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Multiwavelength communication [21, 41] is the most popular communication technology used onoptical networks. Roughly speaking, it allows to send di�erent streams of data on di�erent wave-lengths along an optical �ber. Multiwavelength communication is implemented through WavelengthDivision Multiplexing (WDM). WDM takes all data streams traveling on an incoming link and routeeach of them to the right outgoing link, provided that each data stream travels on the same wave-length on both links.In a WDM all{optical network, once the data stream has been transmitted in the form of light,it continues without conversion to electronic form until it reaches its destination. For a packettransmission to occur, a transmitter at the source must be tuned to the same wavelength as thereceiver at the destination for the duration of the packet transmission and no data stream collisionmay occur at any �ber.We model the underlying �ber network as a directed graph, where vertices are the nodes of thenetwork and links are optical �bers connecting nodes. Communication requests are ordered pairsof nodes, which are to be thought of as transmitter{receiver pairs. WDM technology establishesconnectivity by �nding transmitter{receiver directed paths and assigning a wavelength (color) toeach path, so that no two paths going through the same link use the same wavelength.Optical bandwidth is the number of available wavelengths. Optical bandwidth is a scarce resource.State{of{the{art technology allows some hundreds wavelengths per �ber in the laboratory, even lessin manufacturing, and there is no anticipation for dramatic progress in the near future. At the stateof the art there is no WDM all{optical network that uses the optical bandwidth in an e�cient way.However, for a realistic use of WDM all{optical networks for long distance communication networks,it seems necessary a signi�cant progress in the protocols for allocation of the available bandwidth.Thus, the important engineering problem to be solved is to establish communication between pairsof nodes so that the total number of wavelengths used is minimized; this is known as the wavelengthrouting problem [1, 34].Given a pattern of communication requests and a corresponding path for each request, we de�nethe load of the pattern as the maximum number of requests that traverse any �ber of the network.For tree networks, the load of a pattern of communication requests is well de�ned, since transmitter{receiver paths are unique. Clearly, for any pattern of requests, its load is a lower bound on thenumber of necessary wavelengths.Theoretical work on optical networks mainly focuses on the performance of wavelength routingalgorithms on regular networks using oblivious (prede�ned) routing schemes. We point out thepioneering work of Pankaj [34] who considered shu�e exchange, De Bruijn, and hypercubic networks.Aggarwal et al. [1] consider oblivious wavelength routing schemes for several networks. Raghavanand Upfal in [37] consider mesh{like networks. Aumann and Rabani [8] improve the bounds ofRaghavan and Upfal for mesh networks and also give tight results for hypercubic networks. Rabaniin [35] gives almost optimal results for the wavelength routing problem on meshes.These topologies reect architectures of optical computers rather than wide{area networks. Forfundamental practical reasons, the telecommunication industry does not deploy massive regular ar-chitectures: backbone networks need to reect irregularity of geography, non{uniform clustering ofusers and tra�c, hierarchy of services, dynamic growth, etc. In this direction, Raghavan and Upfal[37], Aumann and Rabani [8], and Bermond et al. [12], among other results, focus on bounded{degreenetworks and give upper and lower bounds as functions of the network expansion.However, wide{area multiwavelength technology is expected to grow arround the evolution ofcurrent networking principles and existing �ber networks. These are mainly SONET (SynchronousOptical Networking Technology) rings and trees [33]. In this sense, even asymptotic results forexpander graphs do not address the above telecommunications scenario.In this work, we consider tree topologies, with each edge of the tree consisting of two opposite2



directed �ber links. Raghavan and Upfal [37] considered trees with single undirected �bers carryingundirected paths. However, it has since becomes apparent that optical ampli�ers placed on �ber willbe directed devices. Thus, directed graphs are essential to model state{of{the{art technology.In particular, we survey recent methods and algorithms for e�cient use of bandwidth in treesconsidering arbitrary patterns of communication requests. All the results are given in terms of theload of the pattern of requests that have to be routed. Surveys on bandwidth allocation for morespeci�c communication patterns like broadcasting, gossiping, and permutation routing can be foundin [10, 25].The rest of this paper is structured as follows. In Section 2, we formalize the wavelength routingproblem and present hardness results and lower bounds for the general case and the special case ofsymmetric communication. In Section 3, we describe deterministic greedy algorithms and presentthe best known results on them. We briey discuss the special case of symmetric communication inSection 4. In Section 5, we relax the model and introduce devices called converters which can improvebandwidth allocation with some sacri�ce in network cost. In Section 6, we briey describe the �rstrandomized algorithm for the problem. We conclude, in Section 7, with a list of open problems.2 Hardness Results and Lower BoundsAs we mentioned in Section 1, the load of the communication pattern is a lower bound on the numberof necessary colors (wavelengths). The following question now arises. Given any communicationpattern of load L, can we hope for a wavelength routing with no more than L wavelengths? Theanswer is negative for two reasons. The former is that this problem is NP{hard. The latter is thatthere are patterns that require more than L wavelengths.We formalize the problem as follows.Wavelength Routing in TreesInstance: A directed tree T and a pattern of communication requests (i.e., a set ofdirected paths) P of load L.Question: Is it possible to assign wavelengths (colors) from f1; 2; :::; Lg to requests ofP in such a way that requests that share the same directed link are assigned di�erentwavelength?Intuitively, we may think of the wavelengths as colors and the wavelength routing problem as acoloring problem of directed paths. In the rest of the paper, we use the terms wavelength (wavelengthrouting) and color (coloring or proper coloring), interchangeably.Erlebach and Jansen [16] have proved the following hardness result.Theorem 1 (Erlebach and Jansen [16]) Wavelength Routing in Trees is NP{complete.Note that the above statement holds even if we restrict instances to arbitrary trees and commu-nication patterns of load 3. The following result, which is due to Erlebach and Jansen [17] as well,applies to binary trees and communication patterns of arbitrary load.Theorem 2 (Erlebach and Jansen [17]) Wavelength Routing on Binary Trees is NP{complete.Thus, the corresponding optimization problems (minimizing the number of wavelengths) areNP{hard, in general.Now, we give the second reason why, given a communication pattern of load L, a wavelengthrouting with not much more than L wavelengths is infeasible.3



Theorem 3 (Kumar and Schwabe [28]) For any integer l > 0, there exists a communicationpattern of load L = 4l on a binary tree T that requires at least 5L=4 wavelengths.The proof of the theorem is depicted in Figure 1.
