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Abstract. The tasks of visual object recognition and classification are natural
and effortless for biological visual systems, but exceedingly difficult to
replicate in computer vision systems. This difficulty arises from the large
variability in images of different objects within a class, and variability in
viewing conditions.  In this paper we describe a fragment-based method for
object classification.  In this approach objects within a class are represented in
terms of common image fragments, that are used as building blocks for
representing a large variety of different objects that belong to a common class,
such as a face or a car.  Optimal fragments are selected from a training set of
images based on a criterion of maximizing the mutual information of the
fragments and the class they represent. For the purpose of classification the
fragments are also organized into types, where each type is a collection of
alternative fragments, such as different hairline or eye regions for face
classification.  During classification, the algorithm detects fragments of the
different types, and then combines the evidence for the detected fragments to
reach a final decision.  The algorithm verifies the proper arrangement of the
fragments and the consistency of the viewing conditions primarily by the
conjunction of overlapping fragments. The method is different from previous
part-based methods in using class-specific overlapping object fragments of
varying complexity, and in verifying the consistent arrangement of the
fragments primarily by the conjunction of overlapping detected fragments.
Experimental results on the detection of face and car views show that the
fragment-based approach can generalize well to completely novel image views
within a class while maintaining low mis-classification error rates.  We briefly
discuss relationships between the proposed method and properties of parts of
the primate visual system involved in object perception.

1  Classification and the Generalization Problem

Object classification is a natural task for our visual system: we effortlessly classify a
novel object as a person, dog, car, house, and the like, based on its appearance. Even a
three-year old child can easily classify a large variety of images of many natural
classes.  In contrast, visual classification proved extremely difficult to reproduce in
artificial computer vision system.  It is therefore natural to study the mechanisms and
processes used by biological visual system for object classification, and to examine
the applicability of similar methods to computer vision system.  Such studies may
lead to the development of better artificial systems dealing with natural images, and
can also shed light on what appears to be fundamental differences in the processes of
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visual information by current computer systems on the one hand, and by biological
systems on the other.

It is interesting to note in this context the difference between general object
classification and the specific identification of individual objects. Classification is
concerned with the general description of an object as belonging to a natural class of
similar objects, such as a face or a dog, whereas identification involves the
recognition of a specific individual within a class, such as the face of a particular
person, or the make of a particular car. For human vision, the general classification of
an object as a car, for example, is usually easier than the identification of the specific
make of the car (Rosch et al.1976). In contrast, current computer vision systems can
deal more successfully with the task of recognition compared with classification.
This may appear surprising, because specific identification requires finer distinctions
between objects compared with general classification, and therefore the task appears
to be more demanding.

The main difficulty faced by a recognition and classification system is the problem
of variability, and the need to generalize across variations in the appearance of objects
belonging to the same class.   Different dog images, for example, can vary widely,
because they can represent different kinds of dogs, and for each particular dog, the
appearance will change with the imaging conditions, such as the viewing angle,
distance, and illumination conditions, with the animal’s posture, and so on.  The
visual system is therefore constantly faced with views that are different from all other
views seen in the past, and it is required to generalize correctly from past experience
and classify correctly the novel image.  The variability is complex in nature: it is
difficult to provide, for instance, a precise definition for all the allowed variations of
dog images.  The human visual system somehow learns the characteristics of the
allowed variability from experience.  This makes classification more difficult for
artificial system than individual identification.  In performing identification of a
specific car, say, one can supply the system with a full and exact model of the object,
and the expected variations can be described with precision.  This is the basis for
several approaches to identification, for example, methods that use image
combinations (Ullman & Basri 1991) or interpolation (Poggio & Edelman 1990) to
predict the appearance of a known object under given viewing conditions.  In
classification, the range of possible variations is wider, since now, in addition to
variations in the viewing condition, one must also contend with variations in shape of
different objects within the same class.

