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Abstract

We study the problem of allocating optical bandwidth to sets of communication requests in
all-optical networks that utilize Wavelength Division Multiplexing (WDM). WDM technology
establishes communication between pairs of network nodes by establishing transmitter-receiver
paths and assigning wavelengths to each path so that no two paths going through the same fiber
link use the same wavelength. Optical bandwidth is the number of distinct wavelengths. Since
state—of-the—art technology allows for a limited number of wavelengths, the engineering problem
to be solved is to establish communication between pairs of nodes so that the total number of
wavelengths used is minimized; this is known as the wavelength routing problem.

In this paper, we survey recent advances in bandwidth allocation in tree-shaped WDM all—-
optical networks:

— We present hardness results and lower bounds for the general problem and the special case
of symmetric communication.

— We give the main ideas of deterministic greedy algorithms and study their limitations.

— We demonstrate how we can achieve optimal and nearly—optimal bandwidth utilization in
networks with wavelength converters using simple algorithms.

— We also present recent results about the use of randomization for wavelength routing.

1 Introduction

Optical fiber is rapidly becoming the standard transmission medium for backbone networks, since
it can provide the required data rate, error rate and delay performance necessary for high speed
networks of next generation [21, 41]. However, data rates are limited in opto—electronic networks by
the need to convert the optical signals on the fiber to electronic signals in order to process them at
the network nodes. Although electronic parallel processing techniques are capable, in principle, to
meet future high data rate requirements, the opto—electronic conversion is itself expensive. Thus, it
appears likely that, as optical technology improves, simple optical processing will remove the need for
optoelectronic conversion. Networks using optical transmission and maintaining optical data paths
through the nodes are called all-optical networks.

Optical technology is not yet as mature as conventional technology. There are limits as to how
sophisticated optical processing at each node can be done.
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Multiwavelength communication [21, 41] is the most popular communication technology used on
optical networks. Roughly speaking, it allows to send different streams of data on different wave-
lengths along an optical fiber. Multiwavelength communication is implemented through Wavelength
Division Multiplexing (WDM). WDM takes all data streams traveling on an incoming link and route
each of them to the right outgoing link, provided that each data stream travels on the same wave-
length on both links.

In a WDM all-optical network, once the data stream has been transmitted in the form of light,
it continues without conversion to electronic form until it reaches its destination. For a packet
transmission to occur, a transmitter at the source must be tuned to the same wavelength as the
receiver at the destination for the duration of the packet transmission and no data stream collision
may occur at any fiber.

We model the underlying fiber network as a directed graph, where vertices are the nodes of the
network and links are optical fibers connecting nodes. Communication requests are ordered pairs
of nodes, which are to be thought of as transmitter—receiver pairs. WDM technology establishes
connectivity by finding transmitter-receiver directed paths and assigning a wavelength (color) to
each path, so that no two paths going through the same link use the same wavelength.

Optical bandwidth is the number of available wavelengths. Optical bandwidth is a scarce resource.
State—of-the—art technology allows some hundreds wavelengths per fiber in the laboratory, even less
in manufacturing, and there is no anticipation for dramatic progress in the near future. At the state
of the art there is no WDM all-optical network that uses the optical bandwidth in an efficient way.
However, for a realistic use of WDM all-optical networks for long distance communication networks,
it seems necessary a significant progress in the protocols for allocation of the available bandwidth.
Thus, the important engineering problem to be solved is to establish communication between pairs
of nodes so that the total number of wavelengths used is minimized; this is known as the wavelength
routing problem [1, 34].

Given a pattern of communication requests and a corresponding path for each request, we define
the load of the pattern as the maximum number of requests that traverse any fiber of the network.
For tree networks, the load of a pattern of communication requests is well defined, since transmitter—
receiver paths are unique. Clearly, for any pattern of requests, its load is a lower bound on the
number of necessary wavelengths.

Theoretical work on optical networks mainly focuses on the performance of wavelength routing
algorithms on regular networks using oblivious (predefined) routing schemes. We point out the
pioneering work of Pankaj [34] who considered shuffle exchange, De Bruijn, and hypercubic networks.
Aggarwal et al. [1] consider oblivious wavelength routing schemes for several networks. Raghavan
and Upfal in [37] consider mesh-like networks. Aumann and Rabani [8] improve the bounds of
Raghavan and Upfal for mesh networks and also give tight results for hypercubic networks. Rabani
in [35] gives almost optimal results for the wavelength routing problem on meshes.

These topologies reflect architectures of optical computers rather than wide-area networks. For
fundamental practical reasons, the telecommunication industry does not deploy massive regular ar-
chitectures: backbone networks need to reflect irregularity of geography, non—uniform clustering of
users and traflic, hierarchy of services, dynamic growth, etc. In this direction, Raghavan and Upfal
[37], Aumann and Rabani [8], and Bermond et al. [12], among other results, focus on bounded—-degree
networks and give upper and lower bounds as functions of the network expansion.

However, wide—area multiwavelength technology is expected to grow arround the evolution of
current networking principles and existing fiber networks. These are mainly SONET (Synchronous
Optical Networking Technology) rings and trees [33]. In this sense, even asymptotic results for
expander graphs do not address the above telecommunications scenario.

