Deterministic approximation of the cover time
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Uriel Feige

Abstract

The cover time is the expected time it takes a sim-
ple random walk to cover all vertices of a graph. It
arises in numerous questions related to the behaviour
of random walks on graphs. Despite the fact that it can
be approrimated with arbitrary precision by a simple
polynomial time Monte-Carlo algorithm which simu-
lates the random walk, it is not known whether the
cover time of a graph can be computed in determin-
istic PITIME . In the present paper we establish a
deterministic polynomial time algorithm that for any
graph and any starting verter approxrimates the cover
time within polylogarithmic factors. More generally,
our algorithm approximates the cover time for arbi-
trary reversible Markov chains.

1 Introduction

An n state Markov chain is a discrete-time process
defined by an n x n stochastic matrix P = {p;;},
called the transition matriz. Entry p;; specifies the
probability that the Markov chain at state ¢ moves at
the next step to state j. For our purposes, it is con-
venient to represent the Markov chain by a digraph,
whose vertices represent the states of the chain, with
the weights of the edges {(v;,v;)} given by the tran-
sition probabilities {p;;}.

A simple random walk on an undirected graph is a
special case of a Markov chain. The associated tran-
sition matrix P is derived from the adjacency matrix
A of the graph by scaling each row of A so that the
entries in the row sum up to 1. For such a random
walk, the next vertex to be visited is chosen uniformly
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at random from the set of neighbours of the current
vertex.

A reversible (equivalently, time-reversible) Markov
chain can be viewed as a random walk on an edge-
weighted undirected graph. Its transition matrix is
obtained by considering a nonnegative symmetric ma-
trix W (specifying the edge weights), and scaling each
of its rows to sum up to 1.

For a Markov chain M with a starting point s, let
E,[M] denote the cover time of the chain, i.e., the ex-
pected number of steps it takes for a chain that starts
at s to visit all the vertices. When M is a simple
random walk on the graph G, we shall write simply
E,[G]. The cover is one of the most important param-
eters of the chain M. It naturally arises in various
problems related to the behaviour of random walks,
as well as in a number of application.

Other important quantities related to random walks
are the hitting time H[u,v] from vertex u to ver-
tex v, defined as the expected number of steps it
takes the chain to move from w to v, the commute
time Clu,v] = Hlu,v] + H[v,u], and the difference
time D[u,v] = H[u,v] — H[v,u|. The hitting times
(and consequently the commute and the difference
times) can be computed in polynomial time. In or-
der to do this, one uses the fact that the hitting times
Hlu;,v], ¢ = 1,..,n, satisfy the following n linear
equations: For w; = v, H[v,v] = 0, and for u; # v,
Hlu;,v] = 1+ Zv, pij H[uj,v]. The resulting sys-
tem of equations always has a unique solution (namely,
H{u;,v]-s), and therefore by solving it one obtains the
values of the hitting times.

The cover times are apparently much harder to
compute, and in particular, despite a considerable
amount of work on the subject, it is not known
whether they can be computed (or even approxi-
mately computed) in deterministic PTIME. For
one thing, they are computable in EXPTIME: it
suffices to solve a system of linear equations in ex-
ponentially many variables, where the variable z,,; s
specifies the expected time it takes to cover the set
of vertices V(G) \ S, starting at vertex wu,;. As



before, z., v(q) = ZTu, v(eG)\fu,} = 0, and Ty, 5 =
L+ 3, PijTu; s0{us} -

A simple (expected) polynomial time Monte Carlo
algorithm can approximate the cover time with arbi-
trary precision. Using a source of randomness, simu-
late the Markov chain until it covers the entire graph,
counting the steps to find out how long it takes. Re-
peat this experiment several times (the actual number
of repetitions is depending on the desired precision),
and output the average of the observed cover times.
The expected running time of this algorithm is pro-
portional to the actual cover time, while the accuracy
of the approximation depends on the variance of the
cover time. Since for random walks both the cover
time and its variance are bounded by a polynomial in
n = |V(G)| (see, e.g. [2]), the above algorithm does
achieve the goal. One negative feature of this algo-
rithm (from a purely theoretical point of view) is that
it does not give much information about the relations
between the global structure of the graph and its cover
time.

