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measures for damage assessment
in structures
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Abstract

This article explores the use of principal component analysis (PCA) and T2 and Q-statistic measures to detect and

distinguish damages in structures. For this study, two structures are used for experimental assessment: a steel sheet and

a turbine blade of an aircraft. The analysis has been performed in two ways: (i) by exciting the structure with low-

frequency vibrations using a shaker and using several piezoelectric (PZT) sensors attached on the surface, and (ii) by

exciting at high-frequency vibrations using a single PZTas actuator and several PZTs as sensors. A known vibration signal

is applied and the dynamical responses are analyzed. A PCA model is built using data from the undamaged structure as a

reference base line. The defects in the turbine blade are simulated by attaching a mass on the surface at different

positions. Instead, a progressive crack is produced to the steel sheet. Data from sets of experiments for undamaged and

damaged scenarios are projected into the PCA model. The first two projections, and the Q-statistic and T2-statistic

indices are analyzed. Q-statistic indicates how well each sample conforms to the PCA model. It is a measure of the

difference or residual between a sample and its projection into the principal components retained in the model.

T2-statistic index is a measure of the variation of each sample within the PCA model. Results of each scenario are

presented and discussed demonstrating the feasibility and potential of using this formulation in structural health

monitoring.
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Introduction

Nowadays, the aerospace and aircraft industry has a
main priority in improving the reliability of their struc-
tures through the development of novel systems for
monitoring and damage detections. In the last years,
significant efforts are being concentrated in the design
of smart structures with the integration of materials,
sensors, actuators, and algorithms able to monitor the
structural state health in real time and detect any defect
at an early stage.1 The basic paradigm is to approach
the damage identification via the detection of changes
in the propagation of elastic waves through the struc-
ture by analyzing time responses in comparison with
pattern responses for undamaged structures.2

There are several potentially useful techniques, and
their applicability to a particular situation depends on
the size of critical damage admissible in the structure.
All of these techniques follow the same general proce-
dure: the structure is excited using actuators and the
dynamical response is sensed at different locations

throughout the structure. Any damage will change
this vibrational response, as well as the transient by a
wave that is spreading through the structure. The state
of the structure is diagnosed by means of the processing
of these data. Correlating the signals to detect, locate
and quantify these changes is a very complex problem,
but very significant progresses have been recently
reported in conferences,3–5 new scientific journals,6,7

and books.8,9

In general, there are many ways to tackle the prob-
lem, Farrar et al. defined the process in terms of a four-
step statistical pattern recognition paradigm which
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includes: (i) operational evaluation, (ii) data acquisi-
tion, normalization and cleansing, (iii) feature selection
and information condensation, and (iv) statistical
model development for feature discrimination.10

According to theories summarized by McCullagh,11

in the strict sense, a statistical model is a set of math-
ematical expressions that describe the behavior of an
object to study in terms of random variables and their
associated probability distributions on the sample
space. In other words, the probability theory is applied
to a set of data in order to get an algorithm. This is
opposed to using training data to select among different
algorithms or using heuristics/common-sense to design
an algorithm. In the literature, many methods can be
found to determine a statistical model, for instance:
linear, basis function and Gaussian regressions; feed-
forward neural networks; linear classifiers, support
vector machine, Markov models, principal component
analysis (PCA), etc.

In structural health monitoring (SHM), PCA12 has
been extensively applied to measured vibration signals
for dimensionality studies,13–15 to remove the influence
of the environmental effects from the vibration charac-
teristics,16,17 for extracting structural damage fea-
tures,18–20 to discriminate features from damaged and
undamaged structures21–25 and for clustering a classifi-
cation of acoustic emission transient,26 among others.

In the above references, concerning PCA analysis,
just the principal components or the projections to
these principal components are studied. However,
there exist other PCA-related tools that also give infor-
mation about what is going within the model. The goal
of this article is to explore the potential of two statisti-
cal distances to detect and distinguish structural dam-
ages. The study is experimentally based considering two
test cases. The article first presents a background on the
basic concepts on PCA and the damage detection indi-
ces in sections ‘Principal component analysis’ and
‘Damage detection indices’. The methodology for a sys-
tematic implementation of the approach for damage
diagnosis is outlined in section ‘Methodology for struc-
tural health monitoring’. The experimental settings are
described in section ‘Experimental set-up’ and the
results are discussed in section ‘Analysis of the results’.
Finally, some concluding remarks are summarized in
section ‘Concluding remarks’.

