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The quality of today’s main-stream operating systems is
not sufficient for safety-critical and security-critical ap-
plications. In this paper we discuss several possible ap-
proaches to build an operating system that is safer and
more secure. We especially focus on the approach taken
in the VFiasco project on the verification of the Fiasco
microkernel operating system. In this project, we use
the general-purpose theorem prover PVS to mechani-
cally verify the C++ sources of Fiasco.

1 Introduction

The VFiasco project [8, 14] aims at the formal verifi-
cation of a small operating-system (OS) kernel, the L4-
compatible Fiasco microkernel [6]. In this paper, we
explain the reasons that have led us to tackle verifying
Fiasco’s original C++ source code instead of reimple-
menting Fiasco in a “safe” programming language such
as Haskell or OCaml.

Typical desktop and hand-held computers are used for
many functions, often in parallel. These applications
frequently include security-sensitive ones, such as on-
line banking, virtual private networks, or digital rights
management. This type of computer use imposes two,
often conflicting requirements: On the one hand, the
mixed-use scenario usually necessitates the use of a full-
featured, standard, general-purpose OS. On the other
hand, security-sensitive applications must rely on, or
trust, their operating environment to protect the appli-
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cation’s security guarantees.
Standard OSes have become so large that a complete

security audit or the formal verification of security prop-
erties is absolutely illusory. This fact is illustrated by a
steady stream of security-leak disclosures for all major
operating systems. It seems that, for the time being, we
just have to live with the bugs of standard OSes.

In response, many researchers have tried to reduce the
size of a system’s trusted computing base by running ker-
nels in untrusted mode in a secure compartment on top of
a small security kernel, such as a microkernel or a hyper-
visor; security-sensitive services run alongside the OS in
isolated compartments of their own. This architecture is
widely referred to askernelized standard OSor kernel-
ized system. In this architecture, the standard OS and
applications have been removed from the secure applica-
tions’ trusted computing base. The root of trust is placed
into the small security kernel, which confines unsafe sys-
tem components in hardware-protected compartments—
usually address spaces.

Several recent research projects have shown that con-
temporary security kernels impose low performance
overhead, making them practical. Their source code is
several orders of magnitude smaller than that of typical
standard-OS kernels, which puts them into the realm of
today’s formal-verification technology. For example, the
Fiasco microkernel has less than 15,000 lines of source
code.

The goal of formally verifying a small OS kernel
raises the question of how the choice of the kernel’s im-
plementation language can facilitate the verification. In
discussing this question we focus on a kernel that runs
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on standard hardware and supports untrusted binary user
programs running in separate confined address spaces
(i.e., we consider mainstream PCs and hand-helds but
exclude, for instance, smart cards).

Modern programming languages with strong type-
safety properties can potentially reduce the burden of
manually proving a program’s safety. However, in this
paper we argue that using a “safe” programming lan-
guage may have quantitative but no qualitative advan-
tages for kernel verification. In other words, with a
strong type system one might have fewer proof obliga-
tions, but one still has proof obligations of all kinds. In
particular, even with the strongest type system there re-
main type-correctness proof goals that one naively would
assume to be subsumed by the type system. Moreover,
the proof goals that are indeed subsumed by the type
system are simple and can be discharged automatically
(when using the right technology).

In the next section we start with the discussion of
semi-formal methods to improve the code quality. We
then discuss how three different kinds of formal meth-
ods can contribute to a secure operating system. Sec-
tion 3 discusses the approach that we take in the VFiasco
project.

2 The need for formal methods

Recently several groups worked on methods to improve
the quality of the kernel source code or to counterbal-
ance known weaknesses of the programming language
C, which is used for most kernels. We mention only
two examples here: With lint-like static checks one can
find violations of programming patterns like “validate
pointers from user land before dereferencing them” in
the source code [4]. To complicate attacks, one can en-
crypt every pointer in memory such that an attacker can-
not walk through and modify kernel data structures in
memory [2].

We refer to these and similar methods assemi-
formal. Although such methods make attacks signifi-
cantly harder, they cannot be used to guarantee that suc-
cessful attacks are impossible. Semi-formal methods are
a relatively inexpensive means to improve the average
level of security. However, they are not sufficient to avert
a professional attack.

In contrast,formal methods are based on some math-
ematical theory that can be used to prove certain proper-
ties. With a strong type system one can, for instance, use
a different type for user-land pointers and thus guarantee

that they are never dereferenced without the necessary
checks.

In the following we elaborate on different formal
methods and their strengths and weaknesses when ap-
plied to operating systems. We distinguish three differ-
ent kinds of formal methods:

• Use a strongly-typed programming language for
kernel programming.

• Run the kernel in an environment that enforces se-
curity, such as a virtual machine.