In this work, we consider tree topologies, with each edge of the tree consisting of two opposite



directed fiber links. Raghavan and Upfal [37] considered trees with single undirected fibers carrying
undirected paths. However, it has since becomes apparent that optical amplifiers placed on fiber will
be directed devices. Thus, directed graphs are essential to model state—of-the—art technology.

In particular, we survey recent methods and algorithms for efficient use of bandwidth in trees
considering arbitrary patterns of communication requests. All the results are given in terms of the
load of the pattern of requests that have to be routed. Surveys on bandwidth allocation for more
specific communication patterns like broadcasting, gossiping, and permutation routing can be found
in [10, 25].

The rest of this paper is structured as follows. In Section 2, we formalize the wavelength routing
problem and present hardness results and lower bounds for the general case and the special case of
symmetric communication. In Section 3, we describe deterministic greedy algorithms and present
the best known results on them. We briefly discuss the special case of symmetric communication in
Section 4. In Section 5, we relax the model and introduce devices called converters which can improve
bandwidth allocation with some sacrifice in network cost. In Section 6, we briefly describe the first
randomized algorithm for the problem. We conclude, in Section 7, with a list of open problems.

2 Hardness Results and Lower Bounds

As we mentioned in Section 1, the load of the communication pattern is a lower bound on the number
of necessary colors (wavelengths). The following question now arises. Given any communication
pattern of load L, can we hope for a wavelength routing with no more than L wavelengths? The
answer is negative for two reasons. The former is that this problem is AP—hard. The latter is that
there are patterns that require more than I wavelengths.

We formalize the problem as follows.

WAVELENGTH ROUTING IN TREES

INSTANCE: A directed tree T' and a pattern of communication requests (i.e., a set of
directed paths) P of load L.

QUESTION: Is it possible to assign wavelengths (colors) from {1,2,..., L} to requests of
P in such a way that requests that share the same directed link are assigned different
wavelength?

Intuitively, we may think of the wavelengths as colors and the wavelength routing problem as a
coloring problem of directed paths. In the rest of the paper, we use the terms wavelength (wavelength
routing) and color (coloring or proper coloring), interchangeably.

Erlebach and Jansen [16] have proved the following hardness result.

Theorem 1 (Erlebach and Jansen [16]) WAVELENGTH ROUTING IN TREES is N'P-complete.

Note that the above statement holds even if we restrict instances to arbitrary trees and commu-
nication patterns of load 3. The following result, which is due to Erlebach and Jansen [17] as well,
applies to binary trees and communication patterns of arbitrary load.

Theorem 2 (Erlebach and Jansen [17]) WAVELENGTH ROUTING ON BINARY TREES is N'P-
complete.

Thus, the corresponding optimization problems (minimizing the number of wavelengths) are N'P—
hard, in general.

Now, we give the second reason why, given a communication pattern of load L, a wavelength
routing with not much more than L wavelengths is infeasible.



Theorem 3 (Kumar and Schwabe [28]) For any integer [ > 0, there exists a communication
pattern of load L = 4l on a binary tree T that requires at least 5L /4 wavelengths.

The proof of the theorem is depicted in Figure 1.
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Figure 1: The communication pattern for the proof of Theorem 3. Each arrow represents L/2 =
20 requests. Note that there exist 5L/2 requests and no more than 2 can be assigned the same
wavelength. This yields at least 51 /4 necessary wavelengths.

As we will see below (Section 4), these statements hold for the special case of symmetric commu-
nication.

3 Greedy Algorithms

All known wavelength routing algorithms [15, 22, 23, 24, 28, 32] belong to a special class of algorithms,
the class of greedy algorithms. We devote this section to their study. Given a tree network 7" and a
pattern of requests P, we call greedy a wavelength routing algorithm that works as follows:

Starting from a node, the algorithm computes a breadth—first (BF'S) numbering of the
nodes of the tree. The algorithm proceeds in phases, one per each node u of the tree.
The nodes are considered following their BFS numbering. The phase associated with
node u assumes that we already have a proper coloring where all requests that touch (i.e.
start, end, or go through) nodes with numbers strictly smaller than u’s have been colored
and no other request has been colored. During this phase, the partial proper coloring is
extended to one that assigns proper colors to requests that touch node u but have not
been colored yet. During each phase, the algorithm does not recolor requests that have
been colored in previous phases.

Thus, various greedy algorithms differ among themselves with respect to the strategies followed to
extend the partial proper coloring during a phase. The algorithms in [23, 24, 28, 32] make use of
complicated subroutines in order to extend the partial coloring during a phase; in particular, their
subroutines include a reduction of the problem to an edge coloring problem on a bipartite graph.
On the other hand, the algorithms in [15, 22] use much simpler methods to solve the wavelength
routing problem on binary trees. The common characteristic for all these algorithms is that they are
deterministic.

3.1 The Reduction to Constrained Bipartite Edge Coloring

The algorithms in [23, 24, 28, 32] reduces the coloring of a phase associated with node u to an edge
coloring problem on a bipartite graph. In the following we describe this reduction.

