dynamics.org/Altenberg/FILES/LeeNKFL.pdf
http://dynamics.org/Altenberg/FILES/LeeNKFL.pdf
http://en.scientificcommons.org/155291
http://citeseer.ist.psu.edu/142750.html
http://citeseer.ist.psu.edu/111356.html
http://citeseer.ist.psu.edu/14550.html
http://citeseer.ist.psu.edu/14550.html
http://projecteuclid.org/euclid.bbms/1103149975
http://projecteuclid.org/euclid.bbms/1103149975
http://citeseer.ist.psu.edu/toussaint02neutrality.html
http://citeseer.ist.psu.edu/toussaint02neutrality.html
http://citeseer.ist.psu.edu/shipman99genetic.html
http://citeseer.ist.psu.edu/shipman99genetic.html
http://citeseer.ist.psu.edu/409243.html
http://citeseer.ist.psu.edu/shipman00use.html
http://citeseer.ist.psu.edu/shipman00use.html

712 REFERENCES

line available at http://www.research.ibm.com/journal/rd/021/

ibmrd0201B.pdf [accessed 2007-09-06]. See also [489].
[489] Richard M. Friedberg, B. Dunham, and J. H. North. A learning ma-

chine: Part ii. IBM Journal of Research and Development, 3(3):282–
287, March 1959. Online available at http://www.research.ibm.com/
journal/rd/033/ibmrd0303H.pdf [accessed 2007-09-06]. See also [488].

[490] Stephen Frederick Smith. A Learning System based on Genetic Adap-
tive Algorithms. PhD thesis, University of Pittsburgh, Pittsburgh, PA,
USA, 1980. Order No. AAI8112638, University Microfilms No. 81-
12638.

[491] Richard Forsyth. BEAGLE a darwinian approach to pattern recogni-
tion. Kybernetes, 10:159–166, 1981. Received December 17, 1980. On-
line available at http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/

papers/kybernetes_forsyth.pdf [accessed 2007-11-01] (copy from British
Library May 1994).

[492] Richard Forsyth and Roy Rada. Machine Learning applications in
Expert Systems and Information Retrieval. Ellis Horwood series in
Artificial Intelligence. Ellis Horwood, Chichester, UK, ISBN: 0-7458-
0045-9, 0-470-20309-9, 1986. Contains chapters on BEAGLE, see [491].
Also published by John Wiley & Sons Australia (May 28, 1986) and
Halsted Press, New York, NY, USA.

[493] Richard Forsyth. The evolution of intelligence. In Richard Forsyth, ed-
itor, Machine Learning, Priciples and Techniques, ISBN: 0-412-30570-
4, 0-412-30580-1, chapter 4, pages 65–82. Chapman and Hall, 1989.
Refers also to PC/BEAGLE, see [491].

[494] Nichael Lynn Cramer. A representation for the adaptive gen-
eration of simple sequential programs. In Proceedings of the
1st International Conference on Genetic Algorithms and their Ap-
plications, 1985, pages 183–187. See proceedings [447]. Online
available at http://www.sover.net/~nichael/nlc-publications/

icga85/index.html [accessed 2007-09-06].
[495] Dirk Dickmanns, Jürgen Schmidhuber, and Andreas Winklhofer. Der

genetische algorithmus: Eine implementierung in prolog. Fortgeschrit-
tenenpraktikum, Institut für Informatik, Lehrstuhl Professor Radig,
Technische Universität München, Munich, Germany, 1987. Online
available at http://www.idsia.ch/~juergen/geneticprogramming.

html [accessed 2007-11-01].
[496] Jürgen Schmidhuber. Evolutionary principles in self-referential learn-

ing. (on learning how to learn: The meta-meta-... hook.). Master’s
thesis, Institut für Informatik, Technische Universität München, Mu-
nich, Germany, May 14, 1987. Online available at http://www.idsia.
ch/~juergen/diploma.html [accessed 2007-11-01].

[497] John R. Koza. Non-Linear Genetic Algorithms for Solving Problems.
United States Patent and Trademark Office, 1988. United States
Patent 4,935,877. Filed May 20, 1988. Issued June 19, 1990. Australian

http://www.research.ibm.com/journal/rd/021/ibmrd0201B.pdf
http://www.research.ibm.com/journal/rd/021/ibmrd0201B.pdf
http://www.research.ibm.com/journal/rd/033/ibmrd0303H.pdf
http://www.research.ibm.com/journal/rd/033/ibmrd0303H.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/kybernetes_forsyth.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/kybernetes_forsyth.pdf
http://www.sover.net/~nichael/nlc-publications/icga85/index.html
http://www.sover.net/~nichael/nlc-publications/icga85/index.html
http://www.idsia.ch/~juergen/geneticprogramming.html
http://www.idsia.ch/~juergen/geneticprogramming.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html

REFERENCES 713

patent 611,350 issued september 21, 1991. Canadian patent 1,311,561
issued december 15, 1992.

[498] John R. Koza. Non-Linear Genetic Algorithms for Solving Problems
by Finding a Fit Composition of Functions. United States Patent and
Trademark Office, August 1992. United States Patent 5,136,686. Filed
March 28, 1990, Issued August 4, 1992.

[499] Roberto R. F. Mendes, Fabricio de B. Voznika, Alex A. Freitas, and
Julio C. Nievola. Discovering fuzzy classification rules with genetic pro-
gramming and co-evolution. In Luc de Raedt and Arno Siebes, editors,
Proceedings of 5th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’01), Freiburg, Germany,
September 3-5, 2001, volume 2168 of Lecture Notes in Computer Sci-
ence (LNCS), subseries Lecture Nots in Artificial Intelligence (LNAI),
pages 314–325. Springer Verlag Berlin/Heidelberg, ISBN: 978-3-540-
42534-2, ISSN: 0302-9743 (Print) 1611-3349 (Online). See also [500].
Online available at http://www.cs.kent.ac.uk/people/staff/aaf/
pub_papers.dir/PKDD-2001.ps [accessed 2007-09-09].

[500] Roberto R. F. Mendes, Fabricio de B. Voznika, Alex A. Freitas, and
Julio C. Nievola. Discovering fuzzy classification rules with genetic pro-
gramming and co-evolution. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2001), 2001. See proceed-
ings [310] and [499]. Online available at http://citeseer.ist.psu.

edu/521000.html [accessed 2007-09-09].
[501] John R. Koza. Concept formation and decision tree induction using

the genetic programming paradigm. In Parallel Problem Solving from
Nature - Proceedings of 1st Workshop, PPSN 1, 1990, pages 124–128.
See proceedings [331]. Online available at http://citeseer.ist.psu.
edu/61578.html [accessed 2007-09-09].

[502] Tatiana Kalganova and Julian F. Miller. Evolving more efficient dig-
ital circuits by allowing circuit layout evolution and multi-objective
fitness. In Evolvable Hardware, Proceedings of 1st NASA/DoD Work-
shop on Evolvable Hardware (EH ’99), Pasadena, CA, USA, July 1999,
page 54. IEEE Computer Society, ISBN: 0-7695-0256-3. Online avail-
able at http://citeseer.ist.psu.edu/kalganova99evolving.html
[accessed 2007-09-09].

[503] Joel Jones. Abstract syntax tree implementation idioms. In Proceedings
of The 10th Conference on Pattern Languages of Programs PLoP’2003,
Monticello, Illinois, USA, September 8-12, 2003. A workshop pre-
sentation online available at http://hillside.net/plop/plop2003/

Papers/Jones-ImplementingASTs.pdf [accessed 2007-07-03].
[504] Nicola Howarth. Abstract syntax tree design. Technical Report

23/08/95 APM.1551.01, Architecture Projects Management Limited,
Poseidon House, Castle Park, Cambridge CB3 0RD, UK, August 23,
1995. Online available at http://www.ansa.co.uk/ANSATech/95/

Primary/155101.pdf [accessed 2007-07-03].

http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/PKDD-2001.ps
http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/PKDD-2001.ps
http://citeseer.ist.psu.edu/521000.html
http://citeseer.ist.psu.edu/521000.html
http://citeseer.ist.psu.edu/61578.html
http://citeseer.ist.psu.edu/61578.html
http://citeseer.ist.psu.edu/kalganova99evolving.html
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://www.ansa.co.uk/ANSATech/95/Primary/155101.pdf
http://www.ansa.co.uk/ANSATech/95/Primary/155101.pdf

714 REFERENCES

[505] Robert Ian McKay, Xuan Hoai Nguyen, Peter Alexander Whigham,
and Yin Shan. Grammars in genetic programming: A brief review. In
L. Kang, Z. Cai, and Y. Yan, editors, Progress in Intelligence Com-
putation and Intelligence: Proceedings of the International Symposium
on Intelligence, Computation and Applications, April 2005, pages 3–
18. China University of Geosciences Press. Online available at http://
sc.snu.ac.kr/PAPERS/isica05.pdf [accessed 2007-08-15].

[506] Douglas A. Augusto and Helio J. C. Barbosa. Symbolic regression via
genetic programming. In Proceedings of Sixth Brazilian Symposium on
Neural Networks (SBRN’00), 2000, pages 173–178, Los Alamitos, CA,
USA. IEEE Computer Society, ISBN: 0-7695-0856-1, ISSN: 1522-4899.

[507] Shengwu Xiong, Weiwu Wang, and Feng Li. A new genetic pro-
gramming approach in symbolic regression. In Proceedings of 15th
IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’03), November 3-5, 2003, pages 161–167, Los Alamitos, CA,
USA. IEEE Computer Society, ISSN: 1082-3409.

[508] Günther R. Raidl. A hybrid gp approach for numerically robust sym-
bolic regression. In Genetic Programming 1998: Proceedings of the
Third Annual Conference, 22–25 1998, pages 323–328. See proceedings
[579]. Online available at http://citeseer.ist.psu.edu/549723.

html and http://www.ads.tuwien.ac.at/publications/bib/pdf/

raidl-98c.pdf [accessed 2007-09-14].
[509] Faizad Javed, Barrett R. Bryant, M. Črepinček, Marjan Mernik, and

Alan Sprague. Context-free grammar induction using genetic pro-
gramming. In ACM-SE 42: Proceedings of the 42nd annual Southeast
regional conference, Huntsville, Alabama, 2004, pages 404–405, New
York, NY, USA. ACM Press, ISBN: 1-58113-870-9. Online available at
http://doi.acm.org/10.1145/986537.986635 [accessed 2007-09-09].

[510] Marjan Mernik, Goran Gerlič, Viljem Žumer, and Barrett R. Bryant.
Can a parser be generated from examples? In SAC ’03: Pro-
ceedings of the 2003 ACM symposium on Applied computing, Mel-
bourne, Florida, 2003, pages 1063–1067, New York, NY, USA. ACM
Press, ISBN: 1-58113-624-2. Online available at http://www.cis.

uab.edu/softcom/GenParse/sac.pdf and http://doi.acm.org/10.

1145/952532.952740 [accessed 2007-09-09].
[511] Matej Črepinček, Marjan Mernik, Faizan Javed, Barrett R. Bryant,

and Alan Sprague. Extracting grammar from programs: evolutionary
approach. SIGPLAN Notices, 40(4):39–46, 2005. Online available at
http://doi.acm.org/10.1145/1064165.1064174 [accessed 2007-09-09].

[512] Emin Erkan Korkmaz and Göktürk Üçoluk. Genetic programming
for grammar induction. In Genetic and Evolutionary Computation
Conference 2001 – Late Breaking Papers, 2001, pages 245–251. See
proceedings [311]. Online available at http://citeseer.ist.psu.

edu/451812.html and http://de.scientificcommons.org/464341

[accessed 2007-10-14].

http://sc.snu.ac.kr/PAPERS/isica05.pdf
http://sc.snu.ac.kr/PAPERS/isica05.pdf
http://citeseer.ist.psu.edu/549723.html
http://citeseer.ist.psu.edu/549723.html
http://www.ads.tuwien.ac.at/publications/bib/pdf/raidl-98c.pdf
http://www.ads.tuwien.ac.at/publications/bib/pdf/raidl-98c.pdf
http://doi.acm.org/10.1145/986537.986635
http://www.cis.uab.edu/softcom/GenParse/sac.pdf
http://www.cis.uab.edu/softcom/GenParse/sac.pdf
http://doi.acm.org/10.1145/952532.952740
http://doi.acm.org/10.1145/952532.952740
http://doi.acm.org/10.1145/1064165.1064174
http://citeseer.ist.psu.edu/451812.html
http://citeseer.ist.psu.edu/451812.html
http://de.scientificcommons.org/464341

REFERENCES 715

[513] Alex A. Freitas. A genetic programming framework for two data mining
tasks: Classification and generalized rule induction. In Genetic Pro-
gramming 1997: Proceedings of the Second Annual Conference GP-97,
1997, pages 96–101. See proceedings [581]. Online available at http://
citeseer.ist.psu.edu/43454.html [accessed 2007-09-09].

[514] Fernando E. B. Otero, Monique M. S. Silvia, and Alex A. Freitas.
Genetic programming for attribute construction in data mining. In
GECCO ’02: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, 2002. See proceedings [306] and also [515].

[515] Fernando E. B. Otero, Monique M. S. Silva, Alex A. Freitas, and
J. C. Nievola. Genetic programming for attribute construction in
data mining. In Genetic Programming: Proc. 6th European Confer-
ence (EuroGP-2003), 2003, pages 384–393. See proceedings [572] and
also [514]. Online available at http://www.cs.kent.ac.uk/people/

staff/aaf/pub_papers.dir/EuroGP-2003-Fernando.pdf [accessed 2007-

09-09].
[516] Celia C. Bojarczuk, Heitor S. Lopes, and Alex A. Freitas. Data mining

with constrained-syntax genetic programming: applications to medical
data sets. In Proceedings Intelligent Data Analysis in Medicine and
Pharmacology (IDAMAP-2001), 2001. Online available at http://

citeseer.ist.psu.edu/bojarczuk01data.html and http://www.

cs.bham.ac.uk/~wbl/biblio/gp-html/bojarczuk_2001_idamap.

html [accessed 2007-09-09].
[517] Man Leung Wong and Kwong Sak Leung. Data Mining Using Gram-

mar Based Genetic Programming and Applications, volume 3 of Ge-
netic Programming. Springer, ISBN: 978-0792377467, January 2000.

[518] Arturo Hernández Aguirre, Bill P. Buckles, and Carlos Artemio Coello
Coello. A genetic programming approach to logic function synthesis
by means of multiplexers. In Evolvable Hardware, Proceedings of 1st
NASA/DoD Workshop on Evolvable Hardware (EH ’99), Pasadena,
CA, USA, July 1999, pages 46–53. IEEE Computer Society, ISBN:
0-7695-0256-3. Online available at http://citeseer.ist.psu.edu/

521808.html [accessed 2007-09-09].
[519] Francisco Fernandez de Vega. Distributed Genetic Program-

ming Models with Application to Logic Synthesis on FPGAs.
PhD thesis, University of Extremadura, 2001. Online avail-
able at http://cum.unex.es/profes/profes/fcofdez/escritorio/
investigacion/pgp/thesis/phd.html [accessed 2007-09-09]. Spanish ver-
sion: [1317].

[520] John Koza, Forrest H. Bennett III, David Andre, and Martin A.
Keane. The design of analog circuits by means of genetic programming.
In Evolutionary Design by Computers, ISBN: 1-55860-605-X, chap-
ter 16, pages 365–385. Morgan Kaufmann, 1999. See collection [333].
Online available at http://www.genetic-programming.com/jkpdf/

edc1999.pdf [accessed 2007-10-03].

http://citeseer.ist.psu.edu/43454.html
http://citeseer.ist.psu.edu/43454.html
http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/EuroGP-2003-Fernando.pdf
http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/EuroGP-2003-Fernando.pdf
http://citeseer.ist.psu.edu/bojarczuk01data.html
http://citeseer.ist.psu.edu/bojarczuk01data.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bojarczuk_2001_idamap.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bojarczuk_2001_idamap.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bojarczuk_2001_idamap.html
http://citeseer.ist.psu.edu/521808.html
http://citeseer.ist.psu.edu/521808.html
http://cum.unex.es/profes/profes/fcofdez/escritorio/investigacion/pgp/thesis/phd.html
http://cum.unex.es/profes/profes/fcofdez/escritorio/investigacion/pgp/thesis/phd.html
http://www.genetic-programming.com/jkpdf/edc1999.pdf
http://www.genetic-programming.com/jkpdf/edc1999.pdf

716 REFERENCES

[521] Tatiana Kalganova. An extrinsic function-level evolvable hardware
approach. In Genetic Programming, Proceedings of EuroGP’2000,
2000, pages 60–75. See proceedings [575]. Online available at http://
citeseer.ist.psu.edu/kalganova00extrinsic.html [accessed 2007-09-

09].
[522] John R. Koza, David Andre, Forrest H. Bennett III, and Martin A.

Keane. Use of automatically defined functions and architecture-altering
operations in automated circuit synthesis using genetic programming.
In Genetic Programming 1996: Proceedings of the First Annual Con-
ference, 1996, pages 132–149. See proceedings [583]. Online available
at http://citeseer.ist.psu.edu/119355.html [accessed 2007-10-03].

[523] John R. Koza, David Andre, Forrest H. Bennett III, and Mar-
tin A. Keane. Evolution of a low-distortion, low-bias 60 deci-
bel op amp with good frequency generalization using genetic pro-
gramming. In Late Breaking Papers at the Genetic Program-
ming 1996 Conference, 1996, pages 94–100. See proceedings
[584]. Online available at http://www.genetic-programming.com/

jkpdf/gp1996lbpamplifier.pdf and http://citeseer.ist.psu.

edu/105348.html [accessed 2007-10-03].
[524] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A.

Keane. Automatic design of analog electrical circuits using genetic
programming. In Hugh Cartwright, editor, Intelligent Data Analysis
in Science, chapter 8, pages 172–200. Oxford University Press, Oxford,
2000.

[525] Robert L. Popp, David J. Montana, Richard R. Gassner, Gordon Vi-
daver, and Suraj Iyer. Automated hardware design using genetic pro-
gramming, VHDL, and FPGAs. In IEEE International Conference on
Systems, Man, and Cybernetics, San Diego, CA USA, October 11-14,
1998, volume 3, pages 2184–2189. IEEE.

[526] Athanasios Tsakonas, Georgios Dounias, Jan Jantzen, Hubertus Axer,
Beth Bjerregaard, and Diedrich Graf von Keyserlingk. Evolving rule-
based systems in two medical domains using genetic programming.
Artificial Intelligence in Medicine, 32(3):195–216, 2004. Online avail-
able at http://dx.doi.org/10.1016/j.artmed.2004.02.007 [accessed

2007-09-09].
[527] Markus Brameier and Wolfgang Banzhaf. A comparison of genetic pro-

gramming and neural networks in medical data analysis. Technical re-
port, University of Dortmund, 1998. Reihe Computational Intelligence,
Sonderforschungsbereich 531. Online available at http://citeseer.

ist.psu.edu/324837.html and http://dspace.hrz.uni-dortmund.

de:8080/bitstream/2003/5344/2/ci4398_doc.pdf [accessed 2007-09-09].
[528] Celia C. Bojarczuk, Heitor S. Lopes, and Alex A. Freitas.

An innovative application of a constrained-syntax genetic pro-
gramming system to the problem of predicting survival of pa-
tients. In Genetic Programming: Proc. 6th European Conference

http://citeseer.ist.psu.edu/kalganova00extrinsic.html
http://citeseer.ist.psu.edu/kalganova00extrinsic.html
http://citeseer.ist.psu.edu/119355.html
http://www.genetic-programming.com/jkpdf/gp1996lbpamplifier.pdf
http://www.genetic-programming.com/jkpdf/gp1996lbpamplifier.pdf
http://citeseer.ist.psu.edu/105348.html
http://citeseer.ist.psu.edu/105348.html
http://dx.doi.org/10.1016/j.artmed.2004.02.007
http://citeseer.ist.psu.edu/324837.html
http://citeseer.ist.psu.edu/324837.html
http://dspace.hrz.uni-dortmund.de:8080/bitstream/2003/5344/2/ci4398_doc.pdf
http://dspace.hrz.uni-dortmund.de:8080/bitstream/2003/5344/2/ci4398_doc.pdf

REFERENCES 717

(EuroGP-2003), 2003, pages 11–59. See proceedings [572]. On-
line available at http://www.cs.kent.ac.uk/people/staff/aaf/

pub_papers.dir/EuroGP-2003-Celia.pdf [accessed 2007-09-09].
[529] Jin-Hyuk Hong and Sung-Bae Cho. The classification of cancer based

on dna microarray data that uses diverse ensemble genetic program-
ming. Artificial Intelligence in Medicine, 36(1):43–58, 2006. Online
available at http://sclab.yonsei.ac.kr/~hjinh/PAPER/IJ2006-1.
pdf and http://dx.doi.org/10.1016/j.artmed.2005.06.002 [ac-

cessed 2007-09-09].
[530] Christopher J. Neely and Paul A. Weller. Predicting ex-

change rate volatility: genetic programming versus garch and
riskmetrics. Review, pages 43–54, May 2002. Online avail-
able at http://research.stlouisfed.org/publications/review/

02/05/43-54NeelyWeller.pdf [accessed 2007-09-09].
[531] Jean-Yves Potvin, Patrick Soriano, and Maxime Vallée. Generating

trading rules on the stock markets with genetic programming. Com-
puters & Operations Research, 31(7):1033–1047, June 2004.

[532] Michael O’Neill, Anthony Brabazon, Conor Ryan, and J. J. Collins.
Evolving market index trading rules using grammatical evolution.
In Proceedings of the EvoWorkshops on Applications of Evolutionary
Computing, 2001, pages 343–352. See proceedings [282]. Online avail-
able at http://citeseer.ist.psu.edu/485032.html [accessed 2007-09-09].

[533] Jason D. Lohn, Gregory S. Hornby, and Derek Linden. An evolved an-
tenna for deployment on nasas space technology 5 mission. In Genetic
Programming Theory and Practice II, 2004. See proceedings [588]. On-
line available at http://ic.arc.nasa.gov/people/hornby/papers/

lohn_gptp04.ps.gz [accessed 2007-08-17].
[534] David Andre, Forrest H. Bennett III, and John R. Koza. Discovery by

genetic programming of a cellular automata rule that is better than
any known rule for the majority classification problem. In Proceedings
of the First Annual Conference Genetic Programming (GP-96), 1996,
pages 3–11. See proceedings [583] and also [535]. Online available at
http://citeseer.ist.psu.edu/33008.html [accessed 2007-08-01].

[535] David Andre, Forrest H. Bennett III, and John R. Koza. Evolution
of intricate long-distance communication signals in cellular automata
using genetic programming. In Artificial Life V: Proceedings of the
Fifth International Workshop on the Synthesis and Simulation of Liv-
ing Systems, Nara, Japan, May 16–18, 1996, volume 1. MIT Press,
Cambridge, MA, USA. See also [534]. Online available at http://www.
genetic-programming.com/jkpdf/alife1996gkl.pdf and http://

citeseer.ist.psu.edu/andre96evolution.html [accessed 2007-10-03].
[536] Hugo de Garis. Artificial embryology: The genetic programming of an

artificial embryo. In Branko Souček, editor, Dynamic, Genetic, and
Chaotic Programming, pages 373–393. John Wiley, New York, 1992.

http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/EuroGP-2003-Celia.pdf
http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/EuroGP-2003-Celia.pdf
http://sclab.yonsei.ac.kr/~hjinh/PAPER/IJ2006-1.pdf
http://sclab.yonsei.ac.kr/~hjinh/PAPER/IJ2006-1.pdf
http://dx.doi.org/10.1016/j.artmed.2005.06.002
http://research.stlouisfed.org/publications/review/02/05/43-54NeelyWeller.pdf
http://research.stlouisfed.org/publications/review/02/05/43-54NeelyWeller.pdf
http://citeseer.ist.psu.edu/485032.html
http://ic.arc.nasa.gov/people/hornby/papers/lohn_gptp04.ps.gz
http://ic.arc.nasa.gov/people/hornby/papers/lohn_gptp04.ps.gz
http://citeseer.ist.psu.edu/33008.html
http://www.genetic-programming.com/jkpdf/alife1996gkl.pdf
http://www.genetic-programming.com/jkpdf/alife1996gkl.pdf
http://citeseer.ist.psu.edu/andre96evolution.html
http://citeseer.ist.psu.edu/andre96evolution.html

718 REFERENCES

Online available at http://citeseer.ist.psu.edu/99683.html [ac-

cessed 2007-08-01].
[537] Hugo de Garis. Evolving a replicator: The genetic programming of self

reproduction in cellular automata. In ECAL-93 Self organisation and
life: from simple rules to global complexity, Brussels, Belgium, 1993,
pages 274–284. Online available at http://citeseer.ist.psu.edu/

degaris93evolving.html [accessed 2007-08-01].
[538] Koetsu Yamazaki, Sourav Kundu, and Michitomo Hamano. Genetic

programming based learning of control rules for variable geometry
structures. In Genetic Programming 1998: Proceedings of the Third
Annual Conference, 1998, pages 412–415. See proceedings [579]. On-
line available at http://citeseer.ist.psu.edu/kundu98genetic.

html [accessed 2007-09-09].
[539] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Fran-

cone. Genetic Programming: An Introduction – On the Automatic Evo-
lution of Computer Programs and Its Applications. Morgan Kaufmann
Publishers, first edition, ISBN: 978-1558605107, November 30, 1997.

[540] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and
James Hendler. Co-evolving soccer softbot team coordination
with genetic programming. In Proceedings of the First Interna-
tional Workshop on RoboCup, at the International Joint Conference
on Artificial Intelligence, 1997, Nagoya, Japan. Online available
at http://citeseer.ist.psu.edu/3898.html and http://www.cs.

umd.edu/~seanl/papers/robocup.pdf [accessed 2007-09-09]. See also [541].
[541] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James

Hendler. Co-evolving soccer softbot team coordination with genetic
programming. In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer
World Cup I, 1998, number 1395 in Lecture Notes in Computer Sci-
ence (LNCS), subseries Lecture Notes in Artificial Intelligence (LNAI).
Springer Berlin/Heidelberg, ISBN: 978-3-540-64473-6, ISSN: 0302-9743
(Print) 1611-3349 (Online). Online available at hhttp://www.cs.umd.
edu/~seanl/papers/robocupc.pdf [accessed 2007-09-09]. See also [540].

[542] Sean Luke. Evolving soccerbots: A retrospective. In Proceedings
of the 12th Annual Conference of the Japanese Society for Artificial
Intelligence (JSAI), 1998. Online available at http://cs.gmu.edu/

~sean/papers/robocupShort.pdf and http://citeseer.ist.psu.

edu/43338.html [accessed 2007-09-09]. See also [540, 541].
[543] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Myd-

lowec, Jessen Yu, and Guido Lanza. Genetic Programming IV: Rou-
tine Human-Competitive Machine Intelligence. Genetic Programming.
Springer, first edition, ISBN: 978-0387250670, May 2005.

[544] John R. Koza and James P. Rice. Automatic program-
ming of robots using genetic programming. In Proceedings of
Tenth National Conference on Artificial Intelligence, 1992, pages
194–201. See proceedings [1318]. Online available at http://

http://citeseer.ist.psu.edu/99683.html
http://citeseer.ist.psu.edu/degaris93evolving.html
http://citeseer.ist.psu.edu/degaris93evolving.html
http://citeseer.ist.psu.edu/kundu98genetic.html
http://citeseer.ist.psu.edu/kundu98genetic.html
http://citeseer.ist.psu.edu/3898.html
http://www.cs.umd.edu/~seanl/papers/robocup.pdf
http://www.cs.umd.edu/~seanl/papers/robocup.pdf
hhttp://www.cs.umd.edu/~seanl/papers/robocupc.pdf
hhttp://www.cs.umd.edu/~seanl/papers/robocupc.pdf
http://cs.gmu.edu/~sean/papers/robocupShort.pdf
http://cs.gmu.edu/~sean/papers/robocupShort.pdf
http://citeseer.ist.psu.edu/43338.html
http://citeseer.ist.psu.edu/43338.html
http://citeseer.ist.psu.edu/koza92automatic.html

REFERENCES 719

citeseer.ist.psu.edu/koza92automatic.html and http://www.

genetic-programming.com/jkpdf/aaai1992.pdf [accessed 2007-09-07].
[545] David Andre and Astro Teller. Evolving team darwin united.

In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot
Soccer World Cup II, Paris, France, July 1998, volume 1604 of
Lecture Notes in Artificial Intelligence, subseries of Lecture Notes
in Computer Science (LNCS), pages 346–351. Springer Verlag,
ISBN: 3-540-66320-7, ISSN: 0302-9743 (Print) 1611-3349 (Online).
Published in 1999. Online available at http://www.cs.cmu.edu/

afs/cs/usr/astro/public/papers/Teller_Astro.ps and http://

citeseer.ist.psu.edu/322830.html [accessed 2007-10-03].
[546] Michael O’Neill, J. J. Collins, and Conor Ryan. Automatic generation

of robot behaviours using grammatical evolution. In Proceedings of the
Fifth International Symposium on Artificial Life and Robotics AROB
2000, Japan, 2000, pages 351–354.

[547] Hitoshi Iba. Evolving multiple agents by genetic programming. In
Advances in genetic programming 3, pages 447–466. MIT Press, Cam-
bridge, MA, USA, 1999. See collection [595]. Online available at
http://www.cs.bham.ac.uk/~wbl/aigp3/ch19.pdf [accessed 2007-10-03].

[548] Thomas Weise, Kurt Geihs, and Philipp Andreas Baer. Ge-
netic programming for proactive aggregation protocols. In Proceed-
ings of the 8th International Conference on Adaptive and Natural
Computing Algorithms ICANNGA’07, Part 1, 2007, pages 167–173.
See proceedings [316]. Online available at http://www.it-weise.

de/documents/files/W2007DGPFb.pdf [accessed 2008-1-4] and http://

www.springerlink.com/content/978-3-540-71589-4/?p_o=10 [ac-

cessed 2007-08-13].
[549] F. Comellas and G. Giménez. Genetic programming to design commu-

nication algorithms for parallel architectures. Parallel Processing Let-
ters, 8(4):549–560, 1998. Online available at http://www.cs.bham.ac.
uk/~wbl/biblio/gp-html/Comellas_1998_GPD.html and http://

citeseer.ist.psu.edu/comellas98genetic.html [accessed 2007-09-14].
[550] Thomas Weise. Genetic programming for sensor networks. Tech-

nical report, University of Kassel, University of Kassel, January
2006. Online available at http://www.it-weise.de/documents/

files/W2006DGPFa.pdf [accessed 2008-1-4].
[551] Thomas Weise and Kurt Geihs. Genetic programming techniques for

sensor networks. In Proceedings of 5. GI/ITG KuVS Fachgespräch
“Drahtlose Sensornetze”, University of Stuttgart, Stuttgart, Germany,
July 17-18, 2006, pages 21–25. Online available at http://www.

it-weise.de/documents/files/W2006DGPFb.pdf and http://elib.

uni-stuttgart.de/opus/volltexte/2006/2838/ [accessed 2007-11-07].
[552] Thomas Weise and Kurt Geihs. Dgpf – an adaptable framework

for distributed multi-objective search algorithms applied to the ge-
netic programming of sensor networks. In Proceedings of the Second

http://citeseer.ist.psu.edu/koza92automatic.html
http://www.genetic-programming.com/jkpdf/aaai1992.pdf
http://www.genetic-programming.com/jkpdf/aaai1992.pdf
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Teller_Astro.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Teller_Astro.ps
http://citeseer.ist.psu.edu/322830.html
http://citeseer.ist.psu.edu/322830.html
http://www.cs.bham.ac.uk/~wbl/aigp3/ch19.pdf
http://www.it-weise.de/documents/files/W2007DGPFb.pdf
http://www.it-weise.de/documents/files/W2007DGPFb.pdf
http://www.springerlink.com/content/978-3-540-71589-4/?p_o=10
http://www.springerlink.com/content/978-3-540-71589-4/?p_o=10
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Comellas_1998_GPD.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Comellas_1998_GPD.html
http://citeseer.ist.psu.edu/comellas98genetic.html
http://citeseer.ist.psu.edu/comellas98genetic.html
http://www.it-weise.de/documents/files/W2006DGPFa.pdf
http://www.it-weise.de/documents/files/W2006DGPFa.pdf
http://www.it-weise.de/documents/files/W2006DGPFb.pdf
http://www.it-weise.de/documents/files/W2006DGPFb.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2006/2838/
http://elib.uni-stuttgart.de/opus/volltexte/2006/2838/

720 REFERENCES

International Conference on Bioinspired Optimization Methods and
their Application, BIOMA 2006, 2006, pages 157–166. See proceed-
ings [239]. Online available at http://www.it-weise.de/documents/
files/W2006DGPFc.pdf [accessed 2008-1-4].

[553] Forrest H Bennett III. Emergence of a multi-agent architecture and
new tactics for the ant colony foraging problem using genetic program-
ming. In Pattie Maes, Maja J. Mataric, Jean-Arcady Meyer, Jordan B.
Pollack, and Stewart W. Wilson, editors, Proceedings of the Fourth
International Conference on Simulation of Adaptive Behavior: From
animals to animats 4, Cape Code, USA, September 9-13, 1996, pages
430–439. MIT Press, Cambridge, MA, USA, ISBN: 0-262-63178-4.

[554] Forrest H Bennett III. Automatic creation of an efficient multi-agent
architecture using genetic programming with architecture-altering op-
erations. In Genetic Programming 1996: Proceedings of the First An-
nual Conference, 1996, pages 30–38. See proceedings [583].

[555] Mohammad Adil Qureshi. The Evolution of Agents. PhD the-
sis, University College, London, London, UK, July 2001. Online
available at http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/

qureshi_thesis.html and http://citeseer.ist.psu.edu/759376.

html [accessed 2007-09-14].
[556] Mohammad Adil Qureshi. Evolving agents. In Genetic Pro-

gramming 1996: Proceedings of the First Annual Conference, 1996,
pages 369–374. See proceedings [583] and also [557]. Online avail-
able at http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/

AQ.gp96.ps.gz [accessed 2007-09-17].
[557] Mohammad Adil Qureshi. Evolving agents. Research Note RN/96/4,

UCL, Gower Street, London, WC1E 6BT, UK, January 1996.
Online available at ftp://ftp.cs.bham.ac.uk/pub/tech-reports/

1997/CSRP-97-07.ps.gz [accessed 2007-09-17]. See also [557].
[558] Thomas D. Haynes, Roger L. Wainwright, and Sandip Sen. Evolving

cooperation strategies. Technical Report UTULSA-MCS-94-10, The
University of Tulsa, Tulsa, OK, USA, December 16, 1994. See also
[1319]. Online available at http://www.mcs.utulsa.edu/~rogerw/

papers/Haynes-icmas95.pdf and http://citeseer.ist.psu.edu/

1958.html [accessed 2007-10-03].
[559] Thomas D. Haynes, Roger L. Wainwright, Sandip Sen, and Dale

Schoenefeld. Strongly typed genetic programming in evolving coop-
eration strategies. In Genetic Algorithms: Proceedings of the Sixth
International Conference (ICGA95), 1995, pages 271–278. See pro-
ceedings [443]. Online available at http://www.mcs.utulsa.edu/

~rogerw/papers/Haynes-icga95.pdf and http://citeseer.ist.

psu.edu/15037.html [accessed 2007-10-03].
[560] David Andre. The evolution of agents that build mental models and

create simple plans using genetic programming. In Genetic Algorithms:

http://www.it-weise.de/documents/files/W2006DGPFc.pdf
http://www.it-weise.de/documents/files/W2006DGPFc.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/qureshi_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/qureshi_thesis.html
http://citeseer.ist.psu.edu/759376.html
http://citeseer.ist.psu.edu/759376.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/CSRP-97-07.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/CSRP-97-07.ps.gz
http://www.mcs.utulsa.edu/~rogerw/papers/Haynes-icmas95.pdf
http://www.mcs.utulsa.edu/~rogerw/papers/Haynes-icmas95.pdf
http://citeseer.ist.psu.edu/1958.html
http://citeseer.ist.psu.edu/1958.html
http://www.mcs.utulsa.edu/~rogerw/papers/Haynes-icga95.pdf
http://www.mcs.utulsa.edu/~rogerw/papers/Haynes-icga95.pdf
http://citeseer.ist.psu.edu/15037.html
http://citeseer.ist.psu.edu/15037.html

REFERENCES 721

Proceedings of the Sixth International Conference (ICGA95), 1995,
pages 248–255, ISBN: 1-55860-370-0. See proceedings [443].

[561] David Andre. The automatic programming of agents that learn men-
tal models and create simple plans of action. In IJCAI-95 Proceedings
of the Fourteenth International Joint Conference on Artificial Intelli-
gence, Montreal, Quebec, Canada, August 20-25, 1995, volume 1, pages
741–747. Morgan Kaufmann, San Francisco, CA, USA, ISBN: 1-55860-
363-8.

[562] Lee Spector and Alan Robinson. Multi-type, self-adaptive ge-
netic programming as an agent creation tool. In GECCO
2002: Proceedings of the Bird of a Feather Workshops, Genetic
and Evolutionary Computation Conference, 2002, pages 73–80.
See proceedings [308]. Online available at http://citeseer.ist.

psu.edu/614297.html and http://hampshire.edu/lspector/pubs/

ecomas2002-spector-toappear.pdf [accessed 2007-12-25].
[563] David Andre. Learning and upgrading rules for an OCR system

using genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, June 27-29, 1994,
Orlando, Florida, USA. IEEE Press. Uses GP both to recognise C
in various fonts and to maintain manually produced extremely high
level code when a new font is added. Online available at http://

citeseer.ist.psu.edu/31976.html and http://citeseer.ist.

psu.edu/cache/papers/cs/802/http:zSzzSzwww.cs.berkeley.

eduzSz~dandrezSzpaperszSzAndre_WCCI_94_OCR_Boundary.pdf/

learning-and-upgrading-rules.pdf [accessed 2007-10-03].
[564] David Andre. Learning and upgrading rules for an optical character

recognition system using genetic programming. In Handbook of Evolu-
tionary Computation, ISBN: 0-7503-0392-1. Oxford University Press,
1997. See collection [180].

[565] John R. Koza and David Andre. Classifying protein segments as
transmembrane domains using architecture-altering operations in ge-
netic programming. In Advances in Genetic Programming 2, ISBN:
0-262-01158-1, chapter 8, pages 155–176. MIT Press, 1996. See col-
lection [594]. Online available at http://www.genetic-programming.
com/jkpdf/aigp2aatmjk1996.pdf and http://citeseer.ist.psu.

edu/75759.html [accessed 2007-10-03].
[566] John R. Koza and David Andre. Automatic discovery using ge-

netic programming of an unknown-sized detector of protein mo-
tifs containing repeatedly-used subexpressions. In Proceedings of
the Workshop on Genetic Programming: From Theory to Real-
World Applications, 1995, pages 89–97. See proceedings [1320].
Online available at http://www.genetic-programming.com/jkpdf/

ml1995motif.pdf and http://citeseer.ist.psu.edu/83080.html

[accessed 2007-10-03].

http://citeseer.ist.psu.edu/614297.html
http://citeseer.ist.psu.edu/614297.html
http://hampshire.edu/lspector/pubs/ecomas2002-spector-toappear.pdf
http://hampshire.edu/lspector/pubs/ecomas2002-spector-toappear.pdf
http://citeseer.ist.psu.edu/31976.html
http://citeseer.ist.psu.edu/31976.html
http://citeseer.ist.psu.edu/cache/papers/cs/802/http:zSzzSzwww.cs.berkeley.eduzSz~dandrezSzpaperszSzAndre_WCCI_94_OCR_Boundary.pdf/learning-and-upgrading-rules.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/802/http:zSzzSzwww.cs.berkeley.eduzSz~dandrezSzpaperszSzAndre_WCCI_94_OCR_Boundary.pdf/learning-and-upgrading-rules.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/802/http:zSzzSzwww.cs.berkeley.eduzSz~dandrezSzpaperszSzAndre_WCCI_94_OCR_Boundary.pdf/learning-and-upgrading-rules.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/802/http:zSzzSzwww.cs.berkeley.eduzSz~dandrezSzpaperszSzAndre_WCCI_94_OCR_Boundary.pdf/learning-and-upgrading-rules.pdf
http://www.genetic-programming.com/jkpdf/aigp2aatmjk1996.pdf
http://www.genetic-programming.com/jkpdf/aigp2aatmjk1996.pdf
http://citeseer.ist.psu.edu/75759.html
http://citeseer.ist.psu.edu/75759.html
http://www.genetic-programming.com/jkpdf/ml1995motif.pdf
http://www.genetic-programming.com/jkpdf/ml1995motif.pdf
http://citeseer.ist.psu.edu/83080.html

722 REFERENCES

[567] Peter John Angeline and Jordan B. Pollack. Coevolving high-
level representations. In Christopher G. Langton, editor, Artificial
Life III, Santa Fe, New Mexico, USA, June 15-19, 1992, volume
XVII of SFI Studies in the Sciences of Complexity, pages 55–71.
Addison-Wesley. Published 1994. Online available at http://demo.cs.
brandeis.edu/papers/alife3.pdf and http://citeseer.ist.psu.

edu/angeline94coevolving.html [accessed 2007-10-05].
[568] Marc Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, and

Anna Isabel Esparcia-Alcázar, editors. Proceedings of the 10th Eu-
ropean Conference on Genetic Programming, EuroGP 2007, Valencia,
Spain, April 11-13, 2007, volume 4445/2007 of Lecture Notes in Com-
puter Science (LNCS). Springer Berlin/Heidelberg, ISBN: 978-3-540-
71602-0, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[569] Pierre Collet, Marco Tomassini, Marc Ebner, Steven Gustafson, and
Anikó Ekárt, editors. Proceedings of the 9th European Conference
Genetic Programming, EuroGP 2006, Budapest, Hungary, April 10-
12, 2006, volume 3905/2006 of Lecture Notes in Computer Sci-
ence (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-33143-3, ISSN:
0302-9743 (Print) 1611-3349 (Online).

[570] Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano I. van
Hemert, and Marco Tomassini, editors. Proceedings of the 8th Eu-
ropean Conference on Genetic Programming, EuroGP2005, Lausanne,
Switzerland, March 30-April 1, 2005, volume 3447/2005 of Lec-
ture Notes in Computer Science (LNCS). Springer Berlin/Heidelberg,
ISBN: 3-540-25436-6, ISSN: 0302-9743 (Print) 1611-3349 (Online). see
http://evonet.lri.fr/eurogp2005/ [accessed 2007-09-01].

[571] Maarten Keijzer, Una-May O’Reilly, Simon M. Lucas, Ernesto Costa,
and Terence Soule, editors. Proccedings of the 7th European Con-
ference on Genetic Programming, EuroGP2004, Coimbra, Portugal,
April 5-7, 2004, volume 3003/2004 of Lecture Notes in Computer Sci-
ence (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-21346-5, ISSN:
0302-9743 (Print) 1611-3349 (Online).

[572] Conor Ryan, Terence Soule, Maarten Keijzer, Edward P. K. Tsang,
Riccardo Poli, and Ernesto Costa, editors. Proceedings of the 6th Euro-
pean Conference on Genetic Programming, EuroGP 2003, Essex, UK,
April 14-16, 2003, volume 2610/2003 of Lecture Notes in Computer Sci-
ence (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-00971-X, ISSN:
0302-9743 (Print) 1611-3349 (Online).

[573] James A. Foster, Evelyne Lutton, Julian F. Miller, Conor Ryan, and
Andrea Tettamanzi, editors. Proceedings of the 5th European Con-
ference on Genetic Programming, EuroGP 2002, Kinsale, Ireland,
April 3-5, 2002, volume 2278/2002 of Lecture Notes in Computer Sci-
ence (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-43378-3, ISSN:
0302-9743 (Print) 1611-3349 (Online).

http://demo.cs.brandeis.edu/papers/alife3.pdf
http://demo.cs.brandeis.edu/papers/alife3.pdf
http://citeseer.ist.psu.edu/angeline94coevolving.html
http://citeseer.ist.psu.edu/angeline94coevolving.html
http://evonet.lri.fr/eurogp2005/

REFERENCES 723

[574] Julian F. Miller, Marco Tomassini, Pier Luca Lanzi, Conor Ryan,
Andrea Tettamanzi, and William B. Langdon, editors. Proceedings
of the 4th European Conference on Genetic Programming, EuroGP
2001, Lake Como, Italy, April 18-20, 2001, volume 2038/2001 of Lec-
ture Notes in Computer Science (LNCS). Springer Berlin/Heidelberg,
ISBN: 3-540-41899-7, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[575] Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian F.
Miller, Peter Nordin, and Terence C. Fogarty, editors. Proceedings of
the European Conference on Genetic Programming, Edinburgh, Scot-
land, UK, April 15-16, 2000, volume 1802/2000 of Lecture Notes in
Computer Science (LNCS). Springer Berlin/Heidelberg, ISBN: 3-540-
67339-3, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[576] Riccardo Poli, Peter Nordin, William B. Langdon, and Terence C. Fog-
arty, editors. Proceedings of the Second European Workshop on Genetic
Programming, Göteborg, Sweden, May 26-27, 1999, volume 1598/1999
of Lecture Notes in Computer Science (LNCS). Springer Berlin/Hei-
delberg, ISBN: 3-540-65899-8, ISSN: 0302-9743 (Print) 1611-3349 (On-
line).

[577] Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence C.
Fogarty, editors. Proccedings of the First European Workshop on
Genetic Programming, EuroGP’98, Paris, France, April 14-15, 1998,
volume 1391/1998 of Lecture Notes in Computer Science (LNCS).
Springer Berlin/Heidelberg, ISBN: 3-540-64360-5, ISSN: 0302-9743
(Print) 1611-3349 (Online). See alse [578].

[578] Riccardo Poli, William B. Langdon, Marc Schoenauer, Terry Fogarty,
and Wolfgang Banzha, editors. Late Breaking Papers at EuroGP’98:
The First European Workshop on Genetic Programming, Paris, France,
April 14-15, 1998. Distributed at the workshop. See alse [577].

[579] John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg,
Hitoshi Iba, and Rick Riolo, editors. Proceedings of the Third An-
nual Genetic Programming Conference (GP-98), University of Wis-
consin, Madison, Wisconsin, USA, July 22-25, 1998, Los Altos, CA,
USA. Morgan Kaufmann, ISBN: 1-55860-548-7. see http://www.

genetic-programming.org/gp98cfp.html [accessed 2007-09-01] and [580].
[580] John R. Koza, editor. Late Breaking Papers at the Genetic Program-

ming 1998 Conference, University of Wisconsin, Madison, Wisconsin,
USA, July 22-25, 1998. see also [579].

[581] John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max
Garzon, Hitoshi Iba, and Rick L. Riolo, editors. Genetic Programming
1997: Proceedings of the Second Annual Conference GP-97, Stanford
University, CA, USA, July 13-16, 1997, San Francisco, CA, USA. Mor-
gan Kaufmann. see also [582].

[582] Late Breaking Papers at the 1997 Genetic Programming Conference,
Stanford University, CA, USA, July 13-16, 1997. Stanford Bookstore,

http://www.genetic-programming.org/gp98cfp.html
http://www.genetic-programming.org/gp98cfp.html

724 REFERENCES

ISBN: 0-18-206995-8. see also [581].
[583] John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo,

editors. Proceedings of the First Annual Conference Genetic Program-
ming (GP-96), Stanford University, CA, USA, July 28–31, 1996. MIT
Press.

[584] John R. Koza, editor. Late Breaking Papers at the First Annual Con-
ference Genetic Programming (GP-96), Stanford University, CA, USA,
July 28–31, 1996. Stanford Bookstore, ISBN: 0-18-201031-7.

[585] Genetic Programming Theory and Practice V, Proceedings of the Ge-
netic Programming Theory Practice 2007 Workshop (GPTP-2007),
The Center for the Study of Complex Systems (CSCS), University of
Michigan, Ann Arbor, Michigan, USA, May 17-19, 2007, Genetic and
Evolutionary Computation. Springer. See http://www.cscs.umich.

edu/gptp-workshops/gptp2007/ [accessed 2007-09-28].
[586] Rick Riolo, Terence Soul, and Bill Worzel, editors. Genetic Program-

ming Theory and Practice IV, Proceedings of the Genetic Program-
ming Theory Practice 2006 Workshop (GPTP-2006), The Center for
the Study of Complex Systems (CSCS), University of Michigan, Ann
Arbor, Michigan, USA, May 11-13, 2006, Genetic and Evolutionary
Computation. Springer, ISBN: 978-0-387-33375-5. See http://www.

cscs.umich.edu/gptp-workshops/gptp2006/ [accessed 2007-09-28].
[587] Tina Yu, Rick Riolo, and Bill Worzel, editors. Genetic Program-

ming Theory and Practice III, Proceedings of the Genetic Program-
ming Theory Practice 2005 Workshop (GPTP-2005), The Center for
the Study of Complex Systems (CSCS), University of Michigan, Ann
Arbor, Michigan, USA, May 12-14, 2005, volume 9 of Genetic Pro-
gramming Series. Springer, ISBN: 978-0-387-28110-0. See http://www.
cscs.umich.edu/gptp-workshops/gptp2005/ [accessed 2007-09-28].

[588] Una-May O’Reilly, Tina Yu, Rick Riolo, and Bill Worzel, editors. Ge-
netic Programming Theory and Practice II, Proceedings of the Genetic
Programming Theory Practice 2004 Workshop (GPTP-2004), The
Center for the Study of Complex Systems (CSCS), University of Michi-
gan, Ann Arbor, Michigan, USA, May 13-15, 2004, volume 8 of Genetic
Programming Series. Springer, ISBN: 978-0-387-23253-9. See http://

www.cscs.umich.edu/gptp-workshops/gptp2004/ [accessed 2007-09-28].
[589] Rick Riolo and Bill Worzel, editors. Genetic Programming Theory

and Practice, Proceedings of the Genetic Programming Theory Prac-
tice 2003 Workshop (GPTP-2003), The Center for the Study of Com-
plex Systems (CSCS), University of Michigan, Ann Arbor, UMichigan,
SA, May 15-17, 2003, Genetic Programming Series. Kluwer Publishers,
Boston, MA, ISBN: 1402075812. See http://www.cscs.umich.edu/

gptp-workshops/gptp2003/ [accessed 2007-09-28].
[590] John R. Koza. Genetic Programming II: Automatic Discovery of

Reusable Programs: Automatic Discovery of Reusable Programs. Com-

http://www.cscs.umich.edu/gptp-workshops/gptp2007/
http://www.cscs.umich.edu/gptp-workshops/gptp2007/
http://www.cscs.umich.edu/gptp-workshops/gptp2006/
http://www.cscs.umich.edu/gptp-workshops/gptp2006/
http://www.cscs.umich.edu/gptp-workshops/gptp2005/
http://www.cscs.umich.edu/gptp-workshops/gptp2005/
http://www.cscs.umich.edu/gptp-workshops/gptp2004/
http://www.cscs.umich.edu/gptp-workshops/gptp2004/
http://www.cscs.umich.edu/gptp-workshops/gptp2003/
http://www.cscs.umich.edu/gptp-workshops/gptp2003/

REFERENCES 725

plex Adaptive Systems. The MIT Press, ISBN: 0262111896, July 4,
1994.

[591] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A.
Keane. Genetic Programming III: Darwinian Invention and Problem
Solving. Morgan Kaufmann, first edition, ISBN: 978-1558605435, May
1999.

[592] William B. Langdon. Genetic Programming and Data Structures: Ge-
netic Programming + Data Structures = Automatic Programming! Ge-
netic Programming. Springer, ISBN: 0792381351, April 30, 1998.

[593] Jr. Kenneth E. Kinnear, editor. Advances in Genetic Programming,
volume 1. MIT Press, Cambridge, MA, USA, ISBN: 0-262-11188-8,
April 1994.

[594] Peter J. Angeline and Kenneth E. Kinnear, Jr, editors. Advances in
Genetic Programming, volume 2. MIT Press, Cambridge, MA, USA,
ISBN: 0-262-01158-1, October 1996.

[595] Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J.
Angeline, editors. Advances in Genetic Programming, volume 3. MIT
Press, Cambridge, MA, USA, ISBN: 0-262-19423-6, July 1999.

[596] Andreas Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic
Machine Learning, volume 3 of Studies in Fuzziness and Soft Comput-
ing. Physica-Verlag, 2nd rev edition edition, ISBN: 978-3790809640,
January 1997. First edition: 1995.

[597] Peter Nordin and Wolfgang Banzhaf. Complexity compression and
evolution. In Genetic Algorithms: Proceedings of the Sixth In-
ternational Conference (ICGA95), 1995, pages 310–317. See pro-
ceedings [443]. Online available at http://citeseer.ist.psu.edu/

nordin95complexity.html [accessed 2007-09-07].
[598] David Andre. Evolution of mapmaking ability: Strategies for the evolu-

tion of learning, planning, and memory using genetic programming. In
Proceedings of the 1994 IEEE World Congress on Computational Intel-
ligence, June 27-29, 1994, volume 1, pages 250–255, Orlando, Florida,
USA. IEEE Press.

[599] Robert E. Keller and Wolfgang Banzhaf. Genetic programming using
mutation, reproduction and genotype-phenotype mapping from linear
binary genomes into linear lalr(1) phenotypes. In Genetic Programming
1996: Proceedings of the First Annual Conference, 1996, pages 116–122.
See proceedings [583]. Online available at http://citeseer.ist.psu.
edu/4569.html [accessed 2007-09-09].

[600] Robert E. Keller and Wolfgang Banzhaf. Genetic programming using
genotype-phenotype mapping from linear genomes into linear pheno-
types. In Genetic Programming 1996: Proceedings of the First Annual
Conference, 1996, pages 116–122. See proceedings [583]. Online avail-
able at http://citeseer.ist.psu.edu/385878.html and http://

web.cs.mun.ca/~banzhaf/papers/lalr_gp96.ps.gz [accessed 2007-09-09].

http://citeseer.ist.psu.edu/nordin95complexity.html
http://citeseer.ist.psu.edu/nordin95complexity.html
http://citeseer.ist.psu.edu/4569.html
http://citeseer.ist.psu.edu/4569.html
http://citeseer.ist.psu.edu/385878.html
http://web.cs.mun.ca/~banzhaf/papers/lalr_gp96.ps.gz
http://web.cs.mun.ca/~banzhaf/papers/lalr_gp96.ps.gz

726 REFERENCES

[601] Robert E. Keller and Wolfgang Banzhaf. The evolution of genetic
code in genetic programming. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, 1999, volume 2, pages 1077–1082.
See proceedings [314]. Online available at http://citeseer.ist.psu.
edu/244531.html and http://www.cs.mun.ca/~banzhaf/papers/t.

pdf [accessed 2007-09-09].
[602] Motoo Kimura. Evolutionary rate at the molecular level. Nature,

217:624–626, February 1968.
[603] Motoo Kimura. The Neutral Theory of Molecular Evolution. Cam-

bridge University Press, ISBN: 978-0521317931, 1983. reprint edition,
1985, February.

[604] Richard R. Hudson, Martin Kreitman, and Montserrat Aguade. A
test of neutral molecular evolution based on nucleotide data. Genetics,
116(1):153–159, May 1987. Online available at http://www.genetics.
org/cgi/reprint/116/1/153.pdf [accessed 2007-08-05].

