Towards a Tighter Coupling of Bottom-Up and Top-Down
Sparse Matrix Ordering Methods

Jiurgen Schulze
University of Paderborn, Department of Computer Science
Flrstenallee 11, 33102 Paderborn, Germany

Abstract

Most state-of-the-art ordering schemes for sparse mateaoea hybrid of a bottom-up method
such as minimum degree and a top down scheme such as Geoegtesl issection. In this
paper we present an ordering algorithm that achieves aetigiupling of bottom-up and top-
down methods. In our methodology vertex separators arepirgeed as the boundaries of the
remaining elements in an unfinished bottom-up ordering. é@sequence, we are using bottom-
up techniques such as quotient graphs and special nodd¢icelsttategies for the construction
of vertex separators. Once all separators have been foumdyevusing them as a skeleton for
the computation of several bottom-up orderings. Expertalersults show that the orderings
obtained by our scheme are in general better than thosenebithy other popular ordering codes.

1 Introduction

Cholesky’s method [12] for solving a symmetric positive digé systemA -z = b, A € M(n, IR),
plays an important role in many scientific applications sashlinear programming and structural
engineering. The importance of this method is mainly dugs@enerality and robustness. Afis
sparse, the amount 6f in the factor matrix. can be reduced significantly by reordering the columns
and rows ofA prior to factorization. Since the computation of a minimufhdidering for general
sparse matrices is an NP-complete problem [59], much dffastbeen devoted to the development
of powerful heuristic algorithms. All heuristics are bassdthe observation that a symmetricx n
matrix A can be interpreted as the adjacency matrix of an undirectgethgs = (V, E), E C V x V.
In this graph theoretic context an ordering (or labelingd tsijection7 : V — {1,... ,n}.

As observed by Parter [49] and Rose [53], the column-wistfemation of A can be modeled by
a sequence dalimination graphss,, 1 < k < n. When column is factorized,GG;, is obtained from
G 1 (Gy = G) by applying the following modifications 6@, _: (1) Delete vertex, corresponding
to columnk in A, and (2) add edges so that the neighbors,cdre pairwise connected (the neighbors
of v, form acliquein G). Each edge added in step (2) corresponds to a fill-entfy. in

One of the most popular ordering schemesiigimum degre@6, 58]. At stage: the basic mini-
mum degree algorithm selects a vertex with minimum degrég;in, . This vertex is numbered next in
the ordering and is eliminated fro6i; ; to form the graphG,. The whole selection/elimination pro-
cess is then repeated f6f;,. Another effective method for reducing fill ieested dissectiof23, 24].
The method starts with computingvartex separatolS in G. All vertices inS are ordered after those
in G(V — S). The method is recursively applied to each componeirdf @f — S) until a component

This work is supported by the German Federal Department iein8e and Technology (PARALOR project).

consists of a single vertex or a clique. In contrast to mimmulegree which uses local information
of the elimination graphs to build in a bottom-up manner, nested dissection uses global iratom
of the original graph to buildr in a top-down manner. It is well recognized that the qualityhe
orderings produced by bottom-up and top-down schemes ignifarmly good [9]. Therefore, most
state-of-the-art ordering codes such asnB [34], METIS [38], ScoTCH [50], SPOOLES[4], and
WaPP[30] are using a hybrid of both schemes.

The main contribution of this paper is to present an ordesicigeme that achieves a tighter cou-
pling of bottom-up and top-down methods. In our methodolthgyvertex separators of an incomplete
nested dissection ordering are interpreted as the bowwsdafrithe remaining elements in an unfinished
bottom-up ordering. Consequently, we apply bottom-upneples such as quotient graphs and spe-
cial node selection strategies to the construction of xesgparators. Once all separators have been
found, we are using them as a skeleton for the computatioewefral bottom-up orderings.

The paper is organized as follows. In section 2 we introdeecbncept of quotient graphs and
review some of the most popular bottom-up ordering algorgh Furthermore, we describe state-
of-the-art algorithms for the construction of vertex separs and show how bottom-up and nested
dissection are combined in existing hybrid schemes. In@e@& the fundamental concepts of our
methodology are presented. Finally, section 4 providesitiss@mputational results for some bench-
mark matrices.

2 Preliminaries

In this section we briefly review some of the fundamental emts found in bottom-up and top-down
sparse matrix ordering schemes. All schemes are descriyeithd undirected grapty = (V, E),

E C V x V, associated with the symmetric matrix We are using the following notations. Lebe

a vertex ofG. The set of vertices that aegljacentto v is denoted bydj;(v). ForasetU C V, the
set of vertices adjacent 16 is given byadj;(U) = (U, 2djg(u)) — U. Note that we exclude all
vertices inU itself. Therefore, the setdj(U) is also called thdoundaryof U. A graphG can be
weighted i. e. there may be weights attached to the verticds.iiwe write|v| to denote the weight of
avertexv. The weight of a subséf is then given byU| = > _;; |u|. Thecardinality of U is denoted
by card(U). Some authors defineeight(U) to denote the weight of a sét. However, in this work
we consider unweighted graphs and weighted graphs integaigly. To ease the presentatiod| is
used to refer to the weight @f. Note that|U| andcard(U) are identical when the vertices have unit
weight, i. e. when the graph is unweighted.

2.1 Quotient graphs

Quotient graphs play a crucial role in our methodology. @adly, these graphs have been used
in bottom-up ordering algorithms such as minimum degreespwasent the elimination graphs [25].
In the following, we are using Roman letters for graphs (i(e.V, E) and calligraphic letters for
quotient graphs (i.eG, X, £).

Let us assume that; = (Vi, E) has been obtained fro by eliminating the vertice&’, C V,
i.e.V =V, UU,andV,NU, = 0. AsetD C U, of eliminated vertices is calleddomainin G (with
respect td/y), if the graphG (D) is a connected subgraph@fsuch thatdj; (D) C V;, i. e. there are
only uneliminated vertices on the boundary/of The quotient graply, associated witli7;, consists
of nodest, = DUV with D, = {D; D is a domain with respect @} andV;, = {{v}; v € Vi }.

In the context of quotient graphs a nolec Dy, is calledelementand a nodgv} € Vj, variable

The nodesY;, = D U V;, of G induce a partition of the vertices &f whereD, contains disjoint
sets of eliminated vertices ang, a variable for each uneliminated vertex. To ease the prasent
we will not always distinguish between a variajle} and the uneliminated vertex

An edge ofGy, is of two forms: Adomain-vertexedge(D,v) wherev € adj (D), and avertex-
vertexedge(u, v) where(u,v) € E and there existao domainD € Dy, such that: € adj, (D) and
v € adj (D). Note that there are no domain-domain edges in the quotraphg

There is a close relationship between the elementg,aind the cliques generated @y,. The
edge set;, of the elimination grapli7; can be written as

By =(En (Vi x Vi) U | (adig(D) x adjg(D)). (2.1)
DeDy,

The first set contains all edges@fthat are incident to uneliminated vertices. The secondsgtms
the edges of all cliques generated during the eliminatiatgss. However, the clique edges are not
explicitly stored inG,. Moreover, a clique is represented by an elem@r¢ D, and consists of all
vertices/variables that are connected’twia a domain-vertex edge.

In terms of quotient graphs the elimination of a variablis modeled as follows: (1) Remove
with all of its adjacent elements, (2) add a new elem@ptand connect it to all variables that were
adjacent ta or to an element, and (3) remove any vertex-vertex €dge) whereu € adj(D,)
andw € adj;(Dy).

The elimination ofv can be considered as mergingwith all adjacent elements. The merging
operation defines tiee on the vertices ofs. Let D, denote an element that is adjacenvtand that
has been created by the eliminationuofSinceD,, is absorbed by the new elemet,, we definev
to be the parent ofi. If one continues this way, the tree is built from the leavpsaithe root. Note
that any vertexs that is not adjacent to any element becomes a leaf of the frke.tree is called
elimination treeand plays an important role in the context of sparse dirdees®[20, 21, 45, 57].

In section 3 we consider quotient graphs that have a morerglesteucture, i. e. there is no one-
to-one relation between a variable @fand an uneliminated vertex ¢f. Each variable represents
a subset/; of uneliminated vertices such that two variablgsV; are connected by a vertex-vertex
edge, ifV; Nadj,(V;) # 0. A variableV; is connected to a domaib via a domain-vertex edge, if
Vi Nadj(D) # 0.

2.2 Bottom-up orderings

Bottom-up methods build the elimination tree from the lesaup to the root. In each iterationa
greedy heuristids applied toG;_; to select a vertex for elimination. This section briefly déses
two of the most popular bottom-up algorithms, the minimungrde and the minimum deficiency
ordering heuristics.

2.2.1 Minimum degree ordering

As mentioned above, at each iteratibthe minimum degre¢MD) algorithm eliminates a vertex

that minimizesdeg;, . (v) = |adjg, ,(v)[. The algorithm is a symmetric variant of the Markowitz
scheme [46] and was first applied to sparse symmetric faetioon by Tinney and Walker [58]. Over
the years many enhancements have been proposed to the Igasithin that have greatly improved
its efficiency. In the following we briefly describe some oéfle enhancements. For a detailed survey
the reader is referred to [27].

Perhaps one of the most important enhancements is the darfcapernodesTwo verticesu, v
of an elimination graplds;, belong to the same supernodeadfj;, (u)U{u} = adjg, (v)U{v}. Inthis
context the vertices, v are calledndistinguishable Indistinguishable vertices possess two important
properties: (1) they can be eliminated consecutively in aimmiim degree ordering, and (2) they
remain indistinguishable in all subsequent eliminatioapiis. As a consequence, all vertices that
belong to a supernode C V. can be replaced by a single logical node with weidht This reduces
the size of the elimination graphs and, therefore, the mmtf the minimum degree algorithm.

Closely related to the concept of supernodes is the notioextdrnal degree$42]. With our
notations, the external degree of a vertér supernodd is | adj, (I)|. Instead of using true degrees,
the vertex to be eliminated next is selected according textsrnal degree. The motivation is that the
only edges added by the elimination ofc I are between vertices indj.;, (7). As a result, one
obtains slightly better orderings [27].

A key feature of the minimum degree algorithm is tluaie vertex is eliminated in each step.
Once the new elimination graph has been built, the degred wédices that were adjacent to the
newly eliminated vertex have to be updated. The most timmswming part of the minimum degree
algorithm is this degree update step. In Liomiltiple minimum degre€VIMD) algorithm [42] an
independent set of minimum degree vertices is eliminatedaich step. This multiple elimination
technique reduces the amount of degree updates and leasigtifecant acceleration of the minimum
degree algorithm.

The efficiency of the minimum degree algorithm can be furthmaroved when usingpproximate
degreed1, 29] rather than exact degrees. Once a vetténas been eliminated frof;,_;, the new
degree of a vertex. € adjg, ,(v) is estimated by an upper bound. The upper bound is much less
expensive to compute than the exact degree. The approximatesnum degreg AMD) algorithm
proposed by Amestoy et al. [1] produces orderings that aofparable quality to those obtained
using exact degrees. Note that this is not always the cabetlvdgtapproximation proposed by [29].

2.2.2 Minimum deficiency ordering

A less popular bottom-up scheme is thenimum deficiencgr minimum local fil MF) heuristic [58].
Here, the exact amount of fill is used to select a vertex fonieation. Formally, the deficiency of a
vertexv in Gy, is defined aslefq, (v) = [{{u, w}; u,w € adjg, (v),u & adjg, (w)}|. The minimum
deficiency algorithm has received much less attention tsecatiits prohibitive runtime: The compu-
tation ofdef, (v) is much more expensive than the computatiodef., (v), and the elimination of
v does not only affect the deficiency of all verticesaitj;, (v), but also the deficiency of all vertices
that are adjacent to a vertexadj, (v). Furthermore, it was thought that minimum deficiency would
only marginally improve the ordering quality compared tanimum degree [18]. However, recent
studies have shown that much better orderings can be otthim® minimum deficiency [47, 48, 56].
In order to reduce the runtime of the minimum deficiency atban, Rothberg and Eisenstat [56]
have developed several node selection strategies thabmedyn approximate computation of the de-
ficiencies. These selection strategies have proven to heefeactive. Again, supernodes play a
crucial role. Letv be the vertex whose elimination transforrés._; into G,,. Furthermore, let
u € adjg, (v) and letl, denote the supernode with € I,. Then,defg, (u) is bounded by
+d(d — 1) whered denotes the external degreewoin Gy.. Since all vertices indjg, ,(v) — I, are
neighbors ofu and connected to a clique @&y, the upper bound can be tightenedtore s nvr(u) =
$d(d —1) — $¢(c— 1) with ¢ = |adjg, , (v) — I,,|. In Rothberg's and Eisenstagpproximate mini-
mum local fil(AMF) algorithm, the vertex to be eliminated next is selected @ling toscore iy .
Further selection strategies that are based on funetiore e are proposed such approximate

4

minimum mean local fillAMMF) or approximate minimum increase in neighbor degrad1IND).
For more details consult [56].

2.3 Top-down orderings

The most popular top-down scheme is George’s nested dimsg@{D) algorithm [23, 24]. The
basic idea of this approach is to find a subset of verti€@s G, whose removal partition& in two
subgraphs7(B) andG(W) with V. = SU BU W and|B|,|W| < «|V| for somel < a < 1.
Such a partition o7 is denoted by S, B, W). The setS is calledvertex separatoof G. If we order
the vertices inS after the(black) vertices inB and the(white) vertices inW¥/, no fill-edge can occur
betweenB andW . Typically, the columns corresponding $oconstitute a full off-diagonal block in
the Cholesky factor. Thereforé, is supposed to be small. Onéehas been found, the algorithm is
recursively applied to each connected componert@8) andG/(W) until a component consists of
a single vertex or a clique. In this way the elimination treéiilt from the root down to the leaves.
In contrast to the bottom-up methods introduced in secti@rit® nested dissection algorithm is
quite ill-specified [35]. For an effective implementatidretfollowing two important questions have
to be answered: (1) How should the separators be determamel(2) how important is a balanced
partitioning. In the following we address question (1) aeddaibe existing techniques for finding and
improving vertex separators. Questions (1) and (2) araudsed again in sections 3 and 4.

2.3.1 Finding separators

Graph partitioning heuristics are usually divided irtonstructionand improvement heuristicsA
construction heuristic takes the graph as input and corspaneinitial separator from scratch. An
improvement heuristic tries to minimize the size of a sefmarthrough a sequence of elementary
steps. This section introduces two powerful constructienristics, themultilevel methodand the
domain decomposition approaclihe next section discusses improving a separator.