Let vg be u’s parent and let vy, - - -, vg be the children of u. The algorithm constructs the bipartite
graph associated with u in the following way. For each node v;, the bipartite graph has four vertices



Wi, X5, Y:, Z; and the left and right partitions are {W;, Z;|¢ = 0,---k} and {X;,Y;|i = 0,---k}. For
each request of the tree directed out of some v; into some v;, we have an edge in the bipartite graph
from W; to X;. For each request directed out of some v; and terminating on u, we have an edge from
W; to Y;. Finally, for each request directed out of u into some v;, we have an edge from Z; to X;.
See Figure 2. The above edges are called real. Notice that all edges that are adjacent to either X
or Wy have already been colored, as they correspond to requests touching a node with BF'S number
smaller than u’s (in this specific case, the requests touch u’s parent) that have been colored at some
previous phase. We call the edges incident to either X or Wy color—forced edges.

Vi
Figure 2: Requests touching node u and the relative bipartite graph (only real edges are shown).

Notice that no real edge extends across opposite vertices Z; and Y; or W; and X;. Indeed vertex
Z; has edges only to vertices of type X;; on the other hand, an edge from W, to X; would correspond
to a request in the tree going from ¢; to itself. We call a pair of opposite vertices a line. Notice also
that all vertices of the bipartite graph have degree at most L and, thus, it is possible to add fictitious
edges to the bipartite graph so that all vertices have degree exactly L. The following claim holds.

Claim 4 (Mihail et al. [32]) Let P be a pattern of communication requests on a tree T'. Consider
a specific BFS numbering of the nodes of T, a node u and a partial coloring x of the requests of P
that touch nodes with BFS number smaller than u’s. Then, any coloring of the edges of the bipartite
graph associated with v corresponds to a proper coloring of the requests of P that touch node u.

Thus, the problem of coloring requests is reduced to the problem of coloring the edges of an
L-regular bipartite graph, under the constraint that some colors have already been assigned to edges
adjacent to Wy and Xg. We call this problem an a—constrained bipartite edge coloring problem on an
L-regular bipartite graph. The parameter o denotes that edges incident to nodes Wy and X have
been colored with oL colors.

The objective is to extend the coloring to all the edges of the bipartite graph. We first describe
a simple (and weak) solution to the problem. Then, we briefly describe the main ideas that lead to
an improved solution of the problem in [24].

We call single colors the colors that appear only in one color—forced edge and double colors the
colors that appear in two color—forced edges (one incident in Wy and one incident in Xg). We denote
by S and D the number of single and double colors, respectively. Clearly, 2D 4+ 5 = 2L.

Now we decompose the L-regular bipartite graph into L matchings (this can be done in polynomial
time; see [11]). At least S/2 of these matchings have at least one single color in one of the two colored—
forced edges. Thus, we can use this single color to color the uncolored edges of the matching. The



uncolored edges of the matchings that have no color—forced edges colored with a single color are
colored with extra colors (one extra color per matching). In total, we have

D+S+L-S/2<L+D+S/2=2L

colors. By using the simple way for solving the a—constrained bipartite edge coloring problem during
each phase, we obtain a simple greedy wavelength routing algorithm that uses at most 2L colors
(wavelengths) for any pattern of requests of load L.

The works [23, 24, 28, 32] give better solutions to this problem. In order to obtain improved
results, they either consider matchings in pairs and color them in sophisticated ways using detailed
potential and averaging arguments for the analysis [28, 32] or partition matchings into groups which
can be colored and accounted for indepedently [23, 24]. In particular, Kaklamanis et al. [24] solve
the problem proving the following theorem.

Theorem 5 (Kaklamanis et al. [24]) For any o € [1,4/3] and integer L > 0, there exists a poly-
nomial time algorithm for the a—constrained bipartite edge coloring problem on an L-regular bipartite
graph which uses at most (1 + %) L total colors and at most 4L /3 colors per line.

The interested reader may refer to the papers [23, 24, 28, 32] for detailed description of the tech-
niques. Note that one might think of bipartite edge coloring problems with different constraints.
Tight bounds on the number of colors for more generalized constrained bipartite edge coloring prob-
lems can be found in [14].

Using the coloring algorithm presented in [24] for & = 4/3 as a subroutine, the wavelength routing
algorithm maintains at each phase the following two invariants:

I. The total number of colors is no greater than 5L/3.
I1. The number of colors seen by two opposite directed links is at most 4L /3.

In this way, the following result can be proved.

Theorem 6 (Kaklamanis et al. [24], see also [18]) There exists a polynomial time greedy algo-
rithm which routes any pattern of communication requests of load L on a tree using at most 5L/3
wavelengths.

3.2 A Lower Bound Technique for Greedy Algorithms

In this section, we present a lower bound technique for greedy wavelength routing algorithms. We
first briefly describe the technique; then we give the best known statement for deterministic greedy
algorithms.

The technique is based on an adversary argument. An adversary algorithm ADYV is exhibited
that constructs a communication pattern for which it can be proved that there exists a lower bound
on the number of colors used by any greedy algorithm.

The adversary ADY constructs the communication pattern P in an incremental way visiting the
vertices of the tree according to a BFS visit. At each vertex v, the ADYV deals with the set of requests
traversing one of the two parallel directed links between u and its parent p(u). For each downward
request p (that is, for each request including the directed link (p(u),u)), ADV has two options:

1. do nothing; i.e., make p stop at u;

2. propagate p to the left child [(u) by appending arc (u,l(u)) to p.