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x2x1Figure 1: The communication pattern for the proof of Theorem 3. Each arrow represents L=2 =2l requests. Note that there exist 5L=2 requests and no more than 2 can be assigned the samewavelength. This yields at least 5L=4 necessary wavelengths.As we will see below (Section 4), these statements hold for the special case of symmetric commu-nication.3 Greedy AlgorithmsAll known wavelength routing algorithms [15, 22, 23, 24, 28, 32] belong to a special class of algorithms,the class of greedy algorithms. We devote this section to their study. Given a tree network T and apattern of requests P , we call greedy a wavelength routing algorithm that works as follows:Starting from a node, the algorithm computes a breadth{�rst (BFS) numbering of thenodes of the tree. The algorithm proceeds in phases, one per each node u of the tree.The nodes are considered following their BFS numbering. The phase associated withnode u assumes that we already have a proper coloring where all requests that touch (i.e.start, end, or go through) nodes with numbers strictly smaller than u's have been coloredand no other request has been colored. During this phase, the partial proper coloring isextended to one that assigns proper colors to requests that touch node u but have notbeen colored yet. During each phase, the algorithm does not recolor requests that havebeen colored in previous phases.Thus, various greedy algorithms di�er among themselves with respect to the strategies followed toextend the partial proper coloring during a phase. The algorithms in [23, 24, 28, 32] make use ofcomplicated subroutines in order to extend the partial coloring during a phase; in particular, theirsubroutines include a reduction of the problem to an edge coloring problem on a bipartite graph.On the other hand, the algorithms in [15, 22] use much simpler methods to solve the wavelengthrouting problem on binary trees. The common characteristic for all these algorithms is that they aredeterministic.3.1 The Reduction to Constrained Bipartite Edge ColoringThe algorithms in [23, 24, 28, 32] reduces the coloring of a phase associated with node u to an edgecoloring problem on a bipartite graph. In the following we describe this reduction.Let v0 be u's parent and let v1; � � � ; vk be the children of u. The algorithm constructs the bipartitegraph associated with u in the following way. For each node vi, the bipartite graph has four vertices4



Wi; Xi; Yi; Zi and the left and right partitions are fWi; Ziji = 0; � � �kg and fXi; Yiji = 0; � � �kg. Foreach request of the tree directed out of some vi into some vj , we have an edge in the bipartite graphfrom Wi to Xj . For each request directed out of some vi and terminating on u, we have an edge fromWi to Yi. Finally, for each request directed out of u into some vi, we have an edge from Zi to Xi.See Figure 2. The above edges are called real. Notice that all edges that are adjacent to either X0or W0 have already been colored, as they correspond to requests touching a node with BFS numbersmaller than u's (in this speci�c case, the requests touch u's parent) that have been colored at someprevious phase. We call the edges incident to either X0 or W0 color{forced edges.