All this does not apply to arbitrary reversible
Markov chains, where in the case when the ratio be-
tween the maximum and the minimum (nonzero) edge
weights is super-polynomial in the number of states,
the cover time can be super-polynomial in the length
of description. For non-reversible Markov chains the
situation is even worse, and the cover time can be ex-
ponential even if the edge weights are restricted to
values 0 and %

It is natural to ask whether there exists a polyno-
mial time algorithm that approximates the cover time
of Markov chains in general, and of random walks in
particular. In this paper we focus on the latter ques-
tion (in fact, our results extend to arbitrary reversible
Markov chains).

It is our hope that research in this direction will
provide new insight on the behaviour of random walks.
The question also belongs to the more general context
of relating the performance of randomized algorithms
to that of the deterministic ones (in this case, for the
task of approximating the expected value of a random
variable the cover time).

1.1 Related work

Related previous works usually provide upper or
lower bounds on the cover time that hold for any size-
n graph G belonging to some subclass of graphs, and
any starting vertex. That is, the bounds typically de-
pend only on the number of vertices of the graph, or on
some property of the subclass from which G has been
driven. These general bounds do not directly lead to

any reasonable approximation of the cover time of an
input graph with specified starting vertex.

We survey some of the known results.

Aleliunas et al. [2] were the first to give an n3

upper bound on the cover time for random walks.
Their approach can be described as follows. From
graph G one can derive a digraph G', where every
pair of vertices (u,v) is connected by a (directed)
edge of weight Hlu,v]. Let HPATH/(G') be the
weight of the minimum weight Hamiltonian path in
G' starting at s. Then E,[G] < HPATH,(G'). In
order to bound HPATH,(G'), one replaces the di-
graph G' by a complete graph G" with edge weights
Clu,v] = H[u,v] + H[v,u], which satisfy the trian-
gle inequality. Finally, bounding HPATH,[G"] is
achieved using the standard techniques for approxi-
mating metric TSP-s (Traveling Salesman Problem),
e.g., the depth-first search order traversal of the min-
imum weight spanning tree MST(G"). Aleliunas et
al. [2] then show that the commute time Cfu,v] be-
tween any two adjacent vertices v,u € G is at most
2m, where m is the number of edges in G. Let T
be an arbitrary spanning tree of G" which is at the
same time a spanning tree of G. By the above claim,
it has weight < 2m(n — 1) < n®. But the weight of
MST(G") is at most that of T', implying E,[G] < n?.

In subsequent work, the existence of spanning
trees of weight less than n® in G" was investigated.
Kahn et al. [13] showed that for any connected regular
graph G, MST[G"] = O(n?). Coppersmith et al. [6]
generalized this result to any connected graph, show-
ing that MST[G"] = O(n%dave(})ave), where day. is
the average degree in G, and (5)ave is the average
of the inverse of the degrees. Feige [9] showed that
MST[G"] < 4n?/27 up to low order terms, implying
a similar upper bound on the cover time. This upper
bound matches (up to low order terms) the cover time
for the lollipop graph — a clique with 2n/3 vertices
connected to a path of length n/3.

A different approach, suitable also for general
Markov chains, was taken by Matthews in [16]. He
shows that E[G] < max, ., H[u,v]Inn. Clearly, this
bound is off by a factor of at most Inn if the Markov
chain starts at such vertex w. The result implies
also an easy O(logn)-approximation of Ef[G], where
E}[G] is the expected number of steps it takes the
chain starting at s to cover G and then return to s.
By a simple argument which uses the triangle inequal-
ity for hitting times, max, , H[u,v]/2 < E,[GT] <
maxy, , Hlu,v]Inn, and thus max, , H[u,v] provides
the desired approximation.

Matthews [16] establishes also a lower bound:



E [G] > ming,, H[u,v]Inn. While sometimes this
bound is far from optimal (e.g., it may happen that
min, , H[u,v] = 1), the method by which it was
obtained often proves useful. Refinements of this
method were employed by Zuckerman [21] in order
to show that the cover time of the y/n X \/n mesh is
O(n(logn)?), and also by Feige [10], who has estab-
lished a general lower bound E[G] > nlon (up to
low order terms) for arbitrary graphs.