Principal component analysis

Introduction

In many scientific fields, including SHM, it is common
to deal with a large variety of complex systems in which
the number of variables to measure can be unwieldy
and even at some times deceptive, because the implicit

relationships can often be quite simple. PCA may pro-
vide arguments for how to reduce a complex data set to
a lower dimension and reveal some hidden and simpli-
fied structure/patterns that often underlie it. The goal
of PCA is to discern which dynamics are more impor-
tant in the system, which are redundant and which are
just noise. This goal is essentially achieved by determin-
ing a new space (coordinates) to re-express the original
data filtering that noise and redundancies based on the
variance–covariance structure of the original data.
PCA can be also considered as a simple, nonparametric
method for data compression and information extrac-
tion, which finds combinations of variables or factors
that describe major trends in a confusing data set.1

Data collection

Let us address the analysis of a physical process by
measuring several variables (sensors) at a number of
time instants (or experimental trials), considering that
each measurement is an individual sample in the data
set (just one value, e.g., load, voltage, pressure, etc.).
The collected data are arranged in a matrix as follows:

X ¼

x11 x12 . . . x1j . . . x1m

. . . . . . . . . . . . . . . . . .

xi1 xi2 . . . xij . . . xim

. . . . . . . . . . . . . . . . . .

xn1 xn2 . . . xnj . . . xnm

0
BBBBBB@

1
CCCCCCA

¼ v1 v2 � � � vj
�� � � � vmjj

����� �
ð1Þ

This n�m matrix contains information from m sen-
sors and n experimental trials. Each row vector (xi)
represents measurements from all the sensors at a spe-
cific time instant or experiment trial. In the same way,
each column vector (vj) represents measurements from
one sensor (one variable) in the whole set of experiment
trials.

Scaling

Since different physical variables and sensors have dif-
ferent magnitudes and scales, the original data set has
to be treated before applying any analysis. Several
methods are found in the literature for scaling experi-
mental data, the so-called ‘autoscaling’ being the most
popular. It is a processing technique in which each var-
iable is re-scaled to have zero mean and unity variance.
This is performed by modifying each sensor vector vj as
follows:

�vj ¼
1

n

Xn
i¼1

xij, ð2Þ
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�2vj ¼
1

n� 1

Xn
i¼1

xij � �vj

� �2
, ð3Þ

�xij ¼
xij � �vj

�vj
, ð4Þ

where �vj and �2vj are the mean and the variance,
respectively, of sensor j measurements (vj), and �xij is
the re-scaled sample. In the remaining of the article
the scaled data are considered without bar notation
for simplicity.

Covariance matrix and PCA objective

Given a data matrix X in (1), which has been previously
scaled, the covariance matrix is defined as follows:

CX �
1

n� 1
XTX

¼
1

n� 1

vT1 v1 vT1 v2 . . . vT1 vj . . . vT1 vm

. . . . . . . . . . . . . . . . . .

vTj v1 vTj v2 . . . vTj vj . . . vTj vm

. . . . . . . . . . . . . . . . . .

vTmv1 vTmv2 . . . vTmvj . . . vTmvm

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð5Þ

It is a square symmetric m�m matrix that measures
the degree of linear relationship within the data set
between all possible pairs of variables (sensors). The
diagonal terms are the variances of the corresponding
variables:

�2vj ¼
1

n� 1
vTj vj ¼

1

n� 1

Xn
i¼1

x2ij ð6Þ

When dealing with measured data, it is important to
have low noise levels if valuable information is wanted
to be extracted. Noise cannot be directly measured, but
a common estimation, relative to the measurement, is
the signal-to-noise ratio (SNR¼ �2s/�

2
n), which com-

pares the variances of the signal and the noise. The
larger the SNR is, the more accurate the data are.
Therefore, measurement vectors with larger variances
within the data set contain more interesting dynamics.

The off-diagonal terms are the covariance between
pairs of variables:

�2vj,vk ¼
1

n� 1
vTj vk ¼

1

n� 1

Xn
i¼1

xijxik ð7Þ

Large covariance values correspond to high redun-
dancy and small values to low redundancy.