Similarly, for each upward request p (that is, for each request including the directed link (u, p(u))),
ADY has two options:

1. do nothing; i.e. make p start from w;
2. make p originate from the right child r(u) by pre-pending arc (r(u),u) to p;

Moreover, the adversary algorithm ADY can introduce requests between the two children of u (see
Figure 3). Initially, these requests will consist of only two arcs (from a child to w and from u to the
other child) and can be augmented when the adversary reaches the children of u.

2

2\

Figure 3: The construction for the lower bound for greedy algorithms.

At each step, since the adversary ADY may know how a greedy algorithm performs the coloring,
it can choose to augment requests in such a way that the number of common colors used in downward
requests from p(u) to {(u) and upward requests from r(u) to p(u) is small. In this way, no matter
what a greedy algorithm can do, both the total number of colors and the number of colors seen by
the opposite directed links between u and its children will increase.

By constructing such an adversary for deterministic greedy algorithms, Kaklamanis el al. [24]
(see also [18]) prove the following lower bound. The same lower bound technique can be used for
greedy algorithms that use randomization (see Section 6).

Theorem 7 (Kaklamanis ef al. [24], see also [18]) Let A be a deterministic greedy wavelength
routing algorithm in trees. There exists an algorithm ADY which, on input & > 0 and integer L > 0,
outputs a binary tree T and a pattern of communication requests P of load L on T, such that A
colors P with at least (5/3 — 6)L colors.

Thus, the greedy algorithm presented in [24, 18] is best possible within the class of deterministic
greedy algorithms. In Section 6 we demonstrate how randomization can be used to beat the barrier
of 5/3 at least on binary trees.

4 Symmetric Communication

In this section we consider the special case of patterns of symmetric communication requests, i.e.,
for any transmitter—receiver pair of nodes (v, v2) in the communication pattern, its symmetric pair
(vz,v1) also belongs to the communication pattern.

We can restrict the wavelength routing of patterns of symmetric communication requests to use
the same wavelength for each pair of symmetric requests. Then, we can solve the wavelength routing
problem using the algorithm of Raghavan and Upfal [37] for the undirected version of the problem.



This algorithm is deterministic and greedy. In this way, we can route any pattern of symmetric
communication requests of load L using at most 3L/2 wavelengths. For undirected patterns of
requests, this bound is tight in general, i.e., there exist patterns of undirected requests of load L that
cannot be routed with less than 31 /2 wavelengths. The following two questions now arise.

e Can we improve this bound by assigning wavelengths to each request independently?

e Is the wavelength routing problem easier than in the general case if we restrict the input
instances to patterns of symmetric requests?

Although we are not aware of complete answers for these questions, the following discussion shows
some inherent similarities and differences between the general wavelength routing problem and the
case where the input instance is restricted to patterns of symmetric communication requests.

For these patterns, Caragiannis et al. [13] have proved some interesting statements (lower bounds).
Both N'P—completeness results (Theorems 1 and 2) hold in the case of symmetric patterns of com-
munication requests [13]. Notice that the lower bound of Figure 1 apply to non—symmetric patterns
of requests. A similar lower bound (but much more complicated than the one of Figure 1) holds for
symmetric communication patterns as well.

Theorem 8 (Caragiannis et al. [13]) For any 6 > 0 and integer ! > 0, there exists a binary tree T’
and a pattern of symmetric communication requests P with load L = 4l on T, such that no algorithm
can route P using less than (5/4 — §) L wavelengths.

Does Theorem 8 indicate that the symmetric version of the problem is as “hard” as the general
one? The following result gives evidence for a negative answer. Notice that for symmetric commu-
nication patterns, there exists an algorithm which may route requests in such a way that each pair
of opposite directed fiber links sees at most L wavelengths. This can be done in a trivial way if
we consider two symmetric requests as an undirected one and use any algorithm for the undirected
problem. However, this is not the case for the non—symmetric problem.

Theorem 9 (Caragiannis et al. [13]) For any integer | > 0, there exists a tree T and a pattern
of communication requests with load L = 8l that cannot be routed in such a way that any pair of
opposite directed links of T' sees less than 9L /8 wavelengths.

5 Wavelength Conversion

In Section 3, we saw that (deterministic) greedy wavelength routing algorithms in tree networks
cannot use, in the worst case, less than 51 /3 wavelengths to route sets of communication requests of
load L, resulting to 60% utilization of available bandwidth. Furthermore, even if a better (non-greedy
or randomized) algorithm is discovered, we know by Theorem 3 that there exist communication
patterns of load L that require 5L /4 wavelengths, meaning that 20% of the available bandwidth
across the fiber links will remain unutilized.

The inefficiency of greedy algorithms in the allocation of the bandwidth is due to the fact that
greedy algorithms color requests going through node u without “knowing” which requests go through
its children.

Thus, if we are seeking better utilization of optical bandwidth, we have to relax some of the
constraints of the problem. In particular, wavelength converters allow to relax the restriction that a
request has to use the same wavelength along the whole request from the transmitter to the receiver.
For example, if we can change wavelengths assigned to requests we can correct at u the “bad”
assignments made by the greedy algorithm and improve bandwidth utilization (see Figure 4).



Figure 4: An example of greedy coloring with wavelength conversion. The wavelengths assigned
to requests P, and P, are changed at u in order to make possible to route all requests with two
wavelengths.

