
Asset Pricing with Spatial Interaction∗

Steven Kou† Xianhua Peng‡ Haowen Zhong§

Abstract

We propose a spatial capital asset pricing model (S-CAPM) and a spatial
arbitrage pricing theory (S-APT) that extend the classical asset pricing models
by incorporating spatial interaction. We then apply the S-APT to study the
comovements of Eurozone stock indices (by extending the Fama-French factor
model to regional stock indices) and the futures contracts on S&P/Case-Shiller
Home Price Indices; in both cases spatial interaction is significant and plays an
important role in explaining cross-sectional correlation.
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1 Introduction

A central issue in financial economics is to understand the risk-return relationship for

financial assets, as exemplified by the classical capital asset pricing model (CAPM)
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and arbitrage pricing theory (APT). Building on the seminal work of Markowitz

(1952), CAPM, as proposed by Sharpe (1964) and others, characterizes the market

equilibrium when all market participants hold mean-variance efficient portfolios. Un-

like the CAPM, the APT introduced by Ross (1976a,b) is based on an asymptotic

arbitrage argument rather than on market equilibrium, which allows for multiple risk

factors and does not require the identification of the market portfolio; see e.g., Hu-

berman (1982), Chamberlain (1983), Chamberlain and Rothschild (1983), Ingersoll

(1984), Huberman and Wang (2008), among others.

In terms of empirical performance, APT improves on CAPM in that cross-sectional

differences in expected asset returns are better accounted for by multiple factors in

APT; see the Nobel-prize-winning work of Fama and French (1993) and Fama and

French (2012), among others. Going beyond expected returns, however, the APT

models with the famous factors in existing literature do not seem to capture all the

cross-sectional variations in realized asset returns. In particular, a motivating example

of fitting an APT model to the European countries stock indices returns (see Section

2.1) shows that (i) there is evidence of cross-sectional spatial interaction among the

residuals of the APT regression model; (ii) the no asymptotic arbitrage constraint

(i.e., zero-intercept constraint) implied by the APT is rejected by the data, which

demonstrates that the existing APT model and famous factors are not adequate in

accounting for the cross-sectional variatioins.

To better account for potential spatial correlation among residuals of APT mod-

els and to better capture the no asymptotic arbitrage constraint, in this paper, we

attempt to link spatial econometrics, which emphasizes the statistical modeling of

spatial interaction, with the classical CAPM and APT. Empirical importance of spa-

tial interaction has already been found in the real estate markets (see, e.g., Anselin

(1988) and Cressie (1993)), in U.S. equity market (see Pirinsky and Wang (2006) for

comovements of common stock returns of US corporations in the same geographic

area), and in international stock portfolios (see Bekaert, Hodrick, and Zhang (2009)).

Coval and Moskowitz (2001) demonstrated empirically the importance of spatial in-

formation in the investment decisions and outcomes of individual fund managers.

In this paper we study the impact of spatial information on overall markets in the

form of CAPM or APT. More precisely, we first propose a spatial capital asset pricing

model (S-CAPM) and a spatial arbitrage pricing theory (S-APT), and then study

empirical implications of the models. The new models can be applied to financial
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assets that can be sold short, such as national/regional stock indices and futures

contracts on the S&P/Case-Shiller Home Price Indices (Case and Shiller (1987)).

Our S-CAPM and S-APT differ from existing models in spatial econometrics.

The consideration of equilibrium pricing and no arbitrage pricing imposes certain

constraints on the parameters in the S-CAPM and S-APT models (see Eq. (15)

and Eq. (26) in Theorem 4.1); these constraints are the manifestation of both the

effect of spatial interaction and the economic rationale of asset pricing. In contrast,

the parameters in existing spatial econometric models are generally not subject to

constraints.

After developing the economic models, we give two applications of the proposed

S-APT. First, we continue the investigation of the motivating example in Section

2.1, in which the comovements of returns of Eurozone stock indices are studied, by

extending the factor model for international stocks proposed in Fama and French

(2012) to incorporate spatial interaction. Factor models for stock markets have been

well studied in the literature. In the ground-breaking work of Fama and French

(1993), two factors related to firm size and book-to-market equity are constructed

and shown to have great explanatory power of cross-sectional stock returns. In their

approach, a factor is constructed as the difference between the returns of firms with

certain characteristics (e.g. small-cap) and those with opposite characteristics (e.g.

large-cap). This approach has at least two advantages. First, factors constructed in

this way are payoffs of zero-cost portfolios that are traded in the market and further

steps of linear projection of factors are unnecessary. Second, the factors have clear

economic interpretation. For instance, since the book-to-market ratio is indicative of

financial distress, the factor constructed according to the ratio can be viewed as a

proxy for distress risk. Fama and French (2012) investigate the performance of the

market, size, value, and momentum factors in international stock markets.

We extend Fama and French (2012) in three ways: (i) By using the S-APT model

instead of APT models (factor models without spatial interaction), we investigate

the role of spatial interaction in the explanation of comovements of stock index re-

turns. We find that spatial interaction is significant, even after controlling for popular

factors, including market, size, value, and momentum factor. (ii) Adding spatial in-

teraction for the comovements not only improves the overall model fitting in terms

of Akaike information criterion (AIC), but also reduces the degree of spatial corre-

lation (i.e., κ in Eq. (2)) among residuals of the fitted model. Furthermore, the
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no asymptotic arbitrage constraint (i.e., the zero-intercept constraint) is no longer

rejected by the data after spatial interaction is incorporated in the model. (iii) We

focus on Eurozone stock indices that are portfolios of stocks implicitly sorted by lo-

cations/nations, while Fama and French (2012) study the returns of stock portfolios

constructed according to other issuer characteristics such as size and value.

As the second application, we apply the S-APT model to the study of risk-return

relationship of real estate securities, particularly the S&P/Case-Shiller Home Price

Indices (CSI Indices) futures. The CSI Indices are constructed based on the method

proposed by Case and Shiller (1987) and are the leading measure of single family home

prices in the United States. It is important to study the risk-return relationship of real

estate securities such as the CSI Indices futures because they are useful instruments

for risk management and for hedging in residential housing markets (Shiller (1993)),

similar to the function that futures contracts fulfill in other financial markets; see

Fabozzi, Shiller, and Tunaru (2012) and the references therein for the pricing and use

of property derivatives for risk management.

We add to the literature on the study of real estate securities by constructing a

three-factor S-APT model for the CSI Indices futures returns. Using monthly re-

turn data, we find that the spatial interaction among CSI indices futures returns are

significantly positive. In addition, the no asymptotic arbitrage (i.e., zero-intercept)

constraint implied by the S-APT model is not rejected by the futures data. Fur-

thermore, incorporating spatial interaction improves the model fitting to the data

in terms of AIC and eliminates the spatial correlation among the residuals of APT

models.

In summary, the main contribution of this paper is twofold: (i) Theoretically, we

extend the classical asset pricing theories of CAPM and APT by proposing a spatial

CAPM (S-CAPM) and a spatial APT (S-APT) that incorporate spatial interaction.

The S-CAPM and S-APT characterize how spatial interaction affects asset returns

by assuming, respectively, that investors hold mean-variance efficient portfolios and

that there is no asymptotic arbitrage. In addition, we develop estimation and testing

procedures for implementing the S-APT model. (ii) Empirically, we apply the S-APT

models to the study of the Eurozone stock indices returns and the futures contracts

written on the CSI Indices. In both cases, the spatial interaction incorporated in the

S-APT model seems to be a significant factor in explaining asset return comovements.

The remainder of the paper is organized as follows. In Section 2, a motivating
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example is discussed and a linear model with spatial interaction is introduced. The

S-CAPM and S-APT for ordinary assets and futures contracts are derived in Sections

3 and 4, respectively. Section 5 develops the econometric tools for implementing the

S-APT model. The rigorous econometric analysis of the identification and statistical

inference problems for the proposed spatial econometric model is given in Appendix

D. The empirical studies on the Eurozone stock indices and the CSI Indices futures

using the S-APT are provided in Sections 6 and 7, respectively. Section 8 concludes.

2 Preliminary

2.1 A Motivating Example of Spatial Correlation

We consider the comovements of the returns of stock indices in developed markets

in the European region. To minimize the effect of exchange rate risk, we restrict the

study in the Eurozone, which consists of the countries that adopt Euro as their cur-

rency. In total, there are 11 countries with developed stock markets in the Eurozone.

The data consists of the monthly simple returns of stock indices of these countries;

see Table 1. Like Fama and French (2012), all returns are converted and denominated

in US dollar. Since Greece adopted the Euro in the year 2000, the time period of the

data spans from January 2001 to October 2013. Since all returns are denominated

in US dollar, the simple return of one-month US treasury bill is used as the risk-free

return.

Country Austria Belgium Finland France Germany Greece Ireland Italy Netherlands Portugal Spain
Stock Index ATX BEL20 HEX CAC DAX ASE ISEQ FTSEMIB AEX BVLX IBEX

Table 1: The stock indices of the 11 Eurozone countries with developed stock markets.

We apply the following APT model to the monthly excess returns of the 11 stock

indices:

rit − rft = αi +
4∑

k=1

βikfkt + ǫit, i = 1, . . . , 11; t = 1, . . . , T ; (1)

where rit is the return of the ith stock index in the tth month; rft is the risk-free

return in the tth month; fkt, k = 1, 2, 3, 4, are respectively the market, size, value,

and momentum factors in the tth month. The four factors are defined in Fama and

French (2012), and the data for the four factors are downloaded from the website of
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Kenneth R. French.1 βik is the factor loading of the ith stock index excess return on

the kth factor. ǫit is the residual. To investigate potential spatial correlation among

the 11 return residuals, we consider the following model for ǫ̃t = (ǫ1t, ǫ2t, . . . , ǫ11t)
′:

ǫ̃t = κWǫ̃t + a+ ξ̃t, t = 1, 2, . . . , T, (2)

where W = (wij) is a 11 × 11 matrix defined as wij := (sidij)
−1 for i 6= j and

wii = 0, where dij is the driving distance between the capital of country i and that of

country j and si :=
∑

j d
−1
ij ; κ is a scalar parameter; a is a vector of free parameters;

ξ̃t is assumed to have a normal distribution N(0, σ2I11) with σ being an unknown

parameter and I11 being the 11 × 11 identity matrix. When κ is not zero, each

component of ǫ̃t is influenced by other components to a degree dependent on their

spatial distances.2

We fit the model (2) to the residuals and found that the spatial parameter κ for

the residuals is statistically positive with a 95% confidence interval of [0.02, 0.21].3

This provides evidence that there is statistically significant spatial correlation among

the residuals that is not adequately captured by the four factors in the APT model.

In addition, we carry out the following hypothesis test of the no asymptotic arbi-

trage constraint (i.e., zero-intercept constraint) of the APT model:

H0 : α1 = α2 = · · · = α11 = 0; H1 : else. (3)

We find that

The p-value of the test (3) = 0, (4)

which provides further evidence that the four factors may not capture the comove-

ments of the indices returns well enough. The inadequacy of the APT model (1) for

explaining the comovements of the indices returns is summarized in Table 2.

1These factors are called the “Fama/French European Factors” which can be downloaded
at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Europe_Factors.zip.
These factors are constructed from the stocks in the developed European countries including
Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. All these factors are based
on U.S. dollar denominated stock returns. The detailed description of these factors can be found at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_developed.html.

2Using the term κWǫ̃t to incorporate spatial interaction is proposed in Whittle (1954) and has
been widely used in spatial statistics and spatial econometrics (see, e.g., Ord (1975), Cressie (1993),
and Lesage and Pace (2009)).

3The estimate and confidence interval for κ can be obtained by letting K = 0 in Eq. (35)-(38)
and Eq. (122)-(123).
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Questions Answers from the data

Do the residuals in (1) have spatial correlation? Yes, because the 95% confidence interval of κ in (2) is [0.02, 0.21].

Is the no asymptotic arbitrage (zero-intercept) test (3) rejected by the data? Yes, because of (4).

Table 2: The inadequacy of the APT model (1) for explaining the comovements of
the 11 Eurozone national stock indices excess returns.

It is probable that the aforementioned unsatisfactory performance of the APT

model is due to misspecification of factors. To explore this possibility, we run the

Ramsey Regression Equation Specification Error Test (RESET), one of the most

popular specification test for linear regression models. In our application, RESET

tests whether non-linear combinations of current factors have any power in explaining

the excess returns on the left-hand side of the APT regression. The intuition behind

the test is that if non-linear combinations of factors have any power in explaining

cross-sectional excess returns, then the factors of the APT model is misspecified. For

a detailed and technical discussion of the RESET, see Ramsey (1969).

The RESET finds weak evidence of factor misspecification. Indeed, RESET indi-

cates that among the eleven excess returns of the national stock indices, only three

may benefit from additional factors. Moreover, it is not clear whether the additional

factor(s) can help explain the spatial correlation observed in the residuals. Our S-

APT model, to be presented in the rest of the paper, provides a unified way to address

the spatial correlation in residuals. Furthermore, the no asymptotic arbitrage (i.e.,

zero-intercept) constraint is not rejected by the data under our S-APT model.

2.2 A Model of Spatial Interaction

Consider a one-period economy with n risky assets in the market whose returns are

governed by the following linear model:

ri = ρ

n∑

j=1

wijrj + αi + ǫi, i = 1, . . . , n, (5)

where ri is the uncertain return of asset i, αi is a constant, and ǫi is the residual noise

related to asset i. For i 6= j, wij specifies the influence of the return of asset j on that

of asset i due to spatial interaction; and wii = 0. The degree of spatial interaction is

represented by the parameter ρ. Let r̃ := (r1, . . . , rn)
′,W := (wij), α := (α1, . . . , αn)

′,
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and ǫ̃ := (ǫ1, . . . , ǫn)
′. Then, the above model can be represented as

r̃ = ρWr̃ + α + ǫ̃, E[ǫ̃] = 0, E[ǫ̃ǫ̃′] = V. (6)

Following the convention in spatial econometrics, we assume that the spatial weight

matrix W is exogenously given. W is typically defined using quantities related to

the location of assets, such as distance, contiguity, and relative length of common

borders. For instance, W can be specified as wii = 0 and wij = d−1
ij for i 6= j, where

dij is the distance between asset i and asset j. If other asset returns do not have

spatial influence on ri, then the ith row of W can simply be set to zero.

Henceforth, we assume that ρ−1 is not an eigenvalue of W . Then, In − ρW is

invertible4 and (6) can be rewritten as

r̃ = (In − ρW )−1α + (In − ρW )−1ǫ̃, (7)

where In is the n× n identity matrix. The mean and covariance matrix of r̃ are thus

given by

µ = E[r̃] = (In − ρW )−1α, Σ = Cov(r̃) = (In − ρW )−1V (In − ρW ′)−1. (8)

3 The Spatial Capital Asset Pricing Model

In this section we develop a spatial capital asset pricing model (S-CAPM) that gen-

eralizes the CAPM by incorporating spatial interaction. In our study, it is important

to consider futures contracts as stand-alone securities rather than as derivatives of

the underlying instruments because the instruments underlying futures contracts in

the real estate markets may not be tradable. For example, the CSI Indices futures

are traded at Chicago Mercantile Exchange but the underlying CSI Indices cannot

be traded directly.

Therefore, we develop the S-CAPM for both ordinary assets and futures contracts.

More specifically, suppose in the market there are n1 ordinary risky assets with returns

(r1, . . . , rn1
), a risk-free asset with return r, and n2 futures contracts. The return of

a futures contract cannot be defined in the same way as that of an ordinary asset

4Let det(·) denote matrix determinant and ω1, . . . , ωn be the eigenvalues of W . Then, det(In −
ρW ) =

∏n
j=1(1 − ρωj) 6= 0 if and only if ρ−1 is not an eigenvalue of W .
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because the initial value of a futures contract is zero. Hence, we follow the convention

in the literature (see, e.g., De Roon, Nijman, and Veld (2000)) and define

rn1+i :=
Fi,1 − Fi,0

Fi,0
(9)

as the “nominal return” of the ith futures contract, where Fi,0 and Fi,1 are the futures

prices of the ith futures contract at time 0 and time 1 (the beginning and end of the

trading period), respectively, and i = 1, . . . , n2. Let n = n1 + n2 and assume that

the n returns r̃ = (r1, . . . , rn1
, rn1+1, . . . , rn)

′ satisfy the model (6). Then, the mean µ

and covariance matrix Σ of r̃ are given by (8).