[605] Cândida Ferreira. Gene expression programming: a new adap-
tive algorithm for solving problems. Complex Systems, 13:87,
2001. Online available at http://arxiv.org/ftp/cs/papers/0102/

0102027.pdf and http://www.gene-expression-programming.com/

GEPBiblio.asp [accessed 2007-08-23].
[606] Cândida Ferreira. Mutation, transposition, and recombination: An

analysis of the evolutionary dynamics. In H. John Caulfield, Shu-Heng
Chen, Heng-Da Cheng, Richard J. Duro, Vasant Honavar, Etienne E.
Kerre, Mi Lu, Manuel Grana Romay, Timothy K. Shih, Dan Ventura,
Paul P. Wang, and Yuanyuan Yang, editors, Proceedings of the 6th
Joint Conference on Information Science (JCIS), Research Triangle
Park, North Carolina, USA, March 2002, pages 614–617. JCIS / As-
sociation for Intelligent Machinery, Inc., ISBN: 0-9707890-1-7. On-
line available at http://www.gene-expression-programming.com/

GEPBiblio.asp [accessed 2007-08-23].
[607] Cândida Ferreira. Analyzing the founder effect in simulated evolution-

ary processes using gene expression programming. In Soft Comput-
ing Systems - Design, Management and Applications, HIS 2002, 2002,
pages 153–162. See proceedings [137]. Online available at http://www.
gene-expression-programming.com/GEPBiblio.asp [accessed 2007-08-23].

[608] Cândida Ferreira. Genetic representation and genetic neutral-
ity in gene expression programming. Advances in Complex
Systems, 5(4):389–408, 2002. Online available at http://www.

gene-expression-programming.com/GEPBiblio.asp [accessed 2007-08-23].
[609] Cândida Ferreira. Function finding and the creation of numerical con-

stants in gene expression programming. In 7th Online World Confer-
ence on Soft Computing in Industrial Applications, September 2002.
Online available at http://www.gene-expression-programming.

com/GEPBiblio.asp [accessed 2007-08-23].

http://citeseer.ist.psu.edu/244531.html
http://citeseer.ist.psu.edu/244531.html
http://www.cs.mun.ca/~banzhaf/papers/t.pdf
http://www.cs.mun.ca/~banzhaf/papers/t.pdf
http://www.genetics.org/cgi/reprint/116/1/153.pdf
http://www.genetics.org/cgi/reprint/116/1/153.pdf
http://arxiv.org/ftp/cs/papers/0102/0102027.pdf
http://arxiv.org/ftp/cs/papers/0102/0102027.pdf
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp

REFERENCES 727

[610] Cândida Ferreira. Discovery of the boolean functions to the best
density-classification rules using gene expression programming. In
James A. Foster, Evelyne Lutton, Julian Miller, Conor Ryan, and
Andrea G. B. Tettamanzi, editors, Proceedings of the 5th Euro-
pean Conference on Genetic Programming, EuroGP 2002, 2002,
pages 50–59, ISBN: 3-540-43378-3. See proceedings [573]. On-
line available at http://www.gene-expression-programming.com/

webpapers/ferreira-EuroGP02.pdf [accessed 2007-09-09].
[611] Cândida Ferreira. Function finding and the creation of numer-

ical constants in gene expression programming. In 7th Online
World Conference on Soft Computing in Industrial Applications,
September 2002. Online available at http://www.sureserv.

com/technic/datum_detail.php?id=466 and http://www.

gene-expression-programming.com/GEPBiblio.asp [accessed 2007-

08-23].
[612] Heitor S. Lopes and Wagner R. Weinert. EGIPSYS: an enhanced gene

expression programming approach for symbolic regression problems.
International Journal of Applied Mathematics and Computer Science,
14, 2004. Special Issue: Evolutionary Computation. AMCS Centro Fed-
eral de Educacao Tecnologica do Parana / CPGEI Av. 7 de setembro,
3165, 80230-901 Curitiba (PR), Brazil. Online available at http://

matwbn.icm.edu.pl/ksiazki/amc/amc14/amc1437.pdf [accessed 2007-08-

23].
[613] Chi Zhou, Peter C. Nelson, Weimin Xiao, and Thomas M. Tirpak.

Discovery of classification rules by using gene expression programming.
In Proceedings of the International Conference on Artificial Intelligence
(IC-AI’02), June 2002, pages 1355–1361, Las Vegas, U.S.A.

[614] Jie Zuo, Changjie Tang, and Tianqing Zhang. Mining predicate as-
sociation rule by gene expression programming. In Xiaofeng Meng,
Jianwen Su, and Yujun Wang, editors, WAIM ’02: Proceedings of the
Third International Conference on Advances in Web-Age Information
Management, Beijing, China, August 11-13, 2002, volume 2419/2002 of
Lecture Notes in Computer Science (LNCS), pages 281–294. Springer-
Verlag, ISBN: 3-540-44045-3, ISSN: 0302-9743 (Print) 1611-3349 (On-
line). Computer Department, Sichuan University China.

[615] Chi Zhou, Weimin Xiao, Thomas M. Tirpak, and Peter C. Nelson.
Evolving accurate and compact classification rules with gene expres-
sion programming. IEEE Transactions on Evolutionary Computation,
7:519–531, December 2003.

[616] M. H. Marghny and I. E. El-Semman. Extracting fuzzy classification
rules with gene expression programming. ICGST International Journal
on Artificial Intelligence and Machine Learning, AIML, Special Issue
on AI & Specific Applications, 2006. AIML 05 Conference, 19-21 De-
cember 2005, CICC, Cairo, Egypt. Online available at http://www.

icgst.com/AIML05/papers/P1120535114.pdf [accessed 2007-08-23].

http://www.gene-expression-programming.com/webpapers/ferreira-EuroGP02.pdf
http://www.gene-expression-programming.com/webpapers/ferreira-EuroGP02.pdf
http://www.sureserv.com/technic/datum_detail.php?id=466
http://www.sureserv.com/technic/datum_detail.php?id=466
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://matwbn.icm.edu.pl/ksiazki/amc/amc14/amc1437.pdf
http://matwbn.icm.edu.pl/ksiazki/amc/amc14/amc1437.pdf
http://www.icgst.com/AIML05/papers/P1120535114.pdf
http://www.icgst.com/AIML05/papers/P1120535114.pdf

728 REFERENCES

[617] Hongqing Cao, Jingxian Yu, and Lishan Kang. An evolution-
ary approach for modeling the equivalent circuit for electrochemical
impedance spectroscopy. In Proceedings of the 2003 Congress on Evo-
lutionary Computation CEC2003, 2003, pages 1819–1825. See proceed-
ings [245].

[618] Candida Ferreira. Designing neural networks using gene expres-
sion programming. In Ajith Abraham and Mario Köppen, edi-
tors, 9th Online World Conference on Soft Computing in Indus-
trial Applications, September 2004. Online available at http://www.

gene-expression-programming.com/GEPBiblio.asp [accessed 2007-08-23].
[619] Kangshun Li, Yuanxiang Li, Haifang Mo, and Zhangxin Chen. A new

algorithm of evolving artificial neural networks via gene expression
programming. Journal of the Korean Society for Industrial and Applied
Mathematics, 9, 2005.

[620] Liliana Teodorescu. High energy physics data analysis with gene ex-
pression programming. In Nuclear Science Symposium Conference
Record, October 23-29, 2005, volume 1, pages 143–147. IEEE, ISSN:
1082-3654. INSPEC Accession Number:8976991.

[621] M. E. Keskin and Özlem Terzi. Modeling water temperature using
gene expression programming. In Proceedings of the 14th Turkish Sym-
posium on Artificial Intelligence and Neural Networks, TAINN 2005,
Izmir, Turkey, 2005, pages 280–285.

[622] Abdulkadir Çevik. A new formulation for web crippling strength of
cold-formed steel sheeting using genetic programming. Journal of Con-
structional Steel Research, 63:867–883, July 2007.

[623] David J. Montana. Strongly typed genetic programming. BBN Techni-
cal Report #7866, Bolt Beranek and Newman Inc. (BBN), 70 Fawcett
Street, Cambridge, MA 02138, dmontana@bbn.com, May 7, 1993. On-
line available at http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/

ftp.io.com/papers/stgp.ps.Z [accessed 2007-10-04]. Superseded by [624].
[624] David J. Montana. Strongly typed genetic programming. BBN

Technical Report #7866, Bolt Beranek and Newman Inc. (BBN), 70
Fawcett Street, Cambridge, MA 02138, dmontana@bbn.com, March 25,
1994. Online available at http://citeseer.ist.psu.edu/345471.

html and http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.

io.com/papers/stgp2.ps.Z [accessed 2007-10-04]. Superseds [623] and is it-
self superseded by [625].

[625] David J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, 1995. Online available at http://vishnu.
bbn.com/papers/stgp.pdf [accessed 2007-10-04] (November 20, 2002 edi-
tion).

[626] Thomas D. Haynes, Dale A. Schoenefeld, and Roger L. Wainwright.
Type inheritance in strongly typed genetic programming. In Advances
in Genetic Programming 2, chapter 18, pages 359–376. MIT Press,

http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.gene-expression-programming.com/GEPBiblio.asp
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/stgp.ps.Z
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/stgp.ps.Z
http://citeseer.ist.psu.edu/345471.html
http://citeseer.ist.psu.edu/345471.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/stgp2.ps.Z
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/stgp2.ps.Z
http://vishnu.bbn.com/papers/stgp.pdf
http://vishnu.bbn.com/papers/stgp.pdf

REFERENCES 729

1996. See collection [594]. Online available at http://citeseer.ist.
psu.edu/haynes96type.html [accessed 2007-10-04].

[627] Hendrik James Antonisse. A grammar-based genetic algorithm. In Pro-
ceedings of Foundations of Genetic Algorithms FOGA-90, 1990, pages
193–204. See proceedings [439].

[628] Pawel A. Stefanski. Genetic programming using abstract syntax
trees, 1993. Notes from Genetic Programming Workshop at ICGA-93
[444]. Online available at http://www.cs.bham.ac.uk/~wbl/biblio/
gp-html/icga93-gp_stefanski.html [accessed 2007-08-15] (The file is ac-
tually a zip-archive.).

[629] Gerald P. Roston. A Genetic Methodology for Configuration Design.
PhD thesis, Department of Mechanical Engineering of Carnegie Mellon
University, Pittsburgh, PA 15213-3891, USA, December 1994. Advi-
sors: Rober Sturges, Jr. and William “Red” Wittaker. Online avail-
able at http://citeseer.ist.psu.edu/213003.html and http://

www.ri.cmu.edu/pubs/pub_3335.html [accessed 2007-08-15].
[630] Jun’ichi Mizoguchi, Hitoshi Hemmi, and Katsunori Shimohara. Pro-

duction genetic algorithms for automated hardware design through an
evolutionary process. In IEEE World Congresson Computational In-
telligence, Proceedings of the First IEEE Conference on Evolutionary
Computation, June 27-29, 1994, volume 2, pages 661–664. IEEE Press.

[631] Conor Ryan, Michael O’Neill, and J. J. Collins. Grammatical evolution:
Solving trigonometric identities. In Proceedings of Mendel 1998: 4th
International Mendel Conference on Genetic Algorithms, Optimisation
Problems, Fuzzy Logic, Neural Networks, Rough Sets, 1998, pages 111–
119. See proceedings [166]. Online available at http://citeseer.ist.
psu.edu/360445.html [accessed 2007-11-12].

[632] Man Leung Wong and Kwong Sak Leung. Learning first-order rela-
tions from noisy databases using genetic algorithms. In Proceedings
of the Second Singapore International Conference on Intelligent Sys-
tems, 1994, pages 159–164. Online available at http://cptra.ln.edu.
hk/staffProfile/mlwongPub.htm and http://www.cs.bham.ac.uk/

~wbl/biblio/gp-html/ManLeungWong.html [accessed 2007-08-15].
[633] Man Leung Wong and Kwong Sak Leung. Combining genetic program-

ming and inductive logic programming using logic grammars. In IEEE
Conference on Evolutionary Computation, 1995, volume 2, pages 733–
736. See proceedings [253]. Online available at http://cptra.ln.edu.
hk/staffProfile/mlwongPub.htm and http://www.cs.bham.ac.uk/

~wbl/biblio/gp-html/ManLeungWong.html [accessed 2007-08-15].
[634] Man Leung Wong and Kwong Sak Leung. An adaptive induc-

tive logic programming system using genetic programming. In
Evolutionary Programming IV Proceedings of the Fourth Annual
Conference on Evolutionary Programming, 1995, pages 737–752.
See proceedings [805], Online available at http://cptra.ln.edu.

http://citeseer.ist.psu.edu/haynes96type.html
http://citeseer.ist.psu.edu/haynes96type.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/icga93-gp_stefanski.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/icga93-gp_stefanski.html
http://citeseer.ist.psu.edu/213003.html
http://www.ri.cmu.edu/pubs/pub_3335.html
http://www.ri.cmu.edu/pubs/pub_3335.html
http://citeseer.ist.psu.edu/360445.html
http://citeseer.ist.psu.edu/360445.html
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm

730 REFERENCES

hk/staffProfile/mlwongPub.htm and http://www.cs.bham.ac.uk/

~wbl/biblio/gp-html/ManLeungWong.html [accessed 2007-08-15].
[635] Man Leung Wong and Kwong Sak Leung. Inducing logic programs

with genetic algorithms: the genetic logicprogramming system genetic
logic programming and applications. IEEE Expert, 10(5):68–76, Octo-
ber 1995. IEEE Expert Special Track on Evolutionary Programming
(Peter John Angeline ed.). Online available at http://cptra.ln.edu.
hk/staffProfile/mlwongPub.htm and http://www.cs.bham.ac.uk/

~wbl/biblio/gp-html/ManLeungWong.html [accessed 2007-08-15].
[636] Man Leung Wong and Kwong Sak Leung. Applying logic grammars

to induce sub-functions in geneticprogramming. In Proceedings of
IEEE International Conference on Evolutionary Computation, 1995,
volume 2. See proceedings [253]. Online available at http://cptra.ln.
edu.hk/staffProfile/mlwongPub.htm and http://www.cs.bham.

ac.uk/~wbl/biblio/gp-html/ManLeungWong.html [accessed 2007-08-15].
[637] Man Leung Wong and Kwong Sak Leung. Evolutionary program induc-

tion directed by logic grammars. Evolutionary Computation, 5(2):143–
180, summer 1997. Special Issue: Trends in Evolutionary Methods
for Program Induction. Online available at http://cptra.ln.edu.

hk/staffProfile/mlwongPub.htm and http://www.cs.bham.ac.uk/

~wbl/biblio/gp-html/ManLeungWong.html [accessed 2007-08-15].
[638] P. A. Whigham. Context-free grammar and genetic programming.

Technical Report Technical Report CS20/94, Department of Computer
Science, Australian Defence Force Academy, University of New South
Wales, Canberra ACT 2600, Australia, 1994.

[639] P. A. Whigham. Grammatically-based genetic programming. In
Proceedings of the Workshop on Genetic Programming: From The-
ory to Real-World Applications, 1995, pages 33–41. See proceed-
ings [1320]. Online available at http://citeseer.ist.psu.edu/

whigham95grammaticallybased.html [accessed 2007-08-15].
[640] P. A. Whigham. Inductive bias and genetic programming. In First

International Conference on Genetic Algorithms in Engineering Sys-
tems: Innovations and Applications, GALESIA, 1995, pages 461–466.
See proceedings [441]. Online available at http://citeseer.ist.psu.
edu/343730.html [accessed 2008-08-15].

[641] P. A. Whigham. Search bias, language bias, and genetic programming.
In Genetic Programming 1996: Proceedings of the First Annual Con-
ference, 1996, pages 230–237. See proceedings [583]. Online available at
http://citeseer.ist.psu.edu/whigham96search.html and ftp://

www.cs.adfa.edu.au/pub/xin/whigham_gp96.ps.gz [accessed 2007-09-09].
[642] Walter Bohm and Andreas Geyer-Schulz. Exact uniform initialization

for genetic programming. In Foundations of Genetic Algorithms IV,
1996, pages 379–407. See proceedings [436]. k-bounded context-free
languages.

http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://cptra.ln.edu.hk/staffProfile/mlwongPub.htm
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ManLeungWong.html
http://citeseer.ist.psu.edu/whigham95grammaticallybased.html
http://citeseer.ist.psu.edu/whigham95grammaticallybased.html
http://citeseer.ist.psu.edu/343730.html
http://citeseer.ist.psu.edu/343730.html
http://citeseer.ist.psu.edu/whigham96search.html
ftp://www.cs.adfa.edu.au/pub/xin/whigham_gp96.ps.gz
ftp://www.cs.adfa.edu.au/pub/xin/whigham_gp96.ps.gz

REFERENCES 731

[643] Helmut Hörner. A c++ class library for gp: Vienna university of
economics genetic programming kernel (release 1.0, operating instruc-
tions). Technical report, Vienna University of Economics, May 29,
1996. Online available at http://citeseer.ist.psu.edu/253491.

html [accessed 2007-09-09].
[644] Norman R. Paterson and Mike Livesey. Distinguishing genotype and

phenotype in genetic programming. In Late Breaking Papers at the
Genetic Programming 1996 Conference, 1996, pages 141–150. See pro-
ceedings [584]. Online available at http://citeseer.ist.psu.edu/

82479.html and ftp://ftp.dcs.st-and.ac.uk/pub/norman/GADS.

ps.gz [accessed 2007-09-07].
[645] Norman R. Paterson and Mike Livesey. Evolving caching algorithms

in c by gp. In Genetic Programming 1997: Proceedings of the Second
Annual Conference, 1997, pages 262–267. See proceedings [581].

[646] Michael O’Neill. Grammatical evolution. In Proceedings of the Fifth
Research Conference of the Deptartment of Computer Science and In-
formation Systems, University of Limerick, September 1998.

[647] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical
evolution: Evolving programs for an arbitrary language. In Pro-
ceedings of the First European Workshop on Genetic Program-
ming, 1998, pages 83–95. See proceedings [577]. Online available
at http://www.grammatical-evolution.org/papers/eurogp98.ps

and http://citeseer.ist.psu.edu/ryan98grammatical.html [ac-

cessed 2007-09-09].
[648] Conor Ryan and Michael O’Neill. Grammatical evolution: A steady

state approach. In Late Breaking Papers at the Genetic Program-
ming 1998 Conference, 1998. See proceedings [580]. Online avail-
able at http://citeseer.ist.psu.edu/260828.html and http://

www.grammatical-evolution.org/papers/gp98/index.html [accessed

2007-09-09].
[649] Michael O’Neill, Finbar Leahy, and Anthony Brabazon. Grammatical

swarm: A variable-length particle swarm algorithm. In Nadia Nedjah
and Luiza de Macedo Mourelle, editors, Swarm Intelligent Systems,
ISBN: 3-540-33868-3, chapter 5. Springer, 2006.

[650] Michael O’Neill and Anthony Brabazon. Grammatical swarm:
The generation of programs by social programming. Natu-
ral Computing: an international journal, 5(4):443–462, Novem-
ber 2006. Online available at http://dx.doi.org/10.1007/

s11047-006-9007-7 and http://www.springerlink.com/content/

p3t1923gr7725583/fulltext.pdf [accessed 2007-09-09].
[651] Michael O’Neill and Anthony Brabazon. Grammatical differential evo-

lution. In Hamid R. Arabnia, editor, Proceedings of the 2006 Inter-
national Conference on Artificial Intelligence, ICAI 2006, Las Vegas,
Nevada, USA, June 26-29, 2006, volume 1, pages 231–236. CSREA

http://citeseer.ist.psu.edu/253491.html
http://citeseer.ist.psu.edu/253491.html
http://citeseer.ist.psu.edu/82479.html
http://citeseer.ist.psu.edu/82479.html
ftp://ftp.dcs.st-and.ac.uk/pub/norman/GADS.ps.gz
ftp://ftp.dcs.st-and.ac.uk/pub/norman/GADS.ps.gz
http://www.grammatical-evolution.org/papers/eurogp98.ps
http://citeseer.ist.psu.edu/ryan98grammatical.html
http://citeseer.ist.psu.edu/260828.html
http://www.grammatical-evolution.org/papers/gp98/index.html
http://www.grammatical-evolution.org/papers/gp98/index.html
http://dx.doi.org/10.1007/s11047-006-9007-7
http://dx.doi.org/10.1007/s11047-006-9007-7
http://www.springerlink.com/content/p3t1923gr7725583/fulltext.pdf
http://www.springerlink.com/content/p3t1923gr7725583/fulltext.pdf

732 REFERENCES

Press, ISBN: 1-932415-96-3. Online available at http://ww1.ucmss.

com/books/LFS/CSREA2006/ICA4864.pdf [accessed 2007-09-09].
[652] Conor Ryan. Grammatical evolution tutorial. In Proceedings of

Genetic and Evolutionary Computation Conference, GECCO 2006,
2006. See proceedings [298]. Online available at http://www.

grammaticalevolution.org/tutorial.pdf [accessed 2007-09-09].
[653] Michael O’Neill and Conor Ryan. Evolving multi-line compil-

able c programs. In Proceedings of the Second European Work-
shop on Genetic Programming, 1999, pages 83–92. See pro-
ceedings [576]. Online available at http://citeseer.ist.psu.

edu/278127.html and http://www.grammatical-evolution.org/

papers/eurogp99.ps.gz [accessed 2007-09-09].
[654] Michael O’Neill. Automatic Programming in an Arbitrary Language:

Evolving Programs with Grammatical Evolution. PhD thesis, Univer-
sity of Limerick, 2001.

[655] Michael O’Neill, J. J. Collins, and Conor Ryan. Automatic program-
ming of robots. In Proceedings of Artificial Intelligence and Cognitive
Science AICS 2000, 2000.

[656] Anthony Brabazon, Michael O’Neill, Robin Matthews, and Conor
Ryan. Grammatical evolution and corporate failure prediction. In
GECCO ’02: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, 2002, pages 1011–1018. See proceedings [306].
Online available at http://business.kingston.ac.uk/research/

intbus/paper4.pdf and http://www.cs.bham.ac.uk/~wbl/biblio/

gecco2002/RWA145.pdf [accessed 2007-09-09].
[657] Anthony Brabazon and Michael O’Neill. Evolving financial models

using grammatical evolution. In Proceedings of The Annual Confer-
ence of the South Eastern Accounting Group (SEAG) 2003, London
Metropolitan University, London, September 8, 2003.

[658] Anthony Brabazon and Michael O’Neill. A grammar model for foreign
exchange trading. In H. R. Arabnia et al., editor, Proceedings of the In-
ternational Conference on Artificial Intelligence, June 2003, volume II,
pages 492–498. CSREA Press, ISBN: 1-932415-13-0.

[659] Michael O’Neill and Conor Ryan. Grammatical evolution by gram-
matical evolution: The evolution of grammar and genetic code. In
Proceedings of 7th European Conference on Genetic Programming, Eu-
roGP2004, 2004, pages 138–149. See proceedings [571]. Online available
at http://ncra.ucd.ie/papers/eurogp2004.pdf [accessed 2007-08-28].

[660] Michael O’Neill and Conor Ryan, editors. The 3rd Grammatical
Evolution Workshop (GEWS 2004), Seattle, WA, USA, June 26,
2004. Part of GECCO, see [302, 303] and also http://www.

grammatical-evolution.com/gews2004/ [accessed 2007-09-10].
[661] Michael O’Neill and Conor Ryan, editors. The 2nd Grammat-

ical Evolution Workshop (GEWS 2003), Chicago, IL, USA, July

http://ww1.ucmss.com/books/LFS/CSREA2006/ICA4864.pdf
http://ww1.ucmss.com/books/LFS/CSREA2006/ICA4864.pdf
http://www.grammaticalevolution.org/tutorial.pdf
http://www.grammaticalevolution.org/tutorial.pdf
http://citeseer.ist.psu.edu/278127.html
http://citeseer.ist.psu.edu/278127.html
http://www.grammatical-evolution.org/papers/eurogp99.ps.gz
http://www.grammatical-evolution.org/papers/eurogp99.ps.gz
http://business.kingston.ac.uk/research/intbus/paper4.pdf
http://business.kingston.ac.uk/research/intbus/paper4.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2002/RWA145.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2002/RWA145.pdf
http://ncra.ucd.ie/papers/eurogp2004.pdf
http://www.grammatical-evolution.com/gews2004/
http://www.grammatical-evolution.com/gews2004/

REFERENCES 733

2003. Part of GECCO, see [304, 305] and also http://www.

grammatical-evolution.com/gews2003/ [accessed 2007-09-10].
[662] John N. Shutt. Recursive adaptable grammars. Master’s thesis, Com-

puter Science Department, Worcester Polytechnic Institute, Worces-
ter Massachusetts, August 10, 1993. Approved by Roy S. Rubinstein
and Robert E. Kinicki. Online available at http://libra.msra.cn/

paperdetail.aspx?id=256609 and http://en.scientificcommons.

org/234810 [accessed 2007-08-17].
[663] Ronald Morrison. On the Development of Algol. PhD thesis, Depart-

ment of Computational Science, University of St Andrews, December
1979. Online available at http://www-old.cs.st-andrews.ac.uk/

research/publications/Mor79a.php [accessed 2007-07-10].
[664] Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew Skolicki,

Jeff Bassett, Robert Hubley, and Alexander Chircop. Ecj: A java-
based evolutionary computation research system, 2006. In 2007,
ECJ reached version 16. For more information http://cs.gmu.edu/

~eclab/projects/ecj/ [accessed 2007-07-10].
[665] Henning Christiansen. Syntax, semantics, and implementation strate-

gies for programming languages with powerful abstraction mechanisms.
In Proceedings of 18th Hawaii International Conference on System Sci-
ences, 1985, volume 2, pages 57–66. Also Datalogiske skrifter 1, De-
partment of Computer Science, Roskilde University, 1985.

[666] Marina de la Cruz Echeand́ıa, Alfonso Ortega de la Puente, and
Manuel Alfonseca. Attribute grammar evolution. In José Mira
and José R. Álvarez, editors, Artificial Intelligence and Knowl-
edge Engineering Applications: A Bioinspired Approach, Part II,
volume 3562/2005 of Lecture Notes in Computer Science (LNCS),
ISBN: 978-3-540-26319-7, ISSN: 0302-9743 (Print) 1611-3349 (Online),
pages 182–191. Springer Berlin / Heidelberg, August 2005. Online
available at http://arantxa.ii.uam.es/~alfonsec/docs/confint/

iwinac05.pdf [accessed 2007-09-09].
[667] Alfonso Ortega de la Puente, Marina de la Cruz Echeand́ıa, and Manuel

Alfonseca. Christiansen grammar evolution: Grammatical evolution
with semantics. IEEE Transactions on Evolutionary Computation,
11:77–90, February 2007. Online available at http://arantxa.ii.

uam.es/~alfonsec/artint/ieeetec.pdf [accessed 2007-09-09].
[668] Xuan Hoai Nguyen and Robert Ian McKay. A framework for tree-

adjunct grammar guided genetic programming. In Proceedings of the
Post-graduate ADFA Conference on Computer Science (PACCS’01),
Canberra ACT, Australia, July 14, 2001, volume 1 of ADFA Mono-
graphs in Computer Science Series, pages 93–100, ISBN: 0-7317-0507-
6. Online available at http://sc.snu.ac.kr/PAPERS/TAG3P.pdf [ac-

cessed 2007-09-09].
[669] Xuan Hoai Nguyen, Robert Ian McKay, D. L. Essam, and R. Chau.

Solving the symbolic regression problem with tree-adjunct grammar

http://www.grammatical-evolution.com/gews2003/
http://www.grammatical-evolution.com/gews2003/
http://libra.msra.cn/paperdetail.aspx?id=256609
http://libra.msra.cn/paperdetail.aspx?id=256609
http://en.scientificcommons.org/234810
http://en.scientificcommons.org/234810
http://www-old.cs.st-andrews.ac.uk/research/publications/Mor79a.php
http://www-old.cs.st-andrews.ac.uk/research/publications/Mor79a.php
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
http://arantxa.ii.uam.es/~alfonsec/docs/confint/iwinac05.pdf
http://arantxa.ii.uam.es/~alfonsec/docs/confint/iwinac05.pdf
http://arantxa.ii.uam.es/~alfonsec/artint/ieeetec.pdf
http://arantxa.ii.uam.es/~alfonsec/artint/ieeetec.pdf
http://sc.snu.ac.kr/PAPERS/TAG3P.pdf

734 REFERENCES

guided genetic programming: the comparative results. In CEC ’02:
Proceedings of the Congress on Evolutionary Computation 2002, 2002,
pages 1326–1331. See proceedings [246]. Online available at http://

sc.snu.ac.kr/PAPERS/MCEC2002.pdf [accessed 2007-09-09].
[670] Xuan Hoai Nguyen, Robert Ian McKay, and D. L. Essam. Some experi-

mental results with tree adjunct grammar guided genetic programming.
In EuroGP ’02: Proceedings of the 5th European Conference on Genetic
Programming, 2002, pages 229–238. See proceedings [573]. Online avail-
able at http://sc.snu.ac.kr/PAPERS/TAGGGP.pdf [accessed 2007-09-09].

[671] Xuan Hoai Nguyen, Robert Ian McKay, and D. L. Essam. Can tree ad-
junct grammar guided genetic programming be good at finding a needle
in a haystack? – a case study. In Proceedings of IEEE International
Conference on Communications, Circuits and Systems and West Sino
Expositions, June 29-July 1, 2002, volume 2, pages 1113–1117. IEEE
Press. Online available at http://sc.snu.ac.kr/PAPERS/hoaietal.

pdf [accessed 2007-09-09].
[672] Xuan Hoai Nguyen, Robert Ian McKay, and H. A. Abbass. Tree ad-

joining grammars, language bias, and genetic programming. In Genetic
Programming: 6th European Conference, 2003, pages 157–183. See
proceedings [572]. Online available at http://sc.snu.ac.kr/PAPERS/
eurogp03.pdf [accessed 2007-09-10].

[673] David Jeremy Weir. Characterizing Mildly Context-Sensitive Gram-
mar Formalisms. PhD thesis, Department of Computer and Informa-
tion Science, University of Pennsylvania, 1988. Supervisor: Aravind K.
Joshi, Order Number:AAI8908403.

[674] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars.
In G. Rozenberg and A. Salomaa, editors, Handbook of For-
mal Languages, volume 3, pages 69–124. Springer, Berlin, New
York, 1997. Online available at http://citeseer.ist.psu.edu/

joshi97treeadjoining.html [accessed 2007-09-15].
[675] Xuan Hoai Nguyen. Solving trigonometric identities with tree adjunct

grammar guided genetic programming. In Hybrid Information Systems,
Proceedings of First International Workshop on Hybrid Intelligent Sys-
tems, 2001, pages 339–351. See proceedings [138]. See also [676].

[676] Xuan Hoai Nguyen, Robert Ian McKay, and D. L. Essam. Find-
ing trigonometric identities with tree adjunct grammar guided ge-
netic programming. In Ajith Abraham, Lakhmi C. Jain, and Berend
van der Zwaag, editors, Innovations in Intelligent Systems and Ap-
plications, volume 140 of Springer Studies in Fuzziness and Soft Com-
puting, ISBN: 978-3-540-20265-3, pages 221–236. Springer-Verlag, Jan-
uary 2004. See also [675]. Online available at http://sc.snu.ac.kr/
PAPERS/trigonometry.pdf [accessed 2007-09-09].

[677] Peter Nordin. A compiling genetic programming system that directly
manipulates the machine code. In Advances in genetic programming 1,

http://sc.snu.ac.kr/PAPERS/MCEC2002.pdf
http://sc.snu.ac.kr/PAPERS/MCEC2002.pdf
http://sc.snu.ac.kr/PAPERS/TAGGGP.pdf
http://sc.snu.ac.kr/PAPERS/hoaietal.pdf
http://sc.snu.ac.kr/PAPERS/hoaietal.pdf
http://sc.snu.ac.kr/PAPERS/eurogp03.pdf
http://sc.snu.ac.kr/PAPERS/eurogp03.pdf
http://citeseer.ist.psu.edu/joshi97treeadjoining.html
http://citeseer.ist.psu.edu/joshi97treeadjoining.html
http://sc.snu.ac.kr/PAPERS/trigonometry.pdf
http://sc.snu.ac.kr/PAPERS/trigonometry.pdf

REFERENCES 735

chapter 14, pages 311–331. The MIT Press, 1994. See collection [593].
Machine code GP Sun Spark and i868.

[678] Markus Brameier and Wolfgang Banzhaf. A comparison of
linear genetic programming and neural networks in medical
data mining. IEEE Transactions on Evolutionary Computation,
5(1):17–26, 2001. Online available at http://citeseer.ist.

psu.edu/brameier00comparison.html and http://web.cs.mun.ca/

~banzhaf/papers/ieee_taec.pdf [accessed 2007-09-09].
[679] Markus Brameier and Wolfgang Banzhaf. Evolving teams of predictors

with linear genetic programming. Genetic Programming and Evolvable
Machines, 2(4):381–407, December 2001. Online available at http://

dx.doi.org/10.1023/A:1012978805372 [accessed 2007-09-09].
[680] Markus Brameier and Wolfgang Banzhaf. Explicit control of diver-

sity and effective variation distance in linear genetic programming. In
EuroGP ’02: Proceedings of the 5th European Conference on Genetic
Programming, 2002, pages 37–49. See proceedings [573]. Online avail-
able at http://citeseer.ist.psu.edu/552561.html [accessed 2007-09-09].

[681] Markus Brameier and Wolfgang Banzhaf. Neutral variations cause
bloat in linear gp. In Proceedings of 6th European Conference on Ge-
netic Programming, EuroGP, 2003, pages 997–1039. See proceedings
[572].

[682] Markus Brameier. On Linear Genetic Programming. PhD the-
sis, Fachbereich Informatik, Universität Dortmund, February 2004.
Day of Submission: 2003-05-28, Committee: Wolfgang Banzhaf and
Martin Riedmiller and Peter Nordin. Online available at https://

eldorado.uni-dortmund.de/handle/2003/20098 and http://hdl.

handle.net/2003/20098 [accessed 2007-08-17].
[683] Riccardo Poli. Parallel distributed genetic programming. Techni-

cal Report CSRP-96-15, School of Computer Science, The University
of Birmingham, Birmingham B15 2TT, United Kingdom, September
1996. See [686]. Online available at http://citeseer.ist.psu.edu/

86223.html [accessed 2007-11-04].
[684] Riccardo Poli. Some steps towards a form of parallel distributed ge-

netic programming. In The 1st Online Workshop on Soft Comput-
ing (WSC1), August 19-30, 1996. Nagoya University, Japan. Origi-
nally published as technical report, CSRP-96-14, University of Birm-
ingham, School of Computer Science, 1996. Online available at http://
cswww.essex.ac.uk/staff/poli/papers/Poli-WSC1-1996.pdf and
http://citeseer.ist.psu.edu/156274.html [accessed 2007-11-04].

[685] Riccardo Poli. Evolution of graph-like programs with parallel dis-
tributed genetic programming. In Genetic Algorithms: Proceedings of
the Seventh International Conference, 1997, pages 346–353. See pro-
ceedings [442]. Online available at http://citeseer.ist.psu.edu/

578015.html and http://cswww.essex.ac.uk/staff/poli/papers/

Poli-ICGA1997-PDGP.pdf [accessed 2007-11-04].

http://citeseer.ist.psu.edu/brameier00comparison.html
http://citeseer.ist.psu.edu/brameier00comparison.html
http://web.cs.mun.ca/~banzhaf/papers/ieee_taec.pdf
http://web.cs.mun.ca/~banzhaf/papers/ieee_taec.pdf
http://dx.doi.org/10.1023/A:1012978805372
http://dx.doi.org/10.1023/A:1012978805372
http://citeseer.ist.psu.edu/552561.html
https://eldorado.uni-dortmund.de/handle/2003/20098
https://eldorado.uni-dortmund.de/handle/2003/20098
http://hdl.handle.net/2003/20098
http://hdl.handle.net/2003/20098
http://citeseer.ist.psu.edu/86223.html
http://citeseer.ist.psu.edu/86223.html
http://cswww.essex.ac.uk/staff/poli/papers/Poli-WSC1-1996.pdf
http://cswww.essex.ac.uk/staff/poli/papers/Poli-WSC1-1996.pdf
http://citeseer.ist.psu.edu/156274.html
http://citeseer.ist.psu.edu/578015.html
http://citeseer.ist.psu.edu/578015.html
http://cswww.essex.ac.uk/staff/poli/papers/Poli-ICGA1997-PDGP.pdf
http://cswww.essex.ac.uk/staff/poli/papers/Poli-ICGA1997-PDGP.pdf

736 REFERENCES

[686] Riccardo Poli. Parallel distributed genetic programming. In New Ideas
in Optimization, pages 403–432. McGraw-Hill Education, 1999. See col-
lection [178] and also [683]. Online available at http://cswww.essex.
ac.uk/staff/rpoli/papers/Poli-NIO-1999-PDGP.pdf [accessed 2007-11-

04].
[687] Riccardo Poli. Discovery of symbolic, neuro-symbolic and

neural networks with parallel distributed genetic programming.
In 3rd International Conference on Artificial Neural Networks
and Genetic Algorithms, ICANNGA’97, 1997. See proceed-
ings [322]. Online available at http://cswww.essex.ac.uk/staff/

rpoli/papers/Poli-ICANNGA1997.pdf and http://citeseer.ist.

psu.edu/poli97discovery.html [accessed 2007-11-04].
[688] Riccardo Poli. Evolution of recursive transition networks for natural

language recognition with parallel distributed genetic programming.
Technical Report CSRP-96-19, School of Computer Science, The Uni-
versity of Birmingham, Birmingham B15 2TT, United Kingdom, De-
cember 1996. Online available at http://citeseer.ist.psu.edu/

90834.html [accessed 2007-11-04]. See also [689].
[689] Riccardo Poli. Evolution of recursive transistion networks for nat-

ural language recognition with parallel distributed genetic program-
ming. In David Corne and Jonathan L. Shapiro, editors, Proceedings
of the Workshop on Artificial Intelligence and Simulation of Behaviour
(AISB) International Workshop on Evolutionary Computing, Manch-
ester, UK, April 7-8, 1997, volume 1305 of Lecture Notes in Computer
Science (LNCS), pages 163–177. Springer-Verlag, ISBN: 3-540-63476-
2. Online available at http://cswww.essex.ac.uk/staff/rpoli/

papers/Poli-AISB-1997.pdf and http://citeseer.ist.psu.edu/

355686.html [accessed 2007-11-04]. See also [688].
[690] Julian Francis Miller and Peter Thomson. Aspects of digi-

tal evolution: Geometry and learning. In Evolvable Systems:
From Biology to Hardware, volume 1478/1998 of Lecture Notes in
Computer Science (LNCS), ISBN: 978-3-540-64954-0, ISSN: 0302-
9743 (Print) 1611-3349 (Online), pages 25–35. Springer Berlin/Hei-
delberg, 1998. Online available at http://citeseer.ist.psu.

edu/40293.html and http://www.elec.york.ac.uk/intsys/users/

jfm7/ices1998-miller-thomson.pdf [accessed 2007-11-03].
[691] Julian Francis Miller. An empirical study of the efficiency

of learning boolean functions using a cartesian genetic program-
ming approach. In Proceedings of the Genetic and Evolutionary
Computation Conference, 1999, volume 2, pages 1135–1142. See
proceedings [314]. Online available at http://citeseer.ist.psu.

edu/miller99empirical.html and http://www.elec.york.ac.uk/

intsys/users/jfm7/gecco1999b-miller.pdf [accessed 2007-11-02].
[692] Julian Francis Miller and Peter Thomson. Cartesian genetic program-

ming. In Genetic Programming, Proceedings of EuroGP’2000, 2000,

http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-NIO-1999-PDGP.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-NIO-1999-PDGP.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-ICANNGA1997.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-ICANNGA1997.pdf
http://citeseer.ist.psu.edu/poli97discovery.html
http://citeseer.ist.psu.edu/poli97discovery.html
http://citeseer.ist.psu.edu/90834.html
http://citeseer.ist.psu.edu/90834.html
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-AISB-1997.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-AISB-1997.pdf
http://citeseer.ist.psu.edu/355686.html
http://citeseer.ist.psu.edu/355686.html
http://citeseer.ist.psu.edu/40293.html
http://citeseer.ist.psu.edu/40293.html
http://www.elec.york.ac.uk/intsys/users/jfm7/ices1998-miller-thomson.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/ices1998-miller-thomson.pdf
http://citeseer.ist.psu.edu/miller99empirical.html
http://citeseer.ist.psu.edu/miller99empirical.html
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco1999b-miller.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco1999b-miller.pdf

REFERENCES 737

pages 121–132. See proceedings [575]. Online available at http://

citeseer.ist.psu.edu/424028.html and http://www.elec.york.

ac.uk/intsys/users/jfm7/cgp-eurogp2000.pdf [accessed 2007-11-02].
[693] Janet Clegg, James Alfred Walker, and Julian Frances Miller. A new

crossover technique for cartesian genetic programming. In GECCO
’07: Proceedings of the 9th Annual Conference on Genetic and Evo-
lutionary Computation, 2007, pages 1580–1587. See proceedings
[297]. Online available at http://doi.acm.org/10.1145/1276958.

1277276 and http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/

docs/p1580.pdf [accessed 2007-11-01].
[694] Tina Yu and Julian Francis Miller. Neutrality and the evolvability

of boolean function landscape. In EuroGP ’01: Proceedings of the
4th European Conference on Genetic Programming, 2001, pages 204–
217. See proceedings [574]. Online available at http://citeseer.

ist.psu.edu/yu01neutrality.html and http://www.cs.mun.ca/

~tinayu/index_files/addr/public_html/neutrality.pdf [accessed

2007-11-03], see also http://www.cs.mun.ca/~tinayu/index_files/

addr/public_html/neutralityTalk.pdf [accessed 2007-11-03].
[695] Peter John Angeline and Jordan Pollack. Evolutionary module acqui-

sition. In Proceedings of the Second Annual Conference on Evolution-
ary Programming, 1993, pages 154–163. See proceedings [807]. On-
line available at http://www.demo.cs.brandeis.edu/papers/ep93.

pdf and http://www.natural-selection.com/Library/1993/ep93.

ps.Z [accessed 2007-11-03].
[696] James Alfred Walker and Julian Francis Miller. Evolution and ac-

quisition of modules in cartesian genetic programming. In 7th Euro-
pean Conference on Genetic Programming, EuroGP 2004, 2004, pages
187–197. See proceedings [571]. Online available at http://www.

cartesiangp.co.uk/papers/2004/wmeurogp2004.pdf and http://

www.elec.york.ac.uk/intsys/users/jfm7/eurogp2004.pdf [accessed

2007-11-03].
[697] James Alfred Walker and Julian Francis Miller. Improving the evolv-

ability of digital multipliers using embedded cartesian genetic program-
ming and product reduction. In Juan Manuel Moreno, Jordi Madrenas,
and Jordi Cosp, editors, Evolvable Systems: From Biology to Hard-
ware, Proceedings of 6th International Conference in Evolvable Systems
(ICES 2005), Sitges, Spain, September 12-14, 2005, volume 3637 of
Lecture Notes in Computer Science (LNCS), pages 131–142. Springer,
ISBN: 3-540-28736-1. Online available at http://www.cartesiangp.

co.uk/papers/2005/wmices2005.pdf [accessed 2007-11-03].
[698] James Alfred Walker and Julian Francis Miller. Investigating

the performance of module acquisition in cartesian genetic pro-
gramming. In GECCO ’05: Proceedings of the 2005 Confer-
ence on Genetic and Evolutionary Computation, 2005, pages 1649–
1656. See proceedings [299]. Online available at http://doi.acm.

http://citeseer.ist.psu.edu/424028.html
http://citeseer.ist.psu.edu/424028.html
http://www.elec.york.ac.uk/intsys/users/jfm7/cgp-eurogp2000.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/cgp-eurogp2000.pdf
http://doi.acm.org/10.1145/1276958.1277276
http://doi.acm.org/10.1145/1276958.1277276
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1580.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1580.pdf
http://citeseer.ist.psu.edu/yu01neutrality.html
http://citeseer.ist.psu.edu/yu01neutrality.html
http://www.cs.mun.ca/~tinayu/index_files/addr/public_html/neutrality.pdf
http://www.cs.mun.ca/~tinayu/index_files/addr/public_html/neutrality.pdf
http://www.cs.mun.ca/~tinayu/index_files/addr/public_html/neutralityTalk.pdf
http://www.cs.mun.ca/~tinayu/index_files/addr/public_html/neutralityTalk.pdf
http://www.demo.cs.brandeis.edu/papers/ep93.pdf
http://www.demo.cs.brandeis.edu/papers/ep93.pdf
http://www.natural-selection.com/Library/1993/ep93.ps.Z
http://www.natural-selection.com/Library/1993/ep93.ps.Z
http://www.cartesiangp.co.uk/papers/2004/wmeurogp2004.pdf
http://www.cartesiangp.co.uk/papers/2004/wmeurogp2004.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/eurogp2004.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/eurogp2004.pdf
http://www.cartesiangp.co.uk/papers/2005/wmices2005.pdf
http://www.cartesiangp.co.uk/papers/2005/wmices2005.pdf
http://doi.acm.org/10.1145/1068009.1068287

738 REFERENCES

org/10.1145/1068009.1068287 and http://www.cartesiangp.co.

uk/papers/2005/wmgecco2005.pdf [accessed 2007-11-03].
[699] Julian Francis Miller and Peter Thomson. Aspects of digital evo-

lution: Evolvability and architecture. In Parallel Problem Solv-
ing from Nature – PPSN V, 1998, pages 927–936. See pro-
ceedings [327]. Online available at http://citeseer.ist.psu.edu/

miller98aspects.html and http://www.elec.york.ac.uk/intsys/

users/jfm7/ppsn1998-miller-thomson.pdf [accessed 2007-11-03].
[700] Julian Francis Miller and Peter Thomson. Evolving digital electronic

circuits for real-valued function generation using a genetic algorithm.
In Genetic Programming 1998: Proceedings of the Third Annual Con-
ference, 1998, pages 863–868. See proceedings [579]. Online available at
http://citeseer.ist.psu.edu/miller98evolving.html [accessed 2007-

11-03].
[701] Tatiana Kalganova and Julian Francis Miller. Evolving more efficient

digital circuits by allowing circuit layout evolution and multi-objective
fitness. In Adrian Stoica, Jason Lohn, and Didier Keymeulen, edi-
tors, EH ’99: The First NASA/DoD Workshop on Evolvable Hardware,
July 19-21, 1999, pages 54–63, Pasadena, California. IEEE Computer
Society, ISBN: 0-7695-0256-3. Online available at http://citeseer.

ist.psu.edu/kalganova99evolving.html [accessed 2007-11-03].
[702] Simon Harding L. and Julian Francis Miller. Evolution of robot con-

troller using cartesian genetic programming. In Genetic Program-
ming, Proceedings of EuroGP 2005, 2005, pages 62–73, ISBN: 978-
3-540-25436-2. See proceedings [570]. Online available at http://www.
cartesiangp.co.uk/papers/2005/hmeurogp2005.pdf [accessed]2007-
11-03.

[703] James Alfred Walker and Julian Francis Miller. Embeddeded cartesian
genetic programming and the lawnmower and hierarchical-if-and-only-
if problems. In GECCO ’06: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, 2006, pages 911–918. See
proceedings [298]. Online available at http://www.cartesiangp.co.

uk/papers/2006/wmgecco2006.pdf [accessed 2007-11-03].
[704] James Alfred Walker and Julian Francis Miller. Predicting prime num-

bers using cartesian genetic programming. In Proceedings of the 10th
European Conference on Genetic Programming, 2007, pages 205–216.
See proceedings [568].

[705] John Henry Holland and Judith S. Reitman. Cognitive systems based
on adaptive algorithms. In D. A. Waterman and F. Hayes-Roth, ed-
itors, Pattern directed inference systems, pages 313–329. Academic
Press, New York, NY, 1978. Reprinted in [332]. See also [811].

[706] John Henry Holland and Arthur W. Burks. Adaptive computing system
capable of learning and discovery. Number 619349 filed on 1984-06-11
in United States Patent. United States Patent and Trademark Office,
1987. US Patent Issued on September 29, 1987, Current US Class

http://doi.acm.org/10.1145/1068009.1068287
http://www.cartesiangp.co.uk/papers/2005/wmgecco2005.pdf
http://www.cartesiangp.co.uk/papers/2005/wmgecco2005.pdf
http://citeseer.ist.psu.edu/miller98aspects.html
http://citeseer.ist.psu.edu/miller98aspects.html
http://www.elec.york.ac.uk/intsys/users/jfm7/ppsn1998-miller-thomson.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/ppsn1998-miller-thomson.pdf
http://citeseer.ist.psu.edu/miller98evolving.html
http://citeseer.ist.psu.edu/kalganova99evolving.html
http://citeseer.ist.psu.edu/kalganova99evolving.html
http://www.cartesiangp.co.uk/papers/2005/hmeurogp2005.pdf
http://www.cartesiangp.co.uk/papers/2005/hmeurogp2005.pdf
http://www.cartesiangp.co.uk/papers/2006/wmgecco2006.pdf
http://www.cartesiangp.co.uk/papers/2006/wmgecco2006.pdf

REFERENCES 739

706/13, Genetic algorithm and genetic programming system 382/155,
LEARNING SYSTEMS 706/62 MISCELLANEOUS, Foreign Patent
References 8501601 WO Apr., 1985.

[707] Stephen Frederick Smith. A learning system based on genetic adaptive
algorithms. PhD thesis, University of Pittsburgh, 1980. AAI8112638.

[708] William M. Spears and Kenneth Alan De Jong. Using genetic al-
gorithms for supervised concept learning. In Proceedings of the 2nd
International IEEE Conference on Tools for Artificial Intelligence, 6-9
1990, pages 335–341, Herndon, VA. IEEE Computer Society Press, Los
Alamitos, CA. IEEE Cat. No. 90CH2915-7.

[709] Will N. Browne and Charalambos Ioannides. Investigating scaling of an
abstracted lcs utilising ternary and s-expression alphabets. In GECCO
’07: Proceedings of the 2007 GECCO conference companion on Genetic
and evolutionary computation, 2007, pages 2759–2764. See proceed-
ings [296]. Online available at http://portal.acm.org/citation.

cfm?id=1274000.1274067 [accessed 2007-08-01].
[710] Pier Luca Lanzi and Alessandro Perrucci. Extending the representa-

tion of classifier conditions part ii: From messy coding to s-expressions.
In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 99), 1999, pages 345–352. See proceedings [314]. On-
line available at http://webspace.elet.polimi.it/lanzi/papers//
lanzi1999GECCOgp.pdf [accessed 2007-08-01].

[711] Mark A. Bedau. Artificial life: organization, adaptation and com-
plexity from the bottom up. TRENDS in Cognitive Sciences, 7:505–
512, November 2003. Online available at http://people.reed.edu/

~mab/publications/papers/BedauTICS03.pdf and http://dx.doi.

org/10.1016/j.tics.2003.09.012 [accessed 2007-12-13].
[712] Lee Spector. Autoconstructive evolution: Push, pushgp, and push-

pop. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-2001, 2001, pages 137–146. See proceedings [310].
Online available at http://citeseer.ist.psu.edu/445431.html and
http://hampshire.edu/lspector/pubs/ace.pdf [accessed 2007-12-24].

[713] Lee Spector and Alan Robinson. Genetic programming and autocon-
structive evolution with the push programming language. Genetic Pro-
gramming and Evolvable Machines, 3(1):7–40, 2002. Received August
15, 2001; Revised November 26, 2001. Online available at http://

citeseer.ist.psu.edu/619906.html and http://hampshire.edu/

lspector/pubs/push-gpem-final.pdf [accessed 2007-12-25].
[714] Lee Spector. Automatic Quantum Computer Programming – A Genetic

Programming Approach, volume 7 of Genetic Programming. (Orig-
inally published by Kluwer Academic Publishers), Springer Science-
nBusiness Media, LLC, 233 Spring Street, New York, NY 10013, USA,
paperback edition 2007 edition, ISBN: 0-387-36496-X, 0-387-36791-8,
978-0387-36496-4, 978-0387-36791-0, 2004. Series editor: John Koza.
Library of Congress Control Number: 2006931640.

http://portal.acm.org/citation.cfm?id=1274000.1274067
http://portal.acm.org/citation.cfm?id=1274000.1274067
http://webspace.elet.polimi.it/lanzi/papers//lanzi1999GECCOgp.pdf
http://webspace.elet.polimi.it/lanzi/papers//lanzi1999GECCOgp.pdf
http://people.reed.edu/~mab/publications/papers/BedauTICS03.pdf
http://people.reed.edu/~mab/publications/papers/BedauTICS03.pdf
http://dx.doi.org/10.1016/j.tics.2003.09.012
http://dx.doi.org/10.1016/j.tics.2003.09.012
http://citeseer.ist.psu.edu/445431.html
http://hampshire.edu/lspector/pubs/ace.pdf
http://citeseer.ist.psu.edu/619906.html
http://citeseer.ist.psu.edu/619906.html
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf

740 REFERENCES

[715] Lee Spector, Chris Perry, Jon Klein, and Maarten Keijzer. Push 3.0
programming language description. Technical Report HC-CSTR-2004-
02, School of Cognitive Science, Hampshire College, Amherst , Mas-
sachusetts 01002, USA, September 9, 2004. Successor to the Push
2.0 Programming Language Description (http://hampshire.edu/
lspector/push2-description.html [accessed 2007-12-25]), from which it
borrows large chunks of text. Online available at http://www.

cs.bham.ac.uk/~wbl/biblio/gp-html/Spector_push3tr.html and
http://www.hampshire.edu/cms_PDF/HC-CSTR-2004-02.pdf [accessed

2007-12-25].
[716] Lee Spector, Jon Klein, and Maarten Keijzer. The push3 execu-

tion stack and the evolution of control. In GECCO 2005: Pro-
ceedings of the 2005 conference on Genetic and evolutionary com-
putation, 2005, volume 2, pages 1689–1696. See proceedings [300].
Online available at http://doi.acm.org/10.1145/1068009.1068292
and http://hampshire.edu/lspector/pubs/push3-gecco2005.pdf

[accessed 2007-12-25].
[717] Raphael Crawford-Marks and Lee Spector. Size control via size fair

genetic operators in the PushGP genetic programming system. In
GECCO 2002: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, 2002, pages 733–739. See proceedings [306]. On-
line available at http://citeseer.ist.psu.edu/608051.html and
http://alum.hampshire.edu/~rpc01/gp234.pdf [accessed 2007-12-25].

