
Towards a Tighter Coupling of Bottom-Up and Top-Down
Sparse Matrix Ordering Methods

Jürgen Schulze
University of Paderborn, Department of Computer Science

Fürstenallee 11, 33102 Paderborn, Germany

Abstract

Most state-of-the-art ordering schemes for sparse matrices are a hybrid of a bottom-up method
such as minimum degree and a top down scheme such as George’s nested dissection. In this
paper we present an ordering algorithm that achieves a tighter coupling of bottom-up and top-
down methods. In our methodology vertex separators are interpreted as the boundaries of the
remaining elements in an unfinished bottom-up ordering. As aconsequence, we are using bottom-
up techniques such as quotient graphs and special node selection strategies for the construction
of vertex separators. Once all separators have been found, we are using them as a skeleton for
the computation of several bottom-up orderings. Experimental results show that the orderings
obtained by our scheme are in general better than those obtained by other popular ordering codes.

1 Introduction

Cholesky’s method [12] for solving a symmetric positive definite systemA � x = b, A 2 M(n; IR),
plays an important role in many scientific applications suchas linear programming and structural
engineering. The importance of this method is mainly due to its generality and robustness. IfA is
sparse, the amount offill in the factor matrixL can be reduced significantly by reordering the columns
and rows ofA prior to factorization. Since the computation of a minimum fill ordering for general
sparse matrices is an NP-complete problem [59], much efforthas been devoted to the development
of powerful heuristic algorithms. All heuristics are basedon the observation that a symmetricn� n
matrixA can be interpreted as the adjacency matrix of an undirected graphG = (V;E), E � V � V .
In this graph theoretic context an ordering (or labeling) isa bijection� : V 7! f1; : : : ; ng.

As observed by Parter [49] and Rose [53], the column-wise factorization ofA can be modeled by
a sequence ofelimination graphsGk, 1 � k � n. When columnk is factorized,Gk is obtained fromGk�1 (G0 = G) by applying the following modifications toGk�1: (1) Delete vertexvk corresponding
to columnk in A, and (2) add edges so that the neighbors ofvk are pairwise connected (the neighbors
of vk form aclique in Gk). Each edge added in step (2) corresponds to a fill-entry inL.

One of the most popular ordering schemes isminimum degree[46, 58]. At stagek the basic mini-
mum degree algorithm selects a vertex with minimum degree inGk�1. This vertex is numbered next in
the ordering and is eliminated fromGk�1 to form the graphGk. The whole selection/elimination pro-
cess is then repeated forGk. Another effective method for reducing fill isnested dissection[23, 24].
The method starts with computing avertex separatorS in G. All vertices inS are ordered after those
in G(V � S). The method is recursively applied to each component ofG(V � S) until a component

This work is supported by the German Federal Department of Science and Technology (PARALOR project).

1

consists of a single vertex or a clique. In contrast to minimum degree which uses local information
of the elimination graphs to build� in a bottom-up manner, nested dissection uses global information
of the original graph to build� in a top-down manner. It is well recognized that the quality of the
orderings produced by bottom-up and top-down schemes is notuniformly good [9]. Therefore, most
state-of-the-art ordering codes such as BEND [34], METIS [38], SCOTCH [50], SPOOLES [4], and
WGPP[30] are using a hybrid of both schemes.

The main contribution of this paper is to present an orderingscheme that achieves a tighter cou-
pling of bottom-up and top-down methods. In our methodologythe vertex separators of an incomplete
nested dissection ordering are interpreted as the boundaries of the remaining elements in an unfinished
bottom-up ordering. Consequently, we apply bottom-up techniques such as quotient graphs and spe-
cial node selection strategies to the construction of vertex separators. Once all separators have been
found, we are using them as a skeleton for the computation of several bottom-up orderings.

The paper is organized as follows. In section 2 we introduce the concept of quotient graphs and
review some of the most popular bottom-up ordering algorithms. Furthermore, we describe state-
of-the-art algorithms for the construction of vertex separators and show how bottom-up and nested
dissection are combined in existing hybrid schemes. In section 3 the fundamental concepts of our
methodology are presented. Finally, section 4 provides us with computational results for some bench-
mark matrices.

2 Preliminaries

In this section we briefly review some of the fundamental concepts found in bottom-up and top-down
sparse matrix ordering schemes. All schemes are described for the undirected graphG = (V;E),E � V � V , associated with the symmetric matrixA. We are using the following notations. Letv be
a vertex ofG. The set of vertices that areadjacentto v is denoted byadjG(v). For a setU � V , the
set of vertices adjacent toU is given byadjG(U) = �Su2U adjG(u)� � U . Note that we exclude all
vertices inU itself. Therefore, the setadjG(U) is also called theboundaryof U . A graphG can be
weighted, i. e. there may be weights attached to the vertices inV . We writejvj to denote the weight of
a vertexv. The weight of a subsetU is then given byjU j =Pu2U juj. Thecardinalityof U is denoted
by ard(U). Some authors defineweight(U) to denote the weight of a setU . However, in this work
we consider unweighted graphs and weighted graphs interchangingly. To ease the presentation,jU j is
used to refer to the weight ofU . Note thatjU j andard(U) are identical when the vertices have unit
weight, i. e. when the graph is unweighted.

2.1 Quotient graphs

Quotient graphs play a crucial role in our methodology. Originally, these graphs have been used
in bottom-up ordering algorithms such as minimum degree to represent the elimination graphs [25].
In the following, we are using Roman letters for graphs (i. e., G;V;E) and calligraphic letters for
quotient graphs (i. e.,G;X ; E).

Let us assume thatGk = (Vk; Ek) has been obtained fromG by eliminating the verticesUk � V ,
i. e.V = Vk[Uk andVk\Uk = ;. A setD � Uk of eliminated vertices is called adomainin G (with
respect toUk), if the graphG(D) is a connected subgraph ofG such thatadjG(D) � Vk, i. e. there are
only uneliminated vertices on the boundary ofD. The quotient graphGk associated withGk consists
of nodesXk = Dk[Vk withDk = fD; D is a domain with respect toUkg andVk = ffvg; v 2 Vkg.
In the context of quotient graphs a nodeD 2 Dk is calledelementand a nodefvg 2 Vk variable.

2

The nodesXk = Dk [Vk of Gk induce a partition of the vertices ofG whereDk contains disjoint
sets of eliminated vertices andVk a variable for each uneliminated vertex. To ease the presentation
we will not always distinguish between a variablefvg and the uneliminated vertexv.

An edge ofGk is of two forms: Adomain-vertexedge(D; v) wherev 2 adjG(D), and avertex-
vertexedge(u; v) where(u; v) 2 E and there existsno domainD 2 Dk such thatu 2 adjG(D) andv 2 adjG(D). Note that there are no domain-domain edges in the quotient graph.

There is a close relationship between the elements ofGk and the cliques generated inGk. The
edge setEk of the elimination graphGk can be written asEk = (E \ (Vk � Vk)) [[D2Dk(adjG(D)� adjG(D)): (2.1)

The first set contains all edges ofG that are incident to uneliminated vertices. The second set contains
the edges of all cliques generated during the elimination process. However, the clique edges are not
explicitly stored inGk. Moreover, a clique is represented by an elementD 2 Dk and consists of all
vertices/variables that are connected toD via a domain-vertex edge.

In terms of quotient graphs the elimination of a variablev is modeled as follows: (1) Removev
with all of its adjacent elements, (2) add a new elementDv and connect it to all variables that were
adjacent tov or to an element, and (3) remove any vertex-vertex edge(u;w) whereu 2 adjG(Dv)
andw 2 adjG(Dv).

The elimination ofv can be considered as mergingv with all adjacent elements. The merging
operation defines atreeon the vertices ofG. LetDu denote an element that is adjacent tov and that
has been created by the elimination ofu. SinceDu is absorbed by the new elementDv, we definev
to be the parent ofu. If one continues this way, the tree is built from the leaves up to the root. Note
that any vertexv that is not adjacent to any element becomes a leaf of the tree.The tree is called
elimination treeand plays an important role in the context of sparse direct solvers [20, 21, 45, 57].

In section 3 we consider quotient graphs that have a more general structure, i. e. there is no one-
to-one relation between a variable ofG and an uneliminated vertex ofG. Each variable represents
a subsetVi of uneliminated vertices such that two variablesVi; Vj are connected by a vertex-vertex
edge, ifVi \ adjG(Vj) 6= ;. A variableVi is connected to a domainD via a domain-vertex edge, ifVi \ adjG(D) 6= ;.
2.2 Bottom-up orderings

Bottom-up methods build the elimination tree from the leaves up to the root. In each iterationk a
greedy heuristicis applied toGk�1 to select a vertex for elimination. This section briefly describes
two of the most popular bottom-up algorithms, the minimum degree and the minimum deficiency
ordering heuristics.

2.2.1 Minimum degree ordering

As mentioned above, at each iterationk the minimum degree(MD) algorithm eliminates a vertexv
that minimizesdegGk�1(v) = j adjGk�1(v)j. The algorithm is a symmetric variant of the Markowitz
scheme [46] and was first applied to sparse symmetric factorization by Tinney and Walker [58]. Over
the years many enhancements have been proposed to the basic algorithm that have greatly improved
its efficiency. In the following we briefly describe some of these enhancements. For a detailed survey
the reader is referred to [27].

3

Perhaps one of the most important enhancements is the concept of supernodes. Two verticesu; v
of an elimination graphGk belong to the same supernode, ifadjGk(u)[fug = adjGk(v)[fvg. In this
context the verticesu; v are calledindistinguishable. Indistinguishable vertices possess two important
properties: (1) they can be eliminated consecutively in a minimum degree ordering, and (2) they
remain indistinguishable in all subsequent elimination graphs. As a consequence, all vertices that
belong to a supernodeI � Vk can be replaced by a single logical node with weightjIj. This reduces
the size of the elimination graphs and, therefore, the runtime of the minimum degree algorithm.

Closely related to the concept of supernodes is the notion ofexternal degrees[42]. With our
notations, the external degree of a vertexv in supernodeI is j adjGk(I)j. Instead of using true degrees,
the vertex to be eliminated next is selected according to itsexternal degree. The motivation is that the
only edges added by the elimination ofv 2 I are between vertices inadjGk(I). As a result, one
obtains slightly better orderings [27].

A key feature of the minimum degree algorithm is thatone vertex is eliminated in each step.
Once the new elimination graph has been built, the degree of all vertices that were adjacent to the
newly eliminated vertex have to be updated. The most time-consuming part of the minimum degree
algorithm is this degree update step. In Liu’smultiple minimum degree(MMD) algorithm [42] an
independent set of minimum degree vertices is eliminated ineach step. This multiple elimination
technique reduces the amount of degree updates and leads to asignificant acceleration of the minimum
degree algorithm.

The efficiency of the minimum degree algorithm can be furtherimproved when usingapproximate
degrees[1, 29] rather than exact degrees. Once a vertexv has been eliminated fromGk�1, the new
degree of a vertexu 2 adjGk�1(v) is estimated by an upper bound. The upper bound is much less
expensive to compute than the exact degree. The approximateminimum degree(AMD) algorithm
proposed by Amestoy et al. [1] produces orderings that are ofcomparable quality to those obtained
using exact degrees. Note that this is not always the case with the approximation proposed by [29].

2.2.2 Minimum deficiency ordering

A less popular bottom-up scheme is theminimum deficiencyor minimum local fill(MF) heuristic [58].
Here, the exact amount of fill is used to select a vertex for elimination. Formally, the deficiency of a
vertexv in Gk is defined asdefGk(v) = jffu;wg; u;w 2 adjGk(v); u 62 adjGk(w)gj. The minimum
deficiency algorithm has received much less attention because of its prohibitive runtime: The compu-
tation ofdefGk(v) is much more expensive than the computation ofdegGk(v), and the elimination ofv does not only affect the deficiency of all vertices inadjGk(v), but also the deficiency of all vertices
that are adjacent to a vertex inadjGk(v). Furthermore, it was thought that minimum deficiency would
only marginally improve the ordering quality compared to minimum degree [18]. However, recent
studies have shown that much better orderings can be obtained from minimum deficiency [47, 48, 56].

In order to reduce the runtime of the minimum deficiency algorithm, Rothberg and Eisenstat [56]
have developed several node selection strategies that relyon an approximate computation of the de-
ficiencies. These selection strategies have proven to be very effective. Again, supernodes play a
crucial role. Letv be the vertex whose elimination transformsGk�1 into Gk. Furthermore, letu 2 adjGk�1(v) and letIu denote the supernode withu 2 Iu. Then,defGk(u) is bounded by12d(d � 1) whered denotes the external degree ofu in Gk. Since all vertices inadjGk�1(v) � Iu are
neighbors ofu and connected to a clique inGk, the upper bound can be tightened tosoreAMF(u) =12d(d� 1)� 12(� 1) with = j adjGk�1(v)� Iuj. In Rothberg’s and Eisenstat’sapproximate mini-
mum local fill(AMF) algorithm, the vertex to be eliminated next is selected according tosoreAMF.
Further selection strategies that are based on functionsoreAMF are proposed such asapproximate

4

minimum mean local fill(AMMF) or approximate minimum increase in neighbor degree(AMIND).
For more details consult [56].

2.3 Top-down orderings

The most popular top-down scheme is George’s nested dissection (ND) algorithm [23, 24]. The
basic idea of this approach is to find a subset of verticesS in G, whose removal partitionsG in two
subgraphsG(B) andG(W) with V = S [B [W and jBj; jW j � �jV j for some0 < � < 1.
Such a partition ofG is denoted by(S;B;W). The setS is calledvertex separatorof G. If we order
the vertices inS after the(black) vertices inB and the(white)vertices inW , no fill-edge can occur
betweenB andW . Typically, the columns corresponding toS constitute a full off-diagonal block in
the Cholesky factor. Therefore,S is supposed to be small. OnceS has been found, the algorithm is
recursively applied to each connected component ofG(B) andG(W) until a component consists of
a single vertex or a clique. In this way the elimination tree is built from the root down to the leaves.

In contrast to the bottom-up methods introduced in section 2.2 the nested dissection algorithm is
quite ill-specified [35]. For an effective implementation the following two important questions have
to be answered: (1) How should the separators be determined,and (2) how important is a balanced
partitioning. In the following we address question (1) and describe existing techniques for finding and
improving vertex separators. Questions (1) and (2) are discussed again in sections 3 and 4.