Now consider the mean-variance problem faced by an investor who can invest

in the n1 ordinary assets and n2 futures contracts. Because the investor’s portfolio

includes both ordinary assets and futures contracts, the return of the portfolio has to

be calculated more carefully than if there were no futures contracts in the portfolio.

Then, the mean-variance analysis can be carried out; see Appendix A. Because both

µ and Σ are functions of ρ and W , the optimal portfolio weights obtained by the

mean-variance analysis and the efficient frontiers are affected by spatial interaction.

For example, Figure 1 shows the efficient frontiers for different values of ρ with all

the other parameters in the model (6) fixed for a portfolio of ten assets. It is clear

that the efficient frontiers are significantly affected by ρ.

Based on the mean-variance analysis, we derive the following S-CAPM, which

characterizes how spatial interaction affects expected asset return under market equi-

librium.

Theorem 3.1. (S-CAPM for Both Ordinary Assets and Futures) Suppose that there

exists a risk-free return r and that the n = n1 + n2 risky returns satisfy the model

(6), of which the first n1 are returns of ordinary assets and the others are returns of

futures contracts. Suppose n1 > 0.5 Let rM be the return of market portfolio. If each

investor holds a mean-variance efficient portfolio, then, in equilibrium, rM is mean-

variance efficient and every investor holds only the market portfolio and the risk-free

asset. Furthermore,

(i) for the ordinary assets,

E[ri]−r =
Cov(ri, rM)

V ar(rM)
(E[rM ]−r) = φ′

MΣηi
φ′
MΣφM

(E[rM ]−r), i = 1, . . . , n1; (10)

5Since the aggregate position of all market participants in a futures contract is zero, n1 needs to
be positive in order to ensure that the return of the market portfolio is well defined.
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Figure 1: Efficient frontiers for ρ = 0, 0.2, 0.4, 0.6, and 0.8, respectively, when there is
no risk-free asset. W , α, and V are specified in Appendix A. The efficient frontiers
are significantly affected by ρ.

(ii) for the futures contracts,

E[Fi,1]− Fi,0 =
Cov(Fi,1, rM)

V ar(rM)
(E[rM ]− r)

= Fi,0
φ′
MΣηn1+i

φ′
MΣφM

(E[rM ]− r), i = 1, . . . , n2, (11)

where Σ is the covariance matrix of r̃; φM is the portfolio weights of the market

portfolio; and ηi is the n-dimensional vector with the ith element being 1 and all

other elements being 0. Define

1n1,n2
:= (1, . . . , 1︸ ︷︷ ︸

n1

, 0, . . . , 0︸ ︷︷ ︸
n2

)′, (12)

then r̃− r1n1,n2
is the excess asset return6 and the S-CAPM equations (10) and (11)

are equivalent to a single equation

E[r̃]− r1n1,n2
=
Cov(r̃, rM)

V ar(rM)
(E[rM ]− r). (13)

6r̃−r1n1,n2
is the excess returns of the n assets in the sense that the first n1 elements of r̃−r1n1,n2

are the excess returns of the n1 ordinary assets, and the last n2 elements of r̃−r1n1,n2
are the returns

of the futures contracts, which can be viewed as “excess returns” because futures returns are the
payoffs of zero-cost portfolios, just as are the excess returns of ordinary assets.
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Proof. See Appendix B.1.

By incorporating spatial interaction, the S-CAPM generalizes not only the CAPM

for ordinary assets but also the CAPM for futures presented in Black (1976) and Duffie

(1989, Chapter 4). The S-CAPM can also be extended to the case in which there is

no risk-free asset; see Appendix B.2.

It follows from the S-CAPM equations (10) and (11) that the degree of spatial

interaction represented by the parameter ρ affects asset risk premiums in equilibrium

because Σ is a function of W and ρ (see (8)).

The S-CAPM implies a zero-intercept constraint on the spatial econometric models

for asset returns. Consider the following spatial econometric model, in which the

excess returns r̃ − r1n1,n2
are regressed with a spatial interaction term on the excess

return of the market portfolio rM − r:

r̃ − r1n1,n2
= ρW (r̃ − r1n1,n2

) + ᾱ + β(rM − r) + ǫ̃,

E[ǫ̃] = 0, Cov(rM , ǫ̃) = 0.
(14)

Then, the S-CAPM implies that, in the above model,

ᾱ = 0. (15)

To see this, rewrite (14) as (In−ρW )(r̃−r1n1,n2
) = ᾱ+β(rM−r)+ǫ̃. Taking covariance

with rM on both sides and using Cov(rM , ǫ̃) = 0 yields β = (In − ρW )Cov(r̃,rM )
V ar(rM )

, from

which it follows that ᾱ = (In−ρW )E[(r̃−r1n1,n2
)− Cov(r̃,rM )

V ar(rM )
(rM−r)]. If the S-CAPM

holds, then (13) implies ᾱ = 0.7

4 The Spatial Arbitrage Pricing Theory

In this section, we derive the Spatial Arbitrage Pricing Theory (S-APT) and point

out its implications. As in Section 2.2, we consider a one-period model with n risky

assets. Consider the following factor model with spatial interaction:

ri = ρ

n∑

j=1

wijrj + αi +

K∑

k=1

βikfk + ǫi, i = 1, . . . , n, (16)

7A spatial lag CAPM equation, which is similar to (14) with ᾱ = 0 and considers only ordinary
assets but not futures, is defined in Fernandez (2011) without theoretical justification. In contrast,
the present paper rigorously proves that the S-CAPM relation (13) holds (for both ordinary assets
and futures) and that ᾱ must be 0 in the spatial model (14) under the assumption in Theorem 3.1.
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where ri, ρ, wij, αi, ǫi have the same meaning as in (6); f1, . . . , fK are K risk factors

with E[fk] = 0; and βik is the loading coefficient of the asset i on the factor k. Let

r̃ := (r1, . . . , rn)
′, W := (wij), α := (α1, . . . , αn)

′, B := (βik), f̃ := (f1, . . . , fK)
′, and

ǫ̃ := (ǫ1, . . . , ǫn)
′. Then, the above model can be represented in a vector-matrix form

as

r̃ = ρWr̃ + α +Bf̃ + ǫ̃, E[f̃ ] = 0, E[ǫ̃] = 0, E[ǫ̃ǫ̃′] = V, E[f̃ ǫ̃′] = 0. (17)

The model (17) reduces to the classical APT when ρ = 0.

4.1 Asymptotic Arbitrage

We first introduce the notion of asymptotic arbitrage defined in Huberman (1982) and

in Ingersoll (1984). Suppose the set of factors f̃ = (f1, . . . , fK)
′ are fixed and consider

a sequence of economies with increasing numbers of risky assets whose returns depend

on these factors and on spatial interaction. As in Section 3, in the nth economy there

are n1 ordinary assets and n2 futures contracts, where n = n1 + n2. Suppose the

futures prices of the ith futures contract are F
(n)
i,0 and F

(n)
i,1 at time 0 and time 1,

respectively. As in Section 3, we define the futures returns as

r
(n)
n1+i =

F
(n)
i,1 − F

(n)
i,0

F
(n)
i,0

, i = 1, · · · , n2. (18)

Assume the returns r̃(n) = (r
(n)
1 , . . . , r

(n)
n )′ are generated by

r̃(n) = ρ(n)W (n)r̃(n) + α(n) +B(n)f̃ + ǫ̃(n), where

E[f̃ ] = 0, E[ǫ̃(n)] = 0, E[ǫ̃(n)(ǫ̃(n))′] = V (n), E[f̃(ǫ̃(n))′] = 0.
(19)

The (n + 1)th economy includes all the n risky assets in the nth economy and one

extra risky asset. In the nth economy, a portfolio is denoted by a vector of dollar-

valued positions h(n) := (h
(n)
1 , . . . , h

(n)
n1
, h

(n)
n1+1, . . . , h

(n)
n )′, where h

(n)
1 , . . . , h

(n)
n1

denote

the dollar-valued wealth invested in the first n1 assets; h
(n)
n1+i := OiF

(n)
i,0 , where Oi

denotes the number of ith futures contracts held in the portfolio, and i = 1, . . . , n2.

A portfolio h(n) is a zero-cost portfolio if (h(n))′1n1,n2
= 0, where 1n1,n2

is defined in

(12). Then, the payoff of the zero-cost portfolio is (h(n))′(r̃(n) + 1n1,n2
) = (h(n))′r̃(n),8

because (h(n))′1n1,n2
= 0.

8If there is a risk free asset with return r, then a zero-cost portfolio with dollar-valued positions
h(n) in the risky assets must have a dollar-valued position −(h(n))′1n1,n2

in the risk free asset. Then,
the payoff of the portfolio is given by (h(n))′(r̃(n) − r1n1,n2

).
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Asymptotic arbitrage is defined to be the existence of a subsequence of zero-cost

portfolios {h(mk), k = 1, 2, . . .} and δ > 0 such that

E[(h(mk))′r̃(mk)] ≥ δ, for all k, and lim
k→∞

V ar((h(mk))′r̃(mk)) = 0.9 (20)

4.2 The Spatial Arbitrage Pricing Theory: A Special Case
in Which Factors Are Tradable

To obtain a good intuition, we first develop the S-APT in the case in which the

factors are the payoff of tradable zero-cost portfolios and there is a risk-free return r.

Suppose the risk factors f̃ are given by

f̃ = g̃ −E[g̃], (21)

where g̃ = (g1, g2, . . . , gK)
′ and each gk is the payoff of a certain tradable zero-cost

portfolio. The model (19) can then be written as

r̃(n) − r1n1,n2
= ρ(n)W (n)(r̃(n) − r1n1,n2

) + ᾱ(n) +B(n)g̃ + ǫ̃(n), (22)

ᾱ(n) := α(n) − (In − ρ(n)W (n))1n1,n2
r − B(n)E[g̃]. (23)

Theorem 4.1. Suppose there is a risk-free return r and the risk factors f̃ are given

by (21) where g1, g2, . . . , gK are the payoffs of certain zero-cost portfolios. Suppose

E[ǫ
(n)
i ǫ

(n)
j ] = 0, for i 6= j; V ar(ǫ

(n)
i ) ≤ σ̄2, for all i and n, (24)

where σ̄2 is a fixed positive number. If there is no asymptotic arbitrage, then

ᾱ(n) ≈ 0, (25)

or, equivalently,

α(n) ≈ (In − ρ(n)W (n))1n1,n2
r +B(n)E[g̃]. (26)

The approximation (25) holds in the sense that for any δ > 0 there exists a constant

Nδ > 0 such that N(n, δ) < Nδ for all n, where N(n, δ) denotes the number of

components of ᾱ(n) whose absolute values are greater than δ.

Proof. See Appendix C.1.

9In the case when there is a risk free asset with return r, the term (h(mk))′r̃(mk) should be
replaced by (h(mk))′(r̃(mk) − r1n1,n2

).
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The intuition behind the theorem is that if g̃ are the payoffs of zero-cost portfolios,

then, by (22), one can construct zero-cost portfolios with payoffs ᾱ(n) + ǫ̃(n) that do

not carry systematic risk. If the elements of ǫ̃(n) are uncorrelated and have bounded

variance, then ᾱ(n) must be approximately zero; otherwise, one could construct a

large zero-cost portfolio with a payoff whose mean would be strictly positive while its

variance would vanish, constituting an asymptotic arbitrage opportunity.

4.3 The Spatial Arbitrage Pricing Theory: the General Case

Theorem 4.2. (S-APT with Both Ordinary Assets and Futures) Suppose that in the

nth economy there are n1 ordinary risky assets and n2 futures contracts and the n1

ordinary asset returns and the n2 futures returns are generated by the model (19). If

there is no asymptotic arbitrage opportunity, then there is a sequence of factor premi-

ums λ(n) = (λ
(n)
1 , . . . , λ

(n)
K )′ and a constant λ

(n)
0 , which price all assets approximately:

α(n) ≈ (In − ρ(n)W (n))1n1,n2
λ
(n)
0 +B(n)λ(n). (27)

The precise meaning of the approximation in (27) is that there exists a positive number

A such that the weighted sum of the squared pricing errors is uniformly bounded,

(U (n))′(V (n))−1U (n) ≤ A <∞ for all n, (28)

where

U (n) = α(n) − (In − ρ(n)W (n))1n1,n2
λ
(n)
0 −B(n)λ(n).

In particular, if there exists a risk-free return r, then λ
(n)
0 can be identified as r.

Proof. See Appendix C.2.

Comparing (26) and (27), one can see that the factor risk premiums λ(n) in the

S-APT can be identified as

λ(n) = E[g̃], (29)

if f̃ = g̃ − E[g̃] and g̃ are the payoffs of zero-cost traded portfolios. The S-APT

implies that the degree of spatial interaction affects asset risk premiums. Indeed, let

(β̄
(n)
i,1 , β̄

(n)
i,2 , . . . , β̄

(n)
i,K) be the ith row of (In − ρ(n)W (n))−1B(n). Then, (27) implies that

the ordinary assets are approximately priced by

E[r
(n)
i ]− λ

(n)
0 ≈

K∑

k=1

β̄
(n)
i,k λ

(n)
k , i = 1, . . . , n1 (30)
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and that the futures contracts are approximately priced by

E[F
(n)
i,1 ]− F

(n)
i,0

F
(n)
i,0

≈
K∑

k=1

β̄
(n)
n1+i,kλ

(n)
k , i = 1, . . . , n2. (31)

(30) and (31) show that the expected returns of both ordinary assets and futures

contracts are affected by the spatial interaction parameter ρ because, for all j and k,

β̄
(n)
j,k depends on the spatial interaction terms ρ(n) and W (n).

4.4 Comparison with the SAR Model

The spatial autoregressive (SAR) model (see, e.g., Lesage and Pace (2009, Chapter

2.6)) is one of the most commonly adopted models in the spatial econometrics litera-

ture. The SAR model postulates that the dependent variables (usually prices or log

prices of assets) y1, . . . , yn are generated by

yi = ρ
n∑

j=1

wijyj + β0 +
K∑

k=1

βkxik + ǫi, i = 1, . . . , n, (32)

where ρ, wij, and ǫi have the same meaning as in (5); xik are explanatory variables;

β0 is the intercept; and β1, . . . , βK are coefficients in front of explanatory variables.

Although the first term in (32) of the SAR model is the same as the first term of

the S-APT model (16), there are substantial differences between the two: (i) In terms

of model specification, the S-APT imposes a linear constraint on model parameters

((26) or (27)), while the parameters in the SAR model are free parameters. (ii) In

the SAR model (32), factors xik may be different for different i and the intercept β0

is the same for different i; in contrast, in the S-APT model (16), factors fk are the

same for different i but the intercepts αi depend on i.

5 Statistical Inference for S-APT

Let r̃t = (r1t, r2t, . . . , rnt)
′ be the observation of n = n1+n2 asset returns that consist

of n1 ordinary asset returns and n2 futures returns in the tth period. Let rft be the

risk free return in the tth period. Let ỹt = (y1t, y2t, . . . , ynt)
′ := r̃t − rft1n1,n2

denote

the excess asset returns. Let g̃t = (g1t, g2t, . . . , gKt)
′ be the observation of the k factors

in the tth period (note that E[g̃t] may not be zero).
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Assume ỹt and g̃t are generated by the following panel data model, a multi-period

version of the model (22):

ỹt = ρWỹt + ᾱ +Bg̃t + ǫ̃t, t = 1, 2, . . . , T,

(ỹt, g̃t), t = 1, 2, . . . , T, are i.i.d.,

ǫ̃t | g̃t ∼ N(0, σ2In).