Looking at the structure of the data matrix X, we
may see all the row vectors xi as lying in an m-dimen-
sional space spanned with the natural orthonormal
basis of vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0) to
(0, 0, . . . , 1). In this algebraic context, it is worth to con-
sider transforming the vectors xi and the data matrix X

to be expressed in a different orthonormal basis, in
which the modified data better exhibits some desired
features. According to the above noise/redundancy
issues, the goal of PCA is to re-express the original
data in a new basis where the data are arranged along
directions of maximal variance and minimal
redundancy.

Transforming the data matrix

Consider a m� n linear transformation matrix P, which
is used to transform the original data matrix X into
the form:

T ¼ XP ð8Þ

To achieve the minimal redundancy goal, we seek for
a transformation matrix P such that the covariance of
the new data matrix T is diagonal, that is:

CT ¼
1

n� 1
TTT ¼ diagonal ð9Þ

Substituting (8) into (9) the following is written:

CT ¼
1

n� 1
PTXTXP ¼ PTCXP ð10Þ

Since CX is symmetric, it has m real eigenvalues �j
and m orthonormal eigenvectors pj, which form a basis
in the m-dimensional space. Then, the transformation
matrix is chosen having the eigenvectors in their col-
umns, that is:

P ¼ p1 p2
�� . . .j j pj . . .j j pm

� �
ð11Þ

With this matrix the following property is satisfied:

CXP ¼ P� ð12Þ

with �¼ diag(�1, �2, . . . , �m). Substituting (12) into
(10), the desired condition (9) is satisfied with:

CT¼ PTP� ¼ � ð13Þ
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Let us write the transformation (8) in more detail:

t1jft2 . . .j jtj . . .j jtm
� �

¼

x11 x12 . . . x1j . . . x1m

. . . . . . . . . . . . . . . . . .

xi1 xi2 . . . xij . . . xim

. . . . . . . . . . . . . . . . . .

xn1 xn2 . . . xnj . . . xnm

0
BBBBBBBBBB@

1
CCCCCCCCCCA

� p1 p2
�� . . .j j pj . . .j j pm

� �
ð14Þ

Each column vector in matrix T can be expressed as:

tj ¼ Xpj ð15Þ

Then, the variances of these vectors can be com-
puted in the form:

�2tj ¼
1

n� 1
tTj tj ¼

1

n� 1
Xpj
� �T

Xpj
� �

¼ pTj CXpj ¼ �j

ð16Þ

while the covariances are null:

�2tj,tk ¼
1

n� 1
tTj tk ¼

1

n� 1
Xpj
� �T

Xpk
� �

¼ pTj CXpk ¼ �jp
T
j Pk ¼ 0 ð17Þ

Consequently, the row vectors of the transformed
data matrix T are uncorrelated and their respective var-
iances are given by the eigenvalues of the covariance
matrix Cx of the original data. Usually the eigenvectors
pj forming the transformation matrix P are sorted
according to the eigenvalues by descending order and
they are called the Principal Components of the data
set. The eigenvector with the highest eigenvalue repre-
sents the most important pattern in the data with the
largest quantity of information.

Geometrically, the jth-column vector tj of the trans-
formed data matrix T is the projection of the original
data over the direction of vector pj (jth principal com-
ponent). Intuitively speaking, matrix T gives a new rep-
resentation of the data set as ‘seen’ by ‘virtual sensors’
in a nonphysical space, where the corresponding
‘virtual variable vectors’ are uncorrelated and have
the maximal data variance, thus with best potential to
exhibit process features.

Reducing the dimension

Since eigenvectors are ordered according to the amount
of information, it is possible to reduce the dimension-
ality of the data set X by choosing only a reduced

number r of principal components, those corresponding
to the first eigenvalues. Thus, define the following
reduced transformation m� r matrix:

P ¼ p1 p2
�� . . .j j pr

� �
ð18Þ

Then the original data can be projected onto the
space spanned by this matrix as before:

T ¼ XP ð19Þ

In the full dimension case, this projection is invert-
ible (since PPT

¼ I) and the original data can be recov-
ered as X¼TP

T. Now, with the given T, it is not
possible to fully recover X, but T can be projected
back onto the original m-dimensional space and
obtain another data matrix as follows:

X̂ ¼ TPT ¼ X PPT
� �

ð20Þ

By simple manipulations (adding and subtracting) in
expression (20), the following decomposition of the
original data matrix X can be written:

X ¼ X̂þ ~X

X̂ ¼ X PPT
� �

~X ¼ X I� PPT
� �

ð21Þ

where X̂ is the projection of the data matrix X onto the
selected r principal components and ~X is the projection
onto the residual left components.

