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Abstract. In thispaperweinvestigateanew approach to theclassificationof mammographic imagesaccording
to breasttype. The classificationof breastdensityin this studyis motivatedby its useasprior knowledge in
theimageprocessingpipeline.By utilising thisknowledgeat differentstagesincludingenhancement, segmen-
tation and featureextraction, its applicationaims to increasethe sensitivity of detectingbreastcancer. Our
implementeddiscriminationof breastdensityis basedon the underlyingtexture containedwithin the breast
tissueapparent on a digital mammogramandrealisedby utilising four approachesto quantifyingthe texture.
Following featureextraction,we adopta variationon bootstrapaggregation(’bagging’) to meetthe assump-
tionsof independencein datarepresentationof theinputdataset,necessaryfor classifiercombination. Multiple
classifierscomprisingfeed-forward Artifi cial NeuralNetwork (ANN) aresubsequently trainedwith the dif-
ferentperturbedinput dataspacesusing10-fold cross-validation. Thesetof classifieroutputs,expressedin a
probabilistic framework, aresubsequently combinedusingsix differentclassifiercombinationrulesandthere-
sultscompared.In this studywe examinetwo differentclassificationtasks;a four-classclassificationproblem
differentiatingbetweenfatty, partly fatty, denseandextremelydensebreasttypesanda two-classproblems,
differentiatingbetweendenseandfatty breasttypes. The datasetusedin this study is the Digital Database
of ScreeningMammograms(DDSM) containingMedio-LateralOblique(MLO) views for eachbreastfor 377
patients. For both tasksthe bestcombinationstrategy was found using the productrule giving an average
recognition rateon testof 71.4%for thefour-classproblemand96.7%for thetwo-classproblem.

1 Intr oduction

A report from theNationalCancerInstitute(NCI) estimatesthatabout 1 in 8 womenin theUnitedStates(approx-
imately12.6percent) will developbreastcancerduring their lifetime [17]. Government sponsored mass-screening
mammography programshave beenproposedasaneffective methodof increasingsurvival time for womenwith
breastcancer[1], but theapplication of ComputerAidedDetection(CAD) within screening programsis still to be
addressed.To this end,muchresearchhastakenplacefor thedevelopmentof CAD techniquesandsystems.For
a radiologist interpretinga benignmammogram, thereexists an extremely wide variationin themammographic
appearanceof the breast. Within the mammogram,radiographicallyvisible densityincludesducts, lobular ele-
ments,andfibrousconnectivetissue.Thefibrousconnectivetissuecanbeof two types,intralobularor extralobular
tissue,andthis lattertissuetypeis seenasthemajorcomponentof grossdensityvariation in mammograms. Breast
densityis an important factorin the interpretation of a mammogram. In a breastthat is considerably dense,the
sensitivity of mammographyfor theearlydetectionof malignancy andlargecancersis reducedbecauseof thedif-
ficulty in locatingill-definedcancerswithin anopaqueuniform background. TheAmericanCollegeof Radiology
(ACR) BreastImaging ReportingandDataSystem(BIRADS), identifiesfour majorgroupsfor classifyingbreast
density(Kopans[7]): (1) predominantly fat; (2) fat with somefibroglandulartissue;(3) heterogeneously dense.;
(4) extremelydense.Examplesof thesebreasttypesareshown in Figure1.

Previous work hasfocusedon usingtheunderlying texture to discriminate betweenbreast types. In their study,
Miller andAstley [13] investigatedtexture-baseddiscrimination betweenfatty andglandular breast types,exper-

Figure 1. Mammogramswith differingmammographic breastdensities(a) predominantly fat; (b) fat with some
fibroglandulartissue;(c) heterogeneously dense.;(d) extremely dense.
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Figure2. Experimentalmethodoverview.
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imentingwith granulometric techniquesandLaws texture masks. Taylor et. al. [16] similarly investigatedthe
classificationof fattyanddensebreast typesusinganautomatedmethod of extractingtheRegionOf Interest (ROI)
basedon texture.

In this studywe examine two different classificationtasks;a four-classclassificationproblem differentiatingbe-
tweenbreastdensitiesfollowing theBIRADS classificationandatwo-classproblem,differentiatingbetweendense
andfatty breasttypes. In fulfilling theseclassificationobjectives we extract four groupsof texture featuresfrom
segmenteddigital mammograms.To improve theperformanceandrobustnessof theclassifierswe useclassifica-
tion combinationrulesproposedby Kittler et al. [6]. Theremainderof this paperis organisedasfollows; Section
2 describesthe experimentalmethodusedincluding feature extraction, datadimensionality reduction, classifier
training, testingandcombination;Section3 detailstheexperimentalresultsandfinally conclusionsfrom thestudy
arediscussedin Section4.