(33)

The model (33) incorporates three features: (i) a spatial lag in the dependent vari-

ables, (ii) individual-specific fixed effects, and (iii) heterogeneity of factor loadings on

common factors. However, existing models have as yet incorporated only some but

not all these features. Lee and Yu (2010a) investigate the asymptotic properties of

the QMLEs for spatial panel data models that incorporate the features (i) and (ii)

but not (iii); Holly, Pesaran, and Yamagata (2010) and Pesaran and Tosetti (2011)

consider panel data models that incorporate spatially correlated cross-section errors

and the features (ii) and (iii), but not (i); see Anselin, Le Gallo, and Jayet (2008) and

Lee and Yu (2010b) for more comprehensive discussion of spatial panel data models

and the asymptotic properties of MLE and QMLE for these models.

For the brevity of notation, we define

b := (ᾱ1, β11, β12, . . . , β1K , . . . , ᾱn, βn1, βn2, . . . , βnK)
′, (34)

where βik is the (i, k) element of B. Denote the parameter vector of the model as

θ := (ρ, b′, σ2)′. Let θ0 = (ρ0, b
′
0, σ

2
0)

′ be the true model parameters.

5.1 Identifiability of Model Parameters

The model parameters θ0 are identifiable if the spatial weight matrix W is regular

(i.e., satisfying simple regularity conditions that are easy to check); see Appendix D.1

for detailed discussion. It can be easily checked that in all empirical examples of this

paper, W is regular. In the rest of the section, we assume that W is regular and

hence θ0 is identifiable.10

10In fact, if W is not regular, then the elements of W satisfy n(n+1)/2 constraints given by (75)
and (76) in Appendix D.1; hence, unless W is carefully constructed to satisfy these constraints, W
is regular and the (unknown) true parameter is identifiable. For example, when W is not regular
and n = 3, W has six off-diagonal elements that satisfy six constraints; hence, only very special W
are not regular.
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5.2 Model Parameter Estimation

The model parameters can be estimated by maximum likelihood estimates (MLE).

Let

Xt :=



1, g1t, · · · , gKt 0 0

0
. . . 0

0 0 1, g1t, · · · , gKt


 ∈ R

n×n(K+1). (35)

Then, the log likelihood function of the model is given by

ℓ(θ) = ℓ(ρ, b, σ2) :=
T∑

t=1

l(ỹt | g̃t, θ), where (36)

l(ỹt | g̃t, θ) =− n

2
log(2πσ2) +

1

2
log(det((In − ρW ′)(In − ρW )))

− 1

2σ2
(ỹt − ρWỹt −Xtb)

′(ỹt − ρWỹt −Xtb). (37)

Let [ζ, γ] be an interval such that ζ < 0 < γ and In − ρW is invertible for

ρ ∈ [ζ, γ].11 It can be shown12 that the MLE θ̂ = (ρ̂, b̂
′
, σ̂2)′ is given by

ρ̂ = arg max
ρ∈[ζ,γ]

ℓc(ρ), b̂ = b(ρ̂), σ̂2 = s(ρ̂),

where

ℓc(ρ) := ℓ(ρ, b(ρ), s(ρ))

= −nT
2

log(2πs(ρ)) +
T

2
log(det((In − ρW ′)(In − ρW )))− nT

2
, (38)

b(ρ) :=

(
T∑

t=1

X ′
tXt

)−1 T∑

t=1

X ′
t(In − ρW )ỹt,

s(ρ) :=
1

nT

T∑

t=1

((In − ρW )ỹt −Xtb(ρ))
′((In − ρW )ỹt −Xtb(ρ)).

For the asymptotic and small sample properties of the MLE, see Appendix D.2.

11For any W , because limρ→0 det(In − ρW ) = 1, there always exists an interval [ζ, γ] such that
ζ < 0 < γ and that In − ρW is invertible for ρ ∈ [ζ, γ]. In fact, In − ρW is invertible if and only if
ρ−1 is not an eigenvalue of W (see footnote 4). Hence, the specification of [ζ, γ] depends on W : (i) If
W has at least two different real eigenvalues and ωmin < 0 < ωmax are the minimum and maximum
real eigenvalues, then [ζ, γ] can be chosen as an interval that lies inside (ω−1

min, ω
−1
max). In particular,

if the rows of W are normalized to sum up to 1, which is commonly seen in spatial econometrics
literature, then ωmax = 1. (ii) If W does not have real eigenvalues, then [ζ, γ] can be any interval
contains 0. See Lesage and Pace (2009, Chapter 4.3.2, p.88) for more detailed discussion.

12Note that for any given ρ, the original model can be rewritten as ỹt − ρWỹt = Xtb + ǫ̃t, t =
1, 2, . . . , T , from which the classical theory of linear regression shows that b = b(ρ) and σ2 = s(ρ)
maximize the log likelihood function (36). Because ℓc(ρ) = ℓ(ρ, b(ρ), s(ρ)) and ρ̂ maximizes ℓc(ρ), it

follows that ρ̂, b̂ = b(ρ̂), and σ̂2 = s(ρ̂) maximize ℓ(ρ, b, σ2), i.e., they are the MLE.
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5.3 Hypothesis Test and Goodness of Fit of the Model (33)

For simplicity, we assume that the factors g̃ are the payoffs of zero-cost tradable

portfolios. In this case, Theorem 4.1 shows that the S-APT imposes an approximate

zero-intercept constraint ᾱ(n) ≈ 0 (see Eq. (25)). As in the classical factor pricing

literature, we test the S-APT by testing the exact zero-intercept constraint

H0 : ᾱ0 = 0; H1 : ᾱ0 6= 0, (39)

where ᾱ0 is the true parameter in the model (33).

We can test the hypothesis using likelihood ratio test statistics. Under the null

hypothesis, the likelihood ratio test statistic

LR = 2

[
T∑

t=1

l(ỹt | g̃t, θ̂)−
T∑

t=1

l(ỹt | g̃t, θ∗)
]

(40)

has an asymptotic χ2(n) distribution.13 Here,
∑T

t=1 l(ỹt | g̃t, θ̂) denotes the log like-

lihood function evaluated at θ̂, which is the MLE of parameters estimated with no

constraints; while
∑T

t=1 l(ỹt | g̃t, θ∗) its counterpart evaluated at the MLE θ∗ esti-

mated under the constraint that the null holds (i.e., ᾱ0 = 0). The likelihood ratio

test is asymptotically equivalent to the traditional tests in asset pricing, such as

the Gibbons-Ross-Shanken test; see Gibbons, Ross, and Shanken (1989) as well as

Chapter 1 and 2 in Hayashi (2000).

The goodness of fit of the model can be evaluated by adjusted R2. The theoretical

adjusted R2 of the ith asset in the model (33) is defined as

R2
i = 1− T − 1

T −K − 1

V ar(ǫi)

V ar(yi)
, i = 1, 2, . . . , n, (41)

where V ar(ǫi) = σ2
0 and V ar(yi) is equal to the ith diagonal element of the covariance

matrix (In − ρ0W )−1B0 · Cov(g̃) · B′
0(In − ρ0W

′)−1 + σ2
0(In − ρ0W )−1(In − ρ0W

′)−1.

The sample adjusted R2 of the ith asset is calculated using (41) with V ar(ǫi) and

V ar(yi) replaced by their respective sample counterparts.

For a simulation study of the likelihood ratio test and the adjusted R2, see Ap-

pendix D.3.

13This can be shown by verifying the conditions of Proposition 7.11 in Hayashi (2000, p. 494).

Let a(θ) := ᾱ. Then, the Jacobian ∂a(θ0)
∂θ′

is of full row rank. We then need to verify the conditions
of Proposition 7.9 in Hayashi (2000, p. 475), but it is done in the proof of Theorem D.1 in Appendix
D.2 of this paper.

18



6 Application 1: Eurozone Stock Indices

In this section, we continue to study factor models for European stock indices returns

considered in the motivating example in Section 2.1.

6.1 The Data

The data of the European stock indices returns are the same as those used in Section

2.1. We take four factors used in Fama and French (2012), namely the market factor

(MKT), the size factor (SMB), the value factor (HML) and the momentum factor

(MOM). The factors aforementioned have long been documented in the literature to

account for the majority of comovements of equities returns. By including these four

factors in the S-APT model, the empirical study is designed to more clearly reveal

the contribution of spatial interaction in relation to what has been understood in

the literature. Since the returns in Fama and French (2012) are sorted by corporate

characteristics, while here stocks are implicitly sorted by locations/nations, one may

expect some additional factors. We construct a new risk factor that is related to

sovereign credit risk. Table 9 in Appendix E shows the S&P credit ratings of the 11

countries during 2001–2013, where it can be seen that Germany is the only country

that has maintained top-notch AAA rating, while Greece, Ireland, Italy, Portugal,

and Spain are the only countries that have breached A rating. Thus, we introduce

the credit factor as the difference between returns of stock indices of countries with

good credit and those with relatively bad credit:

gcredit := rGermany −
1

5
(rGreece + rIreland + rItaly + rPortugal + rSpain). (42)

Similar to the value factor constructed in Fama and French (1993), which is a proxy

for the distress factor in the corporate domain, the risk factor (42) may be considered

as a proxy of the sovereign version of distress risk.

6.2 Empirical Performance of S-APT and APT Models

We investigate the performance of the following six APT models and their S-APT

counterparts:

• Model 1: APT with MKV, SMB, HML, and MoM factor (Fama and French

(2012))
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• Model 2: APT with MKV, SMB, HML, MoM, and Credit factor

• Model 3: APT with MKV, MoM, and Credit factor

• Model 4: APT with MKV, SMB, MoM, and Credit factor

• Model 5: APT with MKV, HML, MoM, and Credit factor

• Model 6: APT with MKV, SMB, HML, and Credit factor

• Model 1s: S-APT with MKV, SMB, HML, and MoM factor

• Model 2s: S-APT with MKV, SMB, HML, MoM, and Credit factor

• Model 3s: S-APT with MKV, MoM, and Credit factor

• Model 4s: S-APT with MKV, SMB, MoM, and Credit factor

• Model 5s: S-APT with MKV, HML, MoM, and Credit factor

• Model 6s: S-APT with MKV, SMB, HML, and Credit factor

An “APT” model means the type of factor model considered in Fama and French

(2012) in which heterogeneous variances of residuals for different returns are assumed.

The model 1 is the same as the model specified in the motivating example in Section

2.1. The S-APT model is specified in (33) with homogeneous variances for residuals.

In the S-APT models, the spatial weight matrix W is defined as Wij := (sidij)
−1 for

i 6= j and Wii = 0, where dij is the driving distance between the capital of country i

and that of country j and si :=
∑

j d
−1
ij .

The no asymptotic arbitrage (i.e., zero-intercept) hypothesis test for the APT

models is specified in (3), and that for the S-APT models is specified in (39). Table 3

shows the p-value for testing the zero-intercept hypothesis, the number of parameters,

the Akaike information criterion (AIC), the 95% confidence interval (C.I.) of ρ0 (only

for the S-APT models), and the 95% C.I. of κ defined in Eq. (2) for the residuals for

all the above models. The domain of ρ0 and κ in the MLE estimation is [−2.5342, 1].

The only models that are not rejected in the test of zero-intercept hypothesis are

model 3s and 4s, which incorporate spatial interaction. The models 3s and 4s also

have better performance than the APT models in terms of AIC. In general, the S-

APT models seem to eliminate the spatial correlation among regression residuals more
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Model 1 2 3 4 5 6

p-value 0.0 0.0 0.0002 0.0005 0.0 0.0

AIC 10172 9934 10070 9977 9961 9911

number of 66 77 55 66 66 66
parameters

95% C.I. of κ [0.02, 0.21] [-0.01, 0.18] [-0.01, 0.18] [0.02, 0.20] [-0.07, 0.13] [-0.04, 0.15]
for residuals

Model 1s 2s 3s 4s 5s 6s

p-value 0.0002 0.0099 0.1854 0.2912 0.0078 0.0002

AIC 8826 8625 8793 8730 8696 8668

number of 57 68 46 57 57 57
parameters

95% C.I. of ρ0 [0.065, 0.25] [ -0.012, 0.18] [0.0065, 0.19] [0.026, 0.21] [-0.035, 0.16] [0.0053, 0.19]

95% C.I. of κ [-0.08, 0.12] [-0.10, 0.10] [-0.10, 0.11] [-0.10, 0.11] [-0.10, 0.10] [-0.09, 0.11]
for residuals

Table 3: The p-value for testing the no asymptotic arbitrage (i.e., zero-intercept)
hypothesis, the Akaike information criterion (AIC), the number of parameters, the
95% confidence interval (C.I.) of ρ0 (only for the S-APT models), and the 95% C.I.
of κ defined in (2) for the residuals of different models for the Eurozone stock indices
returns. Model 3s and Model 4s appear to perform better than the other models.
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effectively than the APT models, as indicated by κ. Furthermore, for all the S-APT

models that are not rejected (Models 3s and 4s), ρ0 are found to be significantly

positive. Note that adding the spatial term seems to improve the p-value and the

AIC of its counterpart model without the spatial term. While the Credit, MoM, and

SMB factors all seem to play a role in explaining return comovements, adding the

HML factor in the model does not seem to improve model performance in terms of

p-value and AIC. At last, the adjusted R2 of fitting Model 4s with the zero-intercept

constraint is reported in Figure 2.

Austria: 0.84

Belgium: 0.78

Finland: 0.87

France: 0.79

Germany: 0.83

Greece: 0.90

Ireland: 0.80

Italy: 0.83

Netherlands: 0.80

Portugal: 0.77

Spain: 0.83

Figure 2: The adjusted R2 of fitting the Model 4s with zero-intercept constraint to
the Eurozone stock indices.
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6.3 Robustness Check

The empirical results reported above seem to be robust with respect to different

specifications of spatial matrix W . In Table 4 we compare the estimation and testing

results using two definitions of W in the S-APT model 4s: (i) Wij := (sidij)
−1 where

dij is the geographic distance
14 between the capital of the ith country and that of the

jth country and si :=
∑

j 6=i d
−1
ij . In this case, the domain of ρ0 in MLE estimation

is [−2.6399, 1]. (ii) Wij := (sidij)
−1 and dij is the driving distance. The numerical

values of W can be found in Appendix E.

W
p-value for

testing ᾱ0 = 0
C.I. of ρ0

adjusted R2

Austria Belgium Finland France Germany

Geographic distance 0.2866 [0.022, 0.20] 0.8404 0.7756 0.8676 0.7858 0.8304
Driving distance 0.2912 [0.026, 0.21] 0.8405 0.7757 0.8677 0.7859 0.8305

W AIC
adjusted R2

Greece Ireland Italy Netherlands Portugal Spain

Geographic distance 8731 0.9006 0.7950 0.8345 0.8041 0.7698 0.8296
Driving distance 8730 0.9006 0.7951 0.8346 0.8042 0.7699 0.8296

Table 4: Robustness check: the estimation and testing results under different defini-
tions of spatial weight matrix W for the S-APT Model 4s.

7 Application 2: S&P/Case-Shiller Home Price

Indices Futures

7.1 Data

The S&P/Case-Shiller Home Price Indices (CSI Indices) are constructed based on

the method proposed by Case and Shiller (1987) and are the leading measure of

single family home prices in the United States. The CSI index family includes twenty

indices for twenty metropolitan statistical areas (MSAs) and three composite indices

(National, 10-City, and 20-City). The indices are updated monthly, except for the

national index, which is updated quarterly. The CSI Indices themselves are not

14The geographic distance is calculated from the longitude and latitude coordinates using the
Vincenty’s formulae (Vincenty (1975)), which assumes that the figure of the earth is an oblate
spheroid instead of a sphere.
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directly traded; however, CSI Indices futures are traded at the Chicago Mercantile

Exchange. There are, in total, eleven CSI Indices futures contracts; one is written

on the composite 10-City CSI Index and the other ten are on the CSI Indices of ten

MSAs: Boston, Chicago, Denver, Las Vegas, Los Angeles, Miami, New York, San

Diego, San Francisco, and Washington, D.C. On any given day, the futures contract

with the nearest maturity among all the traded futures contracts is called the first

nearest-to-maturity contract. In the empirical study, we use the first nearest-to-

maturity futures contract to define one-month return of futures because this contract

usually has better liquidity than the others. The time period of the data is from June

2006 to February 2014.