Much information on a Markov chain can be ob-
tained also by considering the eigenvalues and eigen-
vectors of its transition matrix. Broder and Karlin [4]
use this approach to obtain tight bounds on the cover
time. In particular, they have shown a ©(nlogn)
bound for the cover time of regular expander graphs.

1.2 Our results

Our main result is a deterministic polynomial time
algorithm for upper bounding the cover time of ran-
dom walks. We prove that the ratio between the com-
puted upper bound and the actual cover time is at
most polylogarithmic in n. Our algorithm applies
also to more general reversible Markov chains, with
the same performance guarantee.

The most computationally intensive part of the al-
gorithm is computing hitting times between all pairs of
vertices. As shown by Tetali [18], this can be accom-
plished using a single matrix inversion (and thus in
O(n?~?) time). On these hitting times the algorithm
performs O(n?) simple operations such as additions
and comparisons to produce a decomposition of the
input graph. Based on the decomposition, the algo-
rithm computes in a straightforward manner an upper
bound on the cover time.

We also show (in Section 2.6) that the cover time for
arbitrary Markov chains can be approximated within
arbitrary small relative error in time nOWn)

2 Possible approaches

Before presenting the main result, we would like to
discuss in this section a number of possible approaches
for approximating the cover time, and also some re-
sults and counterexamples in this direction.

2.1 Derandomization

As noted earlier, there is a simple polynomial time
randomized algorithm for approximating the cover
time for random walks. One may attempt to deran-
domize this algorithm. Under complexity theoretic

assumptions (the existence of pseudorandom genera-
tors for BPP) it follows that the cover time can be
approximated with arbitrary precision in time O(2"")
for any € > 0 (see [3, 20, 12]).

Making an observation that the simulation of a ran-
dom walk requires only logarithmic space, one may at-
tempt to approximate the cover time using an efficient
pseudorandom generator for LOGSPACE computa-
tions, such as Nisan’s generator [17]. However, we
do not know whether the known pseudorandom gen-
erators for space-bounded computations apply in this
case. Also, keeping track of the vertices the walk vis-
ited so far appears to require a linear space.

Finding an efficient pseudorandom generator such
that the expected cover time for walks that use the
output of this generator provably approximates the
true cover time remains an open question.

2.2 The starting vertex makes a big dif-
ference

As noted earlier, for any graph G, max,[E,[G]] is
In n-approximated by max, ,[H[u,v]]. Hoping that
the choice of the starting point s does not have
much effect on the value of E [G], one could get a
good approximation of E [G] by always outputting
max, ,[H[u,v]]. The hope is, however, illusory, and
the resulting approximations can be very poor.

Consider the following example. Let the graph be
a clique on about n vertices, connected to a path
of length /nlogn. Let t be a point in the clique,
and let s be the far endpoint of the path. For this
graph both HJ[t,s] and E,[G] are ©(n°/?\/logn).
However, E,[G] is ounly ©(nlogn), establishing a
gap of Q(n®/?/\/logn) between max,[FE,[G]] and
min, [E,[G]]. This example gives the worst possible
gap, as shown by the following theorem:

Theorem 1 For any connected graph G,

0 <%) min[E, [G]]

Before proving Theorem 1, let us review some
known connections between random walks and the
electrical resistance [8]. A graph can be viewed as an
electrical network where edges represent resistances
of 1 ohm. The effective resistance between two ver-
tices, R[u,v], is the inverse value of the current be-
tween u and v when a voltage of 1 volt is maintained
between these two points by an external source. The
following identity (see [5] for a proof) relates the com-
mute time and the effective resistance:

max|[E,[G]] =

v



Lemma 2 For any connected graph with m edges,
and any two vertices, Clu,v] = 2m Rlu,v].

Another identity characterizes the effective resis-
tance in terms of the number of returns to the origin
(see [19] for a proof):

Lemma 3 Let d, denote the degree of vertex w. For
any connected graph and any two vertices, Rlu,v]d,, is
exactly the expected number of visits at u (including
the start) in a random walk starting at u and stopping
upon hitting v .

As a consequence of the two lemmas, we obtain the
following result:

Lemma 4 For any connected graph and any two ver-
tices, Hlu,v] > Rlu,v]?/2.

Proof: Let dist{u,w] be the length of the short-
est path P C G between vertices uw and w. By
monotonicity of the effective resistance, the resistance
between u and w in G is at most that in P, i.e.,
Rlu,w] < distlu,w]. By the triangle inequality for
the effective resistance, Rjw,v] > R[u,v] — Rlu,w] >
Rlu,v] — dist[u,w].