2.3.1 Finding separators

Graph partitioning heuristics are usually divided intoconstructionand improvement heuristics. A
construction heuristic takes the graph as input and computes an initial separator from scratch. An
improvement heuristic tries to minimize the size of a separator through a sequence of elementary
steps. This section introduces two powerful construction heuristics, themultilevel methodand the
domain decomposition approach. The next section discusses improving a separator.

Multilevel method In recent years, multilevel algorithms have been applied successfully to the con-
struction ofedge separators[15, 33, 37]. Roughly speaking, a multilevel algorithm consists of three
phases. In the first phase the original graphG is approximated by a sequence of smaller graphs that
maintain the essential properties ofG (coarsening phase). Then, an initial edge separator is con-
structed for the last graph in the sequence (partitioning phase). Finally, the edge separator is projected
backwards to the next larger graph in the sequence untilG is reached (uncoarsening phase). A local
improvement heuristic such as Kernighan-Lin [39] or Fiduccia-Mattheyses [22] is used to refine the
edge separator after each uncoarsening step. The software packages CHACO [32], METIS [38], and
PARTY [52] provide a variety of methods for the coarsening, partitioning, and uncoarsening phase.

For the computation of a nested dissection ordering we need vertex separators. Several nested
dissection implementations [11, 15] first find an edge separator via a multilevel algorithm and then
derive a vertex separator from the edge separator using a matching technique that is described in
section 2.3.2. However, the size of an edge separator is onlyindirectly related to the size of a vertex
separator. Therefore, the multilevel scheme has been extended to find vertex separators directly [31,
35]. In the extended scheme a variant of the Fiduccia-Mattheyses heuristic is applied to the refinement
of vertex separators. Thisvertex Fiduccia-Mattheysesmethod is summarized in section 2.3.2.

Domain decomposition method In contrast to the multilevel method described above, Ashcraft
and Liu [7] propose a two-level approach to construct a vertex separator. Analogous to thedomain

5

decomposition methodsfor solving PDEs, the vertex setV ofG is partitioned intoV = bV [D1[: : :[Dr with adjG(Di) � bV for all 1 � i � r. The setbV is calledmultisector. The removal ofbV splitsG
into connected subgraphsG(D1); : : : ; G(Dr). Once a domain decomposition(bV ;D1; : : : ;Dr) has
been found, a color fromfBLACK;WHITEg is assigned to eachDi. This induces a coloring of the
verticesv 2 bV :olor(v) = 8<: BLACK; if all D with v 2 adjG(D) are coloredBLACKWHITE; if all D with v 2 adjG(D) are coloredWHITEGRAY; otherwise.

(2.2)

To ensure that the setS = fv 2 bV ; olor(v) = GRAYg constitutes a valid vertex separator ofG
for every coloring ofD1; : : : ;Dr, the vertices of the multisectorbV are properly blocked tosegments.
This blocking technique is summarized in section 3.1. Its objective is to group into a segment adjacent
variables that do not share at least one domain in their adjacency list. As a result, one obtains a
partitioning bV = V1 [: : :[Vs, Vi \Vj = ;, of the multisector. Analogous to (2.2) a segmentVi � bV
can be colored as follows:olor(Vi) = 8<: BLACK; if all D with Vi \ adjG(D) 6= ; are coloredBLACKWHITE; if all D with Vi \ adjG(D) 6= ; are coloredWHITEGRAY; otherwise.

(2.3)

Now, and because of the properties of the segments, the setS = fv 2 bV ; 9Vi � bV with v 2Vi and olor(Vi) = GRAYg constitutes a vertex separator ofG for every coloring ofD1; : : : ;Dr.
In section 3.1 the blocking of vertices to segments and the coloring ofD1; : : : ;Dr is discussed again
and illustrated on an example.

Ashcraft and Liu use a randomized greedy domain-growing algorithm to generate a domain de-
composition. The setsD1; : : : ;Dr are colored using a Fiduccia-Mattheyses scheme that minimizes
the size of the induced vertex separatorS. OnceS has been found, a sophisticated network-flow
algorithm is used to refineS. For more information the reader is referred to [7, 8].

There is a close relationship between the setsD1; : : : ;Dr and the domains formed by a bottom-up
ordering algorithm. LetbU = Sri=1Di. Since all graphsG(Di) are connected subgraphs ofG withadjG(Di) � bV , each setDi can be interpreted as a domain with respect to the eliminatedverticesbU .
The multisectorbV contains all uneliminated vertices ofG, i. e.V = bV [bU . In section 3.1 we show
that a domain decomposition(bV ;D1; : : : ;Dr) can be represented by a quotient graph. Even more, ifbV is properly partitioned into segments, the quotient graph is bipartite, i. e. it contains domain-vertex
edges only. This interesting connection encouraged us to use quotient graphs for the construction of
vertex separators. The quotient graphs are obtained by nodeselection strategies similar to those found
in bottom-up ordering algorithms.

2.3.2 Improving separators

To be more precise, we are interested in improving the partition (S;B;W) of a graphG rather than in
improving the separatorS. Usually, the quality of a partition is measured in terms of separator size and
balance of the partition. To decide whether one partition(S;B;W) is better or worse than a second
partition (S0; B0;W 0), an evaluation functionF is needed. This function weights the sometimes
conflicting goals of minimizing separator size and maximizing partition balance. The choice of an
appropriate evaluation function is not straightforward and must be considered in the context of the
overall ordering process. Section 3.2 introduces the evaluation function that is used by our algorithm.

6

A partition (S;B;W) is usually improved by finding a new separatorS0 with the property thatjS0j � jSj. We then have to examine the partition induced byS0. We hope that the improvement ofS results in an improvement of the partition(S;B;W). There are two main improvement techniques
that are in common use today. Firstly,heuristic methodsthat rely on finding a “nearby” separatorS0
by simple vertex moves and, secondly,direct methodsthat rely on finding avertex coverin a bipartite
subgraph ofG to move a set of vertices simultaneously.

Heuristic methods The algorithms proposed by Kernighan-Lin [39] and Fiduccia-Mattheyses [22]
are the most frequently used heuristics for refining edge separators of graphs. Both algorithms con-
sist of two nested loops. In the inner loop, the Kernighan-Lin algorithm chooses pairs of vertices
that belong to different components, swaps their positionslogically and locks them. These logical
swaps are repeated until all vertices are locked. The fundamental idea of the algorithm is to allow a
deterioration of the cut size when swapping the vertices. The hope is that an intermediate increase of
the cut size allows the discovery of better partitions in subsequent pair exchanges. Once all vertices
are locked, the sequence of logical swaps is chosen that leads to the maximal decrease in cut size.
The corresponding vertices are then physically swapped andthe outer loop restarts the improvement
process for the new partition.

To speed up the inner loop, Fiduccia and Mattheyses suggested to consider only simple vertex
moves instead of pair exchanges. In this way, a single searchfor a better partition (i. e. one execution
of the inner loop) can be performed in time bounded by the number of edges in the graph. In real
implementations numerous extra “tricks” such as early termination, lazy evaluation of priorities, and
randomization are used to improve both runtime as well as quality of the solutions [32].

The Fiduccia-Mattheyses algorithm can easily be generalized to vertex separators [5]. In this
vertex Fiduccia-Mattheyses algorithm each move selects a vertexv 2 S, transfers it toB (orW) and
locks it. Once a vertexv has been transferred toB, all neighbors ofv in W are pulled intoS. The
selection ofv is based on again-valuethat measures the change in separator size. For a weighted
graph the gain associated with movingv from S toB is defined asgainS!B(v) = jvj � Xu2adjG(v)\W juj:
The valuegainS!W (v) is defined analogously. Since a vertex cannot move twice within the inner
loop, it can be shown [35] that the total time required for computing and updating the gain-values is
asymptotically bounded by the number of edges in the graph. If a heapdata structure is used to sort
the gain-values, the cost for one execution of the inner loopis given byO(e log n) wheree denotes
the number of edges andn the number of vertices in the graph. Note that we are considering weighted
graphs. Therefore, we cannot use a linear time algorithm such asbucket sortas proposed by Fiduccia
and Mattheyses.

Direct methods An alternate algorithm for refining a vertex separatorS has been introduced by
Liu [44]. Again, let (S;B;W) denote the partition ofG and letB be the component with larger
weight. If we defineBS to be the set of vertices inB that are adjacent to vertices inS, i. e.BS =adjG(S)\B, then any vertex cover in the bipartite graphH(S;BS) constitutes a valid vertex separator
of G. In order to obtain an improved separator, we must find a minimum cardinality or a minimum
weight vertex cover, depending on whetherG is weighted or not. In the unweighted case amaximum
matchingis determined inH(S;BS). The maximum matching is then used to construct a vertex cover
so that every matching edge is incident to exactly one vertexof the cover. According to König [40] the

7

S
0

S
1

S
2

S
3

S
4

Fig. 2.1: Topmost separators of a rectangular grid.S0 is the first separator, followed by the separatorsS1, S2,
andS3, S4.

vertex cover must have minimum cardinality. IfG is weighted, a network-flow technique is used to
find a minimum weight vertex cover. The details are beyond thescope of this paper; more information
can be found in [8]. Note that it is also possible topair S with the smaller componentW . However,
in this case the refinement process can further increase the imbalance of the partition.

It turns out that the same vertex cover technique can be used to obtain a vertex separator from an
edge separator. One simply computes a minimum vertex cover for the bipartite graph induced by the
cut edges. Note that it also possible to use heuristics for finding an approximate minimal cardinality
vertex cover [41].

2.4 Multisection orderings

The shortcomings of a bottom-up method such as minimum degree are largely due to thelocal nature
of the algorithm. In [13] Berman and Schnitger describe a minimum degree elimination sequence for
the k � k grid so that the number of factor entries and the number of factor operations is an order
of magnitude higher than optimal. By construction, their scheme produces elements with a severe
“fractal” boundary. Asymptotically optimal orderings fork�k grids are produced by George’s nested
dissection scheme [36]. If the separators are eliminated according to the given nested dissection order,
elements with a “smooth” boundary are created.

The shortcomings of nested dissection are best illustratedon h � k grids with large aspect ratio
(i. e. h � k). Here, minimum degree outperforms nested dissection. Since the nested dissection
scheme still relies on the best separators of the grid (best in terms of separator size and partition
balance), the bad performance cannot be attributed to the quality of the separators. Moreover, it
is a question of how the separators arenumbered. Figure 2.1 shows the topmost separators of a
rectangular grid. If the separators are numbered accordingto the given nested dissection order,S3
will be eliminated beforeS1 andS0. As a consequence one obtains an element whose boundary
contains2h vertices. However, if the separators are eliminated from “left to right” or “from both ends
to the center” all elements will have a boundary of sizeh. Therefore, aprofile or minimum degree
ordering of the separator vertices will produce less fill than nested dissection.

Multisection schemes [9] provide a more effective way of numbering the vertices associated with
a separator. Here, separators are only used tosplit the graph in multiple subgraph. As a result one
obtains a domain decomposition(�;
1; : : : ;
q) of the original graph where� contains all vertices
that belong to a separator. Note that we used Greek letters todistinguish the multisection domain de-
composition(�;
1; : : : ;
q) from the separator domain decomposition(bV ;D1; : : : ;Dr) introduced
in section 2.3.1. As described by Ashcraft and Liu [7], the latter domain decomposition can be used
to construct the separators required by the former domain decomposition.

The fundamental property of a multisection ordering is thatthe vertices in the domains
1; : : : ;
q
are numbered before the vertices in the multisector�. Thus, the elimination sequence isconstrained,

8

i. e. some vertices must be ordered before others. To order the vertices in the multisector we consider
the elimination graphG� = (�; E�) with (cf. equation (2.1))E� = (E \ (�� �)) [q[i=1 (adjG(
i)� adjG(
i)):
Note thatG� represents the structure of theSchur complement matrix. Different ordering methods
can be used to number the vertices in the domains and the vertices in the Schur complement graph.
Therefore, a multisection ordering is defined by three choices [9]:

1. How to determine the domain decomposition(�;
1; : : : ;
q)?
2. What fill-reducing ordering to use to order the domains
1; : : : ;
q?
3. What fill-reducing ordering to use to order the multisector �?

Multisection orderings are denoted byMS(ord1; ord2) whereord1 refers to the ordering method used
to number the domains andord2 refers to the ordering method used to number the multisector. In
the literature, there are a number of existing ordering schemes using the multisection approach. Two
important examples are:� Incomplete Nested Dissection [28] –MS(MMD;ND) andMS(CMD;ND)

In this scheme the multisector is constructed by the recursive bisection process of nested dissec-
tion. In contrast to the original nested dissection algorithm the recursion terminates after a few
levels and the vertices in the remaining subgraphs/domainsare numbered using either multiple
minimum degree(MMD) [42] or constrained minimum degree(CMD) [43]. The vertices in
the multisector are numbered according to the given nested dissection ordering.� Local Nested Dissection [14] –MS(ND;PROFILE)
The most successful ordering scheme forh � k grids withh � k is local nested dissection.
Here, the domain decomposition is constructed by a set of parallel and vertical dissectors that
subdivide the rectangular grid in roughly square domains. Each square domain is then numbered
by nested dissection. The vertices in the multisector are numbered by a profile ordering.

The h � k grid example gives rise to the assumption that the quality ofan incomplete nested dis-
section ordering can be further improved when using minimumdegree to order the separator vertices
instead of following the given nested dissection ordering.This multisection ordering is referred to asMS(CMD;MMD) and has been independently discovered by Ashcraft, Liu [6, 9], and Rothberg [54].

3 Our methodology

Two levels of hybridizing bottom-up and top-down methods can be found in the literature: incomplete
nested dissection (i. e.MS(MMD;ND) orMS(CMD;ND)) and minimum degree post-processing on
an incomplete nested dissection (i. e.MS(CMD;MMD)). Our driving interest is to achieve an even
tighter coupling of both methods. Roughly speaking, we wantto explore how bottom-up methods
can be used to improve the construction of vertex separatorsand how vertex separators can be used to
improve the construction of bottom-up orderings.

To achieve the first goal we developed a new multisection scheme that is given in figure 3.1. Sim-
ilar to the original scheme proposed by Ashcraft and Liu [9],the multisector� is constructed by a

9

MULTISECTION(ord�; ord1; ord2)
01: Determine a domain decomposition(�;
1; : : : ;
q) of G by a recursive bisection

process. Use node selection strategyord� to construct the vertex separators.
02: for each set
i do
03: Eliminate all vertices in
i using node selection strategyord1.
04: Construct the elimination graphG�.
05: Number the vertices inG� using node selection strategyord2.