[718] Alan Robinson. Genetic programming: Theory, implementation, and
the evolution of unconstrained solutions. Master’s thesis, Cognitive
Science, Hampshire College, Amherst, MA 01002, May 2003. Division
III Thesis. Committee Lee Spector, Jaime Davila, Mark Feinstein. On-
line available at http://hampshire.edu/lspector/robinson-div3.

pdf and http://citeseer.ist.psu.edu/498673.html [accessed 2007-12-

25].
[719] Lee Spector. Adaptive populations of endogenously diversifying push-

pop organisms are reliably diverse. In Standish, Abbass, and Bedau, ed-
itors, ICAL 2003: Proceedings of the eighth international conference on
Artificial life, University of New South Wales, Sydney, NSW, Australia,
December 9-12, 2002, pages 142–145. MIT Press, Cambridge, MA,
USA, ISBN: 0-262-69281-3. Online available at http://www.alife.

org/alife8/proceedings/sub962.pdf and http://citeseer.ist.

psu.edu/627720.html [accessed 2007-12-25].
[720] Martin Davis. Engines of Logic. W.W. Norton & Company, London,

ISBN: 039-3322-297, 2000.
[721] Michael Sipser. Introduction to the Theory of Computation. PWS

Publishing, second edition, ISBN: 053-4947-28X, 2006.
[722] Alonzo Church. An unsolvable problem of elementary number theory.

American Journal of Mathematics, 58(2):345–363, April 1936.

http://hampshire.edu/lspector/push2-description.html
http://hampshire.edu/lspector/push2-description.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Spector_push3tr.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Spector_push3tr.html
http://www.hampshire.edu/cms_PDF/HC-CSTR-2004-02.pdf
http://doi.acm.org/10.1145/1068009.1068292
http://hampshire.edu/lspector/pubs/push3-gecco2005.pdf
http://citeseer.ist.psu.edu/608051.html
http://alum.hampshire.edu/~rpc01/gp234.pdf
http://hampshire.edu/lspector/robinson-div3.pdf
http://hampshire.edu/lspector/robinson-div3.pdf
http://citeseer.ist.psu.edu/498673.html
http://www.alife.org/alife8/proceedings/sub962.pdf
http://www.alife.org/alife8/proceedings/sub962.pdf
http://citeseer.ist.psu.edu/627720.html
http://citeseer.ist.psu.edu/627720.html

REFERENCES 741

[723] Alonzo Church. A note on the Entscheidungsproblem. Journal of
Symbolic Logic, 1(1):40–41, March 1936.

[724] Alan Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London Mathe-
matical Society, 42:230–265, 1936. Online available at http://

www.thocp.net/biographies/turing_alan.html and http://www.

abelard.org/turpap2/tp2-ie.asp [accessed 2007-08-11].
[725] Alan Turing. On computable numbers, with an application to the

Entscheidungsproblem, errata. Proceedings of the London Mathemati-
cal Society, 43:544–546, 1937. Online available at the same location as
[724].

[726] Boris Beizer. Software Testing Techniques. International Thomson
Computer Press, second edition, ISBN: 185-0328-803, 978-1850328803,
June 1990.

[727] Mark Fewster and Dorothy Graham. Software Test Automation.
Addison-Wesley Professional, ISBN: 020-1331-403, August 25, 1999.

[728] D. Gelperin and B. Hetzel. The growth of software testing. Commu-
nications of the ACM, 31:687–695, 1988. Online available at http://

doi.acm.org/10.1145/62959.62965 [accessed 2007-09-15].
[729] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Computer

Software. John Wiley and Sons, second edition, ISBN: 047-1358-460,
978-0471358466, April 12, 1993.

[730] Sean Luke. Code growth is not caused by introns. In Late Breaking
Papers at the 2000 Genetic and Evolutionary Computation Confer-
ence, 2000, pages 228–235. See proceedings [313]. Online available at
http://citeseer.ist.psu.edu/300709.html and http://www.cs.

gmu.edu/~sean/papers/intronpaper.pdf [accessed 2007-09-07].
[731] Tobias Blickle and Lothar Thiele. Genetic programming and re-

dundancy. In J. Hopf, editor, Genetic Algorithms within the
Framework of Evolutionary Computation (Workshop at KI-94,
Saarbrücken), 1994, pages 33–38, Im Stadtwald, Building 44, D-66123
Saarbrücken, Germany. Max-Planck-Institut für Informatik (MPI-I-
94-241). Online available at http://citeseer.ist.psu.edu/44816.

html and http://www.tik.ee.ethz.ch/~tec/publications/bt94/

GPandRedundancy.ps.gz [accessed 2007-09-07].
[732] William B. Langdon and Riccardo Poli. Fitness causes bloat:

Mutation. In Proceedings of the First European Workshop
on Genetic Programming, 1998, pages 37–48. See proceed-
ings [577]. Online available at http://citeseer.ist.psu.edu/

langdon98fitness.html and ftp://ftp.cwi.nl/pub/W.B.Langdon/

papers/WBL.euro98_bloatm.ps.gz [accessed 2007-09-09].
[733] Walter Alden Tackett. Recombination, selection, and the genetic

construction of computer programs. PhD thesis, University of
Southern California, Los Angeles, CA, USA, 1994. Online avail-

http://www.thocp.net/biographies/turing_alan.html
http://www.thocp.net/biographies/turing_alan.html
http://www.abelard.org/turpap2/tp2-ie.asp
http://www.abelard.org/turpap2/tp2-ie.asp
http://doi.acm.org/10.1145/62959.62965
http://doi.acm.org/10.1145/62959.62965
http://citeseer.ist.psu.edu/300709.html
http://www.cs.gmu.edu/~sean/papers/intronpaper.pdf
http://www.cs.gmu.edu/~sean/papers/intronpaper.pdf
http://citeseer.ist.psu.edu/44816.html
http://citeseer.ist.psu.edu/44816.html
http://www.tik.ee.ethz.ch/~tec/publications/bt94/GPandRedundancy.ps.gz
http://www.tik.ee.ethz.ch/~tec/publications/bt94/GPandRedundancy.ps.gz
http://citeseer.ist.psu.edu/langdon98fitness.html
http://citeseer.ist.psu.edu/langdon98fitness.html
ftp://ftp.cwi.nl/pub/W.B.Langdon/papers/WBL.euro98_bloatm.ps.gz
ftp://ftp.cwi.nl/pub/W.B.Langdon/papers/WBL.euro98_bloatm.ps.gz

742 REFERENCES

able at http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.

com/papers/watphd.tar.Z [accessed 2007-09-07].
[734] Nicholas Freitag McPhee and Justin Darwin Miller. Accurate replica-

tion in genetic programming. In Genetic Algorithms: Proceedings of
the Sixth International Conference (ICGA95), 1995, pages 303–309.
See proceedings [443]. Online available at http://www.mrs.umn.

edu/~mcphee/Research/Accurate_replication.ps and http://

citeseer.ist.psu.edu/mcphee95accurate.html [accessed 2007-09-07].
[735] Justinian Rosca. Generality versus size in genetic programming. In

Genetic Programming 1996: Proceedings of the First Annual Confer-
ence, 1996, pages 381–387. See proceedings [583]. Online available
at http://citeseer.ist.psu.edu/75165.html and ftp://ftp.cs.

rochester.edu/pub/u/rosca/gp/96.gp.ps.gz [accessed 2007-09-07].
[736] Tobias Blickle. Theory of Evolutionary Algorithms and Application

to System Synthesis. PhD thesis, ETH Zurich, November 1996,
ISBN: 978-3728124333. ETH-Thesis number 11894. Examiner: Lothar
Thiele, Hans-Paul Schwefel. Online available at http://www.tik.ee.

ethz.ch/~tec/publications/bli97a/diss.ps.gz and http://www.

handshake.de/user/blickle/publications/diss.pdf [accessed 2007-09-

07].
[737] William B. Langdon, Terry Soule, Riccardo Poli, and James A. Foster.

The evolution of size and shape. In Advances in Genetic Programming
3, chapter 8, pages 163–190. The MIT Press, 1999. See collection [595].
Online available at http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.

ps.gz and http://citeseer.ist.psu.edu/langdon99evolution.

html [accessed 2007-09-07].
[738] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explic-

itly defined introns and destructive crossover in genetic program-
ming. In Proceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, 1995, pages 6–22. See
proceedings [1320] and also [739]. Online available at http://

citeseer.ist.psu.edu/nordin95explicitly.html and http://en.

scientificcommons.org/362050 [accessed 2007-09-07].
[739] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explic-

itly defined introns and destructive crossover in genetic program-
ming. In Peter John Angeline and Jr Kenneth E. Kinnear, edi-
tors, Advances in genetic programming 2, pages 111–134. The MIT
Press, 1996. See collection [594] and also [738]. Online avail-
able at ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/

papers/ML95.ps.gz [accessed 2007-08-17].
[740] Terence Soule and James A. Foster. Removal bias: a new cause of

code growth in tree based evolutionary programming. In 1998 IEEE
International Conference on Evolutionary Computation, 1998, pages
781–186. See proceedings [250]. Online available at http://citeseer.
ist.psu.edu/313655.html [accessed 2007-09-07].

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/watphd.tar.Z
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/watphd.tar.Z
http://www.mrs.umn.edu/~mcphee/Research/Accurate_replication.ps
http://www.mrs.umn.edu/~mcphee/Research/Accurate_replication.ps
http://citeseer.ist.psu.edu/mcphee95accurate.html
http://citeseer.ist.psu.edu/mcphee95accurate.html
http://citeseer.ist.psu.edu/75165.html
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.gp.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.gp.ps.gz
http://www.tik.ee.ethz.ch/~tec/publications/bli97a/diss.ps.gz
http://www.tik.ee.ethz.ch/~tec/publications/bli97a/diss.ps.gz
http://www.handshake.de/user/blickle/publications/diss.pdf
http://www.handshake.de/user/blickle/publications/diss.pdf
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.ps.gz
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.ps.gz
http://citeseer.ist.psu.edu/langdon99evolution.html
http://citeseer.ist.psu.edu/langdon99evolution.html
http://citeseer.ist.psu.edu/nordin95explicitly.html
http://citeseer.ist.psu.edu/nordin95explicitly.html
http://en.scientificcommons.org/362050
http://en.scientificcommons.org/362050
ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/papers/ML95.ps.gz
ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/papers/ML95.ps.gz
http://citeseer.ist.psu.edu/313655.html
http://citeseer.ist.psu.edu/313655.html

REFERENCES 743

[741] Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zitzler. Multi-
objective genetic programming: Reducing bloat using SPEA2. In Pro-
ceedings of the 2001 Congress on Evolutionary Computation CEC2001,
2001, pages 536–543. See proceedings [247]. Online available at
http://citeseer.ist.psu.edu/443099.html and ftp://ftp.tik.

ee.ethz.ch/pub/people/zitzler/BBTZ2001b.ps.gz [accessed 2007-09-07].
[742] Sean Luke and Liviu Panait. A comparison of bloat control methods

for genetic programming. Evolutionary Computation, 14(3):309–344,
2006.

[743] Riccardo Poli. A simple but theoretically-motivated method to control
bloat in genetic programming. In Proceedings of 6th European Con-
ference on Genetic Programming, EuroGP 2003, 2003, pages 204–217.
See proceedings [572].

[744] Ingo Rechenberg. Cybernetic Solution Path of an Experimental Prob-
lem. Royal Aircraft Establishment, August 1965. Library Translation
1122, Farnborough. Reprinted in [332].

[745] Ingo Rechenberg. Evolutionsstrategie ’94, volume 1 of Werkstatt
Bionik und Evolutionstechnik. Frommann Holzboog, Stuttgart, ISBN:
9783772816420, September 1994.

[746] Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of
evolution strategies. In Proceedings of the 4th International Conference
on Genetic Algorithms ICGA’91, 1991, pages 2–9. See proceedings
[445]. Online available at http://de.scientificcommons.org/50038
and http://citeseer.ist.psu.edu/19412.html [accessed 2007-08-27].

[747] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strate-
gies – a comprehensive introduction. Natural Computing: an in-
ternational journal, 1(1):3–52, March 2002. Online available at
http://dx.doi.org/10.1023/A:1015059928466 and http://www.

springerlink.com/content/2311qapbrwgrcyey/ [accessed 2007-08-27].
[748] Hans-Georg Beyer. The theory of evolution strategies. Natural Com-

puting Series. Springer-Verlag New York, Inc., New York, NY, USA,
ISBN: 978-3-540-67297-5, 2001.

[749] Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On
the adaptation of arbitrary normal mutation distributions in evolution
strategies: The generating set adaptation. In Proceedings of the 6th
International Conference on Genetic Algorithms, 1995, pages 57–64.
See proceedings [443]. Online available at http://citeseer.ist.psu.
edu/261932.html [accessed 2007-08-27].

[750] Silja Meyer-Nieberg and Hans-Georg Beyer. Self-adaptation in evolu-
tionary algorithms. In Fernando G. Lobo, Claudio F. Lima, and Zbig-
niew Michalewicz, editors, Parameter Setting in Evolutionary Algo-
rithms. Springer, Berlin, 2007. Online available at http://citeseer.
ist.psu.edu/741946.html [accessed 2007-07-28].

[751] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary nor-
mal mutation distributions in evolution strategies: the covariance

http://citeseer.ist.psu.edu/443099.html
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/BBTZ2001b.ps.gz
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/BBTZ2001b.ps.gz
http://de.scientificcommons.org/50038
http://citeseer.ist.psu.edu/19412.html
http://dx.doi.org/10.1023/A:1015059928466
http://www.springerlink.com/content/2311qapbrwgrcyey/
http://www.springerlink.com/content/2311qapbrwgrcyey/
http://citeseer.ist.psu.edu/261932.html
http://citeseer.ist.psu.edu/261932.html
http://citeseer.ist.psu.edu/741946.html
http://citeseer.ist.psu.edu/741946.html

744 REFERENCES

matrix adaptation. In Proceedings of IEEE International Con-
ference on Evolutionary Computation, 1996, pages 312–317. See
proceedings [252]. Online available at http://citeseer.ist.psu.

edu/hansen96adapting.html and http://www.bionik.tu-berlin.

de/ftp-papers/CMAES.ps.Z [accessed 2007-09-20].
[752] Nikolaus Hansen and Andreas Ostermeier. Convergence properties of

evolution strategies with the derandomized covariance matrix adap-
tion: The (µ/µi, λ)-cma-es. In Hans-Jürgen Zimmermann, editor, Eufit
’97 – 5th European Congress on Intelligent Techniques and Soft Com-
puting, Aachen, 1997, pages 650–654. Verlag Mainz, Wissenschaftsver-
lag. Online available at http://citeseer.ist.psu.edu/356709.html
[accessed 2007-08-27].

[753] Nikolaus Hansen and Andreas Ostermeier. Completely deran-
domized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159–195, 2001. Online available at http://

www.bionik.tu-berlin.de/user/niko/cmaartic.pdf and http://

citeseer.ist.psu.edu/hansen01completely.html [accessed 2007-08-27].
[754] G. A. Jastrebski and D. V. Arnold. Improving evolution strategies

through active covariance matrix adaptation. In Proceedings of IEEE
World Congress on Computational Intelligence, Vancouver, BC, July
2006, pages 9719–9726. IEEE Press, Piscataway, New Jersey.

[755] Hsien-Da Huang, Jih Tsung Yang, Shu Fong Shen, and Jorng-Tzong
Horng. An evolution strategy to solve sports scheduling problems. In
Proceedings of the Genetic and Evolutionary Computation Conference
GECCO-99, 1999, volume 1, page 943.

[756] Peter Roosen and Fred Meyer. Determination of chemical equilibria by
means of an evolution strategy. In PPSN-II, Parallel problem solving
from nature 2, 1992, pages 411–420. See proceedings [330].

[757] Vincenzo Cutello, Giuseppe Narzisi, and Giuseppe Nicosia. A class of
pareto archived evolution strategy algorithms using immune inspired
operators for ab-initio protein structure prediction. In Applications on
Evolutionary Computing, Proceedings of EvoWorkkshops 2005, 2005,
pages 54–63. See proceedings [285].

[758] Michael Emmerich, Monika Grötzner, Berd Groß, and Martin Schütz.
Mixed-integer evolution strategy for chemical plant optimization. In
I.C. Parmee, editor, Evolutionary Design and Manufacture – Selected
papers from ACDM’00, Plymouth, UK, April 2000, pages 55–67, New
York. Springer, London. Online available at http://citeseer.ist.

psu.edu/359756.html and http://www.liacs.nl/~emmerich/pdf/

EGG+00.pdf [accessed 2007-08-27].
[759] P. O’Brien, D. Corcoran, and D. Lowry. An evolution strat-

egy to estimate emission source distributions on a regional
scale from atmospheric observations. Atmospheric Chemistry &
Physics Discussions, 3:1333–1366, February 2003. Provided by
the Smithsonian/NASA Astrophysics Data System. Online avail-

http://citeseer.ist.psu.edu/hansen96adapting.html
http://citeseer.ist.psu.edu/hansen96adapting.html
http://www.bionik.tu-berlin.de/ftp-papers/CMAES.ps.Z
http://www.bionik.tu-berlin.de/ftp-papers/CMAES.ps.Z
http://citeseer.ist.psu.edu/356709.html
http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf
http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf
http://citeseer.ist.psu.edu/hansen01completely.html
http://citeseer.ist.psu.edu/hansen01completely.html
http://citeseer.ist.psu.edu/359756.html
http://citeseer.ist.psu.edu/359756.html
http://www.liacs.nl/~emmerich/pdf/EGG+00.pdf
http://www.liacs.nl/~emmerich/pdf/EGG+00.pdf

REFERENCES 745

able at http://www.atmos-chem-phys-discuss.net/3/1333/2003/

acpd-3-1333-2003.html [accessed 2007-08-27].
[760] Volker Nissen and Matthias Krause. Constrained combinatorial opti-

mization with an evolution strategy. In Proceedings of Fuzzy Logik,
Theorie und Praxis, 4. Dortmunder Fuzzy-Tage, Dortmund, Germany,
June 1994, pages 33–40, London, UK. Springer-Verlag, ISBN: 3-540-
58649-0.

[761] Robert E. Keller, Wolfgang Banzhaf, Jörn Mehnen, and Klaus Wein-
ert. Cad surface reconstruction from digitized 3d point data with a
genetic programming/evolution strategy hybrid. In Advances in ge-
netic programming: volume 3, chapter 3, pages 41–65. The MIT Press,
1999. See collection [595]. Online available at http://www.cs.bham.

ac.uk/~wbl/aigp3/ch03.pdf [accessed 2007-08-18].
[762] Klaus Weinert and Jörn Mehnen. Discrete nurbs-surface approxi-

mation using an evolutionary strategy. Technical Report Sonder-
forschungsbereich (SFB) 531, Department of Machining Technology,
University of Dortmund, Germany, October 2001. Online available at
http://citeseer.ist.psu.edu/566038.html [accessed 2007-08-27].

[763] Hans-Georg Beyer. Some aspects of the ‘evolution strategy’ for solving
TSP-like optimization problems appearing at the design studies os a
0.5teve+e−-linear collider. In Parallel problem solving from nature 2,
1992, pages 361–370. See proceedings [330].

[764] Hans-Georg Beyer. Design optimization of a linear accelerator using
evolution strategy: solving a TSP-like optimization problem. In Hand-
book of Evolutionary Computation, pages G4.2:1–8. Institute of Physics
Publishing and Oxford University Press, 1997. See collection [180].

[765] Thomas Bäck and Martin Schütz. Evolution strategies for mixed-
integer optimization of optical multilayer systems. In Evolutionary
Programming IV: Proceedings of the Fourth Annual Conference on
Evolutionary Programming, 1995, pages 33–51. See proceedings [805].
Online available at http://citeseer.ist.psu.edu/101945.html and
http://de.scientificcommons.org/114486 [accessed 2007-08-27].

[766] Rui Li, Michael T.M. Emmerich, Jeroen Eggermont, and Ernst G.P.
Bovenkamp. Mixed-integer optimization of coronary vessel image anal-
ysis using evolution strategies. In GECCO ’06: Proceedings of the
8th annual conference on Genetic and evolutionary computation, 2006,
pages 1645–1652. See proceedings [298]. Online available at http://

doi.acm.org/10.1145/1143997.1144268 [accessed 2007-08-27].
[767] Frank Hoffmeister and Hans-Paul Schwefel. Korr 2.1 – an implemen-

tation of a (µ +, λ)-evolution strategy. Technical report, Universität
Dortmund, Fachbereich Informatik, November 1990. Interner Bericht.

[768] Hans-Georg Beyer. Toward a theory of evolution strate-
gies: The (µ, λ)-theory. Evolutionary Computation, 2(4):381–407,
1994. Online available at http://ls11-www.cs.uni-dortmund.de/

http://www.atmos-chem-phys-discuss.net/3/1333/2003/acpd-3-1333-2003.html
http://www.atmos-chem-phys-discuss.net/3/1333/2003/acpd-3-1333-2003.html
http://www.cs.bham.ac.uk/~wbl/aigp3/ch03.pdf
http://www.cs.bham.ac.uk/~wbl/aigp3/ch03.pdf
http://citeseer.ist.psu.edu/566038.html
http://citeseer.ist.psu.edu/101945.html
http://de.scientificcommons.org/114486
http://doi.acm.org/10.1145/1143997.1144268
http://doi.acm.org/10.1145/1143997.1144268
http://ls11-www.cs.uni-dortmund.de/people/beyer/coll/Bey95a/Bey95a.ps

746 REFERENCES

people/beyer/coll/Bey95a/Bey95a.ps and http://citeseer.ist.

psu.edu/249681.html [accessed 2007-08-27].
[769] Yoshiyuki Matsumura, Kazuhiro Ohkura, and Kanji Ueda. Advan-

tages of global discrete recombination in (µ/µ, λ)-evolution strategies.
In Proceedings of the 2002 Congress on Evolutionary Computation
CEC2002, 2002, volume 2, pages 1848–1853. See proceedings [246].

[770] Hannes Geyer, Peter Ulbig, and Siegfried Schulz. Verschachtelte
evolutionsstrategien zur optimierung nichtlinearer verfahrenstechnis-
cher regressionsprobleme. Chemie Ingenieur Technik, 72(4):369–373,
2000. Online available at http://www3.interscience.wiley.com/

cgi-bin/fulltext/76500452/PDFSTART [accessed 2007-08-27].
[771] Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differen-

tial Evolution – A Practical Approach to Global Optimization. Natural
Computing Series. Springer, ISBN: 978-3-540-20950-8, October 2005.

[772] Vitaliy Feoktistov. Differential Evolution – In Search of Solutions,
volume 5 of Springer Optimization and Its Applications. Springer,
ISBN: 978-0-387-36895-5, December 2006.

[773] Efrñn Mezura-Montes, Jesús Velázquez-Reyes, and Carlos Artemio
Coello Coello. A comparative study of differential evolution variants
for global optimization. In GECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, 2006, pages 485–
492. See proceedings [298]. Online available at http://portal.acm.

org/citation.cfm?id=1144086 and http://delta.cs.cinvestav.

mx/~ccoello/2006.html [accessed 2007-08-13].
[774] Janez Brest, Viljem Žumer, and Mirjam Sepesy Maučec. Control pa-

rameters in self-adaptive differential evolution. In Proceedings of the
Second International Conference on Bioinspired Optimization Meth-
ods and their Application, BIOMA 2006, 2006, pages 35–44. See pro-
ceedings [239]. Online available at http://labraj.uni-mb.si/index.
php/Bibliografija [accessed 2007-08-13].

[775] Jouni Lampinen and Ivan Zelinka. On stagnation of the differential
evolution algorithm. In Proceedings of MENDEL 2000, 6th Inter-
national Mendel Conference on Soft Computing, 2000, pages 76–83.
See proceedings [164]. Online available at http://citeseer.ist.psu.
edu/317991.html and http://www.lut.fi/~jlampine/MEND2000.ps

[accessed 2007-08-13].
[776] P. Besson, J.-M. Vesin, V. Popovici, and M. Kunt. Differential evolu-

tion applied to a multimodal information theoretic optimization prob-
lem. In Applications of Evolutionary Computing, Proceedings of the 8th
European Workshop on Evolutionary Computation in Image Analysis
and Signal Processing (evoIASP), 2006, pages 505–509. See proceed-
ings [284].

[777] Rainer Storn and Kenneth Price. Differential evolution – a simple
and efficient adaptive scheme for global optimization over continu-
ous spaces. Technical Report TR-95-012, International Computer Sci-

http://ls11-www.cs.uni-dortmund.de/people/beyer/coll/Bey95a/Bey95a.ps
http://citeseer.ist.psu.edu/249681.html
http://citeseer.ist.psu.edu/249681.html
http://www3.interscience.wiley.com/cgi-bin/fulltext/76500452/PDFSTART
http://www3.interscience.wiley.com/cgi-bin/fulltext/76500452/PDFSTART
http://portal.acm.org/citation.cfm?id=1144086
http://portal.acm.org/citation.cfm?id=1144086
http://delta.cs.cinvestav.mx/~ccoello/2006.html
http://delta.cs.cinvestav.mx/~ccoello/2006.html
http://labraj.uni-mb.si/index.php/Bibliografija
http://labraj.uni-mb.si/index.php/Bibliografija
http://citeseer.ist.psu.edu/317991.html
http://citeseer.ist.psu.edu/317991.html
http://www.lut.fi/~jlampine/MEND2000.ps

REFERENCES 747

ence Institute, 1947 Center Street, Berkeley, CA 94704, Berkeley, CA,
1995. Online available at http://citeseer.ist.psu.edu/182432.

html and http://http.icsi.berkeley.edu/~storn/TR-95-012.pdf

[accessed 2007-08-13].
[778] Jouni Lampinen and Ivan Zelinka. Mechanical engineering design op-

timization by differential evolution. In David Corne, Marco Dorigo,
and Fred Glover, editors, New Ideas in Optimization, McGraw-Hill’s
Advanced Topics In Computer Science Series, pages 127–146. McGraw-
Hill, London, 1999.

[779] Andreas Nearchou and Sotiris Omirou. Differential evolution for
sequencing and scheduling optimization. Journal of Heuristics,
12(6):395–411(17), December 2006. Online available at http://

www.springerlink.com/content/p6761p070470k448/fulltext.pdf

[accessed 2007-08-13].
[780] Feng-Sheng Wang and Houng-Jhy Jang. Parameter estimation of a

bioreaction model by hybrid differential evolution. In Proceedings of
the 2000 Congress on Evolutionary Computation, 2000, pages 410–417.
See proceedings [248].

[781] Colin C. Seaton and Maryjane Tremayne. Differential evolution: crystal
structure determination of a triclinic polymorph of adipamide from
powder diffraction data. Chemical Communications (Camb)., 880(8):1,
April 2002. Online available at http://www.rsc.org/Publishing/

Journals/CC/article.asp?doi=b200436d [accessed 2007-08-13].
[782] Maryjane Tremayne, Colin C. Seaton, and Christopher Glidewell.

Structures of three substituted arenesulfonamides from x-ray pow-
der diffraction data using the differential evolution technique. Acta
Crystallographica Section B: Structural Science, 58:823–834, Octo-
ber 2002. Online available at http://scripts.iucr.org/cgi-bin/

paper?S0108768102011928 [accessed 2007-08-13].
[783] Samantha Y. Chong and Maryjane Tremayne. Combined optimization

using cultural and differential evolution: application to crystal struc-
ture solution from powder diffraction data. Chemical Communica-
tion, 39:4078–4080, October 2006. Online available at http://www.

rsc.org/publishing/journals/CC/article.asp?doi=b609138e [ac-

cessed 2007-08-13].
[784] Yung-Chien Lin, Kao-Shing Hwang, and Feng-Sheng Wang. Plant

scheduling and planning using mixed-integer hybrid differential evo-
lution with multiplier updating. In Proceedings of the 2000 Congress
on Evolutionary Computation, 2000, volume 1, pages 593–600. See
proceedings [248].

[785] Rainer Storn. On the usage of differential evolution for function op-
timization. In M. Smith, M. Lee, J. Keller, and J. Yen, editors, 1996
Biennial Conference of the North American Fuzzy Information Pro-
cessing Society, 1996, pages 519–523, Piscataway, NJ. IEEE Press.

http://citeseer.ist.psu.edu/182432.html
http://citeseer.ist.psu.edu/182432.html
http://http.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www.springerlink.com/content/p6761p070470k448/fulltext.pdf
http://www.springerlink.com/content/p6761p070470k448/fulltext.pdf
http://www.rsc.org/Publishing/Journals/CC/article.asp?doi=b200436d
http://www.rsc.org/Publishing/Journals/CC/article.asp?doi=b200436d
http://scripts.iucr.org/cgi-bin/paper?S0108768102011928
http://scripts.iucr.org/cgi-bin/paper?S0108768102011928
http://www.rsc.org/publishing/journals/CC/article.asp?doi=b609138e
http://www.rsc.org/publishing/journals/CC/article.asp?doi=b609138e

748 REFERENCES

[786] Rainer Storn. Differential evolution design of an IIR-filter with
requirements for magnitude and group delay. Technical Report
TR-95-026, International Computer Science Institute, 1947 Center
Street, Berkeley, CA 94704-1198, Berkeley, CA, 1995. Online avail-
able at http://citeseer.ist.psu.edu/storn95differential.html
and http://www.icsi.berkeley.edu/ftp/pub/techreports/1995/

tr-95-026.pdf [accessed 2007-08-13].
[787] Rainer Storn. Designing digital filters with differential evolution. In

New Ideas in Optimization, pages 109–125. McGraw-Hill Education,
1999. See collection [178].

[788] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial
Intelligence through Simulated Evolution. John Wiley & Sons New
York, ISBN: 978-0471265160, October 1966.

[789] David B. Fogel. System Identification through Simulated Evolution:
A Machine Learning Approach to Modeling. Ginn Press, Needham
Heights, MA, ISBN: 978-0536579430, June 1991.

[790] David B. Fogel. Evolving a checkers player without relying on hu-
man experience. Intelligence, 11(2):20–27, 2000. Online available at
http://doi.acm.org/10.1145/337897.337996 [accessed 2007-08-27].

[791] David B. Fogel. Blondie24: playing at the edge of AI. The Morgan
Kaufmann Series in Artificial Intelligence. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, ISBN: 978-1558607835, September
2001.

[792] Lawrence J. Fogel and David B. Fogel. A preliminary investigation
on extending evolutionary programming to include self-adaptation on
finite state. Informatica (Slovenia), 18(4), 1994.

[793] Vincent W. Porto, David B. Fogel, and Lawrence J. Fogel. Alternative
neural network training methods. IEEE Expert: Intelligent Systems
and Their Applications, 10(3):16–22, 1995.

[794] Daniel K. Gehlhaar, Gennady Verkhivker, Paul A. Rejto, David B.
Fogel, Lawrence J. Fogel, and Stephan T. Freer. Docking conforma-
tionally flexible small molecules into a protein binding site through
evolutionary programming. In Evolutionary Programming IV: Proceed-
ings of the Fourth Annual Conference on Evolutionary Programming,
1995. See proceedings [805].

[795] Bruce S. Duncan and Arthur J. Olson. Applications of evolutionary
programming for the prediction of protein-protein interactions. In Evo-
lutionary Programming V: Proceedings of the Fifth Annual Conference
on Evolutionary Programming, 1996, pages 411–417. See proceedings
[804].

[796] Daniel K. Gehlhaar and David B. Fogel. Tuning evolutionary program-
ming for conformationally flexible molecular docking. In Evolutionary
Programming V: Proceedings of the Fifth Annual Conference on Evo-
lutionary Programming, 1996, pages 419–429. See proceedings [804].

http://citeseer.ist.psu.edu/storn95differential.html
http://www.icsi.berkeley.edu/ftp/pub/techreports/1995/tr-95-026.pdf
http://www.icsi.berkeley.edu/ftp/pub/techreports/1995/tr-95-026.pdf
http://doi.acm.org/10.1145/337897.337996

REFERENCES 749

[797] Jong-Hwan Kim and Jeong-Yul Jeon. Evolutionary programming-
based high-precision controller design. In Evolutionary Programming
V: Proceedings of the Fifth Annual Conference on Evolutionary Pro-
gramming, 1996, pages 73–81. See proceedings [804].

[798] Kevin M. Nelson. A comparison of evolutionary programming and
genetic algorithms for electronic part placement. In Evolutionary Pro-
gramming IV: Proceedings of the Fourth Annual Conference on Evolu-
tionary Programming, 1995, pages 503–519. See proceedings [805].

[799] Manish Sarkar. Evolutionary programming-based fuzzy clustering. In
Evolutionary Programming V: Proceedings of the Fifth Annual Con-
ference on Evolutionary Programming, 1996, pages 247–256. See pro-
ceedings [804].

[800] Jong-Hwan Kim and Hyun Myung. A two-phase evolutionary pro-
gramming for general constrained optimization problem. In Evolu-
tionary Programming V: Proceedings of the Fifth Annual Conference
on Evolutionary Programming, 1996, pages 295–304. See proceedings
[804].

[801] Jong-Hwan Kim and Hyun-Sik Shim. Evolutionary programming-
based optimal robust locomotion control of autonomous mobile robots.
In Evolutionary Programming IV: Proceedings of the Fourth Annual
Conference on Evolutionary Programming, 1995, pages 631–644. See
proceedings [805].

[802] V. William Porto, N. Saravanan, D. Waagen, and Agoston E. Eiben,
editors. Proceedings of the 7th International Conference on Evolution-
ary Programming VII, EP98, in cooperation with IEEE Neural Net-
works Council, Mission Valley Marriott, San Diego, California, USA,
March 25-27, 1998, volume 1447/1998 of Lecture Notes in Computer
Science (LNCS), Heidelberg, Germany. Springer Verlag, ISBN: 978-
3540648918, ISSN: 0302-9743 (Print) 1611-3349 (Online).

[803] Peter John Angeline, Robert G. Reynolds, John Robert McDonnell,
and Russel C. Eberhart, editors. Proceedings of the 6th Interna-
tional Conference on Evolutionary Programming, Indianapolis, Indi-
ana, USA, 1997, volume 1213/1997 of Lecture Notes in Computer
Science (LNCS). Springer Verlag Telos, ISBN: 978-3540627883, ISSN:
0302-9743 (Print) 1611-3349 (Online).

[804] Lawrence J. Fogel, Peter John Angeline, and Thomas Bäck, editors.
Evolutionary Programming V: Proceedings of the Fifth Annual Con-
ference on Evolutionary Programming (EP’96), San Diego, California,
USA, February 1996, Cambridge, Massachusetts. MIT Press, ISBN:
0-262-06190-2.

[805] John Robert McDonnell, Robert G. Reynolds, and David B. Fogel, ed-
itors. Proceedings of the 4th Annual Conference on Evolutionary Pro-
gramming, San Diego, CA, USA, March 1995, A Bradford Book, Com-
plex Adaptive Systems, Cambridge, Massachusetts. The MIT Press,
ISBN: 0-262-13317-2.

750 REFERENCES

[806] A.V. Sebald and Lawrence J. Fogel, editors. Proceedings of the 3rd
Annual Conference on Evolutionary Programming, 1994, River Edge,
NJ. World Scientific Publishing.

[807] David B. Fogel and W. Atmar, editors. Proceedings of the 2nd Annual
Conference on Evolutionary Programming, La Jolla, CA, USA, Febru-
ary 25-26, 1993, 9363 Towne Centre Dr., San Diego, CA 92121, USA.
Evolutionary Programming Society.

[808] David B. Fogel and W. Atmar, editors. Proceedings of the 1st Annual
Conference on Evolutionary Programming, 1992, 9363 Towne Centre
Dr., San Diego, CA 92121, USA. Evolutionary Programming Society.

[809] R. Davis and J. King. An overview of production systems. Tech-
nical Report STAN-CS-75-524, Stanford Computer Science Depart-
ment, Stanford University, October 1975. Online available at http://
handle.dtic.mil/100.2/ADA019702 [accessed 2007-07-18].

[810] R. Davis and J. King. An overview of production systems. Machine
Intelligence, 8, 1977.

[811] John Henry Holland and Judith S. Reitman. Cognitive systems based
on adaptive algorithms. ACM SIGART Bulletin, 63:49, 1977. Online
available at http://doi.acm.org/10.1145/1045343.1045373 [accessed

2007-08-18]. See also [705].
[812] Rick L. Riolo. Letseq: An implementation of the cfs-c classifier system

in a task-domain that involves learning to predict letter. Technical
report, Logic of computers group, Division of computer science and
engineering, University of Michigan, 1986, revised 1988. Online avail-
able at http://citeseer.ist.psu.edu/345595.html [accessed 2007-09-11].

[813] David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evo-
lutionary algorithms for reinforcement learning. Journal of Artifi-
cial Intelligence Research, 11:241–276, September 1999. Online avail-
able at http://citeseer.ist.psu.edu/moriarty99evolutionary.

html and http://www.jair.org/media/613/live-613-1809-jair.

pdf [accessed 2007-09-12].
[814] Yang Gao, Joshua Zhexue Huang, Hongqiang Rong, and Daqian

Gu. Learning classifier system ensemble for data mining. In
GECCO ’05: Proceedings of the 2005 workshops on Genetic
and evolutionary computation, 2005, pages 63–66. See pro-
ceedings [300]. Online available at http://doi.acm.org/10.1145/

1102256.1102268 and http://www.cs.bham.ac.uk/~wbl/biblio/

gecco2005wks/papers/0063.pdf [accessed 2007-09-12].
[815] Jaume Bacardit i Peñarroya. Pittsburgh Genetics-Based Machine

Learning in the Data Mining era: Representations, generalization, and
run-time. PhD thesis, Computer Science Department, Enginyeria i
Architectura La Salle, Ramon Llull University, Barcelona, Catalonia,
Spain, October 8, 2004. Advisor: Josep Maria Garrell i Guiu. On-
line available at http://www.cs.nott.ac.uk/~jqb/publications/

thesis.pdf [accessed 2007-09-12].

http://handle.dtic.mil/100.2/ADA019702
http://handle.dtic.mil/100.2/ADA019702
http://doi.acm.org/10.1145/1045343.1045373
http://citeseer.ist.psu.edu/345595.html
http://citeseer.ist.psu.edu/moriarty99evolutionary.html
http://citeseer.ist.psu.edu/moriarty99evolutionary.html
http://www.jair.org/media/613/live-613-1809-jair.pdf
http://www.jair.org/media/613/live-613-1809-jair.pdf
http://doi.acm.org/10.1145/1102256.1102268
http://doi.acm.org/10.1145/1102256.1102268
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005wks/papers/0063.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005wks/papers/0063.pdf
http://www.cs.nott.ac.uk/~jqb/publications/thesis.pdf
http://www.cs.nott.ac.uk/~jqb/publications/thesis.pdf

REFERENCES 751

[816] Hai H. Dam, Hussein A. Abbass, and Chris Lokan. Dxcs: an xcs system
for distributed data mining. In Proceedings of Genetic and Evolution-
ary Computation Conference GECCO 2005, 2005, pages 1883–1890.
See proceedings [299] and also [1321]. Online available at http://doi.
acm.org/10.1145/1068009.1068326 [accessed 2007-09-12].

[817] Olgierd Unold and Grzegorz Dabrowski. Use of learning classifier sys-
tem for inferring natural language grammar. In Design and Appli-
cation of Hybrid Intelligent Systems, HIS03, the Third International
Conference on Hybrid Intelligent Systems, 2003, pages 272–278. See
proceedings [136] and also [818].

[818] Olgierd Unold and Grzegorz Dabrowski. Use of learning classifier sys-
tem for inferring natural language grammar. In Revised Selected Pa-
pers of the International Workshops on Learning Classifier Systems,
chapter 2, part I, pages 17–24. Springer Berlin/Heidelberg, 2003. See
collection [826] and also [817].

[819] Walling Cyre. Learning grammars with a modified classifier system. In
CEC ’02: Proceedings of the Congress on Evolutionary Computation,
2002, pages 1366–1371. See proceedings [246].

[820] John H. Holmes. Discovering risk of disease with a learn-
ing classifier system. In Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms (ICGA97), 1997. See
proceedings [442]. Online available at http://citeseer.ist.psu.

edu/holmes98discovering.html and http://www.cs.bris.ac.uk/

~kovacs/lcs.archive/Holmes1997a.ps.gz [accessed 2007-09-12].
[821] Jianhua Lin. Adaptive image quantization based on learning classifier

systems. In DCC ’95: Proceedings of the Conference on Data Com-
pression, March 28-30, 1995, page 477, Washington, DC, USA. IEEE
Computer Society.

[822] A. D. McAulay and Jae C. Oh. Image learning classifier system using
genetic algorithms. In Proceedings of IEEE National Aerospace Elec-
tronics Conference NAECON ’89, May 22-26, 1989, volume 2, pages
705–710. an IEEE conference.

[823] The Tenth International Workshop on Learning Classifier Systems
(IWLCS 2007), University College London, in London, England,
July 8, 2007, Lecture Notes in Computer Science (LNCS) subseries
Lecture Notes in Artificial Intelligence series (LNAI). Springer. Held
in association with GECCO-2007 (see [296, 297]).

[824] Ninth International Workshop on Learning Classifier Systems (IWLCS
2006), Seattle, WA, USA, July 8-9, 2006. Held during GECCO-2006
(see [298]).

[825] Eighth International Workshop on Learning Classifier Systems
(IWLCS-2005), Washington DC, USA, June 25-29, 2005. Held dur-
ing GECCO-2005 (see [299, 300]). See also [826].

[826] Tim Kovacs, Xavier Llorà, Keiki Takadama, Pier Luca Lanzi, Wolfgang
Stolzmann, and Stewart W. Wilson, editors. Revised Selected Papers of

http://doi.acm.org/10.1145/1068009.1068326
http://doi.acm.org/10.1145/1068009.1068326
http://citeseer.ist.psu.edu/holmes98discovering.html
http://citeseer.ist.psu.edu/holmes98discovering.html
http://www.cs.bris.ac.uk/~kovacs/lcs.archive/Holmes1997a.ps.gz
http://www.cs.bris.ac.uk/~kovacs/lcs.archive/Holmes1997a.ps.gz

752 REFERENCES

the International Workshops on Learning Classifier Systems, IWLCS
2003-2005, April 19, 2007, volume 4399/2007 of Lecture Notes in Com-
puter Science (LNCS), subseries Lecture Notes in Artificial Intelligence
(LNAI). Springer Berlin/Heidelberg, ISBN: 978-3-540-71230-5, ISSN:
0302-9743 (Print) 1611-3349 (Online).

[827] Seventh International Workshop on Learning Classifier Systems
(IWLCS-2004), Seattle, Washington, USA, June 26, 2004. Held during
GECCO-2004 (see [302, 303]). See also [826].

[828] Sixth International Workshop on Learning Classifier Systems (IWLCS-
2003), The Holiday Inn Chicago, Chicago, IL 60654, USA, July 12-16,
2003. Held during GECCO-2003 (see [304, 305]). See also [826].

[829] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Revised Papers of the 5th International Workshop on Learning Clas-
sifier Systems, IWLCS 2002, Granada, Spain, September 7-8, 2002,
volume 2661/2003 of Lecture Notes in Computer Science (LNCS).
Springer, ISBN: 3-540-20544-6. Published in 2003.

[830] Advances in Learning Classifier Systems, Revices Papers of the Fourth
International Workshop on Learning Classifier Systems (IWLCS-
2001), San Francisco, CA, USA, July 7-8, 2001, volume 2321/2002
of Lecture Notes in Computer Science (LNCS). Springer, ISBN: 3-540-
43793-2. Held during GECCO-2001 (see [310]), published in 2002.

[831] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, Revised Papers of the Third
International Workshop on Learning Classifier Systems (IWLCS-
2000), Paris, France, September 15-16, 2000, volume 1996/2001 of
Lecture Notes in Computer Science (LNCS). Springer, ISBN: 3-540-
42437-7. A joint workshop of the sixth International Conference on
Simulation of Adaptive Behaviour (SAB2000) and the sixth Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN VI,
see [326]), published in 2001.

[832] The Second International Workshop on Learning Classifier Systems
(IWLCS-99), Orlando, Florida, USA, July 13, 1999. Co-located with
GECCO-99 (see [314]). Proceedings are published in [1322].

[833] Collected Abstracts for the First International Workshop on Learning
Classifier Systems (IWLCS-92), NASA Johnson Space Center in Hous-
ton, Texas, USA, October 6-9, 1992.

[834] Bart de Boer. Classifier systems: a useful approach to machine
learning? Master’s thesis, Leiden University, Rijksuniversiteit Leiden,
Netherlands, August 1994. Internal Report Number IR94-02. Super-
visors Ida Sprinkhuizen-Kuyper and Egbert Boers. Online available at
citeseer.ist.psu.edu/deboer94classifier.html [accessed 2007-08-08].

[835] Andreas Geyer-Schulz. Holland classifier systems. In APL ’95: Proceed-
ings of the international conference on Applied programming languages,
San Antonio, Texas, United States, 1995, pages 43–55, New York, NY,

citeseer.ist.psu.edu/deboer94classifier.html

REFERENCES 753

USA. ACM Press, ISBN: 0-89791-722-7. Online available at http://

doi.acm.org/10.1145/206913.206955 [accessed 2007-09-12].
[836] Marvin Lee Minsky. Berechnung: Endliche und Unendliche Maschinen.

Verlag Berliner Union GmbH, Stuttgart, ISBN: 978-3408530294, 1971.
[837] Marvin Lee Minsky. Computation: Finite and Infinite Machines. Pren-

tica Hall Series on Automatic Computation. Prentice Hall, ISBN: 978-
0131655638, June 1967.

[838] Tommaso Toffoli. Reversible computing. In Proceedings of the 7th
Colloquium on Automata, Languages and Programming, 1980, Lec-
ture Notes In Computer Science (LNCS), pages 632–644, London, UK.
Springer-Verlag, ISBN: 3-540-10003-2.

[839] Robert Elliott Smith. Default hierarchy formation and memory ex-
ploitation in learning classifier systems. PhD thesis, University of Al-
abama, Tuscaloosa, AL, USA, 1991. UMI Order No. GAX91-30265.

[840] John Henry Holland. Escaping brittleness: The possibilities of general-
purpose learning algorithms applied to parallel rule-based systems. In
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach: Volume II, pages 593–
623. Kaufmann, Los Altos, CA, 1986. See also [1323].

[841] Marvin Lee Minsky. Steps toward artificial intelligence. In Proceed-
ings of the IRE, 1961, volume 49, pages 8–30. Reprint:Feigenbaum &
Feldman, Computers and Thought, 1963, luger.

[842] Marvin Lee Minsky. Steps toward artificial intelligence. In Ed-
ward A. Feigenbaum and Julian Feldman, editors, Computers &
thought, ISBN: 0-262-56092-5, pages 406–450. MIT Press, Cambridge,
MA, USA, 1995. Online available at http://web.media.mit.edu/

~minsky/papers/steps.html [accessed 2007-08-05].
[843] John Henry Holland. Properties of the bucket brigade algorithm. In

Proceedings of the International Conference on Genetic Algorithms and
Their Applications, 1985, pages 1–7. See proceedings [447].

[844] N. M. Hewahi and K. K. Bharadwaj. Bucket brigade algorithm for hier-
archical censored production rule-based system. International Journal
of Intelligent Systems, 11(4):197–225, 1996.

[845] Tim Kovacs. Two views of classifier systems. In Fourth Inter-
national Workshop on Learning Classifier Systems - IWLCS-2001,
7 2001, pages 367–371, San Francisco, California, USA. See pro-
ceedings [830]. Online available at http://citeseer.ist.psu.edu/

kovacs02two.html and http://www.cs.bris.ac.uk/Publications/

Papers/1000647.pdf [accessed 2007-09-11].
[846] John Henry Holland, Lashon B. Booker, Marco Colombetti, Marco

Dorigo, David E. Goldberg, Stephanie Forrest, Rick L. Riolo,
Robert Elliott Smith, Pier Luca Lanzi, Wolfgang Stolzmann, and Stew-
art W. Wilson. What is a learning classifier system? In Learning Classi-
fier Systems, From Foundations to Applications, pages 3–32. Springer-
Verlag Berlin/Heidelberg, 2000. See collection [1322].

http://doi.acm.org/10.1145/206913.206955
http://doi.acm.org/10.1145/206913.206955
http://web.media.mit.edu/~minsky/papers/steps.html
http://web.media.mit.edu/~minsky/papers/steps.html
http://citeseer.ist.psu.edu/kovacs02two.html
http://citeseer.ist.psu.edu/kovacs02two.html
http://www.cs.bris.ac.uk/Publications/Papers/1000647.pdf
http://www.cs.bris.ac.uk/Publications/Papers/1000647.pdf

754 REFERENCES

[847] Robert Elliott Smith. A report on the first international work-
shop on learning classifier systems (IWLCS-92). Online available
at http://en.scientificcommons.org/70956 and http://libra.

msra.cn/paperDetail.aspx?id=352868 [accessed 2007-08-18]. See [833],
1992.

[848] Pier Luca Lanzi and Rick L. Riolo. A roadmap to the last decade
of learning classifier system research (from 1989 to 1999). In Learn-
ing Classifier Systems: From Foundations to Applications, page 33.
Springer-Verlag Berlin/Heidelberg, 2000. See collection [1322].

[849] Stewart W. Wilson and David E. Goldberg. A critical review of clas-
sifier systems. In Proceedings of the 3rd International Conference on
Genetic Algorithms, 1989, pages 244–255. See proceedings [371]. On-
line available at http://www.eskimo.com/~wilson/ps/wg.ps.gz [ac-

cessed 2007-09-12].
[850] H. Brown Cribbs, III and Robert Elliott Smith. What can i do with

a learning classifier system? In Charles L. Karr and L. Michael Free-
man, editors, Industrial Applications of Genetic Algorithms, Interna-
tional Series on Computational Intelligence, ISBN: 978-0849398018,
pages 299–319. CRC Press, Boca Raton, FL, 1999.

[851] Kenneth Alan De Jong and William M. Spears. Learning concept clas-
sification rules using genetic algorithms. In Proceedings of the Twelth
International Conference on Artificial Intelligence IJCAI-91, Sydney,
Australia, August 24-30, 1991, volume 2. Online available at http://
citeseer.ist.psu.edu/dejong91learning.html and http://www.

cs.uwyo.edu/~wspears/papers/ijcai91.pdf [accessed 2007-09-12].
[852] Kenneth Alan De Jong, William M. Spears, and Diana F. Gordon.

Using genetic algorithms for concept learning. Machine Learning,
13:161–188, 1993. Online available at http://citeseer.ist.psu.

edu/dejong93using.html and http://www.cs.uwyo.edu/~dspears/

papers/mlj93.pdf [accessed 2007-09-12].
[853] Jaume Bacardit i Peñarroya and Natalio Krasnogor. Smart crossover

operator with multiple parents for a pittsburgh learning classifier
system. In GECCO ’06: Proceedings of the 8th annual confer-
ence on Genetic and evolutionary computation, 2006, pages 1441–
1448. See proceedings [298]. Online available at http://doi.acm.org/
10.1145/1143997.1144235 and http://www.cs.nott.ac.uk/~jqb/

publications/gecco2006-sx.pdf [accessed 2007-09-12].
[854] Jaume Bacardit i Peñarroya. Analysis of the initialization stage of a

pittsburgh approach learning classifier system. In GECCO ’05: Pro-
ceedings of the 2005 conference on Genetic and evolutionary computa-
tion, 2005, pages 1843–1850. See proceedings [299]. Online available at
http://doi.acm.org/10.1145/1068009.1068321 and http://www.

cs.nott.ac.uk/~jqb/publications/gecco2005.pdf [accessed 2007-09-12].
[855] David E. Goldberg. Computer-aided gas pipeline operation using ge-

netic algorithms and rule learning. PhD thesis, University of Michigan.

http://en.scientificcommons.org/70956
http://libra.msra.cn/paperDetail.aspx?id=352868
http://libra.msra.cn/paperDetail.aspx?id=352868
http://www.eskimo.com/~wilson/ps/wg.ps.gz
http://citeseer.ist.psu.edu/dejong91learning.html
http://citeseer.ist.psu.edu/dejong91learning.html
http://www.cs.uwyo.edu/~wspears/papers/ijcai91.pdf
http://www.cs.uwyo.edu/~wspears/papers/ijcai91.pdf
http://citeseer.ist.psu.edu/dejong93using.html
http://citeseer.ist.psu.edu/dejong93using.html
http://www.cs.uwyo.edu/~dspears/papers/mlj93.pdf
http://www.cs.uwyo.edu/~dspears/papers/mlj93.pdf
http://doi.acm.org/10.1145/1143997.1144235
http://doi.acm.org/10.1145/1143997.1144235
http://www.cs.nott.ac.uk/~jqb/publications/gecco2006-sx.pdf
http://www.cs.nott.ac.uk/~jqb/publications/gecco2006-sx.pdf
http://doi.acm.org/10.1145/1068009.1068321
http://www.cs.nott.ac.uk/~jqb/publications/gecco2005.pdf
http://www.cs.nott.ac.uk/~jqb/publications/gecco2005.pdf

REFERENCES 755

Ann Arbor, MI, 1983.
[856] Xavier Llorà and Kumara Sastry. Fast rule matching for learning clas-

sifier systems via vector instructions. In GECCO ’06: Proceedings of
the 8th annual conference on Genetic and evolutionary computation,
2006, pages 1513–1520. See proceedings [298] and also [1324]. Online
available at http://doi.acm.org/10.1145/1143997.1144244 [accessed

2007-09-12].
[857] Stewart W. Wilson. ZCS: A zeroth level classifier system.

Evolutionary Computation, 2(1):1–18, 1994. Online available
at http://citeseer.ist.psu.edu/wilson94zcs.html and http://

www.eskimo.com/~wilson/ps/zcs.pdf [accessed 2007-09-12].
[858] Dave Cliff and Susi Ross. Adding temporary memory to

zcs. Adaptive Behavio, 3(2):101–150, Fall 1994. Online avail-
able at ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/
csrp347.ps.Z [accessed 2007-09-12].

[859] Larry Bull and Jacob Hurst. Zcs redux. Evolutionary Computation,
10(2):185–205, 2002. Online available at http://www.cems.uwe.ac.

uk/lcsg/papers/zcsredux.ps [accessed 2007-09-12].
[860] Larry Bull. On using zcs in a simulated continuous double-auction

market. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 1999), 1999, pages 83–90. See proceedings
[314]. Online available at http://www.cs.bham.ac.uk/~wbl/biblio/
gecco1999/GA-806.pdf [accessed 2007-09-12].

[861] Stewart W. Wilson. Classifier fitness based on accuracy. Evolution-
ary Computation, 3(2):149–175, 1995. Online available at http://

citeseer.ist.psu.edu/wilson95classifier.html [accessed 2007-09-12].
[862] Tim Kovacs. Xcs classifier system reliably evolves accurate, com-

plete, and minimal representations for boolean functions. In Pravir K.
Chawdry, Rajkumar Roy, and Raj K. Pant, editors, Soft Computing in
Engineering Design and Manufacturing, ISBN: 978-3540762140, pages
59–68. Springer-Verlag, August 1998. Online available at http://www.
cs.bris.ac.uk/Publications/Papers/1000239.pdf [accessed 2007-08-18].