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Figure 2: Requests touching node u and the relative bipartite graph (only real edges are shown).Notice that no real edge extends across opposite vertices Zi and Yi or Wi and Xi. Indeed vertexZi has edges only to vertices of type Xi; on the other hand, an edge fromWi to Xi would correspondto a request in the tree going from ci to itself. We call a pair of opposite vertices a line. Notice alsothat all vertices of the bipartite graph have degree at most L and, thus, it is possible to add �ctitiousedges to the bipartite graph so that all vertices have degree exactly L. The following claim holds.Claim 4 (Mihail et al. [32]) Let P be a pattern of communication requests on a tree T . Considera speci�c BFS numbering of the nodes of T , a node u and a partial coloring � of the requests of Pthat touch nodes with BFS number smaller than u's. Then, any coloring of the edges of the bipartitegraph associated with u corresponds to a proper coloring of the requests of P that touch node u.Thus, the problem of coloring requests is reduced to the problem of coloring the edges of anL{regular bipartite graph, under the constraint that some colors have already been assigned to edgesadjacent to W0 and X0. We call this problem an �{constrained bipartite edge coloring problem on anL{regular bipartite graph. The parameter � denotes that edges incident to nodes W0 and X0 havebeen colored with �L colors.The objective is to extend the coloring to all the edges of the bipartite graph. We �rst describea simple (and weak) solution to the problem. Then, we briey describe the main ideas that lead toan improved solution of the problem in [24].We call single colors the colors that appear only in one color{forced edge and double colors thecolors that appear in two color{forced edges (one incident in W0 and one incident in X0). We denoteby S and D the number of single and double colors, respectively. Clearly, 2D + S = 2L.Nowwe decompose the L{regular bipartite graph into Lmatchings (this can be done in polynomialtime; see [11]). At least S=2 of these matchings have at least one single color in one of the two colored{forced edges. Thus, we can use this single color to color the uncolored edges of the matching. The5



uncolored edges of the matchings that have no color{forced edges colored with a single color arecolored with extra colors (one extra color per matching). In total, we haveD + S + L� S=2 � L+D + S=2 = 2Lcolors. By using the simple way for solving the �{constrained bipartite edge coloring problem duringeach phase, we obtain a simple greedy wavelength routing algorithm that uses at most 2L colors(wavelengths) for any pattern of requests of load L.The works [23, 24, 28, 32] give better solutions to this problem. In order to obtain improvedresults, they either consider matchings in pairs and color them in sophisticated ways using detailedpotential and averaging arguments for the analysis [28, 32] or partition matchings into groups whichcan be colored and accounted for indepedently [23, 24]. In particular, Kaklamanis et al. [24] solvethe problem proving the following theorem.Theorem 5 (Kaklamanis et al. [24]) For any � 2 [1; 4=3] and integer L > 0, there exists a poly-nomial time algorithm for the �{constrained bipartite edge coloring problem on an L{regular bipartitegraph which uses at most �1 + �2 �L total colors and at most 4L=3 colors per line.The interested reader may refer to the papers [23, 24, 28, 32] for detailed description of the tech-niques. Note that one might think of bipartite edge coloring problems with di�erent constraints.Tight bounds on the number of colors for more generalized constrained bipartite edge coloring prob-lems can be found in [14].Using the coloring algorithm presented in [24] for � = 4=3 as a subroutine, the wavelength routingalgorithm maintains at each phase the following two invariants:I. The total number of colors is no greater than 5L=3.II. The number of colors seen by two opposite directed links is at most 4L=3.In this way, the following result can be proved.Theorem 6 (Kaklamanis et al. [24], see also [18]) There exists a polynomial time greedy algo-rithm which routes any pattern of communication requests of load L on a tree using at most 5L=3wavelengths.3.2 A Lower Bound Technique for Greedy AlgorithmsIn this section, we present a lower bound technique for greedy wavelength routing algorithms. We�rst briey describe the technique; then we give the best known statement for deterministic greedyalgorithms.The technique is based on an adversary argument. An adversary algorithm ADV is exhibitedthat constructs a communication pattern for which it can be proved that there exists a lower boundon the number of colors used by any greedy algorithm.The adversary ADV constructs the communication pattern P in an incremental way visiting thevertices of the tree according to a BFS visit. At each vertex v, the ADV deals with the set of requeststraversing one of the two parallel directed links between u and its parent p(u). For each downwardrequest p (that is, for each request including the directed link (p(u); u)), ADV has two options:1. do nothing; i.e., make p stop at u;2. propagate p to the left child l(u) by appending arc (u; l(u)) to p.6



Similarly, for each upward request p (that is, for each request including the directed link (u; p(u))),ADV has two options:1. do nothing; i.e. make p start from u;2. make p originate from the right child r(u) by pre-pending arc (r(u); u) to p;Moreover, the adversary algorithm ADV can introduce requests between the two children of u (seeFigure 3). Initially, these requests will consist of only two arcs (from a child to u and from u to theother child) and can be augmented when the adversary reaches the children of u.