• Apply verification and model-checking techniques
to the kernel code.

We discuss each of these points in the following subsec-
tions.

2.1 “Modern languages” with strong
type systems

Several projects develop operating systems in strongly
typed functional languages like Haskell or BitC, see for
instance [5, 11]. The strong type system makes many
typical C-programming errors impossible. Moreover, if
the language features abstract types, it can enforce the
use of certain interfaces and thereby provide guarantees
that certain tests and actions are always applied.

However, there are two problems: First, often some
parts of the system are implemented in C or assembly. In
House [5], for instance, low-level primitives for alloca-
tion and system calls are not written in Haskell. It is clear
that in such a case the foreign code might break the type
system. Shapiro and colleagues [11] use the specifically
designed language BitC to avoid this problem. In BitC
one can manipulate address spaces (by writing to the cor-
responding hardware data structures). However, and this
is the second problem, writing a wrong value into a page
directory might distort the kernel memory and make all
guarantees of the type system meaningless.

On a closer lock it appears that operations like
address-space manipulation have a dependent type.1

Type checking dependent types is undecidable in gen-
eral. The validity of an address-space manipulation de-
pends on the history of the system, so it is clearly unde-
cidable. We conclude that, even in case the whole system
is written in a strongly-typed language, the guarantees of

1The typeof some argument depends on thevalueof some other ar-
gument. For operating systems the range of valid values sometimes
depends on the state of the whole memory.
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the type system might not be valid because of a wrong
address-space manipulation.

In this light, the use of a strong type system appears
to be a quantitative rather than a qualitative measure. A
strong type system can probably reduce the number of
programming errors significantly, however in the pres-
ence of address-space manipulations itcannotguarantee
the type correctness of the program. Thus, even with a
strong type system, proof obligations about correct typ-
ing remain.

2.2 Safe environments

One can think of an operating system written in Java and
executed by a virtual machine such that important se-
curity properties are expressed with Java’s type system.
This way the virtual machine will detect security viola-
tions with its byte-code type checking. However, the se-
curity of the whole system depends on the correctness of
the virtual machine. Further, to host an operating system
one needs operating system functionality itself in the vir-
tual machine. Therefore, virtual machines do not solve
the original problem.

With proof-carrying code [10] one can download user-
level code into the kernel in a secure way. However, to
employ proof-carrying code one has to have a correctly-
working minimal kernel with a proof checker in the first
place.

2.3 Verification

Software verification establishes properties of a mathe-
matical theory that has been extracted from the software.
One can distinguish model checking from verification
with denotational, operational or axiomatic semantics.
With model checking one explores the finite state space
of an abstract model. Subtle errors in parts of the system
that have been abstracted away can potentially invalidate
the model-checking results.

In an experiment we applied the model checker Spin to
Fiasco’s code for inter-process communication (IPC) [3].
Although the model contained only a very rudimentary
version of Fiasco’s IPC (only two threads, no timeouts,
no message buffer), the model checker used almost 2 GB
main memory and more than 15 GB on the hard disk.
We doubt that one can model check the full IPC path,
let alone a realistic number of threads with today’s hard-
ware.

Up to this point we saw that all discussed techniques
can only reduce the number of programming errors and

the remaining security risk. None of these techniques
can provide guarantees. It remains to look at one ap-
proach we have omitted so far: Software verification on
the basis of a semantics of the full program. Tradition-
ally, software verification was only applied to theoreti-
cally clean, artificial programming languages. Only re-
cently formalisms, logics and tools have been developed
to deal, for example, with Java [9, 1]. It has been gen-
eral belief that it is impossible to verify programs written
in C or C++ that exploit features like goto jumps, type
casts andsetjmp /longjmp . In the following section
we show that a denotational semantics for a subset of
C++ that includes these features is surprisingly simple.

3 The VFiasco approach:
Verification of unmodified C++
source code

In the preceding section we argued that in order to give
guarantees about the functionality of an operating sys-
tem one finally has to use verification. In the VFiasco
project we decided to attempt the verification of the C++
source code of the Fiasco microkernel. The verification
of C++ certainly incurs higher verification costs, but has
the advantage that we can obtain results for a system that
can be used in practice.

Here we sketch how we model two major features
of C++: the various jump statements likebreak ,
longjmp , goto ; and the type cast that can especially
be used to turn integers into pointers. From a theoretical
point of view one might ask why one should treat these
features at all. The point is that in the kernel oneneeds
to cast integers into pointers (for the memory manage-
ment), oneneedsto longjmp (to abort an infinite loop
of page faults), and oneneedsgoto (for efficiency and
a clearer program structure).