In this paper we propose an approach to classification that uses a fragment-based
representation.  In this approach, images of objects within a class are represented in
terms of class-specific fragments. These fragments provide common building blocks
that can be used, in different combinations, to represent a large variety of different
images of objects within the class.  In the next section we discuss the problem of
selecting a set of fragments that are best suited for representing a class of related
objects, given a set of example images. We then illustrate the use of these fragments
to perform classification and deal with the variability in shape between different
objects of the same class.  We also discuss the problem of coping with variability in
the viewing conditions, focusing on the problem of position invariance, with possible
application to other aspects of object recognition.  Finally, we conclude with some
comments about similarities between the proposed approach and aspects of the human
visual system.
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2  The Selection of Class-Based Fragments

2.1  A Brief Review of Related Past Approaches

Before describing the selection of fragment from a collection of example images, we
will review briefly past approaches to recognition, focusing on methods that bear
relevance to the approach developed here.

A popular framework to classification is based on representing object views as
points in a high-dimensional feature space, and then performing some partitioning of
the space into regions corresponding to the different classes. Typically, a set of n
different measurements are applied to the image, and the results constitute an n-
dimensional vector representing the image A variety of different measures have been
proposed, including using the raw image as a vector of grey-level values, using global
measures such as the overall area of the object’s image, different moments, Fourier
coefficients describing the object’s boundary, or the results of applying selected
templates to the image.  Partitioning of the space is then performed using different
techniques. Some of the frequently used techniques include nearest-neighbor
classification to class representatives using, for example, vector quantization
techniques, nearest-neighbor to a manifold representing a collection of object or class
views (Murase & Nayar 1995,), separating hyperplanes performed, for example, by
Perceptron-type algorithms and their extensions (Minsky & Papert 1969), or, more
optimally, by support vector machines (Vapnik 1995).  The vector of measurements
may also serve as an input to a neural network algorithm that is trained to produce
different outputs for inputs belonging to different classes (Poggio & Sung 1995).

More directly related to our approach are methods that attempt to describe all
object views belonging to the same class using a collection of fundamental building
blocks.  The eigenspace approach (Turk & Pentland 1990) belongs to this general
approach.  In this method, a collection of objects within a class, such as a set of faces,
are viewed as a set of vectors constructed from the raw grey level values.  A set of
principal components is extracted from these images to describe the images
economically with minimal residual error.  The principal components are used as the
building blocks for describing new images within the class, using linear combination
of the basic images.  For example, a set of `eigenfaces’ is extracted and used to
represent a large space of possible faces.

In this approach the building blocks are global in nature. Other approaches have
used more localized building blocks that represent smaller parts of the objects in
question.  One well-known scheme is the Recognition By Components (RBC) method
(Biederman 1985) and related schemes using generalized cylinders as building blocks
(Binford 1971, Marr 1982, Marr & Nishihara 1978).  The RBC scheme uses a small
number of generic 3-D parts such as cubes, cones, and cylinders.  Objects are
described in terms of their main 3-D parts, and the qualitative spatial relations
between parts.  Other part-based schemes have used 2-D local features as the
underlying building blocks.  These building blocks were typically small simple image
features, such as local image patches of 2-5 pixels together with their qualitative
spatial relations, (Amit & Geman 1997, Nelson & Selinger 1998), corners the direct
output of local receptive fields of the type found in primary visual cortex (Edelman
1993).
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2.2  Fragments of Intermediate Complexity in Size and Resolution

Unlike other methods that use local 2-D features, we do not employ universal shape
features. Instead, we use object fragments that are specific to a class of objects, taken
directly from example views of objects in the same class. That is, the shape fragments
used to represent faces, for instance, would be different from shape fragments used to
represent cars, or letters in the alphabet.  These fragments are used as a set of
common building blocks to represent, by different combinations of the fragments,
different objects belonging to the class. The fragments we detect are divided into
equivalence sets that contain views of the same general region in the objects under
different transformations and viewing conditions. As discussed later, the use of
fragment views achieves superior generalization capability with a smaller number of
example views compared with more global methods.