Multilevel method In recent years, multilevel algorithms have been appliegassfully to the con-
struction ofedge separatorgl5, 33, 37]. Roughly speaking, a multilevel algorithm astsof three
phases. In the first phase the original grapls approximated by a sequence of smaller graphs that
maintain the essential properties Gf (coarsening phase). Then, an initial edge separator is con-
structed for the last graph in the sequence (partitionirgsph Finally, the edge separator is projected
backwards to the next larger graph in the sequence Ghiil reached (uncoarsening phase). A local
improvement heuristic such as Kernighan-Lin [39] or Fidaddattheyses [22] is used to refine the
edge separator after each uncoarsening step. The softaekages @Aco [32], METIS [38], and
PARTY [52] provide a variety of methods for the coarsening, pariihg, and uncoarsening phase.

For the computation of a nested dissection ordering we nee#w separators. Several nested
dissection implementations [11, 15] first find an edge séparaa a multilevel algorithm and then
derive a vertex separator from the edge separator using ehingttechnique that is described in
section 2.3.2. However, the size of an edge separator isiodgisectly related to the size of a vertex
separator. Therefore, the multilevel scheme has beendedeto find vertex separators directly [31,
35]. In the extended scheme a variant of the Fiduccia-Mgs$#e heuristic is applied to the refinement
of vertex separators. Thigertex Fiduccia-Mattheysesethod is summarized in section 2.3.2.

Domain decomposition method In contrast to the multilevel method described above, Asihcr
and Liu [7] propose a two-level approach to construct a westparator. Analogous to tltemain

decomposition methodsr solving PDEs, the vertex skt of G is partitioned intd/” = VUD1 U...u
D, with adj,(D;) C Vforall 1 <i < r. The set/ is calledmultisector The removal of/’ splltsG
into connected subgrapt@(D,), ... ,G(D,). Once a domain decompositi¢i’, D1, ... , D,) has
been found, a color froBLACK, WHITE} is assigned to each;. This induces a coloring of the
verticesv € V:

BLACK, ifall D with v € adj;(D) are coloredBLACK
color(v) = ¢ WHITE, if all D with v € adj (D) are coloredWHITE (2.2)
GRAY, otherwise.

To ensure that the s&t = {v € V; color(v) = GRAY} constitutes a valid vertex separator @f
for every coloring ofDy, ... , D,, the vertices of the multisectdr are properly blocked teegments
This blocking technique is summarized in section 3.1. liedtve is to group into a segment adjacent
variables that do not share at least one domain in their ad@clist. As a result, one obtains a
partltlonmgV ViU...UV,, V;nV; = 0, of the multisector. Analogous to (2.2) a segmeEntC 1%
can be colored as foIIows

BLACK, ifall D with V; Nadj.;(D) # 0 are colore/BLACK
color(V;) = < WHITE, ifall D with V; Nnadj,(D) # () are coloredWHITE (2.3)
GRAY, otherwise.

Now, and because of the properties of the segments, th8 set{v € X7; JV; C V withv €
V; and color(V;) = GRAY} constitutes a vertex separator @Gffor every coloring ofD+, ... , D,.
In section 3.1 the blocking of vertices to segments and tha&iog of D+, ... , D, is discussed again
and illustrated on an example.

Ashcraft and Liu use a randomized greedy domain-growingrélgm to generate a domain de-
composition. The set®,... , D, are colored using a Fiduccia-Mattheyses scheme that naagni
the size of the induced vertex separagr OnceS has been found, a sophisticated network-flow
algorithm is used to refin§. For more information the reader is referred to [7, 8.

There is a close relalionship between the éats. .. , D, and the domains formed by a bottom-up
ordering algorithm LeU = UJ;_, D,. Since all graphs3(D;) are connected subgraphs@fwith
adj(D;) C V, each seD); can be interpreted as a domain with respect to the eliminaeitesl .
The multisectort/ contains all uneliminated vertices 6f, i.e.V = V UU. In section 3.1 we show
that a domain decomposmqw, Dy, ..., D,) can be represented by a quotient graph. Even more, if
Vis properly partitioned into segments, the quotient grapbipartite, i. e. it contains domain-vertex
edges only. This interesting connection encouraged usdaustient graphs for the construction of
vertex separators. The quotient graphs are obtained byseldetion strategies similar to those found
in bottom-up ordering algorithms.

2.3.2 Improving separators

To be more precise, we are interested in improving the pant{tS, B, W) of a graphG rather than in
improving the separatd. Usually, the quality of a partition is measured in termsegarator size and
balance of the partition. To decide whether one partitiSnB, W) is better or worse than a second
partition (S’, B',W'), an evaluation functior¥' is needed. This function weights the sometimes
conflicting goals of minimizing separator size and maximgzpartition balance. The choice of an
appropriate evaluation function is not straightforwardl anust be considered in the context of the
overall ordering process. Section 3.2 introduces the el function that is used by our algorithm.

A partition (S, B, W) is usually improved by finding a new separatgfrwith the property that
|S’| <|S|. We then have to examine the partition induced¥y We hope that the improvement of
S results in an improvement of the partitiof, B, W). There are two main improvement techniques
that are in common use today. Firstheuristic methodshat rely on finding a “nearby” separatsft
by simple vertex moves and, secondlifect methodshat rely on finding azertex covein a bipartite
subgraph of7 to move a set of vertices simultaneously.

Heuristic methods The algorithms proposed by Kernighan-Lin [39] and Fiduddiattheyses [22]
are the most frequently used heuristics for refining edgarsgprs of graphs. Both algorithms con-
sist of two nested loops. In the inner loop, the Kernigham-aigorithm chooses pairs of vertices
that belong to different components, swaps their positioggally and locks them. These logical
swaps are repeated until all vertices are locked. The fueddtahidea of the algorithm is to allow a
deterioration of the cut size when swapping the vertice® Adpe is that an intermediate increase of
the cut size allows the discovery of better partitions insaguent pair exchanges. Once all vertices
are locked, the sequence of logical swaps is chosen that teatthe maximal decrease in cut size.
The corresponding vertices are then physically swappedtanduter loop restarts the improvement
process for the new partition.

To speed up the inner loop, Fiduccia and Mattheyses sugbésteonsider only simple vertex
moves instead of pair exchanges. In this way, a single séarehbetter partition (i. e. one execution
of the inner loop) can be performed in time bounded by the rermalb edges in the graph. In real
implementations numerous extra “tricks” such as early teation, lazy evaluation of priorities, and
randomization are used to improve both runtime as well asitgud the solutions [32].

The Fiduccia-Mattheyses algorithm can easily be genedlio vertex separators [5]. In this
vertex Fiduccia-Mattheyses algorithm each move selectstaxw € S, transfers it toB (or W) and
locks it. Once a vertex has been transferred #, all neighbors ofv in W are pulled intoS. The
selection ofv is based on g@ain-valuethat measures the change in separator size. For a weighted
graph the gain associated with movingrom S to B is defined as

gaing,p(v) =[o|— D ul.

u€adjq (v)NW

The valuegaing_,;,(v) is defined analogously. Since a vertex cannot move twiceimwttie inner
loop, it can be shown [35] that the total time required for potmg and updating the gain-values is
asymptotically bounded by the number of edges in the grdphhéapdata structure is used to sort
the gain-values, the cost for one execution of the inner Isapven byO(elogn) wheree denotes
the number of edges amdthe number of vertices in the graph. Note that we are corigigleveighted
graphs. Therefore, we cannot use a linear time algorithrh asbucket soras proposed by Fiduccia
and Mattheyses.

Direct methods An alternate algorithm for refining a vertex separatbhas been introduced by
Liu [44]. Again, let (S, B,W) denote the partition off and let B be the component with larger
weight. If we defineBg to be the set of vertices iR that are adjacent to vertices §y i.e. Bg =
adj4(S)NB, then any vertex cover in the bipartite graflt{S, Bg) constitutes a valid vertex separator
of G. In order to obtain an improved separator, we must find a minincardinality or a minimum
weight vertex cover, depending on whetliéis weighted or not. In the unweighted cassmaximum
matchingis determined i (S, Bs). The maximum matching is then used to construct a vertexrcove
so that every matching edge is incident to exactly one verféixe cover. According to Konig [40] the

7

NS S NS NS A\
S 5 % & S
Fig. 2.1: Topmost separators of a rectangular gitd. is the first separator, followed by the separatfysS-,

and53, Sy.

vertex cover must have minimum cardinality. dfis weighted, a network-flow technique is used to
find a minimum weight vertex cover. The details are beyondtope of this paper; more information
can be found in [8]. Note that it is also possiblep@ir S with the smaller compone¥’. However,

in this case the refinement process can further increasentbelance of the partition.

It turns out that the same vertex cover technique can be asalotain a vertex separator from an
edge separator. One simply computes a minimum vertex covéhé bipartite graph induced by the
cut edges. Note that it also possible to use heuristics fdirfinan approximate minimal cardinality
vertex cover [41].

2.4 Multisection orderings

The shortcomings of a bottom-up method such as minimum deeelargely due to thecal nature

of the algorithm. In [13] Berman and Schnitger describe aimimm degree elimination sequence for
the k x k grid so that the number of factor entries and the number dbfamperations is an order
of magnitude higher than optimal. By construction, theinesne produces elements with a severe
“fractal” boundary. Asymptotically optimal orderings férx k grids are produced by George’s nested
dissection scheme [36]. If the separators are eliminatedreing to the given nested dissection order,
elements with a “smooth” boundary are created.

The shortcomings of nested dissection are best illustrated x £ grids with large aspect ratio
(i.,e. h < k). Here, minimum degree outperforms nested dissectionceSine nested dissection
scheme sitill relies on the best separators of the grid (mestrms of separator size and partition
balance), the bad performance cannot be attributed to thbtywf the separators. Moreover, it
is a question of how the separators amembered Figure 2.1 shows the topmost separators of a
rectangular grid. If the separators are numbered accordiribe given nested dissection ordég,
will be eliminated beforeS; and S,. As a consequence one obtains an element whose boundary
contains2h vertices. However, if the separators are eliminated froeft to right” or “from both ends
to the center” all elements will have a boundary of sizeTherefore, grofile or minimum degree
ordering of the separator vertices will produce less filntimested dissection.

Multisection schemes [9] provide a more effective way of henng the vertices associated with
a separator. Here, separators are only usesplibthe graph in multiple subgraph. As a result one
obtains a domain decompositi¢, 24, ... ,€,) of the original graph wheré contains all vertices
that belong to a separator. Note that we used Greek lettelistinguish the multisection domain de-
composition(®, €2, ... , £2,) from the separator domain decompositidn, Dy, ... , D,) introduced
in section 2.3.1. As described by Ashcraft and Liu [7], thiteladomain decomposition can be used
to construct the separators required by the former domaiordeosition.

The fundamental property of a multisection ordering is thatvertices in the domain;, ... ,Q,
are numbered before the vertices in the multisedtoll hus, the elimination sequencecisnstrained

i. e. some vertices must be ordered before others. To orderdtices in the multisector we consider
the elimination graplizs = (®, Fg) with (cf. equation (2.1))

Ey = (EN(® x 2))U | (adje () x adje()).

i=1

Note thatG¢ represents the structure of tiehur complement matribxDifferent ordering methods
can be used to number the vertices in the domains and theesrt the Schur complement graph.
Therefore, a multisection ordering is defined by three ct®i®]:

1. How to determine the domain decomposit{@n €2y, ... ,€2,)?
2. What fill-reducing ordering to use to order the domdins. .. , Q,?
3. What fill-reducing ordering to use to order the multiseck@

Multisection orderings are denoted b§S(ord;, ordy) whereord; refers to the ordering method used
to number the domains andd, refers to the ordering method used to humber the multisedtor
the literature, there are a number of existing ordering sweeusing the multisection approach. Two
important examples are:

¢ Incomplete Nested Dissection [28MS(MMD, ND) andMS(CMD, ND)

In this scheme the multisector is constructed by the regaitsisection process of nested dissec-
tion. In contrast to the original nested dissection algponithe recursion terminates after a few
levels and the vertices in the remaining subgraphs/donamsumbered using either multiple
minimum degreg MMD) [42] or constrained minimum degrd€MD) [43]. The vertices in
the multisector are numbered according to the given nesgseéction ordering.

¢ Local Nested Dissection [14]MS(ND, PROFILE)

The most successful ordering scheme ok & grids withh < k is local nested dissection.
Here, the domain decomposition is constructed by a set allphand vertical dissectors that
subdivide the rectangular grid in roughly square domairghEsquare domain is then numbered
by nested dissection. The vertices in the multisector aneb@uwed by a profile ordering.

The h x k grid example gives rise to the assumption that the qualitgrofncomplete nested dis-
section ordering can be further improved when using mininti@gree to order the separator vertices
instead of following the given nested dissection orderihigis multisection ordering is referred to as
MS(CMD, MMD) and has been independently discovered by Ashcraft, Liul[@r@l Rothberg [54].

3 Our methodology

Two levels of hybridizing bottom-up and top-down methods ba found in the literature: incomplete
nested dissection (i. &IS(MMD, ND) or MS(CMD, ND)) and minimum degree post-processing on
an incomplete nested dissection (iMS(CMD, MMD)). Our driving interest is to achieve an even
tighter coupling of both methods. Roughly speaking, we wargxplore how bottom-up methods
can be used to improve the construction of vertex separatwsow vertex separators can be used to
improve the construction of bottom-up orderings.

To achieve the first goal we developed a new multisectionmeehtbat is given in figure 3.1. Sim-
ilar to the original scheme proposed by Ashcraft and Liu {8 multisector® is constructed by a

MULTISECTION(orde, ordy , ords)

01: Determine a domain decompositigh, (24, . .. ,Q,) of G by a recursive bisection
process. Use node selection strategys to construct the vertex separators.

02: for each sef); do

03: Eliminate all vertices iif}; using node selection strategyd; .

04: Construct the elimination grah.

05: Number the vertices i@ using node selection strategyds,.

Fig. 3.1: Function MULTISECTION.

recursive bisection process (line 01). However, a new teultl method is used to determine the
vertex separators. In contrast to traditional methods telgton a matching technique to coarsen a
graph, the new method produces a sequeéncé€, ... , G; of quotient graphs wherg,, is obtained
from G, 1,1 < k < ¢, by the elimination of certain variables. The variables @resen according
to a node selection strategyds that is similar to selection strategies found in bottom-lgmathms.
Once a domain decomposition has been determined, thesegitithe domaing, ... , 2, are elim-
inated according to selection strategyl; (lines 02-03). Finally, the Schur complement graph is
constructed, and all vertices (¢ are eliminated according to selection strategy- (lines 04-05).