We consider three factors for the CSI indices futures. First, we construct a factor

related to credit risk, as the credit risk may be a proxy of the risk of public finance

(e.g. state pension schemes and infrastructure improvements). Table 10 in Appendix

E shows the S&P credit ratings of the states where the 10 MSAs are located during

2006–2013. It can be seen that the credit rating of California is significantly worse

than the other states, while Florida and Nevada can be chosen as representatives of

states of good credit quality as both of them have a rating as good as AA+ for at least

five years during the period. Following the approach of Fama and French (1993), we

construct a factor related to credit risk as the difference of futures returns of MSAs

in the states with relatively bad credit and those with relatively good credit,

gcredit := rLosAngeles + rSanDiego + rSanFrancisco − (rMiami + rLasV egas), (43)

where rMSA denotes the return of CSI index futures of a particular MSA. In addition

to the credit factor, we consider two other factors: (i) gCS10f : the monthly return

of futures on S&P/Case-Shiller composite 10-City Index, which reflects the overall

national residential real estate market in the United States. (ii) gCS10fTr: the trend

factor of gCS10f . gCS10fTr in the kth month is the difference between gCS10f in the

kth month and the previous 12-month average of gCS10f .
15 The trend factor gCS10fTr

is inspired by a similar creation in Duan, Sun, and Wang (2012) and can be related

to the notion of momentum captured by the momentum factor in Fama and French

(2012). The trend factor describes the intertemporal momentum while the momentum

factor focuses more on cross-sectional differences.

15When k ≤ 12, the trend factor for the kth month is defined as the difference of gCS10f in the
kth month and the average of gCS10f in the previous k − 1 months.
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7.2 Empirical Performance of S-APT and APT Models

We estimate and test three models using the same three factors defined above: One

is the S-APT model specified in (33), which assumes homogeneous variance for resid-

uals, and the other two are APT models, which are specified with homogeneous and

heterogeneous residual variances respectively. APT models with heterogeneous vari-

ances seem to be common in existing theoretical and empirical works; see Gibbons,

Ross, and Shanken (1989) and Fama and French (1993, 2012), among others. In the

S-APT model, the spatial weight matrix W is specified based on driving distances in

the same way as in Section 6.2.

We carry out the model fitting and the no asymptotic arbitrage (i.e., zero-intercept)

test for the APT and S-APT models. The zero-intercept test for the APT models is

specified in (3), and that for the S-APT models is specified in (39). Table 5 shows

the estimation and testing results for the three models. The domain of ρ0 in the MLE

estimation for the S-APT model is [−2.0334, 1]. First, in testing the zero-intercept

hypothesis, the S-APT model is not rejected. Second, the S-APT model outperforms

the other two models in terms of AIC; in particular, the S-APT model achieves lower

AIC than the APT model with homogeneous variances. Hence, incorporating spatial

interaction improves the description of the comovements of futures returns. Third,

for the S-APT model, ρ0 is found to be significantly positive. Fourth, there seems to

be no spatial correlation in the residuals of the S-APT model.

Figure 3a shows the sample adjusted R2 of the S-APT model with the zero-

intercept constraint ᾱ0 = 0. All the sample adjusted R2 are positive except that of

New York, which is −0.35. The negative adjusted R2 may be due to the fact that the

CSI Index of New York does not reflect the overall real estate market in that area, as

it takes into account only single-family home prices but not co-op or condominium

prices; however, sales of co-ops and condominiums account for 98% of Manhattan’s

non-rental properties.16 Therefore, we exclude the CSI Indices futures of New York

from the analysis and test the S-APT on the remaining nine CSI Indices futures. The

16We try to alleviate the problem by including a condominium index return factor but this does
not improve the fitting results much. As there are no futures contracts on the S&P/Case-Shiller
Condominium Index of New York, we construct a mimicking portfolio of the excess return of the
Condominium Index using the linear projection of the Condominium Index excess return on the
payoff space spanned by the ten CSI Indices futures returns. Then, the payoff of the mimicking
portfolio is defined as an additional factor. However, the sample adjusted R2 of the linear projection
is merely 17%, indicating that the mimicking portfolio payoff may not be a good approximation to
the Condominium Index excess return.
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Model S-APT APT APT
(heterogeneous (homogeneous
variance) variances)

p-value 0.114 0.0612 0.0123

AIC -5523 -4532 -4521

Number of parameters 42 50 41

95% C.I. of ρ0 [0.28, 0.44] - -

95% C.I. of κ [-0.10, 0.11] [0.29, 0.44] [0.29, 0.44]
for residuals

Table 5: The p-value for testing the no asymptotic arbitrage (i.e., zero-intercept)
constraint, Akaike information criterion (AIC), the number of parameters, the 95%
confidence interval (C.I.) of ρ0 (only for S-APT), and the 95% C.I. of κ defined in (2)
for the residuals of the three models.

p-value of the test is 0.11, and hence the S-APT model is not rejected. The sample

adjusted R2 of fitting the remaining nine CSI Indices futures with the S-APT zero-

intercept constraint is shown in Figure 3b; all the nine futures have positive adjusted

R2. ρ0 is estimated to be 0.37 with the 95% confidence interval [0.29, 0.45], which is

significantly positive (the domain of ρ0 and κ in the MLE estimation is [−1.9897, 1]).

7.3 Robustness Check

The empirical results reported above seem to be robust with respect to different

specifications of spatial matrixW . Table 6 compares the model testing and estimation

results for W defined by geographic distance and driving distance. The table shows

that the results are robust to the specification of W . The numerical values of W can

be found in Appendix E.

8 Conclusion

Although there are growing evidences that spatial interaction plays a significant role

in determining prices and returns in both stock markets and real estate markets, there

is as yet little work that builds explicit economic models to study the effects of spatial

interaction on asset returns. In this paper, we add to the literature by studying how
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Los Angeles: 0.47

San Diego: 0.27

San Francisco: 0.58
Denver: 0.57

Washington, D.C.: 0.41

Miami: 0.20

Chicago: 0.56

Boston: 0.21

Las Vegas: 0.58

New York: −0.35

(a)

Los Angeles: 0.45

San Diego: 0.24

San Francisco: 0.56
Denver: 0.55

Washington, D.C.: 0.38

Miami: 0.16

Chicago: 0.54

Boston: 0.18

Las Vegas: 0.56

New York

(b)

Figure 3: (a) shows the adjusted R2 of fitting the three-factor model (33) with the S-
APT zero-intercept constraint ᾱ0 = 0 to the 10 CSI Indices futures returns. (b) shows
the adjusted R2 of the same model fitting as in (a), except that New York is excluded
from the analysis. In the model fitting, W is specified using driving distances.
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(a) First robustness check: different W for ten MSAs including New York.

W
p-value for

testing ᾱ0 = 0
C.I. of ρ0

AIC adjusted R2

Los Angeles San Diego San Francisco Denver Las Vegas

Geographic distance 0.1139 [0.2900, 0.4440] -5526 0.4723 0.2772 0.5809 0.5716 0.5833
Driving distance 0.1140 [0.2835, 0.4385] -5523 0.4705 0.2747 0.5795 0.5701 0.5819

W
adjusted R2

Washington D.C. Miami Chicago Boston New York

Geographic distance 0.4133 0.1981 0.5595 0.2148 -0.3482
Driving distance 0.4113 0.1954 0.5580 0.2121 -0.3528

(b) Second robustness check: different W for nine MSAs excluding New York.

W
p-value for

testing ᾱ0 = 0
C.I. of ρ0

AIC adjusted R2

Los Angeles San Diego San Francisco Denver Las Vegas

Geographic distance 0.1107 [0.3998, 0.4572] -4934 0.4486 0.2447 0.5620 0.5523 0.5646
Driving distance 0.1100 [0.2944, 0.4516] -4931 0.4463 0.2415 0.5602 0.5505 0.5628

W
adjusted R2

Washington D.C. Miami Chicago Boston

Geographic distance 0.3869 0.1620 0.5396 0.1794
Driving distance 0.3844 0.1586 0.5377 0.1760

Table 6: Robustness check of the empirical results.

spatial interaction affects the risk-return relationship of financial assets. To do this,

we first propose new asset pricing models that incorporate spatial interaction, i.e.,

the spatial capital asset pricing model (S-CAPM) and the spatial arbitrage pricing

theory (S-APT), which extend the classical asset pricing theory of CAPM and APT

respectively. The S-CAPM and S-APT explicitly characterize the effect of spatial

interaction on the expected returns of both ordinary assets and future contracts.

Next, we carry out empirical studies on the Eurozone stock indices and the futures

contracts on S&P/Case-Shiller Home Price Indices using the S-APT model. Our

empirical results suggest that spatial interaction is not only present but also important

in explaining comovements of asset returns.

A Mean-Variance Analysis with Spatial Interac-

tion

Assume that the n returns r̃ = (r1, . . . , rn1
, rn1+1, . . . , rn)

′ satisfy the model (6), where

the first n1 are ordinary asset returns and the last n2 are futures returns defined in
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(9). Then, the mean µ and covariance matrix Σ of r̃ are given by (8).

Consider the mean-variance problem faced by an investor in such a market. Let w

be the initial wealth of the investor. Let u = (u1, . . . , un1
)′ denote the vector of dollar-

valued wealth invested in the first n1 risky assets and v = (v1, . . . , vn2
)′ denote the

vector of dollar-valued positions (i.e., the number of contracts times the futures price)

of the investor on the n2 futures contracts. Define the investor’s portfolio weights as

φ = (φ1, . . . , φn)
′ :=

1

w
(u1, . . . , un1

, v1, . . . , vn2
)′.

Let r be the risk-free return. Then, the net return of the investor’s portfolio is

rp =
1

w

(
n1∑

i=1

ui(1 + ri) + (w −
n1∑

i=1

ui)(1 + r) +
n2∑

j=1

vj
Fj,0

(Fj,1 − Fj,0)

)
− 1,

=
1

w

(
n1∑

i=1

ui(ri − r) +

n2∑

j=1

vjrn1+j

)
+ r = φ′(r̃ − r1n1,n2

) + r, (44)

where 1n1,n2
is defined in (12). The mean and variance of rp are given by

E[rp] = h′φ+ r, V ar(rp) = φ′Σφ, where h = µ− r1n1,n2
.

Let e denote the target mean portfolio return of the investor, then the mean-variance

problem faced by the investor is

min
φ

1

2
φ′Σφ s.t. h′φ+ r = e. (45)

Using Lagrange multiplier, we obtain the optimal solution to the problem:

φ∗ = (e− r)
Σ−1h

h′Σ−1h
. (46)

When there is no risk-free asset in the market, the net return of the investor’s

portfolio is

rp =
1

w

(
n1∑

i=1

ui(1 + ri) +

n2∑

j=1

vj
Fj,0

(Fj,1 − Fj,0)

)
− 1 = φ′r̃.

Then, the mean-variance problem becomes

min
φ

1

2
φ′Σφ s.t. φ′µ = e and φ′1n1,n2

= 1, (47)
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whose optimal solution can be shown to be

φ∗ = ψ + eξ, where (48)

ψ =
1

D
(BΣ−11n1,n2

−AΣ−1µ), ξ =
1

D
(FΣ−1µ− AΣ−11n1,n2

), (49)

A = µ′Σ−11n1,n2
, B =µ′Σ−1µ, F = 1′n1,n2

Σ−11n1,n2
, D = BF − A2.

Because both µ and Σ are functions of ρ, the optimal portfolio weights φ∗ and the

efficient frontiers are affected by ρ. More specifically, (i) When there exists a risk-free

return r, the efficient frontier is e = r+σ
√
H and H = (µ−r1n1,n2

)′Σ−1(µ−r1n1,n2
) =

(α−r1n1,n2
)′V −1(α−r1n1,n2

)+2r1′n1,n2
W ′V −1(α−r1n1,n2

)ρ+r21′n1,n2
W ′V −1W1n1,n2

ρ2.

Thus H is a quadratic function of ρ and the coefficient in front of ρ2 is positive. (ii)

When there is no risk-free asset, the effect of spatial interaction on efficient frontier

is illustrated in Figure 1.

The model parameters used in calculating the efficient frontiers in Figure 1 are

specified as follows. Let n1 = 10 and n2 = 0. We first randomly generate 10 points

(xi, yi), i = 1, 2, . . . , 10 on the x-y plane which denote the locations of 10 assets,

assuming that {xi, yi : i = 1, . . . , 10} are i.i.d. normal random variables with mean

0 and variance 100. We then define the matrix W = (wij) as wij = 1
sidij

for i 6= j

and wii = 0, where dij is the Euclidean distance between asset i and asset j, and

si :=
∑

k 6=i d
−1
ik . The resulting W is




0 0.080 0.131 0.206 0.054 0.055 0.128 0.068 0.204 0.075
0.119 0 0.082 0.193 0.067 0.055 0.223 0.069 0.103 0.089
0.129 0.055 0 0.086 0.073 0.093 0.066 0.122 0.273 0.103
0.197 0.125 0.083 0 0.048 0.044 0.261 0.056 0.119 0.068
0.070 0.059 0.097 0.066 0 0.119 0.056 0.212 0.093 0.228
0.081 0.055 0.139 0.068 0.135 0 0.058 0.235 0.107 0.122
0.143 0.169 0.075 0.306 0.048 0.044 0 0.054 0.096 0.064
0.072 0.050 0.132 0.062 0.173 0.169 0.051 0 0.108 0.181
0.183 0.062 0.248 0.111 0.064 0.065 0.077 0.091 0 0.099
0.082 0.066 0.115 0.078 0.194 0.091 0.063 0.188 0.122 0




.

The vector α is also a realization of random generation and is given by

α = (1.334%, 1.005%, 1.209%, 1.141%, 1.101%, 1.352%, 3.531%, 8.229%, 1.101%, 1.893%)′.

The matrix V is defined as V = 0.015 · I10 where I10 is a 10× 10 identity matrix.

B Proof of the S-CAPM Theorems

B.1 Proof of Theorem 3.1

Lemma B.1. Let rmv be any mean-variance efficient return other than the risk-free

return. Then,
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(i) for any portfolio return y, it holds that

E[y]− r =
Cov(y, rmv)

V ar(rmv)
(E[rmv]− r); (50)

(ii) for the futures contracts, it holds that

E[Fi,1]− Fi,0 =
Cov(Fi,1, rmv)

V ar(rmv)
(E[rmv]− r), i = 1, 2, . . . , n2. (51)

Proof. Let emv := E[rmv]. Since rmv is mean-variance efficient, it follows from (46)

that the portfolio weight of rmv is given by

φmv = (emv − r)
Σ−1h

h′Σ−1h
. (52)

For any portfolio return y with the portfolio weight φ, it follows from (44) that

y = φ′(r̃ − r1n1,n2
) + r, E[y]− r = φ′(µ− r1n1,n2

) = φ′h, (53)

and then

Cov(y, rmv) = φ′Cov(r̃)φmv = (emv − r)
φ′h

h′Σ−1h
, (54)

V ar(rmv) = Cov(rmv, rmv) = (emv − r)
φ′
mvh

h′Σ−1h
=

(emv − r)2

h′Σ−1h
. (55)

It follows from (53), (54) and (55) that

Cov(y, rmv)

V ar(rmv)
(E[rmv]− r) = φ′h = E[y]− r. (56)

In particular, consider a portfolio with all wealth w invested in the risk-free asset and

a dollar-valued position ui on the ith futures contracts. Then the portfolio return

y = uirn1+i/w + r. Plugging y into (56) leads to (51).