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4Figure 3: The construction for the lower bound for greedy algorithms.At each step, since the adversary ADV may know how a greedy algorithm performs the coloring,it can choose to augment requests in such a way that the number of common colors used in downwardrequests from p(u) to l(u) and upward requests from r(u) to p(u) is small. In this way, no matterwhat a greedy algorithm can do, both the total number of colors and the number of colors seen bythe opposite directed links between u and its children will increase.By constructing such an adversary for deterministic greedy algorithms, Kaklamanis el al. [24](see also [18]) prove the following lower bound. The same lower bound technique can be used forgreedy algorithms that use randomization (see Section 6).Theorem 7 (Kaklamanis et al. [24], see also [18]) Let A be a deterministic greedy wavelengthrouting algorithm in trees. There exists an algorithm ADV which, on input � > 0 and integer L > 0,outputs a binary tree T and a pattern of communication requests P of load L on T , such that Acolors P with at least (5=3� �)L colors.Thus, the greedy algorithm presented in [24, 18] is best possible within the class of deterministicgreedy algorithms. In Section 6 we demonstrate how randomization can be used to beat the barrierof 5=3 at least on binary trees.4 Symmetric CommunicationIn this section we consider the special case of patterns of symmetric communication requests, i.e.,for any transmitter{receiver pair of nodes (v1; v2) in the communication pattern, its symmetric pair(v2; v1) also belongs to the communication pattern.We can restrict the wavelength routing of patterns of symmetric communication requests to usethe same wavelength for each pair of symmetric requests. Then, we can solve the wavelength routingproblem using the algorithm of Raghavan and Upfal [37] for the undirected version of the problem.7



This algorithm is deterministic and greedy. In this way, we can route any pattern of symmetriccommunication requests of load L using at most 3L=2 wavelengths. For undirected patterns ofrequests, this bound is tight in general, i.e., there exist patterns of undirected requests of load L thatcannot be routed with less than 3L=2 wavelengths. The following two questions now arise.� Can we improve this bound by assigning wavelengths to each request independently?� Is the wavelength routing problem easier than in the general case if we restrict the inputinstances to patterns of symmetric requests?Although we are not aware of complete answers for these questions, the following discussion showssome inherent similarities and di�erences between the general wavelength routing problem and thecase where the input instance is restricted to patterns of symmetric communication requests.For these patterns, Caragiannis et al. [13] have proved some interesting statements (lower bounds).Both NP{completeness results (Theorems 1 and 2) hold in the case of symmetric patterns of com-munication requests [13]. Notice that the lower bound of Figure 1 apply to non{symmetric patternsof requests. A similar lower bound (but much more complicated than the one of Figure 1) holds forsymmetric communication patterns as well.Theorem 8 (Caragiannis et al. [13]) For any � > 0 and integer l > 0, there exists a binary tree Tand a pattern of symmetric communication requests P with load L = 4l on T , such that no algorithmcan route P using less than (5=4� �)L wavelengths.Does Theorem 8 indicate that the symmetric version of the problem is as \hard" as the generalone? The following result gives evidence for a negative answer. Notice that for symmetric commu-nication patterns, there exists an algorithm which may route requests in such a way that each pairof opposite directed �ber links sees at most L wavelengths. This can be done in a trivial way ifwe consider two symmetric requests as an undirected one and use any algorithm for the undirectedproblem. However, this is not the case for the non{symmetric problem.Theorem 9 (Caragiannis et al. [13]) For any integer l > 0, there exists a tree T and a patternof communication requests with load L = 8l that cannot be routed in such a way that any pair ofopposite directed links of T sees less than 9L=8 wavelengths.5 Wavelength ConversionIn Section 3, we saw that (deterministic) greedy wavelength routing algorithms in tree networkscannot use, in the worst case, less than 5L=3 wavelengths to route sets of communication requests ofload L, resulting to 60% utilization of available bandwidth. Furthermore, even if a better (non-greedyor randomized) algorithm is discovered, we know by Theorem 3 that there exist communicationpatterns of load L that require 5L=4 wavelengths, meaning that 20% of the available bandwidthacross the �ber links will remain unutilized.The ine�ciency of greedy algorithms in the allocation of the bandwidth is due to the fact thatgreedy algorithms color requests going through node u without \knowing" which requests go throughits children.Thus, if we are seeking better utilization of optical bandwidth, we have to relax some of theconstraints of the problem. In particular, wavelength converters allow to relax the restriction that arequest has to use the same wavelength along the whole request from the transmitter to the receiver.For example, if we can change wavelengths assigned to requests we can correct at u the \bad"assignments made by the greedy algorithm and improve bandwidth utilization (see Figure 4).8