According to the classification scheme proposed by AsharadtLiu [9], our multisection order-
ing algorithm is defined by the three choices:

1. What node selection strategy to use to coarsen a quotizpihg
2. What node selection strategy to use to order the donfains. . , ,?
3. What node selection strategy to use to order the multis€c?

In our methodology multisection orderings are denotedVi}(ordg, ordy, ordy). Again, ord; and
ordy refer to the elimination methods applied to the verticehadomains and the multisector. The
additional parameterrdg refers to the elimination method applied to the variables gdiotient graph.
Thus,ordg specifies the coarsening method in our multilevel algorithm

To achieve the second goal we generalized our multisectiderimg scheme. In the new scheme
the multisectord serves as a “skeleton” for the computation of several bottipnorderings. The
key idea is to eliminate some separatorsboéccording to nested dissection and some according to
minimum degree. Therefore, the new scheme is cdlisthge multisection Tristage multisection
schemes have originally been proposed by Ashcraft, Liu,Esenstat [10].

In section 3.1 we formally introduce our multilevel algbrit and present some node selection
strategies to coarsen a quotient graph. Section 3.2 desctiile local improvement heuristic that is
used to refine a vertex separator after each uncoarsenipg\de prove that the performance of our
heuristic is asymptotically identical to the performanddh® vertex Fiduccia-Mattheyses heuristic
proposed by Ashcraft and Liu [5]. Finally, section 3.3 préasdhe tristage multisection scheme.

3.1 Finding a separator in the new multilevel scheme

The key idea of our multilevel scheme is to approximate tigiral graphG by a sequence of quotient
graphsgy, G1, G;. Each quotient grapli,, 0 < k < t, has the fundamental property that any set
of variablesS;, whose removal separatgs in two or more connected components, induces a vertex
separatolS in (G. As a consequence, any improvementgfleads to an improvement &f.

10

SEPARATOR(ordg)
01: Constructinitial quotient grapf, from G.

02: k:=0;
03: while G; not small enougklo
04: Construct coarser quotient gra@h, ; by eliminating some variables frog,.

The variables are chosen according to node selectiongyrate.
05: k:=k+1;
06: end while
07: Determine a coloring fog; that induces a small separatsy.
08: while £ > 0 do

09: Extend the coloring of;, to the nodes ofj; ;. This induces a separatSg_1 of Gy .
10: Improve the coloring ofj;, 1 so thatS;_; is minimized.

11: k=k-1;

12: end while

13: Extend the coloring o, to the vertices of7. This induces a separatsrof G.
14: ImproveS by applying a vertex cover technique.

Fig. 3.2: Function $PARATOR

This section is divided in two parts. The first part describesmultilevel scheme and the second
part introduces some node selection strategies to codmsagubtient graphs.

3.1.1 Description of the new multilevel scheme

Our multilevel scheme starts with the construction of atiaghiguotient graph, from G. Based on
Go a sequence of quotient grap@is, . . . , G, is produced wherg, is obtained frong, ,,1 < k <,
by the elimination of certain variables. We want that eacbtigmt graphgG, satisfies the following
two conditions (this include§y, i.e.0 < k < 1):

(1) Letyy, = {Vi,...,V,} denote the set of variables §i} and letS;, C V;, be a separator fayy.
If S, consists of variable§),, ,V,,, thenS =V, U... UV, constitutes a separator Gf.

(2) Gy, is bipartite, i. e. it only contains domain-vertex edges.

Condition (1) is crucial for the effectiveness of our muti€l scheme. It relates the minimization
of the separator for the coarse gra@hto the minimization of the separator for the original graph
G. Note that in contrast to other multilevel methods, the sspa for a coarse graph is truly a min-
imal vertex separator of the original graph. To find a separdj;, in the coarse graply, we are
using the coloring technigue proposed by Ashcraft and Lju [[Zet us assume that a color from
{BLACK, WHITE} is assigned to each elemeht € Dj of the quotient graplyj,. Analogous
to (2.3), this induces a coloring of the variablgg;, ... ,Vi}. As we will see soon, condition (2)
guarantees that the gray colored variables constitute aratep ofG,. for every coloring of the ele-
ments. Figure 3.2 summarizes the structure of our multilsgeeme. In the following we describe
each step in more detail.

Construction of the initial quotient graph We start with computing anaximal independent sét
of vertices inGG. The vertices that belong @ are removed fronG to obtainr = card(U) initial
domains. All vertices that lie on the boundary of exactly oleenain are merged with that domain.
Let Dy,..., D, denote the resulting domains and 1etdenote the set of uneliminated verticesf

11

Fig. 3.3: The coarsening of a grafgh. (a) shows the construction of the initial quotient grajgh The vertices
of GG that belong to the independent $étare circled. These vertices represent the initial domains.
Any vertex that lies on the boundary of only one domain is redngith that domain. This is indicated
by an oval. All neighboring vertices that do not share a comradjacent domain are blocked to a
segment. This is indicated by a rectangle. The initial rdtgraph is shown in (b). Elements are
denoted by white colored circles, variables by black calaigcles. The larger the circle, the more
vertices ofGG have been absorbed by the element/variable. (c) shows titeegqtigraphG, obtained
from G, when eliminating all variables circled in (b). In (d) all iistinguishable variables @f; (they
are connected with a dotted line in (c)) have been replacesidypervariable. The black dotted line
represents a vertex separator fr, Go, andG.

According to Ashcraft and Liu, the coloring rule (2.2) prads a valid vertex separator Gffor every
coloring of D4, ... , D,, if and only if

Yu,v e V: (u,v) € E = 3D with u,v € adj (D). (3.2)

Figure 3.3 (a) shows that the coloring technique fails, iL}3s not fulfilled. Let us assume that the
three domains adjacent toare colored black and the two domains adjacent &ve colored white.
Due to (2.2)u is colored black ana is colored white. Since both vertices are connected by ar edg
in G, no separator is induced by this coloring. Such a situatamot occur, if all vertices,, v € V
with (u,v) € E share a common domain (for a formal proof the reader is redeto [7]).

To avoid this problem, the vertices I are blocked to segments, ... , V; so that
VVi,V; €V : Vinadjg(V;) # 0 = 3D with Vi, V; Nadjg(D) # 0. (3.2)
The segmentd, ..., V, are chosen to be the smallest segments that fulfill (3.2). gurdi 3.3 (a)

the verticesu, v are blocked to a segment. All other segments consist of desirgjtex. Equa-

12

tion (3.2) guarantees that the coloring rule (2.3) producealid vertex separator for every coloring
of Dy,...,D,.

We are now able to define the initial quotient grajh The elements are the domaibs, . .. , D,
and the variables are the segmetits. .. , V. The edges ofj, are as described in section 2.1. Obvi-
ously, G, satisfies condition (1). Because of equation (3.2) all Wéesl;, V; with V; Nadj;(V;) # 0
share a common domain. As a consequence, there is no edgeebetimo variables iy. Thus,Gg
also satisfies condition (2). Figures 3.3 (a) and (b) ilatstithe construction @j,.

Construction of coarser quotient graphs Let G, = (Dy U Vg, &) denote a quotient graph that
satisfies conditions (1) and (2). For the constructiogof; we first determine an independent set of
variables{ C Vj, in G, using node selection strategyds. In this context two variable¥;, V; € V;,
are said to be independent, if there is no elemierg D, such that(D,V;) € & and(D,V;) € &.
Oncel{ has been found, a variablg € U/ is merged with all adjacent elements to form a new element
Dy;,. Each merging operation corresponds to an eliminationistegoottom-up algorithm. Note that
there is some analogy with the multiple minimum degree algar proposed by Liu [42]. In each
iteration of Liu’s ordering algorithm an independent seweftices with minimum degree is chosen
for elimination. However, in our coarsening scheme the ahaif variables is more relaxed and not
limited to variables with minimum degree (cf. section 3)1.2

Finally, all remaining variables that are adjacent to eyaohe element are merged with that
element. The resulting quotient graphdg, ;. It remains to show thaf, ., satisfies conditions (1)
and (2). Obviouslygy 1 is bipartite. Because df;, 1 C Vi, every separator af;; is a separator
of G, and sincej;, satisfies condition (1), the condition is also satisfiedjpy; .

There is another analogy to minimum degree in our coarsesahgme: All variables o§y., 1
that are adjacent to the same set of elements are replacesityl@supervariable This replacement
further reduces the number of nodesGp, ; and leads to an acceleration of the coarsening process.
The construction of new quotient graphs terminates, wiign, contains less than 200 elements.
Figures 3.3 (b)—(d) illustrate the constructiondif, ;.

Coloring of quotient graphs Again, letG, = (Dy U Vy, &) denote a quotient graph that satisfies
conditions (1) and (2). To construct a separaipgrC V;, of G, we are using the coloring technique
proposed by Ashcraft and Liu [7]. To be more precise, we aigue coloring rule

BLACK, ifall D € adjg, (V;) are coloredBLACK
color(V;) = ¢ WHITE, ifall D € adjg, (V;) are coloredWHITE (3.3)
GRAY, otherwise.

Note thatg, is bipatrtite, i. e. there is no edge between two variablegrdfore, no additional blocking
of variables is necessary to ensure that theSget= {V; € Vy; color(V;) = GRAY} constitutes a
valid separator ofj; for every coloring of the elements ;.

To determine a coloring that minimizes the size&Sgf we are using a Fiduccia-Mattheyses scheme
that is introduced in section 3.2. The scheme requires &aliobloring of the nodes. In the case of
k =t,i.e.Gy is the last quotient graph in the sequence, the initial awdpis defined asolor(D) :=
BLACK for all D € Dy andcolor(V;) := BLACK for all V; € V. (We also experimented with a
random coloring of the elements, however, this did not lesahty improvements.) E < ¢, the initial
coloring is obtained by extending the coloring@f, ; to the nodes of;.

13

Refining the final separator The separatofy, = {V},,,... , V), } of Gy induces the separatét =
Voo U... UV, of G. Thus,S is composed of boundary segments that belong to various idema
Often S can be improved by exchanging a boundary segment with teedntvertices of a domain.
For this refinement process we apply the vertex cover teciendgescribed in section 2.3.2. Let us
assume that the removal Sfsplits G in subgraphs7(B) andG (W) with |B| > |W|. We first pairS
with B and compute a minimum weight vertex cover for the bipartigpd H (S, Bgs). If this cover
does not improves, we pairS with W. The whole process is repeated until none of the two minimum
weight vertex covers improves the actual separator.

In multilevel schemes that rely on edge matchings the vext@er technique can be applied after
each uncoarsening step [35]. However, this is not possibtaur coarsening scheme. Any bipartite
subgrapht, of G, contains some elements on one side and some variables oth#resme. Since
we defined a separaté¥, of G, to contain only variables, a vertex coverfif), does not induce a valid
separator foG,. Furthermore, the weight of a variable is in general muchlienthan the weight of
an element. Thus, the original separator has already totestia minimum weight vertex cover in
‘H . with high probability.

3.1.2 Node selection strategies to coarsen a quotient graph

In our coarsening scheme a quotient gréph, is obtained from a quotient gragh, by eliminating
a set of independent variablés C V;.. This leads us to the following interesting questions: What
node selection strategy should be used to#fndnd how does the strategy influence the construction
of the separators? In this section we will address both prest

Each separataf;, = {V},,...,V,,} of G; induces a separat¢t = V,,, U... UV, of G. Thus,
S is composed of variables that belong to the boundaries déiceelements. Since our primary
goal is to find a small (i. e. light weighted) separafyrthe elements of a quotient graph should be
merged so that the newly formed elements have a small boyndalditionally, it is important to
avoid an unbalanced growing of the elements. Any separa#bi‘touches” a large element will most
likely contain a large boundary segment of that elements Ty cripple our iterative improvement
heuristic. To summarize, we must create quotient graphshésee a fair number of equally sized
elements with small boundaries.

The creation of elements with small boundaries correspemdstly to the objective of the min-
imum degree algorithm. Therefore, a suitable node seledi@tegy can be defined as follows: For
each variablé/; € V, compute its degree

deg(Vi) = Y |Vj (3.4)

V}GMVi

where My, contains all variables that share a common domain Wjth.e.V; € My, < 3 D €

Dy with V; € adjg, (D) andV; € adjg, (D). Then, sort the variables according to their degrees in
ascending order and fill the independent &estarting with the first one in that order. This node
selection strategy is calladinimum-degree-in-quotient-gragMD).

Our second node selection strategy has been motivated blyetiney edge matching heuristic
proposed by Karypis and Kumar [37]. Analogously to their ristic an independent set of heavy
weighted variables is eliminated in each coarsening stepvehder, this simple approach may result
in a strong growing of only a few elements. Typically, a heaxgighted variabld/; represents a large
boundary segment shared by two large elements/domains témovel;, the two elements will be
merged withV; to form an even larger element/domain. To avoid an unbathgoawing of elements

14

CEDI (IVI 70656, IEI 878854) BCSSTK25 (IVI 15439, |EI 118401)
90 18

80 16
70
60
50
40
30
20

number of vertices (%)
number of vertices (%)

thitd .
T REETIFIRETTIT)
3

0 10 20 30 40 50 60 0 10 20 0 40 50 60
degrees degrees

Fig. 3.4: Distribution of vertex degrees for CFD1 and BCSSTK25.

we relate the weight oF; to the weight of the newly formed element. As a result oneiobta node
selection strategy that is based on the score function

score(V;) = L Z |D|. (3.5)

Vi,
Gﬂdjgk(vz)

The score function is callethaximal-relative-decrease-of-variables-in-quotigndph (QMRDV).
Note that the score function favors the construction of ellets with small aspect ratio. This can be
demonstrated as follows. Consider first a varialflehat has four vertices and is adjacent to two
domains, each & x 4 grid. The score folV; is (16 + 16)/4 = 8. If eliminated, it would result in an
4 x 9 grid. Next consider a variablg; that has two vertices and is adjacent to two domains, each a
2 x 8 grid. The score for this variable {86 + 16)/2 = 16. If eliminated, it would result in a@ x 17
grid. In both cases the new grids are roughly of equal sizevéver, the elimination oV; is preferred
so that one obtains a new element with small aspect ratio.

We demonstrate the effectiveness of our selection steddgr two sample matrices. The first
one (CFD1) has been extracted from a computational fluidmycsapplication. The graph of CFD1
is very homogeneous. In figure 3.4 the scatter plot on theshedtvs that 83 % of the vertices have
a degree of 26. The second matrix (BCSSTK25) belongs to thieknmawn Harwell-Boeing sparse
matrix collection [19] and represents the finite element edodla tall skyscraper. In contrast to CFD1
the graph of BCSSTK25 is more heterogeneous. The scatteomplie right of figure 3.4 shows that
14 % of the vertices have a degree of 10 and 17 % a degree of 18thé&oemaining 69 % of the
vertices the degree varies between one and 58.