Proof of Theorem 3.1. Suppose that there are J investors in the economy and wj

is the initial wealth of the jth investor. Suppose that each investor selects his/her

investment portfolio by solving the mean-variance problem (45) and the jth investor

has a target mean return of ej . Then, by (46), the position of the jth investor is

φj = (ej − r)
Σ−1h

h′Σ−1h
, where h = µ− r1n1,n2

, j = 1, 2, . . . , J.
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Let Ci be the market capitalization of asset i, i = 1, 2, . . . , n1, and CM =
∑n1

i=1Ci

be the total market capitalization. In market equilibrium, since the aggregate of all

positions on futures contracts and risk free asset is zero, it follows that

J∑

j=1

wj(ej − r)
Σ−1h

h′Σ−1h
= (C1, . . . , Cn1

, 0, . . . , 0)′, (57)

J∑

j=1

wj

(
1− (ej − r)

1′n1,n2
Σ−1h

h′Σ−1h

)
= 0, (58)

which leads to

Σ−1h

h′Σ−1h
=

(
g
0

)
, where g =

1∑J
j=1wj(ej − r)

(C1, . . . , Cn1
)′; and

J∑

j=1

wj = CM . (59)

Therefore, in equilibrium, each investor holds only the market portfolio and the risk-

free asset, and no investor trades the futures contracts. Furthermore, let eM =∑J
j=1wjej/CM . Then, (57) and (59) yield

(C1, . . . , Cn1
, 0, . . . , 0)′ = CM(eM − r)

Σ−1h

h′Σ−1h
,

which shows that the market portfolio is mean-variance efficient. Then, applying

Lemma B.1 with rmv being rM leads to the conclusion of Theorem 3.1.

B.2 The S-CAPM with Futures When There Is No Risk-free
Asset

Theorem B.1. (S-CAPM with Futures When There Is No Risk-free Asset) Suppose

that there is no risk free asset and that the returns of n = n1 + n2 risky assets

are generated by the model (6), of which the first n1 are returns of ordinary assets

and the others are defined in (9) which are “nominal returns” of futures contracts.

Suppose that n1 > 0. Let rM be the return of market portfolio . If each investor holds

mean-variance efficient portfolio, then in equilibrium, rM is mean-variance efficient.

Furthermore, if rM is not the minimum-variance return, then there exists another

mean-variance efficient return r0 such that Cov(rM , r0) = 0, and it holds that

(i) for the ordinary assets,

E[ri]− E[r0] =
Cov(ri, rM)

V ar(rM)
(E[rM ]− E[r0]), i = 1, 2, . . . , n1;
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(ii) for the futures contracts,

E[Fi,1]− Fi,0 =
Cov(Fi,1, rM)

V ar(rM)
(E[rM ]−E[r0]), i = 1, 2, . . . , n2.

Lemma B.2. Let rmv be any mean-variance efficient return other than the minimum-

variance return. Then, there exists another mean-variance efficient return r0 such that

Cov(rmv, r0) = 0. Furthermore,

(i) for any portfolio return y, it holds that

E[y]− E[r0] =
Cov(y, rmv)

V ar(rmv)
(E[rmv]−E[r0]); (60)

(ii) for the futures contracts, it holds that

E[Fi,1]− Fi,0 =
Cov(Fi,1, rmv)

V ar(rmv)
(E[rmv]−E[r0]), i = 1, 2, . . . , n2. (61)

Proof. Let emv := E[rmv]. By (48), the portfolio weight of rmv is given by φmv =

ψ + emvξ, where ψ and ξ is given in (49). For any portfolio return y with portfolio

weight φ, it holds that y = φ′r̃, φ′1n1,n2
= 1, and E[y] = φ′µ. Hence,

Cov(y, rmv) = φ′Cov(r̃)φmv = φ′Cov(r̃)(ψ + emvξ)

=
1

D
(Bφ′1n1,n2

− Aφ′µ+ (Fφ′µ− Aφ′1n1,n2
)emv)

=
1

D
(B − AE[y] + FemvE[y]− Aemv). (62)

In particular, letting y = rmv in the above equation leads to V ar(rmv) = 1
D
(B +

Fe2mv − 2Aemv). Since rmv is not the minimum-variance return, emv 6= A
F
. Let r0 be a

mean-variance efficient return with mean E[r0] =
B−Aemv

A−Femv
. It then follows from (62)

that Cov(r0, rmv) = 0. Since E[rmv]− E[r0] =
Fe2mv+B−2Aemv

Femv−A
, it follows that

Cov(y, rmv)

V ar(rmv)
(E[rmv]− E[r0])

=
1
D
(B − AE[y] + FemvE[y]− Aemv)

1
D
(B + Fe2mv − 2Aemv)

× Fe2mv +B − 2Aemv

Femv −A

=
(Femv − A)E[y] +B − Aemv

Femv − A
= E[y]− E[r0], (63)
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which completes the proof of (60). Letting y = r1 in (63), we have

E[r1]− E[r0] =
Cov(r1, rmv)

V ar(rmv)
(E[rmv]− E[r0]). (64)

Letting y = r1 + rn1+i, which corresponds to φ = (1, 0, . . . , 0, 0, . . . , 0, 1, . . . , 0, 0)′, in

(63), we have

E[r1] + E[rn1+i]− E[r0] =
Cov(r1 + rn1+i, rmv)

V ar(rmv)
(E[rmv]−E[r0]). (65)

Then, (61) follows from subtracting (64) from (65).

Proof of Theorem B.1. When there is no risk-free asset, the mean-variance problem

faced by an investor is given by (47), and the optimal portfolio weight is given by

(48). Suppose that there are J investors in the economy and let wj and ej be the

initial wealth and target mean return of the jth investor. Then, the position of the

jth investor is

φj = ψ + ejξ, j = 1, 2, . . . , J.

Let Ci be the market capitalization of asset i, i = 1, 2, . . . , n1, and CM =
∑n1

i=1Ci

be the total market capitalization. In market equilibrium, since the aggregate of all

positions of futures contracts is zero, it follows that

J∑

j=1

wjφ
j =

(
J∑

j=1

wj

)
ψ +

(
J∑

j=1

wjej

)
ξ = (C1, . . . , Cn1

, 0, . . . , 0)′. (66)

By (66),
∑J

j=1wj1
′
n1,n2

φj = 1′n1,n2
(C1, . . . , Cn1

, 0, . . . , 0)′ = CM , which in combination

with 1′n1,n2
φj = 1 leads to

∑J
j=1wj = CM . Let eM =

∑J
j=1wjej/CM . Then, it follows

from (66) that

ψ + eMξ =
1

CM

(C1, . . . , Cn1
, 0, . . . , 0)′,

which shows that the market portfolio is mean-variance efficient with a target mean

return eM . Then, the conclusion in Theorem B.1 follows by applying Lemma B.2

with the market portfolio return rM being rmv.
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C Proof of the S-APT Theorems

C.1 Proof of Theorem 4.1

Proof. Fix any δ > 0. Without loss of generality, assume that |ᾱ(n)
j | > δ, j =

1, . . . , N(n, δ). We rewrite (17) as

(In − ρ(n)W (n))(r̃(n) − r1n1,n2
) = ᾱ(n) +B(n)F̃ + ǫ̃(n).

Let ηj be the jth column of In. For 1 ≤ j ≤ N(n, δ), if ᾱ
(n)
j > δ, consider the

zero-cost portfolio with payoff η′j(In − ρ(n)W (n))(r̃(n) − r1n1,n2
) − η′jB

(n)F̃ , which by

definition is equal to ᾱ
(n)
j +ǫ

(n)
j , a random variable with mean ᾱ

(n)
j > δ and variance not

exceeding σ̄2; if ᾱ
(n)
j < −δ, one can construct another zero-cost portfolio with payoff

−ᾱ(n)
j −ǫ(n)j by taking opposite positions of the previous portfolio. In this way, N(n, δ)

such portfolios can be constructed. Since the components of ǫ̃(n) are uncorrelated with

each other, a portfolio with equal weights in these N(n, δ) portfolios has a payoff with

mean greater than δ and variance less than σ̄2/N(n, δ). If there exists a subsequence

{m1, m2, . . .} such that N(mk, δ) grows unboundedly as k goes to infinity, then the

corresponding sequence of portfolios will have payoffs with means greater than δ and

diminishing variances, constituting an asymptotic arbitrage opportunity. Therefore,

if no asymptotic arbitrage opportunities exist, then there exists a number Nδ not

depending on n such that N(n, δ) < Nδ for all n. Since δ can be arbitrarily small, we

conclude that ᾱ(n) ≈ 0.

C.2 Proof of Theorem 4.2

Proof. Since In − ρ(n)W (n) is invertible, the model (19) can be written as

r̃(n) = Q(n)α(n) +Q(n)B(n)f̃ +Q(n)ǫ̃(n), where Q(n) = (In − ρ(n)W (n))−1. (67)

For the sake of notational simplicity, the superscript (n) will be dropped when the

meaning is clear. Let

α̂ = Qα, B̂ = QB, ε̃ = Qǫ̃,Ω = QV Q′. (68)

Since Ω is positive definite, it can be factored as Ω = CC ′ where C is a nonsingular

matrix. Since C−1B̂ has K columns, for n > K + 1, C−1α̂ can be orthogonally

projected into the space spanned by C−11n1,n2
and the columns of C−1B̂:

C−1α̂ = C−11n1,n2
λ0 + C−1B̂λ+ u,

35



where u satisfies the orthogonality condition:

0 = B̂′(C ′)−1u, (69)

0 = 1′n1,n2
(C ′)−1u. (70)

Define the pricing errors v := α̂ − 1n1,n2
λ0 − B̂λ = Cu. Then, by (69) and (70), we

have

0 = B̂′(C ′)−1u = B̂′(C ′)−1C−1v = B̂′Ω−1v, (71)

0 = 1′n1,n2
(C ′)−1u = 1′n1,n2

(C ′)−1C−1v = 1′n1,n2
Ω−1v. (72)

Consider the portfolio h = Ω−1v(v′Ω−1v)−1. By (72), h is a zero-cost portfolio. By

(71), the payoff of the zero-cost portfolio is

h′r̃ = h′(Qα +QBf̃ +Qǫ̃) = h′(α̂ + B̂f̃ + ε̃) = h′α̂ + (v′Ω−1v)−1v′Ω−1B̂f̃ + h′ε̃

= h′α̂ + h′ε̃,

whose expectation and variance are

E[h′r̃] = h′α̂ = (v′Ω−1v)−1v′Ω−1(1n1,n2
λ0 + B̂λ+ v) = 1,

V ar(h′r̃) = h′Ωh = (v′Ω−1v)−2v′Ω−1ΩΩ−1v = (v′Ω−1v)−1

= [(α̂− 1n1,n2
λ0 − B̂λ)′(Q′)−1V −1(Q)−1(α̂− 1n1,n2

λ0 − B̂λ)]−1

= [(α− (In − ρW )1n1,n2
λ0 − Bλ)′V −1(α− (In − ρW )1n1,n2

λ0 −Bλ)]−1

= (U ′V −1U)−1.

Therefore, if (28) is violated, the variance of h′r̃ vanishes along some subsequence,

which constitutes an asymptotic arbitrage opportunity.

The proof for the case when there exists a risk-free return r is almost a copy of

the above. Let Q, α̂, B̂, ε̃, and Ω be defined in (67) and (68). Since Ω is positive

definite, it can be factored as Ω = CC ′ where C is a nonsingular matrix. Project

C−1(α̂− r1n1,n2
) onto the space spanned by the columns of C−1B̂:

C−1(α̂− r1n1,n2
) = C−1B̂λ+ u.

Define the pricing errors v := α̂ − r1n1,n2
− B̂λ = Cu. Then, by orthogonality, we

have

0 = B̂′(C ′)−1u = B̂′(C ′)−1C−1v = B̂′Ω−1v. (73)
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Consider the zero-cost portfolio which has dollar-valued positions h = (v′Ω−1v)−1Ω−1v

in the n1 risky assets and the n2 futures contracts and the position −h′1n1,n2
in the

risk-free asset. By (68) and (73), the payoff of the portfolio is

h′(1n1,n2
+ r̃)− h′1n1,n2

(1 + r) = h′(r̃ − r1n1,n2
) = h′(Qα +QBf̃ +Qǫ̃− r1n1,n2

)

= h′(α̂ + B̂f̃ + ε̃− r1n1,n2
) = h′(α̂− r1n1,n2

) + (v′Ω−1v)−1v′Ω−1B̂f̃ + h′ε̃

= h′(α̂− r1n1,n2
) + h′ε̃,

whose mean and variance are

E[h′(r̃ − r1n1,n2
)] = h′(α̂− r1n1,n2

) = (v′Ω−1v)−1v′Ω−1(B̂λ+ v) = 1,

V ar(h′(r̃ − r1n1,n2
)) = V ar(h′ε̃) = h′Ωh = (v′Ω−1v)−2v′Ω−1ΩΩ−1v

= (v′Ω−1v)−1 = [(α̂− r1n1,n2
− B̂λ)′(Q′)−1V −1(Q)−1(α̂− r1n1,n2

− B̂λ)]−1

= [(α− (In − ρW )1n1,n2
r − Bλ)′V −1(α− (In − ρW )1n1,n2

r −Bλ)]−1.

Therefore, if (28) (with λ
(n)
0 replaced by r) is violated, then the variance of h′(r̃ −

r1n1,n2
) vanishes along some subsequence, and an asymptotic arbitrage opportunity

exists. The proof is thus completed.

D Econometric Tools for Implementing the S-APT

Model (33)

D.1 Identifiability of Model Parameters

We need the following mild assumptions regarding g̃t for proving Proposition D.1 and

Proposition D.2:

Assumption D.1. We assume that g̃t satisfies the following mild technical condi-

tions:

(i) E[‖g̃t‖2] <∞, where ‖g̃t‖2 :=
∑K

i=1 g
2
it.

(ii) There exists an open set A ⊂ R
K such that P (g̃t ∈ A) > 0 and the distribution

of g̃t restricted on A has a strictly positive density.

Let θ0 = (ρ0, b
′
0, σ

2
0)

′ be the true model parameters that lie in the interior of the

parameter space Θ defined by:

Θ := [ζ, γ]× [−δb, δb]n×(K+1) × [δ−1
s , δs], (74)
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where ζ < 0 < γ, δb > 0, δs > 0 are constants and In−ρW is invertible for ρ ∈ [ζ, γ].17

We assume that the spatial weight matrix W satisfies the following standard

conditions:

Assumption D.2. W is non-negative; W 6= 0; and the diagonal elements of W are

all equal to zero.

Let l(ỹt | g̃t, θ) be defined in (37). We recall the following definition of identifia-

bility; see, e.g., Neway and McFadden (1994, Lemma 2.2).

Definition D.1. θ0 is identifiable if for any θ 6= θ0 and θ ∈ Θ it holds that P (l(ỹt |
g̃t, θ) 6= l(ỹt | g̃t, θ0)) > 0.

It turns out that the identifiability of θ0 depends largely on the property of the

spatial weight matrix W . In particular, we need the following definition for W :

Definition D.2. The spatial weight matrix W is regular if there exist no c1 > 0 and

c2 ≥ 0 such that

n∑

k=1

W 2
ki = c1, ∀i = 1, . . . , n, (75)

n∑

k=1

WkiWkj = c2(Wij +Wji), ∀1 ≤ i < j ≤ n. (76)

If W is not regular, then the pair of constants (c1, c2) that satisfy (75) and (76)

are unique. Indeed, by Assumption D.2, there exists i < j such that Wij +Wji > 0;

hence, it follows from (76) that c2 is uniquely determined by W . Apparently, c1 is

also unique. We have the following proposition regarding the identifiability of θ0.

Proposition D.1. Any θ0 is identifiable if W is regular. More generally, a particular

θ0 is identifiable if and only if W satisfies one of the following conditions:

(i) W is regular.