To model the various jumping statements we follow
Jacobs’ approach in the semantics of Java [9]: We use
a complex state that is a disjoint union likeok(mem) ]
break(mem)] goto(mem × label)] fail . . ., whereok ,
break , goto andfail are all injections. This way the com-
plex state captures some kind of execution mode. Apart
from the valuefail , which models the crash of the pro-
gram, a complex state contains always the current mem-
ory mem. In the following we let the termstate trans-
formerdenote a function that maps a complex state to a
complex state. The state transformers form our semantic
domain: The semantics of every C++ statement is cap-
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tured in a state transformer.
State transformers pay attention to the execution mode

of their starting state. If the execution mode isok the
next statement is executed as expected and the mem-
ory might change. For the other modes the following
statements are skipped, except for the case that the cur-
rent complex state is of the formgoto(m, l) and the next
statement is labelled withl. In this case the label trans-
forms the complex state intook(m) and normal execu-
tion continues. Similarly to labels, the semantics of loops
transforms an end statebreak(m) into ok(m).

The approach outlined in the preceding paragraph is
remarkably simple. It requires neither complete par-
tial orderings nor continuous functions nor continua-
tions. Nevertheless it can handle while loops and all
kinds of jump statements, even jumps into and out of
nested blocks, such as loops orthen andelse clauses.
Recently we used this approach to verify Duff’s de-
vice, a particularly strange piece of code that uses a
switch statement to branch into the middle of awhile
loop [13]. This case study showed that, after setting up
the right theorem-proving technology (in this case a set
of rewrite-lemmas), all those goals that would be sub-
sumed by a stronger type system, were proved automati-
cally. This shows that with the right technology, using a
strong type system bears no significant advantage.

As a last point we outline how we model type casts,
especially those that cast integers into pointers. There
are a few points to note: First, type casts can happen im-
plicitly, for instance, if one writes integers to the memory
and reads floats back from the same address. In this case
the read operation can cause an error because the bit pat-
tern might not represent a valid floating point number.
Second, the cast alone can never cause any errors. An er-
ror can only occur if the resulting pointer is used to read
data from memory. Third, in general almost all write
operations are harmless.2 One can (possibly partially)
overwrite data in the memory but an error can only occur
if one attempts to read the original data later.

We exploit the great level of under-specification that
is present in the C++ standard to model explicit and im-
plicit type casts [7]. The semantic functions that read
from and write to memory are axiomatically specified in
a way that leaves many aspects of their behavior open.
For instance, we don’t specify that integers are stored as
two’s complement. This way one can derive that reading
an integer after writing one on the same address yields

2The exception are writes that change the address space such that the
object code is moved around in virtual memory.

the original integer. However, for the case of reading
a float on a location where integers have been written,
one can derive nothing, not even that the system does
not crash. Valid type casts can easily be introduced via
additional axioms.

Within our approach, to prove that a program is type
correct it is sufficient to prove that it does not crash. Note
that our approach does correctly handle the over-stressed
example of erroneous address-space manipulations. Our
approach can handle all data types, as well as compi-
lation environments that guarantee more properties than
the C++ standard.

3.1 Dealing with proof obligations for
type safety

In this section we shed some more light on how we for-
malize type correctness and how we deal with it during
the verification. For the purpose of this discussion it is
enough to consider a memory model likeN → Values,
which is used in the context of one of our lectures [12].
To work with this memory model each variable gets a
unique index fromN that determines its slot. The type
Values is a disjoint union of all things a variable can
hold (i.e., booleans, integers, pointers, . . . ). This mem-
ory model is considerably simpler than what we need for
the verification of Fiasco.3 Note however, that it is dy-
namically typed, that is, the contents of a variable can
change from a boolean to an integer during runtime.

The semantics of variables is captured by functions
that read from and write to the memory model. These
functions are typed, for instance for integer variables
there are two functionswrite int and read int . The
function write int writes an integer to a given mem-
ory slot, overwriting (and possibly changing the type) of
whatever was there before. The functionread int tests
if a given memory slot contains an integer and returns it.
If the slot contains no integerread int returns the distin-
guished valuefail, which signals a program crash.

The approach we just described has the following ef-
fect: For every point where a variable is read, we get a
proof obligation that requires to show that the accessed
slot contains a value of the right type. If one manages to
proof that the program does not crash (i.e., that it ter-
minates with something different fromfail ), then one
has established that the program is type correct. It is
clear that even small programs generate so many type-

3For the verification of C or C++ programs one needs an untyped,
byte-wise organized memory [7].
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correctness proof obligations that one must handle them
automatically, otherwise even the verification of toy pro-
grams would be infeasible.

We use the following approach to handle type-
correctness proof obligations.