Let | = dist[u,v] denote the distance between wu
and v. Consider a random walk starting at u and
stopping upon hitting v. Let u;, ¢ = 0,..,1 — 1, be,
respectively, the first vertex at distance 4 from u vis-
ited by the chain. Observe that uy = wu, and that the
chain must encounter such vertices before hitting w.
By Lemma 3, the expected number of visits to u; by
our random walk is exactly R[u;,v]d;, where d; is the
degree of u;. By the previous argument, this number
is at least (R[u,v] — dist[u,u;])d; < (I —1i)d;. By lin-
earity of expectation, the length of the random walk is
at least the sum of the number of visits to ug, .., u;_1,
which in turn is at least Zi;é(l —i)d; > (121)' But
! > Rlu,v], and we conclude that H[u,v] is at least
Rlu,v)?/2. 0

We are now ready to prove Theorem 1.

Proof: (of Theorem 1): Let G be an arbitrary
connected graph, and v,u € V(G). Then

E,[G] < HJv,u] + E[G] . (1)

By Lemma 4, it holds Hlu,v] > R[u,v]*/2. From
Lemma 2, one has H[v,u] < 2m R[u,v] < n*R[u,v].
Therefore,

Hlv,u] < 2n*Hlu,v]/Ru,v] . (2)

Consider now two cases:

e Rlu,v] > v/nlogn.
Combining (1), (2) and the fact that E,[G] >
H{u,v], we conclude in this case that

E[G] <
e Rlu,v] < \/nlogn.

Combining (1) and Lemma 2, we get
E,[G] < y/nSlogn + E,G].

But by [10], E,[G] = Q(nlogn), and the state-
ment follows.

(2¢/n3/logn + 1)E,[G] .

|

2.3 Using a low weight Hamiltonian path

As explained in Section 1.1, HPATH,|G'] is an
upper bound to E[G]. This bound is however far
from optimal. For example, the cover times for the
clique and for the star are O(nlogmn), but the shortest
Hamiltonian path for either graph has weight Q(n?).

An efficiently computable and particularly informa-
tive Hamiltonian path in G’ is based on the differ-
ence time, D[u,v] = H[u,v] — H[v,u]. An important
property of the difference time is its additivity:

Lemma 5 For any reversible Markov chain, and any
three vertices w,v,w, D[u,w] = Dlu,v] + D]v,w].

The proof of the lemma appears in [1, 7]. Here we
would like but to comment that it is equivalent to the
following statement: For any three vertices u,v,w,
Hlu,v] + Hlv,w] + Hlw,u] = Hu,w]+ H[w,v] +
Hlv,u].

As pointed out in [7], Lemma 5 implies that the ver-
tices of G can be arranged in a linear order vy, ..., v,,
where D[v;,v;] < 0 whenever i < j. Indeed, con-
sider a tournament on the vertices of G where the
edge (v;,v;) is directed from wv; to wv; whenever
Div;,v;] < 0. By the additivity property of the dif-
ference time, the tournament is transitive, and there-
fore induces a linear order on V(G). We call this the
difference order. The usefulness of this order in prob-
lems related to the cover time of graphs was already
demonstrated in [10], where it was used for proving
lower bounds on E,[G].

Define

1—2
HPATH,[G] = Hv;,n] + Y Hlvj,v;41] +
j=1
n—1

+ Hvi1,0i01) + Y Hlvg,v544] -
j=it1



Proposition 6 For reversible Markov chains and
HPATH,,|G] as defined above,

1

n—1

HPATH,[G] < E,|G] < HPATH,]|G] .

Proof: The upper bound is trivial. To prove the
lower bound, we show that each of the n — 1 terms ap-
pearing in the definition of HPATH,,[G], is at most
E,,[G]. Clearly, H[v;,v1] < E,,|G]. For other terms,
whenever a term H[u,v] is included in HPATH,,[G],
it holds (due to the difference ordering) Hlv,u] >
Hlu,v]. But E,[G] > min[H[u,v], H[v,u]], since the
Markov chain must visit one of them before the other,
and E,[G] > Hlu,v] follows. O

The analysis is essentially tight, as for the path
the cover time is O(n?), but HPATH,, |[path] =
Q(n3). The ordering imposed by the difference time
on the n-Path (uy,us,..,u,) is easily seen to be
{u1,un}, {ua,u,—1}, etc. Our main result can be
viewed as a refinement of this approach.