The use of the combination of image fragments to deal with intra-class variability
is based on the notion that images of different objects within a class have a particular
structural similarity -- they can be expressed as combinations of common
substructures. Roughly speaking, the idea is to approximate a new image of a face,
say, by a combination of images of partial regions, such as eyes, hairline etc. of
previously seen faces.  In this section we describe briefly the process of selecting
class-based fragments for representing a collection of images within a class.  This
procedure will be described in more detail elsewhere.  In the following section, we
describe the use of the fragment representation for performing classification tasks.

Examples of fragments for the class of human faces (roughly frontal) and the class
of cars (sedans, roughly side views) are illustrated in Figure 1.   The fragments used
as a basis for the representation were selected by the principle of maximizing mutual
information I(C,F) between a class C and a fragment F.  This is a natural measure to
employ, because it measures how much information is added about the class once we
know whether the fragment F is present or absent in the image. In the ensemble of
natural images in general, prior to the detection of any fragment, there is an a-priori
probability p(C) for the appearance of an image of a given class C.  The detection of a
fragment F adds information and reduces the uncertainty (measured by the entropy) of
the image.  We select fragments that will increase the information regarding the
presence of an image from the class C by as much as possible, or, equivalently,
reduce the uncertainty by as much as possible.  This depends on p(F|C), the
probabilities of detecting the fragment F in images that come from the class C, and on
p(F|NC) where NC is the complement of C.

A fragment F is highly representative of the class of faces if it is likely to be found
in the class of faces, but not in images of non-faces.  This can be measured by the
likelihood ratio p(F|C) / p(F|NC).  Fragments with a high likelihood ratio are highly
distinctive for the presence of a face. However, highly distinctive features are not
necessarily useful fragments for face representation.  The reason is that a fragment
can be highly distinctive, but very rare.  For example, a template depicting an
individual face is highly distinctive: its presence in the image means that a face is
virtually certain to be present in the image.  However, the probability of finding this
particular fragment in an image and using it for making classification is low.  On the
other hand, a simple local feature, such as a single eyebrow, will appear in many more
face images, but it will appear in non-face images as well. The most informative
features are therefore fragments of intermediate size, as can be seen in Figures 2.  In
selecting and using optimal fragments for classification, we distinguish between what
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we call the `merit’ of a fragment and its `distinctiveness’.  The merit is defined by the
mutual information

I(C,F) = H(C) – H(C/F) (1)

where I is the mutual information, and H denotes entropy (Cover & Thomas 1991).
The merit measures the usefulness of a fragment F to represent a class C, and the
fragments with maximal merit are selected as a basis for the class representation.  The
distinctiveness is defined by the likelihood ratio above, and it is used in reaching the
final classification decision, as explained in more detail below. In summary,
fragments are selected on the basis of their merit, and then used on the basis of their
distinctiveness.

 

 

 

 

 

Fig. 1. Examples of face and car fragments

Our procedure for selecting the fragments with high mutual information is the
following. Given a set of images, we start by comparing the images in a pairwise
manner.  The reason is that a useful building block that appears in multiple face
images must appear, in particular, in two or more images, and therefore the pairwise
comparison can be used as an initial filter for identifying image regions that are likely
to serve as useful fragments.  We then perform a search of the candidate fragments in
the entire database of faces, and also in a second database composed of many natural
images that do not contain faces.  In this manner we obtain estimations for p(F|C) and
p(F|NC) and, assuming a particular p(C), we can compute the fragment’s mutual
information.  For each fragment selected in this manner, we extend the search for
optimal fragments by testing additional fragments centered at the same location, but at
different sizes, to make sure that we have selected fragments of optimal size. The
procedure is also repeated for searching an optimal resolution rather than size.