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v wFigure 4: An example of greedy coloring with wavelength conversion. The wavelengths assignedto requests P1 and P4 are changed at u in order to make possible to route all requests with twowavelengths.A possibility would be to convert the optical signal into electronic form and to retransmit it ata di�erent wavelength. If there is no restriction on the wavelengths on which the message can beretransmitted, then it is possible to route all patterns of communication requests of load L with Lwavelengths. In fact, in this case the assignment of wavelengths to requests on a link of the networkis independent from the wavelengths assigned to the same requests on the other links.However, converting optical signals to electronic signals has the drawback of wasting the bene�ts ofusing optical communication. Recently, a new technology has been proposed that allows to change thewavelength of an optical signal without converting it into electronic form. Wavelength converters havebeen designed and constructed [48]. A wavelength converter, placed at a node of the network, can beused to change the wavelengths assigned to requests traversing that node. The e�ects of wavelengthconversion have been extensively studied in di�erent models and it has been proved that it candramatically improve the e�ciency in the allocation of the optical bandwidth [9, 27, 38, 39, 40, 43, 47].However, wavelength conversion is a very expensive technology and it is not realistic to assume to giveto all the nodes of the network the capability of changing wavelengths to all requests. This motivatesthe study of all-optical networks that allow for some form of restricted wavelength conversion.In the literature, two prevalent approaches are used to address WDM optical networks with wave-length conversion: sparse conversion and limited conversion. In a network with sparse wavelengthconversion, only a fraction of the nodes are equipped with wavelength converters that are able toperform an arbitrary number of simultaneous conversions; in a network with limited conversion, in-stead, each node hosts wavelength converters, but these devices can perform a limited number ofconversions.Sparse conversion optical networks have been considered in [26, 39, 43, 46]. Wilfong and Winkler[46] consider the problem of minimizing the number of nodes of a network that support wavelengthconversion in order to route any communication pattern using a number of wavelengths equal tothe optimal load. They prove that the problem is NP{hard. Kleinberg and Kumar [26] presenta 2{approximation to this problem for general networks, exploiting its relation to the problem ofcomputing the minimum vertex cover of a graph. Ramaswami and Sasaki [39] show that, in a ringnetwork, a simple converter is su�cient to guarantee that any pattern of requests of load L can berouted with L wavelengths. Subramaniam et al. [43] give heuristics to allocate wavelengths, basedon probabilistic models of communication tra�c.9



Variants of the limited conversion model have been considered by Ramaswami and Sasaki [39],Yates et al. [47], and Lee and Li [29]. Ramaswami and Sasaki [39] propose ring and star networks withlimited wavelength conversion to support communication patterns e�ciently. Although they addressthe undirected case, all their results for rings translate to the directed case as well. Furthermore, theypropose algorithms for bandwidth allocation in undirected stars, trees, and networks with arbitrarytopologies for the case where the length of requests is at most two.5.1 The Network ModelIn our network model, some nodes of the network host wavelength converters. A wavelength convertercan be modeled as a bipartite graph G = (X; Y;E). Each one of the sets of vertices X and Y haveone vertex for each wavelength and there is an edge between vertices x 2 X and y 2 Y if andonly if the converter is capable of converting the wavelength corresponding to x to the wavelengthcorresponding to y. For example, a full converter corresponds to a complete bipartite graph and a�xed conversion converter corresponds to a bipartite graph where the vertices of U have degree one.Some examples of wavelength converters are depicted in Figure 5.
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(A) (D)(B) (C)Figure 5: Wavelength conversion bipartite graphs: (A) �xed conversion, (B) partial conversion, (C)full conversion, and (D) no conversion.In order to increase network performance without tremendous increase in cost, we mainly useconverters of limited functionality. The term limited reects the fact that the converters are simpleaccording to two measures: their degree and their size. We proceed now to de�ne these two measures.De�nition 10 The degree of a converter is the maximum degree of the vertices of its correspondingbipartite graph.De�nition 11 The size of a converter is the number of edges in the corresponding bipartite graph.Let u be a node that hosts converters: each converter located at u is assigned to a pair of incomingand outgoing directed links adjacent to u. This converter will be used only to change colors assignedto requests containing the two directed links, while traversing u. Thus, a request may have onecolor on the incoming link and a di�erent color on the outgoing link. In other words, the connectionrequest corresponding to the request may travel on a wavelength on the segment ending at u and ona di�erent wavelength on the segment starting from u.In the discussion that follows, we consider three models of limited conversion networks, di�eringin the number of converters placed at nodes and in the placement pattern. Denote by d the degreeof u and by p the parent of u. The models we consider are the following:all-pairs There is one converter for each pair of incoming and outgoing links adjacent to u. Thus,the number of converters at u is d(d� 1)=2 and we can change color to all requests traversingu. 10



top-down For each child v of u, there is a converter between links (p; u) and (u; v) and anotherconverter between links (v; u) and (u; p). The number of converters at u is 2(d� 1) and we canchange color only to requests coming from or going to p.down For each child v of u, there is a converter between links (p; u) and (u; v) and a converterbetween links (w; u) and (u; v), for each child w of u di�erent from v. The number of convertersat u is (d� 1)2 and we can change color only to requests going from p to a descendant of u orto requests traversing two distinct children of u.In Figure 6, it is shown how converters are positioned at a node of a limited conversion binary tree.