Let us first discuss the question of how a node selectioneglyahfluences the merging of ele-
ments during the coarsening process. In additioQtéD andQMRDYV we are considering a random
selection strateg@dRAND. Figure 3.5 contains six scatter plots that show the sizdl @lements
created during the coarsening process versus the sizeiobthendaries for each matrix and for each
selection strategy. Since our goal is to cover the “geomi@tfya graph by a fair number of equally
sized elements that have small boundaries, the entrieggfitits should by placed near to the origin
of the coordinate system. A close look at the plots on thedkftgure 3.5 demonstrates the supe-
riority of QMD andQMRDV over QRAND. When usingQRAND to coarsen the quotient graphs
of CFD1, many elements of size 1000 are created. Furthermore, many elements of siz€)00
have a larger boundary than the elements createdMy) or QMRDYV. Note that neitheQMD nor
QMRDYV create an element of size 1000.

15

CFD1 (IVI 70656, IEI 878854) BCSSTK25 (IVI 15439, IEI 118401)

7000 2500 -
)
6000 x
2000 -
.
_ 5000 . . .
3 . 2 *
2 4000 . T 100
O . o +
5 : s -
g 3000 N g 1000 Ty
% oLt % LT
2000 I DETSas e E * R
TR * B 500 bt
1000 RS e
0 M QRAND _ - 0 QRAND _ -
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
size of element size of element
CFD1 (IVI 70656, IEI 878854) BCSSTK25 (IVI 15439, IEI 118401)
7000 2500
6000
2000
5000
o) o)
T 4000 T 1500
= =
=} =}
g & 1000 x
@ 5 K
2000 I
500 |- X%
1000 x x
0 MD __ x 0 MD __ x
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
size of element size of element
CFDI1 (IVI 70656, [El 878854) BCSSTK25 (IVI 15439, [El 118401)
7000 2500
6000
2000
5000
5 5 !
5 4000 g 1500 5
=} O
5 s x
2 3000 g 1000 .
@ @ Ex oK *
2000 ST x
500 [vy *"
1000 %4‘
& *
o ﬂ QMRDV__ ~ o QMRDV__ ~
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
size of element size of element
Fig. 3.5: Influence of the node selection stratedig3AND, QMD, andQMRDV on the merging of elements.

16

CFD1 (IVI 70656, IEI 878854) BCSSTK25 (IVI 15439, IEI 118401)

10000 T 10000 T
3 QRAND —+— QRAND —+—
QMD -3¢ QMD -3¢
QMRDV % QMRDV %
3 2 >\
= =
QL QL
E E \
S .. § .
(5} R [5} S
5 1000 s = 1000 =
B S B
153 - 153
=] =]
E E
= =
= =
100 100
0 1 2 3 4 5 6 0 1 2 3 4 5 6
coarsening steps coarsening steps
CFD1 (IVI 70656, IEI 878854) BCSSTK25 (IVI 15439, [EI 118401)
4000 T 600 T
QRAND —+— QRAND —+—
» 1 QMD -3¢ »] QMD -3¢
3500 q 550 q
2 QMRDV -3 2 QMRDV -
=<3 =<3
§ 3000 § 500
= =)
s 2500 g
en o0
5 2000 5
5] 5]
& &
o~ 1500 =
=) =]
N N
27 1000 | k7 300
B
500 . 250
0 1 2 3 4 5 6 0 1 2 3 4 5 6
refinement steps refinement steps
CFD1 (IVI 70656, |EI 878854) BCSSTK25 (IVI 15439, [El 118401)
900 ; .
QRAND —+— QRAND —+—
850 | QMD %] = 240 QMD X%
5 QMRDV % g QMRDV -
s 800 g
g g 220
2 750 e —— =
3 T 5]
£ 700 — L2 2007
S 3
5 650 g
s S 180
St [
‘g 600 Koo e ; ¥
550 T " 160
500
0 1 2 3 4 5 6 0 1 2 3 4 5 6
refinement steps refinement steps

Ei

g. 3.6: Influence of the node selection strategi@BAND, QMD, andQMRDYV on the construction of a
vertex separator.

17

When considering more heterogeneous graphs such as BCS&3hi&2ffectiveness dyMD and
QMRDYV seem to decrease at first glance. However, if one approxantiagesntries in each plot on the
right of figure 3.5 by a line using quadratic regression, treglgent of this line will be much smaller in
the plots forQMD andQMRDYV. From this observation we can conclude thgtiD andQMRDV
create more elements with small boundaries. Note that BBRSTs a tall skyscraper. Therefore, the
geometry of BCSSTK25 favors the creation of elements withdaspect ratio. A further comparison
of the plots on the right of figure 3.5 shows that the minimurgrde coarsening strategy achieves
a more balanced growing of the elements. In contra®QBRAND andQMRDYV there are only two
elements of size- 1000 produced byQMD. We observed this general tendency for several other
heterogeneous graphs.

To summarize, figure 3.5 provides empirical evidence @uetD andQMRDV create more “well-
shaped” elements as a random node selection strategy. Wimsidering heterogeneous graphs,
QMD outperformsQMRDYV since it achieves a more balanced growing of the elements.

Let us now discuss the question of how the node selectiotegiranfluences the construction of
a vertex separator. The two plots on the top of figure 3.6 st@wntimber of elements in the quotient
graphsgy, . .. , Gg according to the chosen node selection strategy. Note teatsed a logarithmic
scale for the y-axis. In the case of CFD1, the number of el¢ésraecreases almost linearly when pro-
gressing from one quotient graph to another. Note that nuige enatching schemes have the same
property. Interestingly, we cannot discover any diffeenbetweelQRAND, QMD, andQMRDV
from this plot, however, as illustrated in figure 3.5, thelgyaf the produced elements is much better
when usingQMD or QMRDYV. The plot for BCSSTK25 demonstrates that the coarseninghetta
erogeneous graph is in general much more difficult (the sastdstior edge matching schemes). The
problem is that heterogeneous graphs favor an unbalancedrgy of the elements. If one represents
the coarsening process as a tree, an unbalanced growing efeiments produces hairy subtrees, i. e.
subtrees that contain long paths. As a consequence the nofrsdements is reduced only by a small
fraction during each coarsening step. Since minimum dagreery effective in avoiding the creation
of large elements (cf. figure 3.5), it is not surprising tiratfi all three node selection strategi@sID
reduces the number of elements most effectively. In fady, fom QMD the termination criterion of
the coarsening process (less than 200 elements in a quotagtt) is met after six steps.

The two plots in the center of figure 3.6 illustrate that theadivantages of a bad starting domain
decomposition can be compensated (to a certain degreeebyukiple refinement process. For all

three node selection strategies we computed the quotiaphgt, ... ,Gs, determined an initial
separator ingg using our Fiduccia-Mattheyses heuristic (cf. section 32y refined this separator,
again using our Fiduccia-Mattheyses heuristic, until veehedgs _;,7 = 0, ... , 6. Both plots report

the sizes of the separators as a function. dote that all sizes represent the average over eleven runs
and that the adjacency lists of CFD1 and BCSSTK25 have beelomaly permuted prior to each run.

In the case 0 RAND, our improvement heuristic is unable to find a good sepafatd¥ (this holds

for both CFD1 and BCSSTK25). We must attribute this to thdypsldaped elements if. Although

the gap betwee@RAND andQMD, QMRDYV closes when progressing to finer quotient graphs, the
separators fo§ are still slightly better in the case GfMD andQMRDYV.

In our experiments we did not apply the vertex cover techaitquthe separators of the ending quo-
tient graphGg_;. This leads us to the following interesting question: Iedlly necessary to perform
the multiple refinement steps before applying the vertexectéechnique to a separator? Remember
that in the two-level approach proposed by Ashcraft and EJulje starting quotient grapf and the
ending quotient grapfs_; are identical (i. es = 0). The two plots at the bottom of figure 3.6 try to
give an answer to this question. Here, we additionally &opthe vertex cover technique to the sep-
arators ofGs_;. Again, the sizes of the separators are reported as a funatido The plot for CFD1

18

IMPROVECOLORING(G = (DU V, &), color)

01: repeat

02: color® := color;

03: unmark allD € D;

04: while there are unmarked elemerks

05: select an unmarked elemdnt

06: if (color(D) = BLACK) then

07: color(D) := WHITE;

08: for each variablé/; € adjg (D) do
09: UppATEE w (V;, D);

10: else

11: color(D) := BLACK;

12: for each variablé/; € adjg (D) do
13: UppATEW — 5(Vi, D);

14: end else

15: markD;

16: let(S*, B*, W*) denote the partition induced lylor*;
17: let(S, B, W) denote the partition induced lylor;
18: if F(S,B,W) < F(S*, B*,W*) then
19: color® := color;

20: end while

21: color := color®;

22: until color has not been improved;

Fig. 3.7: Function MPROVECOLORING.

illustrates that the multiple refinement process is indestkssary to obtain a good vertex separator,
especially if one starts with a bad domain decompositiomahe case 0QRAND. This explains,
why Ashcraft and Liu used a sophisticated network-flow athar to smooth a separator. In contrast
to CFD1 the plot for BCSSTK25 seems to indicate that a goodailoigiecomposition is sufficient to
obtain small vertex separators with the vertex cover teplmionly. Note that in the case @fMD
andQMRDYV the refinement steps 5, and6 do not lead to any improvements. However, one should
remember that BCSSTK25 is a tall skyscraper and, theretmm@ains a wide spectrum of partitions
with varying degrees of imbalance and consistently smalhs®ors. Therefore, we must attribute
most of the effectiveness of the vertex cover techniquedspecial geometry of BCSSTK25.

3.2 Improving a separator in the new multilevel scheme

The performance of our multilevel quotient graph methodciadly depends on the time required
to refine a separator after each uncoarsening step (cf. f@jdrdine 10). Similar to the two-level
approach proposed by Ashcraft and Liu, a Fiduccia-Mattégegsheme is used to optimize a coloring.
In the following we present our iterative improvement hstici and prove that the runtime of our
heuristic is asymptotically identical to the runtime of trextex Fiduccia-Mattheyses algorithm [5].

3.2.1 The generic improvement scheme

Figure 3.7 presents the structure of our improvement schdérhe algorithm consists of two nested
loops. The inner loop computes a sequence of elements thagettheir colors. Before entering the
inner loop, the actual coloring, i. e. the best coloring emtered so far, is saved imlor*. Since the

19

algorithm allows a deterioration of the partition, the int@p may never terminate. Therefore, each
element is allowed to change its color only once. This cairgtimotivates the outer loop that starts
the optimization process again until the actual coloringncd be improved. In practice the outer loop
is executed a small number of times, however, we cannotrdeterthe exact number of iterations.

Therefore, the runtime analysis presented in section &Zdtused on the inner while-loop.

In each iteration of the while-loop an unmarked elem@ns selected, whose color will be flipped
(line 05). Note that each element is marked after it has obaiitg color (line 15). This guarantees
that the color of an element is flipped only once. The elenigns$ selected so that the weight of
the induced separatdf is decreased the most. In the case of a local minimOns chosen so that
the deterioration ofS' is minimized. To be more precise, two heaps are used to slovarmarked
black and all unmarked white elements. If none of the heasnipty, a black elemenb, and a
white elementD,, is chosen that decrease/increase the weiglst tife most/least. According to the
evaluation functior# either D, or D, is assigned td.

Once D has changed its color, functionsPOATEg i and WDATEw _, g apply the coloring
rule (3.3) to each variabl®; € adjg(D). If the new coloring induces a partitiof, B, W) that
is better than the best partitioft™, B*, W*) encountered so far, the coloring is savedcifior®
(lines 16-19). For the evaluation of a partition we use thefion

F(S,B,W) =S|+ p-max(0, 7 - max(|B|, |W|) — min(|B|, |[W|))
max(| B, W) — min(|B],|W)) (3.6)
max([BJ, W)

In F the weight of a separator is the dominating term. Only if tiffecence between the weight of
B and the weight of¥ exceeds a certain threshold, the separator will be pewhliZée tolerated
imbalance is adjusted by < 7 < 1 and the penalty by > 0. The third term is used as a tie-breaker
for equally weighted separators, if the imbalance lies inithe tolerated range.

An important implementation detail is the efficient caltigda of the new partition weights when
moving an elemenD from B to W or from W to B. The partition weights are required for the
evaluation ofF’. Note that moving an eleme? from B to W or from W to B changes the actual
coloring only locally:color(D) is flipped and some variablé$ € adj; may change their colors. To
calculate the weights of the new partition, we defing(D), Ag (D), andAy (D) to be the changes
in the respective weights, b flips its color. Note that these quantities can be positiveegative.

If all three values are known, the new partition can be evelliaising the valuesS| + Ag(D),
‘B| + AB(D), and|W| + Aw(D)

When changing the color db, the A-values of any elemen®’ that shares an adjacent variable
V; with D may have to be updated. This is checked with the help of fonstiPDATER 1 and
UPDATEw _ 5. In both functions four cases are considered. The first teaealated to the situation
before, and the last two are related to the situation afeecttange otolor(D). In the following, we
only describe function BDATEg_, 1 (see figure 3.8). Function RbATEy, _, g can be formulated in
the same manner.

Let V; denote the variable for which RbATEg_,1v has been invoked. We assume that the color
of D has not been changed yet (i.®lor(D) = BLACK). In lines 01-06 we consider the case
where all elements in the neighborhoodiffvere colored black except for an elemént If D’ were
also colored blacky; would be moved fromS to B. Therefore,Ag(D') contains the value-|V;|
and Ap(D’) the value+|V;|. However, after the change eblor(D), there are two white colored
elements in the neighborhood Bf. Therefore As(D’) andAz(D’) have to be corrected (lines 04—
05). Now let us consider the case that no white colored elemépxisted in the neighborhood &f

20

UPDATEg w (V;, D)

01:
02:
03:
04
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27
28:
29:
30:

[* Case 1: Before flippind> to WHITE there was only one oth@8VHITE element.
Search it and update itA g and A g values. */
if (thereis only one)’ € adjs(V;), D' # D, with color(D') = WHITE) then
As(D') = Ag(D') +|Vil;
Ap(D') = Ap(D') - |Vil;
end if
[* Case 2: Before flippind> to WHITE all elements were coloreALACK.
MoveV; into the separator and update g andAg of all BLACK elements. */
if (color(D') = BLACK forall D' € adjg(V;), D' # D) then
color(V;) := GRAY;
for all D' € adjg(V;), D' # D do
As(D') := As(D') ~|V;
Ap(D') = Ap(D') + Vi
end for
end if
[* Case 3: After flippingD to WHITE there is only one remaininBLACK element.
Search it and update itAy andAg values. */
if (thereis only one)’ € adj;(V;), D' # D, with color(D') = BLACK) then
As(D') = As(D') — |Vil;
Aw (D') == A (D') + |Vil;
end if
[* Case 4: After flippingD to WHITE all elements are coloreWHITE.
Remové/; from the separator and updatey, andAg of all WHITE elements. *
if (color(D') = WHITE for all D' € adjg(V;), D' # D) then
color(V;) := WHITE;
for all D' € adjg(V;), D' # D do
As(D') := Ag(D') +|Vil;
Aw (D') := Aw(D") — [Vil;
end for
end if

Fig. 3.8: Function UPDATEg ,w .