We will not describe this procedure in further detail, except to note that large
fragments of reduced resolution are also highly informative.  For example, a full-face
fragment at high resolution in non-optimal because the probability of finding this
exact high-resolution fragment in the image is low.  However, at a reduced resolution,
the merit of this fragment is increased up to an optimal value, at which it starts to
decrease.  In our representation we use fragments of intermediate complexity in either
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size of resolution, and it includes full resolution fragments of intermediate size, and
larger fragments of intermediate resolution.

left brow fragment 
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Fig. 2. Selecting optimal fragments by maximizing mutual information.  The fragment’s merit
(based in mutual information) and distinctiveness (based on likelihood ratio) as a function of
size.  The fragment is optimal at an intermediate size.

3  Performing Classification

In performing classification, the task is to assign the image to one of a known set of
classes (or decide that the image does not depict any known class).  In the following
discussion, we consider a single class, such as a face or a car, and the task is to decide
whether or not the input image belongs to this class.  This binary decision can also be
extended to deal with multiple classes.  We do not assume that the image contains a
single object at a precisely known position, consequently the task includes a search
over a region in the image.  We can therefore view the classification task also as a
detection task, that is, deciding whether the input image contains a face, and locating
the position of the face if it is detected in the image.

The algorithm consists of two main stages. In the first stage basic fragments are
detected by comparing the image at each location with several sets of stored fragment
views. Each set contains fragments of objects in a class, seen under various viewing
conditions. The comparison is performed by combining the results of three
comparison criteria: qualitative gray-level based representation, gradient and
orientation measures. The second stage combines the results of the individual
fragment detectors.  It verifies that a sufficient subset of fragment-types have been
detected, and enforces the consistency of the fragments viewing parameters. The main
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tool for verifying the consistency is the use of multiple overlapping fragments. With
respect to position in the image, we also incorporate a test for rough position that we
found experimentally to be helpful.  The consistency of the other viewing parameters
such as rotation and illumination is ensured only by the detection of overlapping
fragments. The algorithm is performed on the image at several scales so that object
views at different scales can be detected. Each level detects objects at scale
differences of ±35%. The combination of several scales enables the detection of
objects under considerable changes in their size.

In the following sections we describe the details of the algorithm. We begin by
describing the similarity measure used for the detection of the basic fragments.

3.1  Similarity between Image Patches

We have evaluated several methods, both known and new, to measure similarity
between gray level patches in the stored fragment views and patches in the input
image. Many of the comparison methods we tested gave satisfactory results within the
subsequent classification algorithm, but we found that a method that combined
qualitative image based representation suggested by Bhat and Nayar (1997) with
gradient and orientation measures gave the best results. The method measured the
qualitative shape similarity using the ordinal order of the pixels in the regions, and
measured the orientation difference using gradient amplitude and direction. For the
qualitative shape comparison we computed the ordinal order of the pixels in the two
regions, and used the normalized sum of displacements of the pixels with the same
ordinal order as the measure for the regions' similarity. (See Fig. 3).

The similarity measure ),( HFD between an image patch H and a fragment patch F

is a weighted sum of their sum of ordinal displacements id , their absolute orientation

difference HF αα −  and their absolute gradient difference HF GG − :

HF
i

HFi GGkkdkHFD −+−+= ∑ 321),( αα (2)

This measure appears to be successful because it is mainly sensitive to the local
structure of the patches and less to absolute intensity values.