2 Experimental Method

We evaluated377mammogramsfrom the Digital Databaseof Screening Mammograms(DDSM) [10]. Accom-
panying eachmammogramis a rating of its densityaccording to the BIRADS systemdetermined by an expert
radiologist. Of the377mammogramsour datasetis split asfollows; predominantly fatty (n=74); fat with some
fibroglandulartissue;(n=81) heterogeneouslydense;(n=96) extremelydense(n=126). The imagesvary in size
andareconvertedto an8-bit grey scalelevel. A blockdiagramidentifying themajorcomponentsof theproposed
systemsis given in figure2.

2.1 ImagePre-processing

The original grey scaleimageis initially alignedon the y-axis suchthat the imageis orientated with the nipple
pointing right. It is thensub-sampledby afactorof four to reducethecomputationalcomplexity for thesubsequent
breastextraction component.

2.2 BreastSegmentation

As our approachaimsto utilise the wholebreast for texture feature extraction, a mechanism for segmenting the
breastfrom its background is required. Previousstudiesin breast/backgroundsegmentation[8,12] havedifficulties
dueto theinherentnoisewithin digitisedmammograms.We adoptthetechnique proposedby Chandrasekharand
Attikiouzel [4] with anadditional stepto trim theprofiles,removing thetop 20%andbottom10%of theimages
to facilitatetheremoval of poorsegmentation thatmightstill include noise.

2.3 FeatureExtraction

Previousapproachesto classifyingbreast typehaveexaminedtheunderlying texturewithin thebreast.In thisstudy
we employ four approachesfor determining texture;1) By constructing SpatialGrey Level Dependency (SGLD)
matrices[5] using the directions {0 o, 45o, 90o, 135o} and pixel distances{2, 4, 6}, we extract 15 features.
Thesefeaturesincludeangularsecondmoment, contrast,correlation, inversedifferentmoment, sumaverage,sum
variance,sumentropy, entropy, differenceaverage,differencevariance,differenceentropy, informationmeasureof
correlation I, informationmeasureof correlationII, inertia,variance; 2) Following theapplicationof theFourier
transform, we extractthetotal spectralenergy from 10 equidistantanalysingringsfrom thepower spectrum [11];
3) By convolving eachmammographic imagewith eachcombinationof Laws’ texturemasks[9], we extract the



total textureenergy for thismaskcombinationfor useasafeature.4) Following application of theDiscreteWavelet
Transform (DWT), four features(standarddeviation, mean, skewnessandkurtosis)characterisingthedistribution
of waveletcoefficientsareextractedfrom 3 differentsub-bandsandat3 differentscalesof thetransformedimage.
In addition to thesefour groups of texture features,we extract a seriesof statisticalfeatures; entropy, standard
deviation, mean,skewnessand kurtosis were extractedfrom the grey scalescomprising the segmented breast
image;acircularityshapefeature[14] andthefractaldimensionusingtheHurstcoefficientdescribedby Russ[15].

Following featureextraction weusePrincipalComponentAnalysis(PCA) to reducethedimensionality of thedata
setof 316-dimensionfeaturevector. OnapplyingPCAweselectthefirst n componentsbyanalysingtheeigenvalue
spectrumanddetermineacut-off point afterwhichtheeigenvalueslevel off atsmallvalues.In thisstudyweselect
thecomponentscorrespondingto thefirst thirty eigenvalues.

2.4 ClassifierTraining /Testingand Combination

To improve theperformanceandrobustnessof our developedsystem,we chooseto implement a classifiercom-
binationparadigm suchthatwe combinethedecisionof n componentclassifierson testusingcombinationrules
proposedby Kittler et al. [6]. The assumptionof conditional independence betweeneachcomponentclassifier
is an important aspectof the combination strategy. The combination framework is basedon the constraint that
eachclassifierusesits own representationof the input space.This is achieved by training the setof component
classifierswith unique perturbations to their training andvalidationsetsthuseachclassifierforms an indepen-
dentrepresentationsof theinput space.Our methodis motivatedby thefrequently citedbootstrapaggregationor
’bagging’ [3] method of perturbing theinput space.Theresultant’Bagging Predictor’combinestheclassification
decisionontest,from n componentclassifiers,eachtrainedindividually ona trainingsetcreatedusinga bootstrap
approximationwith replacement. A critical factorin whetherbagging will improve the accuracy is the stability
of theprocedureusedfor constructing thecomponentclassifier. Improvementwill occurfor unstableprocedures
wherea smallchangein thedatasetcanresultin large changesin theclassifieraccuracy. Breiman[3] pointedout
thatArtificial NeuralNetworks (ANN’s) utilisedunstableproceduresin forming theclassifierandhencetheir use
in ourstudy.