21

(lines 07-15). Then) is the first element iadjg (V;) with color(D) = WHITE. As a consequence,
V; is moved fromB to S. OnceV; has entered the separator, the cost of flipping the colorybérer
element to white is reduced by;| (lines 12—13).

We now assume that the color of has been flipped t8&HITE. In lines 16—21 we consider the
case where all elements in the neighborhood/pére colored white except for an element. If
D’ should also be colored whit&; will move from S to W. Therefore, the valug/;| is subtracted
from Ag(D') and added td\y (D’) (lines 19-20). If there are no remaining black colored eletse
(lines 22-30),V; is moved fromS to W. However,V; will move into S again, if any element in
adjg(V;) is colored black. Therefore, the cost of flipping the colomal other element to black is
increased byV;| (lines 27-28).

As mentioned above, functionRIDATE _, g can be formulated in the same manner. We are now
able to analyze the performance of our iterative improverhenristic.

3.2.2 Timing analysis

The cost for one iteration of our improvement heuristic igegi by the cost for one execution of
the inner while-loop in functionMPROVECOLORING (cf. figure 3.7). Critical are the selection of
D (line 05) and the for-loops in lines 08—09 and 12-13. The etec of UPDATEg . (V;, D) or
UPDATEw _, 5(Vi, D) can requireO(degg(V;)) time units, if one of the four if-clauses is true. In
this case we speak of attivecall to the function. Note that all four if-clauses can beleated in
constant time. To do this, we maintain two countgrg(V;) and#, (V;) for each variabld/; that
store the number of black and the number of white elementsljp(V;). Thus, only active calls to
one of the two functions requir@ (deg;(V;)) time units. The following lemma shows that from all
degg(V;) calls at most four can be active. Therefore, the total tingqired by the two for-loops is
O(e) wheree denotes the number of edgesdn

Lemma 1 LetV; denote a variable of the quotient gragh In functionIMPROVECOLORING there
are at most four active calls to functiomdPDATER ,w (V;, D) andUPDATEW _, 5(V;, D).

Proof: The lemma is trivial for all variable¥; with degg(V;) < 4. Therefore, letd := degg(V;)
with d > 4. Furthermore, letz denote the initial number of white colored elementsadjg(V;).
Clearly,0 < a < d and initially, #(V;) = a. Each call to WDATER_,w (V;, D) increases#w (V;)

by one. The call is active, i (V;) € {0, 1} when entering the function (cases 1 and 2 in figure 3.8)
orif #w(V;) € {d — 1,d} when leaving the function (cases 3 and 4 in figure 3.8). Caahgreach
call to UpDATEw _, 5(V;, D) decreasesty (V;) by one. This call is active, i#yw (V;) € {d — 1,d}
when entering the function or iy (V;) € {0, 1} when leaving the function. In the following we
name a call to BbATEs_,w (V;, D) upward moveand a call to WDATEy, _, 5(V;, D) downward
move Since each element inlj;(V;) changes its color exactly once, there dre « upward andz
downward moves. According i, five cases can be distinguished:

Caselia=0
Then there ard upward moves from which four are active.
Case2:a=1

Then there ard — 1 upward moves. At most three of these moves can be active tiéadlily,
there is one downward move. This move can be active, too.

Case 3. a = d (analogous to case 1)
Case 4:a = d — 1 (analogous to case 2)

22

Caseb:2<a<d—-2
In the following, we show that there are at most two active aggvmoves. We denote an upward
move by a tupléi, : + 1) wherei denotes the number of white colored elements when entering
function UPDATER 1. We distinguish three cases:

Case 5.1: The first active upward move {9, 1).
Then alla downward moves have been executed. From any remaining dpwave only
(1,2) is active. Note that there cannot occur any active upwardenj@v- 2,d — 1) or
(d —1,d), because at mosgt— 3 upward moves are remaining after the mg@oel).

Case 5.2: The first active upward move {4, 2).
Then there is one remaining downward move ahdl — 3 remaining upward moves.
Therefore, another upward moye, 2) can occur or, alternatively, an upward mave—
2,d — 1). However, it is not possible to have a secdmd2) move together with &d —
2,d — 1) move, since the number of available upward moves is boungefd-b3.

Case 5.3: The first active upward move (g — 2,d — 1).
Then there is at most one remaining upward move. This movéeattive.

In the same manner it is shown that b o < d — 2 at most 2 active downward moves can
occur. This proves the lemma.

Finally, we have to analyze the cost for the selection of elen® (line 05). As described
above, two heaps are maintained, one for all unmarked whitecme for all unmarked black el-
ements. Therefore, the selection BfrequiresO(logn) time units wheren denotes the number of
elements ir. However, the heap management produces an additionaleactfbr each active call of
UPDATER_w (Vi, D) and UPDATEw _, g(V;, D). If Ag(D’) changes for an elemef’ € adjs(V;),
its heap position will have to be updated. Therefore, eatikieacall can require) (degg(V;) logn)
additional time units. Since there are only four activesédr V;, we obtain the following result:

Theorem 1 LetG = (X, &) be a quotient graph ancblor a coloring of the nodes &f. Furthermore,
let n denote the number of elementgjirmnd e the number of edges . Each execution of the inner
loop in functionlMPROVECOLORING requiresO(e log n) time units.

The theorem proves that the performance of our Fiducciatidgses scheme is asymptotically identi-
cal to the performance of the vertex Fiduccia-Mattheysesisiic proposed by Ashcraft and Liu [5].

3.3 Tristage multisection

In this section we present a generalization of the multisecicheme of figure 3.1. The new scheme is
called tristage multisection and has originally been psgglbby Ashcraft, Liu, and Eisenstat [10]. The
key idea of tristage multisection is to use the multisedtdor the computation of a wide spectrum of

bottom-up orderings.

3.3.1 Motivation and the basic tristage multisection schemn

It is well recognized that the elements created in the eltidm process should have smooth bound-
aries, i. e. the valueadj(D)|/| D| should be small for all element3. In a bottom-up algorithm such
as minimum degree the node to be eliminated next is chosemdieg to a local greedy heuristic. As

23

demonstrated by Berman and Schnitger, this can give elenvdtii a severe fractal boundary. The
problem is that a bottom-up algorithm cannot forecast timsequences of a decision made at an early
stage of the elimination process.

To overcome this blindness, vertex separators are useditah&pgraph in multiple subgraphs.
The subgraphs can be interpreted as the remaining elenmfaantsunfinished bottom-up ordering, and
the vertex separators can be interpreted as the bounddribese elements. Typically, the vertex
separators are constructed by a recursive bisection BoCE®e objective of each bisection step is
to find a small vertex separator. Since our original goal ifind elements with small boundaries,
we must hope that the recursive bisection process arrahgesnmall separators in such a way that
they form elements with small boundaries. In fact we disoeddénere another form of blindness that
virtually any nested dissection algorithm has: it ignores boundaries of the subgraphs that have
to be split. Consequently, the boundaries of the subgraphggaored when eliminating the vertex
separators according to the given nested dissection acfidigure 2.1). However, minimum degree
naturally takes into account the boundaries of a graph.

There is one important example where the elimination sezpi@moduced by nested dissection
is asymptotically optimal: thé x & grid. Here, the automatic process of nested dissectiots spli
quadratic grid into four smaller quadratic grids. As a capsace, the given nested dissection order
merges elements with small boundaries to new elements withl $oundaries. This observation
motivates the following strategy to improve the quality ofraultisection ordering [3]: If the ver-
tex separators are arranged so that the elimination seguedaced by nested dissection produces
elements with large aspect ratio, then use minimum degremveMer, if the elimination sequence
produces roughly square domains, then stick to the givetredetissection order.

Theoretically, this strategy is supported by local nestedeattion, the most successful ordering
algorithm forh x k grids. Local nested dissection has the fokfi$(ND, PROFILE), i.e. nested
dissection is used to number the square domains, while tHéseuator vertices are numbered by
a profile ordering. Replacing the profile ordering by a minimdegree ordering would have no
significant influence on the ordering’s fill.

To implement this strategy we must know the aspect ratio®fllbements produced by the recur-
sive bisection process. However, aspect ratio is not wéihee for general graphs. A simple solution
to this problem is as follows [3]: Due to the recursive bigatiprocess, the separators dfcan be
represented as a binary trée The nodes in levej of the tree represent the separators constructed
in recursion levelj. The root of the tree is located in level 0 and representsdpmost separator.
For each separatdf let Ts denote the binary subtree rootedst For each such subtree compute a
minimum degree ordering and compatre it to the given nesteskdiion order. Then, choose the maxi-
mal subtrees for which nested dissection is better thanmrmim degree. Let the remaining separators
form the multisecto®’ C ®. Now, eliminate all separators i — ®’ according to nested dissection
and all separators ift’ according to minimum degree.

If the separator tree hdslevels, the time required to compute the minimum degreerorgs for
all subtrees is roughly: times the cost of a minimum degree ordering for This can be seen as
follows: When going down one level in the tree, the numberbitsees for which a minimum degree
ordering has to be computed doubles. However, at the sanegliennumber of nodes in the subtrees
halves. Therefore, the time required to compute the minindegree orderings for the subtrees of
level j is roughly the same for all = 0,... , k. Since the time required to compute the minimum
degree orderings in level is bounded above by the time required to compute a minimunedeg
ordering forT', the statement follows immediately. Together with the mimm degree orderings on
the domains and the minimum degree ordering on the multisé¢t the overall runtime of this simple
tristage multisection algorithm is roughky+ 1 times the cost of a single minimum degree ordering.

24

0 0 =0
f MD o AAND f ND
=k k k

MD - MD - MD

Fig. 3.9: Spectrum of orderings foi = & (left) to j = 0 (right).

3.3.2 The tristage multisection scheme of Ashcraft, Liu, ath Eisenstat

A much more efficient scheme has been proposed by Ashcraftahd Eisenstat [3, 10]. Létdenote
the maximal level of the separator tree, andjlet {0,... ,k}. In their tristage multisection scheme
all orderings are evaluated that can be created as follows:

(1) Eliminate all vertices in the domains using minimum cesgr

(2) Eliminate all vertex separators in the lower levgls.. ,5 — 1 of ® according to the given
nested dissection order.

(3) Eliminate all vertex separators in the upper levels . , 0 of ® using minimum degree.

From allk+1 orderings obtained this way, the best one is chosen. FigQrgi®ws that there is a wide
spectrum of orderings of this form. Each ordering is synt®di by a triangle and a rectangle below
the triangle. The triangle represents the separator tréeamtains all vertices of the multisector. The
rectangle contains the vertices of the domains. On theiigtaf the spectrum, i. g. = k£, minimum
degree is used to order both the domains as well as the seganatb. As a result one obtains a
multisection ordering of the foriVIS(MD, MD). At the opposite side of the spectrum, ije= 0, the
separators are eliminated according to the given nestedation order and one obtains an incomplete
nested dissection ordering, i. e. a multisection orderintp® form MS(MD, ND).

The bulk of the computation time is spent during step (1) whée vertices in the domains are
numbered using minimum degree. Since each ordering usemitimmum degree ordering on the
domains, it can be computed once and “spliced” into the ath#erings. Note that there is also a lot
of overlap between the orderings @n Forj € {0,... ,k} let ®; C ® denote the multisector that
contains all separators in levdls. .. , j, i.e. ®, = ®. If the sequence of orderings is evaluated from
j = k down toj = 0, the nested dissection ordering on the separabors ®; (cf. step (2)) can be
built using the nested dissection ordering®n- ®;_ ;. Therefore, only the minimum degree ordering
on the separatorg; (cf. step (3)) need to be computed for every ordering.

Figure 3.10 presents an efficient way to evaluatetall 1 orderings of the spectrum. Similar
to the multisection scheme in figure 3.1 parametex$s, ord;, andords are used to specify the
node selection strategies. Again, the multisection dorde@omposition is constructed by a recursive
bisection process that uses the multilevel scheme intextlicsection 3.1. Once a multisectbg has
been found, the vertices in the domaiids, . .. , 2, are eliminated according terd;. The number
of floating point operations required to factor these vesics stored irops;. As a by-product one
obtains the Schur complement gra@h, . The various orderings for the separator vertice&'is) are
then evaluated in the for-loop of lines 04-13.

Each iterationj, j < k, of the for-loop starts with the construction of the actuahaation graph
Gs,. This graph is obtained fro¥s,_, , the actual elimination graph of iteratigr-1, by eliminating
all separators in level + 1. Variableops; is used to sum up the factor operations required by all these
nested dissection steps. In the first iteration of the fopla. e.j = k, we havelGe, = G¢,. Once the

25

TRISTAGEMULTISECTION(ordg, ordy , ords)

01: Determine a domain decompositighy, 21, . .. , Q,) of G by a recursive bisection
process. Use node selection strategys to construct the vertex separators.

02: for each sef2; do

03: Eliminate all vertices i; using node selection strategyd; .

04: Store operation count isps, and construct elimination graghy, .

03: ops; := 0; ops* := o0;

04: for (j := k) downto 0 do

05: if (j < k) then

06: Eliminate fromG'¢, ., all separators in level + 1 to obtain the actual
elimination grapiGs ;. Add operation count tops; .
07: end if
08: Order the vertices ir s, using node selection strategyd..
Store operation count iops,.
09: if (opsy + ops; + ops, < ops*) then
10: Jt =0
11: ops™ := opsy + ops; + 0psy;
12: end if
13: end for

14: Splice together the bottom-up orderingston , },, the nested dissection ordering
on®; — ®;., and the bottom-up ordering aby- .