3.2  The Detection of Fragments

For the detection of fragment views in the images we compared local 5x5 gray level
patches in each fragment view to the image using the above similarity measure. Only
regions with sufficient variability were compared, since in flat-intensity regions the
gradient, orientation and ordinal-order have little meaning. We allowed flexibility in
the comparison of the fragment view to the image by matching each pixel in the
fragment view to the best pixel in some neighborhood around its corresponding
location. Most of the computations of the entire algorithm are performed at this stage.
To speed up the application we reduced the search regions for fragments of each type
as the search proceeded. We implemented the ordinal measure calculation on ASP’s
associative processor (ASP, 1998) and achieved a speed factor of approximately 8.5.
An associative processor is especially suitable for such computations since it can
process in parallel thousands of pixels.
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Fig. 3. Displacement vectors for four pixels with the highest ordinal order. The displacement
vectors connect the locations of pixels with similar gray-level ordinal order in the two

compared regions. The sum of the four displacements in this case is 5151 ++++++++++++ .

3.3  Merging the Detection of the Different Fragment Types

Following the detection of the individual fragments, the final stage of merging the
results for the entire object detection is performed. To detect an object only if the
fragments are organized properly and are consistent in their viewing conditions, this
stage uses the detection of 'binding' fragments as well as the so-called 'pointing'
method. It also verifies that fragments from a sufficient subset of fragment-types have
been detected, although some occlusion is also allowed for. The 'binding fragments'
are fragments with large overlap with other basic fragments such as an eye with a part
of a nose, or a lower resolution view of a large part of the object.

In the 'pointing' method each detected fragment (with similarity value above a
threshold) `points’ to a common anchor region of a possible object. In face detection,
for example, we used the tip of the nose as the anchor. A mouth fragment will
therefore point up and a forehead fragment down. The overall contributions of the
different fragment types are summed for every location in the image. This procedure
is used to integrate the information from all the fragments that are arranged in roughly
the expected positions around the anchor location. Each fragment-type contributes to
the overall sum associated with a particular location with an associated magnitude of
M computed by:

)( THi
SViewsPartAll

Type SSMaxWM
i

−⋅= (3)

where typeW  is the weighting factor of the fragment type, THS  a threshold similarity

value and iS  the similarity value of all the fragments of that type that point to the

location in question. The natural choice for the weighting factor is the distinctiveness
defined above based on the likelihood ratio.

Locations that are pointed to by most of the fragment types with high similarity
values are candidate object locations. At the final stage we reject some of these
locations according to the following rules. First, we reject locations where less then
3/4 of the fragment types were detected. We also compare the collection of image
fragments contributing to the candidate location to several low-resolution example
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views of objects from the class in question. This global filtering proved useful in
further enforcing the consistent arrangement of the fragments. After the restrictions
are applied to the merged detection results, we mark locations where the merged
results exceed a threshold as final detection locations.

4  Experimental Results

We have tested our algorithm on face and car views. For faces we used a set of 1104
part views, taken from a set of 23 male face views under three illuminations and three
horizontal rotations. The parts were grouped by 8 types – eye pair, nose, mouth,
forehead, low-resolution view, mouth and chin, single eye and face outline. For cars,
we used 153 parts of 6 types. Several examples of the fragments used by the
algorithm are shown in Figure 1. Figure 4 is the result of the individual fragment
detectors that were then merged to yield full-face detection in Figure 5. The images in
Figure 6 are additional examples. Note that although the system used only male views
in few illuminations and rotations, it detects male and female face views under
various viewing conditions. Figure 7 demonstrates the detection of a partly occluded
face view.

    Eyes Nose Mouth  Outline   Low res.