(ii) W is not regular and corresponds to the unique pair (c1, c2) in (75) and (76),

17See footnote 11 for more details on the specification of the interval [ζ, γ].
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and one of the following conditions holds:

ρ0 = −c2
c1
; (77)

ρ0 6= −c2
c1

and
1− c2ρ0
c2 + c1ρ0

= ρ0; (78)

ρ0 6= −c2
c1

and
1− c2ρ0
c2 + c1ρ0

6= ρ0 and θ∗ := (ρ∗, ᾱ∗, B∗, σ
2
∗) /∈ Θ, (79)

where ρ∗ := 1−c2ρ0
c2+c1ρ0

, σ2
∗ := σ2

0
c2
2
+c1

(c2+c1ρ0)2
, ᾱ∗ := σ2

∗

σ2

0

(In − ρ∗W
′)−1(In − ρ0W

′)ᾱ0,

and B∗ :=
σ2
∗

σ2

0

(In − ρ∗W
′)−1(In − ρ0W

′)B0.

Proof. θ0 is not identifiable if and only if there exists θ ∈ Θ and θ 6= θ0 such that

P (l(ỹt | g̃t; θ) = l(ỹt | g̃t; θ0)) = 1. (80)

It follows from the part (ii) of Assumption D.1 that P ((ỹ′t, g̃
′
t)

′ ∈ R
n × A) > 0 and

the joint distribution of (ỹ′t, g̃
′
t)

′ has a strictly positive density on R
n × A. Therefore,

(80) implies that

l(ỹ | g̃; θ) = l(ỹ | g̃; θ0), ∀(ỹ, g̃) ∈ R
n × A.

By (37), we have

l(ỹ | g̃; θ) = ỹ′C1(θ)ỹ + g̃′C2(θ)g̃ + g̃′C3(θ)ỹ + C4(θ)
′ỹ + C5(θ)

′g̃ + C6(θ), (81)

where

C1(θ) = − 1

2σ2
(In − ρW ′)(In − ρW )

C2(θ) = − 1

2σ2
B′B (82)

C3(θ) =
1

σ2
B′(In − ρW ) (83)

C4(θ) =
1

σ2
(In − ρW ′)ᾱ (84)

C5(θ) = − 1

σ2
B′ᾱ (85)

C6(θ) = −n
2
log(2πσ2) +

1

2
log(det((In − ρW ′)(In − ρW )))− 1

2σ2
ᾱ′ᾱ. (86)

By the equality of partial derivatives of l(ỹ | g̃, θ) and l(ỹ | g̃, θ0) on R
n × A, we

obtain that

Ci(θ) = Ci(θ0), i = 1, 2, . . . , 6. (87)
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Since In − ρW is invertible, (83) and (84) imply that

B′ = σ2C3(θ)(In − ρW )−1, ᾱ = σ2(In − ρW ′)−1C4(θ). (88)

Then, plugging (88) into (82), (85), and (86), we obtain

C2(θ) =
1

4
C3(θ)C1(θ)

−1C3(θ)
′,

C5(θ) =
1

2
C3(θ)C1(θ)

−1C4(θ),

C6(θ) = − log((2π)
n
2 det(−2C1(θ))

− 1

2 ) +
1

4
C4(θ)

′C1(θ)
−1C4(θ).

Hence, (87) is equivalent to

Ci(θ) = Ci(θ0), i = 1, 3, 4. (89)

Now we are ready to prove the proposition. We will first show the sufficiency.

(i) Suppose that W is regular. Suppose for the sake of contradiction that there

exists θ 6= θ0 such that (80) holds. Then, (89) holds. C1(θ) = C1(θ0) is equivalent to

that

(
1

σ2
0

− 1

σ2
)In − (

ρ0
σ2
0

− ρ

σ2
)(W ′ +W ) + (

ρ20
σ2
0

− ρ2

σ2
)W ′W = 0. (90)

Considering the (i, i)-element of the matrix on the left and noting Wii = 0, we obtain

1

σ2
0

− 1

σ2
+ (

ρ20
σ2
0

− ρ2

σ2
)

n∑

k=1

W 2
ki = 0, i = 1, 2, . . . , n. (91)

For i < j, considering the (i, j)-element of the matrices on both sides of (90), we

obtain

− (
ρ0
σ2
0

− ρ

σ2
)(Wij +Wji) + (

ρ20
σ2
0

− ρ2

σ2
)

n∑

k=1

WkiWkj = 0, ∀1 ≤ i < j ≤ n. (92)

Suppose that
ρ2
0

σ2

0

− ρ2

σ2 = 0, then (91) implies σ = σ0, which, together with (92) and

that there exists i 6= j such that Wij +Wji > 0 (by Assumption D.2), implies that

ρ = ρ0. Then, since In − ρW is invertible, C3(θ) = C3(θ0) and (83) imply B = B0;

C4(θ) = C4(θ0) and (84) imply that ᾱ = ᾱ0. Therefore, we have shown that θ = θ0,

but this contradicts to the assumption that θ 6= θ0. Hence,
ρ2
0

σ2

0

6= ρ2

σ2 . Suppose without
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generality that
ρ2
0

σ2

0

> ρ2

σ2 . Since (91) and that there exists i such that
∑n

k=1W
2
ki > 0

(by Assumption D.2), it follows that σ0 > σ. Hence, (91) and (92) imply that

n∑

k=1

W 2
ki = c1, i = 1, 2, . . . , n; and

n∑

k=1

WkiWkj = c2(Wij +Wji), ∀1 ≤ i < j ≤ n;

where

c1 = −
1
σ2

0

− 1
σ2

ρ2
0

σ2

0

− ρ2

σ2

> 0 and c2 =

ρ0
σ2

0

− ρ

σ2

ρ2
0

σ2

0

− ρ2

σ2

≥ 0, (93)

which contradicts to the assumption that W is regular.

(ii) Suppose that W is not regular and corresponds to c1 > 0 and c2 ≥ 0 in (75)

and (76). Suppose for the sake of contradiction that there exists θ 6= θ0 such that

(80) holds. Then, by the same argument in case (i) and by the uniqueness of (c1, c2),

σ 6= σ0 and (ρ, σ) must satisfy the equations in (93) and hence must be a solution to

the following two equations

c1(
ρ20
σ2
0

− ρ2

σ2
) = − 1

σ2
0

+
1

σ2
and c2(

ρ20
σ2
0

− ρ2

σ2
) =

ρ0
σ2
0

− ρ

σ2
.

It can be shown by simple algebra that the above two equations are equivalent to

(c2 + c1ρ0)ρ
2 − (c1ρ

2
0 + 1)ρ− (c2ρ

2
0 − ρ0) = 0 and σ2 =

1 + c1ρ
2

1 + c1ρ20
σ2
0. (94)

If c2 + c1ρ0 = 0, then the above system of equations has a unique solution (ρ0, σ0);

otherwise, the above equations have two solutions (ρ0, σ0) and ( 1−c2ρ0
c2+c1ρ0

, σ0

√
c2
2
+c1

(c2+c1ρ0)2
).

(ii.1) Suppose that (77) or (78) holds, then the two equations in (94) have a

unique solution (ρ0, σ0), and hence the two equations in (93) do not have a solution

(ρ, σ) 6= (ρ0, σ0), which leads to a contradiction.

(ii.2) Suppose that (79) holds, then ( 1−c2ρ0
c2+c1ρ0

, σ0

√
c2
2
+c1

(c2+c1ρ0)2
) is the unique solution

to (93); hence, ρ = 1−c2ρ0
c2+c1ρ0

= ρ∗ and σ = σ0

√
c2
2
+c1

(c2+c1ρ0)2
= σ∗. Since C3(θ) = C3(θ0)

and C4(θ) = C4(θ0), it follows that ᾱ = ᾱ∗ and B = B∗. Hence, θ = θ∗. However,

θ ∈ Θ but θ∗ /∈ Θ, which constitutes a contradiction.

Therefore, we have completed the proof of sufficiency. We will then show the

necessity. Suppose for the sake of contradiction that W does not satisfy any of

the conditions specified. Then, W is not regular, and it corresponds to a unique

pair of c1 > 0 and c2 ≥ 0, and ρ0 6= − c2
c1
, and 1−c2ρ0

c2+c1ρ0
6= ρ0, and θ∗ ∈ Θ. Then,

by the definition of θ∗, it holds that θ∗ 6= θ0 and Ci(θ∗) = Ci(θ0) for i = 1, 3,
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and 4, which further implies that Ci(θ∗) = Ci(θ0) for i = 1, 2, . . . , 6. Therefore,

l(ỹt | g̃t, θ∗) = l(ỹt | g̃t, θ0), but this contradicts to that θ0 is identifiable.

Proposition D.1 is equivalent to the following statement: A particular θ0 is not

identifiable if and only if W is not regular and it corresponds to the unique pair

(c1, c2) with c1 > 0 and c2 ≥ 0 in (75) and (76), and ρ0 6= − c2
c1
, and ρ0 6= 1−c2ρ0

c2+c1ρ0
, and

θ∗ ∈ Θ.

D.2 Asymptotic and Small Sample Properties of the MLE

We need the following proposition to show the asymptotic properties of the MLE.

Proposition D.2. Define

Q0(θ) := E[l(ỹt | g̃t, θ)], Q̂T (θ) :=
1

T

T∑

t=1

l(ỹt | g̃t, θ). (95)

Then, Q̂T (θ) is twice continuously differentiable on the interior of Θ. Define

s(ỹt, g̃t; θ) :=
∂l(ỹt | g̃t, θ)

∂θ
and H(ỹt, g̃t; θ) :=

∂2l(ỹt | g̃t, θ)
∂θ∂θ′

. (96)

Then, the following statements hold:

(i) Q0(θ) is uniquely maximized at θ0.

(ii) supθ∈Θ |Q̂T (θ)−Q0(θ)| p→ 0, as T → ∞.

(iii) Q0(θ) is continuous on Θ.

(iv) E[s(ỹt, g̃t; θ0)] = 0.

(v) H(ỹt, g̃t; θ) is equal to



− tr(W (In − ρW )−1W (In − ρW )−1)− 1

σ2 ỹ
′
tW

′Wỹt − 1
σ2 ỹ

′
tW

′Xt − 1
σ4 ỹ

′
tW

′ξ̃t
− 1

σ2X
′
tWỹt − 1

σ2X
′
tXt − 1

σ4X
′
t ξ̃t

− 1
σ4 ξ̃

′
tWỹt − 1

σ4 ξ̃
′
tXt

n
2σ4 − 1

σ6 ξ̃
′
tξ̃t


 ,

(97)

where ξ̃t := (In − ρW )ỹt −Xtb, and tr(·) denotes the matrix trace.

(vi) −E[H(ỹt, g̃t; θ0)] = E[s(ỹt, g̃t; θ0)s(ỹt, g̃t; θ0)
′].

(vii) E[H(ỹt, g̃t; θ0)] is invertible.
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(viii) There is a neighborhood N of θ0 such that E[supθ∈N ‖H(ỹt, g̃t; θ)‖] <∞.

Proof. Since det((In − ρW ′)(In − ρW )) is equal to a polynomial of ρ, it follows from

(81) that Q̂T (θ) is twice continuously differentiable on the interior of Θ. The proof

of part (i) to (vi) is as follows.

(i) Let f(ỹt | g̃t, θ) denote the conditional density. It follows from the model (33)

and part (i) of Assumption D.1 that E[‖ỹt‖2] <∞. Hence, (81) implies that for any

θ ∈ Θ, E[|l(ỹt | g̃t, θ)|] < ∞. For any θ 6= θ0, define g(ỹt, g̃t) :=
f(ỹt|g̃t,θ)
f(ỹt|g̃t,θ0)

. Since θ0 is

identifiable, it follows that P (g(ỹt, g̃t) 6= 1) > 0. Therefore, it follows from the strict

Jensen’s inequality that

E[l(ỹt | g̃t, θ0)− l(ỹt | g̃t, θ)] = E[− log g(ỹt, g̃t)] > − logE[g(ỹt, g̃t)]. (98)

Since

E[g(ỹt, g̃t) | g̃t] =
∫

f(ỹt | g̃t, θ)
f(ỹt | g̃t, θ0)

f(ỹt | g̃t, θ0)dỹt =
∫
f(ỹt | g̃t, θ)dỹt = 1,

it follows that E[g(ỹt, g̃t)] = 1, which in combination with (98) implies that Q0(θ) has

a unique maximizer θ0.

(ii) and (iii). We first show that

E[sup
θ∈Θ

|l(ỹt | g̃t; θ)|] <∞. (99)

By (81), l(ỹt | g̃t; θ) =
∑

i,j aij(θ)yityjt+
∑

i,j bij(θ)gitgjt+
∑

i,j cij(θ)yitgjt+
∑n

i=1 di(θ)yit

+
∑K

i=1 ei(θ)git + C6(θ), where aij(·), bij(·), cij(·), di(·), ei(·), and C6(·) are all con-

tinuous functions. Since Θ is compact, it follows that E[supθ∈Θ |aij(θ)yityjt|] =

E[|yityjt|] supθ∈Θ |aij(θ)| < ∞. Similarly, the expectation of the supremum (with

respect to θ) of the absolute value of each term in the summation for l(ỹt | g̃t; θ) is
finite; therefore, E[supθ∈Θ |l(ỹt | g̃t; θ)|] < ∞. Then, since l(ỹt | g̃t, θ) is continuous

at every θ ∈ Θ, it follows from Lemma 2.4 in Neway and McFadden (1994, p. 2129)

that (ii) and (iii) hold.

(iv) Define ξ̃t := ỹt − ρWỹt −Xtb. By Jacobi’s formula of matrix calculus,

d

dρ
det((In − ρW ′)(In − ρW )) = −2 det((In − ρW ′)(In − ρW )) tr((In − ρW )−1W ),

where tr(·) denotes the trace of a matrix. Hence,

∂l(ỹt | g̃t, θ)
∂ρ

= − tr((In − ρW )−1W ) +
1

σ2
ξ̃′tWỹt. (100)
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By simple algebra, we have

∂l(ỹt | g̃t, θ)
∂b

=
1

σ2
X ′

tξ̃t,
∂l(ỹt | g̃t, θ)

∂σ2
= − n

2σ2
+

1

2σ4
ξ̃′tξ̃t. (101)

Hence,

E

[
∂l(ỹt | g̃t, θ0)

∂ρ

]
= − tr((In − ρ0W )−1W ) +

1

σ2
0

E[ξ̃′tW (In − ρ0W )−1(ᾱ0 +B0g̃t + ξ̃t)]

= − tr((In − ρ0W )−1W ) +
1

σ2
0

E[ξ̃′tW (In − ρ0W )−1ξ̃t]

= − tr((In − ρ0W )−1W ) +
1

σ2
0

E[tr(W (In − ρ0W )−1ξ̃tξ̃
′
t)]

= − tr((In − ρ0W )−1W ) +
1

σ2
0

σ2
0 tr(W (In − ρ0W )−1) = 0.

Also, by (101),

E

[
∂l(ỹt | g̃t, θ0)

∂b

]
= E

[
1

σ2
0

X ′
tξ̃t

]
= 0, E

[
∂l(ỹt | g̃t, θ0)

∂σ2

]
= E

[
−n
2

1

σ2
0

+
1

2σ4
0

ξ̃′tξ̃t

]
= 0,

which completes the proof of part (iv).

(v) For brevity of notation, we use l(θ) to denote l(ỹt | g̃t, θ) in the sequel. By

(100) and (101), we have

∂2l(θ)

∂ρ2
= − tr(W (In − ρW )−1W (In − ρW )−1)− 1

σ2
ỹ′tW

′Wỹt, (102)

∂2l(θ)

∂ρ∂b
= − 1

σ2
X ′

tWỹt,
∂2l(θ)

∂ρ∂σ2
= − 1

σ4
ξ̃′tWỹt,

∂2l(θ)

∂b∂b′
= − 1

σ2
X ′

tXt, (103)

∂2l(θ)

∂σ2∂b
= − 1

σ4
X ′

tξ̃t,
∂2l(θ)

∂σ2∂σ2
=

n

2σ4
− 1

σ6
ξ̃′tξ̃t, (104)

which completes the proof.