Applying PCA in practice

To perform PCA is simple in practice through the basic
steps:

1. Organize the data set as an n�m matrix, where m is
the number of measured variables and n is the
number of trials.

2. Normalize the data to have zero mean and unity
variance.

3. Calculate the eigenvectors–eigenvalues of the covari-
ance matrix.

4. Select the first eigenvectors as the principal
components.

5. Transform the original data by means of the princi-
pal components (projection).

The transformed matrix T is usually called score
matrix. Its columns are called score vectors ti, each of
them associated with the corresponding principal
component PCi.
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Damage detection indices

PCA analysis can be used to detect abnormal behavior
in a process or system. Two well-known statistics are
commonly used to this aim: the Q-statistic (or SPE-
statistic) and the Hotelling’s T2-statistic (D-statistic).
The first one is based on analyzing the residual data
matrix ~X to represent the variability of the data projec-
tion in the residual subspace. The second method is
based in analyzing the score matrix T to check the var-
iability of the projected data in the new space of the
principal components. These methods are based on the
assumption (generally stemming from the central limit
theorem) that the underlying process follows approxi-
mately a multivariate normal distribution where the
first moment vector is zero (Figure 1).

T2-statistic

The Hotelling’s T2-statistic is a generalization of
Student’s t-statistic that is used in multivariate hypoth-
esis testing. Consider xi as the m-row vector that rep-
resents the measurements from all sensors in the ith
experiment. Call tsi the r-row vector (row i within
matrix T), which is the projection of the experiment
xi into the new space. Both are related as tsi ¼ xiP.

The T2-statistic of the ith sample (or experiment) is
defined in the form

T2
i ¼

Xr
j¼1

t2sij
�j
¼ tsi�

�1tTsi ¼ xiP��1PTxTi ð22Þ

It only detects variation in the subspace of the first r
principal components, which are greater than what can
be explained by the common-cause variations. In other
words, T2-statistic is a measure of the variation of each
sample within the PCA model.

Figure 1 gives a conceptual illustration of this index
for a case with m¼ 3 variables and r¼ 2 principal com-
ponents. In this case, T2 is a measure of the variation of
each sample within the plane defined by the two prin-
cipal components.

Q-statistic

Q-statistic denotes the change of the events that are not
explained by the model of principal components. It is a
measure of the difference, or residual between a sample
and its projection into the model. The Q-statistic of the
ith sample (or experiment) vector xi is defined as
follows:

Qi ¼ ~xi ~x
T
i ¼ xi I� PPT

� �
xTi ð23Þ

where ~xi is its projection into the residual subspace.
A conceptual illustration may be seen in Figure 1.

Normally, Q-statistic is much more sensitive than
T2-statistic. This is because Q is very small and there-
fore any minor change in the system characteristics will
be observable. T2 has great variance and therefore
requires a great change in the system characteristic to
be detectable.

Information about the events can also be obtained
directly from plotting the scores for the relevant prin-
cipal components. When there is a change in the
system, the scores of the new events will be different
from the previous scores, and the change will be
detected. However, this information is also included
in the Hotelling’s T2-statistic since it is calculated
using the scores. Moreover, the Q-statistic supplies
additional information that is not included in the
scores plot, because it is related to variations that are
not considered by the model. In this way, the plots of Q
and T2 are hypothesis tests that clearly distinguish
experiments with abnormal behavior, whereas the
inspection of the scores plot is a qualitative tool.28

Methodology for structural health
monitoring

Data organization and preprocessing

In sections ‘Principal component analysis’ and
‘Damage detection indices’, the basis of PCA has
been presented considering a matrix X that contains
measurements of several variables for different experi-
ment trials. It has been assumed that each measurement
is an individual sample in the data set (just one value).
In SHM applications, and specifically in systems based
on vibrations, each sensor collects dynamic responses
over a whole time period. Then, the result of an

V
ar

ia
bl

e 
3

Sample with larger Q
(unusual variation
outside the model)

Sample with larger T 2

(unusual variation
inside the model)

Variable 2

First PC

Second PC

Variable 1

Figure 1. PCA model of a three-dimensional data set showing

Q and T2 outliers.27
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experiment is not a single value, but a set of values
obtained by the discretization of the time history
measurement.