Fig. 4. Detection of individual fragments

We have tested the rate of face detection vs. false detection by applying the
algorithm to two images – a complex image of a cathedral (Fig. 8A) that does not
contain faces, and an image that contains multiple faces (Fig. 8B). We first fixed the
system thresholds so that it will not detect any face in the cathedral image while
detecting as many faces as possible in the other image. The number of faces that were
detected vs. the number of fragments used in each of the eight fragment types is
shown in (Fig. 8C). The fragments were taken from the same set of global views and
had less overall "image area cover" thenthe global views. We also tried to detect faces
by measuring similarity to low resolution (32x22) face views. The number of faces
that were detected in Fig. 8B vs. the number of low-resolution example views that
were used for the extraction of fragments and as low-resolution patterns is shown in
(Fig. 8C). It indicates that the use of multiple fragments performs much better then
the use of global views.
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males and females, in both real images and drawings, that are very different from the faces in
the original training set.   This was achieved while maintaining low false alarm rates on images
that did not contain faces.  Using a modest number of informative fragments, in different
combinations, appears to have an inherent capability to deal with shape variability within the
class.  The fragment-based scheme was also capable of obtaining significant position
invariance, without using explicit representation of the spatial relationships between fragments.
The insensitivity to position as well as to other viewing parameters was obtained primarily by
the use of a redundant set of overlapping fragments, including fragments of intermediate size
and higher resolution, and fragments of larger size and lower resolution.

5  Some Analogies with the Human Visual System

In visual areas of the primate cortex neurons respond optimally to increasingly
complex features in the input. A simple cell in the primary visual area (V1) responds
best to a line or edge at a particular orientation and location in the visual field (Hubel
& Wiesel 1968). In higher-order visual areas of the cortex, units were found to
respond to increasingly complex local patterns. For example, V2 units respond to
collinear arrangements of features (Von der Heydt 1984), some V4 units respond to
spiral, polar and other local shapes (Gallant et. al. 1993), TE units respond to
moderately complex features that may resemble e.g. a lip or an eyebrow (Tanaka
1993), and anterior IT units often respond to complete or partial object views
(Perorate et. al. 1982, Rolls 1984, Logothetis et. al. 1994).  Together with the increase
in the complexity of their preferred stimuli, units in higher order visual areas also
show increased invariance to viewing parameters, such as position in the visual field,
rotation in the image plane, rotation in space, and some changes in illumination
(Logothetis et al. 1994, Perret, Rolls & Caan 1982, Rolls 1983, Tanaka 1993).  The
preferred stimuli of IT units are highly dependent upon the visual experience of the
animal.  In monkeys trained to recognize different wire objects, units are found that
respond to specific full or partial views of such objects (Logothetis et al. 1994).  In
animals trained with fractal-like images, units are subsequently found that respond to
on or more of the images in the training set (Miyashita & Chang 1988).
    These findings are consistent with the view that the visual system uses object
representations based on class related fragments of intermediate complexity,
constructed hierarchically. The preferred stimuli of simple and intermediate
complexity neurons in the visual system are specific 2-D patterns.  Some binocular
information can also influence the response, but this additional information, which
adds 3-D information associated with a fragment under particular viewing conditions,
can be incorporated in the fragment based representation.  The preferred stimuli are
dependent upon the family of training stimuli, and in this sense appear to be class-
dependent rather than, for example, a small set of universal building blocks used by
other classification schemes.  Invariance to viewing parameters such as position in the
visual field or spatial orientation appears gradually, possibly by the convergence of
more elementary and less invariant fragments onto higher order units.  From this
theory we can anticipate the existence of two types of intermediate complexity units
that have not been reported so far.  First, for the purpose of classification, we expect
to find units that respond to different types of partial views.  As an example, a unit of
this kind may respond to different shapes of hairline, but not to a mouth or nose
regions. Second, because the invariance of complex shapes to different viewing



Object Classification Using a Fragment-Based Representation     85

parameters is inherited from the invariance of the more elementary fragment, we
expect to find intermediate complexity units, responding to partial object views at a
number of different spatial orientations and perhaps different illumination conditions.

In our implementation we used the notion of a `pointing’ mechanism to limit the
relative spatial displacements allowed for the different fragments within a more global
shape.  The particular implementation we used is not intended to be directly related to
biological mechanisms.  However, similar results can be obtained by processes that
are more biological in nature.  For example, attentional mechanisms, that limit the
processing to restricted regions of visual space, can play a similar role in limiting the
combination of fragments and ensure that all the fragments are detected within a
common region.  Together with the use of overlapping fragments, this can prevent the
"illusory conjunction" of fragments that are not properly arranged.