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Figure 6: The position of wavelength converters at a node of a limited conversion binary tree network.Clearly, a wavelength routing algorithm for down and top{down limited conversion networks alsowork for all{pairs limited conversion network. However, the converse does not necessarily hold.5.2 Optimal Bandwidth Utilization in Sparse Conversion TreesIn this section, we study the problem of placing wavelength converters with full conversion capabil-ities at the nodes of a sparse conversion tree in order to guarantee complete utilization of availablebandwidth. In other words, given a directed tree network T , which supports L wavelengths, we wantto place wavelength converters at some of the nodes of T in order to route any set of communicationrequests of load L using exactly L wavelengths. We consider the problem of deciding how many fullconverters are necessary and su�cient to guarantee optimal bandwidth utilization.Let u be a node of the tree T . If we locate at u a full converter for each pair of incomingand outgoing directed links, then we can change the wavelengths assigned to all the requests goingthrough u. This is equivalent to splitting each request going through u into two requests (the �rstending at u and the second starting from u) and color each one independently. In the sequel we saythat u is a full conversion point if it hosts a full wavelength converter for each pair of incoming andoutgoing directed links. If u is a full conversion point, then we can consider the forest obtained fromT by removing u and color requests on each tree of the forest, independently.11



We proceed by considering the application of the greedy algorithm to spiders; a spider is a treehaving at most one node of degree greater than 2. It is known [20, 46] that spiders guarantee optimalbandwidth utilization. In [3], it is demonstrated how this can be achieved by a greedy algorithm.Notice that the tree depicted in Figure 1 is the smallest tree that is not a spider; it is easy to seethat each tree that is not a spider contains a subtree that is homomorphic to this one. By Theorem3, we obtain that there exists a gap for the number of colors necessary to color a pattern of requestson a tree: either the tree is a spider and, thus, any pattern of requests of load L can be colored withexactly L wavelengths, or the tree is not a spider and thus there exists a pattern of requests of load Lthat requires at least 5L=4 wavelengths. In other words, if we seek complete bandwidth utilization,then we need to locate full conversion points at a set S of nodes of T in such a way that the forestobtained by splitting T at the vertices of S consists of spiders.The following two results are proved in [5] (see also [3]) and give tight bounds on the number offull conversion points.Theorem 12 (Auletta et al. [5], see also [3]) For each integer n � 6, there exists a tree T withn nodes such that for each set X of nodes of T , with jX j < j12 �n2 � 1�k, the forest which results bysplitting T at the nodes of X contains a tree that is not a spider.Theorem 13 (Auletta et al. [5], see also [3]) For each tree T with n nodes, there exists a set Xof nodes of T , with jX j � j12 �n2 � 1�k, such that all trees of the forest which results by splitting T atthe nodes of X are spiders.5.3 Limited Conversion Top{Down Binary TreesIn this section, we present a greedy algorithm for limited conversion top-down binary trees. We �rstgive a su�cient condition so that the algorithm can route any pattern of communication requestsof load L with W wavelengths (W � L). Then, we describe how to construct converters of smalldegree and size that allow for optimal (W = L) or nearly-optimal bandwidth utilization using thealgorithm.We concentrate on the converters located at a node u. We denote by p the parent of u, by v theleft child of u and by w the right child of u. Also, we denote by P (u) the set of requests touching u.We partition P (u) into six subsets:� P1(u) consisting of the requests going from p to v;� P2(u) consisting of the requests going from v to p;� P3(u) consisting of the requests going from p to w;� P4(u) consisting of the requests going from w to p;� P5(u) consisting of the requests going from v to w;� P6(u) consisting of the requests going from w to v.We denote by C1(u), C2(u), C3(u) and C4(u) the four converters placed at u. Converter Ci(u) isdevoted to the requests of Pi(u) (see Figure 7).We now present the wavelength routing algorithm. The algorithm visits the nodes of the tree inBFS order, starting from the root. The algorithm proceeds in phases, one for each node of the tree.The phase corresponding to node u assumes that all requests touching nodes previously visited havealready been colored. In particular, it assumes that all requests traversing the links between u and12
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C C C2 3 4(u) (u) (u)C1(u)Figure 7: Converters located at node u of a top{down limited conversion binary tree.p (in any direction) have already been assigned a color on the segment between p and u. Then, thealgorithm extends this partial coloring by assigning a color to the segments of all requests touchingu that consist of links between u and its children.More formally, let A1 be the set of colors assigned to requests in P1(u), A2 the set of colorsassigned to requests in P2(u), A3 the set of colors assigned to requests in P3(u), and A4 the set ofcolors assigned to requests in P4(u). The algorithm performs two independent steps:Step 1: Converters C1(u) and C4(u) are set in such way that:� for each r 2 P1(u), the algorithm assigns a color cr to the segment (u; v) of r suchthat the color of r on (p; u) can be converted to cr by converter C1(u).