In this study, the multivariate data set is organized in
a three-dimensional matrix X3D (I experiments�K
samples per experiment� J sensors). In this way, each
frontal slice is a two-dimensional matrix X that repre-
sents all measurements in one sensor as can be seen in
Figure 2(a). In order to consider correlations in time for
each signal and the correlations between sensors, the
matrix X3D is unfolded as shown in Figure 2(b).15

This unfolded matrix is the matrix X to perform PCA
analysis.

As explained in section ‘Scaling’, the first step before
applying PCA is to standardize the data matrix X since
PCA is scale variant. For this kind of data sets
(unfolded matrices), several studies of scaling have
been presented in the literature: continuous scaling
(CS), group scaling (GS) and autoscaling (AS).29

According to these studies, GS is selected for this
work because it considers changes between sensors
and does not process them independently. Each data-
point is scaled using the mean of all measurements of
the sensor at the same time (Equation (24)) and the
standard deviation of all measurements of the sensor
(Equation (25)):

�jk ¼
1

I

XI
i¼1

xijk; �j ¼
1

IK

XI
i¼1

XK
k¼1

xijk ð24Þ

�2j ¼
1

IK

XI
i¼1

XK
k¼1

xijk � �j

� �2
ð25Þ

�xij ¼
xij � �jk

�j
ð26Þ

where:
xijk is the kth sample of the of the jth sensor in the ith

experiment, �jk is the mean of the all kth samples of the
jth sensor, �j is the mean of all measurements of the jth
sensor, �j is the standard deviation of all measurements
of the jth sensor, and �xij is the scaled sample.

In this way, the mean trajectories (by sensor) are
removed and all sensors are made to have equal vari-
ance. As a consequence, the experiment trajectories of
the sensors and their standard deviations, often non-
linear in nature, are removed from the data.

General scheme

Baseline phase. model building. In systems where diag-
nosis by pattern recognition is performed, a baseline
must be built from data with the system working in
the desired normal conditions. In this work, the base-
line is created from experiments performed over the
healthy structure. PCA is applied to the matrix that
contains dynamical responses to a known excitation
at different locations. In this setting, all the signals col-
lected from different experiments using the base speci-
men (undamaged structure) are organized as explained
in previous section ‘Data organization and preprocess-
ing’ (Figure 2). This X matrix has I�KJ dimension,
where I is the number of experiments, K is the
number of samples per experiment and J is the
number of sensors. Further, a GS standardization is
applied according to Equations (24)–(26). Finally,
PCA is applied to the scaled matrix X.

Applying PCA to build a baseline means to calculate
the projection matrix P, which offers a better and
dimensionally reduced representation of the original
data X. This matrix will be the model of the undamaged
structure to be used in the health diagnosis as illus-
trated in Figure 3.

Testing phase. diagnosis. In this phase, the current
structure to diagnose is subjected to a number of exper-
iments and a new matrix X is arranged with the mea-
sured data. The quantity of experiments can be as much
as we want, but the numbers of sensors and collected
samples (data-points) must be the same that were used
in the modeling phase. This matrix is projected into the
PCA model with Equation (19). Projections onto some
of the first components are obtained and the damage
indices (T2-statistic and Q-statistic) are calculated and
compared with the baseline values. The general

1

Sensor1 Sensor 2 Sensor j
Sensor

(J)

Sensor x time

E
xp

er
im

en
ts

E
xp

er
im

en
ts

Sensor J... ...

K 2K jK

(I)

(a) (b)

X3D

Time
(K)

Figure 2. Collected data: (a) initial 3D-matrix and (b) unfolded matrix for PCA analysis.
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procedure for detecting and distinguishing damages on
structures based on PCA measures can be summarized
in Figure 3.

Experimental set-up

In this study, two structures have been used: (i) a steel
sheet, and (ii) a turbine blade of an aircraft. The anal-
ysis has been performed in two ways: (i) by exciting at
low-frequency vibrations using a shaker in one side of
the specimen and measuring data with several PZT sen-
sors attached on the surface, and (ii) by exciting at
high-frequency vibrations using one PZT as actuator
and the other PZTs as sensors.