(vi) Let

C := W (In − ρ0W )−1 (105)

and let Cij be the (i, j) element of C. Then by (102), we have

E[
∂2l(θ0)

∂ρ2
| g̃t]

= − tr(C2)− 1

σ2
0

E[((In − ρ0W )−1(Xtb0 + ǫ̃t))
′W ′W (In − ρ0W )−1(Xtb0 + ǫ̃t) | g̃t]

= − tr(C2)− 1

σ2
0

b′0X
′
tC

′CXtb0 −
1

σ2
0

E[ǫ̃′tC
′Cǫ̃t]

= − tr(C2)− 1

σ2
0

b′0X
′
tC

′CXtb0 − tr(C ′C). (106)
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By (100) and simple algebra,

E[

(
∂l(θ0)

∂ρ

)2

| g̃t] = E[(− tr(C) +
1

σ2
0

ǫ̃′tWỹt)
2 | g̃t]

= E[(− tr(C) +
1

σ2
0

ǫ̃′tC(Xtb0 + ǫ̃t))
2 | g̃t]

= E[tr(C)2 − 2 tr(C)

σ2
0

ǫ̃′tC(Xtb0 + ǫ̃t) | g̃t] + E[
1

σ4
0

ǫ̃′tC(Xtb0 + ǫ̃t)(Xtb0 + ǫ̃t)
′C ′ǫ̃t | g̃t]

= − tr(C)2 +
1

σ2
0

b′0X
′
tC

′CXtb0 +
2

σ4
0

b′0X
′
tC

′E[ǫ̃tǫ̃
′
tCǫ̃t] +

1

σ4
0

E[(ǫ̃′tCǫ̃t)
2]

= − tr(C)2 +
1

σ2
0

b′0X
′
tC

′CXtb0 +
1

σ4
0

E[(ǫ̃′tCǫ̃t)
2]

= − tr(C)2 +
1

σ2
0

b′0X
′
tC

′CXtb0 +
1

σ4
0

E[(

n∑

i=1

n∑

j=1

Cijǫitǫjt)
2]

= − (
n∑

i=1

Cii)
2 +

1

σ2
0

b′0X
′
tC

′CXtb0 +
1

σ4
0

E[(
n∑

i=1

Ciiǫ
2
it +

∑

i<j

(Cij + Cji)ǫitǫjt)
2]

= 2

n∑

i=1

C2
ii +

∑

i 6=j

C2
ij + 2

∑

i<j

CijCji +
1

σ2
0

b′0X
′
tC

′CXtb0

= − E[
∂2l(θ0)

∂ρ2
| g̃t]. (by (106))

By (103),

E[
∂2l(θ0)

∂ρ∂b
| g̃t] = − 1

σ2
0

E[X ′
tW (In − ρ0W )−1(Xtb0 + ǫ̃t) | g̃t] = − 1

σ2
0

X ′
tCXtb0. (107)

By (100) and (101),

E[
∂l(θ0)

∂ρ

∂l(θ0)

∂b
| g̃t] = −tr(C)

σ2
0

E[X ′
tǫ̃t | g̃t] +

1

σ4
0

E[ǫ̃′tWỹtX
′
tǫ̃t | g̃t]

=
1

σ4
0

E[ǫ̃′tC(Xtb0 + ǫ̃t)X
′
tǫ̃t | g̃t] =

1

σ4
0

E[X ′
tǫ̃tǫ̃

′
tCXtb0 | g̃t] +

1

σ4
0

E[ǫ̃′tCǫ̃tX
′
tǫ̃t | g̃t]

=
1

σ2
0

X ′
tCXtb0 = −E[∂

2l(θ0)

∂ρ∂b
| g̃t]. (by (107))

By (103),

E[
∂2l(θ0)

∂ρ∂σ2
| g̃t] = − 1

σ4
0

E[ǫ̃′tC(Xtb0 + ǫ̃t) | g̃t] = − 1

σ4
0

E[ǫ̃′tCǫ̃t] = − 1

σ4
0

tr(E[ǫ̃tǫ̃
′
tC])

=− 1

σ2
0

tr(C). (108)
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By (100) and (101),

E[
∂l(θ0)

∂ρ

∂l(θ0)

∂σ2
| g̃t]

=
n tr(C)

2σ2
0

− tr(C)

2σ4
0

E[ǫ̃′tǫ̃t]−
n

2σ4
0

E[ǫ̃′tWỹt | g̃t] +
1

2σ6
0

E[ǫ̃′tWỹtǫ̃
′
tǫ̃t | g̃t]

= − n

2σ4
0

E[ǫ̃′tCǫ̃t] +
1

2σ6
0

E[ǫ̃′tC(Xtb0 + ǫ̃t)ǫ̃
′
tǫ̃t | g̃t] = − n

2σ2
0

tr(C) +
1

2σ6
0

tr(CE[ǫ̃tǫ̃
′
tǫ̃tǫ̃

′
t])

= − n

2σ2
0

tr(C) +
1

2σ6
0

(n+ 2)σ4
0 tr(C) =

1

σ2
0

tr(C) = −E[∂
2l(θ0)

∂ρ∂σ2
| g̃t]. (by (108))

(109)

By (101),

E[
∂l(θ0)

∂b

∂l(θ0)

∂b′
| g̃t] =

1

σ4
0

E[X ′
t ǫ̃tǫ̃

′
tXt | g̃t] =

1

σ2
0

X ′
tXt = −E[∂

2l(θ0)

∂b∂b′
| g̃t],

where the last equality follows from (103). By (101),

E[
∂l(θ0)

∂σ2

∂l(θ0)

∂b
| g̃t] = − n

2σ4
0

E[X ′
tǫ̃t | g̃t] +

1

2σ6
0

E[ǫ̃′tǫ̃tX
′
tǫ̃t | g̃t]

= − n

2σ4
0

X ′
tE[ǫ̃t | g̃t] +

1

2σ6
0

E[X ′
tǫ̃tǫ̃

′
tǫ̃t | g̃t] =

1

2σ6
0

X ′
tE[ǫ̃tǫ̃

′
tǫ̃t]

= 0 = −E[∂
2l(θ0)

∂σ2∂b
| g̃t],

where the last equality follows from (104). At last, by (101),

E[

(
∂l(θ0)

∂σ2

)2

| g̃t] = E[

(
− n

2σ2
0

+
1

2σ4
0

ǫ̃′tǫ̃t

)2

| g̃t]

= E[
n2

4σ4
0

+
1

4σ8
0

ǫ̃′tǫ̃tǫ̃
′
tǫ̃t −

n

2σ6
0

ǫ̃′tǫ̃t] =
n

2σ4
0

= −E[ ∂
2l(θ0)

∂σ2∂σ2
| g̃t],

where the last equality follows from (104). Hence, we have shown that−E[H(ỹt, g̃t; θ0) |
g̃t] = E[s(ỹt, g̃t; θ0)s(ỹt, g̃t; θ0)

′ | g̃t], which completes the proof of (vi).

(vii) Suppose for the sake of contradiction that E[H(ỹt, g̃t; θ0)] is not invertible,

then there exists a = (a1, a
′
2, a3)

′ ∈ R
2+n(K+1), a 6= 0, such that

0 = a′E[H(ỹt, g̃t; θ0)]a = −E[(a′s(ỹt, g̃t; θ0))2],

where the last equality follows from (vi). This implies that a′s(ỹt, g̃t; θ0) = 0, a.s.

Denote a2 = (v1, u11, u12, . . . , u1K , . . . , vn, un1, un2, . . . , unK)
′, v = (v1, . . . , vn)

′, U =
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(uij). Let C be defined in (105). Then, we have

0 = a′s(ỹt, g̃t; θ0) =− a1 tr(C)−
na3
2σ2

0

+
a1
σ2
0

ǫ̃′tCᾱ +
a1
σ2
0

ǫ̃′tCB0g̃t +
a1
σ2
0

ǫ̃′tCǫ̃t

+
1

σ2
0

v′ǫ̃t +
1

σ2
0

ǫ̃′tUg̃t +
a3
2σ4

0

ǫ̃′tǫ̃t, a.s. (110)

It follows from (110) and part (ii) of Assumption D.1 that

0 =− a1 tr(C)−
na3
2σ2

0

+
a1
σ2
0

ǫ̃′Cᾱ0 +
a1
σ2
0

ǫ̃′CBg̃ +
a1
σ2
0

ǫ̃′Cǫ̃

+
1

σ2
0

v′ǫ̃+
1

σ2
0

ǫ̃′Ug̃ +
a3
2σ4

0

ǫ̃′ǫ̃, for any (ǫ̃′, g̃′)′ ∈ R
n × A. (111)

By taking partial derivatives with respect to (ǫ̃′, g̃′)′ on both sides of (111), we obtain

that

− a1 tr(C)−
na3
2σ2

0

= 0,
a1
σ2
0

Cᾱ0 +
1

σ2
0

v = 0,
a1
σ2
0

CB0 +
1

σ2
0

U = 0, (112)

a1
σ2
0

C +
a3
2σ4

0

In = 0. (113)

There are two cases:

Case 1: a1 = 0. Then, it follows from (112) that a3 = 0, v = 0, and U = 0, which

contradict to a 6= 0.

Case 2: a1 6= 0. Then, it follows from (113) that C = − a3
2σ2

0
a1
In, which in combina-

tion with (105) implies that W (1− a3ρ0
2σ2

0
a1
) = − a3

2σ2

0
a1
In. If a3 = 0, then W = 0, which

contradicts to Assumption D.2; if a3 6= 0, then 1− a3ρ0
2σ2

0
a1

6= 0, and W = −a3
2σ2

0
a1−a3ρ0

In,

which contradicts to that the diagonal elements of W are zero (Assumption D.2).

Hence, E[H(ỹt, g̃t; θ0)] is invertible.

(viii) Let N be any neighborhood of θ0 that lies in the interior of Θ. We have

E[sup
θ∈N

‖H(ỹt, g̃t; θ)‖] ≤ E[sup
θ∈N

|∂
2l(θ)

∂ρ2
|] + E[sup

θ∈N
‖∂

2l(θ)

∂ρ∂b
‖] + E[sup

θ∈N
|∂

2l(θ)

∂ρ∂σ2
|]

+ E[sup
θ∈N

‖∂
2l(θ)

∂b∂b′
‖] + E[sup

θ∈N
‖∂

2l(θ)

∂σ2∂b
‖] + E[sup

θ∈N
| ∂

2l(θ)

∂σ2∂σ2
‖].
(114)

We only need to show that each term on the right side of (114) is finite. Let C(ρ) :=

W (In − ρW )−1, then C(ρ) is continuous. By (102), (103), and (104), we have

E[sup
θ∈N

|∂
2l(θ)

∂ρ2
|] ≤ sup

θ∈N
| tr(C(ρ)2)|+ E[ỹ′tW

′Wỹt] sup
θ∈N

1

σ2
, (115)

47



E[sup
θ∈N

‖∂
2l(θ)

∂ρ∂b
‖] ≤ E[‖X ′

tWỹt‖] sup
θ∈N

1

σ2
, (116)

E[sup
θ∈N

|∂
2l(θ)

∂ρ∂σ2
|] = E[sup

θ∈N
| 1
σ4
ξ̃′tWỹt|]

≤ E[sup
θ∈N

| 1
σ4
ỹ′tWỹt|] + E[sup

θ∈N
| ρ
σ4
ỹ′tW

′Wỹt|] + E[sup
θ∈N

| 1
σ4
ᾱ′Wỹt|] + E[sup

θ∈N
| 1
σ4
g̃′tB

′Wỹt|]

≤ E[|ỹ′tWỹt|] sup
θ∈N

1

σ4
+ E[ỹ′tW

′Wỹt] sup
θ∈N

|ρ|
σ4

+ E[‖Wỹt‖] sup
θ∈N

1

σ4
‖ᾱ‖

+ E[‖g̃t‖2] sup
θ∈N

1

2σ4
‖B‖2 + E[‖Wỹt‖2] sup

θ∈N

1

2σ4
, (117)

E[sup
θ∈N

‖∂
2l(θ)

∂b∂b′
‖] ≤ E[‖X ′

tXt‖] sup
θ∈N

1

σ2
, (118)

E[sup
θ∈N

‖∂
2l(θ)

∂σ2∂b
‖] = E[sup

θ∈N
‖ 1

σ4
X ′

tξ̃t‖]

≤ E[sup
θ∈N

‖ 1

σ4
X ′

tỹt‖] + E[sup
θ∈N

‖ ρ
σ4
X ′

tWỹt‖] + E[sup
θ∈N

‖ 1

σ4
X ′

tᾱ‖] + E[sup
θ∈N

‖ 1

σ4
X ′

tBg̃t‖]

≤ E[‖X ′
tỹt‖] sup

θ∈N

1

σ4
+ E[‖X ′

tWỹt‖] sup
θ∈N

|ρ|
σ4

+ E[‖Xt‖] sup
θ∈N

‖ᾱ‖
σ4

+ E[‖X ′
t‖‖g̃t‖] sup

θ∈N

‖B‖
σ4

≤ E[‖X ′
tỹt‖] sup

θ∈N

1

σ4
+ E[‖X ′

tWỹt‖] sup
θ∈N

|ρ|
σ4

+ E[‖Xt‖] sup
θ∈N

‖ᾱ‖
σ4

+
1

2
(E[‖X ′

t‖2] + E[‖g̃t‖2]) sup
θ∈N

‖B‖
σ4

, (119)

E[sup
θ∈N

| ∂
2l(θ)

∂σ2∂σ2
|] = E[sup

θ∈N
| n
2σ4

− 1

σ6
ξ̃′tξ̃t|]

= E[sup
θ∈N

| n
2σ4

− 1

σ6
‖(In − ρW )ỹt − ᾱ−Bg̃t‖2|]

≤ E[sup
θ∈N

(
n

2σ4
+

16

σ6
(‖ỹt‖2 + ρ2‖Wỹt‖2 + ‖ᾱ‖2 + ‖B‖2‖g̃t‖2))]

≤ sup
θ∈N

(
n

2σ4
+

16‖ᾱ‖2
σ6

) + E[‖ỹt‖2] sup
θ∈N

16

σ6
+ E[‖Wỹt‖2] sup

θ∈N

16ρ2

σ6
+ E[‖g̃t‖2] sup

θ∈N

16‖B‖2
σ6

.

(120)

Since Θ is compact, all the supremums on the right-hand side of (115)-(120) are

finite. Furthermore, by part (i) of Assumption D.1, g̃t and hence ỹt have finite second

moments. Thus, all the expectations on the right-hand side of (115)-(120) are finite.

Therefore, each term on the right-hand side of (114) is finite, which completes the

proof.

Theorem D.1. (Asymptotic properties of the MLE) The MLE θ̂ := (ρ̂, b̂, σ̂2) has
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consistency and asymptotic normality:

(i) θ̂
p→ θ0, as T → ∞, (121)

(ii)
√
T (θ̂ − θ0)

d→ N(0,−E[H(ỹt, g̃t; θ0)]
−1), as T → ∞, (122)

(iii)
1

T

T∑

t=1

H(ỹt, g̃t; θ̂)
p→ E[H(ỹt, g̃t; θ0)], as T → ∞, (123)

where H(ỹt, g̃t; θ) is equal to (97).

Proof. By (i), (ii), and (iii) of Proposition D.2 and the compactness of Θ, it follows

from Theorem 2.1 in Neway and McFadden (1994) that (121) holds.

We will show the asymptotic normality (122) by applying Proposition 7.9 in

Hayashi (2000, p. 475). The consistency of θ̂ has been proved in above. The condition

(1) of Proposition 7.9 holds by the assumption that θ0 lies in the interior of Θ. The

conditions (2), (3), (4), and (5) of Proposition 7.9 follow from Proposition D.2 of this

paper. Hence, all the conditions of Proposition 7.9 hold and its conclusion implies

(122).