A possibility would be to convert the optical signal into electronic form and to retransmit it at
a different wavelength. If there is no restriction on the wavelengths on which the message can be
retransmitted, then it is possible to route all patterns of communication requests of load L with L
wavelengths. In fact, in this case the assignment of wavelengths to requests on a link of the network
is independent from the wavelengths assigned to the same requests on the other links.

However, converting optical signals to electronic signals has the drawback of wasting the benefits of
using optical communication. Recently, a new technology has been proposed that allows to change the
wavelength of an optical signal without converting it into electronic form. Wavelength converters have
been designed and constructed [48]. A wavelength converter, placed at a node of the network, can be
used to change the wavelengths assigned to requests traversing that node. The effects of wavelength
conversion have been extensively studied in different models and it has been proved that it can
dramatically improve the efficiency in the allocation of the optical bandwidth [9, 27, 38, 39, 40, 43, 47].
However, wavelength conversion is a very expensive technology and it is not realistic to assume to give
to all the nodes of the network the capability of changing wavelengths to all requests. This motivates
the study of all-optical networks that allow for some form of restricted wavelength conversion.

In the literature, two prevalent approaches are used to address WDM optical networks with wave-
length conversion: sparse conversion and limited conversion. In a network with sparse wavelength
conversion, only a fraction of the nodes are equipped with wavelength converters that are able to
perform an arbitrary number of simultaneous conversions; in a network with limited conversion, in-
stead, each node hosts wavelength converters, but these devices can perform a limited number of
conversions.

Sparse conversion optical networks have been considered in [26, 39, 43, 46]. Wilfong and Winkler
[46] consider the problem of minimizing the number of nodes of a network that support wavelength
conversion in order to route any communication pattern using a number of wavelengths equal to
the optimal load. They prove that the problem is A"P—hard. Kleinberg and Kumar [26] present
a 2—approximation to this problem for general networks, exploiting its relation to the problem of
computing the minimum vertex cover of a graph. Ramaswami and Sasaki [39] show that, in a ring
network, a simple converter is sufficient to guarantee that any pattern of requests of load L can be
routed with L wavelengths. Subramaniam et al. [43] give heuristics to allocate wavelengths, based
on probabilistic models of communication traffic.



Variants of the limited conversion model have been considered by Ramaswami and Sasaki [39],
Yates et al. [47], and Lee and Li [29]. Ramaswami and Sasaki [39] propose ring and star networks with
limited wavelength conversion to support communication patterns efficiently. Although they address
the undirected case, all their results for rings translate to the directed case as well. Furthermore, they
propose algorithms for bandwidth allocation in undirected stars, trees, and networks with arbitrary
topologies for the case where the length of requests is at most two.

5.1 The Network Model

In our network model, some nodes of the network host wavelength converters. A wavelength converter
can be modeled as a bipartite graph G = (X,Y, F). Each one of the sets of vertices X and Y have
one vertex for each wavelength and there is an edge between vertices z € X and y € Y if and
only if the converter is capable of converting the wavelength corresponding to = to the wavelength
corresponding to y. For example, a full converter corresponds to a complete bipartite graph and a
fixed conversion converter corresponds to a bipartite graph where the vertices of U have degree one.
Some examples of wavelength converters are depicted in Figure 5.

1 1 1 O———=0

2 2 2 O——F—oO0

3 3 3 &———O0

O——O 4 4 4 O———O
(A) (B) (D)

Figure 5: Wavelength conversion bipartite graphs: (A) fixed conversion, (B) partial conversion, (C)
full conversion, and (D) no conversion.

In order to increase network performance without tremendous increase in cost, we mainly use
converters of limited functionality. The term limited reflects the fact that the converters are simple
according to two measures: their degree and their size. We proceed now to define these two measures.

Definition 10 The degree of a converter is the maximum degree of the vertices of its corresponding
bipartite graph.

Definition 11 The size of a converter is the number of edges in the corresponding bipartite graph.

Let u be a node that hosts converters: each converter located at u is assigned to a pair of incoming
and outgoing directed links adjacent to w. This converter will be used only to change colors assigned
to requests containing the two directed links, while traversing w. Thus, a request may have one
color on the incoming link and a different color on the outgoing link. In other words, the connection
request corresponding to the request may travel on a wavelength on the segment ending at u and on
a different wavelength on the segment starting from u.

In the discussion that follows, we consider three models of limited conversion networks, differing
in the number of converters placed at nodes and in the placement pattern. Denote by d the degree
of w and by p the parent of w. The models we consider are the following:

all-pairs There is one converter for each pair of incoming and outgoing links adjacent to u. Thus,
the number of converters at u is d(d — 1)/2 and we can change color to all requests traversing
.
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top-down For each child v of u, there is a converter between links (p,u) and (u,v) and another
converter between links (v, u) and (u,p). The number of converters at u is 2(d — 1) and we can
change color only to requests coming from or going to p.

down For each child v of u, there is a converter between links (p,u) and (w,v) and a converter
between links (w, u) and (u,v), for each child w of u different from v. The number of converters
at wis (d — 1)? and we can change color only to requests going from p to a descendant of u or
to requests traversing two distinct children of .

In Figure 6, it is shown how converters are positioned at a node of a limited conversion binary tree.

top-down all-pairs

down

Figure 6: The position of wavelength converters at a node of a limited conversion binary tree network.

Clearly, a wavelength routing algorithm for down and top—down limited conversion networks also
work for all-pairs limited conversion network. However, the converse does not necessarily hold.