6  Summary

Object classification is a challenging task because individual objects within the same
class can have large variations is shape that are difficult to define precisely and to
compensate for during the classification process. In our approach, objects within a
class are represented by class-specific fragments.  These are image fragments that
appear in similar shape in multiple individual objects within the class, and that are
highly informative about the class in questions.  The fragments we obtain are
typically of intermediate complexity, either in size or resolution, and they form a
redundant, overlapping set of `building blocks’ for representing individual objects
within the class.

The experimental results support the view that the fragment-based approach can
generalize well to novel object images, and it can detect and classify objects of a
given class despite large variability in shape.  It can also deal with changes in
position, pose, and illumination, but these aspects will have to be extended and tested
further in future work.  The results support the notion that the intra-class variability of
views can be expressed, in large part, in terms of different combinations of shared
common sub-structures.

The detection algorithm initially detects fragment views of different fragment
types, and then combines the results for the detection of the entire object. The
consistency in the fragments viewing parameters is ensured by the use of overlapping
fragments that "bind" the parts together and by testing directly that the fragments are
approximately aligned. An important advantage of this method is that it can
compensate well for shape variations by matching a novel shape within a class with a
new combination of stored fragments. The formation of a new combination also
results in a system that uses less training examples compared with the use of global
shapes. The scheme uses high-resolution smaller fragments with coarser larger ones
and this increases the efficiency of the scheme, as well as its ability to impose the
proper arrangement of the components.
    The method is relatively simple because it does not require the estimation of the
viewing parameters and does not require the explicit representation and matching of
spatial relations. The use of class-specific rather than universal fragments also has
limitations, since it implies that dealing with a new class of objects will require
extending the set of stored object fragments. This raises interesting learning issues,
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currently under study, concerning the automatic extraction of useful fragments from a
set of novel object views.

A number of natural extensions to the basic classification scheme outlined above
will be considered in the future.  One is the construction of fragments in a hierarchical
manner.  In the algorithm described above objects views are represented in terms of
intermediate complexity fragments.  These fragments in turn can be constructed from
simpler fragments.  Starting from simple local fragments, at the level of complexity of
features found in primary visual cortex, more complex fragments can be constructed
hierarchically.  It will be of interest to consider the effects of having different number
of levels.  In the primate visual system, the hierarchy includes about five levels from
V1 to anterior IT, and this may be a reasonable guideline to consider.  As in our
scheme, at each level it will be useful to extract the most informative fragments
possible at that level, and to use a redundant, overlapping set of fragments.
Fragments that can be considered equivalent, will be grouped together (as in the
fragment types used above) to generate increased invariance to shape variations and
to changes in viewing conditions.  In such a hierarchical scheme, it is likely that the
similarity scheme used above for the purpose of detecting fragments in the image will
be modified: the similarity between an image region and a stored fragments could be
based instead on the more basic sub-fragments they have in common.

A second area of further development has to do with invariance to viewing
conditions, including rotations in space and changes in illumination.  The current
algorithm already exhibits some invariance to these parameters, because each
fragment type includes fragments at somewhat different orientations and
illuminations.  However, additional fragments covering a wider range of changes will
be required to reach invariance comparable to human perception.  It is not entirely
clear whether the mechanism of using multiple overlapping fragments will be
sufficient to impose the correct overall configuration when the number of alternative
fragments will be substantially larger, and it is conceivable that additional
mechanisms, possible including top-down verification, will be required.

Finally, the scheme should be extended to deal effectively with multiple classes.
Each class added to the system will be represented by a set of class-specific fragments
that are optimal for the class in question.  Some of them may be similar to already
existing fragments for other classes, but others will be new.  The overall scheme will
remain similar, however, it remains to be seen how to best organize the system to deal
as efficiently as possible with a large number of known classes.
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