Fig. 3.10: Function TRISTAGEMULTISECTION.

actual elimination grapld‘, has been constructed, all separators-ip, are eliminated using node
selection strategyrds. The number of floating point operations required by thismelation step is
stored inops,. Note that we must use a copy @, since the graph is still needed in iteratipn- 1.
Once all vertices inG5, have been ordered, a new three-level multisection ordesiegmpleted. If
it is the best ordering encountered so far, the level nunjliestored inj*.

After the termination of the for-loop;* defines the level at which the ordering of vertex separators
should switch from nested dissection to minimum degreeréfbee, the best ordering of the spectrum
can be obtained as described in line 14.

The overall cost for evaluating all + 1 orderings is bounded above by roughly the cost of three
bottom-up orderings. This can be seen as follows: When naistg the actual elimination graph
G, from G, , the number of nodes halves. Therefore, the cost of compatingitom-up ordering
for G¢, is roughly half the cost of computing a bottom-up ordering &, ,. As a consequence,
the cost of line 08 is bounded above by the cost of two bottpnorderings. Together with the cost
for computing the bottom-up orderings on the domains (IB2s03) and the cost for constructing the
actual elimination graplrs; (line 06) we obtain the desired result.

4 Computational results

In this section we empirically evaluate the multisectiorl @nstage multisection algorithms of our
methodology. Our primary metric for measuring the qualifyao ordering is the number of floating
point operations required to factor matrix. This number is closely related to the time required
for the overall factorization process. All results havermeenerated on a SUN Ultra with 200MHz
UltraSPARC processor.

26

4.1 The programs pord and multipord

For our computational experiments we have developed twgrpms, calledoord and multipord
(Paderborn ORDering tools). The programs implement thetfions MULTISECTION and TRISTAGE-
MULTISECTION, respectively. Additionally, both programs perform a pagssing and a postpro-
cessing step. During the preprocessing step the prograemtto compress the grajgh of matrix

A by identifying indistinguishable vertices. Especiallytn@es arising from finite element and finite
difference discretizations can contain multiple columnthwdentical adjacency structure. The com-
pressed grapldr,. is formed by merging indistinguishable vertices@®fto a single weighted node.
The weight of this node is equal to the number of merged \estid-unctions MLTISECTION and
TRISTAGEMULTISECTION are then invoked for the compressed graph. As a result oransban
orderingr, for G that will be expanded to an orderingfor G during the postprocessing step. More
information concerning compressed graphs can be found ibd235].

Although the main algorithmic components of our approacketzeen introduced in section 3, a
number of details have been left out. The following list diéss some important parameterspaird
and multipord that can greatly influence both runtime and ordering qualffgr most parameters
default values are provided that are used throughout oupatational experiments.

e In functions MULTISECTION and TRISTAGEMULTISECTION the selection startegiesd; and
ordy can take the valueAMD, AMF, AMMF, AMIND, or MF. Note that we are using
constrained versions of the selection strategies in the oésrd;, i.e. the multisector ver-
tices are included when computing the score of a domain xerta function MULTISEC-
TION the selection strategyrds can also be set tdiD. The separators are then eliminated
according to the given nested dissection order. In bothtfongorde can take a value from
{QMD, QMRDV, QRAND}. Although QMD produces slightly better domain decomposi-
tions for heterogeneous graphs tHaMRDYV (cf. figure 3.5), we setrde to QMRDYV in all
our experiments, since the computatiorsefreqvrpy (V;) is much cheaper than the compu-
tation ofdeg(V;).

e In functions MULTISECTION and TRISTAGEMULTISECTION the recursive bisection process
continues until a subgraph has 100 or fewer vertices. Hometemost 255 separators are
constructed. We used this threshold to improve the effigi@four programs. We observed no
further improvements when more separators were consttucte

¢ Infunction SEPARATOR(cT. figure 3.2) the coarsening process terminates when éequgraph
has 200 or fewer elements. This provides some degrees dfoineéo our coloring heuristic. In
our implementation ofMPROVECOLORING (cf. figure 3.7) there is an early termination of the
inner while-loop, if no better partition is found in 100 selgsient iterations.

e In our evaluation function (3.6) parametersaand p are set ta).5 and 100, respectively. The
value forr allows an imbalance of 50 % without penalizing the separdtbis high imbalance
is motivated by our interpretation of vertex separators.mBmber that we interpret vertex
separators as the boundaries of the remaining elementsunfarished bottom-up ordering. In
this context it is important to have elements with small lfanes and not to have equally sized
elements. Therefore, the minimization of partition imivel@ is only a secondary objective in
our nested dissection process. Empirically, our choiceisfalso supported by the experiments
reported in [55].

Numerous experiments have shown that the default parasngdscribed above are very effective on
a wide range of matrix types. Note that we did not provide diéfearameters foord; andords. In
section 4.3 we explore the influence of these parameterseoquihility of the produced orderings.

27

4.2 The benchmark matrices

For our computational experiments we have tried to seleetlistic set of benchmark matrices. The
first two matrices are Laplace matrices that correspondii®7ax 127 grid problem with five point
difference operator (GRID) and nine point difference opmrédMESH). The 15 BCSSTK matrices
have been selected from the Harwell-Boeing sparse mathi@ation. A detailed description of the
matrices can be found in [19]. MATO2HBF and MATO3HBF have rbsepplied by a consulting
agency of the German car industry. The matrices have beeaceed from a crash simulation tool.
The matrices BRACK2, CRACK, WAVE, HERMES, CYL3, and DIME2€eaFEM meshes. All
meshes come from a 3-D problem domain, except for CRACK, Wwhi@ 2-D FEM mesh. The first
three matrices (BRACK2, CRACK, and WAVE) come from Carnegiellon-University. HERMES
comes from University of Michigan and is a model of the Euapepace shuttle. The last two
matrices (CYL3 and DIME20) have been given to us by C. Walsiiavniversity of Southampton. All
other matrices can be found in Tim Davis’ sparse matrix ctithe [17]. Most of these matrices have
been extracted from commercial structural analysis andoctational fluid dynamics applications.

Table 4.1 reports relevant statistics about our test mearid he first four columns give the number
of vertices and edges i@ andG.. The last two columns show the number of factor entries éstal
by 103) and the number of floating point operations (scaled f{) when ordering the matrices using
our implementation of the approximate minimum degree dtigor (AMD) proposed by Amestoy et
al. [1]. AMD will serve as a point of reference during our computationgegiments.

All results reported in this paper come from an ordering & timpermuted input matrid. It is
well known that ordering methods are very sensitive to thigainordering of A. However, in most
practical situations the initial ordering is far away fromndom and especially bottom-up methods
can benefit from it.

4.3 Results for pord and multipord

In this section we present experimental results for the g pord and multipord . Table 4.2
shows the number of floating point operations (scaled(y when ordering the benchmark matrices
using pord. The numbers in brackets give the operation counts relativéMD. The function
MULTISECTION has been executed with parameterd; = ordy = AMD (column 1),ord; =
ordy = AMMF (column 2),ord; = AMMF, ordy = MF (column 3), andord; = AMMF,
ordg = ND (column 4). Although more parameter combinations are ptesswe limit or study to
these four. In all experimentsrds has been set tQMRDV.

Rothberg and Eisenstat [56] have shown that approximatémmam mean local fill AMMEF)
and, especially, exact minimum local fiM({) produce significantly better orderings than minimum
degree. This is the motivation for using the two selectiaategies in our multisection scheme.
Indeed, a comparison of columns 1 and 2 of table 4.2 demdestthat the operation counts are
reduced when switching fromrd; = ords = AMD to ord; = ordy = AMMEF. A further reduction
is achieved, when the vertex separators in the Schur congpiegraph are numbered using selection
strategyMF. Typically, the separator vertices are merged to a few tidjsishable nodes so that the
Schur complement graph is small. Therefore, we can affontigus{F on the multisector vertices.
Note that this combination can be very effective because wfafe factorization work is done for
the columns of the multisector. With this parameter settirgnumber of floating point operations is
reduced by 41 % compared faviD.

A comparison of columns 2 and 4 demonstrates that the quaflign ordering can deteriorate
when eliminating the separator vertices according to thvergnested dissection order. However,

28

G G, AMD
Matrix 7] 7] A [E.] | NZL/10° | OPSIOP
GRID127x127 | 16129| 32004| 16129| 32004 346 27
MESH127x127| 16129| 63756| 16129| 63756 527 43
BCSSTK15 3948| 56934|| 3948| 56934 624 155
BCSSTK16 4884 | 142747|| 1778 18251 763 162
BCSSTK17 10974| 208838| 5219| 40531 985 138
BCSSTK18 11948| 68571| 10926| 61086 625 127
BCSSTK23 3134| 42044| 2930| 17628 428 125
BCSSTK24 3562| 78174| 892| 6378 270 31
BCSSTK25 15439| 118401| 13183| 80982 1464 316
BCSSTK29 13992| 302748 10202| 156923 1760 467
BCSSTK30 28924| 1007284| 9289 111442 3786 947
BCSSTK31 35588| 572914(17403| 144403 5281| 2593
BCSSTK32 44609| 985046 14821| 113487 5002 989
BCSSTK33 8738| 201583| 4344| 82142 2480 | 1140
BCSSTK35 30237| 709963| 6611| 32967 2725 399
BCSSTK36 23052| 560044| 4351| 18583 2719 616
BCSSTK37 25503| 557737| 7093| 44462 2755 535
BCSSTK38 8032| 173714| 3456| 40656 718 115
MATO2HBF 46949 | 1117809| 6707 | 19938 5057 | 1344
MATO3HBF 73752| 1761718| 10536| 31438| 10061| 4184
STRUCT3 53570| 560062| 41644| 340543 5040| 1096
STRUCT4 4350| 116724| 4350| 116724 2357| 2004
PWT 36519| 144794\ 36515 144774 1556 173
BRACK2 62631| 366559| 62631| 366559 7275| 3085
CRACK 10240| 30380| 10240| 30380 163 8
3DTUBE 45330| 1584144|| 15909| 181865| 26310 30053
CFD1 70656| 878854| 70656| 878854| 37663| 44556
CFD2 123440 1482229|| 123440| 1482229|| 74884| 136477
CYL3 232362| 457853| 232362| 457853| 77440| 208480
DIME20 224843| 336024| 224843| 336024| 3430 330
GEARBOX 153746 4463329|| 56175 693142| 46325| 41121
NASASRB 54870| 1311227| 24954| 275813 11624| 4538
WAVE 156317 1059331|| 156316 1059325|| 114930| 372458
PWTK 217918| 5708253|| 41531| 221130|| 60305 49086
HERMES 320194| 3722641|| 320194| 3722641|| 323055| 1434744

Tab. 4.1: Statistics for benchmark matrices.

29

there are only three matrices (BCSSTK17, BCSSTK25, and B&S88) where the nested dissection
variant of pord does not produce as good an orderingAddD. The average number of floating
point operations is still reduced by 33% comparedAfddD. Note that the graphs of BCSSTK17
(model of a pressure vessel), BCSSTK25 (model of a tall skysr), and BCSSTK30 (model of an
off-shore generator platform) have large aspect ratio abttie topmost separators of the multisector
are placed next to each other similar to the separators in the: grid of figure 2.1. This explains
the bad performance of nested dissection for these graphsevér, there are also matrices for which
the number of floating point operations is reduced when fahg the given nested dissection order
(CYL3 and WAVE).

A comparison of the last three columns of table 4.2 showsttietjuality of the orderings pro-
duced bypord can vary significantly even when using the same multiseatdrthe same selection
strategyord;. Since most of the factorization work is done on the columinhi® multisector, much
effort should be devoted to the elimination of the multiseatertices. As described in section 3.3
the optimal elimination sequence depends on the arrangeshéme vertex separators. The program
multipord allows us to evaluate a wide spectrum of elimination segegnc

Table 4.3 reports the operation counts of all orderings peed in the for-loop of function /i-
STAGEMULTISECTION. The function has been executed with parameteds = ordy = AMMF
andorde = QMRDYV. The numbers in the last columi £ 0) correspond to the numbers in column
(AMMF, ND) of table 4.2. The leftmost numbers can be found in the coomdipg rows of column
(AMMF, AMMEF). Note that at most 255 vertex separators are constructedrihisection process
so thatk < 7. Furthermore, the construction of vertex separators stbasubgraph has 100 or fewer
vertices. The operation counts of the best orderings argqatiin boldface. Exactly these orderings
are returned by function RISTAGEMULTISECTION. As will be shown in table 4.5, the runtime of
multipord does only marginally increase comparegtod.

4.4 Comparison with other ordering codes

Table 4.4 shows the number of floating point operations fergiograms M TIS [38] (version 4.0),
ScoTcH [50] (version 3.3), 800LES[4] (version 2.2),pord, andmultipord . Again, the numbers
in brackets give the operation counts relativeAthiD. METIS and SOTCH represent state-of-the-
art implementations of incomplete nested dissection. Rerconstruction of vertex separators both
programs are using a multilevel approach that is based ontehing technique. The separators are
numbered according to the given nested dissection ordertw programs differ in how the domains
are numbered. MTIS uses multiple minimum degree, whilee8TCH relies on a constrained version
of the approximate minimum degree algorithm proposed by stmeet al. [51].

SpooLEsimplements the two-level approach described in sectionTh® vertices in the domains
as well as the vertices in the multisector are numbered usinigiple minimum degree. However, a
constrained version &fiMD is applied to the vertices in the domains. As mentioned ahuwel and
multipord implement the functions MLTISECTION and TRISTAGEMULTISECTION, respectively.
The results reported fgrord correspond to the numbers in coluftAMMEF, AMMF) of table 4.2.
The results reported fonultipord correspond to the operation counts of the best orderingsredd
by TRISTAGEMULTISECTION (cf. table 4.3).