At last, we will show that (123) holds. Define Ĥ(θ) := 1
T

∑T
t=1H(ỹt, g̃t; θ). Let

N be a neighborhood such that (viii) in Proposition D.2 holds and let Θ0 ⊂ N be

a compact set that contains θ0. Then, it follows from (viii) in Proposition D.2 and

Lemma 2.4 in Neway and McFadden (1994, p. 2129) that H(θ) := E[H(ỹt, g̃t; θ)] is

continuous and

sup
θ∈Θ0

∥∥∥∥∥
1

T

T∑

t=1

∂2l(ỹt | g̃t, θ)
∂θ∂θ′

−H(θ)

∥∥∥∥∥
p→ 0, as T → ∞. (124)

Since θ̂
p→ θ0 and H(θ) is continuous, it follows that H(θ̂)

p→ H(θ0). For any ε > 0,

P (‖Ĥ(θ̂)−H(θ0)‖ > ε) ≤ P (‖Ĥ(θ̂)−H(θ̂)‖+ ‖H(θ̂)−H(θ0)‖ > ε)

≤ P (‖Ĥ(θ̂)−H(θ̂)‖ > ε

2
, θ̂ ∈ Θ0) + P (‖Ĥ(θ̂)−H(θ̂)‖ > ε

2
, θ̂ /∈ Θ0)

+ P (‖H(θ̂)−H(θ0)‖ >
ε

2
)

≤ P ( sup
θ∈Θ0

‖Ĥ(θ)−H(θ)‖ > ε

2
) + P (θ̂ /∈ Θ0) + P (‖H(θ̂)−H(θ0)‖ >

ε

2
)

→ 0, as T → ∞,

where the limit follows from (124), θ̂
p→ θ0, and H(θ̂)

p→ H(θ0).
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The asymptotic properties of the MLE of S-APT model (33) are obtained by

letting T → ∞ and keeping n fixed; in contrast, those of the SAR model are obtained

by letting n → ∞. As a result, the MLE of the S-APT model has a
√
T -rate of

convergence as long asW satisfies the identifiability condition specified in Proposition

D.1, but those of the SAR may not have the desired
√
n-rate of convergence when W

is not sparse enough; see Lee (2004).18

We investigate the finite-sample performance of the estimators using 2000 data

sets simulated from the model (33). In all the simulation studies, we use the locations

of twenty major cities in the United States as asset locations and W is defined by

the method of Delaunay triangularization, which is commonly adopted in spatial

econometrics literature.19 It is easy to check that the specified matrix W is regular;20

hence, by Proposition D.1, the true parameter is identifiable.

We specify ᾱ0 = 0 and σ2
0 = 0.5. An i.i.d. draw of 20 samples from N(0, 1)

is fixed as the elements of B0. {g̃t : t = 1, . . . , 131} is generated as one realization

of 131 i.i.d. random variables with distribution N(0.5, 0.5). For the fixed B0 and

{g̃t : t = 1, . . . , 131}, 2000 i.i.d. samples of {ǫ̃t : t = 1, . . . , 131} are then simulated

and {ỹt : t = 1, . . . , 131} are then computed from (33). Then, the MLE ρ̂ is obtained

from each of the simulated data sets.

Table 7 shows the mean and standard deviation of the MLE ρ̂ for the 2000 simu-

lated data sets for different values of ρ0 = 0.2, 0.4, 0.6, and 0.8, respectively. Figure

4 shows the histogram of 2000 estimates ρ̂ for different ρ0, which seems to indicate

that ρ̂ has an asymptotic normal distribution with mean ρ0.

D.3 Simulation Studies for Testing S-APT and Estimating
Adjusted R2

Using the likelihood ratio test statistic defined in (40), we test the zero-intercept

constraint of S-APT for 10000 simulated data sets at the confidence level of 95%.21

18More precisely, Lee (2004) shows that when each asset can be influenced by many neighbors,
various components of the estimators may have different rates of convergence.

19The twenty cities correspond to the twenty MSAs that have S&P/Case-Shiller home price indices;
their locations are specified by their geographic coordinates. See Lesage and Pace (2009, Chap. 4.11)
for the details of the method of Delaunay triangularization. We use the program fdelw2 in the Spatial
Statistics Toolbox (Pace (2003)) to compute W by this method.

20This is because the sum of square of different columns of W are not equal.
21The test data include the 8000 data sets used for Table 7 and additional 2000 data sets simulated

in the same way with ρ0 = 0.5.
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ρ0 0.2 0.4 0.6 0.8
mean of ρ̂ 0.199 0.399 0.599 0.799

(theoretical) asymptotic standard deviation of ρ̂ 0.028 0.025 0.019 0.011
empirical standard deviation of ρ̂ 0.031 0.029 0.020 0.013

Table 7: The mean and standard deviation of ρ̂. The asymptotic standard deviations
are estimated from the sample average of Hessian matrix (see Eq. (97) and (123)).

0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

250
ρ

0
=0.2

0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250 ρ
0
=0.4

0.52 0.56 0.6 0.64 0.68
0

50

100

150

200

250 ρ
0
=0.6

0.76 0.78 0.8 0.82 0.84
0

50

100

150

200

250
ρ

0
=0.8

Figure 4: Histogram of the MLE ρ̂ for 2000 data sets simulated from the model (33)
for different values of ρ0 with n = 20, K = 1, and T = 131.
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The size of the test is 5.91%, which is slightly higher than the theoretical value of 5%.

This may result from small sample bias, as discussed in Campbell, Lo, and MacKinlay

(1996, Chap. 5.4).

To show the effectiveness of the adjusted R2, two data sets are simulated according

to the same model specification as that in Table 7, except that ρ0 is fixed at 0.5, and

two values of σ2
0 (0.01 and 0.5) are used, respectively, for the two data sets, which

correspond to the two cases of high and low adjusted R2. In the simulation, the

factor realization {g̃t, t = 1, . . . , T} is first simulated and fixed. Then, for each chosen

value of σ2
0, the residuals {ǫ̃t, t = 1, . . . , T} are simulated and the realized returns

{ỹt, t = 1, . . . , T} are calculated according to the model (33). For each simulated

data set, we calculate the MLE estimate θ∗ under the constraint ᾱ0 = 0 and obtain

the fitted residual series {ǫ̂t = ỹt−ρ∗Wỹt−B∗g̃t : t = 1, . . . , T}, where ρ∗ and B∗ are

the MLE. The sample adjusted R2 of yi is computed and compared to the theoretical

adjusted R2 of yi. Table 8 shows that the sample adjusted R2 and the theoretical

adjusted R2 align well.

σ2
0 = 0.01

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
theoretical adjusted R2 0.7763 0.9818 0.0910 0.4064 0.9654 0.9730 0.9690 0.3210 0.8415 0.3110

sample adjusted R2 0.7748 0.9817 0.0848 0.4023 0.9652 0.9728 0.9688 0.3162 0.8404 0.3062
r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

theoretical adjusted R2 0.1833 0.9203 0.8952 0.9906 0.6367 0.6634 0.9672 0.0451 0.2236 0.9394
sample adjusted R2 0.1777 0.9197 0.8945 0.9905 0.6342 0.6611 0.9670 0.0385 0.2183 0.9390

σ2
0 = 0.5

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
theoretical adjusted R2 0.2328 0.4256 0.0007 0.1308 0.4691 0.3521 0.4452 0.0859 0.0567 0.0002

sample adjusted R2 0.2294 0.4230 -0.0037 0.1269 0.4667 0.3491 0.4427 0.0817 0.0525 -0.0043
r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

theoretical adjusted R2 0.1003 0.2366 0.1816 0.6552 0.1691 0.0235 0.4598 -0.0705 0.0390 0.1301
sample adjusted R2 0.0961 0.2331 0.1779 0.6536 0.1654 0.0191 0.4574 -0.0754 0.0347 0.1262

Table 8: Simulation study of the sample adjusted R2. We use the same model speci-
fication as that for Table 7, except that ρ0 is fixed at 0.5 and two values of σ2

0 (0.01
and 0.5) are used, respectively, for the two data sets. For each data set, the MLE of
parameters is estimated for the model (33) under the constraint ᾱ0 = 0 and then the
sample adjusted R2 for each element of r̃ is calculated and compared to its theoretical
counterpart. It appears that the sample adjusted R2 and its theoretical counterpart
align well.
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E Spatial Weight Matrices and S&P Credit Rat-

ings

The spatial weight matrix W that is used in Section 6 and calculated using driving

distance is



0.000 0.080 0.082 0.116 0.210 0.083 0.069 0.127 0.125 0.049 0.059
0.041 0.000 0.036 0.236 0.095 0.026 0.075 0.050 0.359 0.036 0.046
0.132 0.113 0.000 0.147 0.142 0.067 0.077 0.080 0.121 0.057 0.064
0.074 0.295 0.058 0.000 0.087 0.031 0.086 0.064 0.182 0.052 0.072
0.176 0.157 0.074 0.114 0.000 0.051 0.070 0.079 0.183 0.043 0.052
0.146 0.090 0.073 0.086 0.107 0.000 0.066 0.198 0.088 0.067 0.078
0.084 0.179 0.059 0.164 0.102 0.046 0.000 0.074 0.154 0.063 0.075
0.148 0.114 0.058 0.117 0.110 0.131 0.071 0.000 0.100 0.066 0.085
0.069 0.388 0.041 0.157 0.120 0.027 0.070 0.047 0.000 0.035 0.045
0.068 0.097 0.048 0.113 0.071 0.052 0.071 0.078 0.088 0.000 0.315
0.069 0.107 0.046 0.132 0.072 0.052 0.073 0.085 0.095 0.268 0.000




The spatial weight matrix W that is used in Section 6 and calculated using geo-

graphic distance is



0.000 0.116 0.074 0.103 0.203 0.083 0.063 0.139 0.113 0.046 0.059
0.065 0.000 0.036 0.226 0.092 0.029 0.077 0.051 0.344 0.035 0.045
0.129 0.113 0.000 0.097 0.168 0.075 0.092 0.084 0.124 0.055 0.063
0.074 0.291 0.040 0.000 0.087 0.037 0.098 0.069 0.178 0.053 0.073
0.184 0.149 0.087 0.110 0.000 0.054 0.073 0.082 0.168 0.042 0.052
0.149 0.091 0.077 0.091 0.106 0.000 0.067 0.182 0.088 0.067 0.081
0.075 0.163 0.062 0.162 0.096 0.044 0.000 0.067 0.167 0.077 0.087
0.166 0.108 0.058 0.115 0.107 0.121 0.067 0.000 0.098 0.068 0.093
0.070 0.376 0.043 0.152 0.113 0.030 0.086 0.050 0.000 0.035 0.044
0.067 0.090 0.046 0.107 0.067 0.054 0.095 0.083 0.083 0.000 0.307
0.072 0.099 0.044 0.124 0.070 0.055 0.090 0.096 0.088 0.260 0.000




.

The spatial weight matrix for 10 CSI indices futures that is used in Section 7 and

calculated using driving distance is



0.000 0.468 0.152 0.057 0.022 0.021 0.029 0.019 0.211 0.021
0.509 0.000 0.125 0.058 0.023 0.024 0.030 0.021 0.188 0.022
0.293 0.221 0.000 0.088 0.039 0.037 0.052 0.036 0.196 0.038
0.137 0.129 0.110 0.000 0.083 0.067 0.139 0.071 0.187 0.078
0.034 0.034 0.032 0.054 0.000 0.088 0.129 0.207 0.037 0.385
0.072 0.074 0.064 0.095 0.189 0.000 0.143 0.133 0.077 0.154
0.067 0.065 0.063 0.134 0.192 0.099 0.000 0.137 0.077 0.167
0.032 0.031 0.030 0.048 0.215 0.064 0.096 0.000 0.035 0.449
0.307 0.252 0.148 0.113 0.034 0.033 0.048 0.031 0.000 0.033
0.027 0.027 0.026 0.043 0.325 0.060 0.095 0.366 0.030 0.000




.

The spatial weight matrix W for 10 CSI indices futures that is used in Section 7

and calculated using geographic distance is



0.000 0.456 0.147 0.061 0.022 0.022 0.029 0.020 0.222 0.021
0.488 0.000 0.119 0.065 0.024 0.024 0.031 0.021 0.205 0.022
0.272 0.206 0.000 0.099 0.039 0.036 0.051 0.035 0.226 0.037
0.140 0.139 0.122 0.000 0.078 0.067 0.126 0.066 0.191 0.071
0.034 0.035 0.032 0.053 0.000 0.086 0.133 0.201 0.038 0.388
0.072 0.074 0.065 0.098 0.183 0.000 0.142 0.134 0.077 0.155
0.067 0.068 0.063 0.128 0.197 0.099 0.000 0.138 0.077 0.164
0.032 0.033 0.031 0.048 0.213 0.067 0.099 0.000 0.035 0.442
0.298 0.258 0.163 0.113 0.033 0.031 0.045 0.029 0.000 0.031
0.028 0.028 0.026 0.042 0.332 0.062 0.095 0.357 0.030 0.000




.

The spatial weight matrix W for 9 CSI indices futures (excluding New York) that

is used in Section 7 and calculated using driving distance is
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0.000 0.478 0.156 0.058 0.022 0.022 0.029 0.020 0.216
0.520 0.000 0.128 0.060 0.024 0.024 0.031 0.021 0.193
0.305 0.230 0.000 0.091 0.041 0.038 0.054 0.037 0.204
0.148 0.140 0.119 0.000 0.090 0.073 0.150 0.077 0.203
0.055 0.055 0.052 0.088 0.000 0.142 0.211 0.337 0.060
0.085 0.087 0.076 0.112 0.223 0.000 0.169 0.157 0.092
0.080 0.078 0.076 0.161 0.230 0.118 0.000 0.165 0.093
0.057 0.056 0.055 0.087 0.390 0.116 0.175 0.000 0.063
0.318 0.261 0.153 0.117 0.035 0.034 0.050 0.032 0.000




.

The spatial weight matrix W for 9 CSI indices futures (excluding New York) that

is used in Section 7 and calculated using geographic distance is



0.000 0.466 0.150 0.063 0.023 0.022 0.030 0.020 0.227
0.499 0.000 0.121 0.067 0.024 0.025 0.032 0.022 0.210
0.282 0.214 0.000 0.103 0.040 0.038 0.053 0.036 0.234
0.150 0.150 0.131 0.000 0.084 0.072 0.136 0.071 0.206
0.056 0.057 0.053 0.087 0.000 0.140 0.217 0.328 0.062
0.085 0.088 0.077 0.116 0.216 0.000 0.168 0.159 0.091
0.080 0.081 0.075 0.153 0.236 0.118 0.000 0.165 0.092
0.058 0.058 0.056 0.085 0.382 0.120 0.177 0.000 0.063
0.308 0.266 0.169 0.116 0.034 0.032 0.046 0.030 0.000




.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Austria AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA+ AA+
Belgium AA+ AA+ AA+ AA+ AA+ AA+ AA+ AA+ AA+ AA+ AA AA AA
Finland AA+ AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA
France AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA+ AA+ AA+

Germany AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA
Greece A A A+ A+ A A A A A- BBB+/BB+ BB/B/CCC/CC SD/CCC B-
Ireland AAA AAA AAA AAA AAA AAA AAA AAA AAA AA+/AA AA-/A A-/BBB+ BBB+

Italy AA AA AA AA AA- AA- A+ A+ A+ A BBB+ BBB+
Netherlands AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA+

Portugal AA AA AA AA AA- AA- AA- AA- A+ A- BBB- BB BB
Spain AA+ AA+ AA+ AA+ AAA AAA AAA AAA AA+ AA AA- A/BBB+/BBB- BBB-

Table 9: The S&P credit ratings of the 11 Eurozone countries during 2001–2013.

2013 2012 2011 2010 2009 2008 2007 2006
Florida AAA AAA AAA AAA AAA AAA AAA AAA
Nevada AA AA AA AA+ AA+ AA+ AA+ AA+
Massachusetts AA+ AA+ AA AA AA AA AA AA
New York AA AA AA AA AA AA AA AA
Colorado AA AA AA AA AA AA AA AA-
Illinois A- A+ A+ A+ A+ A A A
California A A- A- A- A A+ A+ A+

Table 10: The S&P credit ratings of the states where the ten MSAs are located during
2006–2013.
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