Fig. 3.1: Function MULTISECTION.

recursive bisection process (line 01). However, a new multilevel method is used to determine the
vertex separators. In contrast to traditional methods thatrely on a matching technique to coarsen a
graph, the new method produces a sequenceG0;G1; : : : ;Gt of quotient graphs whereGk is obtained
from Gk�1, 1 � k � t, by the elimination of certain variables. The variables arechosen according
to a node selection strategyord� that is similar to selection strategies found in bottom-up algorithms.
Once a domain decomposition has been determined, the vertices in the domains
1; : : : ;
q are elim-
inated according to selection strategyord1 (lines 02–03). Finally, the Schur complement graphG� is
constructed, and all vertices inG� are eliminated according to selection strategyord2 (lines 04–05).

According to the classification scheme proposed by Ashcraftand Liu [9], our multisection order-
ing algorithm is defined by the three choices:

1. What node selection strategy to use to coarsen a quotient graph?

2. What node selection strategy to use to order the domains
1; : : : ;
q?
3. What node selection strategy to use to order the multisector�?

In our methodology multisection orderings are denoted byMS(ord�; ord1; ord2). Again, ord1 andord2 refer to the elimination methods applied to the vertices in the domains and the multisector. The
additional parameterord� refers to the elimination method applied to the variables ofa quotient graph.
Thus,ord� specifies the coarsening method in our multilevel algorithm.

To achieve the second goal we generalized our multisection ordering scheme. In the new scheme
the multisector� serves as a “skeleton” for the computation of several bottom-up orderings. The
key idea is to eliminate some separators of� according to nested dissection and some according to
minimum degree. Therefore, the new scheme is calledtristage multisection. Tristage multisection
schemes have originally been proposed by Ashcraft, Liu, andEisenstat [10].

In section 3.1 we formally introduce our multilevel algorithm and present some node selection
strategies to coarsen a quotient graph. Section 3.2 describes the local improvement heuristic that is
used to refine a vertex separator after each uncoarsening step. We prove that the performance of our
heuristic is asymptotically identical to the performance of the vertex Fiduccia-Mattheyses heuristic
proposed by Ashcraft and Liu [5]. Finally, section 3.3 presents the tristage multisection scheme.

3.1 Finding a separator in the new multilevel scheme

The key idea of our multilevel scheme is to approximate the original graphG by a sequence of quotient
graphsG0;G1; : : : ;Gt. Each quotient graphGk, 0 � k � t, has the fundamental property that any set
of variablesSk, whose removal separatesGk in two or more connected components, induces a vertex
separatorS in G. As a consequence, any improvement ofSk leads to an improvement ofS.

10

SEPARATOR(ord�)
01: Construct initial quotient graphG0 fromG.
02: k := 0;
03: while Gk not small enoughdo
04: Construct coarser quotient graphGk+1 by eliminating some variables fromGk.

The variables are chosen according to node selection strategy ord�.
05: k := k + 1;
06: end while
07: Determine a coloring forGk that induces a small separatorSk.
08: while k > 0 do
09: Extend the coloring ofGk to the nodes ofGk�1. This induces a separatorSk�1 of Gk�1.
10: Improve the coloring ofGk�1 so thatSk�1 is minimized.
11: k := k � 1;
12: end while
13: Extend the coloring ofG0 to the vertices ofG. This induces a separatorS of G.
14: ImproveS by applying a vertex cover technique.

Fig. 3.2: Function SEPARATOR.

This section is divided in two parts. The first part describesour multilevel scheme and the second
part introduces some node selection strategies to coarsen the quotient graphs.

3.1.1 Description of the new multilevel scheme

Our multilevel scheme starts with the construction of an initial quotient graphG0 from G. Based onG0 a sequence of quotient graphsG1; : : : ;Gt is produced whereGk is obtained fromGk�1, 1 � k � t,
by the elimination of certain variables. We want that each quotient graphGk satisfies the following
two conditions (this includesG0, i. e.0 � k � t):

(1) LetVk = fV1; : : : ; Vsg denote the set of variables inGk and letSk � Vk be a separator forGk.
If Sk consists of variablesVp1 ; : : : ; Vpt , thenS = Vp1 [: : : [Vpt constitutes a separator ofG.

(2) Gk is bipartite, i. e. it only contains domain-vertex edges.

Condition (1) is crucial for the effectiveness of our multilevel scheme. It relates the minimization
of the separator for the coarse graphGk to the minimization of the separator for the original graphG. Note that in contrast to other multilevel methods, the separator for a coarse graph is truly a min-
imal vertex separator of the original graph. To find a separator Sk in the coarse graphGk we are
using the coloring technique proposed by Ashcraft and Liu [7]. Let us assume that a color fromfBLACK;WHITEg is assigned to each elementD 2 Dk of the quotient graphGk. Analogous
to (2.3), this induces a coloring of the variablesfV1; : : : ; Vsg. As we will see soon, condition (2)
guarantees that the gray colored variables constitute a separator ofGk for every coloring of the ele-
ments. Figure 3.2 summarizes the structure of our multilevel scheme. In the following we describe
each step in more detail.

Construction of the initial quotient graph We start with computing amaximal independent setU
of vertices inG. The vertices that belong toU are removed fromG to obtainr = ard(U) initial
domains. All vertices that lie on the boundary of exactly onedomain are merged with that domain.
LetD1; : : : ;Dr denote the resulting domains and letbV denote the set of uneliminated vertices ofG.

11

(b)

(c)

(a)

(d)

u v

Fig. 3.3: The coarsening of a graphG. (a) shows the construction of the initial quotient graphG0. The vertices
of G that belong to the independent setU are circled. These vertices represent the initial domains.
Any vertex that lies on the boundary of only one domain is merged with that domain. This is indicated
by an oval. All neighboring vertices that do not share a common adjacent domain are blocked to a
segment. This is indicated by a rectangle. The initial quotient graph is shown in (b). Elements are
denoted by white colored circles, variables by black colored circles. The larger the circle, the more
vertices ofG have been absorbed by the element/variable. (c) shows the quotient graphG1 obtained
fromG0 when eliminating all variables circled in (b). In (d) all indistinguishable variables ofG1 (they
are connected with a dotted line in (c)) have been replaced bya supervariable. The black dotted line
represents a vertex separator forG1, G0, andG.

According to Ashcraft and Liu, the coloring rule (2.2) produces a valid vertex separator ofG for every
coloring ofD1; : : : ;Dr, if and only if8u; v 2 bV : (u; v) 2 E) 9D with u; v 2 adjG(D): (3.1)

Figure 3.3 (a) shows that the coloring technique fails, if (3.1) is not fulfilled. Let us assume that the
three domains adjacent tou are colored black and the two domains adjacent tov are colored white.
Due to (2.2)u is colored black andv is colored white. Since both vertices are connected by an edge
in G, no separator is induced by this coloring. Such a situation cannot occur, if all verticesu; v 2 bV
with (u; v) 2 E share a common domain (for a formal proof the reader is referred to [7]).

To avoid this problem, the vertices inbV are blocked to segmentsV1; : : : ; Vs so that8Vi; Vj � bV : Vi \ adjG(Vj) 6= ;) 9D with Vi; Vj \ adjG(D) 6= ;: (3.2)

The segmentsV1; : : : ; Vs are chosen to be the smallest segments that fulfill (3.2). In figure 3.3 (a)
the verticesu; v are blocked to a segment. All other segments consist of a single vertex. Equa-

12

tion (3.2) guarantees that the coloring rule (2.3) producesa valid vertex separator for every coloring
of D1; : : : ;Dr.

We are now able to define the initial quotient graphG0. The elements are the domainsD1; : : : ;Dr
and the variables are the segmentsV1; : : : ; Vs. The edges ofG0 are as described in section 2.1. Obvi-
ously,G0 satisfies condition (1). Because of equation (3.2) all variablesVi; Vj with Vi\adjG(Vj) 6= ;
share a common domain. As a consequence, there is no edge between two variables inG0. Thus,G0
also satisfies condition (2). Figures 3.3 (a) and (b) illustrate the construction ofG0.
Construction of coarser quotient graphs Let Gk = (Dk [Vk; Ek) denote a quotient graph that
satisfies conditions (1) and (2). For the construction ofGk+1 we first determine an independent set of
variablesU � Vk in Gk using node selection strategyord�. In this context two variablesVi; Vj 2 Vk
are said to be independent, if there is no elementD 2 Dk such that(D;Vi) 2 Ek and(D;Vj) 2 Ek.
OnceU has been found, a variableVi 2 U is merged with all adjacent elements to form a new elementDVi . Each merging operation corresponds to an elimination stepin a bottom-up algorithm. Note that
there is some analogy with the multiple minimum degree algorithm proposed by Liu [42]. In each
iteration of Liu’s ordering algorithm an independent set ofvertices with minimum degree is chosen
for elimination. However, in our coarsening scheme the choice of variables is more relaxed and not
limited to variables with minimum degree (cf. section 3.1.2).

Finally, all remaining variables that are adjacent to exactly one element are merged with that
element. The resulting quotient graph isGk+1. It remains to show thatGk+1 satisfies conditions (1)
and (2). Obviously,Gk+1 is bipartite. Because ofVk+1 � Vk, every separator ofGk+1 is a separator
of Gk, and sinceGk satisfies condition (1), the condition is also satisfied byGk+1.

There is another analogy to minimum degree in our coarseningscheme: All variables ofGk+1
that are adjacent to the same set of elements are replaced by asinglesupervariable. This replacement
further reduces the number of nodes inGk+1 and leads to an acceleration of the coarsening process.
The construction of new quotient graphs terminates, whenGk+1 contains less than 200 elements.
Figures 3.3 (b)–(d) illustrate the construction ofGk+1.
Coloring of quotient graphs Again, letGk = (Dk [Vk; Ek) denote a quotient graph that satisfies
conditions (1) and (2). To construct a separatorSk � Vk of Gk we are using the coloring technique
proposed by Ashcraft and Liu [7]. To be more precise, we are using the coloring ruleolor(Vi) = 8<: BLACK; if all D 2 adjGk(Vi) are coloredBLACKWHITE; if all D 2 adjGk(Vi) are coloredWHITEGRAY; otherwise.

(3.3)

Note thatGk is bipartite, i. e. there is no edge between two variables. Therefore, no additional blocking
of variables is necessary to ensure that the setSk = fVi 2 Vk; olor(Vi) = GRAYg constitutes a
valid separator ofGk for every coloring of the elements inDk.

To determine a coloring that minimizes the size ofSk, we are using a Fiduccia-Mattheyses scheme
that is introduced in section 3.2. The scheme requires an initial coloring of the nodes. In the case ofk = t, i. e.Gk is the last quotient graph in the sequence, the initial coloring is defined asolor(D) :=BLACK for all D 2 Dk andolor(Vi) := BLACK for all Vi 2 Vk. (We also experimented with a
random coloring of the elements, however, this did not lead to any improvements.) Ifk < t, the initial
coloring is obtained by extending the coloring ofGk+1 to the nodes ofGk.

13

Refining the final separator The separatorS0 = fVp1 ; : : : ; Vptg of G0 induces the separatorS =Vp1 [: : : [Vpt of G. Thus,S is composed of boundary segments that belong to various domains.
OftenS can be improved by exchanging a boundary segment with the interior vertices of a domain.
For this refinement process we apply the vertex cover technique described in section 2.3.2. Let us
assume that the removal ofS splitsG in subgraphsG(B) andG(W) with jBj � jW j. We first pairS
with B and compute a minimum weight vertex cover for the bipartite graphH(S;BS). If this cover
does not improveS, we pairS with W . The whole process is repeated until none of the two minimum
weight vertex covers improves the actual separator.

In multilevel schemes that rely on edge matchings the vertexcover technique can be applied after
each uncoarsening step [35]. However, this is not possible in our coarsening scheme. Any bipartite
subgraphHk of Gk contains some elements on one side and some variables on the other side. Since
we defined a separatorSk of Gk to contain only variables, a vertex cover inHk does not induce a valid
separator forGk. Furthermore, the weight of a variable is in general much smaller than the weight of
an element. Thus, the original separator has already constituted a minimum weight vertex cover inHk with high probability.

3.1.2 Node selection strategies to coarsen a quotient graph

In our coarsening scheme a quotient graphGk+1 is obtained from a quotient graphGk by eliminating
a set of independent variablesU � Vk. This leads us to the following interesting questions: What
node selection strategy should be used to findU , and how does the strategy influence the construction
of the separators? In this section we will address both questions.

Each separatorSk = fVp1 ; : : : ; Vptg of Gk induces a separatorS = Vp1 [: : : [Vpt of G. Thus,S is composed of variables that belong to the boundaries of certain elements. Since our primary
goal is to find a small (i. e. light weighted) separatorS, the elements of a quotient graph should be
merged so that the newly formed elements have a small boundary. Additionally, it is important to
avoid an unbalanced growing of the elements. Any separator that “touches” a large element will most
likely contain a large boundary segment of that element. This may cripple our iterative improvement
heuristic. To summarize, we must create quotient graphs that have a fair number of equally sized
elements with small boundaries.

The creation of elements with small boundaries correspondsexactly to the objective of the min-
imum degree algorithm. Therefore, a suitable node selection strategy can be defined as follows: For
each variableVi 2 Vk compute its degreedeg(Vi) = XVj2MVi jVj j (3.4)

whereMVi contains all variables that share a common domain withVi, i. e.Vj 2 MVi , 9 D 2Dk with Vi 2 adjGk(D) andVj 2 adjGk(D). Then, sort the variables according to their degrees in
ascending order and fill the independent setU starting with the first one in that order. This node
selection strategy is calledminimum-degree-in-quotient-graph(QMD).

Our second node selection strategy has been motivated by theheavy edge matching heuristic
proposed by Karypis and Kumar [37]. Analogously to their heuristic an independent set of heavy
weighted variables is eliminated in each coarsening step. However, this simple approach may result
in a strong growing of only a few elements. Typically, a heavyweighted variableVi represents a large
boundary segment shared by two large elements/domains. If we removeVi, the two elements will be
merged withVi to form an even larger element/domain. To avoid an unbalanced growing of elements

14

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

n
u

m
b

er
 o

f
v

er
ti

ce
s

(%
)

degrees

CFD1 (|V| 70656, |E| 878854)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

n
u

m
b

er
 o

f
v

er
ti

ce
s

(%
)

degrees

BCSSTK25 (|V| 15439, |E| 118401)

Fig. 3.4: Distribution of vertex degrees for CFD1 and BCSSTK25.

we relate the weight ofVi to the weight of the newly formed element. As a result one obtains a node
selection strategy that is based on the score functionsore(Vi) = 1jVij � XD2adjGk (Vi) jDj: (3.5)

The score function is calledmaximal-relative-decrease-of-variables-in-quotient-graph (QMRDV).
Note that the score function favors the construction of elements with small aspect ratio. This can be
demonstrated as follows. Consider first a variableVi that has four vertices and is adjacent to two
domains, each a4� 4 grid. The score forVi is (16 + 16)=4 = 8. If eliminated, it would result in an4 � 9 grid. Next consider a variableVj that has two vertices and is adjacent to two domains, each a2� 8 grid. The score for this variable is(16 + 16)=2 = 16. If eliminated, it would result in an2� 17
grid. In both cases the new grids are roughly of equal size. However, the elimination ofVi is preferred
so that one obtains a new element with small aspect ratio.