Steel sheet

The first specimen is a rectangular steel sheet with nom-
inal dimensions of 510� 50mm2, it has 1mm of thick-
ness and it weights 67.3g. Two different screws are
attached near the corner in order to break symmetries.
The sheet is fixed to a shaker by mean of a coupling.
Two PZTs are attached on the surface to collect vibra-
tion responses as seen in Figure 4.

The specimen is excited by means of an electromag-
netic shaker that converts electrical signals (inputs) to
mechanical displacements (Figure 5). The electrical
excitation signal is provided by an arbitrary waveform
generator and amplified.

A progressive damage was performed on the
sheet by mean of a drill: a crack of 2, 4 and 6.8mm

Sensor 1 Sensor 2 Sensor j

Undamaged structure
Current structure

... ... Sensor J
Sensor 1 Sensor 2 Sensor j... ... Sensor J

X

PCA

Testing

Projection
(PCA)

X

T

Modeling

T

QE T2

Pmodel

Figure 3. General scheme based on PCA for detecting and distinguishing damages in structures.

PZTs

Coupling
Screws

Figure 4. Specimen 1: steel sheet.

Figure 5. Steel sheet fixed to the shaker.
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(Figure 6). The specimen was excited with a sinusoidal
signal of low frequency (50Hz) modulated by a ham-
ming window of five cycles. Figure 7 shows the excita-
tion signal and the response measured by one of the
PZTs. A number of 75 experiments were performed
using the healthy specimen and 25 of them were used
to define the baseline PCA model of the undamaged
structure. A number of 50 experiments were performed
per each level of the damage in the diagnosis study.

Blade

This specimen is a turbine blade of a commercial air-
craft. Unfortunately, due to the origin of the blade,
little is known about the specific material and design
parameters constituting the structure. However, it
could be determined that the blade is manufactured
by a homogenous material with a similar density than
titanium (3.57 g/mL). The blade has one stringer in
each face. Seven PZT sensors are distributed over the
surface to detect time varying strain response data.
Three of the sensors are on one face and four on the
other face as can be seen in Figure 8. Two kinds of

experiments were performed in order to study the effec-
tiveness of the approach for damage detection working
at low- and high-frequency vibration.

Low-frequency vibration. The blade is suspended by
two elastic ropes (free–free configuration). A shaker
excites the structure with a vibration signal in one of
its extreme ends as seen in Figure 9. The specimen was
excited with a sinusoidal signal of low frequency
(10Hz) modulated by a hamming window of five
cycles. The signal excitation and the dynamic response
of the undamaged structure collected by sensor 2 are
shown in Figure 10.

Damages have been simulated adding a mass at four
different locations as detailed in Figure 11. A number
of 300 experiments have been performed and recorded:
100 with the undamaged structure, and 50 for each one
of the four damages. The baseline PCA model was cre-
ated using half of the data set collected using the unda-
maged structure. Signals from the other half dataset of
the undamaged structure and the whole dataset of the
damaged structure were used in the diagnosis testing
process.

0.2(a) (b) 1.5

1

0.5

0

–0.5

–1

–1.5

0.15

0.1

0.05

0

–0.05

–0.1

–0.15

–0.2
0 0.1 0.2

Time (s)

0.3 0.4 0.5 0 0.1 0.2

Time (s)

0.3 0.4 0.5

Figure 7. (a) Signal excitation, and (b) Measured response.

Figure 6. (a) Measurement of one of the cracks, and (b) Final specimen damaged.
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High-frequency vibration. The blade is also suspended
by two elastic ropes (as in the previous configuration).
Taking the advantage of the PZTs devices that can be
used alternatively as actuators and sensors, PZT 1 was
used as actuator and the other PZTs as sensors. The
actuator was excited by a burst signal of three peaks
and 350 kHz of frequency (Figure 12(a)). A measured
signal in one of the PZT is shown in Figure 12(b).

Damages were simulated adding two masses at sev-
eral locations as shown in Figure 13. 140 experiments
were performed and recorded: 50 with the undamaged
structure and 10 per each damage. The 80% of the data
set collected using the undamaged structure was used
for building the baseline. For diagnosis testing, the
other 20% of the data set of the undamaged structure
and the whole data set of the damaged structure
were used.

Analysis of the results

For each scenario (steel sheet at low frequency, blade at
low frequency and blade at high frequency) a PCA

model was built with experiments performed using the
structure without damage. In this study, the number of
principal components to build the model was selected
as r¼ 20. In the diagnosis step, the experiments per-
formed using the structure with damages were projected
onto the model. Scores 1 against 2 (projections into the
first and second principal components, respectively)
were plotted. The damage detection indices (T2-statistic
and Q-statistic) were plotted for each experiment and
one versus the other. Shapes and colors represent dif-
ferent conditions of the specimen (healthy, damages 1,
2, . . . etc.).

Steel sheet: low frequency

The results for this case are plotted in Figure 14. The
first and second scores can be considered as sufficient
features to distinguish the different damages. However,
some experiments of the damage 1 can not be discerned
from some experiments without damage (Figure 14(a)).
In this respect, recall that damage 1 is a small crack,
just 2mm. On the other hand, by plotting the damage
indices (by experiments or one versus the other), these
experiments are clearly separated (Figure 14). From all
plots, it is also apparent that experiments with damage
3 are separated in two groups. This has a reasonable
explaination: after finishing experiments using the sheet
with a 6.8-mm crack (damage 3), we realized that one of
the PZTs was broken. Probably after experiment
number 26, the PZT broke, and the measurements
were corrupted.

Blade: low frequency

The results for this case are plotted in Figure 15.
Contrary to the previous case, using the first and
second score no trend can be appreciated and it is not
possible to classify or cluster the different conditions of
the structure (Figure 15(a)). Otherwise, plotting the
damage indices some differences can be seen. It can
be observed that Q-statistic is more sensitive than
T2-statistic: undamaged and damages 1 and 4 cases

PZT

258mm

27mm Stringers

40mm

85
m

m

Figure 8. Specimen 2: aircraft turbine blade.

Figure 9. Blade coupled to the shaker.
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Mujica et al. 549

 at PENNSYLVANIA STATE UNIV on March 5, 2016shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


0 5 10 15 20
Experiment

25 30 35 40 45 50

10862 40–2–4
–1.5

400

200

150

100

50

0

200

150

100

50

0
200 250 300 350 400150100500

350

300

250

200

150

100

50

0

–1

–0.5

0.5

1

1.5

2

2.5(a)

(b)

(c)

(d)

0

0 5 10 15 20
Experiment

25 30 35 40 45 50

P
ro

je
ct

io
n 

in
to

 th
e 

se
co

nd
 c

om
po

ne
nt

Projection into the first component

T
2 -s

ta
tis

tic

T 2-statistic

Q
-s

ta
tis

tic
Q

-s
ta

tis
tic

Und
D1
D2
D3
D4

Und
D1
D2
D3
D4

Und
D1
D2
D3
D4

Und
D1
D2
D3
D4

Figure 15. Projection of several experiments (undamaged and damaged) into the PCA model: (a) score 1 vs score 2,

(b) T2-statistic by experiment, (c) Q-statistic by experiment, and (d) T2 vs Q.

550 Structural Health Monitoring 10(5)

 at PENNSYLVANIA STATE UNIV on March 5, 2016shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


P
ro

je
ct

io
n 

in
to

 th
e 

se
co

nd
 c

om
po

ne
nt

T
2 -s

ta
tis

tic
Q

-s
ta

tis
tic

Q
-s

ta
tis

tic

T 2-statistic

Projection into the first component
–2

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

–2.5

103

102

101

102

101

101

101 102

100

10–1

100

10–1

1

0.5

0

1.5

2(a)

(b)

(c)

(d)

–1.5 –1 –0.5 0 0.5 1 1.5 2

Experiment

Experiment

Und
D1
D2
D3
D4
D5
D6
D7
D8
D9

Und
D1
D2
D3
D4
D5
D6
D7
D8
D9

Und
D1
D2
D3
D4
D5
D6
D7
D8
D9

Und
D1
D2
D3
D4
D5
D6
D7
D8
D9

Figure 16. Projection of several experiments (undamaged and damaged) into the PCA model: (a) score 1 vs score 2,

(b) T2-statistic by experiment, (c) Q-statistic by experiment, and (d) T2 vs Q.
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are clearly distinguished using only Q-statistic but dam-
ages 2 and 3 appear very close. In this respect, it is
worth to note (Figure 11) that damage 3 is located
over the stringer and damage 2 is very close, which
poses a practical difficulty for the precise detection.
Indeed, the added mass (or lost mass) is small compar-
ing with the mass that distorts the propagation of the
wave (the stringer).

Blade: high frequency

Figure 16 shows the results for this case. At a first
glance, it is observed in Figure 16(a) that the discrimi-
nation between the presence and the absence of damage
in the blade is clearly achieved in all the cases by using
just the first two projections (scores 1 and 2). In a more
detailed view of Figure 16, some damages are distin-
guishable from the others: damages 1, 2, and 9 appear
clearly in separate groups in the scores plots, while
damages 1, 3, and 9 do it when using the indices
plots. Other damages are grouped although not easily
separable from the others.

Some interpretations are possible for the above
observations. First, notice that only one excitation is
applied to the blade by means of the PZT1, which
is located at a blade corner (Figure 8). As seen in
Figure 13, damages 5, 6, and 7 are located behind the
stringer. This stringer is a large quantity of mass that
may significantly distort the wave propagation.
Therefore, these damages are detectable but hardly dis-
tinguishable. Notice also that damages 4 and 5 are sym-
metrically located with respect to the stringer. This may
explain that, as seen in Figure 16(a), damages 4 and 5
appear quite overlapped. If experiments with damages
5, 6, and 7 were removed from the data set, Figure 16
would be much clearer than the present one, and dam-
ages would appear easily separated from the others. But
it may be interesting to highlight the difficulty and chal-
lenge of distinguishing damages by means of a signal
processing based approach (without a physical analysis
of the wave propagation process) when the shape of the
structure has portions that may significantly affect the
wave propagation.

In the context of this discussion, it may be interest-
ing to revisit the low-frequency experiments of section
‘‘Blade: low frequency’’ and to consider the case where
damage is present near the base of the blade, which is
the most distant location with respect to the actuating
excitation location. This damage is number 1 in the
low-frequency case (Figure 11) and number 7 in the
high-frequency experiments (Figure 13). It is noticed
in Figure 15 that this damage is distinguishable at
low frequency, while it is overlapped with other dam-
ages under high frequency wave excitation (Figure 16).

Trying to explain this fact, notice that, at low fre-
quency, the vibration produced by the shaker is larger
(in amplitude) than the produced by the PZT at high
frequency. In the first case the stringer does not signif-
icantly distort the propagation of the vibration, so the
damage 1 (even being far from the excitation) is easily
detected and distinguished from the undamaged struc-
ture and the other damages.

Concluding remarks

In order to detect and discern damages in structures
using vibrations by mean of the application of PCA
and T2 and Q-statistic indices, several scenarios were
experimentally analyzed. The difficulty level was
increasing with the scenarios; the first specimen studied
was a simple structure (steel sheet) with small, but clear
defects (real cracks). Further, the effectiveness of the
approach was tested using a more complex structure
in both low and high frequency. At low frequency,
few defects were simulated and it was concluded that
damages very near to the stringer are detectable but not
easily distinguishable. This can be explained because
the added mass is small comparing with the mass of
the stringer. For experiments at high frequency, those
defects were eliminated and others were added (seven
different positions and two different masses).

In some cases, scores are sufficient features to discern
damages. In other cases, T2-statistic is more sensible to
changes in the structure while in other cases Q-statistic
is better. In cases where neither T2-statistic nor Q-sta-
tistic is efficiently enough separately, it may be conve-
nient to represent one versus the other in the same
plot (Figures 14(d), 15(d), and 16(d)). In general, it
is advisable to analyze all indices and scores as a
whole set to obtain more accuracy in the diagnosis
(or classification) of damages. The authors are develop-
ing strategies that allow to reach a consensus from all
these features.

Independently of the used structure and the kind of
excitation, experiments have demonstrated that the first
level for SHM is accomplished: all cases with damage
have been detected. Its projections are clearly discerned
from the experiments with the healthy structure.
Separation among different damages has been reason-
ably achieved in locations where the dynamic response
is not significantly affected by the stringer. At high fre-
quency, the stringer acts a barrier (or obstacle) for the
wave propagation. To avoid this problem, work is in
progress by the authors with the aim of extending the
present approach using more PZTs as actuators, taking
advantage of their reversibility, and developing strate-
gies to handle the whole set of information for an
enhanced diagnosis.
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