METIS, ScoTCH, and S 00LESrecursively split a subgraph until it has 200 or fewer vesicin
pord andmultipord the recursion continues until a subgraph has 100 or fewdicesr However,
at most 255 separators are constructed. As mentioned iie&B8 FOOLESUSes a randomized
greedy domain-growing algorithm to construct a domain dgwosition. To reduce the variations
due to different random numbers we have run it several tirnegdch matrix. The results reported

30

Matrix (AMD, AMD) | (AMMF, AMMF) | (AMMF, MF) | (AMMF, ND)

GRID127x127 16 (0.59) 16 (0.59) 16 (0.59) 17 (0.63)
MESH127x127 36 (0.84) 38 (0.88) 35(0.81) 39 (0.91)
BCSSTK15 93 (0.60) 79 (0.51) 86 (0.55) 82 (0.53)
BCSSTK16 112 (0.69) 117 (0.72) 115 (0.71) 135 (0.83)
BCSSTK17 124 (0.90) 123 (0.89) 120 (0.87) 172 (1.25)
BCSSTK18 87 (0.68) 85 (0.67) 82 (0.65) 96 (0.76)
BCSSTK23 98 (0.78) 85 (0.68) 98 (0.78) 90 (0.72)
BCSSTK24 31 (1.00) 30 (0.97) 30 (0.97) 31 (1.00)
BCSSTK25 256 (0.81) 207 (0.65) 230 (0.73) 355 (1.12)
BCSSTK29 360 (0.77) 326 (0.70) 277 (0.59) 336 (0.72)
BCSSTK30 722 (0.76) 702 (0.74) 707 (0.74) 982 (1.04)
BCSSTK31 1226 (0.47) 1215 (0.47)] 1184 (0.46)] 1291 (0.50)
BCSSTK32 827 (0.84) 774 (0.78) 767 (0.77) 969 (0.98)
BCSSTK33 740 (0.65) 626 (0.55) 619 (0.54) 644 (0.56)
BCSSTK35 374 (0.94) 367 (0.92) 369 (0.92) 384 (0.96)
BCSSTK36 461 (0.75) 458 (0.74) 460 (0.75) 500 (0.81)
BCSSTK37 404 (0.75) 403 (0.75) 388 (0.72) 445 (0.83)
BCSSTK38 91 (0.79) 91 (0.79) 89 (0.77) 106 (0.92)
MATO2HBF 1091 (0.81) 1088 (0.80)) 1093 (0.81)| 1222 (0.91)
MATO3HBF 2654 (0.63) 2723(0.65)| 2473 (0.59)| 2666 (0.64)
STRUCT3 717 (0.65) 730 (0.67) 664 (0.61) 731 (0.67)
STRUCT4 574 (0.29) 541 (0.27) 617 (0.31) 504 (0.25)
PWT 108 (0.62) 109 (0.63) 107 (0.62) 110 (0.64)
BRACK?2 1923 (0.62) 1610(0.52)] 1661 (0.53)] 1982 (0.64)
CRACK 7 (0.87) 7 (0.87) 6 (0.75) 7 (0.87)
3DTUBE 13235 (0.44) 14839 (0.49)| 11437 (0.38)] 12303 (0.41)
CFD1 9885 (0.22) 8814 (0.20)| 8799 (0.20)| 11302 (0.25)
CFD2 34421 (0.25) 27978 (0.20) 27902 (0.20)| 28636 (0.21)
CYL3 57971 (0.29) 45386 (0.22) 41372(0.20) 39791 (0.19)
DIME20 175 (0.53) 175 (0.53) 167 (0.51) 191 (0.58)
GEARBOX 18034 (0.44) 17404 (0.42)) 17505 (0.43)| 17987 (0.44)
NASASRB 2839 (0.63) 2613 (0.58)| 2582 (0.56)| 3437 (0.76)
WAVE 160843 (0.43) 119694 (0.32)) 108804 (0.29)] 97480 (0.26)
PWTK 23019 (0.47) 22658 (0.46)| 22323 (0.45) 23119 (0.47)
HERMES 326902 (0.23) 266255 (0.19) 268303 (0.19) 265133 (0.18)
MEAN (0.63) (0.60) (0.59) (0.67)

Tab. 4.2: Number of floating point operations (scaled by’) for pord. Function MULTISECTION has been
called with parametersrd; = ord, = AMD (column 1),ord; = ord, = AMMEF (column 2),

ord; = AMMF, ords = MF (column 3), andrd; = AMMF, ord; = ND (column 4).

31

Iteration;
Matrix 7 6 5 4 3 2 1 0
GRID127x127 - 16 16 16 16 17 17 17
MESH127x127 - 38 45 42 35 36 39 39
BCSSTK15 - - - 79 78 78 82 82
BCSSTK16 - - - 117 120 130 135 135
BCSSTK17 - - 123 137 156 171 171 172
BCSSTK18 - 85 87 81 86 91 96 96
BCSSTK23 - - - - 85 84 91 90
BCSSTK24 - - - - 30 31 31 31
BCSSTK25 - 207 216 244 309 326 355 355
BCSSTK29 - 326 309 321 330 316 336 336
BCSSTK30 - 702 725 809 913 973 982 986
BCSSTK31 1215 1266 1317 1261 1289 1285 1291 1291
BCSSTK32 774 774 794 833 929 968 969 969
BCSSTK33 - - 626 626 615 644 644 644
BCSSTK35 - 367 376 378 383 385 384 384
BCSSTK36 - - 458 476 475 497 500 500
BCSSTK37 - 403 393 403 413 433 445 445
BCSSTK38 - - 91 93 97 103 106 106
MATO2HBF - 1088 1107 1128 1140 1192 1222 1222
MATO3HBF 2723 2726 2542 2790 2619 2659 2663 2666
STRUCTS3 730 691 712 707 725 731 731 731
STRUCT4 - - - 541 542 523 503 504
PWT 109 111 108 108 109 110 110 110
BRACK2 1610 1646 1633 1655 1817 1981 1982 1982
CRACK - 7 7 6 7 7 7 7
3DTUBE 14839 | 14953| 12907 | 12366 13392| 12303| 12303| 12303
CFD1 8814 8961 | 10011| 10533| 10798| 10947| 11302| 11302
CFD2 27978| 26379| 27616| 26141| 26554| 28371| 28636| 28636
CYL3 45386 | 40806| 41324| 41525| 40623| 40190| 39791| 39791
DIME20 175 174 182 183 187 190 191 191
GEARBOX 17404 | 17643| 17658| 17748| 17791| 17987| 17987| 17987
NASASRB 2613 2706 2767 2955 3201 3280 3437 3437
WAVE 119694| 98274 | 100509| 101306 99559 97463| 97472| 97480
PWTK 22658 | 22680| 22868 23068| 23088| 23042 23119| 23119
HERMES 266255| 260469| 260060| 250740| 252313| 255478| 265133 | 265133

Tab. 4.3: Number of floating point operations (scaled b§®) for multipord . Function TRISTAGEMULTI-
SECTIONhas been called with parametetsl; = ord, = AMMEF. The operation counts of the best
orderings are printed in boldface. Exactly these orderargseturned by RISTAGEMULTISECTION.

32

Name METIS-4.0 SCoTCH-3.3 | SPOOLES2.2 pord multipord
GRID127x127 22 (0.81) 25 (0.93) 20 (0.74) 16 (0.59) 16 (0.59)
MESH127x127 37 (0.86) 40 (0.93) 43 (1.00) 38(0.88) 35(0.81)
BCSSTK15 87 (0.56) 93 (0.60) 95 (0.61) 79 (0.51) 78 (0.50)
BCSSTK16 140 (0.86) 140 (0.86) 129 (0.79) 117 (0.72) 117 (0.72)
BCSSTK17 184 (1.33) 161 (1.16) 135 (0.98) 123 (0.89) 123 (0.89)
BCSSTK18 101 (0.80) 77 (0.60) 84 (0.66) 85 (0.67) 81 (0.64)
BCSSTK23 98 (0.78) 94 (0.75) 91 (0.72) 85 (0.68) 84 (0.67)
BCSSTK24 34 (1.09) 35(1.13) 38(1.22) 31(0.97) 30 (0.97)
BCSSTK25 380 (1.20) 348 (1.10) 235 (0.74) 207 (0.65) 207 (0.65)
BCSSTK29 345 (0.74) 327 (0.70) 341 (0.73) 326 (0.70) 309 (0.66)
BCSSTK30 1203 (1.27)] 1114 (1.18) 833(0.88) 702 (0.74) 702 (0.74)
BCSSTK31 1165 (0.45)| 1219(0.47)] 1530(0.59)| 1215(0.47)| 1215 (0.47)
BCSSTK32 1213 (1.23)] 1175(1.19) 866 (0.88) 774 (0.78) 774 (0.78)
BCSSTK33 909 (0.78) 674 (0.59) 739 (0.65) 626 (0.55) 615 (0.54)
BCSSTK35 523 (1.31) 422 (1.06) 393 (0.98) 367 (0.92) 367 (0.92)
BCSSTK36 615 (1.00) 583 (0.95) 496 (0.81) 458 (0.74) 458 (0.74)
BCSSTK37 694 (1.30) 653 (1.22) 433 (0.81) 403 (0.75) 397 (0.74)
BCSSTK38 135(1.17) 108 (0.94) 103 (0.90) 91 (0.79) 91 (0.79)
MATO2HBF 1192 (0.87)] 1099 (0.82)] 1156(0.86)| 1088 (0.81)| 1088 (0.81)
MATO3HBF 2724 (0.65)| 2924 (0.70)| 3607 (0.86)] 2723(0.65)| 2542 (0.61)
STRUCTS3 826 (0.75) 857 (0.78) 773 (0.70) 730 (0.67) 691 (0.63)
STRUCT4 535 (0.27) 541 (0.27) 691 (0.34) 541 (0.27) 503 (0.25)
PWT 110 (0.64) 101 (0.58) 108 (0.62) 109 (0.63) 108 (0.62)
BRACK2 1908 (0.62)| 1821(0.59)] 1900 (0.62)| 1610(0.52) 1610 (0.52)
CRACK 7 (0.87) 7 (0.87) 7 (0.87) 7 (0.87) 6 (0.75)
3DTUBE 12071 (0.40)| 15834 (0.53)] 15523 (0.52)| 14839 (0.49) 12303 (0.41)
CFD1 16345 (0.37)] 15027 (0.34)] 10509 (0.24) 8814 (0.20)| 8814 (0.20)
CFD2 31024 (0.23)| 35659 (0.26)] 35798 (0.26)] 27978 (0.20)| 26141 (0.19)
CYL3 32164 (0.15)| 31670 (0.15) 80818 (0.39)] 45386 (0.22)] 39791 (0.19)
DIME20 196 (0.59) 181 (0.55) 235(0.71) 175 (0.53) 175 (0.53)
GEARBOX 20390 (0.50)| 24755 (0.60)] 21516 (0.52)] 17404 (0.42)| 17404 (0.42)
NASASRB 3494 (0.77)| 3748(0.83)] 2801(0.62)] 2613(0.58)] 2613(0.58)
WAVE 120180 (0.32)] 98547 (0.26)| 188316 (0.50) 119694 (0.32)] 97463 (0.26)
PWTK 22039 (0.45)| 23275(0.47)] 28313 (0.58)| 22658 (0.46)] 22658 (0.46)
HERMES 258970 (0.18)| 368863 (0.26)| 518549 (0.36) 266255 (0.19)| 250740 (0.17)
MEAN (0.75) (0.72) (0.69) (0.60) (0.58)

Tab. 4.4: Comparison of operation counts.

33

Matrix METIS-4.0 ScoTCcH-3.3 SPOOLES2.2 pord multipord

GRID127x127 | 0.81 (4.1) 222 (11.1) 158 (7.9 1.27 (6.4) 1.35 (6.7)
MESH127x127|| 1.04 (4.7) 290 (13.2)| 2.36 (10.1)] 1.45 (6.6) 158 (7.2
BCSSTK15 0.52 (4.3) 1.96 (16.3) 1.13 (9.4 0.52 (4.3) 0.60 (5.0)
BCSSTK16 0.21 (2.6) 0.52 (6.5 0.48 (6.0) 0.19 (2.4) 0.25 (3.1)
BCSSTK17 0.76 (5.1) 1.50 (10.0) 1.13 (7.5 0.61 (4.1) 0.71 (4.7)
BCSSTK18 1.02 (4.1) 3.70 (14.8)] 2.84 (11.4)] 1.25 (5.0 157 (6.3)
BCSSTK23 0.25 (2.5) 1.23 (12.3), 0.58 (5.8) 0.29 (2.9 0.37 (3.7)
BCSSTK24 0.09 (3.0 0.20 (6.7) 0.16 (5.3) 0.07 (2.3) 0.11 (3.7)
BCSSTK25 1.63 (4.9 581 (17.6)] 3.71 (11.2)] 1.69 (5.1) 1.90 (5.8)
BCSSTK29 1.65 (5.5) 9.09 (30.3)] 3.29 (11.0)] 1.35 (4.5) 1.66 (5.5)
BCSSTK30 226 (4.2) 473 (8.9) 430 (8.1) 1.69 (3.2) 1.85 (3.5)
BCSSTK31 3.35 (5.2) 6.61 (10.2)| 5.60 (8.6) 296 (4.6) 3.44 (5.3)
BCSSTK32 2.86 (4.8) 495 (8.2) 430 (7.2 2.28 (3.8) 290 (4.8)
BCSSTK33 0.77 (3.7) 256 (12.2)] 2.61 (12.4)] 0.78 (3.7) 091 (4.3)
BCSSTK35 091 (2.9 1.57 (5.1 1.70 (5.5 0.81 (2.6) 0.95 (3.1)
BCSSTK36 0.56 (2.4) 095 (4.1) 1.17 (5.1) 0.48 (2.1) 0.61 (2.7)
BCSSTK37 1.03 (3.7) 190 (6.8) 1.71 (6.1) 0.87 (3.1) 0.97 (3.5)
BCSSTK38 0.85 (5.7) 1.63 (10.8) 1.00 (6.7) 0.48 (3.2) 0.61 (4.1)
MATO02HBF 0.90 (2.2 1.37 (3.3) 1.73 (4.2 0.87 (2.2) 0.97 (2.4)
MATO3HBF 1.15 (1.9 235 (3.9 270 (4.4) 1.46 (2.4) 1.66 (2.7)
STRUCTS3 5.18 (4.9)| 18.40 (17.5)| 14.00 (13.3)] 7.52 (7.2) 8.81 (8.4)
STRUCT4 1.37 (5.1) 3.58 (13.3)] 5.43 (20.1)] 1.06 (3.9 1.33 (4.9
PWT 0.96 (1.7) 6.30 (11.1)| 6.30 (11.1)] 3.87 (6.8) 403 (7.1)
BRACK2 7.14 (3.5)| 2395 (11.7)| 17.32 (8.4) 1248 (6.1)] 14.11 (6.9
CRACK 0.59 (3.3) 1.69 (9.4) 1.06 (5.9 0.87 (4.8) 0.98 (5.4)
3DTUBE 3.73 (3.9 7.57 (8.0 6.70 (7.1) 281 (3.0 3.40 (3.6)
CFD1 12.78 (4.3)| 37.57 (12.5)| 36.73 (12.2)] 15.71 (5.2)] 17.43 (5.8)
CFD2 22.34 (5.0)| 65.29 (14.5)| 64.11 (14.2)] 27.61 (6.1)] 31.64 (7.0)
CYL3 2199 (1.3)| 77.81 (4.6)| 7153 (4.2)] 6859 (4.0)| 7199 (4.2
DIME20 13.70 (3.4)] 38.00 (9.5 3750 (9.4) 32.78 (8.2)] 33.07 (8.3
GEARBOX 18.61 (6.5)| 27.83 (9.6)] 21.36 (7.4)| 13.85 (4.8)] 14.86 (5.2)
NASASRB 6.30 (6.3) 9.54 (9.5 795 (7.9 4.68 (4.7) 5.77 (5.8)
WAVE 21.32 (3.6)] 7251 (12.2)| 67.81 (11.4)] 35.79 (6.0)] 38.59 (6.5
PWTK 16.74 (7.4)] 1153 (5.1)] 1050 (4.7)] 6.80 (3.0 8.01 (3.6)
HERMES 61.78 (3.9)| 181.79 (11.4)| 220.68 (13.9)] 104.81 (6.6)| 11091 (7.0)
MEAN (4.0) (10.6) (8.7) (4.4) (5.1)

Tab. 4.5: Comparison of runtimes.