We demonstrate the effectiveness of our selection strategies for two sample matrices. The first
one (CFD1) has been extracted from a computational fluid dynamics application. The graph of CFD1
is very homogeneous. In figure 3.4 the scatter plot on the leftshows that 83 % of the vertices have
a degree of 26. The second matrix (BCSSTK25) belongs to the well-known Harwell-Boeing sparse
matrix collection [19] and represents the finite element model of a tall skyscraper. In contrast to CFD1
the graph of BCSSTK25 is more heterogeneous. The scatter plot on the right of figure 3.4 shows that
14 % of the vertices have a degree of 10 and 17 % a degree of 18. For the remaining 69 % of the
vertices the degree varies between one and 58.

Let us first discuss the question of how a node selection strategy influences the merging of ele-
ments during the coarsening process. In addition toQMD andQMRDV we are considering a random
selection strategyQRAND. Figure 3.5 contains six scatter plots that show the size of all elements
created during the coarsening process versus the size of their boundaries for each matrix and for each
selection strategy. Since our goal is to cover the “geometry” of a graph by a fair number of equally
sized elements that have small boundaries, the entries of the plots should by placed near to the origin
of the coordinate system. A close look at the plots on the leftof figure 3.5 demonstrates the supe-
riority of QMD andQMRDV overQRAND. When usingQRAND to coarsen the quotient graphs
of CFD1, many elements of size> 1000 are created. Furthermore, many elements of size< 1000
have a larger boundary than the elements created byQMD orQMRDV. Note that neitherQMD norQMRDV create an element of size> 1000.

15

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500 3000 3500

si
ze

 o
f

b
o

rd
er

size of element

CFD1 (|V| 70656, |E| 878854)

QRAND

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500 3000 3500

si
ze

 o
f

b
o

rd
er

size of element

CFD1 (|V| 70656, |E| 878854)

QMD

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500 3000 3500

si
ze

 o
f

b
o

rd
er

size of element

CFD1 (|V| 70656, |E| 878854)

QMRDV

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

si
ze

 o
f

b
o

rd
er

size of element

BCSSTK25 (|V| 15439, |E| 118401)

QRAND

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

si
ze

 o
f

b
o

rd
er

size of element

BCSSTK25 (|V| 15439, |E| 118401)

QMD

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

si
ze

 o
f

b
o

rd
er

size of element

BCSSTK25 (|V| 15439, |E| 118401)

QMRDV

Fig. 3.5: Influence of the node selection strategiesQRAND,QMD, andQMRDV on the merging of elements.

16

100

1000

10000

0 1 2 3 4 5 6

n
u

m
b

er
 o

f
el

em
en

ts

coarsening steps

CFD1 (|V| 70656, |E| 878854)

QRAND
QMD

QMRDV

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6

si
ze

 o
f

q
u

o
ti

en
t

g
ra

p
h

 s
ep

ar
at

o
r

refinement steps

CFD1 (|V| 70656, |E| 878854)

QRAND
QMD

QMRDV

500

550

600

650

700

750

800

850

900

0 1 2 3 4 5 6

si
ze

 o
f

sm
o

o
th

ed
 s

ep
ar

at
o

r

refinement steps

CFD1 (|V| 70656, |E| 878854)

QRAND
QMD

QMRDV

100

1000

10000

0 1 2 3 4 5 6

n
u

m
b

er
 o

f
el

em
en

ts

coarsening steps

BCSSTK25 (|V| 15439, |E| 118401)

QRAND
QMD

QMRDV

250

300

350

400

450

500

550

600

0 1 2 3 4 5 6

si
ze

 o
f

q
u

o
ti

en
t

g
ra

p
h

 s
ep

ar
at

o
r

refinement steps

BCSSTK25 (|V| 15439, |E| 118401)

QRAND
QMD

QMRDV

160

180

200

220

240

0 1 2 3 4 5 6

si
ze

 o
f

q
u

o
ti

en
t

g
ra

p
h

 s
ep

ar
at

o
r

refinement steps

BCSSTK25 (|V| 15439, |E| 118401)

QRAND
QMD

QMRDV

Fig. 3.6: Influence of the node selection strategiesQRAND, QMD, andQMRDV on the construction of a
vertex separator.

17

When considering more heterogeneous graphs such as BCSSTK25 the effectiveness ofQMD andQMRDV seem to decrease at first glance. However, if one approximates the entries in each plot on the
right of figure 3.5 by a line using quadratic regression, the gradient of this line will be much smaller in
the plots forQMD andQMRDV. From this observation we can conclude thatQMD andQMRDV
create more elements with small boundaries. Note that BCSSTK25 is a tall skyscraper. Therefore, the
geometry of BCSSTK25 favors the creation of elements with large aspect ratio. A further comparison
of the plots on the right of figure 3.5 shows that the minimum degree coarsening strategy achieves
a more balanced growing of the elements. In contrast toQRAND andQMRDV there are only two
elements of size> 1000 produced byQMD. We observed this general tendency for several other
heterogeneous graphs.

To summarize, figure 3.5 provides empirical evidence thatQMD andQMRDV create more “well-
shaped” elements as a random node selection strategy. When considering heterogeneous graphs,QMD outperformsQMRDV since it achieves a more balanced growing of the elements.

Let us now discuss the question of how the node selection strategy influences the construction of
a vertex separator. The two plots on the top of figure 3.6 show the number of elements in the quotient
graphsG0; : : : ;G6 according to the chosen node selection strategy. Note that we used a logarithmic
scale for the y-axis. In the case of CFD1, the number of elements decreases almost linearly when pro-
gressing from one quotient graph to another. Note that most edge matching schemes have the same
property. Interestingly, we cannot discover any differences betweenQRAND, QMD, andQMRDV
from this plot, however, as illustrated in figure 3.5, the quality of the produced elements is much better
when usingQMD or QMRDV. The plot for BCSSTK25 demonstrates that the coarsening of ahet-
erogeneous graph is in general much more difficult (the same holds for edge matching schemes). The
problem is that heterogeneous graphs favor an unbalanced growing of the elements. If one represents
the coarsening process as a tree, an unbalanced growing of the elements produces hairy subtrees, i. e.
subtrees that contain long paths. As a consequence the number of elements is reduced only by a small
fraction during each coarsening step. Since minimum degreeis very effective in avoiding the creation
of large elements (cf. figure 3.5), it is not surprising that from all three node selection strategiesQMD
reduces the number of elements most effectively. In fact, only for QMD the termination criterion of
the coarsening process (less than 200 elements in a quotientgraph) is met after six steps.

The two plots in the center of figure 3.6 illustrate that the disadvantages of a bad starting domain
decomposition can be compensated (to a certain degree) by the multiple refinement process. For all
three node selection strategies we computed the quotient graphsG0; : : : ;G6, determined an initial
separator inG6 using our Fiduccia-Mattheyses heuristic (cf. section 3.2), and refined this separator,
again using our Fiduccia-Mattheyses heuristic, until we reachedG6�i, i = 0; : : : ; 6. Both plots report
the sizes of the separators as a function ofi. Note that all sizes represent the average over eleven runs
and that the adjacency lists of CFD1 and BCSSTK25 have been randomly permuted prior to each run.
In the case ofQRAND, our improvement heuristic is unable to find a good separatorfor G6 (this holds
for both CFD1 and BCSSTK25). We must attribute this to the badly shaped elements inG6. Although
the gap betweenQRAND andQMD;QMRDV closes when progressing to finer quotient graphs, the
separators forG0 are still slightly better in the case ofQMD andQMRDV.

In our experiments we did not apply the vertex cover technique to the separators of the ending quo-
tient graphG6�i. This leads us to the following interesting question: Is it really necessary to perform
the multiple refinement steps before applying the vertex cover technique to a separator? Remember
that in the two-level approach proposed by Ashcraft and Liu [7] the starting quotient graphG6 and the
ending quotient graphG6�i are identical (i. e.i = 0). The two plots at the bottom of figure 3.6 try to
give an answer to this question. Here, we additionally applied the vertex cover technique to the sep-
arators ofG6�i. Again, the sizes of the separators are reported as a function of i. The plot for CFD1

18

IMPROVECOLORING(G = (D [V ; E); olor)
01: repeat
02: olor� := olor;
03: unmark allD 2 D;
04: while there are unmarked elementsdo
05: select an unmarked elementD;
06: if (olor(D) = BLACK) then
07: olor(D) := WHITE;
08: for each variableVi 2 adjG(D) do
09: UPDATEB!W (Vi; D);
10: else
11: olor(D) := BLACK;
12: for each variableVi 2 adjG(D) do
13: UPDATEW!B(Vi; D);
14: end else
15: markD;
16: let(S�; B�;W �) denote the partition induced byolor�;
17: let(S;B;W) denote the partition induced byolor;
18: if F (S;B;W) < F (S�; B�;W �) then
19: olor� := olor;
20: end while
21: olor := olor�;
22: until olor has not been improved;

Fig. 3.7: Function IMPROVECOLORING.

illustrates that the multiple refinement process is indeed necessary to obtain a good vertex separator,
especially if one starts with a bad domain decomposition as in the case ofQRAND. This explains,
why Ashcraft and Liu used a sophisticated network-flow algorithm to smooth a separator. In contrast
to CFD1 the plot for BCSSTK25 seems to indicate that a good domain decomposition is sufficient to
obtain small vertex separators with the vertex cover technique only. Note that in the case ofQMD
andQMRDV the refinement steps4, 5, and6 do not lead to any improvements. However, one should
remember that BCSSTK25 is a tall skyscraper and, therefore,contains a wide spectrum of partitions
with varying degrees of imbalance and consistently small separators. Therefore, we must attribute
most of the effectiveness of the vertex cover technique to the special geometry of BCSSTK25.

3.2 Improving a separator in the new multilevel scheme

The performance of our multilevel quotient graph method crucially depends on the time required
to refine a separator after each uncoarsening step (cf. figure3.2, line 10). Similar to the two-level
approach proposed by Ashcraft and Liu, a Fiduccia-Mattheyses scheme is used to optimize a coloring.
In the following we present our iterative improvement heuristic and prove that the runtime of our
heuristic is asymptotically identical to the runtime of thevertex Fiduccia-Mattheyses algorithm [5].

3.2.1 The generic improvement scheme

Figure 3.7 presents the structure of our improvement scheme. The algorithm consists of two nested
loops. The inner loop computes a sequence of elements that change their colors. Before entering the
inner loop, the actual coloring, i. e. the best coloring encountered so far, is saved inolor�. Since the

19

algorithm allows a deterioration of the partition, the inner loop may never terminate. Therefore, each
element is allowed to change its color only once. This constraint motivates the outer loop that starts
the optimization process again until the actual coloring cannot be improved. In practice the outer loop
is executed a small number of times, however, we cannot determine the exact number of iterations.
Therefore, the runtime analysis presented in section 3.2.2is focused on the inner while-loop.

In each iteration of the while-loop an unmarked elementD is selected, whose color will be flipped
(line 05). Note that each element is marked after it has changed its color (line 15). This guarantees
that the color of an element is flipped only once. The elementD is selected so that the weight of
the induced separatorS is decreased the most. In the case of a local minimum,D is chosen so that
the deterioration ofS is minimized. To be more precise, two heaps are used to store all unmarked
black and all unmarked white elements. If none of the heaps isempty, a black elementDb and a
white elementDw is chosen that decrease/increase the weight ofS the most/least. According to the
evaluation functionF eitherDb orDw is assigned toD.

OnceD has changed its color, functions UPDATEB!W and UDATEW!B apply the coloring
rule (3.3) to each variableVi 2 adjG(D). If the new coloring induces a partition(S;B;W) that
is better than the best partition(S�; B�;W �) encountered so far, the coloring is saved inolor�
(lines 16–19). For the evaluation of a partition we use the functionF (S;B;W) = jSj+ � �max(0; � �max(jBj; jW j)�min(jBj; jW j))+ max(jBj; jW j)�min(jBj; jW j)max(jBj; jW j) : (3.6)

In F the weight of a separator is the dominating term. Only if the difference between the weight ofB and the weight ofW exceeds a certain threshold, the separator will be penalized. The tolerated
imbalance is adjusted by0 < � < 1 and the penalty by� > 0. The third term is used as a tie-breaker
for equally weighted separators, if the imbalance lies within the tolerated range.

An important implementation detail is the efficient calculation of the new partition weights when
moving an elementD from B to W or from W to B. The partition weights are required for the
evaluation ofF . Note that moving an elementD from B to W or from W to B changes the actual
coloring only locally:olor(D) is flipped and some variablesVi 2 adjG may change their colors. To
calculate the weights of the new partition, we define�S(D), �B(D), and�W (D) to be the changes
in the respective weights, ifD flips its color. Note that these quantities can be positive ornegative.
If all three values are known, the new partition can be evaluated using the valuesjSj + �S(D),jBj+�B(D), andjW j+�W (D).

When changing the color ofD, the�-values of any elementD0 that shares an adjacent variableVi with D may have to be updated. This is checked with the help of functions UPDATEB!W and
UPDATEW!B. In both functions four cases are considered. The first two are related to the situation
before, and the last two are related to the situation after the change ofolor(D). In the following, we
only describe function UPDATEB!W (see figure 3.8). Function UPDATEW!B can be formulated in
the same manner.