To perturbthe training set for eachclassifier, we usea simple randomisationprocessof the original dataset
together with a 10-fold cross-validationmethod[2] to reducethebiason classifierevaluation. The10-fold cross-
validation methodtrainsanindividual classifierfor eachfold using90%of dataand10%for testing.To prevent
over-fitting of the ANN to the training set, 10% of the training datais additionally usedto createa validation
set.Theprocesscontinues10 timeseachtime traininganindividual classifierwith a different trainingandtesting
with a disjoint testpartitions.No sampleappears simultaneously in trainingandtest.By randomisingthedataset
before creationof the training/validationandtestingfolds, we introducedifferentcombinationsof samplesinto
training/validationthereby providing therequiredperturbationof theinput space.In thisway, individualclassifiers
will be trainedon differenttrainingsets,leadingto different representationsof the input space.Testingon these
different input spacerepresentationsleadsto diversity in theresultantclassificationsfor individual samples.Our
trainedclassifierscomprise a feed-forward ANN using a back-propagation with momentum learning function
(learning rate ������� ��� , momentum� �	�
��� ) togetherwith asoftmaxactivation function[2] to giveanestimateof
theposterior probabilities.Usingtheoutput from eachclassifier, asoftclassificationcombinationmaybeachieved.
We investigatethefollowing six combinationrulesdetailedby Kittler et al. [6] majority vote,sumrule,maxrule,
min rule,productruleandmedianrule.

3 Results

Wepresenttwo setsof results,onefor eachof theclassificationproblemswearetrying to solve. For eachproblem,
we presenttheresultsof combining theposteriorprobabilitiesresultingfrom eachof theeleventrainedclassifiers
on test,combined usingthe six combination rulesandcompare with the singlebestclassificationresulton test.
For thefour-classproblemwe labeleachsampleaccording to theDDSM density groundtruth. For thetwo-class
problem,we labelall samplesof classes1 and2 asbelonging to class1 (fatty) andall samplesof classes3 and4
asbelonging to class2 (dense).

Table1 shows the resultsof the four-classproblem. The bestsinglerecognition rateobtainedfrom eachof the
elevenclassifiersis 58.3%.By combining theposterior probabilitiesfrom eachof theelevenclassifiersusingthe
product rule we obtainan increasedrecognition rateof 71.4%. All of the classifiercombination rulesproduced
an increaseon the singlebestrecognition ratewith the exception of the min rule. Similarly, Table1 shows the



Table 1. Recognitionratesfor combinationruleson four-classproblem (a)andtwo-classproblem(b).

(a) (b)
Combination Method Recognition Rate%

Bestsingleresult 58.3
Min rule 40.3
Max rule 58.5

Productrule 71.4
Majority vote 62.7
Medianrule 61.2

Sumrule 69.5

CombinationMethod Recognition Rate%

Bestsingleresult 77.3
Min rule 90.4
Max rule 90.4

Product rule 96.9
Majority vote 89.1
Medianrule 93.1

Sumrule 96.7

resultsobtainedfor thetwo-classproblem. In this experimenteachof theclassifiercombinationrulesproduceda
recognition ratebetterthanthatof thebestsingleclassifierat 77.3%.By combining theoutputs from eachof the
classifiersusingtheproductandsumrules,giveequally improvedrecognition ratesof 96.7%.

4 Conclusions

Within this studywe have investigatedtheuseof a varietyof texturefeaturesfor theclassificationof breast tissue
typeanddemonstratedits applicationbyclassifyingsegmentedbreastregionsonmammograms.By usingclassifier
combinationruleswe havebeenableto maximisetherecognition rateon testfor thetwo classificationtasks.

The resultsobtained for the four-classproblem indicatethat the classificationof breastdensityaccording to the
BIRADS systemis a challenging task. Thesubtletyof breasttissuedifferentiatingthe four classesincreasesthe
likelihood of confusionin the resultantclassification.Equally, our ground-truth relieson an expert radiologists
assessmentof the breast that may be subjectto inter-observer differences. Our resultsreflect the problem of
differentiatingbetweensubtleglandular anddensetissuetypes.Addressingthe two-classproblemof classifying
denseandfatty we have demonstratedthat the technique of combining classifieroutputs not only improvesthe
underlying performancebut alsoensureclassifierrobustness.Theresultsof thetwo-classproblem justify theuse
of this techniquein aproposedCAD system.
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