• Define a type-correctness invariant property that de-
scribes the expected type of every relevant memory
slot

• Establish simplification rules (called rewrite lem-
mas in PVS) that automatically discharge the
type-correctness proof obligations ofread int and
friends, provided the current memory state fulfils
the invariant property

• Establish another set of simplification rules that fa-
cilitate the automatic proof that the property from
the first point is indeed an invariant for the program
under consideration

Our solution is clearly PVS centric, because it is built
onsets of rewrite lemmas, which provide automatic sim-
plification in PVS. However, we believe that our solution
can be adopted without problems to other interactive the-
orem provers that provide automation (for instance to Is-
abelle and its simplifier). Let us discuss our solution in a
bit more detail in the following.

Type correctness invariant. The invariant itself is
very simple: It is a predicate on the memory that asserts
that certain slots contain values of certain types. Our
memory model permits arrays that overlap (with other
arrays or with other variables). Therefore the invariant
additionally asserts that relevant arrays do not overlap
with other arrays or other variables.4

To facilitate code reuse and to enable automatic in-
variant proofs, the invariant predicate is generated inside
PVS from an association list that describes the memory
slots (i.e., inside the higher-order logic of PVS we have
defined a function that maps an association lists to an
invariant predicate). Our current code base can handle
plain variables and arrays. We are currently working on
extensions for records and dynamic structures like linked
lists.

4The invariant also states something about the size of arrays in order
to treat index-out-of-bounds errors. However, this is not relevant
here.

Simplification rules for memory accesses. In
principle one can directly use the definition of the type-
correctness invariant to discharge the type-correctness
proof obligations of functions likeread int . However,
this does not work automatically in PVS because the in-
variant is defined with the help of universal quantifica-
tion and PVS notoriously picks the wrong values during
automatic instantiation. Therefore we designed a set of
rewrite lemmas that follow trivially from the invariant.

Described in English, the rewrite lemmas look either
like “The invariant implies that the slot of variablev has
typet” or “ The invariant implies that the slot for thei-th
element of arraya is different from the slot of thej-th
element of arrayb.” The latter form contains a negated
equation. Because of a technical limitation of the rewrite
engine of PVS one also needs the form “The invariant
implies . . . thej-th element of arrayb is different . . . the
i-th element of arraya,” in which the orientation of the
equation is changed.

The number of rewrite lemmas needed grows quadrat-
ically with the number of variables. We do not con-
sider this a serious problem because the lemmas and their
proofs are highly regular. They can be generated together
with the semantics of the program.

With the help of these rewrite lemmas, PVS discharges
type-correctness proof obligations automatically. For
sequential programs the absence of type errors can be
proved automatically: One only has to issue the proof
commands to load the rewrite lemmas and to start the
simplification process. Type correctness for unbounded
while loops requires an invariant for the while loop.

Automatic invariant proofs. The preceding two
points about the automation of type-correctness proofs
are absolutely essential. We did not tackle any proof
without a suitable invariant or suitable rewrite lemmas.
To complete the type-correctness proof, one has to show
that the predicate from step one is indeed an invariant for
the program at consideration. That is, the predicate must
be maintained by every state transformer in the semantics
of the program. Note that for such an invariant proof the
important points are the write operations: Only a write
operation can change the type of a slot in the memory
and thereby break the invariant.

For our first example verification, a bubble sort algo-
rithm, a direct interactive proof of the invariant property
was relatively simple. However, during the verification
of Duff’s device, it became clear, that for larger sam-
ple programs, the invariant proof would became increas-
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ingly costly. We therefore decided to set up another set
of rewrite lemmas. For for every possible state trans-
former we designed one lemma that describes how this
state transformer maintains a type-correctness invariant.
With these rewrite lemmas PVS was able to automati-
cally proof the invariance property.

Our rewrite system for type-correctness invariants
works on functions of the semantic domain.5 Naturally
the rewrite system can only handle a small subset of all
those functions in the semantic domain that describe type
correct programs. However, the computation of the se-
mantics is a highly regular process. Therefore, it is no
problem to make the rewrite system general enough such
that it can handle all program (fragments) that could also
be statically type-checked.

4 Conclusion

In this note we show that to guarantee properties of an
operating-system kernel one has to use verification tech-
nology. Programming the kernel in a language with a
strong type system (in contrast to C or C++) has no sig-
nificant advantage because of two reasons. First, the
kernelmustexploit operations that can distort the type
safety provided by the language. Therefore even with
a strong type system one has to prove type correctness.
Second, although the type system subsumes many proof
obligations that show up in a verification in a type-unsafe
environment, these proof obligation are usually simple
and can be solved automatically with the right theorem-
proving technology.

Our results apply to all operating systems that provide
address-space manipulation. Other OSes, such as library
OSes used for embedded microcontrollers, in which all
OS and application components are linked together in
one address space, can benefit to a larger degree from
safe languages because the first reason outlined in the
previous paragraph does not apply.
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