Let Vi denote the variable for which UPDATEB!W has been invoked. We assume that the color
of D has not been changed yet (i. e.olor(D) = BLACK). In lines 01–06 we consider the case
where all elements in the neighborhood ofVi were colored black except for an elementD0. If D0 were
also colored black,Vi would be moved fromS to B. Therefore,�S(D0) contains the value�jVij
and�B(D0) the value+jVij. However, after the change ofolor(D), there are two white colored
elements in the neighborhood ofVi. Therefore,�S(D0) and�B(D0) have to be corrected (lines 04–
05). Now let us consider the case that no white colored element D0 existed in the neighborhood ofVi

20

UPDATEB!W (Vi; D)
01: /* Case 1: Before flippingD toWHITE there was only one otherWHITE element.
02: Search it and update its�B and�S values. */
03: if (there is only oneD0 2 adjG(Vi),D0 6= D, with olor(D0) = WHITE) then
04: �S(D0) := �S(D0) + jVij;
05: �B(D0) := �B(D0)� jVij;
06: end if
07: /* Case 2: Before flippingD toWHITE all elements were coloredBLACK.
08: MoveVi into the separator and update�B and�S of all BLACK elements. */
09: if (olor(D0) = BLACK for all D0 2 adjG(Vi),D0 6= D) then
10: olor(Vi) := GRAY;
11: for all D0 2 adjG(Vi),D0 6= D do
12: �S(D0) := �S(D0)� jVij;
13: �B(D0) := �B(D0) + jVij;
14: end for
15: end if
16: /* Case 3: After flippingD toWHITE there is only one remainingBLACK element.
17: Search it and update its�W and�S values. */
18: if (there is only oneD0 2 adjG(Vi),D0 6= D, with olor(D0) = BLACK) then
19: �S(D0) := �S(D0)� jVij;
20: �W (D0) := �W (D0) + jVij;
21: end if
22: /* Case 4: After flippingD toWHITE all elements are coloredWHITE.
23: RemoveVi from the separator and update�W and�S of all WHITE elements. */
24: if (olor(D0) = WHITE for all D0 2 adjG(Vi),D0 6= D) then
25: olor(Vi) := WHITE;
26: for all D0 2 adjG(Vi),D0 6= D do
27: �S(D0) := �S(D0) + jVij;
28: �W (D0) := �W (D0)� jVij;
29: end for
30: end if

Fig. 3.8: Function UPDATEB!W .

21

(lines 07–15). Then,D is the first element inadjG(Vi) with olor(D) = WHITE. As a consequence,Vi is moved fromB toS. OnceVi has entered the separator, the cost of flipping the color of any other
element to white is reduced byjVij (lines 12–13).

We now assume that the color ofD has been flipped toWHITE. In lines 16–21 we consider the
case where all elements in the neighborhood ofVi are colored white except for an elementD0. IfD0 should also be colored white,Vi will move from S to W . Therefore, the valuejVij is subtracted
from �S(D0) and added to�W (D0) (lines 19–20). If there are no remaining black colored elements
(lines 22-30),Vi is moved fromS to W . However,Vi will move into S again, if any element inadjG(Vi) is colored black. Therefore, the cost of flipping the color ofany other element to black is
increased byjVij (lines 27–28).

As mentioned above, function UPDATEW!B can be formulated in the same manner. We are now
able to analyze the performance of our iterative improvement heuristic.

3.2.2 Timing analysis

The cost for one iteration of our improvement heuristic is given by the cost for one execution of
the inner while-loop in function IMPROVECOLORING (cf. figure 3.7). Critical are the selection ofD (line 05) and the for-loops in lines 08–09 and 12–13. The execution of UPDATEB!W (Vi;D) or
UPDATEW!B(Vi;D) can requireO(degG(Vi)) time units, if one of the four if-clauses is true. In
this case we speak of anactivecall to the function. Note that all four if-clauses can be evaluated in
constant time. To do this, we maintain two counters#B(Vi) and#W (Vi) for each variableVi that
store the number of black and the number of white elements inadjG(Vi). Thus, only active calls to
one of the two functions requireO(degG(Vi)) time units. The following lemma shows that from alldegG(Vi) calls at most four can be active. Therefore, the total time required by the two for-loops isO(e) wheree denotes the number of edges inG.

Lemma 1 LetVi denote a variable of the quotient graphG. In function IMPROVECOLORING there
are at most four active calls to functionsUPDATEB!W (Vi;D) andUPDATEW!B(Vi;D).
Proof: The lemma is trivial for all variablesVi with degG(Vi) � 4. Therefore, letd := degG(Vi)
with d > 4. Furthermore, leta denote the initial number of white colored elements inadjG(Vi).
Clearly,0 � a � d and initially,#W (Vi) = a. Each call to UPDATEB!W (Vi;D) increases#W (Vi)
by one. The call is active, if#W (Vi) 2 f0; 1g when entering the function (cases 1 and 2 in figure 3.8)
or if #W (Vi) 2 fd � 1; dg when leaving the function (cases 3 and 4 in figure 3.8). Conversely, each
call to UPDATEW!B(Vi;D) decreases#W (Vi) by one. This call is active, if#W (Vi) 2 fd � 1; dg
when entering the function or if#W (Vi) 2 f0; 1g when leaving the function. In the following we
name a call to UPDATEB!W (Vi;D) upward moveand a call to UPDATEW!B(Vi;D) downward
move. Since each element inadjG(Vi) changes its color exactly once, there ared � a upward anda
downward moves. According toa, five cases can be distinguished:

Case 1: a = 0
Then there ared upward moves from which four are active.

Case 2: a = 1
Then there ared� 1 upward moves. At most three of these moves can be active. Additionally,
there is one downward move. This move can be active, too.

Case 3: a = d (analogous to case 1)

Case 4: a = d� 1 (analogous to case 2)

22

Case 5: 2 � a � d� 2
In the following, we show that there are at most two active upward moves. We denote an upward
move by a tuple(i; i+1) wherei denotes the number of white colored elements when entering
function UPDATEB!W . We distinguish three cases:

Case 5.1:The first active upward move is(0; 1).
Then alla downward moves have been executed. From any remaining upward move only(1; 2) is active. Note that there cannot occur any active upward move (d � 2; d � 1) or(d� 1; d), because at mostd� 3 upward moves are remaining after the move(0; 1).

Case 5.2:The first active upward move is(1; 2).
Then there is one remaining downward move and� d � 3 remaining upward moves.
Therefore, another upward move(1; 2) can occur or, alternatively, an upward move(d �2; d � 1). However, it is not possible to have a second(1; 2) move together with a(d �2; d � 1) move, since the number of available upward moves is bounded by d� 3.

Case 5.3:The first active upward move is(d� 2; d � 1).
Then there is at most one remaining upward move. This move canbe active.

In the same manner it is shown that for2 � a � d � 2 at most 2 active downward moves can
occur. This proves the lemma.

Finally, we have to analyze the cost for the selection of element D (line 05). As described
above, two heaps are maintained, one for all unmarked white and one for all unmarked black el-
ements. Therefore, the selection ofD requiresO(log n) time units wheren denotes the number of
elements inG. However, the heap management produces an additional overhead for each active call of
UPDATEB!W (Vi;D) and UPDATEW!B(Vi;D). If �S(D0) changes for an elementD0 2 adjG(Vi),
its heap position will have to be updated. Therefore, each active call can requireO(degG(Vi) log n)
additional time units. Since there are only four active calls forVi, we obtain the following result:

Theorem 1 LetG = (X ; E) be a quotient graph andolor a coloring of the nodes ofG. Furthermore,
let n denote the number of elements inG ande the number of edges inG. Each execution of the inner
loop in functionIMPROVECOLORING requiresO(e log n) time units.

The theorem proves that the performance of our Fiduccia-Mattheyses scheme is asymptotically identi-
cal to the performance of the vertex Fiduccia-Mattheyses heuristic proposed by Ashcraft and Liu [5].

3.3 Tristage multisection

In this section we present a generalization of the multisection scheme of figure 3.1. The new scheme is
called tristage multisection and has originally been proposed by Ashcraft, Liu, and Eisenstat [10]. The
key idea of tristage multisection is to use the multisector� for the computation of a wide spectrum of
bottom-up orderings.

3.3.1 Motivation and the basic tristage multisection scheme

It is well recognized that the elements created in the elimination process should have smooth bound-
aries, i. e. the valuej adjG(D)j=jDj should be small for all elementsD. In a bottom-up algorithm such
as minimum degree the node to be eliminated next is chosen according to a local greedy heuristic. As

23

demonstrated by Berman and Schnitger, this can give elements with a severe fractal boundary. The
problem is that a bottom-up algorithm cannot forecast the consequences of a decision made at an early
stage of the elimination process.

To overcome this blindness, vertex separators are used to split the graph in multiple subgraphs.
The subgraphs can be interpreted as the remaining elements of an unfinished bottom-up ordering, and
the vertex separators can be interpreted as the boundaries of these elements. Typically, the vertex
separators are constructed by a recursive bisection process. The objective of each bisection step is
to find a small vertex separator. Since our original goal is tofind elements with small boundaries,
we must hope that the recursive bisection process arranges the small separators in such a way that
they form elements with small boundaries. In fact we discovered here another form of blindness that
virtually any nested dissection algorithm has: it ignores the boundaries of the subgraphs that have
to be split. Consequently, the boundaries of the subgraphs are ignored when eliminating the vertex
separators according to the given nested dissection order (cf. figure 2.1). However, minimum degree
naturally takes into account the boundaries of a graph.

There is one important example where the elimination sequence produced by nested dissection
is asymptotically optimal: thek � k grid. Here, the automatic process of nested dissection splits a
quadratic grid into four smaller quadratic grids. As a consequence, the given nested dissection order
merges elements with small boundaries to new elements with small boundaries. This observation
motivates the following strategy to improve the quality of amultisection ordering [3]: If the ver-
tex separators are arranged so that the elimination sequence induced by nested dissection produces
elements with large aspect ratio, then use minimum degree. However, if the elimination sequence
produces roughly square domains, then stick to the given nested dissection order.

Theoretically, this strategy is supported by local nested dissection, the most successful ordering
algorithm forh � k grids. Local nested dissection has the formMS(ND;PROFILE), i. e. nested
dissection is used to number the square domains, while the multisector vertices are numbered by
a profile ordering. Replacing the profile ordering by a minimum degree ordering would have no
significant influence on the ordering’s fill.

To implement this strategy we must know the aspect ratio of the elements produced by the recur-
sive bisection process. However, aspect ratio is not well defined for general graphs. A simple solution
to this problem is as follows [3]: Due to the recursive bisection process, the separators of� can be
represented as a binary treeT . The nodes in levelj of the tree represent the separators constructed
in recursion levelj. The root of the tree is located in level 0 and represents the topmost separator.
For each separatorS let TS denote the binary subtree rooted atS. For each such subtree compute a
minimum degree ordering and compare it to the given nested dissection order. Then, choose the maxi-
mal subtrees for which nested dissection is better than minimum degree. Let the remaining separators
form the multisector�0 � �. Now, eliminate all separators in�� �0 according to nested dissection
and all separators in�0 according to minimum degree.

If the separator tree hask levels, the time required to compute the minimum degree orderings for
all subtrees is roughlyk times the cost of a minimum degree ordering forT . This can be seen as
follows: When going down one level in the tree, the number of subtrees for which a minimum degree
ordering has to be computed doubles. However, at the same time the number of nodes in the subtrees
halves. Therefore, the time required to compute the minimumdegree orderings for the subtrees of
level j is roughly the same for allj = 0; : : : ; k. Since the time required to compute the minimum
degree orderings in levelj is bounded above by the time required to compute a minimum degree
ordering forT , the statement follows immediately. Together with the minimum degree orderings on
the domains and the minimum degree ordering on the multisector�0, the overall runtime of this simple
tristage multisection algorithm is roughlyk + 1 times the cost of a single minimum degree ordering.

24

k k

j

j=k

j=00 0

MD MD

MD

MD

MD

ND
ND

Fig. 3.9: Spectrum of orderings forj = k (left) to j = 0 (right).

3.3.2 The tristage multisection scheme of Ashcraft, Liu, and Eisenstat

A much more efficient scheme has been proposed by Ashcraft, Liu, and Eisenstat [3, 10]. Letk denote
the maximal level of the separator tree, and letj 2 f0; : : : ; kg. In their tristage multisection scheme
all orderings are evaluated that can be created as follows:

(1) Eliminate all vertices in the domains using minimum degree.

(2) Eliminate all vertex separators in the lower levelsk; : : : ; j � 1 of � according to the given
nested dissection order.

(3) Eliminate all vertex separators in the upper levelsj; : : : ; 0 of � using minimum degree.

From allk+1 orderings obtained this way, the best one is chosen. Figure 3.9 shows that there is a wide
spectrum of orderings of this form. Each ordering is symbolized by a triangle and a rectangle below
the triangle. The triangle represents the separator tree and contains all vertices of the multisector. The
rectangle contains the vertices of the domains. On the left side of the spectrum, i. e.j = k, minimum
degree is used to order both the domains as well as the separators in�. As a result one obtains a
multisection ordering of the formMS(MD;MD). At the opposite side of the spectrum, i. e.j = 0, the
separators are eliminated according to the given nested dissection order and one obtains an incomplete
nested dissection ordering, i. e. a multisection ordering of the formMS(MD;ND).

The bulk of the computation time is spent during step (1) where the vertices in the domains are
numbered using minimum degree. Since each ordering uses theminimum degree ordering on the
domains, it can be computed once and “spliced” into the otherorderings. Note that there is also a lot
of overlap between the orderings on�. For j 2 f0; : : : ; kg let �j � � denote the multisector that
contains all separators in levels0; : : : ; j, i. e.�k = �. If the sequence of orderings is evaluated fromj = k down toj = 0, the nested dissection ordering on the separators� � �j (cf. step (2)) can be
built using the nested dissection ordering on���j+1. Therefore, only the minimum degree ordering
on the separators�j (cf. step (3)) need to be computed for every ordering.

Figure 3.10 presents an efficient way to evaluate allk + 1 orderings of the spectrum. Similar
to the multisection scheme in figure 3.1 parametersord�, ord1, andord2 are used to specify the
node selection strategies. Again, the multisection domaindecomposition is constructed by a recursive
bisection process that uses the multilevel scheme introduced in section 3.1. Once a multisector�k has
been found, the vertices in the domains
1; : : : ;
q are eliminated according toord1. The number
of floating point operations required to factor these vertices is stored inops0. As a by-product one
obtains the Schur complement graphG�k . The various orderings for the separator vertices inG�k are
then evaluated in the for-loop of lines 04–13.