[863] Stewart W. Wilson. Generalization in the XCS classifier system. In
Proceedings of the Third Annual Conference on Genetic Programming
1998, 1998, pages 665–674. See proceedings [579]. Online available at
http://citeseer.ist.psu.edu/wilson98generalization.html [ac-

cessed 2007-09-12].
[864] Stewart W. Wilson. State of XCS classifier system research. In

Pier Luca Lanzi, Wolfgang Stolzmann, and Steward W. Wilson, ed-
itors, Learning Classifier Systems, From Foundations to Applications,
volume 1813/2000 of Lecture Notes in Computer Science (LNCS),
ISBN: 3-540-67729-1, ISSN: 0302-9743 (Print) 1611-3349 (Online),
pages 63–82. Springer-Verlag Berlin/Heidelberg, London, UK, 2000.
Online available at http://citeseer.ist.psu.edu/72750.html and
http://www.eskimo.com/~wilson/ps/state.ps.gz [accessed 2007-08-23].

http://doi.acm.org/10.1145/1143997.1144244
http://citeseer.ist.psu.edu/wilson94zcs.html
http://www.eskimo.com/~wilson/ps/zcs.pdf
http://www.eskimo.com/~wilson/ps/zcs.pdf
ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp347.ps.Z
ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp347.ps.Z
http://www.cems.uwe.ac.uk/lcsg/papers/zcsredux.ps
http://www.cems.uwe.ac.uk/lcsg/papers/zcsredux.ps
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GA-806.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GA-806.pdf
http://citeseer.ist.psu.edu/wilson95classifier.html
http://citeseer.ist.psu.edu/wilson95classifier.html
http://www.cs.bris.ac.uk/Publications/Papers/1000239.pdf
http://www.cs.bris.ac.uk/Publications/Papers/1000239.pdf
http://citeseer.ist.psu.edu/wilson98generalization.html
http://citeseer.ist.psu.edu/72750.html
http://www.eskimo.com/~wilson/ps/state.ps.gz

756 REFERENCES

[865] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E.
Goldberg. Generalization in the xcsf classifier system: Analysis, im-
provement, and extension. Evolutionary Computation Journal, 2006.
See also [1325].

[866] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, second edition, ISBN: 0137903952, December
2002.

[867] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and
Li Zhang. A smart hill-climbing algorithm for application server config-
uration. In WWW ’04: Proceedings of the 13th international conference
on World Wide Web, New York, NY, USA, 2004, pages 287–296, New
York, NY, USA. ACM Press, ISBN: 1-58113-844-X. Online available
at http://citeseer.ist.psu.edu/xi04smart.html [accessed 2007-09-11].

[868] Brian P. Gerkey, Sebastian Thrun, and Geoff Gordon. Parallel stochas-
tic hill-climbing with small teams. In Lynne E. Parker, Frank E. Schnei-
der, and Alan C. Schultz, editors, Proceedings from the 2005 Interna-
tional Workshop on Multi-Robot Systems, 2005, volume III of Multi-
Robot Systems: From Swarms to Intelligent Automata, pages 65–77.
Springer, ISBN: 978-1-4020-3388-9. Presented at 2005 International
Workshop on Multi-Robot Systems. L.E.Parker et al. Online avail-
able at http://www.cs.cmu.edu/~ggordon/gerkey-thrun-gordon.

parish.pdf [accessed 2007-08-18].
[869] Michael E. Farmer, Shweta Bapna, and Anil K. Jain. Large scale

feature selection using modified random mutation hill climbing. In
ICPR 2004. Proceedings of the 17th International Conference on Pat-
tern Recognition, August 23-26, 2004, volume 2, pages 287–290, Los
Alamitos, CA, USA. IEEE Computer Society, ISSN: 1051-4651.

[870] Alexandre Temporel and Tim Kovacs. A heuristic hill climbing al-
gorithm for mastermind. In Proceedings of the 2003 UK Workshop
on Computational Intelligence (UKCI-03), Department of Engineering
Mathematics and Department of Computer Science The University of
Bristol, UK, September 1-3, 2003, pages 189–196. University of Bristol,
ISBN: 0862925371. Online available at http://citeseer.ist.psu.

edu/701434.html and http://www.cs.bris.ac.uk/Publications/

Papers/2000067.pdf [accessed 2007-09-11].
[871] Robert C. Holte. Combinatorial auctions, knapsack problems, and

hill-climbing search. In Proceedings of the 14th Biennial Conference
of the Canadian Society on Computational Studies of Intelligence: Ad-
vances in Artificial Intelligence, Ottawa, Canada, June 7-9, 2001, vol-
ume 2056/2001 of Lecture Notes in Computer Science (LNCS), page 57.
Springer Berlin / Heidelberg, ISBN: 3-540-42144-0, ISSN: 0302-9743
(Print) 1611-3349 (Online). Online available at http://citeseer.

ist.psu.edu/holte01combinatorial.html [accessed 2007-09-11].
[872] Ted Carson and Russell Impagliazzo. Hill-climbing finds random

planted bisections. In Symposium on Discrete Algorithms, Proceedings

http://citeseer.ist.psu.edu/xi04smart.html
http://www.cs.cmu.edu/~ggordon/gerkey-thrun-gordon.parish.pdf
http://www.cs.cmu.edu/~ggordon/gerkey-thrun-gordon.parish.pdf
http://citeseer.ist.psu.edu/701434.html
http://citeseer.ist.psu.edu/701434.html
http://www.cs.bris.ac.uk/Publications/Papers/2000067.pdf
http://www.cs.bris.ac.uk/Publications/Papers/2000067.pdf
http://citeseer.ist.psu.edu/holte01combinatorial.html
http://citeseer.ist.psu.edu/holte01combinatorial.html

REFERENCES 757

of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
Washington, D.C., United States, 2001, volume 12, pages 903–909. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
ISBN: 0-89871-490-7. Online available at http://portal.acm.org/

citation.cfm?id=365411.365805 and http://citeseer.ist.psu.

edu/carson01hillclimbing.html [accessed 2007-09-11].
[873] Deniz Yuret and Michael de la Maza. Dynamic hill climbing:

Overcoming the limitations of optimization techniques. In Proceed-
ings of the Second Turkish Symposium on Artificial Intelligence and
Neural Networks, Boğaziçi University, Istanbul, Turky, June 24-25,
1993, pages 208–212. Online available at http://citeseer.ist.psu.
edu/yuret93dynamic.html and http://www.denizyuret.com/pub/

tainn93.html [accessed 2007-09-11].
[874] James C. Spall. Introduction to Stochastic Search and Optimization.

Estimation, Simulation, and Control – Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. John Wiley & Sons, first edition,
ISBN: 978-0-471-33052-3, June 2003.

[875] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Clas-
sification. Estimation, Simulation, and Control – Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley Interscience,
second edition, ISBN: 0-471-05669-3, November 2000.

[876] J. Matyas. Random optimization. Automation and Remote Control,
26:244–251, 1965.

[877] N. Baba. Convergence of a random optimization method for con-
strained optimization problems. Journal of Optimization Theory
and Applications, 33(4):451–461, April 1981. Communicated by N.
Avriel, Online available at http://www.springerlink.com/content/
q1g0k627688684k3/ [accessed 2007-08-26].

[878] Junyi Li and R. Russell Rhinehart. Heuristic random optimization.
Computers and Chemical Engineering, 22:427–444, February 1998. Re-
ceived 10 August 1995; revised 28 March 1996.

[879] Sandeep Chandran and R. Russell Rhinehart. Heuristic random
optimizer-version ii. In Proceedings of the American Control Confer-
ence, 2002, volume 4, pages 2589–2594. IEEE, Piscataway NJ, US,
ISSN: 0743-1619.

[880] Nimit Worakul, Wibul Wongpoowarak, and Prapaporn Boonme. Op-
timization in development of acetaminophen syrup formulation. Drug
Development and Industrial Pharmacy, 28:345–351, 2002. see erratum
[881].

[881] Nimit Worakul, Wibul Wongpoowarak, and Prapaporn Boonme. Op-
timization in development of acetaminophen syrup formulation – er-
ratum. Drug Development and Industrial Pharmacy, 28:1043–10045,
2002. see paper [880].

[882] Sanjeev Dhir, K. John Morrow Jr, R. Russell Rhinehart, and Theodore
Wiesner. Dynamic optimization of hybridoma growth in a fed-batch

http://portal.acm.org/citation.cfm?id=365411.365805
http://portal.acm.org/citation.cfm?id=365411.365805
http://citeseer.ist.psu.edu/carson01hillclimbing.html
http://citeseer.ist.psu.edu/carson01hillclimbing.html
http://citeseer.ist.psu.edu/yuret93dynamic.html
http://citeseer.ist.psu.edu/yuret93dynamic.html
http://www.denizyuret.com/pub/tainn93.html
http://www.denizyuret.com/pub/tainn93.html
http://www.springerlink.com/content/q1g0k627688684k3/
http://www.springerlink.com/content/q1g0k627688684k3/

758 REFERENCES

bioreactor. Biotechnology and Bioengineering, 67:197–205, January
2000. Online available at http://www3.interscience.wiley.com/

cgi-bin/abstract/71003651/ [accessed 2007-08-26].
[883] Pedro A. González Lanza and Jesús M. Zamarreño Cosme. A short-

term temperature forecaster based on a state space neural network. En-
gineering Applications of Artificial Intelligence, 15:459–464, September
2002.

[884] Scott Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing. Science, 220(4598):671–680, May 13,
1983. Online available at http://fezzik.ucd.ie/msc/cscs/ga/

kirkpatrick83optimization.pdf [accessed 2007-09-15].
[885] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-

bluth, Augusta H. Teller, and Edward Teller. Equation of
state calculations by fast computing machines. The Journal of
Chemical Physics, 21:1087–1092, June 1953. Online available
at http://scitation.aip.org/getabs/servlet/GetabsServlet?

prog=normal&id=JCPSA6000021000006001087000001&idtype=cvips&gifs=yes

[accessed 2007-09-15].
[886] Lester Ingber. Simulated annealing: Practice versus theory. Mathe-

matical and Computer Modelling, 18(11):29–57, 1993. Online available
at http://citeseer.ist.psu.edu/589471.html [accessed 2007-09-15]. See
also [1326].

[887] V. Černý. Thermodynamical approach to the traveling sales-
man problem: An efficient simulation algorithm. Journal
of Optimization Theory and Applications, 45(1):41–51, January
1985. Online available at http://www.springerlink.com/content/

gt0743622913gg33/fulltext.pdf [accessed 2007-09-15].
[888] Bradley J. Buckham and Casey Lambert. Simulated annealing appli-

cations, November 1999. Seminar presentation: MECH620 Quantita-
tive Analysis, Reasoning and Optimization Methods in CAD/CAM
and Concurrent Engineering, Department of Mechanical Engineer-
ing, University of Victoria, Course Homepage: http://www.me.uvic.
ca/~zdong/courses/mech620/ [accessed 2007-08-25], instructor: Dr. Zuomin
Dong, Online available at http://www.me.uvic.ca/~zdong/courses/
mech620/SA_App.PDF [accessed 2007-08-25].

[889] William L. Goffe, Gary D. Ferrier, and John Rogers. Global opti-
mization of statistical functions with simulated annealing. Journal
of Econometrics, 60(1-2):65–99, January-February 1994. Online
available at http://dx.doi.org/10.1016/0304-4076(94)90038-8

and http://cook.rfe.org/anneal-preprint.pdf [accessed 2007-09-15].
See also http://econpapers.repec.org/software/codfortra/

simanneal.htm [accessed 2007-09-15].
[890] Daniel A. Liotard. Algorithmic tools in the study of semiem-

pirical potential surfaces. International Journal of Quantum
Chemistry, 44(5):723–741, November 5, 1992. Online avail-

http://www3.interscience.wiley.com/cgi-bin/abstract/71003651/
http://www3.interscience.wiley.com/cgi-bin/abstract/71003651/
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCPSA6000021000006001087000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCPSA6000021000006001087000001&idtype=cvips&gifs=yes
http://citeseer.ist.psu.edu/589471.html
http://www.springerlink.com/content/gt0743622913gg33/fulltext.pdf
http://www.springerlink.com/content/gt0743622913gg33/fulltext.pdf
http://www.me.uvic.ca/~zdong/courses/mech620/
http://www.me.uvic.ca/~zdong/courses/mech620/
http://www.me.uvic.ca/~zdong/courses/mech620/SA_App.PDF
http://www.me.uvic.ca/~zdong/courses/mech620/SA_App.PDF
http://dx.doi.org/10.1016/0304-4076(94)90038-8
http://cook.rfe.org/anneal-preprint.pdf
http://econpapers.repec.org/software/codfortra/simanneal.htm
http://econpapers.repec.org/software/codfortra/simanneal.htm

REFERENCES 759

able at http://www3.interscience.wiley.com/cgi-bin/fulltext/
109573913/PDFSTART [accessed 2007-09-15].

[891] Axel T. Brünger, Paul D. Adams, and Luke M. Rice. New appli-
cations of simulated annealing in x-ray crystallography and solution
nmr. Structure, 15:325–336, 1997. Online available at http://atb.

slac.stanford.edu/public/papers.php?sendfile=44 [accessed 2007-08-

25].
[892] Erik Sundermann and Ignace L. Lemahieu. Pet image reconstruction

using simulated annealing. In Murray H. Loew, editor, Proceedings of
the Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference, Medical Imaging 1995: Image Processing, May 1995, volume
2434, pages 378–386.

[893] Koon-Pong Wong, S. R. Meikle, Dagan Feng, and M. J. Fulham. Es-
timation of input function and kinetic parameters using simulated an-
nealing: application in a flow model. IEEE Transactions on Nuclear
Science, 49:707–713, June 2002.

[894] Maqsood Yaqub, Ronald Boellaard, Marc A Kropholler, and Adriaan A
Lammertsma. Optimization algorithms and weighting factors for anal-
ysis of dynamic pet studies. Physics in Medicine and Biology, 51:4217–
4232, August 2006. Online available at stacks.iop.org/PMB/51/4217
[accessed 2007-08-25].

[895] Lester Ingber. A simple options training model. Mathemat-
ical Computer Modelling, 30:167–182, 1999. Online available
at http://www.ingber.com/markets99_spread.pdf and http://

citeseer.ist.psu.edu/ingber99simple.html [accessed 2007-08-25].
[896] Lester Ingber. Trading markets with canonical momenta and

adaptive simulated annealing. Technical Report 1996:TMCMASA,
Lester Ingber Research, McLean, VA, 1996. Online available
at http://www.ingber.com/markets96_brief.pdf and http://www.

geocities.com/francorbusetti/ingbergermarkets.pdf [accessed 2007-

08-25].
[897] R. A. Rutenbar. Simulated annealing algorithms: an overview. IEEE

Circuits and Devices Magazine, 5:19–26, January 1989.
[898] H. Martinez-Alfaro and D. R. Flugrad. Collision-free path planning

for mobile robots and/or agvs using simulated annealing. In Systems,
Man, and Cybernetics 1994. Proceedings of the IEEE International
Conference on Humans, Information and Technology, October 1994,
volume 1, pages 270–275. IEEE.

[899] A. Malhotra, J. H. Oliver, and W. Tu. Synthesis of spatially and intrin-
sically constrained curves using simulated annealing. ASME Transac-
tions, Journal of Mechanical Design, 118:53–61, March 1996. DE-vol.
32-1 Alliances in Design Automation, vol. 1 ASME 1991 pp. 145–155.

[900] H. Martinez-Alfaro, H. Valdez, and J. Ortega. Linkage synthesis of
a four bar mechanism for n precision points using simulated anneal-

http://www3.interscience.wiley.com/cgi-bin/fulltext/109573913/PDFSTART
http://www3.interscience.wiley.com/cgi-bin/fulltext/109573913/PDFSTART
http://atb.slac.stanford.edu/public/papers.php?sendfile=44
http://atb.slac.stanford.edu/public/papers.php?sendfile=44
stacks.iop.org/PMB/51/4217
http://www.ingber.com/markets99_spread.pdf
http://citeseer.ist.psu.edu/ingber99simple.html
http://citeseer.ist.psu.edu/ingber99simple.html
http://www.ingber.com/markets96_brief.pdf
http://www.geocities.com/francorbusetti/ingbergermarkets.pdf
http://www.geocities.com/francorbusetti/ingbergermarkets.pdf

760 REFERENCES

ing. In Proceedings of the 1998 ASME Design Engineering Technical
Conference, Atlanta, USA, September 13-16, 1998, page 7.

[901] I. Ullah and S. Kota. Globally-optimal synthesis of mechanisms for
path generation using simulated annealing and powell’s method. In
Proceedings of the 1996 ASME Design Engineering Technical Confer-
ences and Computers in Engineering, Irvine/CA, USA, August 1996,
page 8.

[902] Horacio Mart́ınez-Alfaro and Manuel Valenzuela-Rendón. Using sim-
ulated annealing for paper cutting optimization. In MICAI 2004: Ad-
vances in Artificial Intelligence, 2004, volume 2972/2004 of Lecture
Notes in Computer Science (LNCS), pages 11–20. Springer Berlin /
Heidelberg, ISBN: 978-3-540-21459-5, ISSN: 0302-9743 (Print) 1611-
3349 (Online).

[903] Mrinal K. Sen and Paul L. Stoffa. Nonlinear one-dimensional seis-
mic waveform inversion using simulated annealing. Geophysics,
56(10):1624–1638, October 1991.

[904] P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated an-
nealing: theory and applications. Mathematics and Its Applications.
Springer, Kluwer Academic Publishers, Norwell, MA, USA, ISBN: 978-
902772513, June 30, 1987. Reviewed in [905].

[905] Chii-Ruey Hwang. Simulated annealing: Theory and applications. Acta
Applicandae Mathematicae: An International Survey Journal on Ap-
plying Mathematics and Mathematical Applications, 12:108–111, May
1988. Academia Sinica. This is a review of [904]. Online available
at http://www.springerlink.com/content/t1n71m85j33556m4/ [ac-

cessed 2007-08-25].
[906] Mitsunori Miki, Tomoyuki Hiroyasu, and Junya Wako. Adap-

tive temperature schedule determined by genetic algorithm for par-
allel simulated annealing. In The 2003 Congress on Evolution-
ary Computation, CEC ’03, 2003. See proceedings [245]. On-
line available at http://mikilab.doshisha.ac.jp/dia/research/

person/wako/society/cec2003/cec03_wako.pdf [accessed 2007-09-15].
[907] William H. Press, Saul A. Teukolsky, William T. Vettering, and

Brian P. Flannery. Numerical Recipes in C++. Example Book. The
Art of Scientific Computing, chapter 10. Cambridge University Press,
second edition, ISBN: 0521750342, 978-0521750349, February 7, 2002.

[908] Fred Glover and M. Laguna. Tabu search. In Collin R. Reeves, edi-
tor, Modern Heuristic Techniques for Combinatorial Problems, ISBN:
978-0470220795. Blackwell Scientific Publishing, Halsted Press, Ox-
ford, England, 1993. Online available at http://citeseer.ist.psu.
edu/glover97tabu.html [accessed 2007-09-16].

[909] Fred Glover and M. Laguna. Tabu search. In Panos M. Pardalos
and Ding-Zhu Du, editors, Handbook of Combinatorial Optimization,
volume 3 of Combinatorial Optimization, pages 621–757. Kluwer Aca-
demic Publishers, Springer Netherlands, 1998.

http://www.springerlink.com/content/t1n71m85j33556m4/
http://mikilab.doshisha.ac.jp/dia/research/person/wako/society/cec2003/cec03_wako.pdf
http://mikilab.doshisha.ac.jp/dia/research/person/wako/society/cec2003/cec03_wako.pdf
http://citeseer.ist.psu.edu/glover97tabu.html
http://citeseer.ist.psu.edu/glover97tabu.html

REFERENCES 761

[910] A. Hertz, E. Taillard, and D. de Werra. A tutorial on tabu search. In
Proceedings of Giornate di Lavoro AIRO’95 (Enterprise Systems: Man-
agement of Technological and Organizational Changes), Italy, 1995,
pages 13–24. Online available at http://citeseer.ist.psu.edu/

73006.html [accessed 2007-09-15].
[911] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal

on Computing, 6(2):126–140, 1994. Online available at http://

citeseer.ist.psu.edu/141556.html and http://rtm.science.

unitn.it/~battiti/archive/reactive-tabu-search.ps.gz [accessed

2007-09-15].
[912] Djurdje Cvijović and Jacek Klinowski. Taboo search: an approach to

the multiple minima problem. Science, 267(5198):664–666, February 3,
1995.

[913] Andreas Fink and S. Voß. Generic application of tabu search methods
to manufacturing problems. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC ’98), Piscataway,
October 1998, volume 3, pages 2385–2390. IEEE.

[914] Buyang Cao and Fred Glover. Tabu search and ejection chains-
application to a node weighted version of the cardinality-constrained
tsp. Management Science, 43:908–921, July 1997.

[915] Johannes J. Schneider and Scott Kirkpatrick, editors. Tabu Search Ap-
plied to TSP, chapter part II (Applications), chapter 1, pages 441–447.
Scientific Computation. Springer Berlin Heidelberg, ISBN: 978-3-540-
34559-6 (Print) 978-3-540-34560-2 (Online), ISSN: 1434-8322, 2006.

[916] John F. McLoughlin III and Walter Cedeño. The enhanced evolution-
ary tabu search and its application to the quadratic assignment prob-
lem. In GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation, 2005, pages 975–982. See proceedings [299].
Online available at http://doi.acm.org/10.1145/1068009.1068175
[accessed 2007-08-25].

[917] Randall S. Sexton, Bahram Alidaee, Robert E. Dorsey, and John D.
Johnson. Global optimization for artificial neural networks: A
tabu search application. European Journal of Operational Research,
106:570–584, April 1998. Online available at http://dx.doi.org/10.
1016/S0377-2217(97)00292-0 [accessed 2007-08-25].

[918] M. Szachniuk, L. Popenda, Z. Gdaniec, R.W. Adamiak, and
J. B lażewicz. Nmr analysis of rna bulged structures: Tabu search
application in noe signal assignment. In Proceedings of the 2005
IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology CIBCB’05, San Diego, USA, November 2005,
pages 172–178. IEEE. Online available at http://www.man.poznan.

pl/~lpopenda/HomePage/pub/CIBCB2005172.pdf [accessed 2007-08-25].
[919] Gwo-Jen Hwang, Peng-Yeng Yin, and Shu-Heng Yeh. A tabu search

approach to generating test sheets for multiple assessment criteria.
IEEE Transactions on Education, 49:88–97, February 2006.

http://citeseer.ist.psu.edu/73006.html
http://citeseer.ist.psu.edu/73006.html
http://citeseer.ist.psu.edu/141556.html
http://citeseer.ist.psu.edu/141556.html
http://rtm.science.unitn.it/~battiti/archive/reactive-tabu-search.ps.gz
http://rtm.science.unitn.it/~battiti/archive/reactive-tabu-search.ps.gz
http://doi.acm.org/10.1145/1068009.1068175
http://dx.doi.org/10.1016/S0377-2217(97)00292-0
http://dx.doi.org/10.1016/S0377-2217(97)00292-0
http://www.man.poznan.pl/~lpopenda/HomePage/pub/CIBCB2005172.pdf
http://www.man.poznan.pl/~lpopenda/HomePage/pub/CIBCB2005172.pdf

762 REFERENCES

[920] Paolo Toth and Daniele Vigo. The granular tabu search and its applica-
tion to the vehicle-routing problem. INFORMS Journal on Computing,
15(4):333–346, 2003.

[921] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant
system: Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics Part B: Cybernet-
ics, 26(1):29–41, 1996. Online available at ftp://iridia.ulb.ac.be/
pub/mdorigo/journals/IJ.10-SMC96.pdf and http://citeseer.

ist.psu.edu/dorigo96ant.html [accessed 2007-08-05].
[922] Luca Maria Gambardella and Marco Dorigo. Solving symmet-

ric and asymmetric TSPs by ant colonies. In International
Conference on Evolutionary Computation, 1996, pages 622–627.
See proceedings [252]. Online available at http://citeseer.ist.

psu.edu/gambardella96solving.html and http://www.idsia.ch/

~luca/icec96-acs.pdf [accessed 2007-08-05].
[923] Marco Dorigo and Christian Blum. Ant colony optimization theory:

a survey. Theoretical Computer Science, 344(2-3):243–278, 2005. On-
line available at http://code.ulb.ac.be/dbfiles/DorBlu2005tcs.

pdf [accessed 2007-08-05].
[924] Marco Dorigo, Gianni Di Caro, and L. Gambardella. Ant algo-

rithms for discrete optimization. Technical Report IRIDIA/98-10,
Universite Libre de Bruxelles, Belgium, 1998. Online available at
http://citeseer.ist.psu.edu/dorigo98ant.html [accessed 2007-08-05].
See [1327].

[925] Bernard Manderick and Frans Moyson. The collective behaviour of
ants: an example of self-organization in massive parallelism. In Pro-
ceedings of AAAI Spring Symposium on Parallel Models of Intelligence,
Stanford, California, 1988.

[926] Vittorio Maniezzo, Luca Maria Gambardella, and Fabio de Luigi. Ant
colony optimization. In Godfrey C. Onwubolu and B. V. Babu, edi-
tors, New Optimization Techniques in Engineering, Studies in Fuzzi-
ness and Soft Computing, ISBN: 978-3540201670, chapter 5, pages
101–117. Springer-Verlag Berlin Heidelberg, March 5, 2004. Online
available at http://www.idsia.ch/~luca/aco2004.pdf and http://

citeseer.ist.psu.edu/maniezzo04ant.html [accessed 2007-09-13].
[927] Pierre-Paul Grassé. La reconstruction du nid et les coordinations inter-

individuelles chez bellicositermes natalensis et cubitermes sp. la théorie
de la stigmergie: Essai d’interprétation des termites constructeurs. In-
sectes Sociaux, 6:41–48, 1959.

[928] Peter Korošec and Juri Šilc. Real-parameter optimization using stig-
mergy. In Proceedings of the Second International Conference on Bioin-
spired Optimization Methods and their Application, BIOMA 2006, Oc-
tober 2006, pages 73–84. Online available at http://csd.ijs.si/

silc/articles/BIOMA06DASA.pdf [accessed 2007-08-05].

ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf
ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf
http://citeseer.ist.psu.edu/dorigo96ant.html
http://citeseer.ist.psu.edu/dorigo96ant.html
http://citeseer.ist.psu.edu/gambardella96solving.html
http://citeseer.ist.psu.edu/gambardella96solving.html
http://www.idsia.ch/~luca/icec96-acs.pdf
http://www.idsia.ch/~luca/icec96-acs.pdf
http://code.ulb.ac.be/dbfiles/DorBlu2005tcs.pdf
http://code.ulb.ac.be/dbfiles/DorBlu2005tcs.pdf
http://citeseer.ist.psu.edu/dorigo98ant.html
http://www.idsia.ch/~luca/aco2004.pdf
http://citeseer.ist.psu.edu/maniezzo04ant.html
http://citeseer.ist.psu.edu/maniezzo04ant.html
http://csd.ijs.si/silc/articles/BIOMA06DASA.pdf
http://csd.ijs.si/silc/articles/BIOMA06DASA.pdf

REFERENCES 763

[929] Marco Dorigo and Luca Maria Gambardella. Ant colony system:
A cooperative learning approach to the traveling salesman problem.
IEEE Transactions on Evolutionary Computation, 1(1):53–66, April
1997. Online available at http://citeseer.ist.psu.edu/153.html

and http://www.idsia.ch/~luca/acs-ec97.pdf [accessed 2007-08-19].
[930] Luca Maria Gambardella, Andrea E. Rizzoli, Fabrizio Oliverio, Nor-

man Casagrande, Alberto V. Donati, Roberto Montemanni, and Enzo
Lucibello. Ant colony optimization for vehicle routing in advanced
logistics systems. In Proceedings of MAS 2003 International Work-
shop on Modelling and Applied Simulation, Bergeggi, Italy, October
2003, pages 3–9. Online available at http://www.idsia.ch/~luca/

MAS2003_18.pdf [accessed 2007-08-19].
[931] Daniel Merkle, Martin Middendorf, and Hartmut Schmeck. Ant

colony optimization for resource-constrained project scheduling. In
Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2000), 2000, pages 893–900. See proceed-
ings [312]. Online available at http://citeseer.ist.psu.edu/

merkle00ant.html and http://pacosy.informatik.uni-leipzig.

de/pv/Personen/middendorf/Papers/ [accessed 2007-08-19].
[932] Ruud Schoonderwoerd, Owen E. Holland, Janet L. Bruten, and Leon

J. M. Rothkrantz. Ant-based load balancing in telecommunications
networks. Adaptive Behavior, 5:169–207, 1996. Online available
at http://citeseer.ist.psu.edu/schoonderwoerd96antbased.

html and http://www.ifi.unizh.ch/ailab/teaching/FG06/ [accessed

2007-08-19].
[933] K.M. Sim and W.H. Sun. Multiple ant-colony optimization for network

routing. In First International Symposium on Cyber Worlds (CW’02),
2002, page 0277, Los Alamitos, CA, USA. IEEE Computer Society,
ISBN: 0-7695-1862-1.

[934] Luca Maria Gambardella, É. D. Taillard, and Marco Dorigo. Ant
colonies for the quadratic assignment problem. The Journal of the
Operational Research Society, 50(2):167–176, February 1999. Online
available at http://www.idsia.ch/~luca/tr-idsia-4-97.pdf and
http://citeseer.ist.psu.edu/378986.html [accessed 2007-08-19].

[935] Russel C. Eberhart and James Kennedy. A new optimizer using particle
swarm theory. In Proceedings of the Sixth International Symposium on
Micro Machine and Human Science MHS ’95, October 1995, pages
39–43. IEEE Press, ISBN: 0-7803-2676-8.

[936] James Kennedy and Russel C. Eberhart. Particle swarm optimiza-
tion. In Proceedings of IEEE International Conference on Neural Net-
works, 1995, Perth, WA, Australia, November 27-December 1, 1995,
volume 4, pages 1942–1948, ISBN: 0-7803-2768-3. Online available
at http://www.engr.iupui.edu/~shi/Coference/psopap4.html [ac-

cessed 2007-08-21].

http://citeseer.ist.psu.edu/153.html
http://www.idsia.ch/~luca/acs-ec97.pdf
http://www.idsia.ch/~luca/MAS2003_18.pdf
http://www.idsia.ch/~luca/MAS2003_18.pdf
http://citeseer.ist.psu.edu/merkle00ant.html
http://citeseer.ist.psu.edu/merkle00ant.html
http://pacosy.informatik.uni-leipzig.de/pv/Personen/middendorf/Papers/
http://pacosy.informatik.uni-leipzig.de/pv/Personen/middendorf/Papers/
http://citeseer.ist.psu.edu/schoonderwoerd96antbased.html
http://citeseer.ist.psu.edu/schoonderwoerd96antbased.html
http://www.ifi.unizh.ch/ailab/teaching/FG06/
http://www.idsia.ch/~luca/tr-idsia-4-97.pdf
http://citeseer.ist.psu.edu/378986.html
http://www.engr.iupui.edu/~shi/Coference/psopap4.html

764 REFERENCES

[937] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Particle
swarm optimization. AIAA Journal, 41(8):1583–1589, 2003. AIAA
2002–1235. 43rd AIAA/ASME/ASCE/AHS/ASC, Structures, Struc-
tural Dynamics, and Materials Conference, April 22-25, 2002, Den-
ver, Colorado. Online available at http://citeseer.ist.psu.edu/

venter02particle.html [accessed 2007-08-20].
[938] Tao Cai, Feng Pan, and Jie Chen. Adaptive particle swarm optimiza-

tion algorithm. In Proceedings of Fifth World Congress on Intelligent
Control and Automation, 2004. WCICA 2004, June 15-19, 2004, vol-
ume 3, pages 2245–2247, ISBN: 0-7803-8273-0.

[939] Russel C. Eberhart and Yuhui Shi. Comparison between genetic al-
gorithms and particle swarm optimization. In Proceedings of the 7th
International Conference on Evolutionary Programming, 1998, pages
611–616. See proceedings [802].

[940] Peter John Angeline. Evolutionary optimization versus particle swarm
optimization: Philosophy and performance differences. In EP ’98: Pro-
ceedings of the 7th International Conference on Evolutionary Program-
ming VII, 1998, pages 601–610. See proceedings [802].

[941] Michael Meissner, Michael Schmuker, and Gisbert Schneider. Opti-
mized particle swarm optimization (opso) and its application to ar-
tificial neural network training. BMC Bioinformatics, 7, 2006. On-
line available at http://www.biomedcentral.com/1471-2105/7/125

[accessed 2007-08-21].
[942] Thomas Kiel Rasmussen and Thiemo Krink. Improved hidden markov

model training for multiple sequence alignment by a particle swarm
optimization-evolutionary algorithm hybrid. BioSystems, 72:5–17,
November 2003. Online available at http://dx.doi.org/10.1016/

S0303-2647(03)00131-X [accessed 2007-08-21].
[943] K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global

optimization problems through particle swarm optimization. Natu-
ral Computing, 1:235–306, June 2002. Online available at http://

citeseer.ist.psu.edu/parsopoulos02recent.html [accessed 2007-08-21].
[944] Ge Wu, Volkert Hansen, E. Kreysa, and H.-P. Gemünd. Opti-

mierung von fss-bandpassfiltern mit hilfe der schwarmintelligenz (parti-
cle swarm optimization). Advances in Radio Science, 4:65–71, Septem-
ber 2006. Online available at http://www.adv-radio-sci.net/4/65/
2006/ars-4-65-2006.pdf [accessed 2007-08-21].

[945] Alexandre M. Baltar and Darrell G. Fontane. A generalized multi-
objective particle swarm optimization solver for spreadsheet models:
application to water quality. In Proceedings of AGU Hydrology Days
2006, Fort Collins, Colorado, March 20-22, 2006, pages 1–12. Online
available at http://www.lania.mx/~ccoello/EMOO/baltar06.pdf.

gz and http://hydrologydays.colostate.edu/Proceedings_2006.

htm [accessed 2007-08-21].

http://citeseer.ist.psu.edu/venter02particle.html
http://citeseer.ist.psu.edu/venter02particle.html
http://www.biomedcentral.com/1471-2105/7/125
http://dx.doi.org/10.1016/S0303-2647(03)00131-X
http://dx.doi.org/10.1016/S0303-2647(03)00131-X
http://citeseer.ist.psu.edu/parsopoulos02recent.html
http://citeseer.ist.psu.edu/parsopoulos02recent.html
http://www.adv-radio-sci.net/4/65/2006/ars-4-65-2006.pdf
http://www.adv-radio-sci.net/4/65/2006/ars-4-65-2006.pdf
http://www.lania.mx/~ccoello/EMOO/baltar06.pdf.gz
http://www.lania.mx/~ccoello/EMOO/baltar06.pdf.gz
http://hydrologydays.colostate.edu/Proceedings_2006.htm
http://hydrologydays.colostate.edu/Proceedings_2006.htm

REFERENCES 765

[946] Walter Cedeño and Dimitris K. Agrafiotis. Using particle swarms
for the development of qsar models based on k-nearest neighbor
and kernel regression. Journal of Computer-Aided Molecular De-
sign, 17:255–263, February 2003. Online available at http://www.

springerlink.com/content/j523757110202636/ and http://www.

dimitris-agrafiotis.com/ [accessed 2007-08-21].
[947] Qi Shen, Jian-Hui Jiang, Chen-Xu Jiao, Shuang-Yan Huan, Guo

li Shen, , and Ru-Qin Yu. Optimized partition of minimum spanning
tree for piecewise modeling by particle swarm algorithm. qsar studies
of antagonism of angiotensin ii antagonists. Journal of Chemical In-
formation and Modeling / J. Chem. Inf. Comput. Sci., 44:2027–2031,
November 2004. Online available at http://dx.doi.org/10.1021/

ci034292+ [accessed 2007-08-21].
[948] Yuhui Shi and Marco Dorigo, editors. Proceedings of the 2007 IEEE

Swarm Intelligence Symposium. SIS’07, Hilton Hawaiian Village Beach
Resort & Spa, Hawaii, USA, April 1-5, 2007, IEEE International Sym-
posia on Swarm Intelligence. Institute of Electrical & Electronics En-
ginee (IEEE). http://www.computelligence.org/sis/2007/ [accessed

2007-08-26].
[949] Proceedings of the 2006 IEEE Swarm Intelligence Symposium. SIS’06,

Hilton Indianapolis Hotel, Indianapolis, Indiana, USA, May 12-14,
2006, IEEE International Symposia on Swarm Intelligence. Insti-
tute of Electrical & Electronics Enginee (IEEE). http://www.

computelligence.org/sis/2006/ [accessed 2007-08-26].
[950] Proceedings of the 2005 IEEE Swarm Intelligence Symposium.

SIS2005, The Westin Pasadena, Pasadena, California, USA, June 8-10,
2005, IEEE International Symposia on Swarm Intelligence. Institute of
Electrical & Electronics Enginee (IEEE), ISBN: 978-0780389168.

[951] Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03,
University Place Conference Center, Indiana University Purdue Uni-
versity Indianapolis, Indianapolis, Indiana, USA, April 24-26, 2003,
IEEE International Symposia on Swarm Intelligence. Institute of Elec-
trical & Electronics Enginee (IEEE), ISBN: 978-0780379145. Cat.
No.03EX706, http://www.computelligence.org/sis/2003/ [accessed

2007-08-26].
[952] Pablo Moscato. On evolution, search, optimization, genetic algorithms

and martial arts: Towards memetic algorithms. Technical Report C3P
826, Caltech Concurrent Computation Program 158-79, California In-
stitute of Technology, Pasadena, CA 91125, USA, Pasadena, CA, 1989.
Online available at http://www.densis.fee.unicamp.br/~moscato/
papers/bigone.ps [accessed 2007-08-18].

[953] Jason Digalakis and Konstantinos Margaritis. Performance comparison
of memetic algorithms. Journal of Applied Mathematics and Com-
putation, 158:237–252, October 2004. Online available at http://

http://www.springerlink.com/content/j523757110202636/
http://www.springerlink.com/content/j523757110202636/
http://www.dimitris-agrafiotis.com/
http://www.dimitris-agrafiotis.com/
http://dx.doi.org/10.1021/ci034292+
http://dx.doi.org/10.1021/ci034292+
http://www.computelligence.org/sis/2007/
http://www.computelligence.org/sis/2006/
http://www.computelligence.org/sis/2006/
http://www.computelligence.org/sis/2003/
http://www.densis.fee.unicamp.br/~moscato/papers/bigone.ps
http://www.densis.fee.unicamp.br/~moscato/papers/bigone.ps
http://citeseer.ist.psu.edu/458892.html

766 REFERENCES

citeseer.ist.psu.edu/458892.html and http://www.complexity.

org.au/ci/draft/draft/digala02/digala02s.pdf [accessed 2007-09-12].
[954] Jason Digalakis and Konstantinos Margaritis. A parallel memetic

algorithm for solving optimization problems. In Proceedings of the
4th Metaheuristics International Conference, 2001, pages 121–125.
See proceedings [173]. Online available at http://citeseer.ist.

psu.edu/digalakis01parallel.html and http://www.it.uom.gr/

people/digalakis/digiasfull.pdf [accessed 2007-09-12].
[955] Maria J. Blesa, Pablo Moscato, and Fatos Xhafa. A memetic algo-

rithm for the minimum weighted k-cardinality tree subgraph prob-
lem. In Proceedings of the 4th Metaheuristics International Con-
ference, 2001, pages 85–90. See proceedings [173]. Online avail-
able at http://citeseer.ist.psu.edu/458772.html and http://

citeseer.ist.psu.edu/649471.html [accessed 2007-09-12].
[956] Luciana Buriol, Paulo M. França, and Pablo Moscato. A

new memetic algorithm for the asymmetric traveling sales-
man problem. Journal of Heuristics, 10:483–506, September
2004. Online available at http://www.springerlink.com/content/

w617486q60mphg88/fulltext.pdf and http://citeseer.ist.psu.

edu/544761.html [accessed 2007-09-12].
[957] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms. MIT Electrical Engineering and Computer
Science. The MIT Press and McGraw-Hill, second edition, ISBN: 0-
2625-3196-8, first edition: 978-0262031417, August 2001. First edition
June 1990.

[958] Werner Dilger. Einführung in die Künstliche Intelligenz. Chemnitz
University of Technology, Faculty of Computer Science, Chair of Ar-
tificial Intelligence (Künstliche Intelligenz), April 2006. Lecture notes
for the lectures artificial intelligence. Online available at http://www.
tu-chemnitz.de/informatik/KI/skripte.php [accessed 2007-08-06].

[959] Barry D. Hughes. Random Walks and Random Environments: Volume
1: Random Walks. Oxford University Press, USA, ISBN: 0198537883,
978-0198537885, May 16, 1995.

[960] William Feller. An Introduction to Probability Theory and Its Applica-
tions, volume 1. Wiley, 3 edition, ISBN: 0471257087,978-0471257080,
1968.

[961] Hendrik Skubch. Hierarchical strategy learning for flux agents. Mas-
ter’s thesis, Technische Universität Dresden, Dresden, Germany, Febru-
ary 18, 2007. Supervisor: Prof. Michael Thielscher. Online available at
http://www.phenomene.de/hs/hslfa-dipl-hs.pdf [accessed 2007-11-27].

[962] John H. Gillespie. Molecular evolution over the mutational landscape.
Evolution, 38(5):1116–1129, September 1984.

[963] John Maynard Smith. Natural selection and the concept of a protein
space. Nature, 225:563–564, February 7, 1970. Received November 7,
1969.

http://citeseer.ist.psu.edu/458892.html
http://www.complexity.org.au/ci/draft/draft/digala02/digala02s.pdf
http://www.complexity.org.au/ci/draft/draft/digala02/digala02s.pdf
http://citeseer.ist.psu.edu/digalakis01parallel.html
http://citeseer.ist.psu.edu/digalakis01parallel.html
http://www.it.uom.gr/people/digalakis/digiasfull.pdf
http://www.it.uom.gr/people/digalakis/digiasfull.pdf
http://citeseer.ist.psu.edu/458772.html
http://citeseer.ist.psu.edu/649471.html
http://citeseer.ist.psu.edu/649471.html
http://www.springerlink.com/content/w617486q60mphg88/fulltext.pdf
http://www.springerlink.com/content/w617486q60mphg88/fulltext.pdf
http://citeseer.ist.psu.edu/544761.html
http://citeseer.ist.psu.edu/544761.html
http://www.tu-chemnitz.de/informatik/KI/skripte.php
http://www.tu-chemnitz.de/informatik/KI/skripte.php
http://www.phenomene.de/hs/hslfa-dipl-hs.pdf

REFERENCES 767

[964] Herb Sutter and James Larus. Software and the concurrency revolu-
tion. Queue, 3(7):54–62, 2005. Online available at http://research.
microsoft.com/~larus/Papers/queue01.pdf and http://portal.

acm.org/citation.cfm?id=1095421 [accessed 2007-08-13].
[965] Omer Berkman, Dany Breslauer, Zvi Galil, Baruch Schieber, and Uzi

Vishkin. Highly parallelizable problems. In STOC ’89: Proceedings of
the twenty-first annual ACM symposium on Theory of computing, Seat-
tle, Washington, United States, 1989, pages 309–319, New York, NY,
USA. ACM Press, ISBN: 0-89791-307-8. Online available at http://

portal.acm.org/citation.cfm?id=73036 and http://libra.msra.

cn/paperDetail.aspx?id=907688 [accessed 2007-08-13].
[966] Valmir C. Barbosa. An Introduction to Distributed Algorithms. The

MIT Press, ISBN: 978-0262024129, September 1996.
[967] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-

versity Press, second edition, ISBN: 978-0521794831, January 2004.
[968] Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simultane-

ous multithreading: Maximizing on-chip parallelism. In Proceedings
of the 22th Annual International Symposium on Computer Archi-
tecture, Santa Margherita Ligure, Italy, June 1995, pages 392–403.
ACM Press. Online available at http://www.cs.washington.edu/

research/smt/papers/ISCA95.ps and http://citeseer.ist.psu.

edu/tullsen95simultaneous.html [accessed 2007-09-11].
[969] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson,

and Kunyung Chang. The case for a single-chip multiprocessor.
In ASPLOS-VII: Proceedings of the seventh international conference
on Architectural support for programming languages and operating
systems, Cambridge, Massachusetts, United States, 1996, pages 2–
11, New York, NY, USA. ACM Press, ISBN: 0-89791-767-7. On-
line available at http://ogun.stanford.edu/~kunle/publications/
hydra_ASPLOS_VII.pdf and http://doi.acm.org/10.1145/237090.

237140 [accessed 2007-09-11].
[970] Geoff Koch. Discovering multi-core: Extending the benefits of

moores law. Technology@Intel Magazine, July 2005. Online avail-
able at http://www.intel.com/technology/magazine/computing/

multi-core-0705.pdf [accessed 2007-09-11]. See also http://www.intel.

com/technology/magazine/ [accessed 2007-09-11].
[971] Michael Singer. Intel first to ship dual core x86 chip. internetnews.com,

April 2005. Online available at http://www.internetnews.com/

ent-news/article.php/3496926 [accessed 2007-07-16]. See also http://

www.internetnews.com/ [accessed 2007-09-11].
[972] Erick Cant’u-Paz. A summary of research on parallel ge-

netic algorithms. Technical report, Illinois Genetic Algo-
rithms Laboratory, University of Illinois at Urbana-Champaign,
1995. Online available at http://citeseer.ist.psu.edu/27505.

http://research.microsoft.com/~larus/Papers/queue01.pdf
http://research.microsoft.com/~larus/Papers/queue01.pdf
http://portal.acm.org/citation.cfm?id=1095421
http://portal.acm.org/citation.cfm?id=1095421
http://portal.acm.org/citation.cfm?id=73036
http://portal.acm.org/citation.cfm?id=73036
http://libra.msra.cn/paperDetail.aspx?id=907688
http://libra.msra.cn/paperDetail.aspx?id=907688
http://www.cs.washington.edu/research/smt/papers/ISCA95.ps
http://www.cs.washington.edu/research/smt/papers/ISCA95.ps
http://citeseer.ist.psu.edu/tullsen95simultaneous.html
http://citeseer.ist.psu.edu/tullsen95simultaneous.html
http://ogun.stanford.edu/~kunle/publications/hydra_ASPLOS_VII.pdf
http://ogun.stanford.edu/~kunle/publications/hydra_ASPLOS_VII.pdf
http://doi.acm.org/10.1145/237090.237140
http://doi.acm.org/10.1145/237090.237140
http://www.intel.com/technology/magazine/computing/multi-core-0705.pdf
http://www.intel.com/technology/magazine/computing/multi-core-0705.pdf
http://www.intel.com/technology/magazine/
http://www.intel.com/technology/magazine/
http://www.internetnews.com/ent-news/article.php/3496926
http://www.internetnews.com/ent-news/article.php/3496926
http://www.internetnews.com/
http://www.internetnews.com/
http://citeseer.ist.psu.edu/27505.html

768 REFERENCES

html and ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/

95007.ps.Z [accessed 2007-08-13].
[973] Wanlei Zhou and Andrzej Goscinski. An analysis of the web-based

client-server computing models. In Proceedings of the Asia-Pacific Web
Conference (APWeb’98), Beijing, September 1998, pages 343–348. On-
line available at http://citeseer.ist.psu.edu/296101.html [accessed

2007-08-13].
[974] G. Degli Antoni, D. Cabianca, M. Vaccari, M. Benini, and

F. Casablanca. Linearity of client/server systems. Bulletin of the
European Association for Theoretical Computer Science, 57:201–214,
April 1995. Online available at http://citeseer.ist.psu.edu/

antoni95linearity.html and http://en.scientificcommons.org/

130995 [accessed 2007-08-13].
[975] David A. Van Veldhuizen, Jesse B. Zydallis, and Gary B. Lamont.

Issues in parallelizing multiobjective evolutionary algorithms for real
world applications. In SAC ’02: Proceedings of the 2002 ACM sympo-
sium on Applied computing, Madrid, Spain, 2002, pages 595–602, New
York, NY, USA. ACM Press, ISBN: 1-58113-445-2. Online available at
http://doi.acm.org/10.1145/508791.508906 [accessed 2007-08-14].

[976] Kai Xu, Sushil J. Louis, and Roberto C. Mancini. A scalable paral-
lel genetic algorithm for x-ray spectroscopic analysis. In GECCO ’05:
Proceedings of the 2005 conference on Genetic and evolutionary compu-
tation, 2005, pages 811–816. See proceedings [299]. Online available at
http://portal.acm.org/citation.cfm?id=1068145 [accessed 2007-08-14].

[977] Christian Gagné and Marc Parizeau. Open beagle: a c++ framework
for your favorite evolutionary algorithm. SIGEVOlution, 1(1):12–15,
2006. Online available at http://www.sigevolution.org/2006/01/

issue.pdf [accessed 2007-08-14].
[978] L. Darrell Whitley and Timothy Starkweather. Genitor ii.: A dis-

tributed genetic algorithm. Journal of Experimental & Theoretical Ar-
tificial Intelligence,, 2(3):189–214, July 1990.

[979] W.N. Martin, Jens Lienig, and James P. Cohoon. Island (migration)
models: Evolutionary algorithms based on punctuated equilibria. In
Thomas Bäck, Lawrence J. Fogel, and Zbigniew Michalewicz, editors,
Handbook of Evolutionary Computation, chapter 6.3. IOP Publishing
and Oxford University Press, may 97 release edition, 1997. Online avail-
able at http://www.cs.virginia.edu/papers/Island_Migration.

pdf [accessed 2007-08-13].
[980] Zbigniew Skolicki and Kenneth A. De Jong. The influence of migration

sizes and intervals on island models. In GECCO ’05: Proceedings of the
2005 conference on Genetic and evolutionary computation, 2005, pages
1295–1302. See proceedings [299]. Online available at http://portal.
acm.org/citation.cfm?id=1068009.1068219 [accessed 2007-08-14].

[981] Zbigniew Skolicki. An analysis of island models in evolutionary compu-
tation. In Workshop Proceedings of Genetic and Evolutionary Compu-

http://citeseer.ist.psu.edu/27505.html
ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/95007.ps.Z
ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/95007.ps.Z
http://citeseer.ist.psu.edu/296101.html
http://citeseer.ist.psu.edu/antoni95linearity.html
http://citeseer.ist.psu.edu/antoni95linearity.html
http://en.scientificcommons.org/130995
http://en.scientificcommons.org/130995
http://doi.acm.org/10.1145/508791.508906
http://portal.acm.org/citation.cfm?id=1068145
http://www.sigevolution.org/2006/01/issue.pdf
http://www.sigevolution.org/2006/01/issue.pdf
http://www.cs.virginia.edu/papers/Island_Migration.pdf
http://www.cs.virginia.edu/papers/Island_Migration.pdf
http://portal.acm.org/citation.cfm?id=1068009.1068219
http://portal.acm.org/citation.cfm?id=1068009.1068219

REFERENCES 769

tation Conference, GECCO 2005, 2005, pages 386–389. See proceed-
ings [300]. Online available at http://cs.gmu.edu/~eclab/papers/

skolicki05analysis.pdf and http://portal.acm.org/citation.

cfm?id=1102256.1102343 [accessed 2007-08-14].
[982] Fuey Sian Chong and William B. Langdon. Java based distributed

genetic programming on the internet. In Proceedings of the Genetic
and Evolutionary Computation Conference, 1999, volume 2, page 1229.
See proceedings [314]. Online available at http://libra.msra.cn/

paperDetail.aspx?id=589775 and http://citeseer.ist.psu.edu/

chong99java.html [accessed 2007-08-14].
[983] Martina Gorges-Schleuter. Explicit parallelism of genetic algorithms

through population structures. In PPSN I: Proceedings of the 1st
Workshop on Parallel Problem Solving from Nature, 1991, pages 150–
159, ISBN: 3-540-54148-9. See proceedings [331].

[984] Reiko Tanese. Distributed genetic algorithms. In Proceedings of the 3rd
International Conference on Genetic Algorithms, 1989, pages 434–439.
See proceedings [371].

[985] Hisao Ishibuchi, Tadashi Yoshida, and Tadahiko Murata. Balance be-
tween genetic search and local search in hybrid evolutionary multi-
criterion optimization algorithms. In GECCO ’02: Proceedings of the
Genetic and Evolutionary Computation Conference, 2002, pages 1301–
1308. See proceedings [306]. Online available at http://citeseer.

ist.psu.edu/632937.html [accessed 2007-09-10].
[986] Miguel Alabau, Lhassane Idoumghar, and René Schott. New hybrid

genetic algorithms for the frequency assignment problem. In Proceed-
ings of the 13th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’01), Dallas, TX, USA, November 7-9, 2001, page
136 ff. IEEE Computer Society, ISBN: 0-7695-1417-0.

[987] Vincent Bachelet and El-Ghazali Talbi. A parallel co-evolutionary
metaheuristic. In IPDPS ’00: Proceedings of the 15 IPDPS 2000 Work-
shops on Parallel and Distributed Processing, 2000, pages 628–635,
London, UK. Springer-Verlag, ISBN: 3-540-67442-X. Online avail-
able at http://ipdps.cc.gatech.edu/2000/biosp3/18000629.pdf

and http://citeseer.ist.psu.edu/bachelet00parallel.html [ac-

cessed 2007-09-10].
[988] Xin Yao. Optimization by genetic annealing. In M. Jabri, edi-

tor, Proceedings of Second Australian Conference on Neural Networks,
Sydney, Australia, 1991, pages 94–97. Online available at http://

citeseer.ist.psu.edu/yao91optimization.html and ftp://www.

cs.adfa.edu.au/pub/xin/acnn91.ps.Z [accessed 2007-09-10].
[989] Christian Spieth, Felix Streichert, Nora Speer, and Andreas Zell.

Utilizing an island model for ea to preserve solution diversity
for inferring gene regulatory networks. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2004), 2004,
volume 1, pages 146–151. See proceedings [244]. Online avail-

http://cs.gmu.edu/~eclab/papers/skolicki05analysis.pdf
http://cs.gmu.edu/~eclab/papers/skolicki05analysis.pdf
http://portal.acm.org/citation.cfm?id=1102256.1102343
http://portal.acm.org/citation.cfm?id=1102256.1102343
http://libra.msra.cn/paperDetail.aspx?id=589775
http://libra.msra.cn/paperDetail.aspx?id=589775
http://citeseer.ist.psu.edu/chong99java.html
http://citeseer.ist.psu.edu/chong99java.html
http://citeseer.ist.psu.edu/632937.html
http://citeseer.ist.psu.edu/632937.html
http://ipdps.cc.gatech.edu/2000/biosp3/18000629.pdf
http://citeseer.ist.psu.edu/bachelet00parallel.html
http://citeseer.ist.psu.edu/yao91optimization.html
http://citeseer.ist.psu.edu/yao91optimization.html
ftp://www.cs.adfa.edu.au/pub/xin/acnn91.ps.Z
ftp://www.cs.adfa.edu.au/pub/xin/acnn91.ps.Z

770 REFERENCES

able at http://www-ra.informatik.uni-tuebingen.de/software/

JCell/publications.html [accessed 2007-08-24].
[990] Robert J. Collins and David R. Jefferson. Selection in massively par-

allel genetic algorithms. In Proceedings of the Fourth International
Conference on Genetic Algorithms, 1991, pages 249–256. See pro-
ceedings [445]. Online available at http://citeseer.ist.psu.edu/

349839.html [accessed 2007-11-30].
[991] Heinz Mühlenbein. Evolution in time and space – the parallel genetic

algorithm. In Foundations of Genetic Algorithms 1, 1990, pages 316–
337. See proceedings [439]. Online available at http://muehlenbein.
org/parallel.PDF and http://citeseer.ist.psu.edu/11201.html

[accessed 2007-11-30].
[992] Sean Luke and Liviu Panait. A survey and comparison of tree

generation algorithms. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2001), 2001, pages 81–88.
See proceedings [310]. Online available at http://citeseer.ist.

psu.edu/luke01survey.html and http://www.cs.gmu.edu/~sean/

papers/treegenalgs.pdf [accessed 2007-07-28].
[993] Edmund Burke, Steven Gustafson, Graham Kendall, and Natalio

Krasnogor. Advanced population diversity measures in genetic pro-
gramming. In Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature - PPSN VII, 2002, page 341
ff. See proceedings [325]. Online available at http://citeseer.ist.

psu.edu/529057.html [accessed 2007-09-07].
[994] P. N. Suganthan, N. Hansen, J. J. Liang, Kalyanmoy Deb, Y. P. Chen,

Anne Auger, and S. Tiwari. Problem definitions and evaluation criteria
for the cec 2005 special session on real-parameter optimization. Kan-
GAL Report 2005005, Kanpur Genetic Algorithms Laboratory, Kan-
GAL, Indian Institute of Technology Kanpur, India, May 2005. Online
available at http://www.iitk.ac.in/kangal/papers/k2005005.pdf

[accessed 2007-10-07]. See also [1328, 243].
[995] Stuart Alan Kauffman and Simon Levin. Towards a general theory of

adaptive walks on rugged landscapes. Journal of Theoretical Biology,
128(1):11–45, September 7, 1987. Online available at http://dx.doi.
org/10.1016/S0022-5193(87)80029-2 [accessed 2007-11-27].