34

in column 3 present the medians over eleven runs. All oth&ulte have been obtained by a single
execution of the ordering code.

The last column of table 4.4 shows thraultipord achieves the highest reduction of operation
count. While the other popular ordering codes reduce theageenumber of floating point operations
by 25% (MEeTIS), 28 % (S0oTCH), and 31% ($0OLE9 compared taVIMD, multipord achieves
an improvement of 42 %. Note that all orderings producedrftipord are better than the corre-
spondingAMD orderings. Thus, in contrast to the other three orderingesgdultipord consistently
outperformsAMD. However, it is also interesting to compare the resultsiobthby the nested dis-
section variant opord (column 4 of table 4.2) with the results obtained byMs and SOTCH.

Of the three state-of-the-art nested dissection cqu@s] achieves the highest average improvement.
Compared taAMD it reduces the operation count by 33 %. While there are onmBetimatrices where
pord does not produce as good an orderingA\&$D, there are eight such cases foeEMs and seven
such cases for &TCH.

Table 4.5 provides us with the runtimes required by the fivéhoads. The numbers in brackets
give the runtimes relative tAMD. As can be seen, EIris takes modest amount of CPU times. Due
to the more complicated coarsening and refinement prodessrtiering times fopord can increase
by an factor of two (i. e. BRACK2, HERMES) or more (i.e. CYL3)rapared to MTIS. Note that
the ordering times for SoTcHand S ooLEsdiffer only by a small fraction. In general, the ordering
times forpord lie between the ordering times for#is and S oTCHSPOOLES We have observed
this general tendency across the entire set of benchmaricesmtColumns 3 and 4 demonstrate that
multipord requires only a marginally higher amount of CPU times thard.

5 Conclusion

We have described two modifications to the basic multiseardering heuristic that achieve a tighter
coupling of bottom-up and top-down methods. In one of theedifications we are using bottom-
up techniques such as quotient graphs and special noddiaelstrategies for the construction of
vertex separators. The idea is that vertex separators camdypreted as the boundaries of the re-
maining elements in an unfinished bottom-up ordering. Insé@nd modification we are using the
vertex separators as a skeleton for the computation of a sgidetrum of bottom-up orderings. Here,
the motivation is that nested dissection ignores the baigglaf elements which minimum degree
naturally takes into account.

Both methods, bottom-up as well as top-down, have their odds@nd ends. In multisection
ordering schemes the advantages of one method are usedutte réte disadvantages of the other.
Our intention was to push this development one step further.

Acknowledgement

We would like to thank Patrick Amestoy and Cleve Ashcraftrfa@ny helpful comments on an earlier
draft of this paper. Cleve also provided many suggestionshenalgorithmic components of our
ordering heuristic.

References

[1] P.R. Amestoy, T.A. Davis, |.S. DuffAn approximate minimum degree ordering algorith&81AM J.
Matrix Anal. Appl., Vol. 17, 886—-905, 1996.

35

[2] C. Ashcraft,Compressed graphs and the minimum degree algori®iM J. Sci. Comput., Vol. 16,
No. 6, 1404-1411, 1995.

[3] C. Ashcraft, Sparse Direct Methods, Volume 1: Orderings for Matriceshwitymmetric Structure
Preprint, February, 2000.

[4] C. Ashcraft, R. GrimesSPOOLES: an object-oriented sparse matrix libre®th SIAM Conference on
Parallel Processing for Scientific Computing, March 1998 8ntonio, Texas.

[5] C. Ashcraft, J.W.H. LiuA partition improvement algorithm for generalized nestéssection Techn.
Rep. BCSTECH-94-020, Boeing Computer Services, Seafi#}.1

[6] C. Ashcraft, J.W.H. Liu,Generalized nested dissection: Some recent proghss Symposium 5th
SIAM Conference on Applied Linear Algebra, Snowbird, UtaB94.

[7] C. Ashcraft, J.W.H. LiulUsing domain decomposition to find graph bisect&d 37, 506-534, 1997.

[8] C. Ashcraft, J.W.H. LiuApplications of the Dulmage-Mendelsohn decompositionrataiork flow to
graph bisection improvemer8lAM J. Matrix Anal. Appl., Vol. 19, 325-354, 1998.

[9] C. Ashcraft, J.W.H. LiuRobust ordering of sparse matrices using multisect®AM. J. Matrix Anal.
Appl., Vol. 19, No. 3, 816-832, 1998.

[10] C. Ashcraft, J.W.H. Liu, S.C. Eisenst&yactical extensions of the multisection ordering for smar
matrices 6th SIAM Conference on Applied Linear Algebra, Snowbirdak), October 29, 1997.

[11] S.T. Barnard, H.D. SimorA fast multilevel implementation of recursive spectraébifon Proc. of 6th
SIAM Conf. Parallel Processing for Scientific Computing1#718, 1993.

[12] Benoit, Note sur une mthode de &solution desquations normales etc. (Prede du commandant
Cholesky)Bull. géodésique 3, 67—-77, 1924,

[13] P. Berman, G. Schnitge@n the performance of the minimum degree ordering for Gansslimination
SIAM J. Matrix Anal. Appl., Vol. 11, No. 1, 83-88, 1990.

[14] M.V. Bhat, W.G. Habashi, J.W.H. Liu, V.N. Nguyen, M.Feé&ers,A note on nested dissection for
rectangular grids SIAM J. Matrix Anal. Appl., Vol. 14, No. 1, 253-258, 1993.

[15] T. Bui, C. JonesA heuristic for reducing fill-in in sparse matrix factorizam, Proc. 6th SIAM Confer-
ence on Parallel Processing for Scientific Computing, 483--4993.

[16] A.C. DamhaugsSparse solution of finite element equatioPBD Thesis, Department of Structual Enge-
neering, The Norwegian Institute of Technology, Trondheitarway, 1992.

[17] T. Davis, University of Florida Sparse Matrix Collectionhttp://www.cise.ufl.edu/"davis/sparse/,
ftp://ftp.cise.ufl.edu/pub/faculty/davis/matrices, NAgest, Vol. 92, No. 42, October 16, 1994, NA Di-
gest, Vol. 96, No. 28, July 23, 1996, and NA Digest, Vol. 97, B8, June 7, 1997.

[18] I.S. Duff, A.M. Erisman, J.K. ReidPirect Methods for Sparse Matrice©xford University Press,
Oxford, 1987.

[19] I.S. Duff, R.G. Grimes, J.G. Lewi§Jsers’ guide for the Harwell-Boeing sparse matrix collectiTech-
nical Report TR/PA/92/86, Res. and Techn. Division, Bo&mgnputer Services, Seattle, 1992.

[20] I.S. Duff, J.K. Reid,The multifrontal solution of indefinite sparse symmetnelr equationsACM
Trans. Math. Software, 3, 302-325, 1983.

[21] S.C.Eisenstat, M.H. Schultz, A.H. ShermApplications of an element model for Gaussian elimination
in Sparse Matrix Computationd. Bunch, D. Rose (Eds), Academic Press, New York, 85-985.19

[22] C.M. Fiduccia, R.M. Mattheyseg, linear-time heuristic for improving network partitions9th IEEE
Design Automation Conference, 175-181, 1982.

[23] A. George Nested dissection of a regular finite element m&AM J. Numer. Anal., Vol. 10, No. 2,
345-363, 1973.

[24] A. George, J.W.H. LiuAn automatic nested dissection algorithm for irregulartinélement problems
SIAM J. Numer. Anal., Vol. 15, No. 5, 1053-1069, 1978.

[25] A. George, J.W.H. LiuA fast implementation of the minimum degree algorithm ugimgtient graphs
ACM Trans. Math. Software, Vol. 6, 337-358, 1980.

[26] A. George, J.W.H. LiuComputer Solution of Large Sparse Positive Definite Systementice-Hall,
Englewood Cliffs, NJ, 1981.

36

[27] A. George, J.W.H. LiuThe evolution of the minimum degree ordering algoritf8tAM Review, Vol.
31, No. 1,1-19, 1989.

[28] A. George, J.W. Poole, R. Voigincomplete nested dissection for solvingy n grid problems SIAM
J. Numer. Anal., Vol. 15, 663-673, 1978.

[29] J.R. Gilbert, C. Moler, R. SchreibeBparse matrices in MATLAB: design and implementat8iAM J.
Matrix Anal. Appl., Vol. 13, 333-356, 1992.

[30] A. Gupta, WGPP: Watson graph partitioning (and sparse matrix ordgjipackage, users manysBm
T.J. Watson Research Center, Research Report RC 20453, bléw1996.

[31] A. Gupta,Fast and effective algorithms for graph partitioning andasge matrix ordering IBM T.J.
Watson Research Center, Research Report RC 20496, New149g,

[32] B. Hendrickson, R. LelandThe CHACO user's guideTechn. Rep. SAND94-2692, Sandia Nat.
Lab., 1994.

[33] B. Hendrickson, R. LelandA multilevel algorithm for partitioning graphsProc. of Supercomput-
ing’95, 1995.

[34] B. Hendrickson, E. Rothbergffective sparse matrix ordering: just around the BEN®oc. of 8th
SIAM Conf. Parallel Processing for Scientific Computing979

[35] B. Hendrickson, E. Rothbergmproving the runtime and quality of nested dissection ordg SIAM J.
Sci. Comput., Vol. 20, No. 2, 468-489, 1998.

[36] A.J.Hoffman, M.S. Martin, D.J. Ros€omplexity bounds for regular finite difference and finieneént
grids, SIAM J. Numer. Anal., Vol. 10, No. 2, 364-369, 1973.

[37] G.Karypis, V. KumarA fast and high quality multilevel scheme for partitioninggular graphs SIAM
J. Sci. Comput., Vol. 20, No. 1, 1999.

[38] G. Karypis, V. KumarMETIS: a software package for partitioning unstructuredgins, partitioning
meshes, and computing fill-reducing orderings of sparseioest (Version 4.0)Techn. Rep., Dept. of
Computer Science, Univ. of Minnesota, 1998.

[39] B.W. Kernighan, S. LinAn effective heuristic procedure for partitioning grapfi$he Bell Systems
Technical Journal, 291-308, 1970.

[40] D. Konig,Uber Graphen und ihre Anwendung auf DeterminantenthearieMengenlehreMath. Ann.,
77,453-465, 1916.

[41] C.E. Leiserson, J.G. LewiQrdering for parallel sparse symmetric factorization Parallel Processing
for Scientific ComputingSIAM, Philadelphia, 27-31, 1989.

[42] J.W.H. Liu,Modification of the minimum-degree algorithm by multiplenghation, ACM Trans. Math.
Software, Vol. 11, No. 2, 141-153, 1985.

[43] J.W.H. Liu, The minimum degree ordering with constrair8$AM J. Sci. Stat. Comput., Vol. 10, No. 6,
1136-1145, 1989.

[44] J.W.H. Liu, A graph partitioning algorithm by node separatp CM Trans. Math. Software, Vol. 15,
No. 3, 198-219, 1989.

[45] J.W.H. Liu, The role of elimination trees in sparse factorizat@AM J. Matrix Anal. Appl., Vol. 11,
No. 1, 134-172, 1990.

[46] H.M. Markowitz, The elimination form of the inverse and its application teelir programmingMan-
agement Science, Vol. 3, 255-269, 1957.

[47] C. MeszarosThe inexact minimum local fill-in ordering algorithriechn. Report WP 95 7, Computer
and Automation Research Institute, Hungarian Academy @frses, Budapest, 1995.

[48] E. Ng, P. Raghavaterformance of greedy heuristics for sparse Cholesky feettion, SIAM J. Matrix
Anal. Appl., Vol. 20, 902-914, 1998.

[49] S.V. ParterThe use of linear graphs in Gauss eliminati@AM Review, Vol. 3, 119-130, 1961.

[50] F. Pellegrini, J. RomanSparse matrix ordering with SCOTCHroc. HPCN'97, LNCS 1225, 370-
378, 1997.

[51] F. Pellegrini, J. Roman, P. Amestoylybridizing nested dissection and halo approximate mimmu
degree for efficient sparse matrix orderirigroc. Irregular'99, LNCS 1586, 986—995, 1999.

37

[52] R. Preis, R. Diekmanr,he PARTY patrtitioning library user guide — version,ITéchn. Rep., Dept. of
Computer Science, Univ. of Paderborn, 1996.

[53] D.J. RoseA graph-theoretic study of the numerical solution of sparssitive definite systems of linear
equationsin Graph-Teory and ComputingR. Read (Ed.), Academic Press, New York, 183-217, 1972.

[54] E. RothbergRobust ordering of sparse matrices: a minimum degree, deltsection hybridSilicon
Graphics manuscript, 1995.

[55] E. RothbergExploring the tradeoff between imbalance and separat@risinested dissection ordering
Silicon Graphics manuscript, 1996.

[56] E. Rothberg, S.C. Eisenstdpde selection strategies for bottom-up sparse matrix riarde SIAM J.
Matrix Anal. Appl., Vol. 19, No. 3, 682-695, 1998.

[57] B. Speelpenningfhe generalized element modetchn. Rep. UIUCDCS-R-78-946, Dept. of Computer
Science, Univ. of lllinois, 1978.

[58] W.F. Tinney, J.W. Walkeirect solutions of sparse network equations by optimaitieced triangular
factorization Proc. of the IEEE, Vol. 55, 1801-1809, 1967.

[59] M. YannakakisComputing the minimum fill-in is NP-comple®AM J. Alg. Disc. Meth., Vol. 2, No.
1,77-79,1981.

38