Each iterationj, j < k, of the for-loop starts with the construction of the actual elimination graphG�j . This graph is obtained fromG�j+1 , the actual elimination graph of iterationj+1, by eliminating
all separators in levelj+1. Variableops1 is used to sum up the factor operations required by all these
nested dissection steps. In the first iteration of the for-loop, i. e.j = k, we haveG�j = G�k . Once the

25

TRISTAGEMULTISECTION(ord�; ord1; ord2)
01: Determine a domain decomposition(�k;
1; : : : ;
q) of G by a recursive bisection

process. Use node selection strategyord� to construct the vertex separators.
02: for each set
i do
03: Eliminate all vertices in
i using node selection strategyord1.
04: Store operation count inops0 and construct elimination graphG�k .
03: ops1 := 0; ops� :=1;
04: for (j := k) downto 0 do
05: if (j < k) then
06: Eliminate fromG�j+1 all separators in levelj + 1 to obtain the actual

elimination graphG�j . Add operation count toops1.
07: end if
08: Order the vertices inG�j using node selection strategyord2.

Store operation count inops2.
09: if (ops0+ops1+ops2 < ops�) then
10: j� := j;
11: ops� := ops0+ops1+ops2;
12: end if
13: end for
14: Splice together the bottom-up orderings on
1; : : : ;
q , the nested dissection ordering

on�k ��j� , and the bottom-up ordering on�j� .

Fig. 3.10:Function TRISTAGEMULTISECTION.

actual elimination graphG�j has been constructed, all separators inG�j are eliminated using node
selection strategyord2. The number of floating point operations required by this elimination step is
stored inops2. Note that we must use a copy ofG�j , since the graph is still needed in iterationj � 1.
Once all vertices inG�j have been ordered, a new three-level multisection orderingis completed. If
it is the best ordering encountered so far, the level numberj is stored inj�.

After the termination of the for-loop,j� defines the level at which the ordering of vertex separators
should switch from nested dissection to minimum degree. Therefore, the best ordering of the spectrum
can be obtained as described in line 14.

The overall cost for evaluating allk + 1 orderings is bounded above by roughly the cost of three
bottom-up orderings. This can be seen as follows: When constructing the actual elimination graphG�j fromG�j+1 the number of nodes halves. Therefore, the cost of computinga bottom-up ordering
for G�j is roughly half the cost of computing a bottom-up ordering for G�j+1 . As a consequence,
the cost of line 08 is bounded above by the cost of two bottom-up orderings. Together with the cost
for computing the bottom-up orderings on the domains (lines02–03) and the cost for constructing the
actual elimination graphG�j (line 06) we obtain the desired result.

4 Computational results

In this section we empirically evaluate the multisection and tristage multisection algorithms of our
methodology. Our primary metric for measuring the quality of an ordering is the number of floating
point operations required to factor matrixA. This number is closely related to the time required
for the overall factorization process. All results have been generated on a SUN Ultra with 200MHz
UltraSPARC processor.

26

4.1 The programs pord and multipord

For our computational experiments we have developed two programs, calledpord and multipord
(Paderborn ORDering tools). The programs implement the functions MULTISECTION and TRISTAGE-
MULTISECTION, respectively. Additionally, both programs perform a preprocessing and a postpro-
cessing step. During the preprocessing step the programs attempt to compress the graphG of matrixA by identifying indistinguishable vertices. Especially matrices arising from finite element and finite
difference discretizations can contain multiple columns with identical adjacency structure. The com-
pressed graphG is formed by merging indistinguishable vertices ofG to a single weighted node.
The weight of this node is equal to the number of merged vertices. Functions MULTISECTION and
TRISTAGEMULTISECTION are then invoked for the compressed graph. As a result one obtains an
ordering� for G that will be expanded to an ordering� for G during the postprocessing step. More
information concerning compressed graphs can be found in [2, 16, 35].

Although the main algorithmic components of our approach have been introduced in section 3, a
number of details have been left out. The following list describes some important parameters ofpord
and multipord that can greatly influence both runtime and ordering quality. For most parameters
default values are provided that are used throughout our computational experiments.� In functions MULTISECTION and TRISTAGEMULTISECTION the selection startegiesord1 andord2 can take the valuesAMD, AMF, AMMF, AMIND, or MF. Note that we are using

constrained versions of the selection strategies in the case of ord1, i. e. the multisector ver-
tices are included when computing the score of a domain vertex. In function MULTISEC-
TION the selection strategyord2 can also be set toND. The separators are then eliminated
according to the given nested dissection order. In both functions ord� can take a value fromfQMD;QMRDV;QRANDg. AlthoughQMD produces slightly better domain decomposi-
tions for heterogeneous graphs thanQMRDV (cf. figure 3.5), we setord� to QMRDV in all
our experiments, since the computation ofsoreQMRDV(Vi) is much cheaper than the compu-
tation ofdeg(Vi).� In functions MULTISECTION and TRISTAGEMULTISECTION the recursive bisection process
continues until a subgraph has 100 or fewer vertices. However, at most 255 separators are
constructed. We used this threshold to improve the efficiency of our programs. We observed no
further improvements when more separators were constructed.� In function SEPARATOR(cf. figure 3.2) the coarsening process terminates when a quotient graph
has 200 or fewer elements. This provides some degrees of freedom to our coloring heuristic. In
our implementation of IMPROVECOLORING (cf. figure 3.7) there is an early termination of the
inner while-loop, if no better partition is found in 100 subsequent iterations.� In our evaluation function (3.6) parameters� and� are set to0:5 and100, respectively. The
value for� allows an imbalance of 50 % without penalizing the separator. This high imbalance
is motivated by our interpretation of vertex separators. Remember that we interpret vertex
separators as the boundaries of the remaining elements in anunfinished bottom-up ordering. In
this context it is important to have elements with small boundaries and not to have equally sized
elements. Therefore, the minimization of partition imbalance is only a secondary objective in
our nested dissection process. Empirically, our choice of� is also supported by the experiments
reported in [55].

Numerous experiments have shown that the default parameters described above are very effective on
a wide range of matrix types. Note that we did not provide default parameters forord1 andord2. In
section 4.3 we explore the influence of these parameters on the quality of the produced orderings.

27

4.2 The benchmark matrices

For our computational experiments we have tried to select a realistic set of benchmark matrices. The
first two matrices are Laplace matrices that correspond to a127 � 127 grid problem with five point
difference operator (GRID) and nine point difference operator (MESH). The 15 BCSSTK matrices
have been selected from the Harwell-Boeing sparse matrix collection. A detailed description of the
matrices can be found in [19]. MAT02HBF and MAT03HBF have been supplied by a consulting
agency of the German car industry. The matrices have been extracted from a crash simulation tool.
The matrices BRACK2, CRACK, WAVE, HERMES, CYL3, and DIME20 are FEM meshes. All
meshes come from a 3-D problem domain, except for CRACK, which is a 2-D FEM mesh. The first
three matrices (BRACK2, CRACK, and WAVE) come from Carnegie-Mellon-University. HERMES
comes from University of Michigan and is a model of the European space shuttle. The last two
matrices (CYL3 and DIME20) have been given to us by C. Walshawat University of Southampton. All
other matrices can be found in Tim Davis’ sparse matrix collection [17]. Most of these matrices have
been extracted from commercial structural analysis and computational fluid dynamics applications.

Table 4.1 reports relevant statistics about our test matrices. The first four columns give the number
of vertices and edges inG andG. The last two columns show the number of factor entries (scaled
by 103) and the number of floating point operations (scaled by106) when ordering the matrices using
our implementation of the approximate minimum degree algorithm (AMD) proposed by Amestoy et
al. [1]. AMD will serve as a point of reference during our computational experiments.

All results reported in this paper come from an ordering of the unpermuted input matrixA. It is
well known that ordering methods are very sensitive to the initial ordering ofA. However, in most
practical situations the initial ordering is far away from random and especially bottom-up methods
can benefit from it.

4.3 Results for pord and multipord

In this section we present experimental results for the programs pord and multipord . Table 4.2
shows the number of floating point operations (scaled by106) when ordering the benchmark matrices
using pord. The numbers in brackets give the operation counts relativeto AMD. The function
MULTISECTION has been executed with parametersord1 = ord2 = AMD (column 1),ord1 =ord2 = AMMF (column 2),ord1 = AMMF, ord2 = MF (column 3), andord1 = AMMF,ord2 = ND (column 4). Although more parameter combinations are possible, we limit or study to
these four. In all experiments,ord� has been set toQMRDV.

Rothberg and Eisenstat [56] have shown that approximate minimum mean local fill (AMMF)
and, especially, exact minimum local fill (MF) produce significantly better orderings than minimum
degree. This is the motivation for using the two selection strategies in our multisection scheme.
Indeed, a comparison of columns 1 and 2 of table 4.2 demonstrates that the operation counts are
reduced when switching fromord1 = ord2 = AMD to ord1 = ord2 = AMMF. A further reduction
is achieved, when the vertex separators in the Schur complement graph are numbered using selection
strategyMF. Typically, the separator vertices are merged to a few indistinguishable nodes so that the
Schur complement graph is small. Therefore, we can afford using MF on the multisector vertices.
Note that this combination can be very effective because most of the factorization work is done for
the columns of the multisector. With this parameter settingthe number of floating point operations is
reduced by 41 % compared toAMD.

A comparison of columns 2 and 4 demonstrates that the qualityof an ordering can deteriorate
when eliminating the separator vertices according to the given nested dissection order. However,

28

G G AMD
Matrix jV j jEj jVj jEj NZL/103 OPS/106
GRID127x127 16129 32004 16129 32004 346 27
MESH127x127 16129 63756 16129 63756 527 43
BCSSTK15 3948 56934 3948 56934 624 155
BCSSTK16 4884 142747 1778 18251 763 162
BCSSTK17 10974 208838 5219 40531 985 138
BCSSTK18 11948 68571 10926 61086 625 127
BCSSTK23 3134 42044 2930 17628 428 125
BCSSTK24 3562 78174 892 6378 270 31
BCSSTK25 15439 118401 13183 80982 1464 316
BCSSTK29 13992 302748 10202 156923 1760 467
BCSSTK30 28924 1007284 9289 111442 3786 947
BCSSTK31 35588 572914 17403 144403 5281 2593
BCSSTK32 44609 985046 14821 113487 5002 989
BCSSTK33 8738 291583 4344 82142 2480 1140
BCSSTK35 30237 709963 6611 32967 2725 399
BCSSTK36 23052 560044 4351 18583 2719 616
BCSSTK37 25503 557737 7093 44462 2755 535
BCSSTK38 8032 173714 3456 40656 718 115
MAT02HBF 46949 1117809 6707 19938 5057 1344
MAT03HBF 73752 1761718 10536 31438 10061 4184
STRUCT3 53570 560062 41644 340543 5040 1096
STRUCT4 4350 116724 4350 116724 2357 2004
PWT 36519 144794 36515 144774 1556 173
BRACK2 62631 366559 62631 366559 7275 3085
CRACK 10240 30380 10240 30380 163 8
3DTUBE 45330 1584144 15909 181865 26310 30053
CFD1 70656 878854 70656 878854 37663 44556
CFD2 123440 1482229 123440 1482229 74884 136477
CYL3 232362 457853 232362 457853 77440 208480
DIME20 224843 336024 224843 336024 3430 330
GEARBOX 153746 4463329 56175 693142 46325 41121
NASASRB 54870 1311227 24954 275813 11624 4538
WAVE 156317 1059331 156316 1059325 114930 372458
PWTK 217918 5708253 41531 221130 60305 49086
HERMES 320194 3722641 320194 3722641 323055 1434744

Tab. 4.1: Statistics for benchmark matrices.

29

there are only three matrices (BCSSTK17, BCSSTK25, and BCSSTK30) where the nested dissection
variant of pord does not produce as good an ordering asAMD. The average number of floating
point operations is still reduced by 33 % compared toAMD. Note that the graphs of BCSSTK17
(model of a pressure vessel), BCSSTK25 (model of a tall skyscraper), and BCSSTK30 (model of an
off-shore generator platform) have large aspect ratio so that the topmost separators of the multisector
are placed next to each other similar to the separators in theh � k grid of figure 2.1. This explains
the bad performance of nested dissection for these graphs. However, there are also matrices for which
the number of floating point operations is reduced when following the given nested dissection order
(CYL3 and WAVE).

A comparison of the last three columns of table 4.2 shows thatthe quality of the orderings pro-
duced bypord can vary significantly even when using the same multisector and the same selection
strategyord1. Since most of the factorization work is done on the columns of the multisector, much
effort should be devoted to the elimination of the multisector vertices. As described in section 3.3
the optimal elimination sequence depends on the arrangement of the vertex separators. The program
multipord allows us to evaluate a wide spectrum of elimination sequences.

Table 4.3 reports the operation counts of all orderings produced in the for-loop of function TRI-
STAGEMULTISECTION. The function has been executed with parametersord1 = ord2 = AMMF
andord� = QMRDV. The numbers in the last column (j = 0) correspond to the numbers in column(AMMF;ND) of table 4.2. The leftmost numbers can be found in the corresponding rows of column(AMMF;AMMF). Note that at most 255 vertex separators are constructed in our bisection process
so thatk � 7. Furthermore, the construction of vertex separators stops, if a subgraph has 100 or fewer
vertices. The operation counts of the best orderings are printed in boldface. Exactly these orderings
are returned by function TRISTAGEMULTISECTION. As will be shown in table 4.5, the runtime of
multipord does only marginally increase compared topord.

4.4 Comparison with other ordering codes

Table 4.4 shows the number of floating point operations for the programs METIS [38] (version 4.0),
SCOTCH [50] (version 3.3), SPOOLES [4] (version 2.2),pord, andmultipord . Again, the numbers
in brackets give the operation counts relative toAMD. METIS and SCOTCH represent state-of-the-
art implementations of incomplete nested dissection. For the construction of vertex separators both
programs are using a multilevel approach that is based on a matching technique. The separators are
numbered according to the given nested dissection order. The two programs differ in how the domains
are numbered. METIS uses multiple minimum degree, while SCOTCH relies on a constrained version
of the approximate minimum degree algorithm proposed by Amestoy et al. [51].

SPOOLESimplements the two-level approach described in section 2.3. The vertices in the domains
as well as the vertices in the multisector are numbered usingmultiple minimum degree. However, a
constrained version ofMMD is applied to the vertices in the domains. As mentioned above, pord and
multipord implement the functions MULTISECTION and TRISTAGEMULTISECTION, respectively.
The results reported forpord correspond to the numbers in column(AMMF;AMMF) of table 4.2.
The results reported formultipord correspond to the operation counts of the best orderings obtained
by TRISTAGEMULTISECTION (cf. table 4.3).