[996] Stuart Alan Kauffman. Adaptation on rugged fitness landscapes. In
Daniel L. Stein, editor, Lectures in the Sciences of Complexity: The
Proceedings of the 1988 Complex Systems Summer School, Santa Fe,
New Mexico, USA, June-July 1988, volume Lecture I of Santa Fe In-
stitute Studies in the Sciences of Complexity, pages 527–618. Addison
Wesley Publishing Company, Redwood City, ISBN: 978-0201510157,
0201510154. Published in September 1989.

[997] Stuart Alan Kauffman and Edward D. Weinberger. The nk model
of rugged fitness landscapes and its application to maturation of
the immune response. Journal of Theoretical Biology, 141:211–245,

http://www-ra.informatik.uni-tuebingen.de/software/JCell/publications.html
http://www-ra.informatik.uni-tuebingen.de/software/JCell/publications.html
http://citeseer.ist.psu.edu/349839.html
http://citeseer.ist.psu.edu/349839.html
http://muehlenbein.org/parallel.PDF
http://muehlenbein.org/parallel.PDF
http://citeseer.ist.psu.edu/11201.html
http://citeseer.ist.psu.edu/luke01survey.html
http://citeseer.ist.psu.edu/luke01survey.html
http://www.cs.gmu.edu/~sean/papers/treegenalgs.pdf
http://www.cs.gmu.edu/~sean/papers/treegenalgs.pdf
http://citeseer.ist.psu.edu/529057.html
http://citeseer.ist.psu.edu/529057.html
http://www.iitk.ac.in/kangal/papers/k2005005.pdf
http://dx.doi.org/10.1016/S0022-5193(87)80029-2
http://dx.doi.org/10.1016/S0022-5193(87)80029-2

REFERENCES 771

November 21, 1989. Online available at http://dx.doi.org/10.1016/
S0022-5193(89)80019-0 [accessed 2007-10-14].

[998] Edward D. Weinberger. Local properties of kauffman’s nk model, a
tuneably rugged energy landscape. Physical Review A, 44:6399–6413,
1991.

[999] Walter Fontana, Peter F. Stadler, Erich G. Bornberg-Bauer, Thomas
Griesmacher, Ivo L. Hofacker, Manfred Tacker, Pedro Tarazona, Ed-
ward D. Weinberger, and Peter Schuster. Rna folding and combina-
tory landscapes. Physical Review E, 47(3):2083–2099, March 1993.
Online available at http://dx.doi.org/10.1103/PhysRevE.47.2083
and http://citeseer.ist.psu.edu/94823.html [accessed 2007-11-27].

[1000] Michael Defoin Platel, Sébastien Vérel, Manuel Clergue, and Philippe
Collard. From royal road to epistatic road for variable length evolu-
tion algorithm. In Evolution Artificielle, 6th International Conference,
2003, pages 3–14. See proceedings [259]. Online available at http://

arxiv.org/abs/0707.0548 and http://www.i3s.unice.fr/~verel/

publi/ea03-fromRRtoER.pdf [accessed 2007-12-01].
[1001] Edward D. Weinberger. Np completeness of kauffman’s n-k model, a

tuneable rugged fitness landscape. Working Papers 96-02-003, Santa Fe
Institute, February 1996. Online available at http://www.santafe.

edu/research/publications/workingpapers/96-02-003.ps [accessed

2007-08-24].
[1002] Richard K. Thompson and Alden H. Wright. Additively de-

composable fitness functions. Technical report, Computer Sci-
ence Department, The University of Montana, Missoula, MT 59812-
1008, USA, 1996. Online available at http://citeseer.ist.psu.

edu/thompson96additively.html and http://www.cs.umt.edu/u/

wright/papers/add_decomp.ps.gz [accessed 2007-11-27].
[1003] Terry Jones. A description of holland’s royal road function. Evolution-

ary Computation, 2:411–417, 1994. See also [1329].
[1004] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness

and the building-block hypothesis. In Foundations of Genetic Algo-
rithms 2, 1992, pages 109–126. See proceedings [438]. Online avail-
able at http://web.cecs.pdx.edu/~mm/Forrest-Mitchell-FOGA.

pdf and http://citeseer.ist.psu.edu/39682.html [accessed 2007-08-13].
[1005] Michael Defoin Platel, Manuel Clergue, and Philippe Collard. Max-

imum homologous crossover for linear genetic programming. In Ge-
netic Programming: 6th European Conference, 2003, pages 29–48. See
proceedings [572]. Online available at http://www.i3s.unice.fr/

~clergue/siteCV/publi/eurogp_03.pdf [accessed 2007-12-01].
[1006] William F. Punch, Douglas Zongker, and Erik D. Goodman. The royal

tree problem, a benchmark for single and multiple population genetic
programming. In Advances in Genetic Programming 2, pages 299–316.
MIT Press, 1996. See collection [594]. Online available at http://

citeseer.ist.psu.edu/147908.html [accessed 2007-10-14].

http://dx.doi.org/10.1016/S0022-5193(89)80019-0
http://dx.doi.org/10.1016/S0022-5193(89)80019-0
http://dx.doi.org/10.1103/PhysRevE.47.2083
http://citeseer.ist.psu.edu/94823.html
http://arxiv.org/abs/0707.0548
http://arxiv.org/abs/0707.0548
http://www.i3s.unice.fr/~verel/publi/ea03-fromRRtoER.pdf
http://www.i3s.unice.fr/~verel/publi/ea03-fromRRtoER.pdf
http://www.santafe.edu/research/publications/workingpapers/96-02-003.ps
http://www.santafe.edu/research/publications/workingpapers/96-02-003.ps
http://citeseer.ist.psu.edu/thompson96additively.html
http://citeseer.ist.psu.edu/thompson96additively.html
http://www.cs.umt.edu/u/wright/papers/add_decomp.ps.gz
http://www.cs.umt.edu/u/wright/papers/add_decomp.ps.gz
http://web.cecs.pdx.edu/~mm/Forrest-Mitchell-FOGA.pdf
http://web.cecs.pdx.edu/~mm/Forrest-Mitchell-FOGA.pdf
http://citeseer.ist.psu.edu/39682.html
http://www.i3s.unice.fr/~clergue/siteCV/publi/eurogp_03.pdf
http://www.i3s.unice.fr/~clergue/siteCV/publi/eurogp_03.pdf
http://citeseer.ist.psu.edu/147908.html
http://citeseer.ist.psu.edu/147908.html

772 REFERENCES

[1007] Robert J. Collins and David R. Jefferson. Antfarm: Towards
simulated evolution. In Christopher G. Langton, Charles Taylor,
J. Doyne Farmer, and Steen Rasmussen, editors, Artificial Life II,
pages 579–601. Addison-Wesley, Redwood City, CA, 1992. On-
line available at http://citeseer.ist.psu.edu/collins91antfarm.
html and http://en.scientificcommons.org/108082 [accessed 2007-08-

05].
[1008] Robert J. Collins and David R. Jefferson. Representations for arti-

ficial organisms. In Proceedings of the first international conference
on simulation of adaptive behavior on From animals to animats, Paris,
France, 1990, pages 382–390, Cambridge, MA, USA. MIT Press, ISBN:
0-262-63138-5.

[1009] David R. Jefferson, Robert J. Collins, Claus Cooper, Michael Dyer,
Margot Flowers, Richard Korf, Charles Tayler, and Alan Wang. Evo-
lution as a theme in artificial life: The genesys/tracker system. In
Christopher G. Langton, C.E. Taylor, D.J. Farmer, and S. Rasmussen,
editors, Artificial Life II, pages 549–578. Addison-Wesley, 1991.

[1010] Clemens Frey. Virtual Ecosystems - Evolutionary and Genetic
Programming from the perspective of modern means of ecosystem-
modelling, volume 93 of Bayreuth Forum Ecology. Institute for Ter-
restrial Ecosystems, Bayreuth, Bayreuth, Germany, ISSN: 0944-4122,
2002.

[1011] William B. Langdon and Riccardo Poli. Better trained ants for ge-
netic programming. Technical Report CSRP-98-12, University of Birm-
ingham, School of Computer Science, April 1998. Online available
at http://citeseer.ist.psu.edu/105696.html and ftp://ftp.

cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-12.ps.gz [accessed

2007-08-05].
[1012] Ibrahim Kuscu. Evolving a generalised behavior: Artificial ant problem

revisited. In 7th Annual Conference on Evolutionary Programming,
1998, page 799 ff., ISBN: 3-540-64891-7. See proceedings [802].

[1013] John R. Koza. Genetically breeding populations of computer pro-
grams to solve problems in artificial intelligence. In Proceedings of
the Second International Conference on Tools for AI, Herndon, Vir-
ginia, USA, 6-9 1990, pages 819–827. IEEE Computer Society Press,
Los Alamitos, CA, USA. Online available at http://citeseer.

ist.psu.edu/koza90genetically.html and http://www.lania.mx/

~ccoello/koza90.ps.gz [accessed 2007-09-09].
[1014] Euclid of Alexandria, editor. Stoicheia (Elements). Eu-

clid of Alexandria, Alexandria, 300 BC. A series consist-
ing of 13 books, to which two books were added lateron.
Online available at http://aleph0.clarku.edu/~djoyce/java/

elements/elements.html and http://www.gutenberg.org/etext/

21076 [accessed 2007-10-05] (in english). Online available at http://

farside.ph.utexas.edu/euclid.html and http://en.wikipedia.

http://citeseer.ist.psu.edu/collins91antfarm.html
http://citeseer.ist.psu.edu/collins91antfarm.html
http://en.scientificcommons.org/108082
http://citeseer.ist.psu.edu/105696.html
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-12.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-12.ps.gz
http://citeseer.ist.psu.edu/koza90genetically.html
http://citeseer.ist.psu.edu/koza90genetically.html
http://www.lania.mx/~ccoello/koza90.ps.gz
http://www.lania.mx/~ccoello/koza90.ps.gz
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://www.gutenberg.org/etext/21076
http://www.gutenberg.org/etext/21076
http://farside.ph.utexas.edu/euclid.html
http://farside.ph.utexas.edu/euclid.html
http://en.wikipedia.org/wiki/Image:Euclid-Elements.pdf

REFERENCES 773

org/wiki/Image:Euclid-Elements.pdf [accessed 2007-10-05] (bilingual/-
greek). See also [1015] and http://en.wikipedia.org/wiki/

Euclid%27s_Elements [accessed 2007-10-05].
[1015] Thomas L. Heath. The Thirteen Books of Euclid’s Elements. Dover

Publications, New York, second edition, ISBN: 0-486-60088-2 (vol. 1),
0-486-60089-0 (vol. 2), 0-486-60090-4 (vol. 3), 1956. Three volumes.
Original publication: Cambridge University Press, 1925. Euclid’s orig-
inal: [1014].

[1016] Kurt Geihs. Why robots play soccer (keynote extended abstract).
In Judith Bishop and Trish Alexander, editors, Annual Conference
of the South African Institute of Computer Scientists and Information
Technologists (SAICSIT 2006), 2006, International Proceedings Series.
SAICSIT, ACM, ISBN: 1-59593-567-3.

[1017] Philipp Andreas Baer, Roland Reichle, Michael Zapf, Thomas Weise,
and Kurt Geihs. A generative approach to the development of au-
tonomous robot software. In Proceedings of 4th IEEE Workshop on En-
gineering of Autonomic and Autonomous Systems (EASe 2007), Tuc-
son, AZ U.S.A, March 26-29, 2007. IEEE, ISBN: 0-7695-2809-0. On-
line available at http://www.it-weise.de/documents/index.html#

BRZWG2007AR [accessed 2007-09-15].
[1018] Ulrich Kaufmann, Roland Reichle, Christof Hoppe, and Philipp An-

dreas Baer. An unsupervised approach for adaptive color segmentation.
In International Workshop on Robot Vision, VISAPP 2007, 2007.
Springer. Online available at http://neuro.informatik.uni-ulm.

de/basilic/Publications/2007/KRHB07/AdaptColorSeg-388.pdf

[accessed 2007-09-15].
[1019] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J.

Matheus. Knowledge discovery in databases: An overview. AI
Magazine, pages 213–228, Fall 1992. Online available at http://

citeseer.ist.psu.edu/524488.html and http://www.kdnuggets.

com/gpspubs/aimag-kdd-overview-1992.pdf [accessed 2007-08-11].
[1020] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of

Data Mining. MIT Press, Cambridge, MA, ISBN: 0-262-08290-X., Au-
gust 2001.

[1021] Joseph P. Bigus. Data Mining With Neural Networks: Solving Business
Problems from Application Development to Decision Support. Mcgraw-
Hill (Tx), ISBN: 978-0070057791, May 20, 1996.

[1022] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, USA, ISBN: 978-0198538646, November 3, 1995.

[1023] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Infor-
mation Science and Statistics. Springer-Verlag, second edition, ISBN:
978-0387987804, November 19, 1999 (first edition: 1995).

[1024] Lipo Wang, editor. Support Vector Machines: Theory and Applications,
volume 177 of Studies in Fuzziness and Soft Computing. Springer,

http://en.wikipedia.org/wiki/Image:Euclid-Elements.pdf
http://en.wikipedia.org/wiki/Euclid%27s_Elements
http://en.wikipedia.org/wiki/Euclid%27s_Elements
http://www.it-weise.de/documents/index.html#BRZWG2007AR
http://www.it-weise.de/documents/index.html#BRZWG2007AR
http://neuro.informatik.uni-ulm.de/basilic/Publications/2007/KRHB07/AdaptColorSeg-388.pdf
http://neuro.informatik.uni-ulm.de/basilic/Publications/2007/KRHB07/AdaptColorSeg-388.pdf
http://citeseer.ist.psu.edu/524488.html
http://citeseer.ist.psu.edu/524488.html
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1992.pdf
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1992.pdf

774 REFERENCES

ISBN: 978-3540243885, ISSN: 1434-9922 (Print) 1860-0808 (Online),
August 2005.

[1025] Christopher J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge Discovery,
2(2):121–167, 1998. Online available at http://citeseer.ist.psu.

edu/burges98tutorial.html and http://research.microsoft.

com/~cburges/papers/SVMTutorial.pdf [accessed 2007-08-08].
[1026] Christiaan M. van der Walt and Etienne Barnard. Data characteris-

tics that determine classifier performance. In Proceedings of the Six-
teenth Annual Symposium of the Pattern Recognition Association of
South Africa, November 23-25, 2005, pages 160–165. Online available
at http://www.meraka.org.za/pubs/CvdWalt.pdf [accessed 2007-08-08].

[1027] Alan Agresti. An Introduction to Categorical Data Analysis. Wiley-
Interscience, first edition, ISBN: 978-0471113386, January 1996.

[1028] Michael J. A. Berry and Gordon S. Linoff. Mastering Data Mining:
The Art and Science of Customer Relationship Management. Wiley,
first edition, ISBN: 978-0471331230, December 1999.

[1029] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations. The Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann,
first edition, ISBN: 978-1558605527, October 1999.

[1030] Pedro Domingos and Michael Pazzani. On the optimality of the simple
bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103–
130, November 1997. Online available at http://citeseer.ist.psu.
edu/domingos97optimality.html and http://www.ics.uci.edu/

~pazzani/Publications/mlj97-pedro.pdf [accessed 2007-08-11].
[1031] Irina Rish. An empirical study of the naive bayes classifier. In Pro-

ceedings of IJCAI-01 workshop on Empirical Methods in AI, Inter-
national Joint Conference on Artificial Intelligence, 2001, pages 41–
46. American Association for Artificial Intelligence. Online available
at http://www.cc.gatech.edu/~isbell/classes/reading/papers/
Rish.pdf [accessed 2007-08-11].

[1032] Ran Avnimelech and Nathan Intrator. Boosting regression es-
timators. Neural Computation, 11(2):499–520, 1999. Online
available at http://neco.mitpress.org/cgi/reprint/11/2/499.

pdf and http://citeseer.ist.psu.edu/avnimelech99boosting.

html [accessed 2007-9-15].
[1033] Robert E. Schapire. The strength of weak learnability. Machine

Learning, 5:197–227, June 1990. Online available at http://www.

springerlink.com/content/x02406w7q5038735/fulltext.pdf and
http://citeseer.ist.psu.edu/schapire90strength.html [accessed

2007-09-15].
[1034] Yoav Freund and Robert E. Schapire. A decision-theoretic generaliza-

tion of on-line learning and an application to boosting. In European
Conference on Computational Learning Theory, 1995, volume 904 of

http://citeseer.ist.psu.edu/burges98tutorial.html
http://citeseer.ist.psu.edu/burges98tutorial.html
http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
http://www.meraka.org.za/pubs/CvdWalt.pdf
http://citeseer.ist.psu.edu/domingos97optimality.html
http://citeseer.ist.psu.edu/domingos97optimality.html
http://www.ics.uci.edu/~pazzani/Publications/mlj97-pedro.pdf
http://www.ics.uci.edu/~pazzani/Publications/mlj97-pedro.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf
http://neco.mitpress.org/cgi/reprint/11/2/499.pdf
http://neco.mitpress.org/cgi/reprint/11/2/499.pdf
http://citeseer.ist.psu.edu/avnimelech99boosting.html
http://citeseer.ist.psu.edu/avnimelech99boosting.html
http://www.springerlink.com/content/x02406w7q5038735/fulltext.pdf
http://www.springerlink.com/content/x02406w7q5038735/fulltext.pdf
http://citeseer.ist.psu.edu/schapire90strength.html

REFERENCES 775

Lecture Notes In Computer Science (LNCS), pages 23–37. Springer,
ISBN: 3-540-59119-2. Online available at http://citeseer.ist.

psu.edu/freund95decisiontheoretic.html and http://www.cs.

princeton.edu/~schapire/uncompress-papers.cgi/FreundSc95.

ps [accessed 2007-09-15]. See also [1330].
[1035] Yoav Freund. Boosting a weak learning algorithm by majority.

In COLT: Proceedings of the third annual Workshop on Compu-
tational Learning Theory, University of Rochester, Rochester, New
York, USA, August 8-9, 1990. Morgan Kaufmann Publishers, ISBN:
1-55860-146-5. Online available at http://citeseer.ist.psu.edu/

freund95boosting.html [accessed 2007-09-15].
[1036] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee.

Boosting the margin: a new explanation for the effectiveness of voting
methods. In Proceedings 14th International Conference on Machine
Learning, Nashville, Tennessee, USA, July 1997, pages 322–330. Mor-
gan Kaufmann, ISBN: 1-55860-486-3. Online available at http://

citeseer.ist.psu.edu/schapire97boosting.html [accessed 2007-09-15].
See also [1331].

[1037] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Pearson Education, Prentice Hall, second edi-
tion, ISBN: 9780133056990, September 19, 2002.

[1038] Jabir and J. W. Moore. A search for fundamental principles of
software engineering. Computer Standards & Interfaces, 19:155–
160, March 1998. Online available at http://dx.doi.org/10.

1016/S0920-5489(98)00009-9 and http://www.gelog.etsmtl.ca/

publications/pdf/249.pdf [accessed 2007-09-02].
[1039] Ingrid Wetzel. Information systems development with anticipa-

tion of change: Focussing on professional bureaucracies. In Pro-
ceedings of Hawaii International Conference on Systems Sciences,
HICSS 34, Maui, Hawaii, USA, January 2001. IEEE Computer Soci-
ety. Online available at http://citeseer.ist.psu.edu/532081.html
and http://swt-www.informatik.uni-hamburg.de/publications/

download.php?id=177 [accessed 2007-09-02].
[1040] Eric A. Marks and Michael Bell. Executive’s Guide to Service oriented

architecture (SOA): A Planning and Implementation Guide for Busi-
ness and Technology. John Wiley & Sons, Inc., Hoboken, NJ, ISBN:
978-0-470-03614-3, April 2006.

[1041] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Tech-
nology, and Design. The Prentice Hall Service-Oriented Computing
Series from Thomas Erl. Prentice Hall PTR, ISBN: 978-0131858589,
August 2, 2005.

[1042] David Booth and Canyang Kevin Liu. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 0: Primer. World Wide Web Consor-
tium (W3C), June 26, 2007. W3C Recommendation. Online available

http://citeseer.ist.psu.edu/freund95decisiontheoretic.html
http://citeseer.ist.psu.edu/freund95decisiontheoretic.html
http://www.cs.princeton.edu/~schapire/uncompress-papers.cgi/FreundSc95.ps
http://www.cs.princeton.edu/~schapire/uncompress-papers.cgi/FreundSc95.ps
http://www.cs.princeton.edu/~schapire/uncompress-papers.cgi/FreundSc95.ps
http://citeseer.ist.psu.edu/freund95boosting.html
http://citeseer.ist.psu.edu/freund95boosting.html
http://citeseer.ist.psu.edu/schapire97boosting.html
http://citeseer.ist.psu.edu/schapire97boosting.html
http://dx.doi.org/10.1016/S0920-5489(98)00009-9
http://dx.doi.org/10.1016/S0920-5489(98)00009-9
http://www.gelog.etsmtl.ca/publications/pdf/249.pdf
http://www.gelog.etsmtl.ca/publications/pdf/249.pdf
http://citeseer.ist.psu.edu/532081.html
http://swt-www.informatik.uni-hamburg.de/publications/download.php?id=177
http://swt-www.informatik.uni-hamburg.de/publications/download.php?id=177

776 REFERENCES

at http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626 [ac-

cessed 2007-09-02].
[1043] Anupriya Ankolekar, Mark Burstein, Grit Denker, Daniel Elenius,

Jerry Hobbs, Lalana Kagal, Ora Lassila, Drew McDermott, Deborah
McGuinness, Sheila McIlraith, Massimo Paolucci, Bijan Parsia, Terry
Payne, Marta Sabou, Craig Schlenoff, Evren Sirin, Monika Solanki,
Naveen Srinivasan, Katia Sycara, and Randy Washington. OWL-S 1.1
Release, OWL-based Web Service Ontology. Web-Ontology Working
Group at the World Wide Web Consortium, 2004. Online available at
http://www.daml.org/services/owl-s/1.1/ [accessed 2007-09-02].

[1044] Dumitru Roman, Uwe Keller, and Holger Lausen. WSMO – Web Ser-
vice Modeling Ontology. Digital Enterprise Research Institute (DERI),
February 2004. Online available at http://www.wsmo.org/2004/d2/

v0.1/20040214/ [accessed 2007-09-02]. See also http://www.wsmo.org/ [ac-

cessed 2007-09-02] and [1045].
[1045] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Ruben

Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph Bus-
sler, and Dieter Fensel. Web service modeling ontology. Applied Ontol-
ogy, 1:77–106, 2005. See also http://www.wsmo.org/ [accessed 2007-09-02]

and [1044].
[1046] Steffen Bleul and Thomas Weise. An ontology for quality-aware ser-

vice discovery. In C. Zirpins, G. Ortiz, W. Lamerdorf, , and W. Em-
merich, editors, Engineering Service Compositions: First International
Workshop, WESC05, Vrije Universiteit Amsterdam, The Netherlands,
December 12, 2005, volume RC23821 of IBM Research Report. York-
town Heights: IBM Research Devision. See also [1047]. Online available
at http://www.it-weise.de/documents/files/BW2005QASD.pdf [ac-

cessed 2008-1-4].
[1047] Steffen Bleul, Thomas Weise, and Kurt Geihs. An ontology for

quality-aware service discovery. Computer Systems Science Engineer-
ing, 21(4), July 2006. See also [1046]. Special issue on “Engineering De-
sign and Composition of Service-Oriented Applications”. Online avail-
able at http://www.it-weise.de/documents/files/BWG2006QASD.

pdf [accessed 2008-1-4].
[1048] Steffen Bleul and Kurt Geihs. Addo: Automatic service brokering in

service oriented architectures, project homepage. Online available at
http://www.vs.uni-kassel.de/ADDO/ [accessed 2007-09-02].

[1049] LSDIS Lab (Large Scale Distributed Information Systems), Depart-
ment of Computer Science, University of Georgia. METEOR-S: Se-
mantic Web Services and Processes, 2004. Online available at http://
lsdis.cs.uga.edu/projects/meteor-s/ [accessed 2007-09-02].

[1050] Asunción Gómez-Pérez, Rafael González-Cabero, and Manuel Lama.
Ode sws: A framework for designing and composing semantic web ser-
vices. IEEE Intelligent Systems, 19:24–31, July-August 2004. Online

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
http://www.daml.org/services/owl-s/1.1/
http://www.wsmo.org/2004/d2/v0.1/20040214/
http://www.wsmo.org/2004/d2/v0.1/20040214/
http://www.wsmo.org/
http://www.wsmo.org/
http://www.it-weise.de/documents/files/BW2005QASD.pdf
http://www.it-weise.de/documents/files/BWG2006QASD.pdf
http://www.it-weise.de/documents/files/BWG2006QASD.pdf
http://www.vs.uni-kassel.de/ADDO/
http://lsdis.cs.uga.edu/projects/meteor-s/
http://lsdis.cs.uga.edu/projects/meteor-s/

REFERENCES 777

available at http://iswc2004.semanticweb.org/demos/14/paper.

pdf [accessed 2007-09-02]. See also [1051].
[1051] Asunción Gómez-Pérez, Rafael González-Cabero, and Manuel Lama.

A framework for designing and composing semantic web services. In
Semantic Web Services, First International Semantic Web Services
Symposium, Proceedings of 2004 AAAI Spring Symposium Series, His-
tory Corner, main quad (Building 200), Stanford University, CA, USA,
March 22-24, 2004. Online available at http://www.daml.ecs.soton.
ac.uk/SSS-SWS04/44.pdf [accessed 2007-09-02]. See also [1050].

[1052] M. Brian Blake, Kwok Ching Tsui, and Andreas Wombacher. The
eee-05 challenge: a new web service discovery and composition compe-
tition. In Proceedings of the 2005 IEEE International Conference on
e-Technology, e-Commerce, and e-Service, EEE’05, March 29-April 1,
2005, pages 780–783. Online available at http://ws-challenge.

georgetown.edu/ws-challenge/The%20EEE.htm [accessed 2007-09-02].
[1053] M. Brian Blake, William K.W. Cheung, Michael C. Jaeger, and An-

dreas Wombacher. Wsc-06: The web service challenge. In Proceedings
of 2006 IEEE Joint Conference on E-Commerce Technology (CEC’06)
and Enterprise Computing, E-Commerce and E-Services (EEE’06),
2006, pages 505–508. See proceedings [1332].

[1054] M. Brian Blake, William K.W. Cheung, Michael C. Jaeger, and An-
dreas Wombacher. Wsc-07: Evolving the web service challenge. In Pro-
ceedings of IEEE Joint Conference (CEC/EEE 2007) on E-Commerce
Technology (9th CEC’07) and Enterprise Computing, E-Commerce and
E-Services (4th EEE’07), 2006, pages 422–423. See proceedings [1333].

[1055] Steffen Bleul, Thomas Weise, and Kurt Geihs. Large-scale service com-
position in semantic service discovery. In Ws-Challenge Part: M. Brian
Blake, Andreas Wombacher, Michel C. Jaeger, and William K. Cheung,
editors, Proceedings of 2006 IEEE Joint Conference on E-Commerce
Technology (CEC’06) and Enterprise Computing, E-Commerce and
E-Services (EEE’06), 2006, pages 427–429. See proceedings [1332].
1st place in 2006 WSC. Online available at http://www.it-weise.

de/documents/files/BWG2006WSC.pdf [accessed 2008-1-4]. See 2007 WSC
[1056] and [1057].

[1056] Steffen Bleul, Thomas Weise, and Kurt Geihs. Making a fast se-
mantic service composition system faster. In Proceedings of IEEE
Joint Conference (CEC/EEE 2007) on E-Commerce Technology (9th
CEC’07) and Enterprise Computing, E-Commerce and E-Services
(4th EEE’07), 2007, pages 517–520. See proceedings [1333]. 2nd
place in 2007 WSC. Online available at http://www.it-weise.

de/documents/files/BWG2007WSC.pdf [accessed 2008-1-4]. See 2006 WSC
[1055] and [1057].

[1057] Thomas Weise, Steffen Bleul, and Kurt Geihs. Web service
composition systems for the web service challenge - a detailed
review. Kasseler Informatikschriften (KIS) 2007, 7, Univer-

http://iswc2004.semanticweb.org/demos/14/paper.pdf
http://iswc2004.semanticweb.org/demos/14/paper.pdf
http://www.daml.ecs.soton.ac.uk/SSS-SWS04/44.pdf
http://www.daml.ecs.soton.ac.uk/SSS-SWS04/44.pdf
http://ws-challenge.georgetown.edu/ws-challenge/The%20EEE.htm
http://ws-challenge.georgetown.edu/ws-challenge/The%20EEE.htm
http://www.it-weise.de/documents/files/BWG2006WSC.pdf
http://www.it-weise.de/documents/files/BWG2006WSC.pdf
http://www.it-weise.de/documents/files/BWG2007WSC.pdf
http://www.it-weise.de/documents/files/BWG2007WSC.pdf

778 REFERENCES

sity of Kassel, FB16, Distributed Systems Group, Wilhelmshöher
Allee 73, 34121 Kassel, Germany, November 19, 2007. Per-
sistent Identifier: urn:nbn:de:hebis:34-2007111919638. Online avail-
able at http://kobra.bibliothek.uni-kassel.de/handle/urn:

nbn:de:hebis:34-2007111919638 and http://www.it-weise.de/

documents/files/WBG2007WSCb.pdf [accessed 2007-11-20]. See also [1055]
and [1056].

[1058] David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer
Second Edition. World Wide Web Consortium (W3C), second edition,
October 28, 2004. W3C Recommendation. Online available at http://
www.w3.org/TR/2004/REC-xmlschema-0-20041028/ [accessed 2007-09-02].

[1059] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible Markup Language (XML) 1.0 (Fourth
Edition). World Wide Web Consortium (W3C), September 29, 2007.
W3C Recommendation. Online available at http://www.w3.org/TR/

2006/REC-xml-20060816 [accessed 2007-09-02].
[1060] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. BPEL4WS,

Business Process Execution Language for Web Services Ver-
sion 1.1, May 2003. Online available at http://www.ibm.com/

developerworks/library/specification/ws-bpel/ [accessed 2007-09-03].
[1061] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid

Askary, Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford,
Yaron Goland, Alejandro Gúızar, Neelakantan Kartha, Canyang Kevin
Liu, Rania Khalaf, Dieter König, Mike Marin, Vinkesh Mehta, Satish
Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu. Web
Services Business Process Execution Language Version 2.0. Organiza-
tion for the Advancement of Structured Information Standards (OA-
SIS), April 11, 2007. Online available at http://docs.oasis-open.

org/wsbpel/2.0/wsbpel-v2.0.pdf [accessed 2007-10-25]. Technical Com-
mittee: OASIS Web Services Business Process Execution Language
(WSBPEL) TC.

[1062] Thomas Weise. Global Optimization Algorithms – Theory and Appli-
cation. Thomas Weise, 2008-1-4 edition, 2008. Online available at
http://www.it-weise.de/ [accessed 2008-1-4].

[1063] D. G. Kleinbaum, L. L. Kupper, and K. E. Muller, editors. Applied
regression analysis and other multivariable methods. PWS Publishing
Co., Boston, MA, USA, ISBN: 0-871-50123-6, 1988.

[1064] John Fox. Applied Regression Analysis, Linear Models, and Related
Methods. Sage Publications, Inc, New York, subsequent edition, ISBN:
978-0803945401, February 1997.

[1065] D. M. Ellis. Book reviews: “applied regression analysis” by N. P.
Draper and H. Smith. Applied Statistics, 17(1):83–84, 1968. Reviews
[1066].

[1066] Norman Richard Draper and H. Smith. Applied regression analysis.
Wiley, New York, 1966. Reviewed in [1065].

http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007111919638
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007111919638
http://www.it-weise.de/documents/files/WBG2007WSCb.pdf
http://www.it-weise.de/documents/files/WBG2007WSCb.pdf
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.it-weise.de/

REFERENCES 779

[1067] Abdellah Salhi, Hugh Glaser, and David De Roure. Parallel im-
plementation of a genetic-programming based tool for symbolic re-
gression. Technical Report DSSE Technical Reports: DSSE-TR-97-3,
Declarative Systems & Software Engineering Group, Department of
Electronics and Computer Science, University of Southampton, High-
field, Southampton SO17 1BJ, United Kingdom, July 18, 1997. See
also [1068]. Online available at http://www.dsse.ecs.soton.ac.uk/
techreports/95-03/97-3.html [accessed 2007-09-09].

[1068] Abdellah Salhi, Hugh Glaser, and David De Roure. Parallel implemen-
tation of a genetic-programming based tool for symbolic regression.
Information Processing Letters, 66(6):299–307, June 30, 1998. Online
available at http://dx.doi.org/10.1016/S0020-0190(98)00056-8

[accessed 2007-09-09]. See also [1067].
[1069] John Duffy and Jim Engle-Warnick. Using symbolic regression to infer

strategies from experimental data. In David A. Belsley and Christo-
pher F. Baum, editors, Fifth International Conference: Computing in
Economics and Finance, June 24-26, 1999, page 150, Boston Col-
lege, MA, USA. Online available at http://www.pitt.edu/~jduffy/
papers/Usr.pdf and http://citeseer.ist.psu.edu/304022.html

[accessed 2007-09-09]. Later published as bookchapter: [1070].
[1070] John Duffy and Jim Engle-Warnick. Using symbolic regression to infer

strategies from experimental data. In Evolutionary Computation in
Economics and Finance, chapter 4, pages 61–84. Physica-Verlag Hei-
delberg, 2002. See collection [336]. Presented at CEF’99 (see [1069]).
Online available at http://www.pitt.edu/~jduffy/docs/Usr.ps [ac-

cessed 2007-09-09].
[1071] Maarten Keijzer. Scaled symbolic regression. Genetic Program-

ming and Evolvable Machines, 5(3):259–269, September 2004.
Online available at http://www.springerlink.com/content/

x035121165125175/fulltext.pdf and http://dx.doi.org/10.

1023/B:GENP.0000030195.77571.f9 [accessed 2007-09-09].
[1072] Leonid Libkin and Limsoon Wong. Query languages for bags

and aggregate functions. Journal of Computer and System Sci-
ences, 55(2):241–272, October 1997. Online available at http://

citeseer.ist.psu.edu/libkin97query.html and http://www.cs.

toronto.edu/~libkin/papers/jcss97.ps.gz [accessed 2007-09-12].
[1073] Gultekin Özsoyoglu, Z. Meral Özsoyoglu, and Victor Matos. Extending

relational algebra and relational calculus with set-valued attributes
and aggregate functions. ACM Transactions on Database Systems,
12(4):566–592, 1987. Online available at http://doi.acm.org/10.

1145/32204.32219 [accessed 2007-09-12].
[1074] Anthony C. Klug. Equivalence of relational algebra and relational

calculus query languages having aggregate functions. Journal of the
ACM (JACM), 29(3):699–717, July 1982. Online available at http://
doi.acm.org/10.1145/322326.322332 [accessed 2007-07-28].

http://www.dsse.ecs.soton.ac.uk/techreports/95-03/97-3.html
http://www.dsse.ecs.soton.ac.uk/techreports/95-03/97-3.html
http://dx.doi.org/10.1016/S0020-0190(98)00056-8
http://www.pitt.edu/~jduffy/papers/Usr.pdf
http://www.pitt.edu/~jduffy/papers/Usr.pdf
http://citeseer.ist.psu.edu/304022.html
http://www.pitt.edu/~jduffy/docs/Usr.ps
http://www.springerlink.com/content/x035121165125175/fulltext.pdf
http://www.springerlink.com/content/x035121165125175/fulltext.pdf
http://dx.doi.org/10.1023/B:GENP.0000030195.77571.f9
http://dx.doi.org/10.1023/B:GENP.0000030195.77571.f9
http://citeseer.ist.psu.edu/libkin97query.html
http://citeseer.ist.psu.edu/libkin97query.html
http://www.cs.toronto.edu/~libkin/papers/jcss97.ps.gz
http://www.cs.toronto.edu/~libkin/papers/jcss97.ps.gz
http://doi.acm.org/10.1145/32204.32219
http://doi.acm.org/10.1145/32204.32219
http://doi.acm.org/10.1145/322326.322332
http://doi.acm.org/10.1145/322326.322332

780 REFERENCES

[1075] Ines Fernando Vega Lopez, Richard T. Snodgrass, and Bongki Moon.
Spatiotemporal aggregate computation: A survey. IEEE Transactions
on Knowledge and Data Engineering, 17(2):271–286, February 2005.
Online available at http://citeseer.ist.psu.edu/634034.html [ac-

cessed http://www.cs.arizona.edu/ bkmoon/papers/tkde-stagg.pdf]2007-09-12.
[1076] Arbee L. P. Chen, Jui-Shang Chiu, and Frank S.C. Tseng. Evalu-

ating aggregate operations over imprecise data. IEEE Transactions
on Knowledge and Data Engineering, 8(2):273–284, April 1996.
Online available at http://make.cs.nthu.edu.tw/alp/alp_paper/

Evaluating%20aggregate%20operations%20over%20imprecise%20data.

pdf [accessed 2007-09-12].
[1077] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone,

and Gerald Pfeifer. Aggregate functions in disjunctive logic
programming semantics, complexity, and implementation in dlv.
In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI) 2003, August 2003, pages 847–
852, Acapulco, Mexico. Morgan Kaufmann Publishers, ISBN: 0-
127-05661-0. Online available at http://citeseer.ist.psu.

edu/643941.html and http://www.icons.rodan.pl/publications/

%5BDellArmi2003%5D.pdf [accessed 2007-09-12].
[1078] John Miles Smith and Diane C. P. Smith. Database abstractions: Ag-

gregation and generalization. ACM Transaction on Database Systems,
2(2):105–133, June 1977. Online available at http://portal.acm.

org/citation.cfm?doid=320544.320546 and http://libra.msra.

cn/paperDetail.aspx?id=794625& [accessed 2007-08-11].
[1079] Robbert van Renesse. The importance of aggregation. In A. Schiper,

A. A. Shvartsman, H. Weatherspoon, and B. Y. Zhao, editors, Fu-
ture Directions in Distributed Computing, volume 2584/2003 of Lecture
Notes in Computer Science (LNCS), ISSN: 0302-9743 (Print) 1611-
3349 (Online), pages 87–92. Springer Berlin/Heidelberg, 2003.

[1080] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Trans. Comput. Syst.,
23(3):219–252, 2005. Online available at http://www.cs.unibo.it/

bison/publications/aggregation-tocs.pdf and http://portal.

acm.org/citation.cfm?id=1082470 [accessed 2007-08-01].
[1081] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based com-

putation of aggregate information. In Proceedings of 44th Sympo-
sium on Foundations of Computer Science (FOCS 2003), Cambridge,
MA, USA, October 11-14, 2003, pages 482–491, Los Alamitos, CA,
USA. IEEE Computer Society, ISBN: 0-7695-2040-5, ISSN: 0272-5428.
Online available at http://www.cs.cornell.edu/johannes/papers/
2003/focs2003-gossip.pdf and http://citeseer.ist.psu.edu/

kempe03gossipbased.html [accessed 2007-09-15].
[1082] Márk Jelasity and Alberto Montresor. Epidemic-style proac-

tive aggregation in large overlay networks. In Proceedings of

http://citeseer.ist.psu.edu/634034.html
http://make.cs.nthu.edu.tw/alp/alp_paper/Evaluating%20aggregate%20operations%20over%20imprecise%20data.pdf
http://make.cs.nthu.edu.tw/alp/alp_paper/Evaluating%20aggregate%20operations%20over%20imprecise%20data.pdf
http://make.cs.nthu.edu.tw/alp/alp_paper/Evaluating%20aggregate%20operations%20over%20imprecise%20data.pdf
http://citeseer.ist.psu.edu/643941.html
http://citeseer.ist.psu.edu/643941.html
http://www.icons.rodan.pl/publications/%5BDellArmi2003%5D.pdf
http://www.icons.rodan.pl/publications/%5BDellArmi2003%5D.pdf
http://portal.acm.org/citation.cfm?doid=320544.320546
http://portal.acm.org/citation.cfm?doid=320544.320546
http://libra.msra.cn/paperDetail.aspx?id=794625&
http://libra.msra.cn/paperDetail.aspx?id=794625&
http://www.cs.unibo.it/bison/publications/aggregation-tocs.pdf
http://www.cs.unibo.it/bison/publications/aggregation-tocs.pdf
http://portal.acm.org/citation.cfm?id=1082470
http://portal.acm.org/citation.cfm?id=1082470
http://www.cs.cornell.edu/johannes/papers/2003/focs2003-gossip.pdf
http://www.cs.cornell.edu/johannes/papers/2003/focs2003-gossip.pdf
http://citeseer.ist.psu.edu/kempe03gossipbased.html
http://citeseer.ist.psu.edu/kempe03gossipbased.html

REFERENCES 781

the 24th International Conference on Distributed Computing Sys-
tems (ICDCS’04), March 2004, pages 102–109, Tokyo, Japan.
IEEE Computer Society. Online available at http://citeseer.

ist.psu.edu/jelasity04epidemicstyle.html and http://en.

scientificcommons.org/9048443 [accessed 2007-08-13].
[1083] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrish-

nan. Adaptive protocols for information dissemination in wire-
less sensor networks. In MobiCom ’99: Proceedings of the 5th
annual ACM/IEEE international conference on Mobile comput-
ing and networking, Seattle, Washington, United States, 1999,
pages 174–185, New York, NY, USA. ACM Press, ISBN: 1-
58113-142-9. Online available at http://citeseer.ist.psu.

edu/kulik99adaptive.html and http://www.comet.columbia.edu/

~campbell/e6906/papers/heinzelman99.pdf [accessed 2007-08-13].
[1084] Matthew Wall. Galib: A c++ library of genetic algorithm compo-

nents. version 2.4, documentation revision b. Technical report, Me-
chanical Engineering Department, Massachusetts Institute of Technol-
ogy, August 1996. Online available at http://lancet.mit.edu/ga/

dist/galibdoc.pdf [accessed 2007-08-22].
[1085] Maarten Keijzer, J. J. Merelo, G. Romero, and Marc Schoenauer.

Evolving objects: A general purpose evolutionary computation li-
brary. In Proceedings of 5th International Conference on Artifi-
cial Evolution, Evolution Artificielle, EA 2001, 2001, pages 829–
888. See proceedings [260]. Online available at http://www.lri.

fr/~marc/EO/EO-EA01.ps.gz and http://citeseer.ist.psu.edu/

keijzer01evolving.html [accessed 2007-08-24]. See also http://eodev.

sourceforge.net/ [accessed 2007-08-24].
[1086] Evelyne Lutton, Pierre Collet, and Jean Louchet. Easea compar-

isons on test functions: Galib versus eo. In Proceedings of the
Fifth Conference on Artificial Evolution, Evolution Artificielle (EA-
2001), 2001, pages 219–230. See proceedings [260]. Online available
at http://fractales.inria.fr/evo-lab/EASEAComparisonFinal.

ps.gz [accessed 2007-08-24].
[1087] James Gosling and Henry McGilton. The java language environment

– a white paper. Technical report, Sun Microsystems, Inc., May 1996.
Online available at http://java.sun.com/docs/white/langenv/ [ac-

cessed 2007-07-03].
[1088] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM)

Language Specification. The Java Series. Prentice Hall PTR, 3rd edi-
tion, ISBN: 978-0321246783, June 2005. Online available at http://

java.sun.com/docs/books/jls/ [accessed 2007-09-14].
[1089] Jon Byous. Java technology: The early years. Technical report, Sun

Microsystems, Inc., ca. 1998. Online available at http://java.sun.

com/features/1998/05/birthday.html [accessed 2007-07-03].

http://citeseer.ist.psu.edu/jelasity04epidemicstyle.html
http://citeseer.ist.psu.edu/jelasity04epidemicstyle.html
http://en.scientificcommons.org/9048443
http://en.scientificcommons.org/9048443
http://citeseer.ist.psu.edu/kulik99adaptive.html
http://citeseer.ist.psu.edu/kulik99adaptive.html
http://www.comet.columbia.edu/~campbell/e6906/papers/heinzelman99.pdf
http://www.comet.columbia.edu/~campbell/e6906/papers/heinzelman99.pdf
http://lancet.mit.edu/ga/dist/galibdoc.pdf
http://lancet.mit.edu/ga/dist/galibdoc.pdf
http://www.lri.fr/~marc/EO/EO-EA01.ps.gz
http://www.lri.fr/~marc/EO/EO-EA01.ps.gz
http://citeseer.ist.psu.edu/keijzer01evolving.html
http://citeseer.ist.psu.edu/keijzer01evolving.html
http://eodev.sourceforge.net/
http://eodev.sourceforge.net/
http://fractales.inria.fr/evo-lab/EASEAComparisonFinal.ps.gz
http://fractales.inria.fr/evo-lab/EASEAComparisonFinal.ps.gz
http://java.sun.com/docs/white/langenv/
http://java.sun.com/docs/books/jls/
http://java.sun.com/docs/books/jls/
http://java.sun.com/features/1998/05/birthday.html
http://java.sun.com/features/1998/05/birthday.html

782 REFERENCES

[1090] Guido Krüger. Handbuch der Java-Programmierung. Addison-Wesley,
4. aktualisierte edition, ISBN: 3-8273-2361-4 and 3-8273-2447-5, 2006.
Online available at http://www.javabuch.de/ [accessed 2007-07-03].

[1091] Bruce Eckel. Thinking in Java. Prentice Hall PTR, 4th edition, ISBN:
978-0131872486, February 2006. 3rd edition online available at http://
www.mindview.net/Books/TIJ/ [accessed 2007-07-03].

[1092] David Flanagan. Java In A Nutshell. O’Reilly Media, Inc., 5th edition,
ISBN: 978-0596007737, March 2005.

[1093] David Flanagan. Java Examples in a Nutshell. O’Reilly Media, Inc.,
3rd, illustrated edition, ISBN: 978-0596006204, January 2004.

[1094] Pat Niemeyer and Jonathan Knudsen. Learning Java. O’Reilly Media,
Inc, third edition, ISBN: 978-0-596-00873-4, June 2005.

[1095] Christian Ullenboom. Java ist auch eine Insel – Programmieren mit
der Java Standard Edition Version 6. Galileo Computing, Galileo
Press, 6. aktualisierte und erweiterte edition, ISBN: 3-89842-838-
9, 2007. Online available at http://www.galileocomputing.de/

openbook/javainsel6/ [accessed 2007-07-03].
[1096] Yiping Ding, Ethan D. Bolker, and Arjun Kumar. Performance im-

plications of hyper-threading. In Proceedings of 29th International
Computer Measurement Group Conference, Dallas, Texas, USA, De-
cember 7-12, 2003, pages 21–29. Computer Measurement Group.

[1097] Dirk Büche, Sibylle D. Müller, and Petros Koumoutsakos. Self-
adaptation for multi-objective evolutionary algorithms. In Second
International Conference on Evolutionary Multi-Criterion Optimiza-
tion, 2003, pages 267–281. See proceedings [267]. Online available at
http://citeseer.ist.psu.edu/570406.html [accessed 2007-07-28].

[1098] Robert G. Reynolds and Chan-Jin Chung. Regulating the amount of
information used for self-adaptation in cultural algorithm. In Proceed-
ings of the 7th International Conference on Genetic Algorithms, 1997,
pages 401–408. See proceedings [442].

[1099] Efren Mezura-Montes, Carlos Artemio Ceollo Coello, and Ricardo
Landa-Becerra. Engineering optimization using a simple evolutionary
algorithm. ictai, 00:149, 2003. Online available at http://citeseer.
ist.psu.edu/mezura-montes03engineering.html [accessed 2007-07-28].

[1100] Hussein A. Abbass. The self-adaptive pareto differential evolu-
tion algorithm. In Proceedings of Congress on Evolutionary Com-
putation (CEC’2002), 2002, volume 1, pages 831–836. See pro-
ceedings [246]. Online available at http://citeseer.ist.psu.edu/

abbass02selfadaptive.html [accessed 2007-07-28].
[1101] Marcio Nunes de Miranda, Ricardo N. B. Lima, Aloysio C. P. Pe-

droza, and Antônio C. de Mesquita. Hw/sw codesign of protocols
based on performance optimization using genetic algorithms. In Jorge
Moreira De Souza, Nelson L. S. da Fonseca, and Edmundo A. Souza
e Silva, editors, Teletraffic Engineering in the Internet Era: Proceedings
of the International Teletraffic Congres, Salvador Da Bahia, Brazil,

http://www.javabuch.de/
http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/
http://www.galileocomputing.de/openbook/javainsel6/
http://www.galileocomputing.de/openbook/javainsel6/
http://citeseer.ist.psu.edu/570406.html
http://citeseer.ist.psu.edu/mezura-montes03engineering.html
http://citeseer.ist.psu.edu/mezura-montes03engineering.html
http://citeseer.ist.psu.edu/abbass02selfadaptive.html
http://citeseer.ist.psu.edu/abbass02selfadaptive.html

REFERENCES 783

September 2001, volume 1 of Teletraffic Science and Engineering, vol-
ume 4, pages 259–269. Amsterdam: Elsevier, North-Holland Publish-
ing Co, ISBN: 978-0444509116. Online available at http://citeseer.
ist.psu.edu/553319.html and http://www.gta.ufrj.br/ftp/gta/

TechReports/MBAM01b.ps.gz [accessed 2009-09-13].
[1102] B. von Haller, A.J. Ijspeert, and D. Floreano. Co-evolution of struc-

tures and controllers for neubot underwater modular robots. In
Mathieu S. Capcarrere, Alex A. Freitas, Peter J. Bentley, Colin G.
Johnson, and Jon Timmis, editors, Proceedings of the VIIIth Euro-
pean Conference on Artificial Life ECAL 2005, University of Kent,
Canterbury, Kent (UK), September 5-9, 2005, volume 3630 of Lec-
ture Notes in Computer Science (LNCS) subseries Lecture Notes in
Artificial Intelligence (LNAI), pages 189–199. Springer Verlag. On-
line available at http://birg2.epfl.ch/publications/fulltext/

vonhaller05.pdf and http://infoscience.epfl.ch/getfile.py?

recid=63993 [accessed 2009-10-13].
[1103] Ernesto Benini and Andrea Toffolo. Optimal design of horizontal-axis

wind turbines using blade-element theory and evolutionary computa-
tion. Journal of Solar Energy Engineering, 124:357–363, November
2002.

[1104] Mateen M. Rizki, Michael A. Zumda, and Louis A. Tamburino. Evolv-
ing pattern recognition systems. IEEE transactions on evolutionary
computation, 6:594–609, December 2002.

[1105] Sidney S. Fels and Jonatas Manzolli. Interactive, evolutionary tex-
tured sound composition. In J. A. Jorge, N. M. Correia, H. Jones, and
M. B. Kamegai, editors, Proceedings of the sixth Eurographics workshop
on Multimedia, Manchester, UK, September 8-9, 2001, pages 153–164.
Springer Wien, ISBN: 3-211-83769-8, ISSN: 0946-2767. Online avail-
able at http://citeseer.comp.nus.edu.sg/fels01interactive.

html and http://hct.ece.ubc.ca/publications/pdf/EG01.pdf [ac-

cessed 2007-09-13].
[1106] Jeanine Graf and Wolfgang Banzhaf. Interactive evolution of images. In

Evolutionary Programming, 1995, pages 53–65. See proceedings [805].
Online available at http://citeseer.ist.psu.edu/110968.html and
http://www.cs.mun.ca/~banzhaf/papers/ep95gb.ps.gz [accessed 2007-

09-13].
[1107] Frank Buschmann, Regine Meunier, Hand Rohnert, Peter Sommerlad,

and Michael Stal. Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. John Wiley & Sons, ISBN: 047-1958-697, 978-
0471958697, August 8, 1996.

[1108] Jan Philipps and Bernhard Rumpe. Refinement of pipe-and-filter ar-
chitectures. In J. M. Wing, J. Woodcock, and J. Davies, editors,
FM’99 – Formal Methods, Proceedings of the World Congress on For-
mal Methods in the Development of Computing System, volume 1, 1999,
volume 1708 of Lecture Notes in Computer Science (LNCS), pages

http://citeseer.ist.psu.edu/553319.html
http://citeseer.ist.psu.edu/553319.html
http://www.gta.ufrj.br/ftp/gta/TechReports/MBAM01b.ps.gz
http://www.gta.ufrj.br/ftp/gta/TechReports/MBAM01b.ps.gz
http://birg2.epfl.ch/publications/fulltext/vonhaller05.pdf
http://birg2.epfl.ch/publications/fulltext/vonhaller05.pdf
http://infoscience.epfl.ch/getfile.py?recid=63993
http://infoscience.epfl.ch/getfile.py?recid=63993
http://citeseer.comp.nus.edu.sg/fels01interactive.html
http://citeseer.comp.nus.edu.sg/fels01interactive.html
http://hct.ece.ubc.ca/publications/pdf/EG01.pdf
http://citeseer.ist.psu.edu/110968.html
http://www.cs.mun.ca/~banzhaf/papers/ep95gb.ps.gz

784 REFERENCES

96–115. Springer, ISBN: 3-540-66587-0. Online available at http://

citeseer.ist.psu.edu/269622.html and http://www4.in.tum.de/

~philipps/pub/fm99.ps.gz [accessed 2007-09-15].
[1109] Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David

Garlan. Architectural styles, design patterns, and objects. IEEE
Software, 14(1):43–52, January 1997. Online available at http://

citeseer.ist.psu.edu/monroe97architectural.html and http://

www.cs.cmu.edu/~able/publications/ObjPatternsArch-ieee97/

[accessed 2007-09-15].
[1110] A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multi-

modal functions of continuous variables with the simulated annealing
algorithm. ACM Transactions on Mathematical Software (TOMS),
13(3):262–280, September 1987. Online available at http://doi.acm.
org/10.1145/29380.29864 [accessed 2007-09-15].