5.2 Optimal Bandwidth Utilization in Sparse Conversion Trees

In this section, we study the problem of placing wavelength converters with full conversion capabil-
ities at the nodes of a sparse conversion tree in order to guarantee complete utilization of available
bandwidth. In other words, given a directed tree network T, which supports I wavelengths, we want
to place wavelength converters at some of the nodes of T’ in order to route any set of communication
requests of load L using exactly I wavelengths. We consider the problem of deciding how many full
converters are necessary and suflicient to guarantee optimal bandwidth utilization.

Let w be a node of the tree T. If we locate at w a full converter for each pair of incoming
and outgoing directed links, then we can change the wavelengths assigned to all the requests going
through w. This is equivalent to splitting each request going through u into two requests (the first
ending at u and the second starting from u) and color each one independently. In the sequel we say
that w is a full conversion point if it hosts a full wavelength converter for each pair of incoming and
outgoing directed links. If w is a full conversion point, then we can consider the forest obtained from
T by removing u and color requests on each tree of the forest, independently.
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We proceed by considering the application of the greedy algorithm to spiders; a spider is a tree
having at most one node of degree greater than 2. It is known [20, 46] that spiders guarantee optimal
bandwidth utilization. In [3], it is demonstrated how this can be achieved by a greedy algorithm.

Notice that the tree depicted in Figure 1 is the smallest tree that is not a spider; it is easy to see
that each tree that is not a spider contains a subtree that is homomorphic to this one. By Theorem
3, we obtain that there exists a gap for the number of colors necessary to color a pattern of requests
on a tree: either the tree is a spider and, thus, any pattern of requests of load L can be colored with
exactly L wavelengths, or the tree is not a spider and thus there exists a pattern of requests of load L
that requires at least 5L /4 wavelengths. In other words, if we seek complete bandwidth utilization,
then we need to locate full conversion points at a set .S of nodes of T in such a way that the forest
obtained by splitting 7" at the vertices of .S consists of spiders.

The following two results are proved in [5] (see also [3]) and give tight bounds on the number of
full conversion points.

Theorem 12 (Auletta ef al. [5], see also [3]) For each integer n > 6, there exists a tree T with
n nodes such that for each set X of nodes of T, with | X| < E (% — 1)J, the forest which results by
splitting T at the nodes of X contains a tree that is not a spider.

Theorem 13 (Auletta et al. [5], see also [3]) For each tree T with n nodes, there exists a set X
of nodes of T, with | X| < E (% — 1)J, such that all trees of the forest which results by splitting T at
the nodes of X are spiders.

5.3 Limited Conversion Top—Down Binary Trees

In this section, we present a greedy algorithm for limited conversion top-down binary trees. We first
give a sufficient condition so that the algorithm can route any pattern of communication requests
of load L with W wavelengths (W > L). Then, we describe how to construct converters of small
degree and size that allow for optimal (W = L) or nearly-optimal bandwidth utilization using the
algorithm.

We concentrate on the converters located at a node u. We denote by p the parent of u, by v the
left child of u and by w the right child of u. Also, we denote by P(u) the set of requests touching u.
We partition P(u) into six subsets:

e P (u) consisting of the requests going from p to v;
e % (u) consisting of the requests going from v to p;
e P5(u) consisting of the requests going from p to w;
e P;(u) consisting of the requests going from w to p;
e P5(u) consisting of the requests going from v to w;
e [s(u) consisting of the requests going from w to v.

We denote by Cq(u), Ca(u), Cs(u) and Cy(u) the four converters placed at u. Converter C;(u) is
devoted to the requests of P;(u) (see Figure 7).

We now present the wavelength routing algorithm. The algorithm visits the nodes of the tree in
BFS order, starting from the root. The algorithm proceeds in phases, one for each node of the tree.
The phase corresponding to node u assumes that all requests touching nodes previously visited have
already been colored. In particular, it assumes that all requests traversing the links between u and
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Figure 7: Converters located at node u of a top—down limited conversion binary tree.

p (in any direction) have already been assigned a color on the segment between p and u. Then, the
algorithm extends this partial coloring by assigning a color to the segments of all requests touching
u that consist of links between w and its children.

More formally, let A; be the set of colors assigned to requests in Pj(u), Az the set of colors
assigned to requests in P;(u), As the set of colors assigned to requests in Ps(u), and A4 the set of
colors assigned to requests in Py(u). The algorithm performs two independent steps:

STEP 1: Converters C(u) and Cy(u) are set in such way that:

e for each r € Pj(u), the algorithm assigns a color ¢, to the segment (u,v) of r such
that the color of r on (p,u) can be converted to ¢, by converter C'(u).

e for each r € Py(u), the algorithm assigns a color ¢, to the segment (w, u) of r such
that ¢, can be converted into the color of r on (u, p) by converter Cy(u).

Let A} and A/ the set of colors assigned to the segments (u,v) and (w, u) of the requests
in Py (u) and Py(u), respectively. Requests in Fs(u) are assigned colors not in A} U A),.

STEP 2: This step is symmetric to step 1. Converter Cs(u) converts colors assigned
to requests of Ps(u) on segment (p, u) to colors assigned on segment (u, w); the algorithm
assigns colors to requests of P(u) for the segment (v, u) that can be changed by Cs(u)
into the colors assigned to the same requests on segment (u, p).