� for each r 2 P4(u), the algorithm assigns a color cr to the segment (w; u) of r suchthat cr can be converted into the color of r on (u; p) by converter C4(u).Let A01 and A04 the set of colors assigned to the segments (u; v) and (w; u) of the requestsin P1(u) and P4(u), respectively. Requests in P6(u) are assigned colors not in A01 [ A04.Step 2: This step is symmetric to step 1. Converter C3(u) converts colors assignedto requests of P3(u) on segment (p; u) to colors assigned on segment (u; w); the algorithmassigns colors to requests of P2(u) for the segment (v; u) that can be changed by C3(u)into the colors assigned to the same requests on segment (u; p).Let A02 and A03 the set of colors assigned to the segments (v; u) and (u; w) of the requestsin P2(u) and P3(u), respectively. Requests in P5(u) are assigned colors not in A02 [ A03.The following lemma gives su�cient conditions for the correctness of the algorithm; that is,conditions so that the algorithm can route any communication pattern of load L usingW wavelengths(W � L).Lemma 14 The algorithm is correct if for all sets P (u) of requests touching a vertex u, for all setsof colors Ai used to color the segments of the requests in Pi(u) between u and p, there exist sets ofcolors A0i such that:1. For i = 1; 2; 3; 4, colors of Ai can be converted by Ci(u) into colors of A0i, and2. jA01 [ A04j � W � jP5j and jA02 [A03j � W � jP6j.Especially in the case where we demand optimal bandwidth utilization using the algorithm de-scribed above, Auletta et al. [5] (see also [3]) prove that, in order to prove correctness of the algo-rithm, it is su�cient to prove that by putting two converters back-to-back we obtain a depth{twoL{superconcentrator. 13



De�nition 15 An L{superconcentrator is a directed graph with L distinguished vertices called inputs,and L other distinguished vertices called outputs, such that for any 1 � k � L, any set X of k inputsand any set Y of k outputs, there exist k vertex{disjoint paths from X to Y .The converter which is proposed in [3, 5] for optimal bandwidth utilization using the algorithmabove supports L wavelengths and has degree 2pL � 1. Such a converter for L = 9 is depicted inFigure 8. The reader may examine Figure 9 where two such converters have been put back-to-backand see that the resulting graph is indeed depth{two superconcentrator. For a formal proof, see[3, 5].
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Figure 9: The graph obtained by concatenating two copies of the converter of Figure 8.Thus, we obtain the following result. 14



Theorem 16 (Auletta et al. [5], see also [3]) There exist converters of degree 2pL�1 that allowgreedy wavelength routing of any communication pattern of load L with L wavelengths.Although the depth{two superconcentrator produced by putting back{to{back two copies of theconverter depicted in Figure 8 has asymptotically optimal degree, the total number of possible con-versions is too large.Auletta et al. [7] (see also [3]), extending techniques presented in [36], construct wavelengthconverters of small size that allow for optimal and nearly{optimal conversion on binary trees. Theconstruction is based on properties of dispersers [42] and Ramanujan graphs, which have been ex-plicitly constructed in [30, 31, 45].Theorem 17 (Auletta et al. [7], see also [3]) There exist converters of size O �L log2 Llog logL� thatallow greedy wavelength routing of any communication pattern of load L with L wavelengths.Theorem 18 (Auletta et al. [7], see also [3]) Let f(L) = o(L) be an increasing function. Thereexist converters of size O �L log2 f(L)log logf(L)� that allow greedy wavelength routing of any communicationpattern of load L with L+ Lf(L) wavelengths.The techniques used for proving Theorems 17 and 18 are similar in spirit with those used forproving Theorem 16.5.4 All{Pairs and Down Conversion TreesIn this section we present results about optimal and nearly{optimal bandwidth utilization in all{pairsand down conversion trees. All results make use of the expansion properties of Ramanujan graphs.The interested reader may see [3, 6, 19] for a complete discussion and proofs.Gargano [19] and independently Auletta et al. [6] (see also [3]) show that using Ramanujangraphs of constant degree, we can achieve optimal bandwidth utilization in binary trees with all{pairs conversion.Theorem 19 (Auletta et al. [6], Gargano [19], see also [3]) Let T be an all{pairs limited con-version binary tree. If all the converters located at the nodes of T are 15{regular Ramanujan graphs,then there exists a greedy algorithm that colors any communication pattern of load L on T using Lwavelengths.For down conversion arbitrary trees, Gargano in [19] (see also [3]) shows how to obtain near{optimal utilization of bandwidth using converters of constant degree. In particular, the followingresult is proved.Theorem 20 (Gargano [19], see also [3]) Let T be a down limited conversion (arbitrary) treewith W wavelengths per link. For any � > 0, there exists an integer k� = O(1=�) such that, if allconverters located at nodes of T are k�{regular Ramanujan graphs, then it is possible to greedily routeany communication pattern of load at most (1� �)W .6 Randomized AlgorithmsIn an attempt to beat the 5=3 lower bound for deterministic greedy algorithms, Auletta et al. [4]de�ne the class of randomized greedy wavelength routing algorithms. Randomized greedy algorithmshave the same structure as deterministic ones; that is, starting from a node, they consider the nodes15



of the tree in a BFS manner. Their main di�erence is that a randomized greedy algorithm A uses apalette of colors and at each phase associated with a node, A picks a random proper coloring of theuncolored requests using colors of the palette according to some probability distribution.The results presented in the following were originally obtained in [4]. The interested reader maysee [4] for further details.6.1 Lower BoundsIn this section, we present two lower bounds on the number of wavelengths used by randomizedgreedy algorithms to route patterns of requests of load L. We �rst present a lower bound for largetrees (i.e., trees with height 