[1111] Patrick Siarry, Gérard Berthiau, François Durdin, and Jacques Haussy.
Enhanced simulated annealing for globally minimizing functions of
many-continuous variables. ACM Transactions on Mathematical Soft-
ware (TOMS), 23(2):209–228, 1997. Online available at http://doi.

acm.org/10.1145/264029.264043 [accessed 2007-09-15].
[1112] Jian Ping Li, Marton E. Balazs, Geoffrey T. Parks, and P. John

Clarkson. Erratum: A species conserving genetic algorithm for mul-
timodal function optimization. Evolutionary Computation, 11(1):107–
109, Spring 2003.

[1113] Janez Brest, Sašo Greiner, Borko Boškovic, and Viljem Žumer. A
heuristic algorithm for function optimization. In Proceedings of
MIPRO, 28th international conference on information and communi-
cation technology, electronics and microelectronics, Opatija, Croatia,
2005, pages 91–94. Online available at http://labraj.uni-mb.si/

images/9/97/AHeuristicAlgorithmForFunctionOptimization.pdf

[accessed 2007-09-12].
[1114] Marcel Dekker. Introduction to Set Theory. CRC, revised, and ex-

panded, third edition, ISBN: 0-8247-7915-0, June 22, 1999.
[1115] Paul R. Halmos. Naive Set Theory. Undergraduate Texts in Mathemat-

ics. Springer-Press New York Inc., first edition, ISBN: 0-3879-0092-6,
June 2001. New Edition January 1998, ISBN: 978-0387900926.

[1116] Robert R. Stoll. Set Theory and Logic. Dover Publications, reprint
edition, ISBN: 0-4866-3829-4, 978-0486638294, October 1, 1979.

[1117] Donald Ervin Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming (TAOCP). Addison-Wesley, Reading, Mas-
sachusetts, second edition, ISBN: 0-201-89685-0, 1998.

[1118] Robert Sedgewick. Algorithms in Java, Parts 1-4. Addison Wesley,
third edition, ISBN: 0-2013-6120-5, September 2002.

[1119] Steven R. Finch. Transitive relations, topologies and partial or-
ders, June 5, 2003. Online available at http://citeseer.ist.psu.

http://citeseer.ist.psu.edu/269622.html
http://citeseer.ist.psu.edu/269622.html
http://www4.in.tum.de/~philipps/pub/fm99.ps.gz
http://www4.in.tum.de/~philipps/pub/fm99.ps.gz
http://citeseer.ist.psu.edu/monroe97architectural.html
http://citeseer.ist.psu.edu/monroe97architectural.html
http://www.cs.cmu.edu/~able/publications/ObjPatternsArch-ieee97/
http://www.cs.cmu.edu/~able/publications/ObjPatternsArch-ieee97/
http://doi.acm.org/10.1145/29380.29864
http://doi.acm.org/10.1145/29380.29864
http://doi.acm.org/10.1145/264029.264043
http://doi.acm.org/10.1145/264029.264043
http://labraj.uni-mb.si/images/9/97/AHeuristicAlgorithmForFunctionOptimization.pdf
http://labraj.uni-mb.si/images/9/97/AHeuristicAlgorithmForFunctionOptimization.pdf
http://citeseer.ist.psu.edu/finch03transitive.html

REFERENCES 785

edu/finch03transitive.html and http://algo.inria.fr/csolve/

posets.pdf [accessed 2007-07-28]. See also [1334].
[1120] Bas C. van Fraassen. Laws and Symmetry. Clarendon Paperbacks.

Oxford University Press, USA, ISBN: 978-0198248606, January 1990.
[1121] David A. R. Wallace. Groups, Rings and Fields. Springer Un-

dergraduate Mathematics Series. Springer, ISBN: 978-3540761778,
February 2004. Online available at http://books.google.de/books?
id=EmO9ejuMHNUC [accessed 2007-07-28].

[1122] Alfréd Rényi. Probability Theory. Dover Publications, ISBN: 978-
0486458670, May 2007.

[1123] Gregory F. Lawler. Introduction to Stochastic Processes. Chapman &
Hall/CRC, second edition, ISBN: 978-1584886518, May 2006.

[1124] Edwin Thompson Jaynes. Probability Theory: The Logic of Science.
Washington University, preprint edition, 1996. See also printed version
[1125]. G. Larry Bretthorst ed. Online available at http://bayes.

wustl.edu/etj/prob/book.pdf [accessed 2007-08-08].
[1125] Edwin Thompson Jaynes. Probability Theory: The Logic of Science.

Cambridge University Press, ISBN: 978-0521592710, June 2003. See
also [1124]. Larry Bretthorst ed. Online available at http://bayes.

wustl.edu/etj/prob/book.pdf [accessed 2007-08-08].
[1126] Olav Kallenberg. Foundations of modern probability. Probability

and Its Applications. Springer, New York, second edition, ISBN: 978-
0387953137,0-3872-5115-4, January 8, 2002. OCLC: 60740995.

[1127] Olav Kallenberg. Probabilistic symmetries and invariance principles.
Probability and its Applications. Springer, New York, ISBN: 978-
0-387-25115-8, 0-3879-4957-7, 0-3879-5313-2, July 27, 2005. OCLC:
46937587.

[1128] Pierre-Simon (Marquis de) Laplace. Théorie Analytique des Prob-
abilités (Analytical Theory of Probability). Courcier, Imprimeur-
Libraire pour les Mathématiques, quai des Augustins, no. 57,
1812. Première Partie. Online available at http://books.google.

de/books?id=nQwAAAAAMAAJ [accessed 2007-08-27].
[1129] Richard von Mises. The unlimited extension of the validity of the exact

sciences was a characteristic feature of the exaggerated rationalism of
the eighteenth century. Probability, Statistics, and Truth, page 9, 1957.

[1130] Andrei Nikolajevich Kolmogorov. Foundations of the Theory of Prob-
ability. Chelsa Publishing Company New York, second edition, ISBN:
978-0828400237, 1956, June 1960. monograph “Grundbegriffe der
Wahrscheinlichkeitsrechnung” 1933, book 1950, Online available at
http://www.mathematik.com/Kolmogorov/ [accessed 2007-09-15].

[1131] Paul T. von Hippel. Mean, median, and skew: Correcting a text-
book rule. Journal of Statistics Education, 13(2), 2005. On-
line available at http://www.amstat.org/publications/jse/v13n2/
vonhippel.html [accessed 2007-09-15].

http://citeseer.ist.psu.edu/finch03transitive.html
http://algo.inria.fr/csolve/posets.pdf
http://algo.inria.fr/csolve/posets.pdf
http://books.google.de/books?id=EmO9ejuMHNUC
http://books.google.de/books?id=EmO9ejuMHNUC
http://bayes.wustl.edu/etj/prob/book.pdf
http://bayes.wustl.edu/etj/prob/book.pdf
http://bayes.wustl.edu/etj/prob/book.pdf
http://bayes.wustl.edu/etj/prob/book.pdf
http://books.google.de/books?id=nQwAAAAAMAAJ
http://books.google.de/books?id=nQwAAAAAMAAJ
http://www.mathematik.com/Kolmogorov/
http://www.amstat.org/publications/jse/v13n2/vonhippel.html
http://www.amstat.org/publications/jse/v13n2/vonhippel.html

786 REFERENCES

[1132] Henry Bottomley. Relationship between the mean, median, mode, and
standard deviation in a unimodal distribution, September 2006. On-
line available at http://www.btinternet.com/~se16/hgb/median.

htm [accessed 2007-09-15].
[1133] Claude Elwood Shannon. A mathematical theory of communica-

tion. Bell System Technical Journal, 27:379–423/623–656, July/Octo-
ber 1948. Online available at http://plan9.bell-labs.com/cm/ms/

what/shannonday/paper.html [accessed 2007-09-15]. Also published in D.
Slepian, editor, Key Papers in the Development of Information The-
ory, New York: IEEE Press, 1974; N. J. A. Sloane and A. D. Wyner,
editors, Claude Elwood Shannon: Collected Papers, New York: IEEE
Press, 1993; W. Weaver and Claude Elwood Shannon, The Mathemat-
ical Theory of Communication, Urbana, Illinois: University of Illinois
Press, 1949, republished in paperback 1963.

[1134] J. H. Ahrens and U. Dieter. Computer methods for sampling from
gamma, beta, poisson and bionomial distributions. Computing,
12(3):223–246, September 10, 1974. Online available at http://

www.springerlink.com/content/712tn58716485674/fulltext.pdf

[accessed 2007-09-15].
[1135] Donald L. Snyder and Michael I. Miller. Random Point Processes

in Time and Space. Springer, second edition, ISBN: 978-0387975771,
June 19, 1991.

[1136] Marvin Zelen and Norman C. Severo. Probability functions. In Milton
Abramowitz and Irene A. Stegun, editors, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical Tables, ISBN:
978-0486612720, chapter 26. Dover Publications / National Bureau of
Standards, first. (new ed june 1, 1965) edition, 1964.

[1137] Ming Tan, Hong-Bin Fang, Guo-Liang Tian, and Gang Wei. Testing
multivariate normality in incomplete data of small sample size. Jour-
nal of Multivariate Analysis, 93(1):164–179, 2005. Online available at
http://dx.doi.org/10.1016/j.jmva.2004.02.014 [accessed 2007-09-15].

[1138] N. J. H. Small. Miscellanea: Marginal skewness and kurtosis in testing
multivariate normality. Applied Statistics, 29(1):85–87, 1980.

[1139] J. P. Royston. Some techniques for assessing multivariate normality
based on the Shapiro-Wilk W . Applied Statistics, 32(2):121–133, 1983.

[1140] Luc Devroye. Non-Uniform Random Variate Generation. Springer-
Verlag, New York, ISBN: 0-387-96305-7, 3-540-96305-7, 1986. On-
line available at http://cg.scs.carleton.ca/~luc/rnbookindex.

html [accessed 2007-07-05].
[1141] William Sealy Gosset. The probable error of a mean. Biometrika, 6:1–

25, March 1908. Because the author was not allowed to publish this
article, he used the pseudonym Student. Online available at http://

www.york.ac.uk/depts/maths/histstat/student.pdf [accessed 2007-09-

30]. Reprinted in [1142].

http://www.btinternet.com/~se16/hgb/median.htm
http://www.btinternet.com/~se16/hgb/median.htm
http://plan9.bell-labs.com/cm/ms/what/shannonday/paper.html
http://plan9.bell-labs.com/cm/ms/what/shannonday/paper.html
http://www.springerlink.com/content/712tn58716485674/fulltext.pdf
http://www.springerlink.com/content/712tn58716485674/fulltext.pdf
http://dx.doi.org/10.1016/j.jmva.2004.02.014
http://cg.scs.carleton.ca/~luc/rnbookindex.html
http://cg.scs.carleton.ca/~luc/rnbookindex.html
http://www.york.ac.uk/depts/maths/histstat/student.pdf
http://www.york.ac.uk/depts/maths/histstat/student.pdf

REFERENCES 787

[1142] William Sealy Gosset. The probable error of a mean. In E. S. Pearson
and John Wishart, editors, “Students” Collected Papers, pages 11–34.
Cambridge University Press for the Biometrika Trustees, 1942. With
a Foreword by Launce McMullen. Reprint of [1141].

[1143] Sir Ronald Aylmer Fisher. Applications of “student’s” distribution.
Metron, 5:90–104, 1925. Online available at http://digital.

library.adelaide.edu.au/coll/special/fisher/43.pdf [accessed

2007-09-30].
[1144] John A. Rice. Mathematical Statistics and Data Analysis. Statistics.

Duxbury Press, third edition, ISBN: 978-0534399429, 978-0534209346
(2nd ed.), April 2006.

[1145] Steven M. Kay. Fundamentals of Statistical Signal Processing, Volume
I: Estimation Theory, volume 1. Prentice Hall PTR, us es edition,
ISBN: 978-0133457117, March 26, 1993.

[1146] H. Vincent Poor. An Introduction to Signal Detection and Estimation.
Springer, second edition, ISBN: 978-0387941738, June 2005.

[1147] Harry L. Van Trees. Detection, Estimation, and Modulation Theory,
Part I. Wiley-Interscience, reprint edition, ISBN: 978-0471095170,
February 2007.

[1148] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Non-
linear Approaches. Wiley-Interscience, ISBN: 978-0471708582, June
2006.

[1149] John Aldrich. R.a. fisher and the making of maximum likelihood 1912-
1922. Statistical Science, 3:162–176, January 1995. Online available at
http://projecteuclid.org/euclid.ss/1030037906 [accessed 2007-09-15].

[1150] R. L. Plackett. Some theorems in least squares. Biometrika, 37:149–
157, 1950. Online available at http://biomet.oxfordjournals.org/
cgi/reprint/37/1-2/149 [accessed 2007-09-15].

[1151] Sir Ronald Aylmer Fisher. Statistical methods and scientific inference.
New York, Hafner Press/Macmillan Pub Co, revised (june 1973) edi-
tion, ISBN: 0028447409, 1956.

[1152] George Casella and Roger L. Berger. Statistical Inference. Duxbury
Thomson Learning, Pacific Grove, CA, USA, second edition, ISBN:
0-534-24312-6, 2002.

[1153] Miloš Drutarovský, Viktor Fischer, Martin Šimka, and Frédéric Celle.
A simple pll-based true random number generator for embedded digital
systems. Computing and Informatics, 23(5):501–515, 2004.

[1154] Martin Šimka, Miloš Drutarovský, and Viktor Fischer. Embedded true
random number generator in actel fpgas. In Workshop on Crypto-
graphic Advances in Secure Hardware – CRASH 2005, September 2005,
pages 6–7, Leuven, Belgium. Online available at http://www.best.

tuke.sk/simka/pub.html [accessed 2007-09-15].
[1155] Viktor Fischer, Miloš Drutarovský, Martin Šimka, and Nathalie

Bochard. High performance true random number generator in altera
stratix fplds. In Jürgen Becker, Marco Platzner, and Serge Vernalde,

http://digital.library.adelaide.edu.au/coll/special/fisher/43.pdf
http://digital.library.adelaide.edu.au/coll/special/fisher/43.pdf
http://projecteuclid.org/euclid.ss/1030037906
http://biomet.oxfordjournals.org/cgi/reprint/37/1-2/149
http://biomet.oxfordjournals.org/cgi/reprint/37/1-2/149
http://www.best.tuke.sk/simka/pub.html
http://www.best.tuke.sk/simka/pub.html

788 REFERENCES

editors, Field-Programmable Logic and Applications – FPL 2004, Au-
gust 2004, volume 3203 of Lecture Notes in Computer Science (LNCS),
pages 555–564, Lueven, Belgium. Springer-Verlag. Online available at
http://www.best.tuke.sk/simka/pub.html [accessed 2007-09-15].

[1156] Berk Sunar, William J. Martin, and Douglas R. Stinson. A provably
secure true random number generator with built-in tolerance to active
attacks. IEEE Transactions on Computers, 56(1):109–119, 2007. On-
line available at http://www.cacr.math.uwaterloo.ca/~dstinson/

papers/rng-IEEE.pdf [accessed 2007-09-15].
[1157] Martin Šimka. Testing true random number generators used in cryp-

tography. In Proceedings of the IV. PhD students conference, May 2004,
pages 95–96. Technical University of Košice, Slovakia. Online available
at http://www.best.tuke.sk/simka/pub.html [accessed 2007-09-15].

[1158] Ueli Maurer. Fast generation of prime numbers and secure public-
key cryptographic parameters. Journal of Cryptology, 8(3):123–155,
September 1995. Online available at http://www.springerlink.com/
content/u3710818146qq153/fulltext.pdf and http://citeseer.

ist.psu.edu/186041.html [accessed 2007-09-15].
[1159] Ilpo Vattulainen, T. Ala-Nissila, and K. Kankaala. Physical tests for

random numbers in simulations. Physical Review Letters, 73:2513–
2516, 1994. Online available at http://citeseer.ist.psu.edu/

vattulainen94physical.html [accessed 2007-07-28].
[1160] Walter Selke, L.N. Shchur, and A.L. Talapov. Cluster–flipping monte

carlo algorithm and correlations in “good” random number generators.
JETP Letters, 58:684–686, 1993.

[1161] Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong. Monte
carlo simulations: Hidden errors from “good” random number gen-
erators. Physical Review Letters, 69:3382–3384, December 1992. On-
line available at http://prola.aps.org/pdf/PRL/v69/i23/p3382_1

[accessed 2007-08-18].
[1162] Hui-Chin Tang. Combined random number generator via the gener-

alized chinese remainder theorem. Journal of Computational and Ap-
plied Mathematics, 142(2):377–388, May 15, 2002. Online available at
http://dx.doi.org/10.1016/S0377-0427(01)00424-1 [accessed 2007-09-

16].
[1163] Abhishek Parakh. A d-sequence based recursive random number

generator, 2006. Online available at http://arxiv.org/abs/cs.CR/

0603029 [accessed 2007-09-16].
[1164] Lenore Blum, Manuel Blum, and Michael Shub. A simple unpre-

dictable pseudo-random number generator. SIAM Journal on Com-
puting, 15:364–383, May 1986.

[1165] E. F. Carter. The generation and application of random numbers.
Forth Dimensions, XVI(1 and 2), 1994.

[1166] Michael Hennecke. Ranexp: experimental random number gen-
erator package. Computer Physics Communications, 79:261–267,

http://www.best.tuke.sk/simka/pub.html
http://www.cacr.math.uwaterloo.ca/~dstinson/papers/rng-IEEE.pdf
http://www.cacr.math.uwaterloo.ca/~dstinson/papers/rng-IEEE.pdf
http://www.best.tuke.sk/simka/pub.html
http://www.springerlink.com/content/u3710818146qq153/fulltext.pdf
http://www.springerlink.com/content/u3710818146qq153/fulltext.pdf
http://citeseer.ist.psu.edu/186041.html
http://citeseer.ist.psu.edu/186041.html
http://citeseer.ist.psu.edu/vattulainen94physical.html
http://citeseer.ist.psu.edu/vattulainen94physical.html
http://prola.aps.org/pdf/PRL/v69/i23/p3382_1
http://dx.doi.org/10.1016/S0377-0427(01)00424-1
http://arxiv.org/abs/cs.CR/0603029
http://arxiv.org/abs/cs.CR/0603029

REFERENCES 789

April 1994. Online available at http://dx.doi.org/10.1016/

0010-4655(94)90072-8 [accessed 2007-08-19].
[1167] Claude Overstreet Jr. and Richard E. Nance. A random number gen-

erator for small word-length computers. In ACM’73: Proceedings of
the annual conference, Atlanta, Georgia, United States, 1973, pages
219–223, New York, NY, USA. ACM Press/CSC-ER. Online available
at http://doi.acm.org/10.1145/800192.805707 [accessed 2007-09-15].

[1168] P. D. Coddington and A. J. Newell. Japara – a java parallel random
number generator library for high-performance computing. In Pro-
ceedings of the 6th International Workshop on Java for Parallel and
Distributed Computing IPDPS 2004, Santa Fe, New Mexico, April 26,
2004, page 156a. IEEE Computer Society, Los Alamitos, CA, USA,
ISBN: 076-9521-320.

[1169] Derrick Henry Lehmer. Mathematical methods in large-scale comput-
ing units. In Proceedings of the 2nd Symposium on Large-Scale Digital
Calculating Machinery, 1949, Cambridge, MA, USA, 1951, pages 141–
146. Harvard University Press.

[1170] Derrick Henry Lehmer. Mathematical methods in large-scale comput-
ing units. Math. Rev., 13(1):495, 1952.

[1171] Karl Entacher. Bad subsequences of well-known linear congruential
pseudorandom number generators. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 8(1):61–70, 1998. Online avail-
able at http://doi.acm.org/10.1145/272991.273009 [accessed 2007-09-

15].
[1172] Donald Ervin Knuth. The Art of Computer Programming: Seminu-

merical Algorithms, volume 2. Addison-Wesley, third edition, ISBN:
020-1896-842,978-0201038026, 1997.

[1173] George Edward Pelham Box and Mervin Edgar Muller. A note on the
generation of random normal deviates. Annals Math. Stat, 29:610–611,
1958. Online available at http://projecteuclid.org/euclid.aoms/
1177706645 [accessed 2007-09-15].

[1174] M.C. Jones Bernard. W. Silverman. Fix, e. and hodges, j. l. (1951):
An important contribution to nonparametric discriminant analysis
and density estimation: Commentary on fix and hodges (1951). In-
ternational Statistical Review / Revue Internationale de Statistique,
57(3):233–247, April 1989.

[1175] David W. Scott. Multivariate Density Estimation: Theory, Practice,
and Visualization. Wiley Series in Probability and Statistics. Wiley-
Interscience, John Wiley & Sons, ISBN: 0-4715-4770-0, August 1992.

[1176] Bernard. W. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman & Hall/CRC, Bristol, England, ISBN: 0-4122-
4620-1, April 1986.

[1177] Emanuel Parzen. On estimation of a probability density func-
tion and mode. Annals of Mathematical Statistics, 33:1065–1076,

http://dx.doi.org/10.1016/0010-4655(94)90072-8
http://dx.doi.org/10.1016/0010-4655(94)90072-8
http://doi.acm.org/10.1145/800192.805707
http://doi.acm.org/10.1145/272991.273009
http://projecteuclid.org/euclid.aoms/1177706645
http://projecteuclid.org/euclid.aoms/1177706645

790 REFERENCES

August 1962. Online available at http://citeseer.ist.psu.edu/

parzen62estimation.html [accessed 2007-08-11].
[1178] Classification, Clustering, and Data Mining Applications: Proceed-

ings of the Meeting of the International Federation of Classification
Societies (IFCS), ... Data Analysis, and Knowledge Organization),
2004, Secaucus, NJ, USA. Springer-Verlag New York, Inc., ISBN:
3540220143.

[1179] Margaret H. Dunham. Data Mining: Introductory and Advanced
Topics. Prentice Hall PTR, Upper Saddle River, NJ, USA, ISBN:
0130888923, August 2002.

[1180] Boris Mirkin. Clustering for Data Mining: A Data Recovery Approach.
Computer Science and Data Analysis. Chapman & Hall/CRC, ISBN:
978-1584885344, April 2005.

[1181] Pavel Berkhin. Survey of clustering data mining techniques. Tech-
nical report, Accrue Software, San Jose, CA, 2002. Online available
at http://www.ee.ucr.edu/~barth/EE242/clustering_survey.pdf
and http://citeseer.ist.psu.edu/berkhin02survey.html [accessed

2007-08-27].
[1182] Michael W. Berry, editor. Survey of Text Mining: Clustering, Clas-

sification, and Retrieval. Springer, ISBN: 978-0387955636, September
2003.

[1183] Mieczyslaw A. K lopotek, Slawomir T. Wierzchoń, and Krzysztof Tro-
janowski, editors. Intelligent Information Processing and Web Min-
ing: Proceedings of the International IIS: IIPWM05, Gdansk, Poland,
June 2005, Advances in Soft Computing, Berlin, Heidelberg, New York.
Springer, ISBN: 978-3-540-25055-2, ISSN: 1615-3871.

[1184] Mingfang Wu, Michael Fuller, and Ross Wilkinson. Using clustering
and classification approaches in interactive retrieval. Inf. Process. Man-
age., 37(3):459–484, 2001. Online available at http://citeseer.ist.
psu.edu/wu01using.html and http://de.scientificcommons.org/

313591 [accessed 2007-08-11].
[1185] Dmitri Roussinov and Hsinchun Chen. Information navigation on the

web by clustering and summarizing query results. Information Process-
ing & Management, 37(6):789–816, 2001. Online available at http://
dx.doi.org/10.1016/S0306-4573(00)00062-5 [accessed 2007-08-11].

[1186] James C. Bezdek, James Keller, Raghu Krisnapuram, and Nikhil R.
Pal. Fuzzy Models and Algorithms for Pattern Recognition and Im-
age Processing. The Handbooks of Fuzzy Sets. Springer, ISBN: 978-
0387245157, March 2005.

[1187] C. S. Warnekar and G. Krishna. A heuristic clustering algo-
rithm using union of overlapping pattern-cells. Pattern Recognition,
11(2):85–93, 1979. Online available at http://dx.doi.org/10.1016/
0031-3203(79)90054-2 [accessed 2007-08-11]. (Link not viable on 2007-08-
27).

http://citeseer.ist.psu.edu/parzen62estimation.html
http://citeseer.ist.psu.edu/parzen62estimation.html
http://www.ee.ucr.edu/~barth/EE242/clustering_survey.pdf
http://citeseer.ist.psu.edu/berkhin02survey.html
http://citeseer.ist.psu.edu/wu01using.html
http://citeseer.ist.psu.edu/wu01using.html
http://de.scientificcommons.org/313591
http://de.scientificcommons.org/313591
http://dx.doi.org/10.1016/S0306-4573(00)00062-5
http://dx.doi.org/10.1016/S0306-4573(00)00062-5
http://dx.doi.org/10.1016/0031-3203(79)90054-2
http://dx.doi.org/10.1016/0031-3203(79)90054-2

REFERENCES 791

[1188] Sanjeev Jagannatha Koppal and Srinivasa G Narasimhan. Cluster-
ing appearance for scene analysis. In IEEE Conference on Computer
Vision and Pattern Recognition, June 2006, volume 2, pages 1323–
1330. Online available at http://www.ri.cmu.edu/pubs/pub_5376.

html [accessed 2007-08-11].
[1189] Bruce J. Schachter, Larry S. Davis, and Azriel Rosenfeld. Some ex-

periments in image segmentation by clustering of local feature values.
Pattern Recognition, 11(1):19–28, 1979.

[1190] Jung Eun Shim and Won Suk Lee. A landmark extraction method
for protein 2de gel images based on multi-dimensional cluster-
ing. Artificial Intelligence in Medicine, 35(1-2):157–170, 2005. On-
line available at http://linkinghub.elsevier.com/retrieve/pii/

S093336570500076X and http://dx.doi.org/10.1016/j.artmed.

2005.07.002 [accessed 2007-08-11].
[1191] F. A. da Veiga. Structure discovery in medical databases: a con-

ceptual clustering approach. Artificial Intelligence in Medicine,
8(5):473–491, 1996. Online available at http://dx.doi.org/10.1016/
S0933-3657(96)00353-3 [accessed 2007-08-11].

[1192] Song Zhang and David H. Laidlaw. DTI fiber clustering and cross-
subject cluster analysis. In Proceedings International Society for
Magnetic Resonance in Medicine (ISMRM), May 2005, Miami, FL.
Online available at http://www.cs.brown.edu/research/vis/docs/
pdf/Zhang-2005-DFC.pdf [accessed 2007-08-11].

[1193] Anil K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A re-
view. ACM Computing Surveys, 31(3):264–323, September 1999. On-
line available at http://citeseer.ist.psu.edu/jain99data.html

and http://www.cs.rutgers.edu/~mlittman/courses/lightai03/

jain99data.pdf [accessed 2007-08-11].
[1194] Uzay Kaymak and Magne Setnes. Extended fuzzy clustering algo-

rithms. Research Paper ERS; ERS-2000-51-LIS, Erasmus Research In-
stitute of Management (ERIM), RSM Erasmus University, November
2000. Online available at https://ep.eur.nl/handle/1765/57 and
http://ideas.repec.org/p/dgr/eureri/200050.html [accessed 2007-08-

11].
[1195] R. Krishnapuram, A. Joshi, and L. Yi O. Nasraoui. Low-complexity

fuzzy relational clustering algorithms for web mining. IEEE-FS,
9:595–607, August 2001. Online available at http://citeseer.

ist.psu.edu/krishnapuram01lowcomplexity.html and http://de.

scientificcommons.org/583343 [accessed 2007-08-11].
[1196] Steffen Bleul. Ähnlichkeitsmaße und clustering (text-based similarity

measures and clustering), 2002. Online available at http://www.vs.

uni-kassel.de/~bleul/ [accessed 2007-08-11].
[1197] Hervé Abdi. Centröıd, center of gravity, center of mass, barycenter.

In Neil J. Salkind, editor, Encyclopedia of Measurement and Statistics,
volume 1, ISBN: 978-1412916110, page 128 ff. Thousand Oaks (Califor-

http://www.ri.cmu.edu/pubs/pub_5376.html
http://www.ri.cmu.edu/pubs/pub_5376.html
http://linkinghub.elsevier.com/retrieve/pii/S093336570500076X
http://linkinghub.elsevier.com/retrieve/pii/S093336570500076X
http://dx.doi.org/10.1016/j.artmed.2005.07.002
http://dx.doi.org/10.1016/j.artmed.2005.07.002
http://dx.doi.org/10.1016/S0933-3657(96)00353-3
http://dx.doi.org/10.1016/S0933-3657(96)00353-3
http://www.cs.brown.edu/research/vis/docs/pdf/Zhang-2005-DFC.pdf
http://www.cs.brown.edu/research/vis/docs/pdf/Zhang-2005-DFC.pdf
http://citeseer.ist.psu.edu/jain99data.html
http://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf
http://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf
https://ep.eur.nl/handle/1765/57
http://ideas.repec.org/p/dgr/eureri/200050.html
http://citeseer.ist.psu.edu/krishnapuram01lowcomplexity.html
http://citeseer.ist.psu.edu/krishnapuram01lowcomplexity.html
http://de.scientificcommons.org/583343
http://de.scientificcommons.org/583343
http://www.vs.uni-kassel.de/~bleul/
http://www.vs.uni-kassel.de/~bleul/

792 REFERENCES

nia): Sage Publications, Inc, October 2006. Online available at http://
www.utdallas.edu/~herve/Abdi-Centroid2007-pretty.pdf [accessed

2007-08-11].
[1198] Richard W. Hamming. Error-detecting and error-correcting

codes. Bell System Technical Journal, 29(2):147–169, 1950. On-
line available at http://guest.engelschall.com/~sb/hamming/

and http://garfield.library.upenn.edu/classics/classics_h.

html [accessed 2007-08-13].
[1199] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.

Prentice-Hall Advanced Reference Series. Prentice-Hall, Upper Saddle
River, NJ, USA, ISBN: 0-13-022278-X, 1988.

[1200] J. B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability, 1967, volume 1, pages 281–
297. Berkeley, University of California Press.

[1201] Sergei Vassilvitskii. How slow is the k-means method? Dis-
crete and Computational Geometry, June 2006. Online available
at http://www.stanford.edu/~sergeiv/papers/kMeans-socg.pdf

and http://portal.acm.org/citation.cfm?id=1137880 [accessed 2007-

08-11].
[1202] Eric W. Weisstein. K-means clustering algorithm, 1999–2006.

From MathWorld–A Wolfram Web Resource. Online available at
http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.

html [accessed 2007-08-11].
[1203] S. Asharafa and M. Narasimha Murtyb. An adaptive rough fuzzy

single pass algorithm for clustering large data sets. Pattern recognition
(Pattern recogn.), 36(12):3015–3018, 2003.

[1204] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison Wesley, international
ed edition, ISBN: 978-0201000290, January 1974.

[1205] Mikhail J. Atallah and Susan Fox, editors. Algorithms and Theory of
Computation Handbook. CRC Press, Inc., Boca Raton, FL, USA, first
edition, ISBN: 978-0849326493, November 1998. Produced By Suzanne
Lassandro.

[1206] Sara Baase and Allen Van Gelder. Computer Algorithms: Introduction
to Design and Analysis. Addison Wesley, third edition, ISBN: 978-
0201612448, November 1999.

[1207] Dexter C. Kozen. The Design and Analysis of Algorithms (Texts &
Monographs in Computer Science). Springer New York, ISBN: 978-
0387976877, January 1992.

[1208] Arthur W. Burks. From eniac to the stored-program computer: Two
revolutions in computers. In N. Metropolis, J. Howlett, and Gian-
Carlo Rota, editors, A History of Computing in the Twentieth Century:
A Collection of Essays with Introductory Essay and Indexes, ISBN:
978-0124916500, pages 311–344. Academic Press, New York, November

http://www.utdallas.edu/~herve/Abdi-Centroid2007-pretty.pdf
http://www.utdallas.edu/~herve/Abdi-Centroid2007-pretty.pdf
http://guest.engelschall.com/~sb/hamming/
http://garfield.library.upenn.edu/classics/classics_h.html
http://garfield.library.upenn.edu/classics/classics_h.html
http://www.stanford.edu/~sergeiv/papers/kMeans-socg.pdf
http://portal.acm.org/citation.cfm?id=1137880
http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html
http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html

REFERENCES 793

1980. Papers from the Los Alamos International Research Conference
on the History of Computing, 1976.

[1209] David A. Patterson and John L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. The Morgan Kaufmann
Series in Computer Architecture and Design. Morgan Kaufmann, third
edition, ISBN: 978-1558606043, August 2004.

[1210] David Salomon. Assemblers and loaders. Ellis Horwood Series in Com-
puters and Their Applications. Ellis Horwood, Upper Saddle River, NJ,
USA, ISBN: 978-0130525642, 0-13-052564-2, February 1993.

[1211] Masud Ahmad Malik. Evolution of the high level programming lan-
guages: a critical perspective. ACM SIGPLAN Notices, 33:72–80,
December 1998. Online available at http://doi.acm.org/10.1145/

307824.307882 [accessed 2007-09-14].
[1212] Donald Ervin Knuth. Fundamental Algorithms, volume 1 of The Art

of Computer Programming (TAOCP). Addison-Wesley, Reading, Mas-
sachusetts, third edition, ISBN: 0-201-89683-4, 1997.

[1213] Ingo Wegener and Randall Pruim (Translator). Complexity Theory:
Exploring the Limits of Efficient Algorithms. Springer-Verlag, Berlin
Heidelberg, ISBN: 978-3540210450, 2005. Translated from the Ger-
man “Komplexitätstheorie – Grenzen der Effizienz von Algorithmen”,
(Springer-Verlag 2003, ISBN: 3-540-00161-1).

[1214] Herbert S. Wilf. Algorithms and Complexity. AK Peters, Ltd., second
edition, ISBN: 978-1568811789, December 2002.

[1215] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT
News, 8(2):18–24, 1976. Online available at http://portal.acm.org/
citation.cfm?id=1008328.1008329 [accessed 2007-08-11].

[1216] Sir Charles Antony Richard (Tony) Hoare. Quicksort. Computer Jour-
nal, 5(1):10–15, 1962.

[1217] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge International Series on Parallel Computation. Cambridge
University Press, ISBN: 978-0521474658, August 1995.

[1218] Juraj Hromkovic. Algorithmics for Hard Computing Problems.
Springer, first edition, ISBN: 978-3540668602, June 2001.

[1219] Michael Mitzenmacher and Eli Upfal. Probability and Computing :
Randomized Algorithms and Probabilistic Analysis. Cambridge Uni-
versity Press, ISBN: 0521835402, January 2005.

[1220] J. Hromkovic and I. Zámecniková. Design and Analysis of Randomized
Algorithms: Introduction to Design Paradigms. Texts in Theoretical
Computer Science, an EATCS series. Springer, first edition, ISBN: 978-
3540239499, July 2005.

[1221] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.
ACM Comput. Surv., 28(1):33–37, 1996.

[1222] Harvey Gould and Jan Tobochnik. An Introduction to Computer Sim-
ulation Methods: Part 2, Applications to Physical Systems. Addison-

http://doi.acm.org/10.1145/307824.307882
http://doi.acm.org/10.1145/307824.307882
http://portal.acm.org/citation.cfm?id=1008328.1008329
http://portal.acm.org/citation.cfm?id=1008328.1008329

794 REFERENCES

Wesley Longman Publishing Co., Inc., Boston, MA, USA, ISBN:
0201506041, 978-0201165036, 1995. Edited by Julia Berrisford.

[1223] P. K. Mackeown. Stochastic Simulation in Physics. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, ISBN: 9813083263, 2001.

[1224] Christian P. Robert and George Casella. Monte Carlo Statistical Meth-
ods (Springer Texts in Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, ISBN: 0387212396, 2005.

[1225] Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springer,
ISBN: 0387952306, October 2002.

[1226] Friedemann Mattern. Verteilte Basisalgorithmen. Springer-Verlag
GmbH, ISBN: 978-3540518358, 1989.

[1227] David G. Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert
Morris. Resilient overlay networks. In 18th ACM SOSP, October
2001, Banff, Canada. Online available at http://nms.csail.mit.

edu/ron/ and http://nms.lcs.mit.edu/papers/ron-sosp2001.pdf

[accessed 2007-08-13].
[1228] George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed

Systems: Concepts and Design. Addison Wesley, fourth rev. edition,
ISBN: 978-0321263544, June 2005.

[1229] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems.
Principles and Paradigms. Prentice Hall International, international ed
edition, ISBN: 978-0131217867, March 2003. Some information avail-
able at http://www.cs.vu.nl/~ast/books/ds1/ [accessed 2007-08-13].

[1230] Ralf Steinmetz and Klaus Wehrle. Peer-to-peer-networking & -
computing – aktuelles schlagwort. Informatik Spektrum, 27(1):51–54,
2004. Online available at http://www.springerlink.com/content/

up3vdx3cnu1a4wb3/fulltext.pdf [accessed 2007-08-13].
[1231] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi.

DKS(N , k, f): A family of low communication, scalable and fault-
tolerant infrastructures for p2p applications. In 3rd IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2003), 2003,
pages 344–350. IEEE Computer Society, ISBN: 0-7695-1919-9. Online
available at http://dks.sics.se/pub/ccgrid-dks.pdf [accessed 2007-08-

13].
[1232] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of

peer-to-peer content distribution technologies. ACM Comput. Surv.,
36(4):335–371, 2004. Online available at http://www.spinellis.gr/
pubs/jrnl/2004-ACMCS-p2p/html/AS04.pdf and http://portal.

acm.org/citation.cfm?id=1041681 [accessed 2007-08-13].
[1233] Stefan Saroiu, P. Krishna Gummadi, and Steven Gribble. A measure-

ment study of peer-to-peer file sharing systems. In SPIE Multime-
dia Computing and Networking (MMCN2002), San Jose, CA, USA,
January 2002. Online available at http://www.cs.washington.edu/

homes/gribble/papers/mmcn.pdf and http://citeseer.ist.psu.

edu/saroiu02measurement.html [accessed 2007-08-13].

http://nms.csail.mit.edu/ron/
http://nms.csail.mit.edu/ron/
http://nms.lcs.mit.edu/papers/ron-sosp2001.pdf
http://www.cs.vu.nl/~ast/books/ds1/
http://www.springerlink.com/content/up3vdx3cnu1a4wb3/fulltext.pdf
http://www.springerlink.com/content/up3vdx3cnu1a4wb3/fulltext.pdf
http://dks.sics.se/pub/ccgrid-dks.pdf
http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.pdf
http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.pdf
http://portal.acm.org/citation.cfm?id=1041681
http://portal.acm.org/citation.cfm?id=1041681
http://www.cs.washington.edu/homes/gribble/papers/mmcn.pdf
http://www.cs.washington.edu/homes/gribble/papers/mmcn.pdf
http://citeseer.ist.psu.edu/saroiu02measurement.html
http://citeseer.ist.psu.edu/saroiu02measurement.html

REFERENCES 795

[1234] Mohammad Ilyas and Imad Mahgoub, editors. Handbook of Sensor
Networks: Compact Wireless and Wired Sensing Systems. CRC, ISBN:
978-0849319686, July 16, 2004.

[1235] Ivan Stojmenović, editor. Handbook of Sensor Networks: Algorithms
and Architectures. Wiley-Interscience, ISBN: 978-0-471-68472-5, Octo-
ber 5, 2005.

[1236] David Culler, Deborah Estrin, and Mani Srivastava. Guest edi-
tors’ introduction: Overview of sensor networks. Computer, 37(8):41–
49, August 2004. Online available at http://www.archrock.com/

downloads/resources/IEEE-overview-2004.pdf [accessed 2007-09-15].
[1237] S. Sitharama Iyengar and Richard R. Brooks, editors. Distributed Sen-

sor Networks. Chapman & Hall/CRC, ISBN: 978-1584883838, Decem-
ber 29, 2004.

[1238] Cauligi S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati, edi-
tors. Wireless Sensor Networks (ERCOFTAC). Springer Netherlands,
second edition, ISBN: 978-1402078835, June 1, 2004.

[1239] Edgar H. Callaway Jr. Wireless Sensor Networks: Architectures and
Protocols. AUERBACH, ISBN: 978-0849318238, August 26, 2003.

[1240] Feng Zhao and Leonidas Guibas. Wireless Sensor Networks: An
Information Processing Approach. Morgan Kaufmann, ISBN: 978-
1558609143, July 6, 2004.

[1241] Holger Karl and Andreas Willig. Protocols and Architectures for
Wireless Sensor Networks. Wiley & Sons, first edition, ISBN: 978-
0470095102, June 24, 2005.

[1242] Rajeev Shorey, A. Ananda, Mun Choon Chan, and Wei Tsang Ooi. Mo-
bile, Wireless, and Sensor Networks: Technology, Applications, and Fu-
ture Directions. Wiley-IEEE Press, ISBN: 978-0471718161, March 23,
2006.

[1243] Fred M. Discenzo, Dukki Chung, and Kenneth A. Loparo. Power scav-
enging enables maintenance-free wireless sensor nodes. In Proceed-
ings of NECSI International Conference on Complex Systems, New
England Complex Systems Institute, Marriott Boston Quincy, Boston,
MA, USA, June 25-30, 2006. Online available at http://necsi.org/
events/iccs6/viewpaper.php?id=188 [accessed 2007-08-01].

[1244] Shad Roundy, Dan Steingart, Luc Frechette, Paul Wright, and Jan
Rabaey. Power sources for wireless sensor networks. In EWSN
2004: European workshop on wireless sensor networks No1, Berlin,
Germany, 2004, volume 2920/2004 of Lecture Notes in Computer
Science (LNCS), pages 1–17. Springer Berlin / Heidelberg, ISBN:
978-3-540-20825-9, ISSN: 0302-9743 (Print) 1611-3349 (Online). On-
line available at http://www.eureka.gme.usherb.ca/memslab/docs/
PowerReview-2.pdf [accessed 2007-08-01].

[1245] Joseph A. Paradiso and Thad Starner. Energy scavenging for mo-
bile and wireless electronics. IEEE Pervasive Computing, 04(1):18–
27, 2005. Online available at http://www.media.mit.edu/resenv/

http://www.archrock.com/downloads/resources/IEEE-overview-2004.pdf
http://www.archrock.com/downloads/resources/IEEE-overview-2004.pdf
http://necsi.org/events/iccs6/viewpaper.php?id=188
http://necsi.org/events/iccs6/viewpaper.php?id=188
http://www.eureka.gme.usherb.ca/memslab/docs/PowerReview-2.pdf
http://www.eureka.gme.usherb.ca/memslab/docs/PowerReview-2.pdf
http://www.media.mit.edu/resenv/papers.html

796 REFERENCES

papers.html and http://whitepapers.silicon.com/0,39024759,

60295509p,00.htm [accessed 2007-08-01].
[1246] Mohammad Rahimi, Hardik Shah, Gaurav Sukhatme, John Hei-

demann, and Deborah Estrin. Studying the feasibility of energy
harvesting in a mobile sensor network. In Proceedings of the
IEEE International Conference on Robotics and Automation, May
2003, pages 19–24, Taipai, Taiwan. IEEE. Online available at
http://www.isi.edu/~johnh/PAPERS/Rahimi03a.pdf and http://

www.citeulike.org/user/cri06/article/935917 [accessed 2007-08-01].
[1247] Farhan Simjee and Pai H. Chou. Everlast: long-life, supercapacitor-

operated wireless sensor node. In ISLPED ’06: Proceedings of the
2006 international symposium on Low power electronics and design,
Tegernsee, Bavaria, Germany, October 4-6, 2006, pages 197–202, New
York, NY, USA. ACM Press, ISBN: 1-59593-462-6. Online available
at http://portal.acm.org/citation.cfm?id=1098918.1098980 [ac-

cessed 2007-08-01].
[1248] Jaein Jeong, Xiaofan Fred Jiang, and David E. Culler. De-

sign and analysis of micro-solar power systems for wireless sensor
networks. Technical Report UCB/EECS-2007-24, EECS Depart-
ment, University of California, Berkeley, February 2007. Online
available at http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/

EECS-2007-24.html [accessed 2007-08-01].
[1249] Dusit Niyato, Ekram Hossain, and Afshin Fallahi. Sleep and wakeup

strategies in solar-powered wireless sensor/mesh networks: Perfor-
mance analysis and optimization. IEEE Transactions on Mobile Com-
puting, 6(2):221–236, 2007.

[1250] Francis R. Szabo and Paul E. Kladitis. Design, modeling and test-
ing of polysilicon optothermal actuators for power scavenging wireless
microrobots. In Proceedings of the 2004 International Conference on
MEMS, NANO and Smart Systems, 2004. ICMENS 2004, August 25-
27, 2004, pages 446–452, Los Alamitos, CA, USA. IEEE Computer
Society, ISBN: 0-7695-2189-4.

[1251] Lei Wang and F. G. Yuan. Energy harvesting by magnetostric-
tive material (msm) for powering wireless sensors in shm. In SPIE
Smart Structures and Materials & NDE and Health Monitoring,
14th International Symposium (SSN07), 2007 SPIE/ASME Best Stu-
dent Paper Presentation Contest, March 18-22, 2007. Online avail-
able at http://www.mae.ncsu.edu/research/SSML/paper.html and
http://adsabs.harvard.edu/abs/2007SPIE.6529E.121W [accessed 2007-

08-01].
[1252] Joseph A. Paradiso. Systems for human-powered mobile comput-

ing. In DAC ’06: Proceedings of the 43rd annual conference on
Design automation, San Francisco, CA, USA, 2006, pages 645–
650, New York, NY, USA. ACM Press, ISBN: 1-59593-381-6. On-
line available at http://www.media.mit.edu/resenv/pubs/papers/

http://www.media.mit.edu/resenv/papers.html
http://whitepapers.silicon.com/0,39024759,60295509p,00.htm
http://whitepapers.silicon.com/0,39024759,60295509p,00.htm
http://www.isi.edu/~johnh/PAPERS/Rahimi03a.pdf
http://www.citeulike.org/user/cri06/article/935917
http://www.citeulike.org/user/cri06/article/935917
http://portal.acm.org/citation.cfm?id=1098918.1098980
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-24.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-24.html
http://www.mae.ncsu.edu/research/SSML/paper.html
http://adsabs.harvard.edu/abs/2007SPIE.6529E.121W
http://www.media.mit.edu/resenv/pubs/papers/2006-07-DAC-Paper.pdf

REFERENCES 797

2006-07-DAC-Paper.pdf and http://portal.acm.org/citation.

cfm?id=1147074 [accessed 2007-08-01].
[1253] John Kymissis, Clyde Kendall, Joseph Paradiso, and Neil Gershen-

feld. Parasitic power harvesting in shoes. In ISWC ’98: Proceed-
ings of the 2nd IEEE International Symposium on Wearable Com-
puters, 1998, page 132, Washington, DC, USA. IEEE Computer So-
ciety, ISBN: 0-8186-9074-7. Online available at http://www.media.

mit.edu/resenv/papers.html and http://citeseer.ist.psu.edu/

kymissis98parasitic.html [accessed 2007-08-01].
[1254] Katja Schwieger, Heinrich Nuszkowski, and Gerhard Fettweis. Analysis

of node energy consumption in sensor networks. In Holger Karl, An-
dreas Willig, and Adam Wolisz, editors, Proceedings of Wireless Sensor
Networks, First European Workshop (EWSN), Berlin, Germany, Jan-
uary 19-21, 2004, volume 2920 of Lecture Notes in Computer Science
(LNCS), pages 94–105. Springer, ISBN: 3-540-20825-9. Online avail-
able at http://citeseer.ist.psu.edu/634903.html [accessed 2007-08-01].

[1255] Eric Fleury, Jean-Loup Guillaume, Céline Robardet, and An-
toine Scherrer. Analysis of dynamic sensor networks: Power law
then what? In Second International Conference on COMmuni-
cation Systems softWAre and middlewaRE (COMSWARE 2007),
Bangalore, India, January 7-12, 2007. IEEE, ISBN: 1-4244-0614-
5. Online available at http://jlguillaume.free.fr/www/publis/

Guillaume07analysis.pdf [accessed 2007-08-01].
[1256] Guillaume Chelius, Eric Fleury, and Thierry Mignon. Lower and upper

bounds for minimum energy broadcast and sensing problems in sensor
networks. International Journal of Parallel, Emergent and Distributed
Systems, to be published, 2005. Also: technical report, January 2004:
Rapport de recherche de l’INRIA - Rhone-Alpes, Equipe: ARES. On-
line available at http://www.inria.fr/rrrt/rr-5072.html [accessed

2007-08-01]. See also [1335].
[1257] Q. Gao, K. J. Blow, D. J. Holding, and I. Marshall. Analysis of en-

ergy conservation in sensor networks. Wireless Networks, 11(6):787–
794, November 2005. Online available at http://www.cs.kent.

ac.uk/pubs/2005/2193/content.pdf and http://portal.acm.org/

citation.cfm?id=1160416 [accessed 2007-08-01].
[1258] Chee-Yee Chong and S.P. Kumar. Sensor networks: evolution, oppor-

tunities, and challenges. Proceedings of the IEEE, 91(8):1247–1256,
August 2003.

[1259] H. Durrant-Whyte. Data fusion in sensor networks. In Proceedings of
IEEE International Conference on Video and Signal Based Surveil-
lance AVSS ’06, Sydney, Australia, November 2006, pages 39–39,
ISBN: 0-7803-9202-7. Online available at http://www.ee.ucla.edu/

~mbs/ipsn05/keynote_abstracts/hdurrantwhyte.pdf and http://

portal.acm.org/citation.cfm?id=1147687 [accessed 2007-08-01].

http://www.media.mit.edu/resenv/pubs/papers/2006-07-DAC-Paper.pdf
http://portal.acm.org/citation.cfm?id=1147074
http://portal.acm.org/citation.cfm?id=1147074
http://www.media.mit.edu/resenv/papers.html
http://www.media.mit.edu/resenv/papers.html
http://citeseer.ist.psu.edu/kymissis98parasitic.html
http://citeseer.ist.psu.edu/kymissis98parasitic.html
http://citeseer.ist.psu.edu/634903.html
http://jlguillaume.free.fr/www/publis/Guillaume07analysis.pdf
http://jlguillaume.free.fr/www/publis/Guillaume07analysis.pdf
http://www.inria.fr/rrrt/rr-5072.html
http://www.cs.kent.ac.uk/pubs/2005/2193/content.pdf
http://www.cs.kent.ac.uk/pubs/2005/2193/content.pdf
http://portal.acm.org/citation.cfm?id=1160416
http://portal.acm.org/citation.cfm?id=1160416
http://www.ee.ucla.edu/~mbs/ipsn05/keynote_abstracts/hdurrantwhyte.pdf
http://www.ee.ucla.edu/~mbs/ipsn05/keynote_abstracts/hdurrantwhyte.pdf
http://portal.acm.org/citation.cfm?id=1147687
http://portal.acm.org/citation.cfm?id=1147687

798 REFERENCES

[1260] Ramesh Govindan, Joseph M. Hellerstein, Wei Hong, Samuel Mad-
den, Michael Franklin, and Scott Shenker. The sensor network
as a database. Technical Report 02-771, University of South
California, Computer Science Department, September 2002. On-
line available at ftp://ftp.usc.edu/pub/csinfo/tech-reports/

papers/02-771.pdf and http://citeseer.ist.psu.edu/601935.

html [accessed 2007-08-01].
[1261] Jane Tateson, Christopher Roadknight, Antonio Gonzalez, Taimur

Khan, Steve Fitz, Ian Henning, Nathan Boyd, Chris Vincent, and
Ian Marshall. Real world issues in deploying a wireless sensor
network for oceanography. In Workshop on Real-World Wireless
Sensor Networks REALWSN’05, June 20-21, 2005, Stockholm, Swe-
den. Online available at http://www.cs.kent.ac.uk/pubs/2005/

2209/content.pdf and http://www.sics.se/realwsn05/papers/

tateson05realworld.pdf [accessed 2007-09-15].
[1262] Bryan Horling, Roger Mailler, Mark Sims, and Victor Lesser. Using

and maintaining organization in a large-scale distributed sensor net-
work. Proceedings of the Workshop on Autonomy, Delegation, and
Control (AAMAS03), July 2003. Online available at ftp://mas.

cs.umass.edu/pub/bhorling/03-organization.ps.gz and http://

mas.cs.umass.edu/paper/247 [accessed 2007-08-01].
[1263] Chun-Hsin Wu. Peer-to-peer systems: Macro-computing with

micro-computers, July 2003. Presented at 3rd International
Conference on Open Source in Taipei, Taiwan. Presentation
available at http://www.csie.nuk.edu.tw/~wuch/publications/

2003-icos-p2p-wuch.pdf [accessed 2007-08-13].
[1264] David Culler and Dr. David Tennenhouse. Largest tiny network yet –

large-scale demonstration of self-organizing wireless sensor networks,
August 2001. See http://webs.cs.berkeley.edu/800demo/ [accessed

2007-07-03].
[1265] Robert Szewczyk, Joe Polastre, Alan Mainwaring, John Anderson,

and David Culler. An analysis of a large scale habitat monitor-
ing application. In Proceedings of The Second ACM Conference on
Embedded Networked Sensor Systems SenSys 2004, Baltimore, MD,
November 3-5, 2004, pages 214–226. Online available at http://

www.eecs.harvard.edu/~mdw/course/cs263/papers/ and http://

portal.acm.org/citation.cfm?doid=1031495.1031521 [accessed 2007-

08-01].
[1266] Vinod Subramanian, Rajkumar Arumugam, and Ali A. Mi-

nai. Self-organization of connectivity and geographical rout-
ing in large-scale sensor networks. In Ali Minai, Dan Braha,
Helen Harte, Larry Rudolph, Temple Smith, Gunter Wagner,
and Yaneer Bar-Yam, editors, Proceedings of the Fourth Interna-
tional Conference on Complex Systems, Nashua, NH, June 9-14,

ftp://ftp.usc.edu/pub/csinfo/tech-reports/papers/02-771.pdf
ftp://ftp.usc.edu/pub/csinfo/tech-reports/papers/02-771.pdf
http://citeseer.ist.psu.edu/601935.html
http://citeseer.ist.psu.edu/601935.html
http://www.cs.kent.ac.uk/pubs/2005/2209/content.pdf
http://www.cs.kent.ac.uk/pubs/2005/2209/content.pdf
http://www.sics.se/realwsn05/papers/tateson05realworld.pdf
http://www.sics.se/realwsn05/papers/tateson05realworld.pdf
ftp://mas.cs.umass.edu/pub/bhorling/03-organization.ps.gz
ftp://mas.cs.umass.edu/pub/bhorling/03-organization.ps.gz
http://mas.cs.umass.edu/paper/247
http://mas.cs.umass.edu/paper/247
http://www.csie.nuk.edu.tw/~wuch/publications/2003-icos-p2p-wuch.pdf
http://www.csie.nuk.edu.tw/~wuch/publications/2003-icos-p2p-wuch.pdf
http://webs.cs.berkeley.edu/800demo/
http://www.eecs.harvard.edu/~mdw/course/cs263/papers/
http://www.eecs.harvard.edu/~mdw/course/cs263/papers/
http://portal.acm.org/citation.cfm?doid=1031495.1031521
http://portal.acm.org/citation.cfm?doid=1031495.1031521

REFERENCES 799

2002. Online available at http://necsi.org/events/iccs/2002/

NAp07_subramanian_iccs4-1.pdf [accessed 2007-08-01].
[1267] Tommaso Melodia, Dario Pompili, and Ian F. Akyildiz. On the inter-

dependence of distributed topology control and geographical routing
in ad hoc and sensor networks. Journal of Selected Areas in Commu-
nications, 23(3):520–532, March 2005.