Let A, and A} the set of colors assigned to the segments (v, u) and (u, w) of the requests
in P»(u) and Ps(u), respectively. Requests in Ps(u) are assigned colors not in A} U A%,

The following lemma gives sufficient conditions for the correctness of the algorithm; that is,
conditions so that the algorithm can route any communication pattern of load L using W wavelengths

(W > L).

Lemma 14 The algorithm is correct if for all sets P(u) of requests touching a vertex u, for all sets
of colors A; used to color the segments of the requests in P;(u) between u and p, there exist sets of
colors Al such that:

1. Fori=1,2,3,4, colors of A; can be converted by C;(u) into colors of A%, and
2. |[AYU AL < W — [Bs] and A5 U A5l < W — | Bgl.

Especially in the case where we demand optimal bandwidth utilization using the algorithm de-
scribed above, Auletta et al. [5] (see also [3]) prove that, in order to prove correctness of the algo-
rithm, it is sufficient to prove that by putting two converters back-to-back we obtain a depth—two
L —superconcentrator.
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Definition 15 An L—superconcentrator is a directed graph with L distinguished vertices called inputs,
and L other distinguished vertices called outputs, such that for any 1 < k < L, any set X of k inputs
and any set Y of k outputs, there exist k vertex—disjoint paths from X to Y.

The converter which is proposed in [3, 5] for optimal bandwidth utilization using the algorithm
above supports L wavelengths and has degree 2¢/L — 1. Such a converter for L = 9 is depicted in
Figure 8. The reader may examine Figure 9 where two such converters have been put back-to-back
and see that the resulting graph is indeed depth—two superconcentrator. For a formal proof, see

3, 5.

Figure 8: A wavelength converter with 9 wavelengths which allows for optimal bandwidth utilization
using the greedy algorithm presented in Section 5.3.

Figure 9: The graph obtained by concatenating two copies of the converter of Figure 8.

Thus, we obtain the following result.
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Theorem 16 (Auletta et al. [5], see also [3]) There exist converters of degree 24/L—1 that allow
greedy wavelength routing of any communication pattern of load L with L wavelengths.

Although the depth—two superconcentrator produced by putting back—to—back two copies of the
converter depicted in Figure 8 has asymptotically optimal degree, the total number of possible con-
versions is too large.

Auletta et al. [7] (see also [3]), extending techniques presented in [36], construct wavelength
converters of small size that allow for optimal and nearly—optimal conversion on binary trees. The
construction is based on properties of dispersers [42] and Ramanujan graphs, which have been ex-
plicitly constructed in [30, 31, 45].

Theorem 17 (Auletta ef al. [7], see also [3]) There exist converters of size O (Llicg’igLL) that

allow greedy wavelength routing of any communication pattern of load L with L wavelengths.

Theorem 18 (Auletta ef al. [7], see also [3]) Let f(L) = o(L) be an increasing function. There
log? f(L)
loglog (L)

pattern of load L with L + ﬁ wavelengths.

exist converters of size O (L ) that allow greedy wavelength routing of any communication

The techniques used for proving Theorems 17 and 18 are similar in spirit with those used for
proving Theorem 16.

5.4 All-Pairs and Down Conversion Trees

In this section we present results about optimal and nearly—optimal bandwidth utilization in all-pairs
and down conversion trees. All results make use of the expansion properties of Ramanujan graphs.
The interested reader may see [3, 6, 19] for a complete discussion and proofs.

Gargano [19] and independently Auletta et al. [6] (see also [3]) show that using Ramanujan
graphs of constant degree, we can achieve optimal bandwidth utilization in binary trees with all-
pairs conversion.

Theorem 19 (Auletta et al. [6], Gargano [19], see also [3]) Let T be an all-pairs limited con-
version binary tree. If all the converters located at the nodes of T are 15-regular Ramanujan graphs,
then there exists a greedy algorithm that colors any communication pattern of load L on T using L
wavelengths.

For down conversion arbitrary trees, Gargano in [19] (see also [3]) shows how to obtain near-
optimal utilization of bandwidth using converters of constant degree. In particular, the following
result is proved.

Theorem 20 (Gargano [19], see also [3]) Let T' be a down limited conversion (arbitrary) tree
with W wavelengths per link. For any € > 0, there exists an integer k. = O(1/¢) such that, if all
converters located at nodes of T are k.—regular Ramanujan graphs, then it is possible to greedily route
any communication pattern of load at most (1 — e)W.

6 Randomized Algorithms

In an attempt to beat the 5/3 lower bound for deterministic greedy algorithms, Auletta et al. [4]
define the class of randomized greedy wavelength routing algorithms. Randomized greedy algorithms
have the same structure as deterministic ones; that is, starting from a node, they consider the nodes
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of the tree in a BFS manner. Their main difference is that a randomized greedy algorithm A uses a
palette of colors and at each phase associated with a node, A picks a random proper coloring of the
uncolored requests using colors of the palette according to some probability distribution.

The results presented in the following were originally obtained in [4]. The interested reader may
see [4] for further details.

6.1 Lower Bounds

In this section, we present two lower bounds on the number of wavelengths used by randomized
greedy algorithms to route patterns of requests of load L. We first present a lower bound for large
trees (i.e., trees with height Q(L)) in Theorem 21; then, in Theorem 22, we present a lower bound
for trees of constant height.