METIS, SCOTCH, and SPOOLESrecursively split a subgraph until it has 200 or fewer vertices. In
pord andmultipord the recursion continues until a subgraph has 100 or fewer vertices. However,
at most 255 separators are constructed. As mentioned in section 2.3 SPOOLES uses a randomized
greedy domain-growing algorithm to construct a domain decomposition. To reduce the variations
due to different random numbers we have run it several times for each matrix. The results reported

30

Matrix (AMD;AMD) (AMMF;AMMF) (AMMF;MF) (AMMF;ND)
GRID127x127 16 (0.59) 16 (0.59) 16 (0.59) 17 (0.63)
MESH127x127 36 (0.84) 38 (0.88) 35 (0.81) 39 (0.91)
BCSSTK15 93 (0.60) 79 (0.51) 86 (0.55) 82 (0.53)
BCSSTK16 112 (0.69) 117 (0.72) 115 (0.71) 135 (0.83)
BCSSTK17 124 (0.90) 123 (0.89) 120 (0.87) 172 (1.25)
BCSSTK18 87 (0.68) 85 (0.67) 82 (0.65) 96 (0.76)
BCSSTK23 98 (0.78) 85 (0.68) 98 (0.78) 90 (0.72)
BCSSTK24 31 (1.00) 30 (0.97) 30 (0.97) 31 (1.00)
BCSSTK25 256 (0.81) 207 (0.65) 230 (0.73) 355 (1.12)
BCSSTK29 360 (0.77) 326 (0.70) 277 (0.59) 336 (0.72)
BCSSTK30 722 (0.76) 702 (0.74) 707 (0.74) 982 (1.04)
BCSSTK31 1226 (0.47) 1215 (0.47) 1184 (0.46) 1291 (0.50)
BCSSTK32 827 (0.84) 774 (0.78) 767 (0.77) 969 (0.98)
BCSSTK33 740 (0.65) 626 (0.55) 619 (0.54) 644 (0.56)
BCSSTK35 374 (0.94) 367 (0.92) 369 (0.92) 384 (0.96)
BCSSTK36 461 (0.75) 458 (0.74) 460 (0.75) 500 (0.81)
BCSSTK37 404 (0.75) 403 (0.75) 388 (0.72) 445 (0.83)
BCSSTK38 91 (0.79) 91 (0.79) 89 (0.77) 106 (0.92)
MAT02HBF 1091 (0.81) 1088 (0.80) 1093 (0.81) 1222 (0.91)
MAT03HBF 2654 (0.63) 2723 (0.65) 2473 (0.59) 2666 (0.64)
STRUCT3 717 (0.65) 730 (0.67) 664 (0.61) 731 (0.67)
STRUCT4 574 (0.29) 541 (0.27) 617 (0.31) 504 (0.25)
PWT 108 (0.62) 109 (0.63) 107 (0.62) 110 (0.64)
BRACK2 1923 (0.62) 1610 (0.52) 1661 (0.53) 1982 (0.64)
CRACK 7 (0.87) 7 (0.87) 6 (0.75) 7 (0.87)
3DTUBE 13235 (0.44) 14839 (0.49) 11437 (0.38) 12303 (0.41)
CFD1 9885 (0.22) 8814 (0.20) 8799 (0.20) 11302 (0.25)
CFD2 34421 (0.25) 27978 (0.20) 27902 (0.20) 28636 (0.21)
CYL3 57971 (0.29) 45386 (0.22) 41372 (0.20) 39791 (0.19)
DIME20 175 (0.53) 175 (0.53) 167 (0.51) 191 (0.58)
GEARBOX 18034 (0.44) 17404 (0.42) 17505 (0.43) 17987 (0.44)
NASASRB 2839 (0.63) 2613 (0.58) 2582 (0.56) 3437 (0.76)
WAVE 160843 (0.43) 119694 (0.32) 108804 (0.29) 97480 (0.26)
PWTK 23019 (0.47) 22658 (0.46) 22323 (0.45) 23119 (0.47)
HERMES 326902 (0.23) 266255 (0.19) 268303 (0.19) 265133 (0.18)
MEAN (0.63) (0.60) (0.59) (0.67)

Tab. 4.2: Number of floating point operations (scaled by106) for pord. Function MULTISECTION has been
called with parametersord1 = ord2 = AMD (column 1),ord1 = ord2 = AMMF (column 2),ord1 = AMMF, ord2 = MF (column 3), andord1 = AMMF, ord2 = ND (column 4).

31

Iterationj
Matrix 7 6 5 4 3 2 1 0
GRID127x127 – 16 16 16 16 17 17 17
MESH127x127 – 38 45 42 35 36 39 39
BCSSTK15 – – – 79 78 78 82 82
BCSSTK16 – – – 117 120 130 135 135
BCSSTK17 – – 123 137 156 171 171 172
BCSSTK18 – 85 87 81 86 91 96 96
BCSSTK23 – – – – 85 84 91 90
BCSSTK24 – – – – 30 31 31 31
BCSSTK25 – 207 216 244 309 326 355 355
BCSSTK29 – 326 309 321 330 316 336 336
BCSSTK30 – 702 725 809 913 973 982 986
BCSSTK31 1215 1266 1317 1261 1289 1285 1291 1291
BCSSTK32 774 774 794 833 929 968 969 969
BCSSTK33 – – 626 626 615 644 644 644
BCSSTK35 – 367 376 378 383 385 384 384
BCSSTK36 – – 458 476 475 497 500 500
BCSSTK37 – 403 393 403 413 433 445 445
BCSSTK38 – – 91 93 97 103 106 106
MAT02HBF – 1088 1107 1128 1140 1192 1222 1222
MAT03HBF 2723 2726 2542 2790 2619 2659 2663 2666
STRUCT3 730 691 712 707 725 731 731 731
STRUCT4 – – – 541 542 523 503 504
PWT 109 111 108 108 109 110 110 110
BRACK2 1610 1646 1633 1655 1817 1981 1982 1982
CRACK – 7 7 6 7 7 7 7
3DTUBE 14839 14953 12907 12366 13392 12303 12303 12303
CFD1 8814 8961 10011 10533 10798 10947 11302 11302
CFD2 27978 26379 27616 26141 26554 28371 28636 28636
CYL3 45386 40806 41324 41525 40623 40190 39791 39791
DIME20 175 174 182 183 187 190 191 191
GEARBOX 17404 17643 17658 17748 17791 17987 17987 17987
NASASRB 2613 2706 2767 2955 3201 3280 3437 3437
WAVE 119694 98274 100509 101306 99559 97463 97472 97480
PWTK 22658 22680 22868 23068 23088 23042 23119 23119
HERMES 266255 260469 260060 250740 252313 255478 265133 265133

Tab. 4.3: Number of floating point operations (scaled by106) for multipord . Function TRISTAGEMULTI -
SECTIONhas been called with parametersord1 = ord2 = AMMF. The operation counts of the best
orderings are printed in boldface. Exactly these orderingsare returned by TRISTAGEMULTISECTION.

32

Name METIS-4.0 SCOTCH-3.3 SPOOLES-2.2 pord multipord
GRID127x127 22 (0.81) 25 (0.93) 20 (0.74) 16 (0.59) 16 (0.59)
MESH127x127 37 (0.86) 40 (0.93) 43 (1.00) 38 (0.88) 35 (0.81)
BCSSTK15 87 (0.56) 93 (0.60) 95 (0.61) 79 (0.51) 78 (0.50)
BCSSTK16 140 (0.86) 140 (0.86) 129 (0.79) 117 (0.72) 117 (0.72)
BCSSTK17 184 (1.33) 161 (1.16) 135 (0.98) 123 (0.89) 123 (0.89)
BCSSTK18 101 (0.80) 77 (0.60) 84 (0.66) 85 (0.67) 81 (0.64)
BCSSTK23 98 (0.78) 94 (0.75) 91 (0.72) 85 (0.68) 84 (0.67)
BCSSTK24 34 (1.09) 35 (1.13) 38 (1.22) 31 (0.97) 30 (0.97)
BCSSTK25 380 (1.20) 348 (1.10) 235 (0.74) 207 (0.65) 207 (0.65)
BCSSTK29 345 (0.74) 327 (0.70) 341 (0.73) 326 (0.70) 309 (0.66)
BCSSTK30 1203 (1.27) 1114 (1.18) 833 (0.88) 702 (0.74) 702 (0.74)
BCSSTK31 1165 (0.45) 1219 (0.47) 1530 (0.59) 1215 (0.47) 1215 (0.47)
BCSSTK32 1213 (1.23) 1175 (1.19) 866 (0.88) 774 (0.78) 774 (0.78)
BCSSTK33 909 (0.78) 674 (0.59) 739 (0.65) 626 (0.55) 615 (0.54)
BCSSTK35 523 (1.31) 422 (1.06) 393 (0.98) 367 (0.92) 367 (0.92)
BCSSTK36 615 (1.00) 583 (0.95) 496 (0.81) 458 (0.74) 458 (0.74)
BCSSTK37 694 (1.30) 653 (1.22) 433 (0.81) 403 (0.75) 397 (0.74)
BCSSTK38 135 (1.17) 108 (0.94) 103 (0.90) 91 (0.79) 91 (0.79)
MAT02HBF 1192 (0.87) 1099 (0.82) 1156 (0.86) 1088 (0.81) 1088 (0.81)
MAT03HBF 2724 (0.65) 2924 (0.70) 3607 (0.86) 2723 (0.65) 2542 (0.61)
STRUCT3 826 (0.75) 857 (0.78) 773 (0.70) 730 (0.67) 691 (0.63)
STRUCT4 535 (0.27) 541 (0.27) 691 (0.34) 541 (0.27) 503 (0.25)
PWT 110 (0.64) 101 (0.58) 108 (0.62) 109 (0.63) 108 (0.62)
BRACK2 1908 (0.62) 1821 (0.59) 1900 (0.62) 1610 (0.52) 1610 (0.52)
CRACK 7 (0.87) 7 (0.87) 7 (0.87) 7 (0.87) 6 (0.75)
3DTUBE 12071 (0.40) 15834 (0.53) 15523 (0.52) 14839 (0.49) 12303 (0.41)
CFD1 16345 (0.37) 15027 (0.34) 10509 (0.24) 8814 (0.20) 8814 (0.20)
CFD2 31024 (0.23) 35659 (0.26) 35798 (0.26) 27978 (0.20) 26141 (0.19)
CYL3 32164 (0.15) 31670 (0.15) 80818 (0.39) 45386 (0.22) 39791 (0.19)
DIME20 196 (0.59) 181 (0.55) 235 (0.71) 175 (0.53) 175 (0.53)
GEARBOX 20390 (0.50) 24755 (0.60) 21516 (0.52) 17404 (0.42) 17404 (0.42)
NASASRB 3494 (0.77) 3748 (0.83) 2801 (0.62) 2613 (0.58) 2613 (0.58)
WAVE 120180 (0.32) 98547 (0.26) 188316 (0.50) 119694 (0.32) 97463 (0.26)
PWTK 22039 (0.45) 23275 (0.47) 28313 (0.58) 22658 (0.46) 22658 (0.46)
HERMES 258970 (0.18) 368863 (0.26) 518549 (0.36) 266255 (0.19) 250740 (0.17)
MEAN (0.75) (0.72) (0.69) (0.60) (0.58)

Tab. 4.4: Comparison of operation counts.

33

Matrix METIS-4.0 SCOTCH-3.3 SPOOLES-2.2 pord multipord
GRID127x127 0.81 (4.1) 2.22 (11.1) 1.58 (7.9) 1.27 (6.4) 1.35 (6.7)
MESH127x127 1.04 (4.7) 2.90 (13.2) 2.36 (10.1) 1.45 (6.6) 1.58 (7.2)
BCSSTK15 0.52 (4.3) 1.96 (16.3) 1.13 (9.4) 0.52 (4.3) 0.60 (5.0)
BCSSTK16 0.21 (2.6) 0.52 (6.5) 0.48 (6.0) 0.19 (2.4) 0.25 (3.1)
BCSSTK17 0.76 (5.1) 1.50 (10.0) 1.13 (7.5) 0.61 (4.1) 0.71 (4.7)
BCSSTK18 1.02 (4.1) 3.70 (14.8) 2.84 (11.4) 1.25 (5.0) 1.57 (6.3)
BCSSTK23 0.25 (2.5) 1.23 (12.3) 0.58 (5.8) 0.29 (2.9) 0.37 (3.7)
BCSSTK24 0.09 (3.0) 0.20 (6.7) 0.16 (5.3) 0.07 (2.3) 0.11 (3.7)
BCSSTK25 1.63 (4.9) 5.81 (17.6) 3.71 (11.2) 1.69 (5.1) 1.90 (5.8)
BCSSTK29 1.65 (5.5) 9.09 (30.3) 3.29 (11.0) 1.35 (4.5) 1.66 (5.5)
BCSSTK30 2.26 (4.2) 4.73 (8.9) 4.30 (8.1) 1.69 (3.2) 1.85 (3.5)
BCSSTK31 3.35 (5.2) 6.61 (10.2) 5.60 (8.6) 2.96 (4.6) 3.44 (5.3)
BCSSTK32 2.86 (4.8) 4.95 (8.2) 4.30 (7.2) 2.28 (3.8) 2.90 (4.8)
BCSSTK33 0.77 (3.7) 2.56 (12.2) 2.61 (12.4) 0.78 (3.7) 0.91 (4.3)
BCSSTK35 0.91 (2.9) 1.57 (5.1) 1.70 (5.5) 0.81 (2.6) 0.95 (3.1)
BCSSTK36 0.56 (2.4) 0.95 (4.1) 1.17 (5.1) 0.48 (2.1) 0.61 (2.7)
BCSSTK37 1.03 (3.7) 1.90 (6.8) 1.71 (6.1) 0.87 (3.1) 0.97 (3.5)
BCSSTK38 0.85 (5.7) 1.63 (10.8) 1.00 (6.7) 0.48 (3.2) 0.61 (4.1)
MAT02HBF 0.90 (2.2) 1.37 (3.3) 1.73 (4.2) 0.87 (2.2) 0.97 (2.4)
MAT03HBF 1.15 (1.9) 2.35 (3.9) 2.70 (4.4) 1.46 (2.4) 1.66 (2.7)
STRUCT3 5.18 (4.9) 18.40 (17.5) 14.00 (13.3) 7.52 (7.2) 8.81 (8.4)
STRUCT4 1.37 (5.1) 3.58 (13.3) 5.43 (20.1) 1.06 (3.9) 1.33 (4.9)
PWT 0.96 (1.7) 6.30 (11.1) 6.30 (11.1) 3.87 (6.8) 4.03 (7.1)
BRACK2 7.14 (3.5) 23.95 (11.7) 17.32 (8.4) 12.48 (6.1) 14.11 (6.9)
CRACK 0.59 (3.3) 1.69 (9.4) 1.06 (5.9) 0.87 (4.8) 0.98 (5.4)
3DTUBE 3.73 (3.9) 7.57 (8.0) 6.70 (7.1) 2.81 (3.0) 3.40 (3.6)
CFD1 12.78 (4.3) 37.57 (12.5) 36.73 (12.2) 15.71 (5.2) 17.43 (5.8)
CFD2 22.34 (5.0) 65.29 (14.5) 64.11 (14.2) 27.61 (6.1) 31.64 (7.0)
CYL3 21.99 (1.3) 77.81 (4.6) 71.53 (4.2) 68.59 (4.0) 71.99 (4.2)
DIME20 13.70 (3.4) 38.00 (9.5) 37.50 (9.4) 32.78 (8.2) 33.07 (8.3)
GEARBOX 18.61 (6.5) 27.83 (9.6) 21.36 (7.4) 13.85 (4.8) 14.86 (5.2)
NASASRB 6.30 (6.3) 9.54 (9.5) 7.95 (7.9) 4.68 (4.7) 5.77 (5.8)
WAVE 21.32 (3.6) 72.51 (12.2) 67.81 (11.4) 35.79 (6.0) 38.59 (6.5)
PWTK 16.74 (7.4) 11.53 (5.1) 10.50 (4.7) 6.80 (3.0) 8.01 (3.6)
HERMES 61.78 (3.9) 181.79 (11.4) 220.68 (13.9) 104.81 (6.6) 110.91 (7.0)
MEAN (4.0) (10.6) (8.7) (4.4) (5.1)

Tab. 4.5: Comparison of runtimes.