[1268] Jian Chen, Yong Guan, and Udo Pooch. Customizing a geographical
routing protocol for wireless sensor networks. In ITCC ’05: Proceedings
of the International Conference on Information Technology: Coding
and Computing (ITCC’05) - Volume II, April 4-6, 2005, volume 2,
pages 586–591, Washington, DC, USA. IEEE Computer Society, ISBN:
0-7695-2315-3.

[1269] M. Brian Blake. Coordinating multiple agents for workflow-oriented
process orchestration. Information Systems and E-Business Manage-
ment, 1(4):387–404, November 2003. Online available at http://www.
springerlink.com/content/tk7jdgbraq0pywcr/fulltext.pdf and
http://wotan.liu.edu/docis/dbl/isebbm/2003_1_4_387_CMAFWP.

htm [accessed 2007-08-13].
[1270] Jesper M. Johansson, Salvatore T. March, and J. David Naumann.

Modeling network latency and parallel processing in distributed
database design. Decision Sciences, 34:677–706, November 2003. On-
line available at http://findarticles.com/p/articles/mi_qa3713/
is_200310/ai_n9253628 [accessed 2007-08-13].

[1271] Robert Beverly, Karen Sollins, and Arthur Berger. SVM learning of
IP address structure for latency prediction. In MineNet ’06: Proceed-
ings of the 2006 SIGCOMM workshop on Mining network data, Pisa,
Italy, September 2006, pages 299–304, New York, NY, USA. ACM
Press. Online available at http://www.sigcomm.org/sigcomm2006/

papers/minenet-04.pdf and http://portal.acm.org/citation.

cfm?id=1162678.1162682 [accessed 2007-08-13].
[1272] James Z. Wang and Matti Vanninen. Self-configuration protocols

for small-scale p2p networks. In Proceedings of 10th Network Opera-
tions and Management Symposium, NOMS 2006, Vancouver, Cannada,
April 2006, pages 1–4. IEEE/IFIP, ISBN: 1-4244-0142-9, ISSN: 1542-
1201. Online available at http://www.cs.clemson.edu/~jzwang/

pub/nomshort.pdf [accessed 2007-08-19].
[1273] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agree-

ment in the presence of faults. Journal of the ACM, 27(2):228–234,
1980. Online available at http://research.microsoft.com/users/

lamport/pubs/reaching.pdf and http://research.microsoft.

com/users/lamport/pubs/reaching.pdf [accessed 2007-08-13].
[1274] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzan-

tine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–
401, 1982. Online available at http://research.microsoft.

http://necsi.org/events/iccs/2002/NAp07_subramanian_iccs4-1.pdf
http://necsi.org/events/iccs/2002/NAp07_subramanian_iccs4-1.pdf
http://www.springerlink.com/content/tk7jdgbraq0pywcr/fulltext.pdf
http://www.springerlink.com/content/tk7jdgbraq0pywcr/fulltext.pdf
http://wotan.liu.edu/docis/dbl/isebbm/2003_1_4_387_CMAFWP.htm
http://wotan.liu.edu/docis/dbl/isebbm/2003_1_4_387_CMAFWP.htm
http://findarticles.com/p/articles/mi_qa3713/is_200310/ai_n9253628
http://findarticles.com/p/articles/mi_qa3713/is_200310/ai_n9253628
http://www.sigcomm.org/sigcomm2006/papers/minenet-04.pdf
http://www.sigcomm.org/sigcomm2006/papers/minenet-04.pdf
http://portal.acm.org/citation.cfm?id=1162678.1162682
http://portal.acm.org/citation.cfm?id=1162678.1162682
http://www.cs.clemson.edu/~jzwang/pub/nomshort.pdf
http://www.cs.clemson.edu/~jzwang/pub/nomshort.pdf
http://research.microsoft.com/users/lamport/pubs/reaching.pdf
http://research.microsoft.com/users/lamport/pubs/reaching.pdf
http://research.microsoft.com/users/lamport/pubs/reaching.pdf
http://research.microsoft.com/users/lamport/pubs/reaching.pdf
http://research.microsoft.com/users/lamport/pubs/byz.pdf

800 REFERENCES

com/users/lamport/pubs/byz.pdf and http://portal.acm.org/

citation.cfm?id=357176 [accessed 2007-08-13].
[1275] Leslie Lamport. The weak byzantine generals problem. Journal of

the ACM, 30(3):668–676, 1983. Online available at http://doi.acm.

org/10.1145/2402.322398 and http://research.microsoft.com/

users/lamport/pubs/weak-byz.pdf [accessed 2007-08-13].
[1276] Miguel Castro and Barbara Liskov. Practical byzantine fault toler-

ance and proactive recovery. ACM Trans. Comput. Syst., 20(4):398–
461, 2002. Online available at http://research.microsoft.com/

users/mcastro/publications.htm and http://portal.acm.org/

citation.cfm?id=571640 [accessed 2007-08-13].
[1277] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Mini-

mal Byzantine storage. In Distributed Computing, 16th international
Conference, DISC 2002, October 2002, pages 311–325, ISBN: 3-540-
00073-9. Online available at http://www.cs.utexas.edu/users/

jpmartin/papers/MinByz-TR.ps and http://www.springerlink.

com/content/5ylhktru1bh994fv/fulltext.pdf [accessed 2007-08-13].
[1278] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Small

Byzantine quorum systems. In Proceedings of the International
Conference on Dependable Systems and Networks, June 2002,
pages 374–383. Online available at http://www.cs.utexas.edu/

users/lorenzo/papers/smallByz_DSN.pdf and http://citeseer.

ist.psu.edu/593329.html [accessed 2007-08-13].
[1279] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi,

and Mike Dahlin. Separating agreement from execution for byzan-
tine fault tolerant services. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, Bolton Land-
ing, NY, USA, 2003, pages 253–267. ACM Press, ISBN: 1-58113-
757-5. Online available at http://portal.acm.org/citation.cfm?

id=1165389.945470 and http://www.cs.utexas.edu/users/lasr/

papers/Yin03Separating.pdf [accessed 2007-08-13].
[1280] J-P. Martin and L. Alvisi. A framework for dynamic byzantine storage.

In Proceedings of the International Conference on Dependable Systems
and Networks, June 2004. Online available at http://www.cs.utexas.
edu/users/lasr/papers/Martin05Fast.pdf [accessed 2007-08-13].

[1281] J-P. Martin and L. Alvisi. Fast Byzantine consensus. In Proceedings
of the International Conference on Dependable Systems and Networks,
June 2005, pages 402–411.

[1282] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit
Roy, Lorenzo Alvisi, and Michael Dahlin. Bar gossip. In Proceedings
of the 2006 USENIX Operating Systems Design and Implementation
(OSDI), November 2006. Online available at http://www.cs.utexas.
edu/users/dahlin/papers.html [accessed 2007-08-13].

[1283] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin,
Jean-Philippe Martin, and Carl Porth. Bar fault tolerance for co-

http://research.microsoft.com/users/lamport/pubs/byz.pdf
http://portal.acm.org/citation.cfm?id=357176
http://portal.acm.org/citation.cfm?id=357176
http://doi.acm.org/10.1145/2402.322398
http://doi.acm.org/10.1145/2402.322398
http://research.microsoft.com/users/lamport/pubs/weak-byz.pdf
http://research.microsoft.com/users/lamport/pubs/weak-byz.pdf
http://research.microsoft.com/users/mcastro/publications.htm
http://research.microsoft.com/users/mcastro/publications.htm
http://portal.acm.org/citation.cfm?id=571640
http://portal.acm.org/citation.cfm?id=571640
http://www.cs.utexas.edu/users/jpmartin/papers/MinByz-TR.ps
http://www.cs.utexas.edu/users/jpmartin/papers/MinByz-TR.ps
http://www.springerlink.com/content/5ylhktru1bh994fv/fulltext.pdf
http://www.springerlink.com/content/5ylhktru1bh994fv/fulltext.pdf
http://www.cs.utexas.edu/users/lorenzo/papers/smallByz_DSN.pdf
http://www.cs.utexas.edu/users/lorenzo/papers/smallByz_DSN.pdf
http://citeseer.ist.psu.edu/593329.html
http://citeseer.ist.psu.edu/593329.html
http://portal.acm.org/citation.cfm?id=1165389.945470
http://portal.acm.org/citation.cfm?id=1165389.945470
http://www.cs.utexas.edu/users/lasr/papers/Yin03Separating.pdf
http://www.cs.utexas.edu/users/lasr/papers/Yin03Separating.pdf
http://www.cs.utexas.edu/users/lasr/papers/Martin05Fast.pdf
http://www.cs.utexas.edu/users/lasr/papers/Martin05Fast.pdf
http://www.cs.utexas.edu/users/dahlin/papers.html
http://www.cs.utexas.edu/users/dahlin/papers.html

REFERENCES 801

operative services. In 20th ACM Symposium on Operating Systems
Principles, October 2005. Online available at http://www.cs.utexas.
edu/users/lorenzo/papers/sosp05.pdf and http://doi.acm.org/

10.1145/1095809.1095816 [accessed 2007-08-13].
[1284] Artem V. Chebotko. Programming Languages (Course Material

CSC3200). Wayne State University (WSU), Detroit, USA, 2006. On-
line available at http://www.cs.wayne.edu/~artem/ [accessed 2007-07-03].

[1285] Peter Köchel. Algorithmen und Programmierung (Course Mate-
rial). TU Chemnitz, Fakultät für Informatik, Professur Modellierung
und Simulation, Straße der Nationen 62, 09107 Chemnitz, Germany,
2007. Online available at http://www.tu-chemnitz.de/informatik/
ModSim/ [accessed 2007-07-03].

[1286] Noam Chomsky. Syntactic structures. ’s-Gravenhage: Mou-
ton & Co., 1957. Online available at http://books.google.de/

books?id=a6a_b-CXYAkC and http://web.uni-marburg.de/dsa//

Direktor/Rabanus/pdf/Syntactic_Structures.pdf [accessed 2007-09-14].
[1287] Dick Grune and Ceriel J. H. Jacobs. Parsing techniques a practi-

cal guide. Ellis Horwood Limited, Chichester, England, ISBN: 978-
0136514312, August 1991. Online available at http://citeseer.ist.
psu.edu/grune90parsing.html [accessed 2007-09-14].

[1288] Noam Chomsky. Three models for the description of language. IEEE
Transactions on Information Theory, 2(3):113–124, September 1956.
Online available at http://www.chomsky.info/articles/195609--.
pdf [accessed 2007-09-14].

[1289] Noam Chomsky and Marcel P. Schützenberger. The algebraic theory
of context-free languages. In P. Braffort and D. Hirschberg, editors,
Computer Programming and Formal Systems, pages 118–161. North-
Holland, Amsterdam, 1963.

[1290] András Kornai. Natural languages and the chomsky hierarchy. In
Proceedings of the second conference on European chapter of the As-
sociation for Computational Linguistics, Geneva, Switzerland, 1985,
pages 1–7, Morristown, NJ, USA. Association for Computational Lin-
guistics. Online available at http://portal.acm.org/citation.cfm?
doid=976931.976932 and http://www.aclweb.org/anthology-new/

E/E85/E85-1001.pdf [accessed 2007-09-14].
[1291] J. W. Backus, J. H. Wegstein, A. van Wijngaarden, M. Woodger, F. L.

Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, and B. Vauquois. Report on the algorithmic language
algol 60. Communications of the ACM, 3:299–314, May 1960. See also
http://www.masswerk.at/algol60/ [accessed 2007-09-15] and [1336].

[1292] Donald E. Knuth. Backus normal form vs. backus naur form. Com-
munications of the ACM, 7(12):735–736, 1964. Online available at
http://doi.acm.org/10.1145/355588.365140 [accessed 2007-09-15].

[1293] International Organization for Standardization (ISO). ISO/IEC
14977:1996: Information technology – Syntactic metalanguage – Ex-

http://www.cs.utexas.edu/users/lorenzo/papers/sosp05.pdf
http://www.cs.utexas.edu/users/lorenzo/papers/sosp05.pdf
http://doi.acm.org/10.1145/1095809.1095816
http://doi.acm.org/10.1145/1095809.1095816
http://www.cs.wayne.edu/~artem/
http://www.tu-chemnitz.de/informatik/ModSim/
http://www.tu-chemnitz.de/informatik/ModSim/
http://books.google.de/books?id=a6a_b-CXYAkC
http://books.google.de/books?id=a6a_b-CXYAkC
http://web.uni-marburg.de/dsa//Direktor/Rabanus/pdf/Syntactic_Structures.pdf
http://web.uni-marburg.de/dsa//Direktor/Rabanus/pdf/Syntactic_Structures.pdf
http://citeseer.ist.psu.edu/grune90parsing.html
http://citeseer.ist.psu.edu/grune90parsing.html
http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf
http://portal.acm.org/citation.cfm?doid=976931.976932
http://portal.acm.org/citation.cfm?doid=976931.976932
http://www.aclweb.org/anthology-new/E/E85/E85-1001.pdf
http://www.aclweb.org/anthology-new/E/E85/E85-1001.pdf
http://www.masswerk.at/algol60/
http://doi.acm.org/10.1145/355588.365140

802 REFERENCES

tended BNF. International Organization for Standardization (ISO), 1,
ch. de la Voie-Creuse, Case postale 56, CH-1211 Geneva 20, Switzer-
land, 1996. Online available at http://www.cl.cam.ac.uk/~mgk25/

iso-14977.pdf [accessed 2007-09-15].
[1294] Richard E. Pattis. Ebnf: A notation to describe syntax, the late

1980s. Online available at http://www.cs.cmu.edu/~pattis/misc/

ebnf.pdf [accessed 2007-07-03].
[1295] Donald E. Knuth. Semantics of context-free languages. Theory of Com-

puting Systems/Mathematical Systems Theory, 2(2):127–145, 1968. See
[1296]. Online available at http://www.springerlink.com/content/
m2501m07m4666813/fulltext.pdf [accessed 2007-09-15].

[1296] Donald E. Knuth. Correction: Semantics of context-free languages.
Theory of Computing Systems/Mathematical Systems Theory, 5(1):95–
96, 1971. See [1295]. Online available at http://www.springerlink.

com/content/rj10u682v25g6506/fulltext.pdf [accessed 2007-09-15].
[1297] Donald E. Knuth. The genesis of attribute grammars. In WAGA:

Proceedings of the international conference on Attribute grammars
and their applications, Paris, France, 1990, pages 1–12, New York,
NY, USA. Springer-Verlag New York, Inc., ISBN: 0-387-53101-7. On-
line available at http://www.dcs.warwick.ac.uk/~sk/cs325/gag.

pdf [accessed 2007-09-15].
[1298] Jukka Paakki. Attribute grammar paradigms – a high-level methodol-

ogy in language implementation. ACM Computing Surveys (CSUR),
27(2):196–255, 1995. Online available at http://doi.acm.org/10.

1145/210376.197409 [accessed 2007-09-15].
[1299] Alex Aiken. Lecture notes cs 264, Spring 1995. Online avail-

able at http://www.cs.berkeley.edu/~aiken/cs264/lectures/

attribute-grammars [accessed 2007-07-03].
[1300] Nelson Correa. An extension of earley’s algorithm for s-attributed

grammars. In Proceedings of the fifth conference on European chap-
ter of the Association for Computational Linguistics, Berlin, Germany,
1991, pages 299–302, Morristown, NJ, USA. Association for Com-
putational Linguistics. Online available at http://dx.doi.org/10.

3115/977180.977232 and http://www.aclweb.org/anthology-new/

E/E91/E91-1052.pdf [accessed 2007-09-115].
[1301] Ole Lehrmann Madsen. On defining semantics by means of extended

attribute grammars. In Semantics-Directed Compiler Generation, Pro-
ceedings of a Workshop, Aarhus, Denmark, January 14-18, 1980, vol-
ume 94 of Lecture Notes In Computer Science (LNCS), pages 259–299,
London, UK. Springer-Verlag, ISBN: 3-540-10250-7, ISSN: 0302-9743
(Print) 1611-3349 (Online).

[1302] David A. Watt and Ole Lehrmann Madsen. Extended attribute gram-
mars. The Computer Journal, 26:142–153, 1983. Online available
at http://comjnl.oxfordjournals.org/cgi/reprint/26/2/142 [ac-

cessed 2007-09-15]. See also: report 10, Computer Science Department, Uni-

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf
http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf
http://www.springerlink.com/content/m2501m07m4666813/fulltext.pdf
http://www.springerlink.com/content/m2501m07m4666813/fulltext.pdf
http://www.springerlink.com/content/rj10u682v25g6506/fulltext.pdf
http://www.springerlink.com/content/rj10u682v25g6506/fulltext.pdf
http://www.dcs.warwick.ac.uk/~sk/cs325/gag.pdf
http://www.dcs.warwick.ac.uk/~sk/cs325/gag.pdf
http://doi.acm.org/10.1145/210376.197409
http://doi.acm.org/10.1145/210376.197409
http://www.cs.berkeley.edu/~aiken/cs264/lectures/attribute-grammars
http://www.cs.berkeley.edu/~aiken/cs264/lectures/attribute-grammars
http://dx.doi.org/10.3115/977180.977232
http://dx.doi.org/10.3115/977180.977232
http://www.aclweb.org/anthology-new/E/E91/E91-1052.pdf
http://www.aclweb.org/anthology-new/E/E91/E91-1052.pdf
http://comjnl.oxfordjournals.org/cgi/reprint/26/2/142

REFERENCES 803

versity of Glasgow (July 1977) and report DAIMI PB-105, Computer
Science Department, Aarhus University (November 1979).

[1303] David A. Watt. An extended attribute grammar for pascal. ACM
SIGPLAN Notices, 14(2):60–74, 1979. Online available at http://

doi.acm.org/10.1145/954063.954071 [accessed 2007-09-15].
[1304] Henning Christiansen. Programming as language development. Tech-

nical Report 15, Department of Computer Science, Roskilde University,
1988. Ph.D. thesis (summary).

[1305] Henning Christiansen. The syntax and semantics of extensible lan-
guages. Technical Report 14, Department of Computer Science,
Roskilde University, 1988.

[1306] Henning Christiansen. Parsing and compilation of generative lan-
guages. Technical Report 3, Department of Computer Science, Roskilde
University, 1986. abridged version: [1307].

[1307] Henning Christiansen. Recognition of generative languages. In Pro-
ceedings of Programs as Data Objects Workshop, Copenhagen, Den-
mark, October 1985, volume 217 of Lecture Notes in Computer Science
(LNCS), pages 63–81. Springer-Verlag, ISBN: 0-387-16446-4. Abridged
version of [1306].

[1308] Aravind K. Joshi. How much context-sensitivity is necessary for
characterizing structural descriptions – tree adjoining grammars. In
D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural Language
Processing – Theoretical, Computational and Psychological Perspec-
tive, pages 206–250. Cambridge University Press, New York, NY, 1985.
Originally presented in 1983.

[1309] Owen Rambow and Aravind K. Joshi. A formal look at dependency
grammars and phrase-structure grammars, with special consideration
of word-order phenomena. Meaning-Text Theory, 1997. Online avail-
able at http://arxiv.org/abs/cmp-lg/9410007v1 [accessed 2007-09-15].

[1310] Aravind K. Joshi and Owen Rambow. A formalism for depen-
dency grammar based on tree adjoining grammar. In Proceedings of
the Conference on Meaning-Text Theory, MTT 2003, Paris, France,
June 16-18, 2003. Online available at http://www1.cs.columbia.

edu/~rambow/papers/joshi-rambow-2003.pdf [accessed 2007-09-15].
[1311] John L. McCarthy. Recursive functions of symbolic expressions

and their computation by machine, part i. Communications of the
ACM, 3(4):184–195, April 1960. Online available at http://doi.acm.
org/10.1145/367177.367199 and http://citeseer.ist.psu.edu/

mccarthy60recursive.html [accessed 2007-09-15].
[1312] John L. McCarthy, Paul W. Abrahams, Daniel J. Edwards, Tim-

othy P. Hari, and Michael L. Levin. LISP 1.5 Programmer’s
Manual. The MIT Press, ISBN: 978-0262130110, 0-262-13011-4,
August 1962. Second Edition, 15th Printing, Online available
at http://www.softwarepreservation.org/projects/LISP/book/

http://doi.acm.org/10.1145/954063.954071
http://doi.acm.org/10.1145/954063.954071
http://arxiv.org/abs/cmp-lg/9410007v1
http://www1.cs.columbia.edu/~rambow/papers/joshi-rambow-2003.pdf
http://www1.cs.columbia.edu/~rambow/papers/joshi-rambow-2003.pdf
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://citeseer.ist.psu.edu/mccarthy60recursive.html
http://citeseer.ist.psu.edu/mccarthy60recursive.html
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf

804 REFERENCES

LISP%201.5%20Programmers%20Manual.pdf [accessed 2007-09-15]. See also
[1312].

[1313] John L. McCarthy. History of lisp. In Richard L. Wexelblat, editor, His-
tory of Programming Languages: Proceedings of the ACM SIGPLAN
Conference, June 1978, pages 173–197. Academic Press. Online avail-
able at http://citeseer.ist.psu.edu/mccarthy78history.html

[accessed 2007-09-15]. See also http://www-formal.stanford.edu/jmc/

history/lisp/lisp.html [accessed 2007-09-15].
[1314] R. Kent Dybvig. The SCHEME programming language. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, ISBN: 0-13-791864-X, 978-0-262-
54148-0, 1987. With Illustrations by Jean-Pierre Hébert. Third edition
(October 2003) Online available at http://www.scheme.com/tspl3/

[accessed 2007-09-15].
[1315] Ron Rivest. S-expressions, May 4, 1997. draft-rivest-sexp-00.txt. On-

line available at http://people.csail.mit.edu/rivest/Sexp.txt

[accessed 2007-07-03]. Network Working Group, Internet Draft, Expires
November 4, 1997.

[1316] L. Darell Whitley. A genetic algorithm tutorial. Technical Report
CS-93-103, Computer Science Department, Colorado State University,
Fort Collins, March 10, 1993. Online available at http://citeseer.

ist.psu.edu/177719.html [accessed 2007-11-29]. See also [360].
[1317] Francisco Fernandez de Vega. Modelos de Programacion Ge-

netica Paralela y Distribuida con aplicaciones a la Sintesis Log-
ica en FPGAs. PhD thesis, University of Extremadura, 2001.
version español. for english version see [519]. Online avail-
able at http://cum.unex.es/profes/profes/fcofdez/escritorio/
investigacion/pgp/thesis/phd.html [accessed 2007-09-09].

[1318] William R. Swartout, editor. Proceedings of the 10th National Con-
ference on Artificial Intelligence, AAAI, San Jose, California, USA,
July 12-16, 1992. The AAAI Press/The MIT Press, ISBN: 0-262-51063-
4. See http://www.aaai.org/Conferences/AAAI/aaai92.php [accessed

2007-09-06].
[1319] Thomas D. Haynes, Roger L. Wainwright, and Sandip Sen. Evolving

cooperating strategies. In Victor Lesser, editor, Proceedings of the first
International Conference on Multiple Agent Systems, San Francisco,
USA, June 12-14, 1995, page 450. AAAI Press/MIT Press, ISBN: 0-
262-62102-9. 1 page poster, see also [558].

[1320] Justinian P. Rosca. Proceedings of the workshop on genetic program-
ming: From theory to real-world applications. Technical Report 95.2,
University of Rochester, National Resource Laboratory for the Study
of Brain and Behavior, Rochseter, New York, USA, July 9, 1995. Held
in conjunction with the twelfth International Conference on Machine
Learning.

[1321] Hai H. Dam, Hussein A. Abbass, and Chris Lokan. Dxcs: an xcs
system for distributed data mining. Technical Report TR-ALAR-

http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://citeseer.ist.psu.edu/mccarthy78history.html
http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
http://www.scheme.com/tspl3/
http://people.csail.mit.edu/rivest/Sexp.txt
http://citeseer.ist.psu.edu/177719.html
http://citeseer.ist.psu.edu/177719.html
http://cum.unex.es/profes/profes/fcofdez/escritorio/investigacion/pgp/thesis/phd.html
http://cum.unex.es/profes/profes/fcofdez/escritorio/investigacion/pgp/thesis/phd.html
http://www.aaai.org/Conferences/AAAI/aaai92.php

REFERENCES 805

200504002, The Artificial Life and Adaptive Robotics Laboratory,
School of Information Technology and Electrical Engineering, Univer-
sity of New South Wales, Northcott Drive, Campbell, Canberra, ACT
2600 Australia, 2005. ALAR Technical Report Series. Online available
at http://www.itee.adfa.edu.au/~alar/techreps/200504002.pdf
[accessed 2007-09-12]. See also [816].

[1322] Pier Luca Lanzi, Wolfgang Stolzmann, and Steward W. Wilson, ed-
itors. Learning Classifier Systems, From Foundations to Applica-
tions, volume 1813/2000 of Lecture Notes in Artificial Intelligence,
subseries of Lecture Notes in Computer Science (LNCS). Springer-
Verlag Berlin/Heidelberg, London, UK, ISBN: 3-540-67729-1, ISSN:
0302-9743 (Print) 1611-3349 (Online), 2000.

[1323] John Henry Holland. Escaping brittleness: the possibilities of general-
purpose learning algorithms applied to parallel rule-based systems.
Computation & intelligence: collected readings, pages 275–304, 1995.
See also [840].

[1324] Xavier Llorà and Kumara Sastry. Fast rule matching for learning clas-
sifier systems via vector instructions. Technical Report 2006001, Il-
liGAL, Illinois Genetic Algorithms Laboratory, University of Illinois
at Urbana-Champaign, January 2006. Online available at http://

www.illigal.uiuc.edu/pub/papers/IlliGALs/2006001.pdf [accessed

2007-09-12]. See also [856].
[1325] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E.

Goldberg. Generalization in the xcsf classifier system: Analysis, im-
provement, and extension. Technical Report 2005012, IlliGAL, Illi-
nois Genetic Algorithms Laboratory, University of Illinois at Urbana-
Champaign, March 2005. Online available at http://www.illigal.

uiuc.edu/pub/papers/IlliGALs/2005012.pdf [accessed 2007-09-12]. See
also [865].

[1326] Lester Ingber. Simulated annealing: Practice versus theory. Technical
report, Lester Ingber Research, P.O.B. 857, McLean, VA 22101, 1993.
Online available at http://ideas.repec.org/p/lei/ingber/93sa.

html and http://www.ingber.com/asa93_sapvt.pdf [accessed 2007-08-18].
See also [886].

[1327] Marco Dorigo, Gianni Di Caro, and L. Gambardella. Ant algorithms for
discrete optimization. Artificial Life, 5:137–172, 1999. Online available
at http://www.idsia.ch/~luca/ij_23-alife99.pdf [accessed 2007-09-15].
See [924].

[1328] P. N. Suganthan, N. Hansen, J. J. Liang, Kalyanmoy Deb, Y. P. Chen,
Anne Auger, and S. Tiwari. Problem definitions and evaluation cri-
teria for the cec 2005 special session on real-parameter optimization.
Technical report, Nanyang Technological University, Singapore, May
2005. Online available at http://www.ntu.edu.sg/home/epnsugan/

index_files/CEC-05/Tech-Report-May-30-05.pdf [accessed 2007-10-07].
See also [994, 243].

http://www.itee.adfa.edu.au/~alar/techreps/200504002.pdf
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2006001.pdf
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2006001.pdf
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2005012.pdf
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2005012.pdf
http://ideas.repec.org/p/lei/ingber/93sa.html
http://ideas.repec.org/p/lei/ingber/93sa.html
http://www.ingber.com/asa93_sapvt.pdf
http://www.idsia.ch/~luca/ij_23-alife99.pdf
http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/Tech-Report-May-30-05.pdf
http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/Tech-Report-May-30-05.pdf

806 REFERENCES

[1329] Terry Jones. A description of holland’s royal road function. Working
Papers 94-11-059, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe,
NM 87501, USA, November 1994. See also [1003].

[1330] Yoav Freund and Robert E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal of Com-
puter and System Sciences, 55:119–139, 1997. Article no. SS971504.
Online available at http://www.face-rec.org/algorithms/

Boosting-Ensemble/decision-theoretic_generalization.pdf

[accessed 2007-09-15]. See also [1034].
[1331] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E. Schapire.

Boosting the margin: a new explanation for the effectiveness of vot-
ing methods. Annals of Statistics, 26(5):1651–1686, 1998. Online
available at http://cs.nyu.edu/~cil217/ML/BoostingMargin.pdf

and http://dx.doi.org/10.1214/aos/1024691352 [accessed 2007-09-15].
See also [1036].

[1332] Proceedings of 2006 IEEE Joint Conference on E-Commerce Technol-
ogy (CEC’06) and Enterprise Computing, E-Commerce and E-Services
(EEE’06), The Westin San Francisco Airport, 1 Old Bayshore Highway,
Millbrae, United States, June 26-29, 2006. IEEE Computer Society, Los
Alamitos, California, Washington, Tokyo, ISBN: 978-0-7695-2511-2.

[1333] IEEE Computer Society. Proceedings of IEEE Joint Conference
(CEC/EEE 2007) on E-Commerce Technology (9th CEC’07) and En-
terprise Computing, E-Commerce and E-Services (4th EEE’07), Na-
tional Center of Sciences, Tokyo, Japan, July 23-26, 2007. IEEE Com-
puter Society, ISBN: 978-0-7695-2913-4.

[1334] Steven R. Finch. Mathematical Constants (Encyclopedia of Mathe-
matics and its Applications). Cambridge University Press, ISBN: 978-
0521818056, August 18, 2003. See http://algo.inria.fr/bsolve/

[accessed 2007-09-15].
[1335] Guillaume Chelius, Eric Fleury, and Thierry Mignon. Lower and up-

per bounds for minimum energy broadcast and sensing problems in
sensor networks. In ICPADS ’05: Proceedings of the 11th Interna-
tional Conference on Parallel and Distributed Systems - Workshops
(ICPADS’05), 2005, pages 88–92, Washington, DC, USA. IEEE Com-
puter Society, ISBN: 0-7695-2281-5. See also [1256].

[1336] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, and M. Woodger. Revised report on the algorithm lan-
guage algol 60. Communications of the ACM, 6(1):1–17, 1963. On-
line available at http://doi.acm.org/10.1145/366193.366201 and
http://www.masswerk.at/algol60/report.htm [accessed 2007-09-15]. See
also [1291].

http://www.face-rec.org/algorithms/Boosting-Ensemble/decision-theoretic_generalization.pdf
http://www.face-rec.org/algorithms/Boosting-Ensemble/decision-theoretic_generalization.pdf
http://cs.nyu.edu/~cil217/ML/BoostingMargin.pdf
http://dx.doi.org/10.1214/aos/1024691352
http://algo.inria.fr/bsolve/
http://doi.acm.org/10.1145/366193.366201
http://www.masswerk.at/algol60/report.htm

Index

(1 + 1)− ES, 205
(GE)2, 168
(µ′, λ′(µ, λ)γ)-ES, 205
(µ + 1)-ES, 205
(µ + 2), 55
(µ + λ), 55, 79, 209
(µ + λ)-ES, 205
(µ, λ), 55, 79
(µ, λ)-ES, 205
(µ/ρ + λ)-ES, 205
(µ/ρ, λ)-ES, 205
Γ , 570
Θ notation, 590
χ2 Distribution, 542
1
5 -rule, 206
σ-algebra, 515

A* Search, 260
abort, 414, 415, 419, 421, 478, 497
AbortAction, 388
Abstraction, 588
ACO, 241
Action, 216, 217
Activity, 420, 478

AdaBoost, 312
Adaptable Grammar, 623
Adaptive Walk, 260

fitter dynamics, 261
greedy dynamics, 260
one-mutant, 260

addEventListener, 392, 421
ADDO, 323
addProvider, 408
addThread, 421
Adenine, 122
ADF, 151, 152
adjacent neighbors, 278
Adjunction, 626
ADL, 182
Admissible, 260
afterIteration, 481, 485
AG, 619, 620
Aggregate, 337
Aggregate Function, 337
Aggregation, 337

gossip-based, 338
proactive, 338
reactive, 338

807

808 INDEX

Aggregation Protocols, 337, 338
AI, 300
AL, 193
Algorithm, 585, 586

abstraction, 588
complexity, 589
determined, 588
determinism, 588
deterministic, 591
discrete, 588
distributed, 592
euclidean, 287
evaluate, 196
evolve, 196
finite, 588
Las Vegas, 591
Monte Carlo, 592
probabilistic, 591
randomized, 591
termination, 588

ALife, 193
Allele, 123
Alphabet, 615
ANN, 180, 300
Ant Colony Optimization, 241
append, 402
appleJuice, 599
Application Server, 597
Applications, 275
applyRules, 480, 481
Architecture

service oriented, 312
Artificial Ant, 10, 13, 284
Artificial Embryogeny, 129
Artificial Life, 193
Asexual Reproduction, 121
assign, 404
Attribute, 619

inherited, 619
synthesized, 619

Attribute Grammar, 619
extended, 621, 622
L-attributed, 621
reflective, 169
S-attributed, 621

Autoconstructive Evolution, 196
Automatically Defined Functions, 151
Automatically Defined Link, 182
Auxiliary Tree, 626
available, 491
availableBits, 491
Average, 339
AVG OVC, 472

Backus-Naur Form, 617
extended, 618

Battery, 600
Bayes Classifier

näıve, 300
BBH, 132
Bee, 213
beforeIteration, 481, 485
beginEvaluation, 455
beginIndividual, 406, 408, 455
beginSimulation, 406, 455
Bernoulli

distribution, 532
experiment, 532
trial, 532

Best-First Search, 258
BEST OVC, 472
BFS, 253
BGP, 156
Bias, 551
Bibtex, 653
Big-Ω notation, 590
Big-O notation, 589
Bijective, 509
Binomial Distribution, 532
BIOMA, 60, 242
Bird, 213
BitInputStream, 491
BitStringCreator, 495
BitStringInputStream, 491–493
BitStringOutputStream, 491–493
BitStringToDoubleArrayEmbryogeny,

493
BitStringToggleNConsecutiveBits, 495
BitStringToggleNRandomBits, 495
BitStringToggleOneBitMutator, 493

INDEX 809

Bittorrent, 599
Block

building, 132
BLUE, 556
Bluetooth, 599
BNF, 617, 618
Boosting, 312
Bottleneck, 593
Box Muller, 562

polar, 562
Box-Muller, 562
BPEL, 327
BPEL4WS, 325
Breadth-First Search, 253
Broadcast, 603, 609
BTNodes, 601
Bucket Brigade, 219
BufferedPassThroughPipe, 467, 477
BufferedPipe, 431, 467
bufferIndividuals, 431
Building Block, 132
Building Block Hypothesis, 132, 280
Bus, 594
Byzantine Fault, 614

Cartesian Genetic Programming, 136,
182–185

embedded, 184
Catastrophe

complexity, 279
Causality, 133, 134
CDF, 517

continous, 518
discrete, 518

CEC, 60, 242
Central Point Of Failure, 593
Centroid, 573
CFG, 617
CGE, 171
CGP, 136, 182–185

embedded, 184
Character String, 615
checkEvent, 396
checkExecuteOptimization, 422
checkPermission, 395–397

Chemical Manufacturing, 119
Chi-square Distribution, 542
Chomsky Hierarchy, 616, 617
Christiansen

grammar, 171, 624
Christiansen Grammar, 171

evolution, 171
Christiansen Grammars, 624
Chromosome, 122
Chromosomes

string
fixed-length, 124
variable-length, 126

tree, 145
CI, 64, 556
Class

equivalence, 510
Classifier, 217
Classifier Systems, 211, 212, 305, 376

learning, 211, 218, 300
non-learning, 218

clear, 404, 447, 492
clearEvaluation, 447
Client, 596
Client-Server, 266, 596
ClusterCenterDistance, 441
ClusterDistanceMeasure, 441
Clustering, 437, 571

k-means, 578
nth nearest neighbor, 439, 578
algorithm, 439, 572
hierarchical, 572
leader, 581
linkage, 439, 579
partitional, 572, 577
partitions, 573
square error, 577

ClusteringAlgorithm, 439
ClusteringAlgorithm2, 439
ClusterMaxDistance, 441
CNSGA, 106
Code Bloat, 332
Codons, 156
Coefficient of Variation, 401, 523
Combinations, 514

810 INDEX

Combinatorics, 514
ComparatorUtils, 462, 463, 465, 466
compare, 448, 463
compareFallback, 463
Completeness, 252
Complexity Catastrophe, 279
CompoundRule, 388
Compress, 184
Computational Embryogeny, 129
Computational Intelligence, 64
compute, 488
computeObjectiveValue, 456, 472,

473
computeValue, 473
Concatenation, 615
Condition, 215
Confidence

coefficient, 557
interval, 556

Content Sharing, 599
Continuous Distributions, 535
Contravariance, 315
Convergence

premature, 21
CopyPipe, 433, 486
Count, 401, 520
Covariance, 315
create, 451
createArchivePipeline, 486
createClusteringAlgorithm, 486
createCreatorPipe, 484
createCrossoverPipe, 484
createEmbryogenyPipe, 484
createEvaluatorPipe, 485
createEventPropagator, 421
createFitnessAssigner, 482
createIndividual, 447, 448, 462
createMutatorPipe, 484
createPipeline, 482
createRandomizer, 422
createSelectionAlgorithm, 482
createSimulation, 407, 410
createState, 472
createStaticState, 472, 473
createThread, 425

createThreadGroup, 421, 422
Creation, 99, 124, 126, 145, 181, 451,

468, 490, 495
Creator, 468
CreatorPipe, 469, 484
Credit Assignment Problem, 218
Crossbow, 601
Crossover, 51, 101, 125–127, 147, 148,

451, 468, 490, 495
SAAN, 181
SSAAN, 181
SSIAN, 181
tree, 147

crossover, 451
CrossoverPipe, 469, 484
CS, 211
CSG, 617
Cumulative Distribution Function,

517
Cytosine, 122

Dagstuhl Seminar, 61
Data Mining, 299, 571
DATA-MINING-CUP, 299, 300
Database Server, 597
DE, 206, 207
Deceptiveness, 25, 135
Deceptivity, 25, 135
Decile, 526
Decision Maker, 18
Decision Tree, 300
Decreasing, 511

monotonically, 511
Default Hierarchy, 216, 306
DEFAULT INDIVIDUAL FACTORY,

462
DefaultList, 466
DefaultThread, 497
defer, 418
Defined Length, 130
Density Estimation, 567

crowding distance, 568
Kernel, 570
nearest neighbor, 567
Parzen window, 570

INDEX 811

Density Measure, 567
Deoxyribonucleic acid, 121
Deoxyribose, 122
Depth-First Search, 254

iterative deepenining, 255
Depth-limited Search, 255
Derivation Tree, 616
DES, 206
destroySimulation, 407
Detector, 212
Determined, 588
Determinism, 588
DFS, 254
Differential Evolution, 206, 207
Differential Evolution Strategy, 206
Discrete, 588
Discrete Distributions, 527
Distance

Euclidian, 574
Hamming, 574
Manhattan, 574
Measure, 437, 441, 574

distance, 437
DistanceUtils, 443
Distributed algorithms, 592
Distribution, 263, 517, 527, 535

χ2, 542
chi-square, 542
continuous, 535
discrete, 527
exponential, 540, 563
normal, 537, 562

multivariate, 539
standard, 537

Poisson, 530
Student’s t, 545
t, 545
uniform, 527, 535, 561–563

continuous, 535
discrete, 527

Distribution Binomial, 532
DMC, 299
DNA, 121, 122, 156
do not Care, 130, 215, 306, 308
doAbort, 421, 478, 497

doEof, 431
Domination, 15
doRun, 478, 480, 481, 497
doStart, 421, 478, 497
Double.NaN, 463, 465, 466
DOUBLE ARRAY VE, 402
DoubleArrayCreator, 490
DoubleArrayCrossover, 490
DoubleArrayFunctionEvaluator, 489
DoubleArrayMutator, 490
DoubleArrayObjectiveFunction, 489
DoubleArrayReproducer, 489
Drunkyard’s Walk, 256
Duplication, 99, 448
Dust Networks, 601

EA, 47, 53, 60, 63, 64, 482, 485, 486
EA/AE, 61
EActivityState, 415
EAG, 621, 622
EBNF, 618, 619
ECGP, 184
ECJ, 171
Editing, 148, 149
EDL, 626
Effector, 212
home, 599
Elitism, 55
ElitistEA, 482, 486
Embedded Cartesian Genetic Pro-

gramming, 184
Embrogeny, 128

artificial, 128, 133
Embryogenesis, 128
Embryogenic, 128
Embryogeny, 456, 474, 485, 493

artificial, 129
computational, 129

EmbryogenyPipe, 474
EMO, 61
EMOO, 48, 64
Encapsulation, 149, 150
endIndividual, 407, 455, 456
Endnote, 653
endSimulation, 407, 408, 456

812 INDEX

Energy Source, 599
Entscheidungsproblem, 197
Environment, 212
Eoarchean, 49
eof, 428, 431, 432, 435
EP, 53, 209, 210
Ephemeral Random Constants, 330
Epistasis, 135

in Genetic Programming, 185
in GPMs, 185
positional, 187

Epistatic Road, 282
equals, 462
Equivalence

class, 510
relation, 510

ERL, 211
Error, 551

burst, 611
mean square, 551

ErrorEvent, 393
ES, 53, 203, 204
Estimation Theory, 549
Estimator, 549, 550

best linear unbiased, 556
maximum likelihood, 555
point, 551
unbiased, 551

Euclidean Algorithm, 287
Euclidian Distance, 574
EUROGEN, 61, 120, 204, 210
EuroGP, 143
evaluate, 387, 456
Evaluator, 473, 474, 489
Event, 393

certain, 513
conflicting, 514
elementary, 513
impossible, 514
random, 513

EventPrinter, 393
EventPropagator, 393, 421
EvoCOP, 62
Evolution

autoconstructive, 196

Evolution Strategy, 53, 203, 204
Evolutionary Algorithm, 47, 53, 60,

63, 64
basic, 51
cycle, 48
generational, 54
multi-objective, 48
parallelization, 264
steady state, 55

Evolutionary Programming, 53, 183,
209, 210

Evolutionary Reinforcement Learn-
ing, 211

Evolvability, 26
EvoWorkshops, 62
executeJob, 418, 419, 426, 474
executeOptimization, 415, 417, 419,

425
ExecutionInfo, 422
Expand, 184
expand, 251
Expected value, 521
Exploitation, 23
Exploration, 23, 251
Exponential Distribution, 540
Extended Backus-Naur Form, 618
Extinctive Selection, 54

left, 55
right, 55

Factorial, 514
FDL, 633
FEA, 62
File Sharing, 599
FileSAXWriterProvider, 436
FileTextWriterProvider, 435
finished, 421, 478, 480, 485
Finite, 588
Fitness Assignment, 65, 458, 475

Niche Size, 71
NSGA, 72
NSGA2, 73
Pareto ranking, 67
Prevalence ranking, 67
prevalence-count, 66, 476

INDEX 813

rank-based, 67, 476
RPSGAe, 75
SPEA, 76
SPEA2, 76
Tournament, 69
weighted sum, 66, 476

Fitness Landscape, 12
deceptive, 25
neutral, 26
NK, 278
rugged, 25

FITNESS COMPARATOR, 466
FitnessAssigner, 475
FitnessComparator, 466
FixedLengthBitString1PointCrossover,

495
FixedLengthBitString2PointCrossover,

495
FixedLengthBitStringCreator, 495
FixedLengthBitStringNPointCrossover,

495
flush, 425, 426
flushJobs, 418
Fly, 213
FOGA, 120
home, 599
Forma, 56, 58
Forma Analysis, 56
Formae, 58
Formal Grammar, 616
Frequency

absolute, 514
relative, 515

Frog, 213
Full, 145
Fully Connected, 596
Function, 510

ADF, 151
aggregate, 337
automatically defined, 151
benchmark, 275
cumulative distribution, 517
gamma, 570
monotone, 510
objective, 3, 452, 470

probability density, 519
probability mass, 519

Functional, 509

GA, 51, 53, 117, 119–121
Gads, 162–165, 169, 185

1, 162
2, 169

Gads 2, 169
GAGS, 162
GALESIA, 120
Gamma, 570
gatherInfoSorted, 404
gatherInfoUnSorted, 404
Gauss-Markov Theorem, 556
GCD, 287

problem, 287
GE, 165, 168, 169, 185
GECCO, 62, 120, 143
Gene, 122
Gene Expression Programming, 156,

158, 159
Generality, 28
Generation, 31
Generational, 54
Generative Grammar, 615
Genetic Algorithm, 117, 119–121, 222

cellular, 271
cycle, 118
for deriving software, 162
grammar-based, 162

Genetic Algorithms, 51, 53, 117, 140
natural representation, 124
real encoded, 124

Genetic Programming, 51, 53, 139,
142–144

binary, 156
epistasis, 185
grammar-guided, 160
linear, 177, 178
parallel distributed, 179
rule-based, 187
standard, 140
strongly typed, 160
TAG, 173, 177

814 INDEX

tree-adjoining grammar-guided, 173,
177

tree-based, 140, 142, 145
Genetic Programming Kernel, 162
Genome, 121, 122
Genomes

string, 124
tree, 145

Genotype, 117
Genotype-Phenotype Mapping, 127,

133, 136, 154
Genotype-Phenotype mapping, 122,

128
GEP, 156–159
getAction, 387
getArchivePipeline, 486
getArchiveSize, 486
getAverage, 401
getBitCount, 492
getCenterIndividual, 439
getCoefficientOfVariation, 401
getComparator, 460, 477, 478
getCondition, 387
getCopyPipe, 433
getCount, 401
getCreationTime(), 392
getCreator, 460, 469
getCrossover, 460
getCrossoverPoints, 495
getCurrentHost, 417
getCurrentId, 393
getCurrentSecurityInfo, 396
getEmbryogeny, 460
getError, 393
getEvaluator, 460
getEventPropagator, 421
getEventSource, 392
getEventSource(), 395
getExecutionInfo, 419, 422
getFitness, 447
getGenotype, 447
getGranularity, 495
getId, 415
getIndividualDistanceMeasure, 441
getIndividualFactory, 460

getInterquartilRange, 401
getIteration, 460, 482
getJobInfo, 417, 460
getKurtosis, 401
getMaxArchiveSize, 460, 486
getMaximum, 401
getMaxProcessorCount, 415, 419, 422
getMaxSimulation, 408
getMaxSimulations, 407
getMedian, 401
getMinimum, 401
getMutator, 460
getNewLength, 495
getNucleus, 438, 441
getObjectiveValue, 447
getObjectiveValueCount, 447, 456
getOptimalThreadCount, 425
getOptimizationId, 417
getOptimizationInfo, 422
getOutput, 491
getPassThroughCount, 449
getPhenotype, 447
getPipeline, 482
getPopulationSize, 485
getQuantil25, 401
getQuantil75, 401
getRange, 401
getReceivers, 603
getReceiveTime, 604
getRequiredSimulationId, 455, 456,

472
getRequiredSimulationSteps, 455, 472
getRules, 387, 480
getSecurityInfo, 422
getSeed, 399
getSender, 603
getSendTime, 603
getSimulated, 408
getSimulation, 408
getSimulationId, 407, 408
getSimulationManager, 416, 417, 422
getSimulations, 408
getSkewness, 401
getSplitCount, 495
getStdDev, 401

INDEX 815

getSum, 401
getSumSqr, 401
getThreadGroup, 421
getTotalIterations, 482
getVariance, 401
GEWS, 168
GGGP, 160
Gnutella, 599
Goal Attainment, 18
Goal Programming, 18
GP, 51, 53, 139, 142–144

epistasis, 185
GPK, 162
GPM, 127, 128, 133, 136, 154, 158,

185, 187
epistasis, 185

GPTP, 143
Gradient, 12

descend, 12
Gradient Descent

stochastic, 225
Grammar, 142, 159

adaptable, 623
recursive, 624

attribute, 619
BNF, 617
Christiansen, 624

evolution, 171
context-free, 617
context-sensitive, 617
derivation tree, 616
EBNF, 618
formal, 616
generative, 615, 616, 624
L-attributed, 621
recursive enumerable, 617
regular, 617
S-attributed, 621
TAG, 625
tree-adjoining, 625

lexicalized, 626
tree-adjunct, 625

lexicalized, 626
Grammatical Evolution, 165, 168, 169

Christiansen, 171, 185

Granularity, 376
GrayCodedBitStringInputStream, 493
GrayCodedBitStringOutputStream, 493
Greatest Common Divisor, 287
Greedy Search, 259
Grid, 596
Grow, 146
Guanine, 122

Halting Criterion, 31
Halting Problem, 197, 198

reductio ad absurdum, 197
Halting problem, 197
Hamming Distance, 574
hatch, 128, 458, 474
HC, 223, 224
Herman, 139
Heuristic, 6, 258

admissible, 260
monotonic, 260

Heuristic Random Optimization, 228
Hierarchy, 596

Chomsky, 616
default, 216, 306

Hill Climbing, 223, 224
multi-objective, 224
randomized restarts, 225
stochastic, 225

HIS, 41
Histogram, 567
HRO, 228
HTTP, 597
Hydrogen Bond, 122
Hyperplane, 130
Hypothesis

building block, 132, 280

IAction, 387, 388
IActivity, 414, 415, 459, 478
IActivity2, 414, 415, 419, 420, 497
IAdaptable, 387, 478, 480
ICANNGA, 63, 121, 144
ICGA, 120
IClusterAlgorithm, 486
IClusterDistanceParameters, 439

816 INDEX

IClusteringAlgorithm, 437, 439
IComparator, 448, 449, 465, 466
ICondition, 387, 388
ICreator, 451, 468, 469
ICreatorPipe, 449, 451, 469, 484
ICrossover, 451, 468, 469
ICrossoverParameters, 452, 460
ICrossoverPipe, 452, 469, 484
IDDFS, 255, 256, 317
IDistanceMeasure, 437
IDoubleArrayFunction, 489
IEA, 460, 485
IElitistAlgorithm, 460
IEmbryogeny, 458, 474
IEmbryogenyPipe, 458, 474, 485
IErrorEvent, 393, 425
IEvaluator, 456, 473
IEvaluatorPipe, 456, 474, 485
IEvent, 392, 393
IEventListener, 391–393
IEventSource, 391, 393, 415
IExecutionInfo, 415, 419
IF-FOOD-AHEAD, 287
IFitnessAssigner, 458
IHost, 416, 417, 425
IIndividual, 445, 447, 456, 462
IIndividualDistanceMeasure, 437
IIndividualDistanceMeasureParameters,

437
IIndividualFactory, 447, 448, 462
IIterativeAlgorithm, 460, 481
IJobInfo, 415, 417, 419, 421, 422, 460
IJobSystem, 415, 419, 421
Image Processing, 571
ImplementationBase, 461, 462, 465,

469
Implicit Parallelistm, 59
IMutationParameters, 460
IMutator, 451, 468, 469
IMutatorParameters, 451, 485
IMutatorPipe, 451, 469, 484
Increasing, 510

monotonically, 510
Individual, 10, 462, 463
IndividualFactory, 462, 463

IndividualPrinterPipe, 383, 436
Information

management, 571
processing, 571

Informed Search, 258
init, 491
INITIALIZED, 414, 420, 421
Injective, 509
Input, 587
Input-Processing-Output, 139, 587
inspect, 455
Instant Messaging, 599
Intelligence

artificial, 300
Interval

confidence, 556
Intervall, 502
Intrinsic Parallelism, 59
Intron, 123, 164, 180, 199
IObjectiveFunction, 452, 453, 455,

456, 470, 489
IObjectiveFunctions, 452
IObjectiveState, 452, 455, 456, 470
IObjectiveValueComputer, 456, 472
IOptimizationHandle, 415, 425
IOptimizationInfo, 416, 422, 459, 460
IOptimizer, 419, 459, 460, 478
IPassThroughAlgorithm, 459, 467
IPassThroughParameters, 449, 451,

485
IPipe, 428, 431, 460, 478
IPipeIn, 428, 429, 481, 486
IPipeOut, 428, 429, 459, 478, 480
IPipeSource, 428
IPO, 139
IPO Model, 587
IPopulation, 449, 466, 485, 486
IRandomizer, 400, 402, 417, 422
IRandomNumberGenerator, 399, 400,

402
IRule, 387, 388
ISecurityInfo, 395, 396, 415
ISelectionAlgorithm, 449, 458, 459,

477
isFinal, 415, 478

INDEX 817

isFinished, 497
isGoal, 251
ISimulation, 406–408, 410, 453, 455
ISimulationManager, 408, 455, 456
ISimulationProvider, 410
Island Hopping, 267
Island Model, 267
Isolated, 26
Isolation

by distance, 271
isRemovingDuplicates, 431
isRunning, 415, 478, 497
IStatisticInfo, 401, 402
IStatisticInfo2, 401, 402
IStatsticInfo2, 401
isTerminated, 415, 478, 497
iteration, 481, 485
IterativeOptimizer, 481, 482
IValueExtractor, 402
IWaitable, 415, 418
IWLCS, 212
IWriterProvider, 435

java.io.DataInput, 491
java.io.DataOutput, 491
java.io.Serializable, 371
java.io.Writer, 435
java.lang.IllegalStateException, 414,

421, 480
java.lang.Runnable, 418, 459, 474,

478
java.lang.SecurityException, 395
java.lang.SecurityManager, 395, 396
java.lang.ThreadGroup, 421
java.lang.Throwable, 393, 425
java.security.Permission, 395
java.util.Comparator, 448
java.util.EventObject, 393
java.util.List, 432, 449, 466, 480
java.util.Random, 401, 402, 561, 562
JB, 154
JobId, 422, 425
JobInfo, 422
JobSystem, 421, 422
JobSystemUtils, 417, 418

Kauffman NK, 278
Kernel Density Estimation, 570
Kleene closure, 615
Kleene star, 615
Kurtosis, 401, 524

excess, 524

LAN, 599
Language, 614, 615

formal, 614
Language Attribute, 624
Las Vegas Algorithm, 591
Latency, 612
LCG, 561
LCS, 53, 187, 189, 211, 212, 305

Michigan-style, 222
Pitt, 222
Pittsburgh-style, 222

Learning Classifier System
Michigan-style, 222
Pittsburgh-style, 222

Learning Classifier Systems, 53, 211,
212, 305

LEFT, 287
Length

defined, 130
Levels-back, 183
Lexeme, 175, 615
LGP, 177, 178
LGPL, 641
License, VII, 633, 641

FDL, 633
LGPL, 641

Life
artificial, 193

Lifting, 150, 151
Likelihood, 552

function, 552
Linear Congruential Generator, 561
Linear Order, 509
Linkage

Average, 576
Complete, 576
Single, 576

LinkageClustering, 439

818 INDEX

List, 505
addListItem, 505
appendList, 506
createList, 505
deleteListItem, 506
deleteListRange, 506
insertListItem, 505
removeItem, 507
search (sorted), 507
search (unsorted), 507
sorting, 506
subList, 506

Local Search, 252
Locality, 133, 134
Locus, 123
LOGENPRO, 162
LTAG, 626

MA, 249
MAJORITY COMPARATOR, 465
MajorityComparator, 463, 465
Manhattan Distance, 574
Mapping