(L)) in Theorem 21; then, in Theorem 22, we present a lower boundfor trees of constant height.The �rst lower bound states that no randomized greedy algorithm can achieve a performanceratio better than 3=2 if the depth of the tree is large.Theorem 21 (Auletta et al. [4]) Let A be a (possibly randomized) greedy wavelength routing algo-rithm on binary trees. There exists a randomized algorithm ADV which, on input � > 0 and integerL > 0, outputs a binary tree T of depth L + � lnL + 2 and a pattern of communication requestsP of load L on T , such that the probability that A colors P with at least 3L=2 colors is at least1� exp(�L�).The proof of the theorem can be modi�ed to prove that if the depth of the tree is 
(L0:639), thenany greedy algorithm requires at least 7L=5 colors with high probability.The following lower bound holds even for trees of constant depth.Theorem 22 (Auletta et al. [4]) Let A be a (possibly randomized) greedy wavelength routing algo-rithm on binary trees. There exists a randomized algorithm ADV which, on input � > 0 and integerL > 0, outputs a binary tree T of constant depth and a pattern of communication requests P withload L on T , such that the probability that A colors P with at least (1:293� � � o(1))L colors is atleast 1�O(L�2).For the proofs, constructions based on the lower bound technique presented in Section 3.2 areused.Note that the adversary assumed in Theorems 21 and 22 has no knowledge of the probabilitydistribution according to which the randomized greedy algorithm makes its random choices. Possibly,better lower bounds may be achieved by considering more powerful adversaries.6.2 Upper BoundsIn this section, we give the main ideas of a randomized wavelength routing algorithm presented in[4]. The algorithm has a greedy structure but allows for limited recoloring at the phases associatedwith each node.At each phase, the wavelength routing algorithm maintains the following two invariants:I. The total number of colors is no greater than 7L=5.II. The number of colors seen by two opposite directed links is exactly 6L=5.At a phase associated with a node u, a coloring procedure is executed which extends the coloringof requests that touch u and its parent node to the requests that touch u and are still uncolored.The coloring procedure is randomized (selects the coloring of requests being uncolored according to16



a speci�c probability distribution). In this way, the algorithm can complete the coloring at the phaseassociated with node u using at most 7L=5 colors in total, keeping the number of colors seen by theopposite directed links between u and its children to 6L=5.At each phase associated with a node u, the algorithm is enhanced by a recoloring procedure whichrecolors a small subset of requests in order to maintain some speci�c properties on the (probabilitydistribution of the) coloring of requests touching u and its parent. This procedure is randomized aswell.The recoloring procedure at each phase of the algorithm works will very high probability. Thecoloring procedure at each phase always works correctly maintaining the two invariants. As a result,if the depth of the tree is not very large (no more than O(L1=3)), the algorithm executes the phasesassociated with all nodes, with high probability.After the execution of all phases, the set of requests being recolored by the executions of therecoloring procedure are colored using the simple deterministic greedy algorithm with at most o(L)extra colors due to the fact that as far as the depth of the tree is not very large (no more thanO(L1=3)), the load of the set of requests being recolored is at most o(L), with high probability.In this way, the following result is proved. The interested reader may look at [4] for a detaileddescription of the algorithm and formal proofs.Theorem 23 (Auletta et al. [4]) Let 0 < � < 1=3 be a constant. There exists a randomizedwavelength routing algorithm that routes any pattern of communication requests of load L on a binarytree of depth at most L�=8 using at most 7L=5+o(L) colors, with probability at least 1�exp ��
(L�)�.Furthermore, with non{zero probability, the execution of the recoloring procedure is unnecessaryat all steps of the algorithm. Using this probabilistic argument together with additional technicalclaims, Auletta et al. [4] obtain the following existential upper bound on the number of wavelengthssu�cient for routing any pattern of requests of load L. Note that Theorem 24 holds for any binarytree (of any depth).Theorem 24 (Auletta et al. [4]) Any pattern of communication requests of load L on a binarytree can be routed with at most 75 �5 lpL5 m+ 10�2 wavelengths.Especially for binary trees of depth O(L1=3��), Theorem 24 improves the large hidden constantsimplicit in the o(L) term of the constructive upper bound (Theorem 23). In larger binary trees,Theorem 24 signi�cantly improves the 5=3 constructive upper bound for all sets of requests of loadgreater than 26; 000.7 Open ProblemsRecent work on wavelength routing in trees has revealed many open problems; some of them arelisted below.� The main open problem is to close the gap between 5L=4 and 5L=3 for the number of wave-lengths su�cient for routing communication patterns of load L on arbitrary trees (see Theorems3 and 6). Closing the gap between 5L=4 and 7L=5 + o(L) for binary trees also deserves someattention.� Furthermore, although for deterministic greedy algorithms we know tight bounds on the numberof wavelengths, this is not true for randomized greedy algorithms. Exploring the power ofrandomized greedy algorithms in more depth is interesting as well.17
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