34

in column 3 present the medians over eleven runs. All other results have been obtained by a single
execution of the ordering code.

The last column of table 4.4 shows thatmultipord achieves the highest reduction of operation
count. While the other popular ordering codes reduce the average number of floating point operations
by 25 % (METIS), 28 % (SCOTCH), and 31 % (SPOOLES) compared toMMD, multipord achieves
an improvement of 42 %. Note that all orderings produced bymultipord are better than the corre-
spondingAMD orderings. Thus, in contrast to the other three ordering codes,multipord consistently
outperformsAMD. However, it is also interesting to compare the results obtained by the nested dis-
section variant ofpord (column 4 of table 4.2) with the results obtained by METIS and SCOTCH.
Of the three state-of-the-art nested dissection codes,pord achieves the highest average improvement.
Compared toAMD it reduces the operation count by 33 %. While there are only three matrices where
pord does not produce as good an ordering asAMD, there are eight such cases for METIS and seven
such cases for SCOTCH.

Table 4.5 provides us with the runtimes required by the five methods. The numbers in brackets
give the runtimes relative toAMD. As can be seen, METIS takes modest amount of CPU times. Due
to the more complicated coarsening and refinement process, the ordering times forpord can increase
by an factor of two (i. e. BRACK2, HERMES) or more (i. e. CYL3) compared to METIS. Note that
the ordering times for SCOTCH and SPOOLESdiffer only by a small fraction. In general, the ordering
times forpord lie between the ordering times for METIS and SCOTCH/SPOOLES. We have observed
this general tendency across the entire set of benchmark matrices. Columns 3 and 4 demonstrate that
multipord requires only a marginally higher amount of CPU times thanpord.

5 Conclusion

We have described two modifications to the basic multisection ordering heuristic that achieve a tighter
coupling of bottom-up and top-down methods. In one of these modifications we are using bottom-
up techniques such as quotient graphs and special node selection strategies for the construction of
vertex separators. The idea is that vertex separators can beinterpreted as the boundaries of the re-
maining elements in an unfinished bottom-up ordering. In thesecond modification we are using the
vertex separators as a skeleton for the computation of a widespectrum of bottom-up orderings. Here,
the motivation is that nested dissection ignores the boundaries of elements which minimum degree
naturally takes into account.

Both methods, bottom-up as well as top-down, have their own odds and ends. In multisection
ordering schemes the advantages of one method are used to reduce the disadvantages of the other.
Our intention was to push this development one step further.

Acknowledgement

We would like to thank Patrick Amestoy and Cleve Ashcraft formany helpful comments on an earlier
draft of this paper. Cleve also provided many suggestions onthe algorithmic components of our
ordering heuristic.

References

[1] P.R. Amestoy, T.A. Davis, I.S. Duff,An approximate minimum degree ordering algorithm, SIAM J.
Matrix Anal. Appl., Vol. 17, 886–905, 1996.

35

[2] C. Ashcraft,Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput., Vol. 16,
No. 6, 1404–1411, 1995.

[3] C. Ashcraft, Sparse Direct Methods, Volume 1: Orderings for Matrices with Symmetric Structure,
Preprint, February, 2000.

[4] C. Ashcraft, R. Grimes,SPOOLES: an object-oriented sparse matrix library, 9th SIAM Conference on
Parallel Processing for Scientific Computing, March 1999, San Antonio, Texas.

[5] C. Ashcraft, J.W.H. Liu,A partition improvement algorithm for generalized nested dissection, Techn.
Rep. BCSTECH-94-020, Boeing Computer Services, Seattle, 1994.

[6] C. Ashcraft, J.W.H. Liu,Generalized nested dissection: Some recent progress, Mini Symposium 5th
SIAM Conference on Applied Linear Algebra, Snowbird, Utah,1994.

[7] C. Ashcraft, J.W.H. Liu,Using domain decomposition to find graph bisectors, BIT 37, 506–534, 1997.
[8] C. Ashcraft, J.W.H. Liu,Applications of the Dulmage-Mendelsohn decomposition andnetwork flow to

graph bisection improvement, SIAM J. Matrix Anal. Appl., Vol. 19, 325–354, 1998.
[9] C. Ashcraft, J.W.H. Liu,Robust ordering of sparse matrices using multisection, SIAM. J. Matrix Anal.

Appl., Vol. 19, No. 3, 816–832, 1998.
[10] C. Ashcraft, J.W.H. Liu, S.C. Eisenstat,Practical extensions of the multisection ordering for sparse

matrices, 6th SIAM Conference on Applied Linear Algebra, Snowbird, Utah, October 29, 1997.
[11] S.T. Barnard, H.D. Simon,A fast multilevel implementation of recursive spectral bisection, Proc. of 6th

SIAM Conf. Parallel Processing for Scientific Computing, 711–718, 1993.
[12] Benoit, Note sur une ḿethode de ŕesolution deśequations normales etc. (Procéd́e du commandant

Cholesky), Bull. géodésique 3, 67–77, 1924.
[13] P. Berman, G. Schnitger,On the performance of the minimum degree ordering for Gaussian elimination,

SIAM J. Matrix Anal. Appl., Vol. 11, No. 1, 83–88, 1990.
[14] M.V. Bhat, W.G. Habashi, J.W.H. Liu, V.N. Nguyen, M.F. Peeters,A note on nested dissection for

rectangular grids, SIAM J. Matrix Anal. Appl., Vol. 14, No. 1, 253–258, 1993.
[15] T. Bui, C. Jones,A heuristic for reducing fill-in in sparse matrix factorization, Proc. 6th SIAM Confer-

ence on Parallel Processing for Scientific Computing, 445–452, 1993.
[16] A.C. Damhaug,Sparse solution of finite element equations, PhD Thesis, Department of Structual Enge-

neering, The Norwegian Institute of Technology, Trondheim, Norway, 1992.
[17] T. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/˜davis/sparse/,

ftp://ftp.cise.ufl.edu/pub/faculty/davis/matrices, NADigest, Vol. 92, No. 42, October 16, 1994, NA Di-
gest, Vol. 96, No. 28, July 23, 1996, and NA Digest, Vol. 97, No. 23, June 7, 1997.

[18] I.S. Duff, A.M. Erisman, J.K. Reid,Direct Methods for Sparse Matrices, Oxford University Press,
Oxford, 1987.

[19] I.S. Duff, R.G. Grimes, J.G. Lewis,Users’ guide for the Harwell-Boeing sparse matrix collection, Tech-
nical Report TR/PA/92/86, Res. and Techn. Division, BoeingComputer Services, Seattle, 1992.

[20] I.S. Duff, J.K. Reid,The multifrontal solution of indefinite sparse symmetric linear equations, ACM
Trans. Math. Software, 3, 302–325, 1983.

[21] S.C. Eisenstat, M.H. Schultz, A.H. Sherman,Applications of an element model for Gaussian elimination,
in Sparse Matrix Computations, J. Bunch, D. Rose (Eds), Academic Press, New York, 85–96, 1976.

[22] C.M. Fiduccia, R.M. Mattheyses,A linear-time heuristic for improving network partitions, 19th IEEE
Design Automation Conference, 175–181, 1982.

[23] A. George,Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., Vol. 10, No. 2,
345–363, 1973.

[24] A. George, J.W.H. Liu,An automatic nested dissection algorithm for irregular finite element problems,
SIAM J. Numer. Anal., Vol. 15, No. 5, 1053–1069, 1978.

[25] A. George, J.W.H. Liu,A fast implementation of the minimum degree algorithm usingquotient graphs,
ACM Trans. Math. Software, Vol. 6, 337–358, 1980.

[26] A. George, J.W.H. Liu,Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

36

[27] A. George, J.W.H. Liu,The evolution of the minimum degree ordering algorithm, SIAM Review, Vol.
31, No. 1, 1–19, 1989.

[28] A. George, J.W. Poole, R. Voigt,Incomplete nested dissection for solvingn byn grid problems, SIAM
J. Numer. Anal., Vol. 15, 663–673, 1978.

[29] J.R. Gilbert, C. Moler, R. Schreiber,Sparse matrices in MATLAB: design and implementation, SIAM J.
Matrix Anal. Appl., Vol. 13, 333–356, 1992.

[30] A. Gupta,WGPP: Watson graph partitioning (and sparse matrix ordering) package, users manual, IBM
T.J. Watson Research Center, Research Report RC 20453, New York, 1996.

[31] A. Gupta,Fast and effective algorithms for graph partitioning and sparse matrix ordering, IBM T.J.
Watson Research Center, Research Report RC 20496, New York,1996.

[32] B. Hendrickson, R. Leland,The CHACO user’s guide, Techn. Rep. SAND94-2692, Sandia Nat.
Lab., 1994.

[33] B. Hendrickson, R. Leland,A multilevel algorithm for partitioning graphs, Proc. of Supercomput-
ing’95, 1995.

[34] B. Hendrickson, E. Rothberg,Effective sparse matrix ordering: just around the BEND, Proc. of 8th
SIAM Conf. Parallel Processing for Scientific Computing, 1997.

[35] B. Hendrickson, E. Rothberg,Improving the runtime and quality of nested dissection ordering, SIAM J.
Sci. Comput., Vol. 20, No. 2, 468–489, 1998.

[36] A.J. Hoffman, M.S. Martin, D.J. Rose,Complexity bounds for regular finite difference and finite element
grids, SIAM J. Numer. Anal., Vol. 10, No. 2, 364–369, 1973.

[37] G. Karypis, V. Kumar,A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM
J. Sci. Comput., Vol. 20, No. 1, 1999.

[38] G. Karypis, V. Kumar,METIS: a software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices (Version 4.0), Techn. Rep., Dept. of
Computer Science, Univ. of Minnesota, 1998.

[39] B.W. Kernighan, S. Lin,An effective heuristic procedure for partitioning graphs, The Bell Systems
Technical Journal, 291–308, 1970.

[40] D. König,Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann.,
77, 453–465, 1916.

[41] C.E. Leiserson, J.G. Lewis,Ordering for parallel sparse symmetric factorization, in Parallel Processing
for Scientific Computing, SIAM, Philadelphia, 27–31, 1989.

[42] J.W.H. Liu,Modification of the minimum-degree algorithm by multiple elimination, ACM Trans. Math.
Software, Vol. 11, No. 2, 141–153, 1985.

[43] J.W.H. Liu,The minimum degree ordering with constraints, SIAM J. Sci. Stat. Comput., Vol. 10, No. 6,
1136–1145, 1989.

[44] J.W.H. Liu,A graph partitioning algorithm by node separators, ACM Trans. Math. Software, Vol. 15,
No. 3, 198–219, 1989.

[45] J.W.H. Liu,The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., Vol. 11,
No. 1, 134–172, 1990.

[46] H.M. Markowitz,The elimination form of the inverse and its application to linear programming, Man-
agement Science, Vol. 3, 255–269, 1957.

[47] C. Meszaros,The inexact minimum local fill-in ordering algorithm, Techn. Report WP 95 7, Computer
and Automation Research Institute, Hungarian Academy of Sciences, Budapest, 1995.

[48] E. Ng, P. Raghavan,Performance of greedy heuristics for sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., Vol. 20, 902–914, 1998.

[49] S.V. Parter,The use of linear graphs in Gauss elimination, SIAM Review, Vol. 3, 119–130, 1961.
[50] F. Pellegrini, J. Roman,Sparse matrix ordering with SCOTCH, Proc. HPCN’97, LNCS 1225, 370–

378, 1997.
[51] F. Pellegrini, J. Roman, P. Amestoy,Hybridizing nested dissection and halo approximate minimum

degree for efficient sparse matrix ordering, Proc. Irregular’99, LNCS 1586, 986–995, 1999.

37

[52] R. Preis, R. Diekmann,The PARTY partitioning library user guide – version 1.1, Techn. Rep., Dept. of
Computer Science, Univ. of Paderborn, 1996.

[53] D.J. Rose,A graph-theoretic study of the numerical solution of sparsepositive definite systems of linear
equations, in Graph-Teory and Computing, R. Read (Ed.), Academic Press, New York, 183–217, 1972.

[54] E. Rothberg,Robust ordering of sparse matrices: a minimum degree, nested dissection hybrid, Silicon
Graphics manuscript, 1995.

[55] E. Rothberg,Exploring the tradeoff between imbalance and separator size in nested dissection ordering,
Silicon Graphics manuscript, 1996.

[56] E. Rothberg, S.C. Eisenstat,Node selection strategies for bottom-up sparse matrix ordering, SIAM J.
Matrix Anal. Appl., Vol. 19, No. 3, 682–695, 1998.

[57] B. Speelpenning,The generalized element model, Techn. Rep. UIUCDCS-R-78-946, Dept. of Computer
Science, Univ. of Illinois, 1978.

[58] W.F. Tinney, J.W. Walker,Direct solutions of sparse network equations by optimally ordered triangular
factorization, Proc. of the IEEE, Vol. 55, 1801–1809, 1967.

[59] M. Yannakakis,Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth., Vol. 2, No.
1, 77–79, 1981.

38