Genotype-Phenotype, 127, 154
genotype-phenotype, 136

Mask, 129
defined length, 130
order, 130

Master-Slave, 266
matchesCondition, 215
Maximum, 8, 341, 401, 520

global, 9
local, 8

Maximum Likelihood Estimator, 555
MCDM, 42
Mean, 339

arithmetic, 401, 472, 521
Median, 401, 524
Medicine, 571
Memetic Algorithms, 249
Memory Consumption, 252
Mendel, 42, 63, 121, 144
mergeAction, 217
Message, 213
Metaheuristic, 6

Method of Inequalities, 17
MIC, 43
MICA2, 601
Microcontroller, 600
MIDEA, 103
migrate, 267, 268
Minimum, 9, 341, 401, 520

global, 9, 449
local, 9

MLE, 555
Model, 28
Module Mutation, 184
MOEA, 48
MOI, 17
Moment, 523

central, 523
standardized, 523

Monotone
function, 510
heuristic, 260

Monotonic, 510
Monotonicity, 510
Monte Carlo

method, 592
Monte Carlo Algorithm, 592
MOVE, 287
MPJSJob, 425, 426
MPJSJobBase, 426
MPJSThread, 425, 426
MSB, 601
MSE, 551
Multi-objective, 12, 48, 199, 202, 369
Multicast, 609
MultiCreator, 469
MultiCrossover, 469
Multimodality, 22
MultiMutator, 469
MultiplexingMutator, 496
MultiProcessorJobSystem, 422, 425
mutate, 451
Mutation, 51, 100, 124–127, 146, 147,

182, 451, 468, 490, 493
global, 182
link, 182
module, 184

INDEX 819

tree, 146
Mutator, 468
MutatorPipe, 469, 484

Natural Representation, 124
NCGA, 114
NearestNeighborClustering, 439
Needle-In-A-Haystack, 26, 184
Network Topology, 593
Neural Network

artificial, 300
Neutrality, 26, 136, 183, 184

explicit, 184
implicit, 184

nextDouble, 399, 400
nextGaussian, 402, 562
NK, 278
NNearestNeighborClustering, 439, 486
Node Selection, 152
nodeWeight, 153
NoEofPipe, 432, 485, 486
Non-Decreasing, 510
Non-functional, 196, 199
Non-Increasing, 511
Nonile, 526
NonPrevalenceFiler, 485
NonPrevalenceFilter, 433, 486
Norm, 575

Euclidian, 441, 575
infinity, 441, 575
Manhattan, 441, 575
p, 441, 575

Normal Distribution, 537
standard, 537

NPGA, 104
NPGA2, 104
NSGA, 105
NSGA2, 106
Nucleus, 577
Numbers

integer, 502
natural, 502
pseudorandom, 560
random, 559
real, 502

whole, 502

ObjectiveCluster, 439
ObjectiveDistanceMeasure, 441
ObjectiveFunction, 470, 472
ObjectiveNorms, 441
ObjectivePNorm, 441
ObjectivePrinterPipe, 384, 436
ObjectiveState, 470, 472, 473
ObjectiveUtils, 472
One-Fifth Rule, 206
onError, 497
onIterationBegin, 435
onIterationEnd, 435
ontogenic mapping, 127
Optimiality, 252
Optimization

global, 3, 445
taxonomy, 4

iterations t, 31
multi-objective, 12, 13, 202, 369

Pareto, 15
prevalence, 20
weighted sum, 14

offline, 7
online, 7
random, 227
termination criterion, 31

OptimizationInfo, 479, 481
OptimizationUtils, 449
Optimizer, 478–480
Optimum, 8, 9

global, 9
isolated, 26
local, 8, 9
optimal set, 9, 13

extracting, 33
obtain by deletion, 33
pruning, 36
updating, 33
updating by insertion, 33

Order, 130
linear, 509
partial, 15, 509
simple, 509

820 INDEX

total, 509
org.sfc.parallel.Activity, 420
org.sfc.parallel.SfcThread, 497
org.sgioa.refimpl.clustering.algorithms,

439
org.sigo.refimpl.events, 393
org.sigoa, 371
org.sigoa.refimpl, 371
org.sigoa.refimpl.adaptation, 388
org.sigoa.refimpl.clustering, 439
org.sigoa.refimpl.genomes.bitString, 491
org.sigoa.refimpl.genomes.doubleVector,

488
org.sigoa.refimpl.genotypes, 487
org.sigoa.refimpl.go, 461, 478
org.sigoa.refimpl.go.algorithms, 481
org.sigoa.refimpl.go.algorithms.ea, 482
org.sigoa.refimpl.go.comparators, 462
org.sigoa.refimpl.go.embryogeny, 474
org.sigoa.refimpl.go.evaluation, 473
org.sigoa.refimpl.go.fitnessAssignment,

475
org.sigoa.refimpl.go.objectives, 470
org.sigoa.refimpl.go.reproduction, 467
org.sigoa.refimpl.go.selection, 477
org.sigoa.refimpl.jobsystem, 420
org.sigoa.refimpl.pipe, 429, 432
org.sigoa.refimpl.pipe.stat, 435
org.sigoa.refimpl.security, 396
org.sigoa.refimpl.stoch, 402
org.sigoa.refimpl.utils, 497
org.sigoa.spec, 371
org.sigoa.spec.adaptation, 387
org.sigoa.spec.clustering, 437
org.sigoa.spec.events, 391
org.sigoa.spec.go.algorithms, 460
org.sigoa.spec.go.embryogeny, 456
org.sigoa.spec.go.evaluation, 456
org.sigoa.spec.go.objectives, 452
org.sigoa.spec.go.reproduction, 450
org.sigoa.spec.jobsystem, 413
org.sigoa.spec.pipe, 428
org.sigoa.spec.security, 395
org.sigoa.spec.simulation, 405, 408
org.sigoa.spec.stoch, 399

Output, 588
output, 431
outputIndividual, 435
outputResults, 486
Overfitting, 27, 332
Overlay Network, 594
OWL-S, 313

P2P, 268, 597
PAES, 107
ParallelEvaluatorPipe, 474, 485
Parallelism

implicit, 59
intrinsic, 59

Parallelization, 263
Pareto, 14, 465

frontier, 15
optimal, 15
set, 15
tiered, 465

Pareto ranking, 67
PARETO COMPARATOR, 465
ParetoComparator, 465
Partial Order, 509
Partial order, 15
Particle Swarm Optimization, 245
Partition

static, 608
Parzen window, 570
PassThroughPipe, 467, 469
Pattern Recognition, 571
PDF, 519
PDGP, 179
Peer-To-Peer, 268
Peer-to-Peer, 597
Percentile, 526
perform, 387
Permutation, 125, 148

tree, 148
PESA, 108
PESA-II, 109
Phenotype, 118
Phosphate, 122
Pipe, 431, 467, 469, 480
Pipeline, 431, 432

INDEX 821

PipeOut, 431, 461
Pitt approach, 222, 305
PL, 154
PMF, 519
Point Estimator, 551
Poisson, 530

Process, 530
Poisson Distribution, 530
Population, 47, 466
population, 53, 449, 466
PPSN, 63
preciseCompare, 448, 463
preciseCompareFallback, 463
preciseToNormal, 462, 463
Premature Convergence, 21
Preservative Selection, 55
Prevalence, 20, 448, 462
Prevalence ranking, 67
PrevalenceFitnessAssigner1, 476
PrevalenceFitnessAssigner2, 476, 482
PrinterPipe, 435, 436
Probabilistic Algorithm, 591
Probability

Bernoulli, 514
Conditional, 516
Kolmogorov, 515, 516
space, 516

of a random variable, 517
Van Mises, 515

Probability Density Function, 519
Probability Mass Function, 519
Probit, 539
Problem Space, 122
process, 431
Processing, 588
Production Systems, 211
PROGN2, 287
PROGN3, 287
PROLOG, 162
propagateEvent, 421
Protocols

Aggregation, 337, 338
gossip-based, 338
proactive, 338
reactive, 338

provideWriter, 435
Pruning, 36
Pseudorandom Numbers, 560
PSFGA, 109
PSO, 245, 246
Push, 193
Push3, 193
PushGP, 193, 196
Pushpop, 193, 196

QoS, 326
QSAR, 247
Quality of Service, 326
Quantile, 525
Quartile, 401, 526
Quintile, 526

Radio, 599
RAG, 169, 624
rag, 169
Ramped Half-and-Half, 146
Random

event, 513
Experiment, 513
experiment, 516
variable, 517

continous, 518
discrete, 518

random neighbors, 278
Random Number

generator
normally distributed, 566
uniformly distributed, 565

Random Numbers, 559
pseudo, 560
uniformly distributed, 561

Random Optimization, 227, 229
heuristic, 228

Random Walk, 25, 256
Randomized Algorithm, 591
Randomizer, 402
RandomSelectionR, 478
Range, 401, 521

interquartile, 401, 526
RankBasedFitnessAssigner1, 476

822 INDEX

RBGP, 187, 191–193, 291, 294, 295
readBits, 491, 493
Real Encoded, 124
receiveAny, 603
receiveEvent, 392, 393, 417
receiveFrom, 603
Recognizers, 615
Recombination, 51, 101, 147

tree, 147
Recursive Adaptable Grammars, 624
Redundancy, 135
regress, 128, 458, 474
Regression, 329

logistic, 300
Symbolic, 329

Relation
binary, 508

types and properties of, 508
equivalence, 510
order, 509

partial, 509
total, 509

Reliability, 610
message delay, 612
message latency, 612
message loss, 610
message modification, 611

removeEventListener, 392, 421
removeProvider, 408
removeThread, 421
Repair, 160
Representation

natural, 124
Reproduction, 99, 450, 467

asexual, 121
NCGA, 102
sexual, 47, 51, 121

reset, 480, 482
returnSimulation, 408, 456
reuse, 480, 482
RIGHT, 287
Ring, 596
Road

royal, 280
variable-length, 281

VLR, 281
Royal Road, 280, 281

variable-length, 281
VLR, 281

Royal Tree, 283
RPSGAe, 109
Ruggedness, 25
Rule

semantic, 619
Rule-based Genetic Programming,

187
run, 425, 459, 497
Runnable, 425
RUNNING, 414, 415, 421

S-Expressions, 627
SA, 231, 233
SAAN, 181
Sample space, 513
sanityCheck, 455, 472
Santa Fe trail, 285
SAXWriter, 435, 436
Scalability, 593
ScatterNode, 601
Scatterweb, 601
Schema, 130

theorem, 130
Schema Theorem, 25, 56, 129, 130,

280
Schemata, 129
Search

A*, 260
best-first, 258
breadth-first, 253
depth-first, 254

iterative deepenining, 255
depth-limited, 255
greedy, 259
informed, 258
local, 252
State Space, 251
uninformed, 253

Search Space, 122
SecurityInfo, 396
SecurityInfoManager, 396

INDEX 823

SecurityUtils, 396
select, 498
Selection, 78, 458, 477

cnsga, 92
with replacement, 95
without replacement, 96

Deterministic, 80
elitist, 55
extinctive, 54

left, 55
right, 55

linear ranking, 85
with replacement, 89
without replacement, 89

midea, 87, 91
Node, 152
npga, 90

with replacement, 92
without replacement, 93

pesa, 94
with replacement, 97
without replacement, 97

pesa2, 94, 98
polynomial ranking, 85

with replacement, 89
without replacement, 89

preservative, 55
Prevalence Niche, 99, 100
Proportionate, 84
random, 80, 478

with replacement, 81
without replacement, 82

Roulette Wheel, 84
Tournament, 81, 478

non-deterministic, 86
with replacement, 83, 86
without replacement, 84, 85

Tournament (Crowded), 83
Truncation, 80, 478

with replacement, 80, 478
without replacement, 80

vega, 86, 90
SelectionAlgorithm, 477
Selector, 469, 497
Semantic, 614

Semantic Rule, 619
sendTo, 603
Sensor Network, 599

wireless, 599
Sentence, 615
SequentialEvaluatorPipe, 474, 485
Server, 596
Service Oriented Architecture, 312
Set, 501

cardinality, 501
Cartesian product, 504
complement, 504
countable, 504
difference, 504
empty, 502
equality, 502
intersection, 503
List, 505
membership, 501
operations on, 503
optimal, 9, 13
Power set, 504
relations between, 502
special, 502
subset, 502
superset, 502
theory, 501
Tuple, 505
uncountable, 504
union, 503

setCopyPipe, 433
setCrossoverRate, 485
setDefaultSeed, 400
setFitness, 447
setGenotype, 447
home, 599
setIndividualDistanceMeasure, 441
setMaxArchiveSize, 460, 486
setNextPopulationSize, 485
setObjectiveValue, 447
setOutputPipe, 428, 431
setPassThroughCount, 449
setPhenotype, 447
setRemoveDuplicates, 431
setSeed, 399

824 INDEX

sexp, 627
Sexual Reproduction, 47, 51, 121
SfcThread, 497
SFGA, 109
SGP, 140
Sharing Function, 69
Sigoa, 367, 375

activity model, 413
adaptation, 387
clustering, 437
events, 391
genotypes, 487
global optimization, 445
job system, 413
pipes and filters, 427
security, 395
simulation, 405
simulation inheritance, 410
stochastic utilities, 399
utilities, 497

Simple Order, 509
simulate, 407, 455
Simulated Annealing, 231, 233

simulated quenching, 233
temperature schedule, 233

Simulated Quenching, 233
Simulation, 30, 408
simulation, 408
SimulationManager, 410
SimulationProvider, 408, 410
SingleProcessorJobSystem, 422, 423,

425
SIS, 248
Skewness, 401, 524
Small-ω notation, 591
Small-o notation, 590
SmartMesh, 601
SOA, 312
Software engineering, 198
Software testing, 198
Solution Candidate, 10
Solution Space, 122
SPEA, 110, 112
SPEA2, 111, 113, 114
SPJSJob, 425

SPJSThread, 425
SSAAN, 181
SSEA, 55
SSIAN, 181
Standard Deviation, 401, 523
Standard Genetic Programming, 140
Star, 595
start, 414, 419, 420, 497
State Space

Search, 251
StaticObjectiveFunction, 472, 473
StaticObjectiveState, 473
Statistical Independence, 517
StatisticInfo, 402, 404
StatisticInfo2, 402, 404
StatisticInfoBase, 404
Statistics, 519
Steady State, 55
STGP, 160–162
Stochastic

Theory, 513
Stochastic Gradient Descent, 225
Stopping Criterion, 31
String, 615

character, 615
String Chromosomes, 124
Strongly Typed Genetic Program-

ming, 160
Student’s t-Distribution, 545
Substitution, 626
Sugar, 122
Sum, 342, 401, 521

sqr, 401, 522
SUM COMPARATOR, 465
SumComparator, 465
SumFitnessAssigner, 475, 476
Support Vector Machine, 300
Surjective, 509
SVM, 300
Symbol

grammar, 616
non-terminal, 616
start, 616
terminal, 616

Symbolic Regression, 329

INDEX 825

Example, 332
Syntax, 614

t-Distribution, 545
Tabu Search, 237

multi-objective, 239
TAG, 173, 625

lexicalized, 626
LTAG, 626

TAG3P, 173, 175–177
talk, 599
TB, 155
TERMINATED, 414, 415, 421, 480
TERMINATING, 414, 415, 421
Termination, 588
Termination Criterion, 31
Ternary System, 215
TextWriter, 435, 436
TGP, 140, 142, 145, 178
Theorem

Schema, 56, 129, 280
ThreadActivity, 421
Thymine, 122
TieredParetoComparator, 465
Time Consumption, 252
TimeCondition, 388
Topology, 593, 607

bus, 594
fully connected, 596
grid, 596
hierarchical, 596
hierarchy, 596
network, 593
ring, 596
star, 595
unrestricted, 594

toString, 462
Total Order, 509
TournamentSelectionR, 478, 482
Transitiv, 509
Tree

auxiliary, 626
decision, 300
derivation, 616
elementary, 626

initial, 626
royal, 283

Tree Genomes, 145
Tree-Adjoining Grammar, 625
truncate, 472
Truncation Selection, 80
TruncationSelectionR, 478
TS, 237
Tuple, 505

Type, 505
Type-0, 617
Type-1, 617
Type-2, 617
Type-3, 617
Types Possibilities Tables, 161

Unicast, 609
Uniform Distribution

continuous, 535
discrete, 527

uniformSelectNode, 152, 153
Uninformed Search, 253

Variable, 616
variableLength, 493
VariableLengthBitStringCreator, 495
VariableLengthBitStringDeleteMutator,

495
VariableLengthBitStringInsertMutator,

495
VariableLengthBitStringMutator, 496
VariableLengthBitStringNPointCrossover,

495
Variance, 342, 401, 522
VEGA, 103

waitFor, 414, 415, 419, 426, 478, 497
Walk

Adaptive, 260
adaptive

fitter dynamics, 261
greedy dynamics, 260
one-mutant, 260

drunkyard’s, 256
random, 25, 256

826 INDEX

Wasp, 213
Web Browser, 597
Web Server, 597
Web Service, 312

Challenge, 312
Web Service Challenge, 313
Website, 597
Weighted Sum, 13, 21, 66, 465, 476
WeightedSumComparator, 465
WeightedSumFitnessAssigner, 476
Wildcard, 130, 215, 306, 308
Wireless LAN, 599
Wireless Sensor Network, 599
WORST OVC, 472
Wrapping, 149, 150
write, 428, 431
writeBits, 491, 493
WS-Challenge, 313
WSC, 313, 326
WSDL, 313
WWW, 597

XCS, 222

ZCS, 222

List of Figures

1.1 The taxonomy of global optimization algorithms. 5
1.2 Global and local optima of a two-dimensional function. 8
1.3 Possible results of global optimization. 10
1.4 Global and local optima of a two-dimensional function. 11
1.5 Two functions f1 and f2 with different maxima x̂1 and x̂2. 14
1.6 Optimization using the weighted sum approach. 15
1.7 Optimization using the Pareto Frontier approach. 16
1.8 An external decision maker providing an EA with utility values. 19
1.9 Premature convergence in objective space. 22
1.10 Different possible fitness landscapes. 24

(a) best case . 24
(b) smooth . 24
(c) multimodal . 24
(d) rugged . 24
(e) deceptive . 24
(f) neutral . 24
(g) needle-in-a-haystack . 24
(h) nightmare . 24

1.11 Overfitting in curve fitting. 29
(a) sample data . 29
(b) overfitted result . 29
(c) correct result . 29

2.1 The basic cycle of evolutionary algorithms. 48
2.2 The family of evolutionary algorithms. 54
2.3 An graph coloring-based example for properties and formae. . . . 57
2.4 Example for formae in symbolic regression. 58
2.5 The dominated sets of the individuals x̂1 and x̂2. 67
2.6 The cycle of the SPEA . 112
2.7 The cycle of the SPEA2 . 114

828 LIST OF FIGURES

3.1 The basic cycle of genetic algorithms. 119
3.2 A sketch of a part of a DNA molecule. 122
3.3 A five bit string genome G and a fictitious phenotype X̃. 123
3.4 Value-altering mutation of string chromosomes. 125
3.5 Permutation applied to a string chromosome. 125
3.6 Crossover (recombination) of fixed-length string chromosomes. . 126
3.7 Mutation of variable-length string chromosomes. 127
3.8 Crossover of variable-length string chromosomes. 127
3.9 An example for schemata in a three bit genome. 131

4.1 Genetic programming in the context of the IPO model. 140
4.2 The AST representation of algorithms/programs. 141
4.3 Tree creation by the full method. 146
4.4 Tree creation by the grow method. 146
4.5 Possible tree mutation operations. 147
4.6 Tree crossover by exchanging sub-trees. 148
4.7 Tree permutation – asexually shuffling sub-trees. 148
4.8 Tree editing – asexual optimization. 149
4.9 An example for tree encapsulation. 150
4.10 An example for tree wrapping. 150
4.11 An example for tree lifting. 151
4.12 Automatically defined functions in Genetic Programming. 152

(a) general structure . 152
(b) example . 152

4.13 A GPM example for Gene Expression Programming. 158
4.14 Example for valid and invalid trees in symbolic regression. 159
4.15 Example for valid and invalid trees in typed Genetic

Programming. 161
4.16 The structure of a grammatical evolution system [652]. 166
4.17 An TAG realization of the C-grammar of listing 4.6. 174
4.18 One example genotype-phenotype mapping in TAG3P. 176
4.19 The impact of insertion operations in Genetic Programming. . . . 179

(a) Inserting into an instruction string. 179
(b) Inserting in a tree representation. 179

4.20 The term max{x ∗ y, x ∗ y + 3} . 180
(a) tree structure . 180
(b) graph structure . 180
(c) PDGP structure . 180

4.21 An example for the GPM in Cartesian Genetic programming. . . 183
4.22 Epistasis in Grammatical Evolution. 186
4.23 Positional epistasis in Genetic Programming. 188

(a) In Standard Genetic Programming and Symbolic
Regression . 188

(b) In Standard Genetic Programming. 188
(c) In Linear Genetic Programming. 188

LIST OF FIGURES 829

(d) With Genotype-Phenotype Mapping, as in Grammatical-
Evolution like approaches. 188

4.24 Genotype-Phenotype mapping in Rule-based Genetic
Programming. 189

7.1 The structure of a Michigan style learning classifier system. 213
7.2 One possible encoding of messages for a frog classifier system . . 214

16.1 Parallelization potential in evolutionary algorithms. 264
16.2 A sequentially proceeding evolutionary algorithm. 265
16.3 A parallel evolutionary algorithm with two worker threads. 265
16.4 An EA distributed according to the client-server approach. 267
16.5 An evolutionary algorithm distributed in a P2P network. 268
16.6 An example for a heterogeneous search. 269
16.7 A mixed distributed evolutionary algorithms. 270

17.1 An example for the moving peaks benchmark [87]. 277
(a) t = 0. 277
(b) t = 1. 277
(c) t = 2. 277
(d) t = 3. 277
(e) t = 4. 277
(f) t = 6. 277
(g) t = 7. 277
(h) t = 13. 277

17.2 The perfect Royal Trees. 283
(a) Perfect A-level . 283
(b) Perfect B-level . 283
(c) Perfect C-level . 283

17.3 Example fitness evaluation of Royal Trees. 284
(a) 2(2 ∗ 32 + 2 ∗ 32 + 2 ∗ 32) = 384 . 284
(b) 2(2 ∗ 32 + 2 ∗ 32 + 2

3 ∗ 1) = 1282
3 . 284

(c) 2(2 ∗ 32 + 1
3 ∗ 1 + 1

3 ∗ 1) = 642
3 . 284

17.4 The Santa Fee Trail in the Artificial Ant Problem. 286
17.5 The f1/generation-plots of the best configurations. 296

(a) rw=0,cp=1,ss=1,ct=1, tc=10,pop=2048 296
(b) rw=0,cp=1,ss=1,ct=0, tc=10,pop=2048 296
(c) rw=0,cp=1,ss=0,ct=1, tc=10,pop=2048 296
(d) rw=0,cp=1,ss=0,ct=0, tc=10,pop=2048 296
(e) rw=0,cp=1,ss=1,ct=1, tc=10,pop=1024 296
(f) rw=0,cp=1,ss=1,ct=0, tc=10,pop=1024 296
(g) rw=0,cp=1,ss=0,ct=1, tc=10,pop=1024 296
(h) rw=0,cp=1,ss=0,ct=0, tc=10,pop=1024 296
(i) rw=0,cp=1,ss=1,ct=0, tc=10,pop=512 296
(j) rw=0,cp=1,ss=1,ct=1, tc=10,pop=512 296

830 LIST OF FIGURES

(k) rw=0,cp=1,ss=1,ct=1, tc=1,pop=2048 296
(l) rw=0,cp=1,ss=1,ct=0, tc=1,pop=1024 296

18.1 Some logos of the Data-Mining-Cup. 301
(a) 2005 . 301
(b) 2006 . 301
(c) 2007 . 301

18.2 A few samples from the DMC 2007 training data. 304
18.3 DMC 2007 sample data – same features but different classes. . . . 304
18.4 An example classifier for the 2007 DMC. 307
18.5 The course of the classifier system evolution. 308
18.6 Some Pareto-optimal individuals among the evolved classifier

systems. 309
18.7 The course of the modified classifier system evolution. 310
18.8 The logo of the Web Service Challenge. 314
18.9 A sketch of the Pareto front in the genetic composition

algorithm. 321
18.10The WSC 2007 Composition System of Bleul and Weise. 324
18.11The Knowledge Base and Service Registry of our Composition

System. 325

19.1 An example genotype of symbolic regression of with x = x ∈ R1.330
19.2 ϕ(x), the evolved f⋆

1 (x) ≡ ϕ(x), and f⋆
2 (x). 334

20.1 The two basic forms of aggregation protocols. 339
(a) reactive aggregation . 339
(b) proactive aggregation . 339

20.2 An example sensor network measuring the temperature. 340
20.3 An gossip-based aggregation of the average example. 341

(a) initial state . 341
(b) after step 1 . 341
(c) after step 2 . 341

20.4 Optimal data dissemination strategies. 344
(a) pair-based . 344
(b) general . 344

20.5 The model of a node capable to execute a proactive
aggregation protocol. 346

20.6 The behavior of the distributed average protocol in different
scenarios. 352
(a) with constant inputs . 352
(b) with volatile inputs . 352

20.7 A dynamic aggregation protocol for the distributed average. . . . 353
20.8 Some examples for the formula series part of aggregation

protocols. 354
(a) distributed average . 354

LIST OF FIGURES 831

(b) square root of the distributed average 354
20.9 The evolutionary progress of the static average protocol. 358
20.10The relation of f1 and f2 in the static average protocol. 359
20.11The evolutionary progress and one grown solution of the static

root-of-average protocol. 360
20.12The relation of f1 and f2 in the static root-of-average protocol. . 360
20.13The evolutionary progress of the dynamic average protocol. 361
20.14The relation of f1 and f2 in the dynamic average protocol. 362
20.15The evolutionary progress and one grown solution of the

dynamic root-of-average protocol. 363
20.16The relation of f1 and f2 in the dynamic root-of-average

protocol. 364

21.1 The top-level packages of the Sigoa optimization system. 371
21.2 The subsystem specification of the optimization framework. 373

23.1 The specification of the Sigoa adaptation mechanisms. 388
23.2 The reference implementation of the adaptation mechanisms. . . 389

24.1 The specification of the Sigoa event objects. 392
24.2 The reference implementation of the Sigoa event objects. 394

25.1 The specification of the Sigoa security concept. 396
25.2 The reference implementation of the Sigoa security concept. . . . 397

26.1 The specification of the Sigoa stochastic utilities. 400
26.2 The reference implementation of the Sigoa stochastic utilities. . . 403

27.1 The specification of the Sigoa simulation interface. 406
27.2 The reference implementation of the Sigoa simulation interface. 409
27.3 Simulation inheritance in the reference implementation. 410

28.1 The states and life cycles of an activity. 414
28.2 The specification Sgioa activity model. 416
28.3 The job system information record. 417
28.4 The interface of the job system to the jobs. 418
28.5 The reference implementation of the Sgioa activity model. 420
28.6 The implementation of the job system info records. 423
28.7 The two basic job system reference implementations. 424

29.1 The pipes and filters software design pattern. 427
29.2 A evolutionary algorithm realized with pipes and filter. 428
29.3 The specification of the Sigoa pipeline system. 429
29.4 The classes of the pipeline system reference implementation. . . . 430
29.5 The utility class Pipeline. 432
29.6 Some other pipeline classes. 433

832 LIST OF FIGURES

29.7 Pipe stages that print out statistical data. 434

30.1 The specification of clustering algorithm interfaces. 438
30.2 Bases classes for clustering algorithms. 440
30.3 Some clustering algorithms provided in Sigoa. 441
30.4 Some distance measures provided in Sigoa. 442

31.1 The basic interfaces of the Sigoa global optimization package. . . 446
31.2 The Sigoa reproduction facilities specifications. 450
31.3 The default specification for objective functions. 453
31.4 The activity diagram of the evaluation of an individual. 454
31.5 The evaluation interfaces. 457
31.6 The embryogeny specification of Sigoa. 457
31.7 Other predefined pipe stages . 458
31.8 Optimizer and Optimization Info Record . 459
31.9 Predefined optimization algorithms. 461
31.10The class ImplementationBase. 462
31.11The class Individual and IndividualFactory. 463
31.12Some predefined comparator functions. 464
31.13The class Population. 466
31.14The base classes for pass-through algorithms. 467
31.15The base classes that implement the reproduction interfaces. . . . 468
31.16The reproduction pipes. 470
31.17The reference implementation of the objective functions. 471
31.18The reference implementation of the evaluation interfaces. 473
31.19The embryogeny classes. 475
31.20Some default fitness assigners. 476
31.21The predefined selection algorithms package 477
31.22The classes Optimizer and OptimizationInfo. 479
31.23The classes IterativeOptimizer. 482
31.24The default evolutionary algorithm implementations of Sigoa. . . 483
31.25The individual flow through a default EA pipe 484

32.1 The utility classes of the Sigoa reference implementation. 487
32.2 The phenotypic aspects of the double array genome. 488
32.3 The reproduction operators for the double array genome. 490
32.4 Bit string encoding and decoding classes. 492
32.5 The definition of BitStringToDoubleArrayEmbryogeny 493
32.6 The reproduction facilities for bit strings. 494

33.1 The utility classes of the Sigoa reference implementation. 498

34.1 Set operations performed on sets A and B inside a set A 503
34.2 Properties of a binary relation R ∈ X × Y 508

35.1 The PMFs of some discrete uniform distributions 529

LIST OF FIGURES 833

35.2 The CDFs of some discrete uniform distributions 529
35.3 The PMFs of some Poisson distributions . 531
35.4 The CDFs of some Poisson distributions . 531
35.5 The PMFs of some binomial distributions 534
35.6 The CDFs of some binomial distributions . 534
35.7 The PDFs of some continuous uniform distributions 536
35.8 The CDFs of some continuous uniform distributions 536
35.9 The PDFs of some normal distributions . 538
35.10The CDFs of some normal distributions . 538
35.11The PDFs of some exponential distributions 541
35.12The CDFs of some exponential distributions 542
35.13The PDFs of some χ2 distributions . 543
35.14The CDFs of some χ2 distributions . 545
35.15The PDFs of some Student’s t-distributions 546
35.16The CDFs of some Student’s t-distributions 548
35.17The PMF and CMF of the dice throw . 549
35.18The numbers thrown in the dice example . 550

36.1 A clustering algorithm applied to a two-dimensional dataset A. . 571

37.1 The relation between algorithms and programs. 587
37.2 A process in the IPO model. 588
37.3 Some simple network topologies. 595

(a) unrestricted topology . 595
(b) bus . 595
(c) star . 595
(d) ring . 595
(e) hierarchy . 595
(f) grid . 595
(g) fully connected . 595

37.4 Multiple clients connected with one server 597
37.5 A peer-to-peer system in an unstructured network 598
37.6 A block diagram outlining building blocks of a sensor node. 600
37.7 Images of some sensor network platforms. 602

(a) BTNode . 602
(b) Mica2Dot . 602
(c) MSB Mote . 602
(d) Dust Networks Evaluation Mote . 602

37.8 Synchronous parallelism in a model of a network of five nodes. . 606
37.9 Asynchronous parallelism in a model of a network of five nodes. 607
37.10Dynamic topology due to overlapping active times of nodes. . . . 608
37.11The three different message transmission types. 609

(a) Unicast . 609
(b) Multicast . 609
(c) Broadcast . 609

834 LIST OF FIGURES

37.12The derivation of the example expansion of the grammar G. . . . 618
37.13An instantiation of the grammar from listing 37.7. 620
37.14One possible expansion of the example grammar G2. 623
37.15An example TAG tree. 625
37.16An example for the substitution operation. 627
37.17An example for the adjunction operation. 628

List of Tables

7.1 if-then rules for frogs . 214
7.2 if-then rules for frogs in encoded form . 217

17.1 Parameters of the RBGP Test Series for the GCD Problem 291
17.2 Results of the RBGP test series on the GCD problem. 294

18.1 Feature-values in the 2007 DMC training sets. 305
18.2 Feature conditions in the rules. 306
18.3 Different feature conditions in the rules. 308
18.4 Experimental results for the web service composers. 323

19.1 Sample Data S = {(xi, yi) : i = 1 . . . 9} for Equation 19.8 333

26.1 The methods of IStatisticInfo . 401
26.2 The (additional) methods of IStatisticInfo2 401

31.1 The properties of IIndividual . 447
31.2 The functional components provided by IOptimizationInfo 460
31.3 The predefined fitness assigners. 476
31.4 The predefined selection algorithms. 478

35.1 Special Quantiles . 526
35.2 Parameters of the discrete uniform distribution. 528
35.3 Parameters of the Poisson distribution. 530
35.4 Parameters of the Binomial distribution. 533
35.5 Parameters of the continuous uniform distribution. 535
35.6 Parameters of the normal distribution. 537
35.7 Some values of the standardized normal distribution. 539
35.8 Parameters of the exponential distribution. 541
35.9 Parameters of the χ2 distribution. 543
35.10Some values of the χ2 distribution. 544

836 LIST OF TABLES

35.11Parameters of Student’s t-distribution. 546
35.12Table of Student’s t-distribution with right-tail probabilities. . . . 547
35.13The statistical parameters of the dice throw experiment 550

37.1 Some examples of the big-O notation . 590
37.2 The Chomsky Hierarchy . 617

List of Algorithms

1.1 example iterative algorithm . 32
1.2 X⋆

new = updateOptimalSet(X⋆
old, xnew) . 34

1.3 X⋆
new = updateOptimalSet(X⋆

old, xnew) (2nd version) 34
1.4 X⋆ = extractOptimalSet(Xany) . 35
1.5 X⋆

new = pruneOptimalSetc(X⋆
old) . 36

1.6 (Xl, lst, cnt) = agaDivide(X⋆
old, d) . 38

1.7 X⋆
new = pruneOptimalSetaga(X⋆

old) . 39
1.8 (lst, cnt) = agaNormalize(lst, cnt) . 40
2.1 X⋆ = simpleEA(cF) . 52
2.2 X⋆ = elitistEA(cF) . 56
2.3 f(x) = prevalenceF itnessAssign1(Xpop,Xarc) 68
2.4 f(x) = prevalenceF itnessAssign2(Xpop,Xarc) 68
2.5 f(x) = rankBasedF itnessAssign(Xpop,Xarc) 69
2.6 f(x) = tournamentF itnessAssignq,r(Xpop,Xarc) 70
2.7 f(x) = nicheSizeF itnessAssign(Xpop,Xarc) 72
2.8 f(x) = nsgaF itnessAssign(Xpop,Xarc) . 73
2.9 f(x) = nsga2FitnessAssign(Xpop,Xarc) . 74
2.10 f(x) = rpsgaeF itnessAssignn(Xpop,Xarc) . 75
2.11 f(x) = speaF itnessAssign(Xpop,Xarc) . 77
2.12 f(x) = spea2FitnessAssign(Xpop,Xarc) . 78
2.13 Xmp = truncationSelectw(Xsel, n) . 80
2.14 Xmp = rndSelectr(Xsel, n) . 81
2.15 Xmp = rndSelectw(Xsel, n) . 82
2.16 Xmp = tournamentSelectr,k(Xsel, n) . 83
2.17 Xmp = tournamentSelectw1,k(Xsel, n) . 84
2.18 Xmp = tournamentSelectw2,k(Xsel, n) . 85
2.19 Xmp = ndTournamentSelectpr,k(Xsel, n) . 86
2.20 Xmp = rouletteSelectr(Xsel, n) . 87
2.21 Xmp = rouletteSelectw(Xsel, n) . 88
2.22 Xmp = polynomialRankingSelectr,p(Xsel, n) 89
2.23 Xmp = polynomialRankingSelectw,p(Xsel, n) 89

838 LIST OF ALGORITHMS

2.24 Xmp = vegaSelect(Xsel, n) . 90
2.25 Xmp = mideaSelect(Xsel, n) . 91
2.26 Xmp = npgaSelectr,v(Xsel, n) . 92
2.27 Xmp = npgaSelectw,v(Xsel, n) . 93
2.28 Xmp = cnsgaSelectfr,v(Xsel, n) . 95

2.29 Xmp = cnsgaSelectfw,v(Xsel, n) . 96
2.30 Xmp = pesaSelectr(Xsel, n) . 97
2.31 Xmp = pesaSelectw(Xsel, n) . 97
2.32 Xmp = pesa2Select(Xsel, n) . 98
2.33 Xmp = prevalenceNicheSelect(Xsel, n) . 100
2.34 Xpop = createPop(n) . 102
2.35 Xpop = ncgaReproducePopfoc(Xmp, p) . 102
2.36 X⋆ = vega(cF) . 103
2.37 X⋆ = midea(cF) . 104
2.38 X⋆ = npga(cF) . 105
2.39 X⋆ = npga2(cF) . 106
2.40 X⋆ = nsga(cF) . 106
2.41 X⋆ = nsga2(cF) . 107
2.42 X⋆ = cnsga(cF) . 108
2.43 X⋆ = paes(cF) . 108
2.44 X⋆ = pesa(cF) . 109
2.45 X⋆ = pesa2(cF) . 110
2.46 X⋆ = rpsgae(cF) . 111
2.47 X⋆ = sfga(cF) . 112
2.48 X⋆ = spea(cF) . 113
2.49 Xarc = constructArchiveSPEA2(Xold,Xpop, n) 115
2.50 X⋆ = spea2(cF) . 116
2.51 X⋆ = ncga(cF) . 116
4.1 n = uniformSelectNode(t) . 153
4.2 Halting problem: reductio ad absurdum . 197
7.1 {true, false} = matchesConditions(C,M) 216
7.2 nonLearningClassifierSystem(P) . 219
7.3 learningClassifierSystem(B) . 220
8.1 x⋆ = hillClimbing(f) . 223
8.2 X⋆ = hillClimbing(cF) . 225
8.3 X⋆ = hillClimbing(cF) (random restarts) . 226
9.1 x⋆ = randomOptimization(f) . 228
10.1 x⋆ = simulatedAnnealing(f) . 232
10.2 X⋆ = simulatedAnnealing(cF) . 235
11.1 x⋆ = tabuSearch(f) . 238
11.2 X⋆ = tabuSearch(cF) . 239
13.1 x⋆ = particleSwarmOptimize(f) . 247
14.1 Xpop = createPopMA(n) . 250
14.2 Xnew = reproducePopMA(Xmp, k) . 250
15.1 X⋆ = bfs(r) . 254

LIST OF ALGORITHMS 839

15.2 X⋆ = dfs(r) . 255
15.3 X⋆ = dl dfs(r, d) . 256
15.4 X⋆ = iddfs(r) . 257
15.5 X⋆ = greadySearch(r) . 259
17.1 gcd(a, b) = euclidGcdOrig(a, b) . 288
17.2 gcd(a, b) = euclidGcd(a, b) . 288

17.3 fa,b
1 (x) ≡ euclidObjective(x, a, b) . 289

18.1 S = webServiceCompositionIDDFS(R) . 318
18.2 r = cwsc(S1, S2) . 319
20.1 gossipBasedAggregation() . 340
20.2 simulateNetwork(m,T) . 348
20.3 f1(u, e, r) = evaluateAggregationProtocol(u,m, T) 350
35.1 (n1, n2) = randomn,p() . 563
35.2 y = randombs(µ, σ) . 564
35.3 r = randoml(random, low, high) . 567
35.4 cd(x) = computeCrowdingDistance(Xs) . 569
36.1 Bnew = kMeansModifyk(B) . 579
36.2 B = kMeansClusterk(A) . 580
36.3 B = nNearestNeighborClustern

k (A) . 581
36.4 B = linkageClusterk(A) . 582

36.5 B = leaderClusterf
D(A) . 583

36.6 B = leaderClustera
D(A) . 584

37.1 distributedGraphColoring . 605
37.2 mε = errorBurst(m) . 612

List of Listings

4.1 Two examples for the PL dialect used by Cramer for GP 154
4.2 An example for the JB Mapping . 155
4.3 Another example for the JP Mapping . 155
4.4 A trivial symbolic regression grammar. 161
4.5 A simple grammar for C functions that could be used in Gads. . 163
4.6 A simple grammar for C functions that could be used by GE. . . 165
4.7 A Christiansen grammar for C functions that that use variables.172
4.8 A complex conditional statement. 192
4.9 The RBGP version of listing 4.8. 192
4.10 An equivalent alternative version of listing 4.9. 192
4.11 A loop. 192
4.12 The RBGP-version of listing 4.11. 193
4.13 An equivalent alternative version of listing 4.12. 193
4.14 A first, simple example for a Push program. 194
4.15 An example for the usage of the CODE stack. 194
4.16 Another example for the usage of the CODE stack. 194
4.17 An example for the creation of procedures. 195
4.18 An example for the creation of procedures similar to listing 4.17 195
17.1 An example Royal Road function. 280
17.2 Some test cases for the GCD problem. 290
17.3 The RBGP version of the Euclidean algorithm. 295
17.4 An overfitted RBGP solution to the GCP problem. 295
22.1 The enum EClasses with the possible DMC 2007 classifications. 376
22.2 The structure of our DMC 2007 classifier system. 377
22.3 The embryogeny component of our DMC 2007 contribution. . . . 379
22.4 The simulation for testing the DMC 2007 classifier systems. 380
22.5 The profit objective function f1(C) = −P (C) for the DMC 2007.381
22.6 The size objective function f2(C) = |C| for the DMC 2007. 382
22.7 A main method that runs the evolution for the 2007 DMC. 385
35.1 Approximating D2X of r(y). 565
37.1 A simple generative grammar. 616

842 LIST OF LISTINGS

37.2 An example context-free generative grammar G. 617
37.3 An example expansion of G. 617
37.4 Natural numbers – a small BNF example. 618
37.5 Integer numbers – a small EBNF example. 619
37.6 A simple context-free grammar. 620
37.7 A small example for attribute grammars. 620
37.8 The small example G1 for extended attribute grammars. 622
37.9 A typical expansion of G1. 622
37.10An extended attribute grammar G2 for binary numbers. 622
37.11Christiansen grammar creating character strings. 624
37.12Christiansen grammar for a simple programming language. 624
37.13Another simple context-free grammar. 626
37.14A small Lisp-example: How to compute Fibonacci numbers. 628

	Preface
	Contents
	Part I Global Optimization
	Introduction
	Classification of Optimization Algorithms
	Taxonomy According to Method of Operation
	Classification According to Properties

	Optima, Gradient Descend, and Search Space
	Local and Global Optima
	Restrictions of the Search Space
	Fitness Landscapes and Gradient Descend

	Multi-objective Optimization
	Weighted Sum
	Pareto Optimization
	The Method of Inequalities
	External Decision Maker
	Prevalence Optimization

	Complicated Fitness Landscapes
	Premature Convergence and Multi-Modality
	Rugged Fitness Landscapes
	Deceptive Fitness Landscapes
	Neutral Fitness Landscapes
	Dynamically Changing Fitness Landscape
	Overfitting

	Modeling and Simulating
	General Features of Global Optimization Algorithms
	Iterations
	Termination Criterion
	Minimization

	The Optimal Set
	Updating the Optimal Set
	Obtaining Optimal Elements
	Pruning the Optimal Set

	General Information
	Areas Of Application
	Conferences, Workshops, etc.
	Journals
	Online Resources
	Books

	Evolutionary Algorithms
	Introduction
	The Basic Principles from Nature
	Classification of Evolutionary Algorithms
	Populations in Evolutionary Algorithms
	Forma Analysis

	General Information
	Areas Of Application
	Conferences, Workshops, etc.
	Journals
	Online Resources
	Books

	Fitness Assignment
	Weighted Sum Fitness Assignment
	Prevalence-Count Fitness Assignment
	Rank-Based Fitness Assignment
	Tournament Fitness Assignment
	Sharing Functions
	Niche Size Fitness Assignment
	NSGA Fitness Assignment
	NSGA2 Fitness Assignment
	RPSGAe Fitness Assignment
	SPEA Fitness Assignment
	SPEA2 Fitness Assignment

	Selection
	Truncation Selection
	Random Selection
	Tournament Selection
	Crowded Tournament Selection
	Roulette Wheel Selection
	Linear and Polynomial Ranking Selection
	VEGA Selection
	MIDEA Selection
	NPGA Selection
	CNSGA Selection
	PESA Selection
	PESA-II Selection
	Prevalence/Niching Selection

	Reproduction
	NCGA Reproduction

	Algorithms
	VEGA
	MIDEA
	NPGA
	NPGA2
	NSGA
	NSGA2
	CNSGA
	PAES
	PESA
	PESA-II
	RPSGAe
	SFGA and PSFGA
	SPEA
	SPEA2
	NCGA

	Genetic Algorithms
	Introduction
	General Information
	Areas Of Application
	Conferences, Workshops, etc.
	Books

	Genomes
	String Chromosomes
	Fixed-Length String Chromosomes
	Variable-Length String Chromosomes

	Genotype-Phenotype Mapping
	Artificial Embryogeny

	Schema Theorem
	Schemata and Masks
	Wildcards
	Holland's Schema Theorem
	Criticism of the Schema Theorem
	The Building Block Hypothesis

	Principles for Individual Representations
	Locality and Causality
	Epistasis
	Redundancy
	Implications of the Forma Analysis

	Genetic Programming
	Introduction
	General Information
	Areas Of Application
	Conferences, Workshops, etc.
	Journals
	Online Resources
	Books

	(Standard) Tree Genomes
	Creation
	Mutation
	Crossover
	Permutation
	Editing
	Encapsulation
	Wrapping
	Lifting
	Automatically Defined Functions
	Node Selection

	Genotype-Phenotype Mappings
	Cramer's Genetic Programming
	Binary Genetic Programming
	Gene Expression Programming

	Grammars in Genetic Programming
	Trivial Approach
	Strongly Typed Genetic Programming
	Early Research in GGGP
	Gads 1
	Grammatical Evolution
	Gads 2
	Christiansen Grammar Evolution
	Tree-Adjoining Grammar-Guided Genetic Programming

	Linear Genetic Programming
	Graph-based Approaches
	Parallel Distributed Genetic Programming
	Cartesian Genetic Programming

	Epistasis in Genetic Programming
	Problems of String-to-Tree GPMs
	Positional Epistasis

	Rule-based Genetic Programming
	Genotype and Phenotype
	Program Execution and Dimensions of Independence
	Complex Statements

	Artificial Life and Artificial Chemistry Approaches
	Push, PushGP, and Pushpop

	Evolving Algorithms
	Restricting Problems
	Why No Exhaustive Testing?
	Non-Functional Features of Algorithms

	Evolution Strategy
	Introduction
	General Information
	Areas Of Application
	Conferences, Workshops, etc.
	Books

	Populations in Evolutionary Strategy
	(1+1)-ES
	(+1)-ES
	(+)-ES
	(,)-ES
	(/,)-ES
	(/+)-ES
	(','(,))-ES

	One-Fifth Rule
	Differential Evolution
	Introduction
	General Information

	Evolutionary Programming
	Introduction
	General Information
	Areas Of Application
	Conferences, Workshops, etc.
	Books

	Learning Classifier Systems
	Introduction
	General Information
	Areas Of Application
	Conferences, Workshops, etc.

	The Basic Idea of Learning Classifier Systems
	Messages
	Conditions
	Actions
	Classifiers
	Non-Learning Classifier Systems
	Learning Classifier Systems
	The Bucket Brigade Algorithm
	Applying the Genetic Algorithm

	Families of Learning Classifier Systems

	Hill Climbing
	Introduction
	General Information
	Areas Of Application

	Multi-Objective Hill Climbing
	Problems in Hill Climbing
	Hill Climbing with Random Restarts

	Random Optimization
	Introduction
	General Information
	Areas Of Application

	Simulated Annealing
	Introduction
	General Information
	Areas Of Application

	Temperature Scheduling
	Multi-Objective Simulated Annealing

	Tabu Search
	Introduction
	General Information
	Areas Of Application

	Multi-Objective Tabu Search

	Ant Colony Optimization
	Introduction
	General Information
	Areas Of Application
	Conferences, Workshops, etc.
	Journals
	Online Resources

	Particle Swarm Optimization
	Introduction
	General Information
	Areas Of Application
	Online Resources
	Conferences, Workshops, etc.

	Memetic Algorithms
	State Space Search
	Introduction
	Uninformed Search
	Breadth-First Search
	Depth-First Search
	Depth-limited Search
	Iterative deepening depth-first search
	Random Walks

	Informed Search
	Greedy Search
	A* Search
	Adaptive Walks

	Parallelization and Distribution
	Analysis
	Distribution
	Client-Server
	Island Model
	Mixed Distribution

	Cellular GA

	Part II Applications
	Benchmarks and Toy Problems
	Benchmark Functions
	Single-Objective Optimization
	Multi-Objective Optimization
	Dynamic Fitness Landscapes

	Kauffman's NK Fitness Landscapes
	K=0
	K=N-1
	Intermediate K
	Computational Complexity

	The Royal Road
	Variable-Length Representation
	Epistatic Road
	Royal Trees

	Artificial Ant
	Santa Fe trail
	Solutions

	The Greatest Common Divisor
	Problem Definition
	Rule-based Genetic Programming

	Contests
	Data-Mining-Cup
	Introduction
	The 2007 Contest -- Using Classifier Systems

	Web Service Challenge
	Introduction
	The 2006/2007 Semantic Challenge

	Real-World Applications
	Symbolic Regression
	Genetic Programming: Genome for Symbolic Regression
	Sample Data, Quality, and Estimation Theory
	An Example and the Phenomenon of Overfitting
	Limits of Symbolic Regression

	Research Applications
	Evolving Proactive Aggregation Protocols
	Aggregation Protocols
	The Solution Approach: Genetic Programming
	Network Model and Simulation
	Node Model and Simulation
	Evaluation and Objective Values
	Input Data
	Phenotypic Representations of Aggregation Protocols
	Results from Experiments

	Part III Sigoa -- Implementation in Java
	Introduction
	Requirements Analysis
	Multi-Objectivity
	Separation of Specification and Implementation
	Separation of Concerns
	Support for Pluggable Simulations and Introspection
	Distribution utilities

	Architecture
	Subsystems

	Examples
	The 2007 DATA-MINING-CUP
	The Phenotype
	The Genotype and the Embryogeny
	The Simulation
	The Objective Functions
	The Evolution Process

	The Adaptation Mechanisms
	Specification
	Reference Implementation

	The Events Package
	Specification
	Reference Implementation

	The Security Concept
	Specification
	Reference Implementation

	Stochastic Utilities
	Specification
	Random Number Generators
	Statistic Data Representation

	Reference Implementation
	Random Number Generators
	Statistic Data Representation

	The Simulation Interface
	Specification
	The Simulations
	Simulation Provider and Simulation Manager

	Reference Implementation
	The Simulation
	Simulation Provider and Simulation Manager
	Simulation Inheritance

	The Job System
	Specification
	The Activity Model
	The Job System Interface
	The Interface to the Optimization Tasks
	Notes on Distribution
	Using a Job System

	Reference Implementation
	The Activity Model
	The Job System Base Classes
	Job System Implementations

	The Pipeline System
	Specification
	Reference Implementation
	Basic Classes
	Some Basic Pipes
	Pipes for Persistent Output

	Clustering
	Specification
	Reference Implementation
	Clustering Algorithms
	Distance Measures

	Global Optimization
	Specification
	Basic Interfaces
	Reproduction
	Objective Functions
	Computing an Objective Value
	The Evaluator
	Embryogeny
	Fitness Assignment and Selection
	The Optimizer
	The Optimization Info Record
	Predefined Algorithm Interfaces

	Reference Implementation
	Basic Classes
	Reproduction
	Objective Functions
	The Evaluator
	Embryogeny
	Fitness Assignment
	Selection
	The Optimizer
	The Optimization Info Record

	Predefined Algorithms
	Implementing Evolutionary Algorithms

	Genotypes
	Vectors of Real Numbers
	The Evaluation Scheme for Functions of Real Vectors
	Reproduction Operators for Real Vectors

	Bit String Genomes
	Encoding and Decoding Data in Bit String Genomes
	Embryogeny of Bit String Genomes
	Reproducing Bit Strings

	Utility Classes
	The Utility Classes of the Reference Implementation
	The Default Thread Class
	The Selector

	Part IV Background
	Set Theory
	Set Membership
	Relations between Sets
	Special Sets
	Operations on Sets
	Tuples and Lists
	Binary Relations
	Order relations
	Equivalence Relations
	Functions

	Stochastic Theory
	Probability
	Probabily as defined by Bernoulli (1713)
	The Metrical Method of Van Mises (1919)
	The Axioms of Kolmogorov
	Conditional Probability
	Random Variable
	Cumulative Distribution Function
	Probability Mass Function
	Probability Density Function

	Properties of Distributions and Statistics
	Count, Min, Max and Range
	Expected Value and Arithmetic Mean
	Variance and Standard Deviation
	Moments
	Skewness and Kurtosis
	Median, Quantiles, and Mode
	Entropy
	The Law of Large Numbers

	Some Discrete Distributions
	Discrete Uniform Distribution
	Poisson Distribution
	Binomial Distribution B(n, p)

	Some Continuous Distributions
	Continuous Uniform Distribution
	Normal Distribution N(,2)
	Exponential Distribution exp()
	Chi-square Distribution
	Student's t-Distribution

	Example - Throwing a Dice
	Estimation Theory
	Likelihood and Maximum Likelihood Estimators
	Best Linear Unbiased Estimators
	Confidence Intervals

	Generating Random Numbers
	Generating Pseudorandom Numbers
	Converting Random Numbers to other Distributions
	Definitions of Random Functions

	Density Estimation
	Histograms
	The kth Nearest Neighbor Method
	Crowding Distance
	Parzen Window / Kernel Density Estimation

	Functions Often used in Statistics
	Gamma Function

	Clustering
	Distance Measures
	Distance Measures for Strings of Equal Length
	Distance Measures for Real-Valued Vectors
	Distance Measures Between Clusters

	Elements Representing a Cluster
	Clustering Algorithms
	Cluster Error
	k-means Clustering
	nth Nearest Neighbor Clustering
	Linkage Clustering
	Leader Clustering

	Theoretical Computer Science
	Algorithms
	What are Algorithms?
	Properties of Algorithms
	Complexity of Algorithms
	Randomized Algorithms

	Distributed Systems and Distributed Algorithms
	Network Topologies
	Some Architectures of Distributes Systems
	Modeling Distributed Systems

	Grammars and Languages
	Syntax and Formal Languages
	Generative Grammars
	Derivation Trees
	Backus-Naur Form
	Extended Backus-Naur Form
	Attribute Grammar
	Extended Attribute Grammars
	Adaptable Grammar
	Christiansen Grammars
	Tree-Adjoining Grammar
	S-Expressions

	Part V Appendices
	GNU Free Documentation License (FDL)
	Preamble
	Applicability and Definitions
	Verbatim Copying
	Copying in Quantity
	Modifications
	Combining Documents
	Collections of Documents
	Aggregation with Independent Works
	Translation
	Termination
	Future Revisions of this License

	GNU Lesser General Public License (LPGL)
	Preamble
	Terms and Conditions for Copying, Distribution and Modification
	No Warranty
	How to Apply These Terms to Your New Libraries

	Credits and Contributors
	Citation Suggestion
	References
	Index
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings

