
A Survey of Top-k Query Processing Techniques in
Relational Database Systems

IHAB F. ILYAS, GEORGE BESKALES and MOHAMED A. SOLIMAN
David R. Cheriton School of Computer Science
University of Waterloo

Efficient processing of top-k queries is a crucial requirement in many interactive environments
that involve massive amounts of data. In particular, efficient top-k processing in domains such as
the Web, multimedia search and distributed systems has shown a great impact on performance.
In this survey, we describe and classify top-k processing techniques in relational databases. We
discuss different design dimensions in the current techniques including query models, data access
methods, implementation levels, data and query certainty, and supported scoring functions. We
show the implications of each dimension on the design of the underlying techniques. We also
discuss top-k queries in XML domain, and show their connections to relational approaches.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: top-k, rank-aware processing, rank aggregation, voting

1. INTRODUCTION

Information systems of different types use various techniques to rank query answers. In
many application domains, end-users are more interested in the most important (top-k)
query answers in the potentially huge answer space. Different emerging applications war-
rant efficient support for top-k queries. For instance, in the context of the Web, the ef-
fectiveness and efficiency of meta-search engines, which combine rankings from different
search engines, are highly related to efficient rank aggregation methods. Similar appli-
cations exist in the context of information retrieval [Salton and McGill 1983] and data
mining [Getoor and Diehl 2005]. Most of these applications compute queries that involve
joining and aggregating multiple inputs to provide users with the top-k results.

One common way to identify the top-k objects is scoring all objects based on some
scoring function. An object score acts as a valuation for that object according to its charac-
teristics (e.g., price and size of house objects in a real estate database, or color and texture
of images in a multimedia database). Data objects are usually evaluated by multiple scoring
predicates that contribute to the total object score. A scoring function is therefore usually
defined as an aggregation over partial scores.

Authors Address: University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada N2L 3G1;
email: ilyas,gbeskale,m2ali@uwaterloo.ca Support was provided in part by the Natural Sciences and Engineering
Research Council of Canada through Grant 311671-05
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–61.

2 · Ilyas et al.

Houses

SID Location Tuition

1

2

3

4

5

6

7

8

Indianapolis

W.Lafayette

Lafayette

Lafayette

Indianapolis

Indianapolis

Kokomo

Kokomo

3000

3500

6000

6200

7000

7900

8200

8200

Schools

Join Result

HID Location Price

1

2

3

4

5

6

Lafayette

W.Lafayette

Indianapolis

Kokomo

Lafayette

Kokomo

……

90,000

110,000

111,000

118,000

125,000

154,000

14100013

14500022

15200041

15000031

Price + 10 x TuitionSIDHID

Fig. 1. A Top-k Query Example

Top-k processing connects to many database research areas including query optimiza-
tion, indexing methods and query languages. As a consequence, the impact of efficient
top-k processing is becoming evident in an increasing number of applications. The fol-
lowing examples illustrate real-world scenarios where efficient top-k processing is crucial.
The examples highlight the importance of adopting efficient top-k processing techniques
in traditional database environments.

EXAMPLE 1.1. Consider a user interested in finding a location (e.g., city) where the
combined cost of buying a house and paying school tuition for 10 years at that location
is minimum. The user is interested in the five least expensive places. Assume that there
are two external sources (databases), Houses and Schools, that can provide information
on houses and schools, respectively. The Houses database provides a ranked list of the
cheapest houses and their locations. Similarly, the Schools database provides a ranked list
of the least expensive schools and their locations. Figure 1 gives an example of the Houses
and Schools databases.

A naı̈ve way to answer the query described in Example 1.1 is to retrieve two lists: A list
of the cheapest houses from Houses, and a list of the cheapest schools from Schools. These
two lists are then joined based on location such that a valid join result is comprised of a
house and a school at the same location. For all join results, the total cost of each house-
school pair is computed, for example, by adding the house price and the school tuition
for ten years. The five cheapest pairs constitute the final answer to this query. Figure 1
shows an illustration for the join process between houses and schools lists, and partial join
results. Note that the top five results cannot be returned to the user until all the join results
are generated. For large numbers of co-located houses and schools, the processing of such
query, in the traditional manner, is very expensive as it requires expensive join and sort
operations for large amounts of data.

EXAMPLE 1.2. Consider a video database system where several visual features are
extracted from each video object (frame or segment). Example features include color his-
tograms, color layout, texture, and edge orientation. Features are stored in separate rela-
tions indexed using high-dimensional indexes that support similarity queries. Suppose that

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 3

Video

Database

Color Histogram

Edge Histogram

Texture

Color Histogram

Edge Histogram

Texture

Query

Fig. 2. Single and Multi-feature Queries in Video Database

a user is interested in the top 10 video frames most similar to a given query image based
on a set of visual features.

Example 1.2 draws attention to the importance of efficient top-k processing in similar-
ity queries. In video databases [Aref et al. 2004], hours of video data are stored inside
the database producing huge amounts of data. Top-k similarity queries are traditionally
answered using high-dimensional indexes built on individual video features, and a nearest-
neighbor scan operator on top of these indexes. A database system that supports approxi-
mate matching ranks objects depending on how well they match the query example. Fig-
ure 2 presents an example of single-feature similarity query based on color histogram, tex-
ture and edge orientation. More useful similarity queries could involve multiple features.
For example, suppose that a user is interested in the top 10 video frames most similar to
a given query image based on color and texture combined. User could provide a function
that combines similarity scores in both features into an overall similarity score. For exam-
ple, the global score of a frame f with respect to a query image q could be computed as:
0.5× ColorSimilarity(f, q) + 0.5× TextureSimilarity(f, q).

One way to answer such multi-feature query is by sequentially scanning all database
objects, computing the score of each object according to each feature, and combining the
scores into a total score for each object. This approach suffers from scalability problems
with respect to database size and the number of features. An alternative way is to map
the query into a join query that joins the output of multiple single-feature queries, and
then sorts the joined results based on combined score. This approach also does not scale
with respect to both number of features and database size since all join results have to be
computed then sorted.

The main problem with sort-based approaches is that sorting is a blocking operation that
requires full computation of the join results. Although the input to the join operation is
sorted on individual features, this order is not exploited by conventional join algorithms.
Hence, sorting the join results becomes necessary to produce the top-k answers. Embed-
ding rank-awareness in query processing techniques provides a more efficient and scalable
solution.

In this survey, we discuss the state-of-the-art top-k query processing techniques in re-
ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Ilyas et al.

Notation Description
m Number of sources (lists)
Li Ranked source (list) number i

t or o A tuple or object to be scored
g A group of tuples based on some grouping attributes
F Scoring (ranking) Function

F (t) or F (o) Score lower bound of t (or o)
F (t) or F (o) Score upper bound of t (or o)
pi(t) or pi(o) The value of scoring predicate pi applied to t (or o). Predicate pi determines objects order in Li

pmax
i The maximum score of predicate pi

pmin
i The minimum score of predicate pi

pi The score upper bound of predicate pi (mostly refers to the score of the last seen object in Li)
T Score threshold (cutoff value)
Ak The current top-k set
Mk The minimum score in the current top-k set

Table I. Frequently Used Notations

lational database systems. We give a detailed coverage for most of the recently presented
techniques focusing primarily on their integration into relational database environments.
We also introduce a taxonomy to classify top-k query processing techniques based on mul-
tiple design dimensions, described in the following:

—Query Model: Top-k processing techniques are classified according to the query model
they assume. Some techniques assume a selection query model, where scores are at-
tached directly to base tuples. Other techniques assume a join query model, where
scores are computed over join results. A third category assumes an aggregate query
model, where we are interested in ranking groups of tuples.

—Data Access Methods: Top-k processing techniques are classified according to the data
access methods they assume to be available in the underlying data sources. For example,
some techniques assume the availability of random access, while others are restricted to
only sorted access.

—Implementation Level: Top-k processing techniques are classified according to their
level of integration with database systems. For example, some techniques are imple-
mented in an application layer on top of the database system, while others are imple-
mented as query operators.

—Data and Query Uncertainty: Top-k processing techniques are classified based on the
uncertainty involved in their data and query models. Some techniques produce exact
answers, while others allow for approximate answers, or deal with uncertain data.

—Ranking Function: Top-k processing techniques are classified based on the restrictions
they impose on the underlying ranking (scoring) function. Most proposed techniques
assume monotone scoring functions. Few proposals address general functions.

Notations. The working environments, of most of the techniques we describe, assume a
scoring (ranking) function used to score objects (tuples) by aggregating the values of their
partial scores (scoring predicates). Table I lists the frequently used notations in this survey.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 5

Top-k Processing Techniques

Implementation LevelData AccessData & Query

Certainty

No Random Sorted + Controlled

Ranking FunctionQuery Model

Top-k

Selection
Top-k

Application LevelQuery Engine

No Random

Both Sorted and Random

Sorted + Controlled

Random Probes

Certain Data,

Exact Methods

Monotone

Generic

Unspecified

Uncertain Data

Selection

Top-k Join

Aggregate

Certain Data,

Approximate Methods

Filter-RestartIndexes / Materialized Views

Fig. 3. Classification of Top-k Query Processing Techniques

Outline. The remainder of this survey is organized as follows. Section 2 introduces
the taxonomy we adopt in this survey to classify top-k query processing methods. Sec-
tions 3, 4, 5 and 6 discuss the different design dimensions of top-k processing techniques,
and give the details of multiple techniques in each dimension. Section 7 discusses related
top-k processing techniques for XML data. Section 8 presents related background from
voting theory, which forms the basis of many current top-k processing techniques. Sec-
tion 9 concludes this survey, and describes future research directions.

We assume the reader of this survey has a general familiarity with relational database
concepts.

2. TAXONOMY OF TOP-K QUERY PROCESSING TECHNIQUES

Supporting efficient top-k processing in database systems is a relatively recent and active
line of research. Top-k processing has been addressed from different perspectives in the
current literature. Figure 3 depicts the classification we adopt in this survey to categorize
different top-k processing techniques based on their capabilities and assumptions. In the
following sections, we discuss our classification dimensions, and their impact on the design
of the underlying top-k processing techniques. For each dimension, we give a detailed
description for one or more example techniques.

2.1 Query Model Dimension

Current top-k processing techniques adopt different query models to specify the data ob-
jects to be scored. We discuss three different models: (1) top-k selection query, (2) top-k
join query, and (3) top-k aggregate query. We formally define these query models in the
following.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Ilyas et al.

2.1.1 Top-k Selection Query Model. In this model, the scores are assumed to be at-
tached to base tuples. A top-k selection query is required to report the k tuples with the
highest scores. Scores might not be readily available since they could be the outcome
of some user-defined scoring function that aggregates information coming from different
tuple attributes.

Definition 2.1. Top-k Selection Query. Consider a relation R, where each tuple in R
has n attributes. Consider m scoring predicates, p1 . . . pm defined on these attributes. Let
F (t) = F (p1(t), . . . , pm(t)) be the overall score of tuple t ∈ R. A top-k selection query
selects the k tuples in R with the largest F values.

A SQL template for top-k selection query is the following:
SELECT some attributes
FROM R

WHERE selection condition
ORDER BY F (p1, . . . , pm)

LIMIT k 1

Consider Example 1.2. Assume the user is interested in finding the top-10 video objects
that are most similar to a given query image q, based on color and texture, and whose
release date is after 1/1/2008. This query could be written as follows:

SELECT v.id
FROM V ideoObject v

WHERE v.date > ’01/01/2008’
ORDER BY 0.5 ∗ ColorSimilarity(q, v) + 0.5 ∗ TextureSimilarity(q, v)

LIMIT 10

The NRA algorithm [Fagin et al. 2001] is one example of top-k techniques that adopt the
top-k selection model. The input to the NRA algorithm is a set of sorted lists, each ranks
the “same” set of objects based on different attributes. The output is a ranked list of these
objects ordered on the aggregate input scores. We give the full details of this algorithm in
Section 3.2.

2.1.2 Top-k Join Query Model. In this model, scores are assumed to be attached to join
results rather than base tuples. A top-k join query joins a set of relations based on some
arbitrary join condition, assigns scores to join results based on some scoring function, and
reports the top-k join results.

Definition 2.2. Top-k Join Query. Consider a set of relations R1 . . . Rn. A top-k join
query joins R1 . . . Rn, and returns the k join results with the largest combined scores. The
combined score of each join result is computed according to some function F (p1, . . . , pm),
where p1, . . . , pm are scoring predicates defined over the join results.

A possible SQL template for a top-k join query is:
SELECT *
FROM R1, . . . , Rn

WHERE join condition(R1, . . . , Rn)

1Other keywords, e.g., Stop After k, are also used in other SQL dialects.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 7

ORDER BY F (p1, . . . , pm)

LIMIT k

For example, the top-k join query in Example 1.1 could be formulated as follows:
SELECT h.id, s.id
FROM House h, School s

WHERE h.location=s.location
ORDER BY h.price + 10 ∗ s.tuition

LIMIT 5

A top-k selection query can be formulated as a special top-k join query by partitioning R
into n vertical relations R1, . . . , Rn, such that each relation Ri has the necessary attributes
to compute the score pi. For example, Let R contains the attributes tid, A1, A2, and A3.
Then, R can be partitioned into R1 = (tid,A1) and R2 = (tid,A2, A3), where p1 = A1

and p2 = A2+A3. In this case, the join condition is an equality condition on key attributes.
The NRA-RJ algorithm [Ilyas et al. 2002] is one example of top-k processing techniques
that formulate top-k selection queries as top-k join queries based on tuples’ keys.

Many top-k join techniques address the interaction between computing the join results
and producing the top-k answers. Examples are the J* algorithm [Natsev et al. 2001] (Sec-
tion 3.2), and the Rank-Join algorithm [Ilyas et al. 2004] (Section 4.2). Some techniques,
e.g., PREFER [Hristidis et al. 2001] (Section 4.1.2), process top-k join queries using aux-
iliary structures that materialize join results, or by ranking the join results after they are
generated.

2.1.3 Top-k Aggregate Query Model. In this model, scores are computed for tuple
groups, rather than individual tuples. A top-k aggregate query reports the k groups with
the largest scores. Group scores are computed using a group aggregate function such as
sum.

Definition 2.3. Top-k Aggregate Query. Consider a set of grouping attributes
G={g1, . . . , gr}, and an aggregate function F that is evaluated on each group. A top-k
aggregate query returns the k groups, based on G, with the highest F values.

A SQL formulation for a top-k aggregate query is :
SELECT g1, . . . , gr, F

FROM R1, . . . , Rn

WHERE join condition(R1, . . . , Rn)
GROUP BY g1, . . . , gr

ORDER BY F

LIMIT k

An example top-k aggregate query is to find the best five areas to advertise student
insurance product, based on the score of each area, which is a function of student’s income,
age and credit.

SELECT S.zipcode,Average(income*w1 + age*w2 + credit*w3) as score
FROM customer
WHERE occupation = ’student’
GROUP BY zipcode

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Ilyas et al.

ORDER BY score
LIMIT 5

Top-k aggregate queries add additional challenges to top-k join queries: (1) interac-
tion of grouping, joining, and scoring of query results, and (2) non-trivial estimation of
the scores of candidate top-k groups. A few recent techniques, e.g., [Li et al. 2006], ad-
dress these challenges to efficiently compute top-k aggregate queries. We discuss these
techniques in Section 4.2.

2.2 Data Access Dimension

Many top-k processing techniques involve accessing multiple data sources with different
valuations of the underlying data objects. A typical example is a meta-searcher that aggre-
gates the rankings of search hits produced by different search engines. The hits produced
by each search engine can be seen as a ranked list of web pages based on some score, e.g.,
relevance to query keywords. The manner in which these lists are accessed largely affects
the design of the underlying top-k processing techniques. For example, ranked lists could
be scanned sequentially in score order. We refer to this access method as sorted access.
Sorted access is supported by a DBMS if, for example, a B-Tree index is built on objects’
scores. In this case, scanning the sequence set (leaf level) of the B-Tree index provides a
sorted access of objects based on their scores. On the other hand, the score of some object
might be required directly without traversing the objects with higher/smaller scores. We
refer to this access method as random access. Random access could be provided through
index lookup operations if an index is built on object keys.

We classify top-k processing techniques, based on the assumptions they make about
available data access methods in the underlying data sources, as follows:

—Both Sorted and Random Access: In this category, top-k processing techniques assume
the availability of both sorted and random access in all the underlying data sources.
Examples are TA [Fagin et al. 2001], and the Quick-Combine algorithm [Güntzer et al.
2000]. We discuss the details of these techniques in Section 3.1.

—No Random Access: In this category, top-k processing techniques assume the underlying
sources provide only sorted access to data objects based on their scores. Examples are
the NRA algorithm [Fagin et al. 2001], and the Stream-Combine algorithm [Güntzer
et al. 2001]. We discuss the details of these techniques in Section 3.2.

—Sorted Access with Controlled Random Probes: In this category, top-k processing tech-
niques assume the availability of at least one sorted access source. Random accesses are
used in a controlled manner to reveal the overall scores of candidate answers. Examples
are the Rank-Join algorithm [Ilyas et al. 2004], the MPro algorithm [Chang and Hwang
2002], and the Upper and Pick algorithms [Bruno et al. 2002]. We discuss the details of
these techniques in Section 3.3.

2.3 Implementation Level Dimension

Integrating top-k processing with database systems is addressed in different ways by cur-
rent techniques. One approach is to embed top-k processing in an outer layer on-top of
the database engine. This approach allows for easy extensibility of top-k techniques, since
they are decoupled from query engines. The capabilities of database engines (e.g., stor-
age, indexing and query processing) are leveraged to allow for efficient top-k processing.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 9

New data access methods or specialized data structures could also be built to support top-k
processing. However, the core of query engines remains unchanged.

Another approach is to modify the core of query engines to recognize the ranking re-
quirements of top-k queries during query planning and execution. This approach has
a direct impact on query processing and optimization. Specifically, query operators are
modified to be rank-aware. For example, a join operator is required to produce ranked join
results to support pipelining top-k query answers. Moreover, available access methods for
ranking predicates are taken into account while optimizing a query plan.

We classify top-k processing techniques based on their level of integration with database
engines as follows:

—Application Level: This category includes top-k processing techniques that work outside
the database engine. Some of the techniques in this category rely on the support of
specialized top-k indexes or materialized views. However, the main top-k processing
remains outside the engine. Examples are [Chang et al. 2000], and [Hristidis et al. 2001].
Another group of techniques formulate top-k queries as range queries that are repeatedly
executed until the top-k objects are obtained. We refer to this group of techniques as
Filter-Restart. One example is [Donjerkovic and Ramakrishnan 1999]. We discuss the
details of these techniques in Section 4.1.

—Query Engine Level: This category includes techniques that involve modifications to
the query engine to allow for rank-aware processing and optimization. Some of these
techniques introduce new query operators to support efficient top-k processing. For
example, [Ilyas et al. 2004] introduce rank-aware join operators. Other techniques, e.g.,
[Li et al. 2005; Li et al. 2006], extend rank-awareness to query algebra to allow for
extensive query optimization. We discuss the details of these techniques in Section 4.2.

2.4 Query and Data Uncertainty Dimension

In some query processing environments, e.g., decision support or OLAP, obtaining exact
query answers efficiently may be overwhelming to database engine because of the interac-
tive nature of such environments, and the sheer amounts of data they usually handle. Such
environments could sacrifice the accuracy of query answers in favor of performance. In
these settings, it may be acceptable for a top-k query to report approximate answers.

The uncertainty in top-k query answers might alternatively arise due to the nature of
the underlying data itself. Applications in domains such as sensor networks, data clean-
ing, and moving objects tracking involve processing data that is probabilistic in nature.
For example, the temperature reading of some sensor could be represented as a probabil-
ity distribution over a continuous interval, or a customer name in a dirty database could
be a represented as a set of possible names. In these settings, top-k queries, as well as
other query types, need to be formulated and processed while taking data uncertainty into
account.

We classify top-k processing techniques based on query and data certainty as follows:

—Exact Methods over Certain Data: This category includes the majority of current top-k
processing techniques, where deterministic top-k queries are processed over determin-
istic data.

—Approximate Methods over Certain Data: This category includes top-k processing tech-
niques that operate on deterministic data, but report approximate answers in favor of

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Ilyas et al.

performance. The approximate answers are usually associated with probabilistic guar-
antees indicating how far they are from the exact answer. Examples include [Theobald
et al. 2005] and [Amato et al. 2003]. We discuss the details of these techniques in Sec-
tion 5.1.

—Uncertain Data: This category includes top-k processing techniques that work on prob-
abilistic data. The research proposals in this category formulate top-k queries based on
different uncertainty models. Some approaches treat probabilities as the only scoring
dimension, where a top-k query is a Boolean query that reports the k most probable
query answers. Other approaches study the interplay between the scoring and probabil-
ity dimensions. Examples are [Ré et al. 2007] and [Soliman et al. 2007]. We discuss
the details of these techniques in Section 5.2.

2.5 Ranking Function Dimension

The properties of the ranking function largely influence the design of top-k processing
techniques. One important property is the ability to upper bound objects’ scores. This
property allows early pruning of certain objects without exactly knowing their scores. A
monotone ranking function can largely facilitate upper bound computation. A function F ,
defined on predicates p1, . . . , pn, is monotone if F (p1, . . . , pn) ≤ F (ṕ1, . . . , ṕn) when-
ever pi ≤ ṕi for every i. We elaborate on the impact of function monotonicity on top-k
processing in Section 6.1.

In more complex applications, a ranking function might need to be expressed as a nu-
meric expression to be optimized. In this setting, the monotonicity restriction of the rank-
ing function is relaxed to allow for more generic functions. Numerical optimization tools
as well as indexes are used to overcome the processing challenges imposed by such ranking
functions.

Another group of applications address ranking objects without specifying a ranking
function. In some environments, such as data exploration or decision making, it might
not be important to rank objects based on a specific ranking function. Instead, objects
with high quality based on different data attributes need to be reported for further analy-
sis. These objects could possibly be among the top-k objects of some unspecified ranking
function. The set of objects that are not dominated by any other objects, based on some
given attributes, are usually referred to as the skyline.

We classify top-k processing techniques based on the restrictions they impose on the
underlying ranking function as follows:

—Monotone Ranking Function: Most of the current top-k processing techniques assume
monotone ranking functions since they fit in many practical scenarios, and have ap-
pealing properties allowing for efficient top-k processing. One example is [Fagin et al.
2001]. We discuss the properties of monotone ranking functions in Section 6.1.

—Generic Ranking Function: Few recent techniques, e.g., [Zhang et al. 2006], address
top-k queries in the context of constrained function optimization. The ranking function
in this case is allowed to take a generic form. We discuss the details of these techniques
in Section 6.2.

—No Ranking Function: Many techniques have been proposed to answer skyline related
queries, e.g., [Börzsönyi et al. 2001] and [Yuan et al. 2005]. Covering current skyline
literature in details is out of the scope of this survey. We believe it worths a dedicated

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 11

survey by itself. However, we briefly show the connection between skyline and top-k
queries in Section 6.3.

2.6 Impact of Design Dimensions on Top-k Processing Techniques

Figure 4 shows the properties of a sample of different top-k processing techniques that
we describe in this survey. The applicable categories under each taxonomy dimension are
marked for each technique. For example, TA [Fagin et al. 2001] is an exact method that
assumes top-k selection query model, and operates on certain data, exploiting both sorted
and random access methods. TA integrates with database systems at the application level,
and supports monotone ranking functions.

Our taxonomy encapsulates different perspectives to understand the processing require-
ments of current top-k processing techniques. The taxonomy dimensions, discussed in the
previous sections, can be viewed as design dimensions that impact the capabilities and the
assumptions of the underlying top-k algorithms. In the following, we give some examples
of the impact of each design dimension on the underlying top-k processing techniques:

—Impact of Query Model: The query model significantly affects the solution space of
the top-k algorithms. For example, the top-k join query model (Definition 2.2) imposes
tight integration with the query engine and physical join operators to efficiently navigate
the Cartesian space of join results.

—Impact of Data Access: Available access methods affect how different algorithms com-
pute bounds on object scores and hence affect the termination condition. For example,
the NRA algorithm [Fagin et al. 2001], discussed in Section 3.2, has to compute “range”
of possible scores for each object since the lack of random access prevents comput-
ing an exact score for each seen object. On the other hand, allowing random access to
the underlying data sources triggers the need for cost models to optimize the number
of random and sorted accesses. One example is the CA algorithm [Fagin et al. 2001],
discussed in Section 3.1.

—Impact of Data and Query Uncertainty: Supporting approximate query answers re-
quires building probabilistic models to fit the score distributions of the underlying data,
as proposed in [Theobald et al. 2004] (Section 5.1.2). Uncertainty in the underlying data
adds further significant computational complexity because of the huge space of possible
answers that needs to be explored. Building efficient search algorithms to explore such
space is crucial, as addressed in [Soliman et al. 2007].

—Impact of Implementation Level: The implementation level greatly affects the require-
ments of the top-k algorithm. For example, implementing top-k pipelined query oper-
ator necessitates using algorithms that require no random access to their inputs to fit in
pipelined query models, it also requires the output of the top-k algorithm to be a valid
input to another instance of the algorithm [Ilyas et al. 2004]. On the other hand, imple-
mentation on the application level does not have these requirements. More details are
given in Section 4.2.1.

—Impact of Ranking Function: Assuming monotone ranking functions allows top-k pro-
cessing techniques to benefit from the monotonicity property to guarantee early-out
of query answers. Dealing with non-monotone functions requires more sophisticated
bounding for the scores of unexplored answers. Existing indexes in the database are
currently used to provide such bounding, as addressed in [Xin et al. 2007] (Section 6).

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Ilyas et al.

T
o
p

-k
 S

electio
n

T
o
p

-k
 Jo

in

T
o
p
-k

 A
g
g
reg

ate

C
ertain

 D
ata,

E
x
act M

eth
o
d
s

C
ertain

 D
ata, A

p
p
ro

x
.

M
eth

o
d
s

U
n

certain
 D

ata

N
o
 R

an
d
o
m

B
o
th

 S
o

rted
 an

d
 R

an
d
o

m

S
o
rted

 +
 C

o
n
tro

lled
 R

an
d
o
m

P
ro

b
es

Q
u
ery

 E
n
g
in

e L
ev

el

A
p
p
licatio

n
 L

ev
el

M
o

n
o

to
n

e

G
en

eric

TA (Fagin et al. 2001),

Quick-Combine (Güntzer et al. 2000)

TA- approx (Fagin et al. 2003)

NRA (Fagin et al. 2001),

Stream-Combine(Güntzer et al. 2001)

CA (Fgain et al. 2001)

Upper/Pick (Bruno et al. 2002)

Mpro (Chang et al. 2002)

J* (Natsev et al. 2001)

J* e-approx. (Natsev et al. 2001)

PREFER (Hristidis et al. 2001),

Filter-Restart (Bruno et al. 2002),

Onion Indices (Chang et al. 2000),

LPTA(Das et al. 2006)

NRA-RJ (Ilyas et al. 2002)

Rank-Join (Ilyas et al. 2003)

RankSQL - operator (Li 2005)

rankaggr Operator (Li 2006)

TopX (Theobald et al. 2005)

KLEE (Michel et al. 2005)

OPT* (Zhang et al. 2006)

OPTU-Topk (Soliman et al. 2007)

MS_Topk (Ré et al. 2007)

Query Model

N/A

Data & Query

Certainty

Implement.

Level

Ranking

Function
Data Access

N/A

N/A

Fig. 4. Properties of Different top-k Processing Techniques

3. DATA ACCESS

In this section, we discuss top-k processing techniques that make different assumptions
about available access methods supported by data sources. The primary data access meth-
ods are sorted access, random access, and a combination of both methods. In sorted access,
objects are accessed sequentially ordered by some scoring predicate, while for random ac-
cess, objects are directly accessed by their identifiers.

The techniques presented in this section assume multiple lists (possibly located at sep-
arate sources) that rank the same set of objects based on different scoring predicates. A
score aggregation function is used to aggregate partial objects’ scores, obtained from the
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 13

Algorithm 1 TA [Fagin et al. 2001]
(1) Do sorted access in parallel to each of the m sorted lists Li. As a new object o is seen

under sorted access in some list, do random access to the other lists to find pi(o) in
every other list Li. Compute the score F (o) = F (p1, . . . , pm) of object o. If this score
is among the k highest scores seen so far, then remember object o and its score F (o)
(ties are broken arbitrarily, so that only k objects and their scores are remembered at
any time).

(2) For each list Li, let pi be the score of the last object seen under sorted access. Define
the threshold value T to be F (p1, . . . , pm). As soon as at least k objects have been
seen with scores at least equal to T , halt.

(3) Let Ak be a set containing the k seen objects with the highest scores. The output is
the sorted set {(o, F (o))|o ∈ Ak}.

different lists, to find the top-k answers.
The cost of executing a top-k query, in such environments, is largely influenced by the

supported data access methods. For example, random access is generally more expensive
than sorted access. A common assumption in all of the techniques discussed in this section
is the existence of at least one source that supports sorted access. We categorize top-k pro-
cessing techniques, according to the assumed source capabilities, into the three categories
described in the next sections.

3.1 Both Sorted and Random Access

Top-k processing techniques in this category assume data sources that support both access
methods, sorted and random. Random access allows for obtaining the overall score of
some object right after it appears in one of the data sources. The Threshold Algorithm (TA)
and Combined Algorithm (CA) [Fagin et al. 2001] belong to this category.

Algorithm 1 describes the details of TA. The algorithm scans multiple lists, representing
different rankings of the same set of objects. An upper bound T is maintained for the
overall score of unseen objects. The upper bound is computed by applying the scoring
function to the partial scores of the last seen objects in different lists. Notice that the last
seen objects in different lists could be different. The upper bound is updated every time a
new object appears in one of the lists. The overall score of some seen object is computed
by applying the scoring function to object’s partial scores, obtained from different lists. To
obtain such partial scores, each newly seen object in one of the lists is looked up in all
other lists, and its scores are aggregated using the scoring function to obtain the overall
score. All objects with total scores that are greater than or equal to T can be reported. The
algorithm terminates after returning the kth output. Example 3.1 illustrates the processing
of TA.

EXAMPLE 3.1. TA Example: Consider two data sources L1 and L2 holding different
rankings for the same set of objects based on two different scoring predicates p1 and p2,
respectively. Each of p1 and p2 produces score values in the range [0,50]. Assume each
source supports sorted and random access to their ranked lists. Consider a score aggre-
gation function F = p1 + p2. Figure 5 depicts the first two steps of TA. In the first step,
retrieving the top object from each list, and probing the value of its other scoring predicate
in the other list, result in revealing the exact scores for the top objects. The seen objects

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Ilyas et al.

OID

3

2

1

4

5

P2

50

40

30

20

10

P1

50

35

30

20

10

OID

5

1

3

2

4

Buffer

3: (80)

5: (60)

3: (80)

1: (65)

5: (60)

2: (60)

T = 75

3: (80)

5: (60)

3: (80)

5: (60)

T = 100

OID

3

2

1

4

5

P2

50

40

30

20

10

P1

50

35

30

20

10

OID

5

1

3

2

4

L1
L2

First Step

Second Step

Fig. 5. The Threshold Algorithm (TA)

are buffered in the order of their scores. A threshold value, T , for the scores of unseen
objects is computed by applying F to the last seen scores in both lists, which results in
50+50=100. Since both seen objects have scores less than T , no results can be reported.
In the second step, T drops to 75, and object 3 can be safely reported since its score is
above T . The algorithm continues until k objects are reported, or sources are exhausted.

TA assumes that the costs of different access methods are the same. In addition, TA does
not have a restriction on the number of random accesses to be performed. Every sorted
access in TA results in up to m-1 random accesses, where m is the number of lists. Such a
large number of random accesses might be very expensive. The CA algorithm [Fagin et al.
2001] alternatively assumes that the costs of different access methods are different. The
CA algorithm defines a ratio between the costs of the two access methods to control the
number of random accesses, since they usually have higher costs than sorted accesses.

The CA algorithm periodically performs random accesses to collect unknown partial
scores for objects with the highest score lower bounds (ties are broken using score upper
bounds). A score lower bound is computed by applying the scoring function to object’s
known partial scores, and the worst possible unknown partial scores. On the other hand, a
score upper bound is computed by applying the scoring function to object’s known partial
scores, and the best possible unknown partial scores. The worst unknown partial scores
are the lowest values in the score range, while the best unknown partial scores are the last
seen scores in different lists. One random access is performed periodically every ∆ sorted
accesses, where ∆ is the floor of the ratio between random access cost and sorted access
cost.

Although CA minimizes the number of random accesses compared to TA, it assumes
that all sources support random access at the same cost, which may not be true in practice.
This problem is addressed in [Bruno et al. 2002; Marian et al. 2004], and we discuss it in
more detail in Section 3.3.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 15

In TA, tuples are retrieved from sorted lists in a round-robin style. For instance,
if there are m sorted access sources, tuples are retrieved from sources in this order:
(L1, L2, . . . , Lm, L1, . . .). Two observations can possibly minimize the number of re-
trieved tuples. First, sources with rapidly decreasing scores can help decrease the upper
bound of unseen objects’ scores (T) at a faster rate. Second, favoring sources with con-
siderable influence on the overall scores could lead to identifying the top answers quickly.
Based on these two observations, a variation of TA, named Quick-Combine, is introduced
in [Güntzer et al. 2000]. The Quick-Combine algorithm uses an indicator ∆i expressing
the effectiveness of reading from source i, defined as follows:

∆i =
∂F

∂pi
· (Si(di − c)− Si(di)) (1)

where Si(x) refers to the score of the tuple at depth x in source i, and di is the current
depth reached at source i. The rate at which score decays in source i is computed as the
difference between its last seen score Si(di), and the score of the tuple c steps above in
the ranked list, Si(di − c). The influence of source i on the scoring function F is captured
using the partial derivative of F with respect to source’s predicate pi. The source with the
maximum ∆i is selected, at each step, to get the next object. It has been shown that the
proposed algorithm is particularly efficient when the data exhibits tangible skewness.

3.2 No Random Access

The techniques we discuss in this section assume random access is not supported by the
underlying sources. The No Random Access (NRA) algorithm [Fagin et al. 2001] and the
Stream-Combine algorithm [Güntzer et al. 2001] are two examples of the techniques that
belong to this category.

The NRA algorithm finds the top-k answers by exploiting only sorted accesses. The
NRA algorithm may not report the exact object scores, as it produces the top-k answers
using bounds computed over their exact scores. The score lower bound of some object t is
obtained by applying the score aggregation function on t’s known scores and the minimum
possible values of t’s unknown scores. On the other hand, the score upper bound of t is
obtained by applying the score aggregation function on t’s known scores and the maximum
possible values of t’s unknown scores, which are the same as the last seen scores in the
corresponding ranked lists. This allows the algorithm to report a top-k object even if its
score is not precisely known. Specifically, if the score lower bound of an object t is not
below the score upper bounds of all other objects (including unseen objects), then t can
be safely reported as the next top-k object. The details of the NRA algorithm are given in
Algorithm 2.

Example 3.2 illustrates the processing of the NRA algorithm.

EXAMPLE 3.2. NRA Example: Consider two data sources L1 and L2, where each
source holds a different ranking of the same set of objects based on scoring predicates p1

and p2, respectively. Both p1 and p2 produce score values in the range [0,50]. Assume
both sources support only sorted access to their ranked lists. Consider a score aggregation
function F = p1 + p2. Figure 6 depicts the first three steps of the NRA algorithm. In the
first step, retrieving the first object in each list gives lower and upper bounds for objects’
scores. For example, object 5 has a score range of [50,100], since the value of its known
scoring predicate p1 is 50, while the value of its unknown scoring predicate p2 cannot

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Ilyas et al.

Algorithm 2 NRA [Fagin et al. 2001]
(1) Let pmin

1 , . . . , pmin
m be the smallest possible values in lists L1, . . . , Lm.

(2) Do sorted access in parallel to lists L1, . . . , Lm, and at each step do the following:
—Maintain the last seen predicate values p1, . . . , pm in the m lists.
—For every object o with some unknown predicate values, compute a lower bound for

F (o), denoted F (o), by substituting each unknown predicate pi with pmin
i . Sim-

ilarly, Compute an upper bound F (o) by substituting each unknown predicate pi

with pi. For object o that has not been seen at all, F (o) = F (pmin
1 , . . . , pmin

m), and
F (o) = F (p1, . . . , pm).

—Let Ak be the set of k objects with the largest lower bound values F (.) seen so far.
If two objects have the same lower bound, then ties are broken using their upper
bounds F (.), and arbitrarily among objects that additionally tie in F (.).

—Let Mk be the kth largest F (.) value in Ak.
(3) Call an object o viable if F (o) > Mk. Halt when (a) at least k distinct objects have

been seen, and (b) there are no viable objects outside Ak. That is, if F (o) ≤ Mk for
all o 6∈ Ak, return Ak.

exceed 50. An upper bound for the scores of unseen objects is computed as 50+50=100,
which is the result of applying F to the last seen scores in both sorted lists. The seen objects
are buffered in the order of their score lower bounds. Since the score lower bound of object
5, the top buffered object, does not exceed the score upper bound of other objects, nothing
can be reported. The second step adds two more objects to the buffer, and updates the
score bounds of other buffered objects. In the third step, the scores of objects 1 and 3 are
completely known. However, since the score lower bound of object 3 is not below the score
upper bound of any other object (including the unseen ones), object 3 can be reported as
the top-1 object. Note that at this step object 1 cannot be additionally reported, since the
score upper bound of object 5 is 80, which is larger than the score lower bound of object
1.

The Stream-Combine algorithm [Güntzer et al. 2001] is based on the same general idea
of the NRA algorithm. The Stream-Combine algorithm prioritizes reading from sorted
lists to give more chance to the lists that might lead to the earliest termination. To choose
which sorted list (stream) to access next, an effectiveness indicator ∆i is computed for
each stream i, similar to the Quick-Combine algorithm. The definition of ∆i in this case
captures three properties of stream i, that may lead to early termination: (1) how rapidly
scores decrease in stream i, (2) what is the influence of stream i on the total aggregated
score, and (3) how many top-k objects would have their score bounds tightened by reading
from stream i. The indicator ∆i is defined as follows:

∆i = #Mi · ∂F

∂pi
· (Si(di − c)− Si(di)) (2)

where Si(x) refers to the score of the tuple at depth x in stream i, and di is the current
depth reached at stream i.

The term (Si(di−c)−Si(di)) captures the rate of score decay in stream i, while the term
∂F
∂pi

captures how much the stream’s scoring predicate contributes to the total score, similar

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 17

P1

50

40

30

20

10

OID

5

1

3

2

4

Buffer

5: (50 – 100)

3: (50 – 100)

OID

3

2

1

4

5

P2

50

40

30

20

10

P1

50

40

30

20

10

OID

5

1

3

2

4

5: (50 – 90)

3: (50 – 90)

1: (40 – 80)

2: (40 – 80)

OID

3

2

1

4

5

P2

50

40

30

20

10

P1

50

40

30

20

10

OID

5

1

3

2

4

OID

3

2

1

4

5

P2

50

40

30

20

10

3: (80 – 80)

1: (70 – 70)

5: (50 – 80)

2: (40 – 70)

First Step

Second Step

Third Step

L2L1

Fig. 6. The Three First Steps of the NRA Algorithm

to the Quick-Combine algorithm. The term #Mi is the number of top-k objects whose
score bounds may be affected when reading from stream i, by reducing their score upper
bounds, or knowing their precise scores. The stream with the maximum ∆i is selected, at
each step, to get the next object.

The NRA algorithm has been also studied in [Mamoulis et al. 2006] under various appli-
cation requirements. The presented techniques rely on the observation that at some stage
during NRA processing, it is not useful to keep track of up-to-date score upper bounds.
Instead, the updates to these upper bounds can be deferred to a later step, or can be re-
duced to a much more compact set of necessary updates for more efficient computation.
An NRA variant, called LARA, has been introduced based on a lattice structure that keeps
a leader object for each subset of the ranked inputs. These leader objects provide score
upper bounds for objects that have not been seen yet on their corresponding inputs. The
top-k processing algorithm proceeds in two successive phases:

—A growing phase: Ranked inputs are sequentially scanned to compose a candidate set.
The seen objects in different inputs are added to the candidate set. A set Wk, containing
the k objects with highest score lower bounds, is remembered at each step. The can-
didate set construction is complete when the threshold value (the score upper bound of
any unseen object) is below the minimum score of Wk. At this point, we are sure that
the top-k query answer belongs to the candidate set.

—A shrinking phase: Materialized top-k candidates are pruned gradually, by computing
their score upper bounds, until the final top-k answer is obtained.

Score upper bound computation makes use of the lattice to minimize the number of re-
quired accesses to the ranked inputs by eliminating the need to access some inputs once

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Ilyas et al.

they become useless for future operations. Different adaptation of LARA in various set-
tings have been proposed including providing answers online or incrementally, processing
rank join queries, and working with different rank aggregation functions.

Another example of no random access top-k algorithms is the J* algorithm [Natsev et al.
2001]. The J* algorithm adopts a top-k join query model (Section 2.1), where the top-k
join results are computed by joining multiple ranked inputs based on a join condition, and
scoring the outcome join results based on a monotone score aggregation function. The J*
algorithm is based on the A∗ search algorithm. The idea is to maintain a priority queue of
partial and complete join combinations, ordered on the upper bounds of their total scores.
At each step, the algorithm tries to complete the join combination at queue top by selecting
the next input stream to join with the partial join result, and retrieving the next object from
that stream. The algorithm reports the next top join result as soon as the join result at queue
top includes an object from each ranked input.

For each input stream, a variable is defined whose possible assignments are the set of
stream objects. A state is defined as a set of variable assignments, and a state is com-
plete if it instantiates all variables. The problem of finding a valid join combination with
maximum score reduces to finding an assignment for all the variables, based on join con-
dition, that maximizes the overall score. The score of a state is computed by exploiting
the monotonicity of the score aggregation function. That is, the scores of complete states
are computed by aggregating the scores of their instantiated variables, while the scores of
incomplete states are computed by aggregating the scores of their instantiated variables,
and the score upper bounds of their non-instantiated variables. The score upper bounds
of non-instantiated variables are equal to the last seen scores in the corresponding ranked
inputs.

3.3 Sorted Access with Controlled Random Probes

Top-k processing methods in this category assume that at least one source provides sorted
access, while random accesses are scheduled to be performed only when needed. The
Upper and Pick algorithms [Bruno et al. 2002; Marian et al. 2004] are examples of these
methods.

The Upper and Pick algorithms are proposed in the context of web-accessible sources.
Such sources usually have large variation in the allowed access methods, and their costs.
Upper and Pick assume that each source can provide a sorted and/or random access to
its ranked input, and that at least one source supports sorted access. The main purpose
of having at least one sorted-access source is to obtain an initial set of candidate objects.
Random accesses are controlled by selecting the best candidates, based on score upper
bounds, to complete their scores.

Three different types of sources are defined based on the supported access method: (1)
S-Source that provides sorted access, (2) R-Source that provides random access, and (3)
SR-Source that provides both access methods. The initial candidate set is obtained using
at least one S-Source. Other R-Sources are probed to get the required partial scores as
required.

The Upper algorithm, as illustrated by Algorithm 3, probes objects that have consider-
able chances to be among the top-k objects. In Algorithm 3, it is assumed that objects’
scores are normalized in the range [0,1]. Candidate objects are retrieved first from sorted
sources, and inserted into a priority queue based on their score upper bounds. The upper
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 19

Algorithm 3 Upper [Bruno et al. 2002]

1: Define Candidates as priority queue based on F (.)
2: T=1 {Score upper bound for all unseen tuples}
3: returned=0
4: while returned < k do
5: if Candidates 6= φ then
6: select from Candidates the object ttop with the maximum F (.)
7: else
8: ttop is undefined
9: end if

10: if ttop is undefined or F (ttop) < T then
11: Use a round-robin policy to choose the next sorted list Li to access.
12: t = Li.getNext()
13: if t is new object then
14: Add t to Candidates
15: else
16: Update F (t), and update Candidates accordingly
17: end if
18: T = F (p1, . . . , pm)
19: else if F (ttop) is completely known then
20: Report (ttop, F (ttop))
21: Remove ttop from Candidates
22: returned = returned +1
23: else
24: Li = SelectBestSource(ttop)
25: Update F (ttop) with the value of predicate pi via random probe to Li

26: end if
27: end while

bound of unseen objects is updated when new objects are retrieved from sorted sources. An
object is reported and removed from the queue when its exact score is higher than the score
upper bound of unseen objects. The algorithm repeatedly selects the best source to probe
next to obtain additional information for candidate objects. The selection is performed by
the SelectBestSource function. This function could have several implementations. For ex-
ample, the source to be probed next can be the one which contributes the most in decreasing
the uncertainty about the top candidates.

In the Pick algorithm, the next object to be probed is selected so that it minimizes a
distance function, which is defined as the sum of the differences between the upper and
lower bounds of all objects. The source to be probed next is selected at random from all
sources that need to be probed to complete the score of the selected object.

A related issue to controlling the number of random accesses is the potentially expensive
evaluation of ranking predicates. The full evaluation of user-defined ranking predicates is
not always tolerable. One reason is that user-defined ranking predicates are usually defined
only at at query time, limiting the chances of benefiting from pre-computations. Another
reason is that ranking predicates might access external autonomous sources. In these set-
tings, optimizing the number of times the ranking predicates are invoked is necessary for

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Ilyas et al.

efficient query processing.
These observations motivated the work of [Chang and Hwang 2002; Hwang and Chang

2007b] which introduced the concept of “necessary probes,” to indicate whether a predicate
probe is absolutely required or not. The proposed Minimal Probing (MPro) algorithm
adopts this concept to minimize the predicate evaluation cost. The authors considered
a top-k query with a scoring function F defined on a set of predicates p1 . . . pn. The
score upper bound of an object t, denoted F (t), is computed by aggregating the scores
produced by each of the evaluated predicates and assuming the maximum possible score for
unevaluated predicates. The aggregation is done using a monotonic function, for example,
weighted summation. Let probe(t, p) denote probing predicate p of object t. It has been
shown that probe(t, p) is necessary if t is among the current top-k objects based on the
score upper bounds. This observation has been exploited to construct probing schedules as
sequences of necessary predicate probes.

The MPro algorithm works in two phases. First, in the initialization phase, a priority
queue is initialized based on the score upper bounds of different objects. The algorithm
assumes the existence of at least one cheap predicate where sorted access is available. The
initial score upper bound of each object is computed by aggregating the scores of the cheap
predicates and the maximum scores of expensive predicates. Second, in the probing phase,
the object at queue top is removed, its next unevaluated predicate is probed, its score upper
bound is updated, and the object is reinserted back to the queue. If the score of the object
at queue top is already complete, the object is among the top-k answers and it is moved
to the output queue. Finding the optimal probing schedule for each object is shown to be
in NP-Hard complexity class. Optimal probing schedules are thus approximated using a
greedy heuristic defined using the benefit and cost of each predicate, which are computed
by sampling the ranked lists.

We illustrate the processing of MPro using the next example. Table II shows the scores
of one cheap predicate, p1, and two expensive predicates, p2 and p3 for a list of objects
{a, b, c, d, e}. Table III illustrates how MPro operates, based a scoring function F = p1 +
p2 + p3, to find the top-2 objects. We use the notation “object:score” to refer to the score
upper bound of the object.

The goal of the MPro algorithm is to minimize the cost of random access, while as-
suming the cost of sorted access is cheap. A generalized algorithm, named NC, has been
introduced in [Hwang and Chang 2007a] to include the cost of sorted access while schedul-
ing predicates probing. The algorithm maintains the current top-k objects based on their
scores upper bounds. At each step, the algorithm identifies the set of necessary probing
alternatives to determine the top-k objects. These alternatives are probing the unknown
predicates for the current top-k objects using either sorted or random access. The authors
proved that it is sufficient to consider the family of algorithms that perform sorted access
before random access in order to achieve the optimal scheduling. Additionally, to provide
practical scheduling of alternatives, the NC algorithm restricts the space of considered
schedules to those that only perform sorted accesses up to certain depth ∆, and follow a
fixed scheduleH for random accesses. The algorithm first attempts to perform a sorted ac-
cess. If there is no sorted access among the probing alternatives, or all sorted accesses are
beyond the depth ∆, a random access takes place based on the scheduleH. The parameters
∆ and H are estimated using sampling.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 21

Object p1 p2 p3 F = p1 + p2 + p3

a 0.9 1.0 0.5 2.4
b 0.6 0.4 0.4 1.4
c 0.4 0.7 0.9 2.0
d 0.3 0.3 0.5 1.1
e 0.2 0.4 0.2 0.8

Table II. Object Scores Based on Different Ranking Predicates

Step Action Priority Queue Output

1 Initialize [a : 2.9, b : 2.6, c : 2.4, d : 2.3, e : 2.2] {}
2 After probe(a, p2) [a : 2.9, b : 2.6, c : 2.4, d : 2.3, e : 2.2] {}
3 After probe(a, p3) [b : 2.6, a : 2.4, c : 2.4, d : 2.3, e : 2.2] {}
4 After probe(b, p2) [c : 2.4, d : 2.3, e : 2.2, b : 2.0] {a:2.4}
5 After probe(c, p2) [d : 2.3, e : 2.2, c : 2.1, b : 2.0] {a:2.4}
6 After probe(d, p2) [e : 2.2, c : 2.1, b : 2.0, d : 1.6] {a:2.4}
7 After probe(e, p2) [c : 2.1, b : 2.0, e : 1.6, d : 1.6] {a:2.4}
8 After probe(c, p3) [b : 2.0, e : 1.6, d : 1.6] {a:2.4,c:2.0}

Table III. Finding the Top-2 Objects in MPro

4. IMPLEMENTATION LEVEL

In this section, we discuss top-k processing methods based on the design choices they make
regarding integration with database systems. Some techniques are designed as application-
level solutions that work outside the database engine, while others involve low level modi-
fications to the query engine. We describe techniques belonging to these two categories in
the next sections.

4.1 Application Level

Top-k query processing techniques that are implemented at the application level, or mid-
dleware, provide a ranked retrieval of database objects, without major modification to the
underlying database system, particularly the query engine. We classify application level
top-k techniques into Filter-Restart methods, and Indexes/Materialized Views methods.

4.1.1 Filter-Restart. Filter-Restart techniques formulate top-k queries as range selec-
tion queries to limit the number of retrieved objects. That is, a top-k query that ranks
objects based on a scoring function F , defined on a set of scoring predicates p1, . . . , pm,
is formulated as a range query of the form “find objects with p1 > T1 and . . . and pm >
Tm”, where Ti is an estimated cutoff threshold for predicate pi. Using a range query aims
at limiting the retrieved set of objects to the necessary objects to answer the top-k query.
The retrieved objects have to be ranked based on F to find the top-k answers.

Incorrect estimation of cutoff threshold yields one of two possibilities: (1) if the cutoff
is over-estimated, the retrieved objects may not be sufficient to answer the top-k query and
the range query has to be restarted with looser thresholds, or (2) if the cutoff is under-
estimated, the number of retrieved objects will be more than necessary to answer the top-k
query. In both cases, the performance of query processing degrades.

One proposed method to estimate the cutoff threshold is using the available statistics
such as histograms [Bruno et al. 2002], where the scoring function is taken as the distance
between database objects and a given query point q. Multidimensional histograms on ob-

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Ilyas et al.

Fig. 7. An Example of Restarts and NoRestarts Strategies in Filter-Restart Approach [Bruno et al. 2002]

jects’ attributes (dimensions) are used to identify the cutoff distance from q to the potential
top-k set. Two extreme strategies can be used to select such cutoff distance. The first
strategy, named the restarts strategy, is to select the search distance as tight as possible to
just enclose the potential top-k objects. Such a strategy might retrieve less objects than the
required number (k), necessitating restarting the search with a larger distance. The second
strategy, named the no-restarts strategy, is to choose the search distance large enough to
include all potential top-k objects. However, this strategy may end up retrieving a large
number of unnecessary objects.

We illustrate the two strategies using Figure 7, where it is required to find the 10 closest
objects to q. The rectangular cells are 2-dimensional histogram bins annotated with the
number of data objects in each bin. The inner circle represents the restarts strategy where,
hopefully, exactly 10 objects will be retrieved; five objects from bin b3 , and five objects
from bin b2. This strategy will result in restarts if less than 10 objects are retrieved. On the
other hand, the no-restarts strategy uses the outer circle, which completely encloses bins
b2 and b3, and thus ensures that at least 20 objects will be retrieved. However, this strategy
will retrieve unnecessary objects.

To find the optimal search distance, query workload is used as a training set to deter-
mine the number of returned objects for different search distances and q locations. The
optimal search distance is approximated using an optimization algorithm running over all
the queries in the workload. The outcome of the optimization algorithm is a search dis-
tance that is expected to minimize the overall number of retrieved objects, and the number
of restarts.

A probabilistic approach to estimate cutoff threshold is proposed by [Donjerkovic and
Ramakrishnan 1999]. A top-k query based on an attribute X is mapped into a selec-
tion predicate σX>T , where T is the estimated cutoff threshold. A probabilistic model is
used to search for the selection predicate that would minimize the overall expected cost
of restarts. This is done by constructing a probability distribution over the cardinalities of
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 23

possible selection predicates in the form of (cardinality-value, probability) pairs, where the
cardinality-value represents the number of database tuples satisfying the predicate, and the
probability represents the degree of certainty in the correctness of the cardinality-value,
which reflects the potentially imperfect statistics on the underlying data.

The probability distribution is represented as a vector of equi-probable cardinality points
to avoid materializing the whole space. Every cardinality point is associated with a cost
estimate representing the initial query processing cost, and the cost of possible restart. The
goal is to find a query plan that minimizes the expected cost over all cardinality values.
To be consistent with the existing cardinality estimates, the cardinality distribution has an
average equal to the average cardinality obtained from existing histograms. The maintained
cardinality values are selected at equi-distant steps to the left and right of the average
cardinality, with a predetermined total number of points. The stepping distance, to the left
and right of average point, is estimated based on the worst case estimation error of the
histogram.

4.1.2 Using Indexes and Materialized Views. Another group of Application Level top-
k processing techniques use specialized indexes and materialized views to improve the
query response time at the expense of additional storage space. Top-k indexes usually
make use of special geometric properties of the scoring function to index the underlying
data objects. On the other hand, materialized views maintain information that is expensive
to gather online, e.g., a sorting for the underlying objects based on some scoring function,
to help compute top-k queries efficiently.

Specialized Top-k Indexes

One example of specialized top-k indexes is the Onion Indices [Chang et al. 2000]. As-
sume that tuples are represented as n–dimensional points where each dimension represents
the value of one scoring predicate. The convex hull of these points is defined as the bound-
ary of the smallest convex region that encloses them. The geometrical properties of the
convex hull guarantee that it includes the top-1 object (assuming a linear scoring function
defined on the dimensions). Onion Indices extend this observation by constructing lay-
ered convex hulls, shown in Figure 8, to index the underlying objects for efficient top-k
processing.

The Onion Indices return the top-1 object by searching the points of the outmost convex
hull. The next result (the top-2 object) is found by searching the remaining points of the
outmost convex hull, and the points belonging to the next layer. This procedure continues
until all of the top-k results are found. Although this indexing scheme provides perfor-
mance gain, it becomes inefficient when the top-k query involves additional constraints on
the required data, such as range predicates on attribute values. This is because the convex
hull structure will be different for each set of constraints. A proposed work-around is to
divide data objects into smaller clusters, index them, and merge these clusters into larger
ones progressively. The result is a hierarchical structure of clusters, each of which has its
own Onion Indices. A constrained query can probably be answered by indices of smaller
clusters in the hierarchy. The construction of Onion indices has an asymptotic complexity
of O(nd/2), where d is the number of dimensions and n is the number of data objects.

The idea of multi-layer indexing has been also adopted by [Xin et al. 2006] to provide
ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Ilyas et al.

p1

p2 Layer 1

Layer 2

Layer 3

Fig. 8. Convex Hulls in Two-dimensional Space

x1 p1

p2

x2
w2

p1

p2

t1

t2

t
3

order : t3,t1,t2

(a) (b)

w1

w 1
.x 1

+
w 2

.x 2

t

F
F

Fig. 9. Geometric Representation of Tuples and Scoring Function (a) projection of tuple t = (x1, x2) on scoring
function vector (w1, w2) (b) order based on obtained scores

robust indexing for top-k queries. Robustness is defined in terms of providing the best
possible performance in worst case scenario, which is fully scanning the first k layers to
find the top-k answers. The main idea is that if each object oi is pushed to the deepest
possible layer, its retrieval can be avoided if it is unnecessary. This is accomplished by
searching for the minimum rank of each object oi in all linear scoring functions. Such rank
represents the layer number, denoted l∗(oi), where object oi is pushed to. For n objects
having d scoring predicates, computing the exact layer numbers for all objects has a com-
plexity of O(nd log n), which is an overkill when n or d are large. Approximation is used
to reduce the computation cost. An approximate layer number, denoted l(oi), is computed
such that l(oi) ≤ l∗(oi), which ensures that no false positives are produced in the top-k
query answer. The complexity of the approximation algorithm is O(2dn(log n)r(d)−1),
where r(d) = dd

2e+ bd
2cdd

2e.

Ranked Join Indices [Tsaparas et al. 2003] is another top-k index structure, based on
the observation that the projection of a vector representing a tuple t on the normalized
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 25

Algorithm 4 Ranked Join Indices: GetDominatingSet [Tsaparas et al. 2003]
1: Define Q as a priority queue based on p2 values
2: Define Dk as the dominating set. Initially, set Dk = φ
3: Sort tuples in non-increasing order of p1 values.
4: for each tuple ti do
5: if |Q| < k then
6: Dk = Dk ∪ ti
7: insert (ti, p2(ti)) in Q
8: else if p2(ti) ≤ (minimum p2 value in Q) then
9: skip ti

10: else
11: Dk = Dk ∪ ti
12: insert (ti, p2(ti)) in Q
13: if |Q| > k then
14: delete the minimum element of Q
15: end if
16: end if
17: end for
18: Return Dk

scoring function vector −→F reveals t’s rank based on F . This observation applies to any
scoring function that is defined as a linear combination of the scoring predicates. For
example, Figure 9 shows a scoring function F = w1.p1 + w2.p2, where p1 and p2 are
scoring predicates, and w1 and w2 are their corresponding weights. In this case, we have−→
F = (w1, w2). Without loss of generality, assume that ‖−→F ‖ = 1. We can obtain the score
of t = (x1, x2) by computing the length of its projection on −→F , which is equivalent to the
dot product (w1, w2)¯ (x1, x2) = w1.x1 + w2.x2. By changing the values of w1 and w2,
we can sweep the space using a vector of increasing angle to represent any possible linear
scoring function. The tuple scores given by an arbitrary linear scoring function can thus be
materialized.

Before materialization, tuples that are dominated by more than k tuples are discarded
because they do not belong to the top-k query answer of any linear scoring function. The
remaining tuples, denoted as the dominating set Dk, include all possible top-k answers for
any possible linear scoring function. Algorithm 4 describes how to construct the domi-
nating set Dk with respect to a scoring function that is defined as a linear combination of
predicates p1 and p2. The algorithm starts by first sorting all the tuples based on p1, and
then scanning the sorted tuples. A priority queue Q is maintained to keep the top-k tuples,
encountered so far, based on predicate p2. The first k tuples are directly copied to Dk,
while subsequent tuples are examined against the minimum value of p2 in Q. If the p2

value of some tuple t is less than the minimum p2 value in Q, then t is discarded, since
there are at least k objects with greater p1 and p2 values.

We now describe how Ranked Join Indices materialize top-k answers for different scor-
ing functions. Figure 10 shows how the order of tuples change based on the scoring func-
tion vector. For two tuples t1 and t2, there are two possible cases regarding their relative
positions:

Case 1. The line connecting the two tuples has a positive slope. In this case, their rela-
ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Ilyas et al.

Algorithm 5 Ranked Join Indices: ConstructRJI (Dk) [Tsaparas et al. 2003]
Require: Dk: The dominating tuple set

1: V = φ { the separating vector set}
2: for each ti, tj ∈ Dk, ti 6= tj do
3: esij

= separating vector for (ti, tj)
4: insert (ti, tj) and their corresponding separating vector esij in V
5: end for
6: Sort V in non-decreasing order of vector angles a(esij

)
7: Ak = top-k tuples in Dk with respect to predicate p1

8: for each (ti, tj) ∈ V do
9: if both ti, tj ∈ Ak∨ both ti, tj 6∈ Ak then

10: No change in Ak by esij

11: else if ti ∈ Ak ∧ tj 6∈ Ak then
12: Store (a(esij), Ak) into index
13: Replace ti with tj in Ak

14: else if ti 6∈ Ak ∧ tj ∈ Ak then
15: Store (a(esij

), Ak) into index
16: Replace tj with ti in Ak

17: end if
18: end for
19: Store (a(−→p2), Ak)

es

t2

t1

order : t1,t2

(a)

t2

t1

es

e2

e1

order : t
1 ,t

2

a(e
2) >

a(e
s) order : t

2 ,t
1

a(e
1) <

a(e
s)

(b)

Fig. 10. Possible Relative Positions of Tuples t1 and t2 (a) positive slope of the line connecting t1 and t2 (b)
negative slope of the line connecting t1 and t2

tive ranks are the same for any scoring function e. This case is illustrated in Figure 10(a).

Case 2. The line connecting the two tuples has a negative slope. In this case, there is a
vector that separates the space into two subspaces, where the tuples’ order in one of them is
the inverse of the other. This vector, denoted as es, is perpendicular to the line connecting
the two tuples t1 and t2. This case is illustrated in Figure 10 (b).

Based on the above observation, we can index the order of tuples by keeping a list of all
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 27

scoring functions vectors (along with their angles) that switch tuples’ order. Algorithm 5
describes the details of constructing Ranked Join Indices. The algorithm initially finds the
separating vectors between each pair of tuples and sorts these vectors based on their angles.
Then, it ranks tuples based on some scoring function (e.g., F = p1) and starts scanning the
separating vectors in order. Whenever a vector esij

is found such that it changes the order
of tuples ti and tj (case 2), the vector’s angle and its corresponding top-k set are stored in
a B-tree index, using angle as the index key. The index construction algorithm has a time
complexity of O(|Dk|2log|Dk|) and a space complexity of O(|Dk|k2).

At query time, the vector corresponding to the scoring function, specified in the query,
is determined, and its angle is used to search the B-tree index for the corresponding top-k
set. The exact ranking of tuples in the retrieved top-k set is computed, and returned to the
user. The query processing algorithm has a complexity of O(log|Dk|+ k log k).

Top-k Materialized Views

Materialized views have been studied in the context of top-k processing as a means to
provide efficient access to scoring and ordering information that is expensive to gather
during query execution. Using materialized views for top-k processing has been studied
in the PREFER system [Hristidis et al. 2001; Hristidis and Papakonstantinou 2004], which
answers preference queries using materialized views. Preference queries are represented
as ORDER BY queries that return sorted answers based on pre-defined scoring predicates.
The user preference of a certain tuple is captured by an arbitrary weighted summation of the
scoring predicates. The objective is to answer such preference queries using a reasonable
number of materialized views.

The proposed method keeps a number of materialized views based on different weight
assignments of the scoring predicates. Specifically, each view v ranks the entire set of
underlying tuples based on a scoring function Fv defined as a weighted summation of the
scoring predicates using some weight vector−→v . For a top-k query with an arbitrary weight
vector−→q , the materialized view that best matches−→q is selected to find query answer. Such
view is found by computing a position marker for each view to determine the number of
tuples that need to be fetched from that view to find query answer. The best view is the one
with the least number of fetched tuples.

Top-k query answers in the PREFER system are pipelined. Let n be the number of
tuples fetched from view v after computing v’s position marker. If n ≥ k, then processing
terminates. Otherwise, the n tuples are reported, and a new position marker is computed
for v. The process is repeated until k tuples are reported. Computing position markers
follows the next procedure. Assume a top-k query q is executed against a relation R. The
first marker position for view v is the maximum value T 1

v,q with the following property
∀t ∈ R : Fv(t) < T 1

v,q ⇒ Fq(t) < Fq(t1v), where t1v is the top tuple in v. At next
iterations ttop

v , the unreported v tuple with the highest score in v, replaces t1v in computing
the marker position of v.

We illustrate how PREFER works using Figure 11, which depicts the procedure followed
to find the top-1 object. The depicted view materializes a sorting of the relation R based
on weighted summation of the scoring predicates p1, p2, and p3 using the weight vector
−→v . However, we are interested in the top-1 object based on another weight vector −→q . An
optimization problem is solved over the set of materialized views to find the view with
the shortest prefix that needs to be fetched to answer this top-1 query. The value Tv,q is

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Ilyas et al.

)()()(,
1

, vqqqvv
tFtFTtFRt <<∈∀

ID p1 p2 p3 Fv(t) Fq(t)

1

2

3

4

5

6

10

20

17

15

5

15

17

20

18

10

10

10

20

11

12

8

12

5

16.8

16.4

15.4

10.2

9.8

9

17.2

17.3

16.1

9.9

10.1

9

v =(0.2,0.4,0.4)

q =(0.1,0.6,0.3)

Tv,q = 14.26

Maximize Fv(t) while

maintaining inequality

Fig. 11. Finding top-1 Object based on Some Materialized View

computed for each view v, such that every tuple in v with Fv(t) < Tv,q cannot be the
top-1 answer (i.e., there exists another tuple with higher Fq(.) value). This can be verified
using the first tuple in the view t1v . Once Tv,q is determined, the prefix from v above Tv,q

is fetched and sorted based on Fq to find the top-1 object. For example, in Figure 11, a
prefix of length 3 needs to be fetched from the depicted view to find out the top-1 tuple
based on Fq . Among the retrieved three tuples, the second tuple is the required top-1
answer. Finding the top-i tuple operates similarly, in a pipelined fashion, by looking for
a new Tv,q value for each i value, such that there exist at least i tuples with larger Fq(.)
values than any other tuple below Tv,q .

Using materialized views for top-k processing, with linear scoring functions, has been
also studied in the LPTA technique proposed by [Das et al. 2006]. Top-k answers are
obtained by sequentially reading from materialized views, built using the answers of pre-
vious queries, and probing the scoring predicates of the retrieved tuples to compute their
total scores. The main idea is to choose an optimal subset among all available views to
minimize the number of accessed tuples. For example, in the case of linear scoring func-
tions defined on two scoring predicates, only the views with the closest vectors to the query
vector in anti-clockwise and clockwise directions need to be considered to efficiently an-
swer the query. For example in Figure 12, only the views whose vectors are v2 and v3

are considered to compute the query Q. The authors showed that selecting further views
in this case is suboptimal. The LPTA algorithm finds the top-k answers by scanning both
views, and computing the scores of the retrieved tuples while maintaining a set of top-k
candidates. The stoping criterion is similar to TA; the algorithm terminates when the min-
imum score in the candidate set has a score greater than the maximum score of the unseen
tuples, denoted T . The value of T is computed using linear programming. Specifically,
each view provides a linear constraint that bounds the space where the non-retrieved tuples
reside. Constraints of different views form a convex region, and the maximum score of the
unseen tuples is obtained by searching this region.

To answer top-k queries in higher dimensions, the authors proved that it is sufficient
to use a subset of the available views with size less than or equal to the number of di-
mensions. An approximate method is used to determine which subset of views is selected
based on estimates of the execution cost for each subset. To estimate the cost of a specific
subset of views, a histogram of tuples’ scores is built using the available histograms of
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 29

Q

V1

V2

V3

VY

Vx

V4

Fig. 12. Choosing the Optimal Subset of Materialized Views in the LPTA Algorithm [Das et al. 2006]

scoring predicates. A greedy algorithm is used to determine the optimal subset of views by
incrementally adding the view that provides the minimum estimated cost.

4.2 Engine Level

The main theme of the techniques discussed in this section is their tight coupling with the
query engine. This tight coupling has been realized through multiple approaches. Some
approaches focus on the design of efficient specialized rank-aware query operators. Other
approaches introduce an algebra to formalize the interaction between ranking and other re-
lational operations (e.g., joins and selections). A third category addresses modifying query
optimizers, e.g., changing optimizers’ plan enumeration and cost estimation procedures,
to recognize the ranking requirements of top-k queries. Treating ranking as a first-class
citizen in the query engine provides significant potential for efficient execution of top-k
queries. We discuss the techniques that belong to the above categories in the next sections.

4.2.1 Query Operators. The techniques presented in this section provide solutions that
embed rank-awareness within query operators. One important property that is satisfied by
many of these operators is pipelining. Pipelining allows for reporting query answers with-
out processing all of the underlying data if possible, and thus minimizing query response
time. In pipelining, the next object produced by one query operator is fed into a subsequent
operator upon request. Generally, algorithms that require random access are unsuitable for
pipelining. The reason is that requesting objects by their identifiers breaks the pipeline by
materializing specific objects, which could incur a large overhead. TA and CA (discussed
in Section 3.1) are thus generally unsuitable for pipelining. Although the NRA algorithm
(discussed in Section 3.2) does not require random access, it is not also capable of pipelin-
ing since the reported objects do not have associated exact scores. Hence, the output of
one NRA process cannot serve as a valid input to another NRA process.

One example of rank-aware query operators that support pipelining is the Rank-Join op-
erator [Ilyas et al. 2004], which integrates the joining and ranking tasks in one efficient
operator. Algorithm 6 describes the main Rank-Join procedure. The algorithm has com-
mon properties with the NRA algorithm [Fagin et al. 2001] (described in Section 3.2). Both
algorithms perform sorted access to get tuples from each data source. The main difference

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Ilyas et al.

Algorithm 6 Rank Join [Ilyas et al. 2004]
—Retrieve tuples from input relations in descending order of their individual scores pi’s.

For each new retrieved tuple t:
(1) Generate new valid join combinations between t and seen tuples in other relations.
(2) For each resulting join combination j, compute F (j).
(3) Let p

(max)
i be the top score in relation i, i.e., the score of the first tuple retrieved

from relation i. Let pi be the last seen score in relation i. Let T be the maximum of
the following m values:
F (p1, p

max
2 , . . . , pmax

m),
F (pmax

1 , p2, . . . , p
max
m),

. . .
F (pmax

1 , pmax
2 , . . . , pm).

(4) Let Ak be a set of k join results with the maximum F (.) values, and Mk be the
lowest score in Ak. Halt when Mk ≥ T .

—Report the join results in Ak ordered on their F (.) values.

is that the NRA algorithm assumes that each partially seen tuple has a valid score that can
be completely computed if the values of the currently unknown tuple’s scoring predicates
are obtained. This assumption cannot be made for the case of joining tuples from multiple
sources, since arbitrary subsets of the Cartesian product of tuples may end up in the join
result based on the join condition. For this reason, the Rank-Join algorithm maintains the
scores of the completely seen join combinations only. As a result, the Rank-Join algorithm
reports the exact scores of the top-k tuples, while the NRA algorithm reports bounds on
tuples’ scores. Another difference is that the NRA algorithm has strict access pattern that
requires retrieval of a new tuple from each source at each iteration. The Rank-Join algo-
rithm does not impose any constraints on tuples retrieval, leaving the access pattern to be
specified by the underlying join algorithm.

Similar to NRA algorithm, the Rank-Join algorithm scans input lists (the joined rela-
tions) in the order of their scoring predicates. Join results are discovered incrementally as
the algorithm moves down the ranked input relations. For each join result j, the algorithm
computes a score for j using a score aggregation function F , following the top-k join query
model (Section 2.1). The algorithm maintains a threshold T bounding the scores of join
results that are not discovered yet. The top-k join results are obtained when the minimum
score of the k join results with the maximum F (.) values is not below the threshold T .

A two-way hash join implementation of the Rank-Join algorithm, called Hash Rank Join
Operator (HRJN), is introduced in [Ilyas et al. 2004]. HRJN is based on symmetrical hash
join. The operator maintains a hash table for each relation involved in the join process, and
a priority queue to buffer the join results in the order of their scores. The hash tables hold
input tuples seen so far and are used to compute the valid join results. The HRJN operator
implements the traditional iterator interface of query operators. The details of the Open
and GetNext methods are given by Algorithms 7 and 8, respectively. The Open method is
responsible for initializing the necessary data structure; the priority queue Q, and the left
and right hash tables. It also sets T , the score upper bound of unseen join results, to the
maximum possible value.

The GetNext method remembers the two top scores, pmax
1 and pmax

2 , and the last seen
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 31

Algorithm 7 HRJN: Open(L1, L2) [Ilyas et al. 2004]
Require: L1: Left ranked input, L2: Right ranked input

1: Create a priority queue Q to order join results based on F (.) values
2: Build two hash tables for L1 and L2

3: Set threshold T to the maximum possible value of F
4: Initialize p1 and pmax

1 with the maximum score in L1

5: Initialize p2 and pmax
2 with the maximum score in L2

6: L1.Open()
7: L2.Open()

scores, p1 and p2 of its left and right inputs. Notice that p1 and p2 are continuously updated
as new tuples are retrieved from the input relations. At any time during query execution,
the threshold T is computed as the maximum of F (pmax

1 , p2) and F (p1, p
max
2). At each

step, the algorithm reads tuples from either the left or right inputs, and probes the hash
table of the other input to generate join results. The algorithm decides which input to poll
at each step, which gives flexibility to optimize the operator for fast generation of join
results based on the joined data. A simplistic strategy is accessing the inputs in a round-
robin fashion. A join result is reported if its score is not below the scores of all discovered
join results, and the threshold T .

Other examples of top-k operators that are suitable for pipelining are the NRA-RJ oper-
ator [Ilyas et al. 2002], and the J* algorithm [Natsev et al. 2001]. The NRA-RJ operator
extends the NRA algorithm [Fagin et al. 2001] using an efficient query operator that can
serve valid input to other NRA-RJ operators in the query pipeline. The J* algorithm [Nat-
sev et al. 2001] (discussed in Section 3.2) supports pipelining since it does not require
random access to its inputs, and produces join results with complete scores.

[Li et al. 2006] introduced rank-aware query operators that work under the top-k aggre-
gate query model (Section 2.1). Top-k aggregate queries report the k groups (based on
some grouping columns) with the highest aggregate values (e.g., sum). The conventional
processing of such queries follows a materialize-group-sort scheme, which can be ineffi-
cient if only the top-k groups are required. Moreover, it is common, in this kind of queries,
to use ad-hoc aggregate functions that are specified only at query time for data exploration
purposes. Supporting such ad-hoc aggregate functions is challenging since they cannot
benefit from any existing pre-computations.

Two fundamental principles have been proposed in [Li et al. 2006] to address the above
challenges. The first principle, Group-Ranking, dictates the order in which groups are
probed during top-k processing. The authors proposed prioritizing group access by incre-
mentally consuming tuples from the groups with the maximum possible aggregate values.
This means that it might not be necessary to complete the evaluation of some groups not
included in the current top-k. Knowing the maximum possible aggregate values before-
hand is possible if information regarding the cardinality of each group can be obtained.
This information is typically available in environments such as OLAP, where aggregation
and top-k queries are dominant.

The second principle, Tuple-Ranking, dictates the order in which tuples should be ac-
cessed from each group. In aggregate queries, each tuple has a scoring attribute, usually re-
ferred to as the measure attribute, which contributes to the aggregate score of tuple’s group,

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Ilyas et al.

Algorithm 8 HRJN: GetNext [Ilyas et al. 2004]
1: if |Q| > 0 then
2: jtop = peek at top element in Q
3: if F (jtop) ≥ T then
4: Remove jtop from Q
5: Return jtop

6: end if
7: end if
8: loop
9: Determine next input to access, Li

10: t = Li.GetNext()
11: if t is the first seen tuple in Li then
12: pmax

i = pi(t)
13: end if
14: pi = pi(t)
15: T = MAX(F (pmax

1 , p2), F (p1, p
max
2))

16: insert t in Li Hash table
17: probe the other hash table using t’s join key
18: for all valid join combination j do
19: Compute F (j)
20: Insert j in Q
21: end for
22: if |Q| > 0 then
23: jtop = peek at top element in Q
24: if F (jtop) ≥ T then
25: break loop
26: end if
27: end if
28: end loop
29: Remove top tuple jtop from Q
30: Return jtop

e.g., the salary attribute for the aggregate function sum(salary) . The authors showed that
the tuple order that results in the minimum tuple depth (the number of accessed tuples from
each group), is among three tuple orders, out of all possible permutations: Descending Tu-
ple Score Order, Ascending Tuple Score Order and Hybrid Order, which chooses the tuple
with either the highest or lowest score among unseen tuples.

The two above principles were encapsulated in a query operator, called rankaggr. The
new operator eagerly probes the groups instead of waiting for all groups to be materialized
by the underlying query subtree. The next group to probe is determined according to the
maximum possible scores of all valid groups, and the next tuple is drawn from this group.
As a heuristic, tuples are accessed from any group in descending score order. When a
group is exhausted, its aggregate value is reported. This guarantees pipelining the resulting
groups in the correct order with respect to their aggregate values.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 33

Rank : µ, with a ranking predicate p

• t ∈ µp(RP) iff t ∈ RP

• t1 <µp(RP) t2 iffFP∪{p}[t1] < FP∪{p}[t2]

Selection : σ, with a boolean condition c

• t ∈ σc(RP) iff t ∈ RP and t satisfies c

• t1 <σc(RP) t2 iff t1 <RP
t2, i .e.,FP [t1] < FP [t2]

Union : ∪

• t ∈ RP1
∪ SP2

iff t ∈ RP1
or t ∈ SP2

• t1 <RP1
∪SP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Intersection : ∩

• t ∈ RP1
∩ SP2

iff t ∈ RP1
and t ∈ SP2

• t1 <RP1
∩SP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Difference: −

• t ∈ RP1
− SP2

iff t ∈ RP1
and t 6∈ SP2

• t1 <RP1
−SP2

t2 iff t1 <RP1
t2, i .e.,FP1

[t1] < FP1
[t2]

Join : ./, with a join condition c

• t ∈ RP1
./c SP2

iff t ∈ RP1
× SP2

and satisfies c

• t1 <RP1
./cSP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Fig. 13. Operators Defined in RankSQL Algebra [Li et al. 2005]

4.2.2 Query Algebra. Formalizing the interaction between ranking and other rela-
tional operations, e.g., selections and joins, through an algebraic framework, gives more
potential to optimize top-k queries. Taking the ranking requirements into account, while
building a top-k query plan, has been shown to yield significant performance gains com-
pared to the conventional materialize-then-sort techniques [Ilyas et al. 2004]. These ideas
are the foundations of the RankSQL system [Li et al. 2005], which introduces the first al-
gebraic framework to support efficient evaluations of top-k queries in relational database
systems.

RankSQL views query ranking requirements as a logical property, similar to the con-
ventional membership property. That is, each base or intermediate relation (the relation
generated by a query operator during query execution) is attributed with the base relations
it covers (the membership property), as well as the tuple orders it provides (the order prop-
erty). RankSQL extends traditional relational algebra by introducing a new algebra that
embeds rank-awareness into different query operators. The extended rank-relational alge-
bra operates on rank-relations, which are conventional relations augmented with an order
property.

Figure 13 summarizes the definitions of the rank-aware operators in RankSQL. The
symbol RP denotes a rank-relation R whose order property is the set of ranking predicates
P . The notation FP [t] denotes the upper bound of the scoring function F for a tuple t,
based on a set of ranking predicates P . This upper bound is obtained by applying F to P
and the maximum values of all other scoring predicates not included in P .

A new rank-augment operator µp is defined in RankSQL to allow for augmenting the
ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Ilyas et al.

Proposition 1 : Splitting law for µ

• R{p1,p2,...,pn} ≡ µp1
(µp2

(...(µpn
(R))...))

Proposition 2 : Commutative law for binary operator

• RP1
ΘSP2

≡ SP2
ΘRP1

, ∀Θ ∈ {∩,∪, ./c}

Proposition 3 : Associative law

• (RP1
ΘSP2

)ΘTP3
≡ RP1

Θ(SP2
ΘTP3

), ∀Θ ∈ {∩,∪, ./c
a}

Proposition 4 : Commutative laws for µ

• µp1
(µp2

(RP)) ≡ µp2
(µp1

(RP))

• σc(µp(RP)) ≡ µp(σc(RP))

Proposition 5 : Pushing µ over binary operators

• µp(RP1
./c SP2

)

≡ µp(RP1
) ./c SP2

, if only R has attributes in p

≡ µp(RP1
) ./c µp(SP2

), if both R and S have

• µp(RP1
∪ SP2

) ≡ µp(RP1
) ∪ µp(SP2

) ≡ µp(RP1
) ∪ SP2

• µp(RP1
∩ SP2

) ≡ µp(RP1
) ∩ µp(SP2

) ≡ µp(RP1
) ∩ SP2

• µp(RP1
− SP2

) ≡ µp(RP1
) − SP2

≡ µp(RP1
) − µp(SP2

)

Proposition 6 : Multiple-scan of µ

• µp1
(µp2

(Rφ)) ≡ µp1
(Rφ) ∩r µp2

(Rφ)

aWhen join columns are available.

Fig. 14. RankSQL Algebraic Laws [Li et al. 2005]

order property of some rank-relation with a new scoring predicate p. That is, µp(RP) =
RP∪{p}. The semantics of the relational operators π, σ, ∪, ∩, −, and ./ are extended to
add awareness of the orders they support. Figure 13 shows how the membership and order
properties are computed for different operators. For unary operators, such as π and σ, the
same tuple order in their inputs is maintained. That is, only the membership property can
change, e.g., based on a Boolean predicate, while the order property remains the same.
On the other hand, binary operators, such as ∩ and ./, involve both Boolean predicates
and order aggregation over their inputs, which can change both the membership and order
properties. For example, RP1 ∩ SP2 ≡ (R ∩ S)P1∪P2 . We discuss the optimization issues
of such rank-aware operators in Section 4.2.3.

4.2.3 Query Optimization. Rank-aware operators need to be integrated with query op-
timizers to be practically useful. Top-k queries often involve different relational operations
such as joins, selections and aggregations. Building a query optimizer that generates ef-
ficient query plans satisfying the requirements of such operations, as well as the query
ranking requirements, is crucial for efficient processing. An observation that motivates
the need for integrating rank-aware operators within query optimizers is that using a rank-
aware operator may not be always the best way to produce the required ranked results [Ilyas
et al. 2004; Ilyas et al. 2006]. The reason is that there are many parameters (e.g., join se-
lectivity, available access paths and memory size) that need to be taken into account while
comparing rank-aware and conventional query operators.

Integrating rank-aware and conventional operators in query optimization has been
mainly addressed form two perspectives. In the first perspective, the plan enumeration
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 35

Hash Join

R.j= S.j

SeqScan (R) SeqScan (S)

SortR.p1+S.p1+R.p2

Limit 10

Fig. 15. Conventional Query Plan

Hash Rank Join

R.j= S.j

IndexScanp1 (R)

Limit 10

IndexScanp1 (S)

RankR.p2

Fig. 16. A Query Plan Generated By RankSQL

phase of the query optimizer is extended to allow for mixing and interleaving rank-aware
operators with convectional operators, creating a rich space of different top-k query plans.
In the second perspective, cost models for rank-aware operators are used by the query opti-
mizer to compare the expected cost of rank-aware operators against conventional operators,
and hence construct efficient query plans.

Plan Enumeration

The RankSQL system [Li et al. 2005] extends the dynamic programming plan enumer-
ation algorithm, adopted by most RDBMSs, to treat ranking as a logical property. This
extension adds an extra enumeration dimension to the conventional membership dimen-
sion. In a ranking query plan, the set of scoring predicates in a query subplan determines
the order property, just like how the join conditions (together with other operations) deter-
mine the membership property. This allows the enumerator to produce different equivalent
plans, for the same logical algebra expression, where each plan interleaves ranking op-
erators with other operators in a different way. The 2-dimensional (order+membership)
enumeration algorithm of RankSQL maintains membership and order properties for each
query subplan. Subplans with the same membership and order properties are compared
against each other, and the inferior ones, based on cost estimation, are pruned.

Figure 14 illustrates the transformation laws of different query operators in RankSQL.
The transformations encapsulate two basic principles: (1) Splitting (Proposition 1): Rank-
ing is evaluated in stages, predicate by predicate, and (2) Interleaving (Propositions 4 and
5): Ranking is interleaved with other operators. Splitting rank expression allows embed-
ding rank-aware operators in the appropriate places within the query plan, while interleav-
ing guarantees that tuples are pipelined in the correct order such that tuple flow can be
stopped as soon as the top-k results are generated. The next example illustrates the above
principles.

EXAMPLE 4.1. RankSQL Example: Consider the following top-k query:
SELECT * FROM R, S

WHERE R.j = S.j

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Ilyas et al.

ORDER BY R.p1 + S.p1 + R.p2

LIMIT 10

Figure 16 depicts a query plan generated by RankSQL, where ranking expression is split
and rank-aware operators are interleaved with conventional query operators. The plan
shows that the query optimizer considered using existing indexes for R.p1 and S.p1 to
access base tables, which might be cheaper for the given query, since they generate tuples
in the orders of scoring predicates R.p1 and S.p1. The Hash Rank Join operator is a
rank-aware join operator that aggregates the orders of the joined relations, while the Rank
operator augments the remaining scoring predicate R.p2 to produce tuples in the required
order. The Hash Rank Join and Rank operators pipeline their outputs by upper bounding
the scores of their unseen inputs, allowing for consuming a small number of tuples in order
to find the top-10 query results. Figure 15 depicts an equivalent conventional plan, where
the entire query result is materialized and sorted on the given ranking expression, then the
top-10 results are reported.

Treating ranking requirements as a physical property is another approach to extend the
plan enumerator. A physical property is a plan characteristic that can be different in dif-
ferent plans with the same membership property, but impacts the cost of subsequent oper-
ations. [Ilyas et al. 2004; Ilyas et al. 2006] define ranking requirements as an interesting
physical order, which triggers the generation of new query plans to optimize the use of
rank-join operators. An interesting order is an order of query intermediate results, based
on an expression of database columns, that can be beneficial to subsequent query opera-
tions. An interesting order can thus be the order of a join column or the order of a scoring
predicate. To illustrate, Figure 17(a) shows the plan space maintained by a conventional
optimizer for the shown 3-way join query. In the shown MEMO structure, each row rep-
resents a set of plans having the same membership property, while each plan maintains a
different interesting order. The plan space is generated by comparing plans with the same
interesting order at each row, and keeping the plan with the lowest cost. The node DC
refers to a don’t care property value, which corresponds to no order. For example, plans
in the B row provide tuples of the B relation (the membership property) ordered by B.c1,
B.c2, and no order. These orders are interesting since they are included in the query join
conditions.

Consider alternatively Figure 17 (b), which shows the plan space generated by treating
the orders of scoring predicates as additional interesting orders. The shaded nodes indi-
cate the interesting orders defined by scoring predicates. Enumerating plans satisfying the
orders of scoring predicates allows generating rank-aware join choices at each step of the
plan enumeration phase. For example, on the level of base tables, the optimizer enforces
the generation of table scans and index scans that satisfy the orders of the scoring predi-
cates. For higher join levels, the enumerated access paths for base tables make it feasible
to use rank-join operators as join choices.

Cost Estimation

The performance gain obtained by using rank-aware query operators triggers thinking
of more principled approaches to integrate ranking with conventional relational operators.
This raises the issue of cost estimation. Query optimizers need to be able to enumerate
and cost plans with rank-aware operators as well as conventional query operators. The
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 37

SELECT A.c1, B.c1, C.c1

FROM A,B,C

WHERE A.c2 = B.c1 and B.c2 = C.c2

ORDER BY (0.3*A.c1+0.3*B.c1+0.3*C.c1)

LIMIT 5

B

A

C

AB

BC

ABC

A.c2 DC

B.c1 B.c2 DC

C.c2 DC

B.c2 DC

B.c1 DC

DC

B

A

C

AB

BC

ABC

A.c2 DC

B.c1 B.c2 DC

C.c2 DC

B.c2 DC

B.c1

A.c1

C.c1

0.3*A.c1+0.3*B.c1

DC0.3*B.c1+0.3*C.c1

DC0.3*A.c1+0.3*B.c1+0.3*C.c1

(a) (b)

Fig. 17. Plan Enumeration (a) in conventional optimizer (b) with ordering as an Interesting Property [Ilyas et al.
2004]

dL
dR

cL

cR

L (cL)

R (cR)

Score= SL (cL)

Score= SL (1) -

Score= SR (cR)

Score= SR (1) -

= L (cL) + R (cR)

Rank-Join

L R

Fig. 18. Estimating Depth of Rank-Join Inputs

cost model of query operators depends on many parameters including input size, memory
buffers and access paths. The optimization study of the Rank-Join operator [Ilyas et al.
2004; Ilyas et al. 2006] shows that costing a rank-aware operator is quite different from
costing other traditional query operators. A fundamental difference stems from the fact
that a rank-aware operator is expected to consume only part of its input, while a traditional
operator consumes its input completely. The size of the consumed input depends on the
operator implementation rather than the input itself.

A probabilistic model has been proposed in [Ilyas et al. 2004] to estimate the Rank-Join
inputs’ depths, i.e., how many tuples are consumed from each input to produce the top-k

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Ilyas et al.

join results. Figure 18 depicts the depth estimation procedure. For inputs L and R, the
objective is to get the estimates dL and dR such that it is sufficient to retrieve only up to dL

and dR tuples from L and R, respectively, to produce the top-k join results. The definitions
of other used notations are listed in the following:

—cL and cR are depths in L and R respectively, that are sufficient to find any k valid join
results. cL and cR can be selected arbitrarily such that s.cL.cR ≥ k, where s is the join
selectivity of L joined with R.

—SL(i) and SR(i) are the scores at depth i in L and R, respectively.
—σL(i) and σR(i) are the score differences between the top ranked tuple and the the tuple

at depth i in L and R, respectively.
—σ = σL(cL) + σR(cR)

The main result of [Ilyas et al. 2004] is the following: If dL and dR are selected such
that σL(dL) ≥ σ and σR(dR) ≥ σ, then the top-k join results can be obtained by joining
L(dL) and R(dR). Further analysis based on the score distribution in L and R has been
conducted to reach the minimum possible values for dL and dR. For uniformly distributed
scores of L and R with average score slabs (average distance between two consecutive
scores) of x and y respectively, the expected value of σL(cL) = x.cL and the expected
value of σR(cR) = y.cR. Hence, to minimize dL and dR, we need to minimize σ =
σL(cL) + σR(cR) = x.cL + y.cR subject to s.cL.cR ≥ k. A direct way to minimize this
expression is to select cL =

√
(yk)/(xs) and cR =

√
(xk)/(ys).

5. QUERY AND DATA UNCERTAINTY

In this Section, we discuss top-k processing techniques that report approximate answers
while operating on deterministic data (Section 5.1), followed by techniques that operate on
probabilistic data (Section 5.2).

5.1 Deterministic Data, Approximate Methods

Reporting the exact top-k query answers could be neither cheap, nor necessary for some
applications. For example, decision support and data analysis applications usually process
huge volumes of data, which may cause significant delays if the application requires exact
query answers. Users in such environments may thus sacrifice the accuracy of query an-
swers in return of savings in time and resources. In these settings, reporting approximate
query answers could be sufficient.

We start by describing some of the general approximate query processing techniques,
followed by approximate top-k processing techniques.

5.1.1 Approximate Query Processing. The work of [Vrbsky and Liu 1993] is one of
the earliest attempts made to approximate query answers. The proposed system, called
APPROXIMATE, is a query processor that produces approximate answers that enhance
monotonically. In this context, an operation is monotone if its results are more accurate
when its operands are more accurate. APPROXIMATE works on approximate relations
that are defined as subsets of the cartesian product of attribute domains. The tuples in these
subsets are partitioned into certain and possible tuples. Approximate relations are used
during query processing instead of the standard relations generated by different query tree
nodes.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 39

Based on the semantics of the data stored in the base tables, an initial approximation to
query answers is driven. This initial approximation is assigned to each node in the query
tree. As more certain data is read from base tables, more certain tuples are inserted into
approximate relations while more possible tuples are deleted. If a query is stopped before
completion, a superset of the exact answer is returned. One problem with the proposed
method is that it mainly depends on detailed metadata describing the semantics of database
relations, which might not be easy to construct in practice.

Multiple approximate query processing methods have addressed aggregate queries. Ag-
gregate queries are widely used in OLAP environments for data exploration and analysis
purposes. In this kind of queries, the precision of the answer to the last decimal digit is
not usually needed. The framework of Online Aggregation [Hellerstein et al. 1997] ad-
dresses generating approximate aggregate values whose accuracy enhances progressively.
The work of [Hellerstein et al. 1997] provides important insights on using statistical meth-
ods in aggregate computation. The adopted statistical methods allow computing aggregate
values along with a correctness probability and confidence interval derived based on the
expected aggregate value.

Other approximate query processing methods involve building a database summary or
synopsis, and using it to answer queries approximately. Sampling is probably the most
studied methodology for building such summaries. The basic settings involve drawing
a sample from the underlying data, answering the incoming queries based on the sam-
ple, and scaling the results to approximate the exact answers. Sampling can be done ei-
ther uniformly at random or in a biased manner to select the best samples that minimize
the approximation errors [Chaudhuri et al. 2001]. Other possible summaries include his-
tograms [Babcock et al. 2003; Chaudhuri et al. 1998] and wavelets [Chakrabarti et al.
2001].

Approximation based on sampling has inherent problems that negatively effect the accu-
racy in many cases. One problem is the presence of skewness in data distributions. Skewed
data items, usually called outliers, are those items which deviate significantly from other
data items in their values. Outliers cause a large variance in the distribution of aggregate
values, which leads to large approximation errors. Separating outliers using a special index
is one approach to deal with this problem [Chaudhuri et al. 2001]. In this setting, queries
are considered as the union of two sub-queries, one of them is answered exactly using an
outlier index, while the other is answered approximately by sampling the non-outliers. The
two results are then combined to give the full approximate query answer.

Another problem is the potentially low selectivity of selection queries. Uniform sam-
ples contain only a small fraction of the answers of highly selective queries. Non-uniform
sampling is proposed to work around this problem. The idea is to use weighted sampling,
where tuples are tagged by their frequency – the number of workload queries whose an-
swers contain the tuple. Tuples that are accessed frequently by previous queries would
therefore have higher probability to be included in the sample. The underlying assumption
is that tuples that are part of the answers to previous queries are likely to be part of the an-
swers to similar incoming queries. Collecting samples offline based on previous queries,
and rewriting incoming queries to use these samples, has been proposed in [Chaudhuri
et al. 2001]. Self tuning the samples by refreshing them after queries are processed is
further studied by [Ganti et al. 2000].

The presence of small groups in group-by queries could also lead to large approximation
ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Ilyas et al.

errors when using sampling techniques. Congressional Samples [Acharya et al. 2000]
address this problem by introducing a hybrid of uniform and non-uniform samples. The
proposed strategy is to divide the available sample space equally among the groups, and
take a uniform random sample within each group. This guarantees that both large and
small groups will have a reasonable number of samples. The problem with this approach
is that it does not deal with the data variance caused by outliers.

5.1.2 Approximate Top-k Query Processing. Adopting the concepts and techniques of
approximate query processing in the context of top-k queries is a natural extension of the
previously described works. Some general top-k algorithms, e.g., TA [Fagin et al. 2001],
have approximate variants. For example, an approximate variant of TA defines a parameter
θ > 1 denoting the required level of approximation, such that an item z not in the top-k
set satisfies the condition score(z) ≤ θscore(y) for every other item y inside the top-
k set. This approximation relaxes the threshold test of TA, making it possible to return
approximate answers. However, the problem with this approach is that the selection of
the approximation parameter θ is mostly application-oriented and that no general scheme
is devised to decide its value. Another example is the J* algorithm [Natsev et al. 2001]
that allows approximating tuple ranks to a factor 0 < ε < 1. The ε-approximate top-k
answer, X , is defined as: ∀x ∈ X, y /∈ X : (1 + ε)x.score ≥ y.score. When ε = 0, the
approximation algorithm reduces to the exact one.

Approximate answers are more useful when they are associated with some accu-
racy guarantees. This issue has been addressed by another approximate adaptation of
TA [Theobald et al. 2004], where a scheme was introduced to associate probabilistic guar-
antees with approximate top-k answers. The proposed scheme works in the context of
information retrieval systems, assuming multiple lists each holding a different ranking of
an underlying document set based on different criteria, such as query keywords. The con-
servative TA threshold test is replaced by a probabilistic test to estimate the probability
that a candidate document would eventually be in the top-k set. Specifically, the probabil-
ity of document d to have a score above Mk, the minimum score of the current top-k set,
is computed as follows:

Pr(
∑

i∈E(d)

pi(d) +
∑

j /∈E(d)

p̂j(d) > Mk) (3)

where E(d) is the set of lists in which d has been encountered, pi(d) is the score of docu-
ment d in list i, and p̂j(d) is an estimator for the score of d in list j, where it has not been
encountered yet. If this probability is below a threshold ε, the document d is discarded
from the candidate set. Setting ε = 0 corresponds to the conservative TA test. The main
departure from standard TA is that unseen partial scores are estimated probabilistically in-
stead of setting them, loosely, to the best possible unseen scores. Computing the estimators
of unseen partial scores is based on the score distributions of the underlying ranked lists.
Three different distributions are considered: Uniform, Poisson, and a generic distribution
derived from existing histograms.

The above approximation technique is illustrated by Algorithm 9. For each index list,
the current position and last seen score are maintained. For each item d that is encountered
in at least one of the lists, a worst score F (d) is computed by assuming zero scores for d in
lists where it has not been encountered yet, and a best score F (d) is computed by assuming
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 41

Algorithm 9 Top-k with Probabilistic Guarantees [Theobald et al. 2004]
1: topk = {dummy1, . . . dummyk} with F (dummyi) = 0
2: Mk = 0 {the minimum score in the current topk set}
3: candidates = φ
4: while index lists Li (i = 1 to m) are not exhausted do
5: d = next item from Li

6: pi = pi(d)
7: add i to E(d)
8: set F (d) =

∑
r∈E(d) pr(d), and F (d) = F (d) +

∑
r/∈E(d) pr

9: if F (d) > Mk then
10: add d to candidates
11: else
12: drop d from candidates if present
13: end if
14: if F (d) > Mk then
15: if d /∈ topk then
16: remove the item d́ with the min F (.) in topk
17: add d to topk
18: add d́ to candidates
19: end if
20: Mk = min{F (d́)|d́ ∈ topk}
21: end if
22: periodically do the following loop
23: for all d́ ∈ candidates do
24: update F (d́)
25: P = Pr(

∑
i∈E(d́) pi(d́) +

∑
j /∈E(d́) p̂j(d́) > Mk)

26: if F (d́) < Mk or P < ε then
27: drop d́ from candidates
28: end if
29: end for
30: T = max{F (d́)|d́ ∈ candidates}
31: if candidates = φ or T ≤ Mk then
32: return topk
33: end if
34: end while

the highest possible scores of unseen items in the lists where d has not been encountered
yet. The minimum score among the current top-k items, based on items’ worst scores, is
stored in Mk. An item is considered a candidate to join the top-k set if its best score is
above Mk. Periodically, the candidate set is filtered from items whose best scores cannot
exceed Mk anymore, or items that fail the probabilistic test of being in the top-k . This
test is performed by computing the probability that item’s total score is above Mk. If this
probability is below the approximation threshold ε, then the item is discarded from the
candidates without computing its score.

Reporting approximate top-k answers is also considered in similarity search in multime-
ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · Ilyas et al.

dia databases. A similarity search algorithm usually uses a distance metric to rank objects
according to their distance from a target query object. In higher dimensions, a query can
be seen as a hyper-sphere, centered at the target object. The number of data objects that
intersect query sphere depends on the data distribution, which makes it possible to apply
probabilistic methods to provide approximate answers [Amato et al. 2003]. In many cases,
even if the query region overlaps a data region, no actual data points (or small number
of data points) appear in the intersection, depending on data distribution. The problem is
that there is no way to precisely determine the useless regions, whose intersection with the
query region is empty, without accessing such regions. The basic idea in [Amato et al.
2003] is to use a proximity measure to decide if a data region should be inspected or not.
Only data regions whose proximity to the query region is greater than a specified threshold
are accessed. This method is used to rank the nearest neighbors to some target data object
in an approximate manner.

Approximate top-k query processing has been also studied in peer-to-peer environments.
The basic settings involve a query initiator submitting a query (mostly in the form of key-
words) to a number of sites that respond back with the top-k answers, based on their local
scores. The major problem is how to efficiently coordinate the communication among the
respondents in order to aggregate their rankings. The KLEE system [Michel et al. 2005]
addresses this problem, where distributed aggregation queries are processed based on index
lists located at isolated sites. KLEE assumes no random accesses are made to index lists
located at each peer. Message transfers among peers are reduced by encoding messages
into lightweight Bloom filters representing data summaries.

The query processing in KLEE starts by exploring the network to find an initial approx-
imation for the minimum score of the top-k set (Mk). The query initiator sends to each
peer Mk/k as an estimate for the minimum score of the top-k results expected from that
peer. When a peer receives a query, it finds the top-k items locally, builds a histogram on
their scores, and hashes the items’ ID’s in each histogram cell into a Bloom filter. Each
peer returns back to the initiator a Bloom filter containing the ID’s of all items with scores
above Mk/k. The query initiator combines the received answers, extracts the top-k set and
inserts the remaining items into a candidate set. Candidate items are filtered by identifying
the ID’s of items with high scores. The structure of Bloom filters facilitates spotting the
items that are included in the answers of a large number of peers. The good candidates are
finally identified and requested from the peers.

5.2 Uncertain Data

Uncertain data management has gained more visibility with the emergence of many prac-
tical applications in domains like sensor networks, data cleaning, and location tracking,
where data is intrinsically uncertain. Many uncertain (probabilistic) data models, e.g.,
[Fuhr 1990; Barbará et al. 1992; Imielinski and Lipski Jr. 1984], have been proposed to
capture data uncertainty on different levels. According to many of these models, tuples
have membership probability, e.g., based on data source reliability, expressing the belief
that they should belong to the database. A tuple attribute could also be defined probabilis-
tically as multiple possible values drawn from discrete or continuous domains, e.g., a set
of possible customer names in a dirty database, or an interval of possible sensor readings.

Many uncertain data models adopt possible worlds semantics, where an uncertain
database is viewed as a set of possible instances (worlds) associated with probabilities.
Each possible world represents a valid combination of database tuples. The validity of
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 43

Space Navigation

Physical Data and Rules Store

Rule Engine

P
ro

c
e

s
s

in
g

 L
a

y
e

r
T

u
p

le
 A

c
c
e
s
s
 L

a
y
e
r

Access Methods

Probability

Combination of Tuple Events

T
u

p
le

s

T
u

p
le

 R
e

q
u

e
s
ts

Most Probable Top-k Answer

State

Formulation

Random Access Score Access Prob. Access ...

Relational Query Engine

Fig. 19. Processing Framework for Uncertain Top-k Processing [Soliman et al. 2007]

some tuple combination is determined based on the underlying tuple dependencies. For
example, two tuples might never appear together in the same world if they represent the
same real-world entity. Alternatively, the existence of one tuple is some world might imply
the existence of another tuple.

Top-k queries in deterministic databases assume a single ranking dimension, namely tu-
ples’ scores. In probabilistic databases, tuples’ probabilities arise as an additional ranking
dimension that interacts with tuples’ scores. Both tuple probabilities and scores need to be
factored in the interpretation of top-k queries in probabilistic databases. For example, it
is not meaningful to report a top-scored tuple with insignificant probability. Alternatively,
it is not accepted to order tuples by probability, while ignoring their scores. Moreover,
combining scores and probabilities using some score aggregation function eliminates un-
certainty completely, which may not be meaningful in some cases, and does not conform
with the currently adopted probabilistic query models

The scores-uncertainty interaction of top-k queries in probabilistic databases is ad-
dressed in [Soliman et al. 2007], where a processing framework is introduced to find the
most probable top-k answers in uncertain databases. The interaction between the concepts
of “most probable” and “top-k” is materialized using two new top-k query semantics: (1)
U-Topk query: A top-k query that reports a k-length tuple vector with the maximum prob-
ability of being top-k across all database possible worlds, and (2) U-kRanks query: A
top-k query that reports a set of k tuples, where each tuple is the most probable tuple to
appear at some rank 1 . . . k across all database possible worlds. These two interpretations
involve both ranking and aggregation of possible worlds.

Figure 19 depicts the processing framework introduced in [Soliman et al. 2007] to an-
swer top-k queries in uncertain databases. The framework leverages RDBMS storage,
indexing and query processing techniques, in addition to probabilistic inference tools, to
compute the most probable top-k answers. The framework contains two main layers, de-

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · Ilyas et al.

scribed in the following:

—Tuple Access Layer: Tuple retrieval, indexing and traditional query processing (includ-
ing score-based ranking) are the main functionalities provided by this layer. Uncertain
data and probabilistic dependencies are stored in a relational database with different
access methods provided to allow the processing layer to retrieve the uncertain tuples.

—Processing Layer: The processing layer retrieves uncertain tuples from the underlying
storage layer, and efficiently navigates the space of possible worlds to compute the most
probable top-k answers.

The problem of finding top-k query answers in uncertain databases is formulated as
searching the space of states that represent possible top-k answers, where a state is a pos-
sible prefix of one or more worlds ordered on score. Each state has a probability equal to
the aggregate probability of the possible worlds prefixed by this state. The Rule Engine
component in Figure 19 is responsible for computing such probabilities using probabilis-
tic inference tools, e.g., Bayesian networks. The search for uncertain top-k answers starts
from an empty state with length 0 and ends at a goal state with length k, having the maxi-
mum probability. The proposed search algorithms minimize the number of accessed tuples,
and the number of visited space states.

The problem of finding the k most probable query answers in probabilistic databases is
addressed by [Ré et al. 2007]. In this setting, probability is the only ranking dimension,
since tuples are not scored by a scoring function. Tuple are treated as probabilistic events
with the assumption that base tuples correspond to independent events. However, when
relational operations, e.g., joins and projections, are conducted on base tuples, the inde-
pendence assumption does not hold any more on the output tuples. Computing the exact
probabilities of the answers in this case is generally in #P-complete, which is the class of
counting algorithms corresponding to the NP-complete complexity class.

To address the above challenges, [Ré et al. 2007] propose a multi-simulation algorithm
(MS Topk) based on Monte-Carlo simulation. In MS Topk, computing the exact probabil-
ity of an answer is relaxed in favor of computing the correct ranking efficiently. MS Topk
maintains a probability interval for each candidate top-k answer inclosing its exact prob-
ability . In each step, the probability intervals of some candidates are tightened by gener-
ating random possible worlds, and testing whether these candidates belong to such worlds
or not. The probability intervals of candidate answers are progressively tightened until
there are k intervals with no other intervals overlapping with their minimum bounds, and
hence the top-k answers are obtained. [Ré et al. 2007] also propose other variants of the
MS Topk algorithm to sort the top-k answers, and incrementally report the top-k answers
one by one.

6. RANKING FUNCTION

In this section, we discuss the properties of different ranking functions adopted by top-
k processing techniques. Top-k processing techniques are classified into three categories
based on the type of ranking functions they assume. The first category, which includes
the majority of current techniques, assumes monotone ranking functions. The second cat-
egory allows for generic ranking functions. The third category leaves the ranking function
unspecified.
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 45

6.1 Monotone Ranking Functions

The majority of top-k techniques assumes monotone scoring functions, e.g., TA [Fagin
et al. 2001], and UPPER [Bruno et al. 2002]. Using monotone ranking functions is com-
mon in many practical applications, especially in Web settings [Marian et al. 2004]. For
example, many top-k processing scenarios involve linear combinations of multiple scoring
predicates, or maximum/minimum functions, which are all monotone.

Monotone ranking functions have special properties that can be exploited for efficient
processing of top-k queries. As demonstrated by our previous discussion of many top-k
processing techniques, when aggregating objects’ scores from multiple ranked lists using
a monotone score aggregation function, an upper bound of the scores of unseen objects is
easily derived. To illustrate, assume that we sequentially scan m sorted lists, L1, . . . , Lm,
for the same set of objects based on different ranking predicates. If the scores of the last
retrieved objects from these lists are p1, p2, . . . , pm, then an upper bound, F , over the
scores of all unseen objects is computed as F = F (p1, p2, . . . , pm). It is easy to verify
that no unseen object can possibly have a score greater than the above upper bound F ; by
contradiction, assume that an unseen object ou has a score greater than F . Then, based
on F ’s monotonicity, ou must have at least one ranking predicate pi with score greater
than the last seen score pi. This implies that the retrieval from list Li is not score-ordered,
which contradicts with the original assumptions. Additionally, monotone scoring functions
allow computing a score upper bound for each seen object o by substituting the values of
unknown ranking predicates of o with the last seen scores in the corresponding lists. A
top-k processing algorithm halts when there are k objects whose score lower bounds are
not below the score upper bounds of all other objects, including the unseen objects.

The above properties are exploited in various algorithms, e.g., TA [Fagin et al. 2001]
and Quick-Combine [Güntzer et al. 2001] (discussed in Section 3.1), to guarantee early
termination of top-k processing. An important property that follows from monotonicity is
that these algorithms are instance-optimal, within some bounds, in the sense that for any
database instance, there is no other algorithm that can retrieve less number of objects and
return a correct answer. For proof of instance optimality, we refer the reader to [Fagin et al.
2001].

Linear ranking functions constitute a subset of monotone functions. Linear ranking
functions define the aggregated score of ranking predicates as a weighted sum. Several
top-k techniques exploit the geometrical properties of linear functions to efficiently re-
trieve the top-k answers, such as the Onion Indices [Chang et al. 2000] and Ranked Join
Indices [Tsaparas et al. 2003], discussed in Section 4.1.2. Linear functions can be rep-
resented as vectors based on the weights associated with the ranking predicates. Such
representation can be used to geometrically compute objects’ scores as projections on the
ranking function vector. Other properties such as the relation between linear functions and
convex hulls of the data points are also exploited as in [Chang et al. 2000].

6.2 Generic Ranking Functions

Using non-monotone ranking functions in top-k queries is challenging. One reason is that
it is not straightforward to prune objects that do not qualify to query answer at an early
stage. The methods used to upper bound the scores of unseen (or partially seen) objects
are not applicable to non-monotone functions. For example, assume two sorted lists based
on ranking predicates p1 and p2, and a scoring function F (t) = p1(t)/p2(t). The function

ACM Journal Name, Vol. V, No. N, Month 20YY.

46 · Ilyas et al.

[60−65]

72,t6 75,t7 80,t8

A.root (a1, a2, a3)

10,t1 20,t2 30,t3 50,t4 54,t5

[50−54][10−30] [72−85]

60,t2 62,t8 65,t3

B.root (b1, b2, b3)

10,t5 30,t6 36,t7 40,t1 45,t4

[40−45][10−36]

(b) States sorted by f(S)

(A.root, B.root)

(a3,b3)......

(a) Tree−structured joined states

(a1, b1) (a1,b2) (a1,b3) (a2,b1)

Joined states
omitted

(A.root, B.root)(a1, b1) (a2,b2) (a3,b1)State:

f(S): 0 0 25 1296

Fig. 20. Index Merge [Xin et al. 2007] (a) Indices on predicates A and B (b) Space of joint States

F in this case is obviously non-monotone. The last seen scores p1 and p2 cannot be used to
derive a score upper bound for the unseen objects. The reason is that it is possible to find
objects with scores above p1/p2 later on if the unseen scores in the first list are all equal to
p1, while the unseen scores in the second list, p2, decrease.

Some recent proposals address the challenges imposed by generic (not necessarily
monotone) ranking functions. The technique proposed in [Zhang et al. 2006] supports
arbitrary ranking functions by modeling top-k query as an optimization problem. The op-
timization goal function consists of a boolean expression that filters tuples based on query
predicates, and a ranking function that determines the score of each tuple. The goal func-
tion is equal to zero whenever a tuple does not satisfy the boolean expression, and it is
equal to the tuple’s score otherwise. The answer to the top-k query is the set of k tuples
with the highest values of the goal function.

In order to efficiently search for the top-k answers, existing indexes of scoring predicates
are used. The optimization problem is solved using anA∗ search algorithm, named OPT*,
by transforming the problem into a shortest path problem as follows. Each state in the
search space is created by joining index nodes. A state thus covers subsets of predicate
domains. Two types of states are defined at different index levels. The first type is region
states, which represents internal index nodes, while the second type is tuple states, which
represents index leaf nodes (i.e., the tuple level of the index). A transition between two
states is achieved by traversing the indexes. A dummy goal state is created so that it can be
reached from any tuple state, where the distance from a tuple state to the goal state is equal
to the inverse of tuple’s score. Distances between other state pairs are set to zero. Based on
this formulation, the shortest path to the goal state involves the tuples with the maximum
scores. To reach the goal state in a small number of state transitions, a heuristic function
is used to guide transitions using the maximum possible score of the current state. The
authors proved that the OPT* algorithm is optimal in the number of visited leaves, tuples
and internal states under certain constraints over the weights associated with each term in
the optimization function.

Ad-hoc ranking functions are addressed by [Xin et al. 2007], with the restriction that
the function is lower-bounded. A ranking function F is lower-bounded in a region Ω of
its variables domains, if the lower bound of F in Ω can be derived. Examples include
F = (x − y)2. The authors present an index-merge framework that performs progres-
sive search over a space of states composed by joining index nodes. The main idea is to
exploit existing B-Tree and R-Tree indexes of ranking predicates to create a search space
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 47

of possible query answers. A state in this space is composed by joining multiple index
nodes. Promising search states, in terms of their involved scores, are progressively mate-
rialized, while the states with no chances of yielding the top-k answers are early-pruned.
The search algorithm prioritizes visiting space states based on their score lower bounds.
For each state, an internal heap is maintained to prioritize traversing the state’s children
(sub-spaces).

To understand the search space of the above technique, consider Figure 20 which shows
the search space for a ranking function f = (A − B)2, where A and B are two rank-
ing predicates. Figure 20(a) shows two existing indices on predicates A and B, while
Figure 20(b) shows the generated search space, and the computed score lower bounds
of different states. Let I1 and I2 be the two indices defined on predicates A and B,
respectively. The search space formed by joining I1 and I2 is constructed based on
the hierarchical index structure. That is, for any joint state (I1.n1, I2.n2), its child
states are created as the Cartesian products of child nodes of I1.n1 and I1.n2. For
example in Figure 20 (a), the joint state (A.root, B.root) has the following children
{(a1, b1), (a1, b2), (a1, b3), (a2, b1), (a2, b2), (a2, b3), (a3, b1), (a3, b2), (a3, b3)}. Score
lower bounds of different states are used to order state traversal. For example, the state
(a2, b2) has a score lower bound of 25, which is computed based on the square of the
difference between 50 and 45, which are possible tuple scores in index nodes a2 and b2,
respectively.

6.3 No Ranking Function (Skyline Queries)

In some applications, it might not be straightforward to define a ranking function. For
example when query answers are to be returned to more than one user, it might be more
meaningful to report all “interesting” answers, rather than a strict ranking according to
some specified ranking function.

A skyline query returns the objects that are not dominated by any other objects restricted
to a set of dimensions (predicates). Figure 21 shows the skyline of a number of objects
based on two predicates p1 and p2, where larger values of both predicates are more favored.
An object X dominates object Y if (X.p1 > Y.p1 and X.p2 ≥ Y.p2) or (X.p1 ≥ Y.p1 and
X.p2 > Y.p2). For example t4 dominates all objects in the shaded rectangle in Figure 21.
All the objects that lie on the skyline are not dominated by any other object. An interesting
property of the skyline is that the top-1 object, based on any monotone ranking function,
must be one of the skyline objects. The Onion Indices [Chang et al. 2000] make use of this
property by materializing and indexing the k first skylines and then answering the query
for some ranking function by only searching the skyline objects.

There is a large body of research that addresses skyline related queries. Details of skyline
query processing techniques are out of the scope of this survey.

7. TOP-K QUERY PROCESSING IN XML DATABASES

Top-k processing in XML databases has recently gained more attention since XML has
become the preferred medium for formatting and exchanging data in many domains such
as the Web and e-commerce. Top-k queries are dominant type of queries in such domains.

In XML queries, structure and content constraints are usually specified to express the
characteristics of the required query answers. XML elements that (partially) match query
conditions are usually associated with relevance scores capturing their similarity to the
query conditions. It is often required to rank query matches based on their relevance scores,

ACM Journal Name, Vol. V, No. N, Month 20YY.

48 · Ilyas et al.

p2

t1 t2

t3t3

t4

p1

t5
Area dominated by t4

Fig. 21. Skyline Query

or report only the top-k matches. There are two main issues that need to be addressed in this
type of queries. The first issue is what kind of scoring functions can be used to measure the
relevance of answers with respect to query conditions. The second issue is how to exploit
scoring functions to prune the less relevant elements as early as possible. In this section we
discuss these two issues and give an overview for multiple examples of top-k techniques
in XML databases.

The TopX System

It is typical in XML databases that multiple indexes are built for different content and/or
structure conditions. Processing multiple indexes to identify the top-k objects is exten-
sively studied by top-k algorithms in relational databases, e.g., the TA family of algo-
rithms [Fagin et al. 2001]. This has motivated approaches that extend relational top-k
algorithms in XML settings. The TopX system [Theobald et al. 2005] is one example
of such approaches. TopX builds on previous work [Theobald et al. 2004], discussed in
Section 5.1.2. The proposed techniques focus on inexpensive sorted accesses to ranked
document lists, with scheduled random accesses. For each document, local scores coming
from ranked lists are aggregated into global scores based a monotonic score aggregation
function such as weighted summation.

Ranked lists in TopX maintain different orders for the documents corpus based on dif-
ferent content and structure conditions. These lists are implemented as relational tables
indexed using various B+-tree indexes. The ranked lists are used primarily to evaluate con-
tent conditions in block-scan fashion. The evaluation of expensive structure conditions is
postponed or avoided by scheduling random accesses only when they are cost-beneficial.

The computational model of TopX is based on the traditional XML element-tree model,
where each tree node has a tag and content. The full content of a node is defined as the
concatenation of the contents of all node’s descendants. Different content scoring measures
are adopted based on the contents, or the full contents of a node n with tag A:

—Term frequency, tf(t, n), of term t in node n, is the number of occurrences of t in the
content of n.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 49

1:Z

2:B 6:B 8:X

7:C

acc

3:X

4:C 5:A

bb aaaa

9:B 10:A

bb 11:C 12:C

aabbc xyz

d3
1:A

2:X 6:B

3:B

4:B 5:C

abb ccc

7:C

abc

d2
1:A

2:A 6:B

3:X

4:B 5:C

ab aacc

7:X

bbb

d1

8:B 9:C

cccxy

Fig. 22. XML Document Set

—Full term frequency, ftf(t, n), of term t in node n, is the number of occurrences of t in
the full content of n.

—Tag frequency, NA, of tag A, is the number of nodes with tag A in the entire document
corpus.

—Element frequency, efA(t), of term t with respect to tag A, is the number of nodes with
tag A that contain t in their full contents in the entire document corpus.

For example, consider the content condition “A//t1, t2 . . . tm”, where A is a tag name
and t1 . . . tm are terms that occur in the full contents of A. The score of node n with tag
A, with respect to the above condition, is computed as follows:

score(n, A//t1...tm) =
∑m

i=1 relevancei.specificityi

compactness(n)
(4)

where relevancei reflects ftf values, specificityi reflects NA and efA(t) values and
compactness(n) considers the subtree or element size for normalization. This content
scoring function is based on Okapi BM25 scoring model [Robertson and Walker 1994].
The following example illustrates the processing of TopX to answer top-k queries.

EXAMPLE 7.1. TopX Example: We consider the example illustrated by [Theobald
et al. 2004] and depicted by Figure 22, where a sample document set composed of three
documents is used for illustration. The numbers beside elements refer to their order in pre-
order tree traversal. Consider the following query: //A[.//B[.//“b”] and .//C[.//“c”]]. This
query requests elements with tag name A and two child tags B and C containing terms
b and c, respectively. Table IV shows the element scores of different content conditions
computed as ftf scores normalized by the number of terms in a subtree, for simplicity.
For instance, the (tag:term) pair (A : a) for element 10 in document d3 has a score of 1/4
because the term a occurs twice among the eight terms under element 10 subtree.

In Example 7.1, finding the top-k matches is done by opening index scans for the two
tag:term conditions (B : b, and C : c), and block-fetching the best document for each
of these two conditions. For (B : b), the first three entries of index list 2 that belong

ACM Journal Name, Vol. V, No. N, Month 20YY.

50 · Ilyas et al.

Index Tag Term Score DocID Pre-order

1 A a 1 d3 5
1 A a 1/4 d3 10
1 A a 1/2 d1 2
1 A a 2/9 d2 1

2 B b 1 d1 8
2 B b 1/2 d1 4
2 B b 3/7 d1 6
2 B b 1 d3 9
2 B b 1/3 d3 2
2 B b 2/3 d2 4
2 B b 1/3 d2 3
2 B b 1/3 d2 6

3 C c 1 d2 5
3 C c 1/3 d2 7
3 C c 2/3 d3 7
3 C c 1/5 d3 11
3 C c 3/5 d1 9
3 C c 1/2 d1 5

Table IV. Elements Scores for Different Content Conditions

to the same document d1 are fetched in a block-scan based on document id’s. Scan-
ning the indexes proceeds in a round-robin fashion among all indexes. A score interval
[worstscore(d), bestscore(d)] is computed for each candidate document d, and is up-
dated periodically based on the current candidate scores and the score upper bound of the
unseen candidate elements in each list.

Since the first round of block-scan yields two different documents, d1 and d2, the
second-best document for each condition need to be fetched. After the second round, all
d3’s relevant elements for both content conditions are in memory. At this point, a random
access for all A elements in d3 can be triggered, if it is cost-beneficial. This operation
efficiently tests the query structure conditions for d3, i.e., whether the B : b and C : c
elements are descendants of the same A element. This is done by comparing the pre-order
and post-order of the respective element pairs. The result is that none of d3’s element
satisfies both structure conditions. Notice that the same test cannot be fully performed for
document d1 unless its C tags are fetched first. If worstscore(d) is greater than the bottom
score of the current top-k set, mink, then d is inserted into the current top-k set. On the
other hand, if bestscore(d) is greater than mink, then d is inserted into a candidate queue
and a probabilistic threshold test is periodically performed to examine whether d still has
a good chance to qualify for the top-k documents or not.

The XRank System

As illustrated by Example 7.1, top-k queries in XML databases report the top-k doc-
uments (or elements) based on their relevance scores to the given query conditions. A
related issue is the notion of keyword proximity, which is the distance between keywords
inside documents (elements). Proximity is rather complex to deal with in the hierarchical
XML data models because it has to take into account the structure information of elements
containing the required keywords. For instance, when keywords are located inside hier-
archically distant elements, the proximity should be penalized even if the keywords are
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 51

physically located near to each other inside the document text. The XRank system [Guo
et al. 2003] addresses these issues. XRank considers the problem of producing ranked
results for keyword queries over hyper-linked XML documents. The approach of XRank
retains the simple keyword search query interface (similar to traditional HTML search
engines), while exploiting XML tagged structure during query processing. The adopted
scoring function favors more specific results to general results with respect to keyword
matching. For instance, the occurrence of all keywords in the same element is favored to
their occurrence in distinct elements. The score of an element with respect to one keyword
is derived based on its popularity (similar to Google’s PageRank), and its specificity with
respect to the keyword. The element score with respect to all query keywords is the sum of
its scores with respect to different keywords, weighted by a measure of keyword proximity.

XML Structure Scoring

Scoring XML elements based on structure conditions is addressed by [Amer-Yahia et al.
2005] with a focus on twig queries. A twig query is a rooted tree with string-labeled
nodes and two types of edges, / (a child edge) and // (a descendant edge). Three different
heuristics of structure relaxation were considered, while scoring XML elements:

—Edge generalization: A / edge in query Q is replaced by a // edge to obtain an approxi-
mate query Q́.

—Subtree promotion: A pattern a[b[Q1]//Q2] is replaced by a[b[Q1] and .//Q2]
—Leaf node deletion: A pattern a[Q1 and .//b] where a is the root of the query tree and b

is a leaf node is replaced by a[Q1].

These relaxations lead to approximate results that do not necessarily satisfy the original
query. Based on these approximations, a directed acyclic graph (DAG), called relaxation
DAG, is constructed. The relaxation DAG contains one source node, which is the original
query, and one sink node which is the most general relaxed query. An example of relaxation
DAG is shown in Figure 23. In this example, the most constraining query is shown in the
top node, while its children represent more relaxed queries that are obtained by replacing
/ constraints by // constraints. Further relaxation is obtained by incrementally removing
constraints. The most relaxed query appears at the bottom of the DAG, which only contains
the root element.

Elements’ scores depend on how close the elements are to the given query. The well-
known tf.idf measure [Salton and McGill 1983] is adopted to compute elements’ scores.
The inverse document frequency (idf), with respect to a query Q, quantifies how many
of the elements that satisfy the sink node in the relaxation DAG additionally satisfy Q.
The term frequency (tf) score quantifies the number of distinct ways in which an element
matches a query and its relaxations. The tf and idf scores are used to compute the overall
elements’ scores. A typical top-k algorithm is used to find the top-k elements based on
these scores.

8. VOTING SYSTEMS: THEORETICAL BACKGROUND

In this section, we give a theoretical background for ranking and top-k processing problems
in voting theory. The problem of combining different rankings of a list of candidates has
deep roots in social and political sciences. Different voting systems have been designed

ACM Journal Name, Vol. V, No. N, Month 20YY.

52 · Ilyas et al.

Car

DVD
Player

Air
Conditioner

Car

DVD
Player

Air
Conditioner

Car

DVD
Player

Air
Conditioner

Car

DVD
Player

Air
Conditioner

Car

DVD
Player

Car

Air
Conditioner

Car

Fig. 23. A Query Relaxations DAG

to allow voters to express their preferences regarding a number of candidates, and select
the winning candidate(s) in a way that satisfies the majority of voters. Voting systems are
based on one or a combination of rank aggregation techniques. The underlying rank ag-
gregation methods specify rules that determine how votes are counted and how candidates
are ordered. The study of formal voting systems is called voting theory.

Choosing a voting system to rank a list of candidates, based on the votes received from
several parties, is usually not straightforward. It has been shown that no preference ag-
gregation method could always yield a fair result when combining votes for three or more
candidates [Arrow 1951]. The problem with choosing a fair voting system is mainly at-
tributed to the required, but sometimes inevitably violated, properties that a voting system
should exhibit [Dwork et al. 2001; Cranor 1996], summarized in the following:

—Monotonicity: A voting system is called monotonic when raising the valuation for a
winning candidate allows it to remain a winner, while lowering the valuation for the
candidate lowers its rank in the candidate list. All voting systems that eliminate candi-
dates prior to selecting a winner violate monotonicity.

—Transitivity: A voting system is transitive if whenever the rank of x is over the rank of
y and y is over z, then it should always be the case that x is ranked over z.

—Neutrality: A voting system is neutral if it does not favor any specific candidates. Sys-
tems that have tie-breaking rules, other than random selection, violate neutrality.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 53

—Pareto-optimality: A voting system is pareto-optimal if when every voter prefers candi-
date x to candidate y, candidate y is not selected.

—Consistency: A voting system is consistent if dividing the candidate list into two arbi-
trary parts, and conducting separate voting for each part, results in the same candidate
being selected as if the entire candidate list was subjected to voting. If a voting system
is consistent, then voting could be conducted in voting domains.

A detailed taxonomy of various voting strategies from the perspectives of social and
political sciences can be found in [Cranor 1996]. In the following sections, we introduce
two of the most widely adopted voting systems. The first system is based on the majority
of votes, while the second one is based on candidates’ relative positions.

8.1 Majority-based Procedures

Ranking by majority of votes is probably the simplest form of aggregating ranks from
different sources. The basic principle is that a group of more than half of the voters should
be able to get the outcome they prefer. Ranking by majority for two candidates possesses
all desirable properties in voting systems. However, when three or more candidates are
under consideration, there may not be a single candidate that is preferred by the majority. In
this case, voters compare each pair of candidates in different rounds and another procedure
must be used to ensure that the selected candidate is preferred by the majority.

8.1.1 Condorcet Criterion. Ranking candidates through pairwise voting was discov-
ered over 200 years ago by the mathematician and social scientist M. Condorcet on 1785.
The criterion was based on a majority rule, but instead of voting for only one candidate,
candidates are ranked in order of preference. This can be seen as series of pairwise com-
parisons between the members of each candidate pair. The end result is a winner who is
favored by the majority of voters. Ballots are counted by considering all possible sets of
two-candidate elections from all available candidates. That is, each candidate is considered
against each and every other candidate. A candidate wins against an opponent in a single
ballot if the candidate is ranked higher than its opponent. Whoever has the most votes
based on all these one-on-one elections wins.

If a candidate is preferred over all other candidates, that candidate is the Condorcet win-
ner. Condorcet winners may not always exist, due to a fundamental paradox: It is possible
for the voters to prefer A over B, B over C, and C over A simultaneously. This is called
majority rule cycle, and it must be resolved by some other mechanism. A voting system
that is able to produce the Condorcet winner is said to attain the Condorcet Property [Young
and Levenglick 1978].

EXAMPLE 8.1. Condorcet Criterion [Election Methods]: This example illustrates
the basic counting method of Condorcet Criterion. Consider an election for the candidates
A, B, C and D. The election ballot can be represented as a matrix, where the row is the
runner under consideration, and the column is the opponent. The cell at (runner, oppo-
nent) contains 1 if runner is preferred, and 0 if not. Cells marked “–” are logically zero
as a candidate can not be defeated by himself. This binary matrix is inversely symmetric:
(runner, opponent) is ¬(opponent, runner), however the sum of all ballot matrices is not
symmetric. When the sum matrix is found, the contest between each candidate pair is con-
sidered. The number of votes for runner over opponent (runner, opponent) is compared to
the number of votes for opponent over runner (opponent, runner). The one-on-one winner

ACM Journal Name, Vol. V, No. N, Month 20YY.

54 · Ilyas et al.

A B C D
A – 0 0 0
B 1 – 1 1
C 1 0 – 0
D 1 0 1 –

Fig. 24. Voter 1 Ballot

A B C D
A – 0 0 0
B 1 – 1 0
C 0 0 – 0
D 1 1 1 –

Fig. 25. Voter 2 Ballot

A B C D
A – 0 0 0
B 2 – 2 1
C 1 0 – 0
D 2 1 2 –

Fig. 26. Sum Ballot

has the most votes. If one candidate wins against all other candidates, that candidate wins
the election. The sum matrix is the primary piece of data used to resolve majority rule
cycles.

Figures 24 and 25 show two sample voter ballots for four candidates A,B, C, and D,
while Figure 26 shows the sum ballot. The sum ballot shows that B defeats A with score
2-0, B defeats C with score 2-0 and B and D have equal scores 1-1. In this case, no
Condorcet winner could be reached.

An extension of Condorect criterion has been introduced by [Truchon 1998]: If a candi-
date is consistently ranked ahead of another candidate by an absolute majority of voters, it
should be ahead in the final ranking. The term consistently refers to the absence of cycles
in the majority relation involving these two candidates.

It has been shown that the extended Condorect criterion has excellent spam filtering
properties when aggregating the rankings generated by different search engines [Dwork
et al. 2001]. Specifically, if a spam page is ranked high by fewer than half of the search
engines, then the majority of search engines prefer a good page to this spam page. In
this case, spam pages will occupy a late rank based on any rank aggregation method that
satisfies the extended Condorect criterion.

8.1.2 Dodgson Ranking. Dodgson (1876) devised a non-binary procedure to over-
come the problem of voting cycles [Black 1958]. He suggested that one should always
choose the candidate that is “closest” from being a Condorcet winner. His concept of
distance was based on the number of inversions of pairs in the individual preferences. A
natural extension of Dodgson’s method is to rank all candidates with respect to the mini-
mum number of inversions necessary to make each of them a Condorcet winner.

8.1.3 Copeland Rule. Copeland’s method [Copeland 1951] is a Condorcet method in
which the winner is determined by finding the candidate with the most pairwise victories.
This rule selects the candidate with the largest Copeland index, which is the number of
times a candidate beats other candidates minus the number of times that candidate loses to
other candidates when the candidates are considered in pairwise comparisons. However,
this method often leads to ties when there is no Condorcet winner. For example, if there is
a three-candidate majority rule cycle, each candidate will have exactly one loss, and there
will be an unresolved tie among the three. The Copeland rule is Pareto-optimal.

The main underlying idea of both Dodgson’s and Copeland’s methods, namely the closer
a candidate is to be a Condorcet winner the better, is actually identical. However, some
anomalies indicate that they can result in different outcomes. [Klamler 2003] gives a de-
tailed comparison of Dodgson Ranking and Copeland rule showing that the Copeland win-
ner can occur at any position in the Dodgson ranking. For some settings of individual
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 55

preferences of candidates, the Dodgson ranking and the Copeland ranking are exactly the
opposite.

8.2 Positional Procedures

Unlike majority-based methods, which are usually based on information from binary com-
parisons, positional methods take into account the information about voters’ preference
orderings. These methods do not necessarily select the Condorcet winner when one exists.
In addition, for some settings of voters’ preferences, each method produces a different out-
come. The three positional methods discussed here are all monotonic and pareto-optimal.

8.2.1 Approval Voting . In this method voters give a single vote to each candidate they
approve [Brams and Fishburn 1983]. This is equivalent to giving each candidate a score of
+1 if the voter approves the candidate, and a score of 0 if the voter does not approve the
candidate. Votes are tallied, and the candidates are ranked based on the total number of
votes they receive.

8.2.2 Plurality Voting . This method is also referred to as “first–past–the–post” [Nurmi
1987]. The method is based on the plurality criterion which can be simply described as
follows: If the number of ballots ranking A as the first preference is greater than the number
of ballots on which another candidate B is the first preference, then A’s probability of
winning must be no less than B’s. In other words , plurality voting mainly uses information
about each voter’s most preferred candidate. When n candidates are to be selected, voters
vote for their n most preferred candidates. Because this procedure only takes into account
the first preference, or first n preferences, of each voter, it often fails to select the Condorcet
winner. As a result, it sometimes produces results which appear illogical when three or
more candidates compete. It sometimes even selects the Condorcet loser, the candidate
that is defeated by all others in pairwise comparisons.

EXAMPLE 8.2. Plurality Voting: Imagine an election held to select the winner among
four candidates A, B, C and D. Assume voters have cast their ballots strictly as follows:

42% of voters 26% of voters 15% of voters 17% of voters
1. A 1. B 1. C 1. D
2. B 2. C 2. D 2. C
3. C 3. D 3. B 3. B
4. D 4. A 4. A 4. A

The candidate A is the winner based on the plurality of votes, even though the majority
of voters (58%) did not select A as the winner.

8.2.3 Borda Count. Borda count voting , proposed in 1770 by the French mathemati-
cian Jean-Charles de Borda, is a procedure in which each voter forms a preference ranking
for all candidates. The Borda count is a voting system used for single-winner elections
in which each voter orders the candidates. The Borda count is classified as a positional
voting system because each rank on the ballot is worth a certain number of points. Given
n candidates, each voter orders all the candidates such that the first-place candidate on a
ballot receives n− 1 points, the second-place candidate receives n− 2 points, and in gen-
eral the candidate in the ith place receives n − i points. The candidate ranked last on the
ballot therefore receives zero points. The points are added up across all the ballots, and the
candidate with the most points is the winner.

This system is similar to “scoring” methods which incorporate all voter preference in-
formation into the vote aggregation. However, as with the other positional voting methods,

ACM Journal Name, Vol. V, No. N, Month 20YY.

56 · Ilyas et al.

this does not always produce a logical result. In fact, the result of a Borda count is often
a function of the number of candidates considered. However, the Borda count will never
choose the Condorcet loser. Borda’s method is the basis for most current rank aggregation
algorithms.

EXAMPLE 8.3. Borda Count: In Example 8.2, B is the Borda winner in this election,
as it has the most points (see the table below). B also happens to be the Condorcet winner
in this case. While the Borda count does not always select the Condorcet winner as the
Borda Count winner, it always ranks the Condorcet winner above the Condorcet loser. No
other positional method can guarantee such a relationship.

Candidate First Second Third Fourth Total Points
A 42 0 0 58 126
B 26 42 32 0 194
C 15 43 42 0 173
D 17 15 26 42 107

The Borda count is vulnerable to compromising. That is, voters can help avoid the elec-
tion of some candidate by raising the position of a more-preferred candidate on their ballot.
The Borda count method can be extended to include tie-breaking methods. Moreover, bal-
lots that do not rank all the candidates can be allowed by giving unranked candidates 0
points, or alternatively by assigning the points up to k, where k is the number of candi-
dates ranked on a ballot. For example, a ballot that ranks candidate A first and candidate
B second, leaving everyone else unranked, would give 2 points to A, 1 point to B, and 0
points to all other candidates.

Nanson’s method, due to Edward John Nanson (1850-1936), is a procedure for finding
the Condorcet winner of a Borda count. In this method, the Borda count is computed for
each candidate and the candidate with the lowest Borda count is eliminated, and a new
election is held using the Borda count until a single winner emerges. If there is a candidate
that is the Condorcet winner, this method chooses that candidate. If there is no Condorcet
winner then some candidate, not necessarily the same as the Borda count winner, is chosen.

8.3 Measuring Distance between Rankings

An alternative procedure to aggregate the rankings obtained from different sources is using
a distance measure to quantify the disagreements among different rankings. An optimal
rank aggregation method is the one that induces an overall ranking with minimum distance
to the different rankings obtained from different sources. [Diaconis 1998; Fagin et al. 2003;
Fagin et al. 2004] describe different distance measures. We describe in the following two
widely adopted measures.

8.3.1 Footrule Distance. Footrule, also called Spearman, distance is an absolute dis-
tance between two ranked vectors. Given two ranked vectors α and β, for a list of n
candidates, the Footrule distance is defined as:

F (α, β) =
n∑

i=1

|α(i)− β(i)| (5)

where α(i) and β(i) denote the position of candidate i in α and β, respectively. The
maximum value of F (α, β) is n2

2 when n is even, and (n+1)(n−1)
2 when n is odd.

For example, consider a list of three candidates, {A,B, C}, if two voters, α and β, order
candidates as α= {A,B, C} and β= {C,B,A}, then the Footrule distance between α and
ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 57

β is |1 − 3| + |2 − 2| + |3 − 1| = 4. The computed distance is the maximum possible
distance for lists of 3 candidates, since one vector ranks the candidates in the reverse order
of the other. The Footrule distance can be computed in linear time.

8.3.2 Kendall tau Distance. Kendall distance measures the amount of disagreement
between two rankings by counting the number of pairwise disagreements [Kendall 1945].
Consider two rankings α and β, of a list of n candidates, the Kendall distance is defined
as:

K(α, β) = |{(i, j)|i < j, α(i) < α(j) while β(i) > β(j)}| (6)

The maximum value of K(α, β) is n(n−1)
2 , which occurs if α is the reverse of β. Kendall

distance can be computed by finding the minimum number of pairwise swaps of adjacent
elements needed to convert one ranking to the other. For example, if two voters, α and
β, order candidates as α= {A,B, C} and β= {B,C, A}, the Kendall distance between the
two rankings is 2 since it takes two swaps to convert one of the rankings to the other.

[Diaconis and Graham 1977] showed that Kendall distance can be approximated using
the Footrule distance as: K(α, β) ≤ F (α, β) ≤ 2K(α, β); which shows that Footrule and
Kendall distance measures are equivalent to each other to some extent.

8.3.3 Kemeny Proposal. The optimal aggregation of different rankings produces a
overall ranking with minimum distance with respect to the given rankings. Given n dif-
ferent rankings α1, α2, . . . αn for a list of candidates, the normalized Kendall distance
between the aggregated overall ranking ρ and the given rankings is defined as:

Distance(ρ, α1, α2, . . . αn) =
n∑

i=1

(K(ρ, α(i)))/n (7)

Kemeny’s proposal has been adopted for performing rank aggregation, based on Kendall
tau distance in [Dwork et al. 2001]. It was shown that computing Kemeny optimal aggre-
gation is NP-Hard even for n = 4. Kemeny aggregation satisfies neutrality and consistency
properties of voting methods.

The hardness of solving the problem of distance-based rank aggregation is related to
the chosen distance measure. In some settings, measures could be adopted to solve the
problem in polynomial time, such as measuring the distance between only the top-k lists
rather than fully ranked lists. Applying the traditional measures in this case is not possible
since it requires accessing the full lists. To work around this problem, extended versions
of Kendall and Footrule distance measures were adopted by [Fagin et al. 2003]. The main
idea is to truncate the top-k lists at various points i ≤ k, compute the symmetric difference
metric between the resulting top i lists, and take a suitable combination of them. Different
cases are considered such as an item pair that appears in all top-k lists as opposed to one
or both items missing from one of the lists. A penalty is assigned to each case while
computing the distance measures.

9. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We have surveyed top-k processing techniques in relational databases. We provided a
classification for top-k techniques based on several dimensions such as the adopted query
model, data access, implementation level and supported ranking functions. We discussed

ACM Journal Name, Vol. V, No. N, Month 20YY.

58 · Ilyas et al.

the details of several algorithms to illustrate the different challenges and data management
problems they address. We also discussed related top-k processing techniques in XML
domain, as well as methods used for scoring XML elements. Finally, we provided a theo-
retical background of the ranking and top-k processing problems from voting theory.

We envision the following research directions to be important to pursue:

—Dealing with Uncertainty: Efficient processing of top-k queries that deal with dif-
ferent sources of uncertainty and fuzziness, in both data and queries, is a challenging
task. Designing uncertainty models to meet the needs of practical applications, as well
as extending relational processing to conform with different probabilistic models, are
two important issues with many unsolved problems. Exploiting the semantics of top-k
queries to identify optimization chances in these settings is another important question.

—Cost Models: Building generic cost models for top-k queries with different ranking
functions is still in its primitive stages. Leveraging the concept of rank-awareness in
query optimizers, and making use of rank-aware cost models is an important related
direction.

—Learning Ranking Functions: Learning ranking functions from users’ profiles or feed-
back is an interesting research direction that involves many practical applications, espe-
cially in Web environments. Building intelligent systems that recognize user’s prefer-
ences by interaction, and optimizing data storage and retrieval for efficient query pro-
cessing are two important problems.

—Privacy and Anonymization: Most current top-k processing techniques assume that the
rankings obtained from different sources are readily available. In some settings, reveal-
ing such rankings might be restricted or anonymized to protect private data. Processing
top-k queries using partially disclosed data is an interesting research topic.

REFERENCES

ACHARYA, S., GIBBONS, P. B., AND POOSALA, V. 2000. Congressional samples for approximate answering
of group-by queries. In Proceedings of the 2000 ACM SIGMOD international conference on Management of
data. 487–498.

AMATO, G., RABITTI, F., SAVINO, P., AND ZEZULA, P. 2003. Region proximity in metric spaces and its use
for approximate similarity search. ACM Transactions on Information Systems 21, 2, 192–227.

AMER-YAHIA, S., KOUDAS, N., MARIAN, A., SRIVASTAVA, D., AND TOMAN, D. 2005. Structure and content
scoring for xml. In Proceedings of the 31st International Conference on Very Large Data Bases. 361–372.

AREF, W. G., CATLIN, A. C., ELMAGARMID, A. K., FAN, J., HAMMAD, M. A., ILYAS, I. F., MARZOUK, M.,
PRABHAKAR, S., AND ZHU, X. 2004. VDBMS: A testbed facility for research in video database benchmark-
ing. ACM Multimedia Systems Journal, Special Issue on Multimedia Document Management Systems 9, 6,
575–585.

ARROW, K. 1951. Social Choice and Individual Values. Wiley, New York, USA.
BABCOCK, B., CHAUDHURI, S., AND DAS, G. 2003. Dynamic sample selection for approximate query process-

ing. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data. 539–550.
BARBARÁ, D., GARCIA-MOLINA, H., AND PORTER, D. 1992. The management of probabilistic data. IEEE

Transactions on Knowledge and Data Engineering 4, 5, 487–502.
BLACK, D. 1958. The Theory of Committees and Elections. Cambridge University Press, London, England.
BÖRZSÖNYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In Proceedings of the 17th

International Conference on Data Engineering. 421.
BRAMS, S. J. AND FISHBURN, P. C. 1983. Approval Voting. Birkhauser, Boston, USA.
BRUNO, N., CHAUDHURI, S., AND GRAVANO, L. 2002. Top-k selection queries over relational databases:

Mapping strategies and performance evaluation. ACM Transactions on Database Systems 27, 2, 153–187.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 59

BRUNO, N., GRAVANO, L., AND MARIAN, A. 2002. Evaluating top-k queries over web-accessible databases.
In Proceedings of the 18th International Conference on Data Engineering. 369.

CHAKRABARTI, K., GAROFALAKIS, M., RASTOGI, R., AND SHIM, K. 2001. Approximate query processing
using wavelets. VLDB Journal 10, 2–3, 199–223.

CHANG, K. C. AND HWANG, S. 2002. Minimal probing: supporting expensive predicates for top-k queries. In
Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data. 346–357.

CHANG, Y., BERGMAN, L. D., CASTELLI, V., LI, C., LO, M., AND SMITH, J. R. 2000. The onion technique:
Indexing for linear optimization queries. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data. 391–402.

CHAUDHURI, S., DAS, G., DATAR, M., MOTWANI, R., AND NARASAYYA, V. R. 2001. Overcoming limi-
tations of sampling for aggregation queries. In Proceedings of the 17th International Conference on Data
Engineering. 534–542.

CHAUDHURI, S., DAS, G., AND NARASAYYA, V. 2001. A robust, optimization-based approach for approximate
answering of aggregate queries. In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data. 295–306.

CHAUDHURI, S., MOTWANI, R., AND NARASAYYA, V. 1998. Random sampling for histogram construction:
how much is enough? In Proceedings of the 1998 ACM SIGMOD international conference on Management
of data. 436–447.

COPELAND, A. H. 1951. A reasonable social welfare function, mimeo.
CRANOR, L. 1996. Declared-strategy voting: An instrument for group decision-making, Ph.D. thesis, washing-

ton university.
DAS, G., GUNOPULOS, D., KOUDAS, N., AND TSIROGIANNIS, D. 2006. Answering top-k queries using views.

In Proceedings of the 32nd international conference on Very large data bases. 451–462.
DIACONIS, P. 1998. Group Representation in Probability and Statistics. Institute of Mathematical Statistics.
DIACONIS, P. AND GRAHAM, R. 1977. Spearman’s footrule as a measure of disarray. Journal of the Royal

Statistical Society, Series B 39, 2, 262–268.
DONJERKOVIC, D. AND RAMAKRISHNAN, R. 1999. Probabilistic optimization of top N queries. In Proceedings

of the 25th International Conference on Very Large Data Bases. 411–422.
DWORK, C., KUMAR, S. R., NAOR, M., AND SIVAKUMAR, D. 2001. Rank aggregation methods for the web.

In Proceedings of the 10th international conference on World Wide Web. 613–622.
ELECTION METHODS. http://www.electionmethods.org.
FAGIN, R., KUMAR, R., MAHDIAN, M., SIVAKUMAR, D., AND VEE, E. 2004. Comparing and aggregat-

ing rankings with ties. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on
Principles of Database Systems. 47–58.

FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003. Comparing top k lists. In Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms. 28–36.

FAGIN, R., LOTEM, A., AND NAOR, M. 2001. Optimal aggregation algorithms for middleware. Journal of
Computer and System Science 1, 1, 614–656.

FUHR, N. 1990. A probabilistic framework for vague queries and imprecise information in databases. In
Proceedings of the 16th International Conference on Very Large Data Bases. 696–707.

GANTI, V., LEE, M., AND RAMAKRISHNAN, R. 2000. ICICLES: Self-tuning samples for approximate query
answering. In Proceedings of the 26th International Conference on Very Large Data Bases. 176–187.

GETOOR, L. AND DIEHL, C. P. 2005. Link mining: a survey. ACM SIGKDD Explorations Newsletter 7, 2,
3–12.

GÜNTZER, U., BALKE, W., AND KIESSLING, W. 2000. Optimizing multi-feature queries for image databases.
In Proceedings of the 26th International Conference on Very Large Data Bases. 419–428.

GÜNTZER, U., BALKE, W., AND KIESSLING, W. 2001. Towards efficient multi-feature queries in heteroge-
neous environments. In Proceedings of the International Conference on Information Technology: Coding and
Computing. 622.

GUO, L., SHAO, F., BOTEV, C., AND SHANMUGASUNDARAM, J. 2003. XRANK: Ranked keyword search
over xml documents. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data. 16–27.

ACM Journal Name, Vol. V, No. N, Month 20YY.

60 · Ilyas et al.

HELLERSTEIN, J. M., HAAS, P. J., AND WANG, H. J. 1997. Online aggregation. In Proceedings of the 1997
ACM SIGMOD international conference on Management of data. 171–182.

HRISTIDIS, V., KOUDAS, N., AND PAPAKONSTANTINOU, Y. 2001. PREFER: A system for the efficient execu-
tion of multi-parametric ranked queries. In Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data. 259–270.

HRISTIDIS, V. AND PAPAKONSTANTINOU, Y. 2004. Algorithms and applications for answering ranked queries
using ranked views. VLDB Journal 13, 1, 49–70.

HWANG, S. AND CHANG, K. C. 2007a. Optimizing top-k queries for middleware access: A unified cost-based
approach. ACM Transactions on Database Systems 32, 1, 5.

HWANG, S. AND CHANG, K. C. 2007b. Probe minimization by schedule optimization: Supporting top-k queries
with expensive predicates. IEEE Transactions on Knowledge and Data Engineering 19, 5, 646–662.

ILYAS, I. F., AREF, W. G., AND ELMAGARMID, A. K. 2002. Joining ranked inputs in practice. In Proceedings
of the 28th international conference on Very large data bases. 950–961.

ILYAS, I. F., AREF, W. G., AND ELMAGARMID, A. K. 2004. Supporting top-k join queries in relational
databases. VLDB Journal 13, 3, 207–221.

ILYAS, I. F., AREF, W. G., ELMAGARMID, A. K., ELMONGUI, H. G., SHAH, R., AND VITTER, J. S.
2006. Adaptive rank-aware query optimization in relational databases. ACM Transactions on Database Sys-
tems 31, 4, 1257–1304.

ILYAS, I. F., SHAH, R., AREF, W. G., VITTER, J. S., AND ELMAGARMID, A. K. 2004. Rank-aware query
optimization. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data.
203–214.

IMIELINSKI, T. AND LIPSKI JR., W. 1984. Incomplete information in relational databases. Journal of the
ACM 31, 4, 761–791.

KENDALL, M. G. 1945. The treatment of ties in ranking problems. Biometrika 33, 3, 239–251.
KLAMLER, C. 2003. A comparison of the dodgson method and the copeland rule. Economics Bulletin 4, 8, 1–7.
LI, C., CHANG, K. C., AND ILYAS, I. F. 2006. Supporting ad-hoc ranking aggregates. In Proceedings of the

2006 ACM SIGMOD international conference on Management of data. 61–72.
LI, C., CHANG, K. C., ILYAS, I. F., AND SONG, S. 2005. RankSQL: query algebra and optimization for

relational top-k queries. In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data. 131–142.

MAMOULIS, N., CHENG, K. H., YIU, M. L., AND CHEUNG, D. W. 2006. Efficient aggregation of ranked
inputs. In Proceedings of the 22rd International Conference on Data Engineering. 72.

MARIAN, A., BRUNO, N., AND GRAVANO, L. 2004. Evaluating top-k queries over web-accessible databases.
ACM Transactions on Database Systems 29, 2, 319–362.

MICHEL, S., TRIANTAFILLOU, P., AND WEIKUM, G. 2005. KLEE: A framework for distributed top-k query
algorithms. In Proceedings of the 31st International Conference on Very Large Data Bases. 637–648.

NATSEV, A., CHANG, Y., SMITH, J. R., LI, C., AND VITTER, J. S. 2001. Supporting incremental join queries
on ranked inputs. In Proceedings of the 27th International Conference on Very Large Data Bases. 281–290.

NURMI, H. 1987. Comparing Voting Systems. D. Reidel Publishing Company, Dordrecht, Germany.
RÉ, C., DALVI, N. N., AND SUCIU, D. 2007. Efficient top-k query evaluation on probabilistic data. In Pro-

ceedings of the 23rd International Conference on Data Engineering. 886–895.
ROBERTSON, S. E. AND WALKER, S. 1994. Some simple effective approximations to the 2-poisson model for

probabilistic weighted retrieval. In Proceedings of the 17th annual international ACM SIGIR conference on
Research and development in information retrieval. 232–241.

SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern IR. McGrow-Hill.
SOLIMAN, M. A., ILYAS, I. F., AND CHANG, K. C.-C. 2007. Top-k query processing in uncertain databases.

In Proceedings of the 23rd International Conference on Data Engineering. 896–905.
THEOBALD, M., SCHENKEL, R., AND WEIKUM, G. 2005. An efficient and versatile query engine for TopX

search. In Proceedings of the 31st International Conference on Very Large Data Bases. 625–636.
THEOBALD, M., WEIKUM, G., AND SCHENKEL, R. 2004. Top-k query evaluation with probabilistic guaran-

tees. In Proceedings of the 30th International Conference on Very Large Data Bases. 648–659.
TRUCHON, M. 1998. An extension of the condorcet criterion and kemeny orders. cahier 98-15 du Centre de

Recherche en Economie et Finance Appliquees.

ACM Journal Name, Vol. V, No. N, Month 20YY.

A Survey of Top-k Query Processing Techniques in Relational Database Systems · 61

TSAPARAS, P., PALPANAS, T., KOTIDIS, Y., KOUDAS, N., AND SRIVASTAVA, D. 2003. Ranked join indices.
In Proceedings of the 19th International Conference on Data Engineering. 277.

VRBSKY, S. V. AND LIU, J. W. S. 1993. APPROXIMATE - a query processor that produces monotonically
improving approximate answers. IEEE Transactions on Knowledge and Data Engineering 5, 6, 1056–1068.

XIN, D., CHEN, C., AND HAN, J. 2006. Towards robust indexing for ranked queries. In Proceedings of the
32nd international conference on Very large data bases. 235–246.

XIN, D., HAN, J., AND CHANG, K. C. 2007. Progressive and selective merge: computing top-k with ad-hoc
ranking functions. In Proceedings of the 2007 ACM SIGMOD international conference on Management of
data. 103–114.

YOUNG, H. P. AND LEVENGLICK, A. 1978. A consistent extension of condorcet’s election principle. SIAM
Journal on Applied Mathematics 35, 2, 285–300.

YUAN, Y., LIN, X., LIU, Q., WANG, W., YU, J. X., AND ZHANG, Q. 2005. Efficient computation of the
skyline cube. In Proceedings of the 31st international conference on Very large data bases. 241–252.

ZHANG, Z., HWANG, S., CHANG, K. C., WANG, M., LANG, C. A., AND CHANG, Y. 2006. Boolean + ranking:
querying a database by k-constrained optimization. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data. 359–370.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