The first lower bound states that no randomized greedy algorithm can achieve a performance
ratio better than 3/2 if the depth of the tree is large.

Theorem 21 (Auletta et al. [4]) Let A be a (possibly randomized) greedy wavelength routing algo-
rithm on binary trees. There exists a randomized algorithm ADY which, on input € > 0 and integer
L > 0, outputs a binary tree T of depth L + eIln L + 2 and a pattern of communication requests
P of load L on T, such that the probability that A colors P with at least 3L/2 colors is at least
1 —exp(—L°).

The proof of the theorem can be modified to prove that if the depth of the tree is Q(L%53%), then
any greedy algorithm requires at least 7L /5 colors with high probability.
The following lower bound holds even for trees of constant depth.

Theorem 22 (Auletta et al. [4]) Let A be a (possibly randomized) greedy wavelength routing algo-
rithm on binary trees. There exists a randomized algorithm ADY which, on input § > 0 and integer

L > 0, outputls a binary tree T of constant depth and a pattern of communication requests P with
load L on T, such that the probability that A colors P with at least (1.293 — 6 — o(1))L colors is at
least 1 — O(L™%).

For the proofs, constructions based on the lower bound technique presented in Section 3.2 are
used.

Note that the adversary assumed in Theorems 21 and 22 has no knowledge of the probability
distribution according to which the randomized greedy algorithm makes its random choices. Possibly,
better lower bounds may be achieved by considering more powerful adversaries.

6.2 Upper Bounds

In this section, we give the main ideas of a randomized wavelength routing algorithm presented in
[4]. The algorithm has a greedy structure but allows for limited recoloring at the phases associated
with each node.

At each phase, the wavelength routing algorithm maintains the following two invariants:

I. The total number of colors is no greater than 7L/5.
II. The number of colors seen by two opposite directed links is exactly 6L /5.

At a phase associated with a node u, a coloring procedure is executed which extends the coloring
of requests that touch u and its parent node to the requests that touch u and are still uncolored.
The coloring procedure is randomized (selects the coloring of requests being uncolored according to
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a specific probability distribution). In this way, the algorithm can complete the coloring at the phase
associated with node u using at most 7L/5 colors in total, keeping the number of colors seen by the
opposite directed links between « and its children to 6L/5.

At each phase associated with a node u, the algorithm is enhanced by a recoloring procedure which
recolors a small subset of requests in order to maintain some specific properties on the (probability
distribution of the) coloring of requests touching u and its parent. This procedure is randomized as
well.

The recoloring procedure at each phase of the algorithm works will very high probability. The
coloring procedure at each phase always works correctly maintaining the two invariants. As a result,
if the depth of the tree is not very large (no more than O(L'/?)), the algorithm executes the phases
associated with all nodes, with high probability.

After the execution of all phases, the set of requests being recolored by the executions of the
recoloring procedure are colored using the simple deterministic greedy algorithm with at most o(L)
extra colors due to the fact that as far as the depth of the tree is not very large (no more than
O(L'/?)), the load of the set of requests being recolored is at most o(L), with high probability.

In this way, the following result is proved. The interested reader may look at [4] for a detailed
description of the algorithm and formal proofs.

Theorem 23 (Auletta et al. [4]) Let 0 < 6 < 1/3 be a constant. There exists a randomized
wavelength routing algorithm that routes any pattern of communication requests of load L on a binary

tree of depth at most L’ /8 using at most TL/54o(L) colors, with probability at least 1 —exp (—Q(L5)) .

Furthermore, with non—zero probability, the execution of the recoloring procedure is unnecessary
at all steps of the algorithm. Using this probabilistic argument together with additional technical
claims, Auletta et al. [4] obtain the following existential upper bound on the number of wavelengths
sufficient for routing any pattern of requests of load L. Note that Theorem 24 holds for any binary
tree (of any depth).

Theorem 24 (Auletta et al. [4]) Any pattern of communication requests of load L on a binary

2
tree can be routed with at most g (5 [@1 + 10) wavelengths.

Especially for binary trees of depth O(L1/3_E)7 Theorem 24 improves the large hidden constants
implicit in the o(L) term of the constructive upper bound (Theorem 23). In larger binary trees,
Theorem 24 significantly improves the 5/3 constructive upper bound for all sets of requests of load
greater than 26, 000.

7 Open Problems

Recent work on wavelength routing in trees has revealed many open problems; some of them are
listed below.

e The main open problem is to close the gap between 5L/4 and 5L/3 for the number of wave-
lengths sufficient for routing communication patterns of load L on arbitrary trees (see Theorems
3 and 6). Closing the gap between 5L/4 and 7L/5+ o(L) for binary trees also deserves some
attention.

e Furthermore, although for deterministic greedy algorithms we know tight bounds on the number
of wavelengths, this is not true for randomized greedy algorithms. Exploring the power of
randomized greedy algorithms in more depth is interesting as well.
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e Notice that the algorithms proposed are too far from optimality. We are not aware of any

inapproximability results for the problem. This indicates another direction for future research.

e Many improvements can be made in the work on wavelength conversion. The main open

problem here is whether we can achieve optimal bandwidth utilization in arbitrary trees using
converters of constant degree (or even linear size). We conjecture that this may be feasible in
all-pairs conversion trees with deterministic greedy algorithms.
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