2.4 Coupon collecting on trees

For random walks, one may order the vertices by
performing a depth first search on M ST (G") (see Sec-
tion 1.1). An alternative way of using M ST (G") was
analyzed in Feige [11], where no particular order is
enforced for covering the vertices of the MST. Using
this approach Feige obtains upper bounds on the cover
time which are sensitive to the starting point of the
random walk (as we wish to do here). In particular, it
is shown that for any graph, min,[E,[G]] < 2n?/27,
up to low order terms.

In order for this approach to give good approximat-
ing algorithms for the cover time of general graphs,
one should first be able to find good approximations
of the cover time for trees. But even this is an open
problem.

2.5 Maximum hitting times, and the key
graph

Clearly, E[G] > max[H]s,t]]. It is natural to ask
whether max;[H]s, {]] provides a good approximation
for E4[G]. Th answer is negative. In what follows,
we describe an example in which the gap between the
two numbers can be as big as Q (n/logn).

Consider the following graph, which we call the key.
It consists of a path on n vertices pg,...pn_1, where
to each p;, i = 0,..,n/2 there is an attached “tooth”
t;, and an n-vertex clique hy,...,h,, where hy is
connected to p,_1.

Consider a random walk that starts at py. It is
readily checked that H|pg,p;] < Hlpo,h1] = O(n?),
Hlp;,t;) = O(n?), and H(hy,h;] = O(n?). Hence, by
the triangle inequality for the hitting times, H[pg,v] =
O(n?) for any vertex v.

In order to estimate E,, [key], define ¢ as the prob-
ability that h; is hit before all teeth are covered. Since
Hhi,t;] = Q(n?), we have E,, [key] = Q(gn?).

Claim 7 ¢ = Q(1/logn) .

Proof: (Sketch): Let X; be a random variable
taking value O if the random walk starting at py hits
t; before hy, and 1 otherwise. Let also X = Z:‘:/g X,
the random variable counting the number of uncovered
“teeth” upon hitting hy. Recall also the definition
of the k-th moment of X, my(X) = E[XF]. We
claim that mo = ¢ (which is obvious), m; = ©(1),
my = O(logn).

The standard method for computing the probabil-
ities r(v) that a random walk starting at v will hit
a specified vertex vy before hitting the set S, is to
solve the system of “harmonicity” equations satisfied
by r(v)-s: r(u) = 0 for all w € S, r(vg) = 1, and
r(u) = Y, puwr(v) for all the rest (see [8] for a de-
tailed discussion).

Using this method, one obtains

1
BX] =57

A similar analysis shows that for i # j, E[X;X,],
which can be interpreted as the probability that the
random walk hits h; before hitting {¢;,¢,}, is

EIX.X,] = e(ﬁ) .

Therefore,
n/2 n/2 1
mi(X) = BE[X] = } E[Xj] = } —— = 0(1);
n/2
my(X) = B[X?] = Y B[X}+ Y E[X.X)] =
i=0 i#]
n/2
= Y E[X]+6 Zﬁ O(logn) .
i=0 i£]

The statement now follows from the log-concavity of
the sequence of moments, i.e., m? < mgms. O



By the above claim, E, [key] = Q(n®/logn), while
maz, H|[py,v] = O(n?). This establishes a Q(n/logn)
gap between the maximum hitting time and the cover
time from the same vertex.

On the other hand, this gap is never larger than
n—1. Since E[G] = E[U,cv(q {covering v}],

E,G] < Z E,[covering v] =

veV(Q)

= Z His,v] < (n—1)maxH][s,v] .
VeV (@) !

2.6 Approximate inclusion exclusion

Let Fi[v|i] denote the event that a Markov chain
starting at s fails to visit the vertex v by step 7, and
let F,[G|i] = U, Fs[v|i] be the event that the Markov
chain fails to cover the graph by step ¢. In order
to approximate E;[G] in terms of the probabilities of
F[v|i]-s, assume that we are given Pr[(), cq Fs[v]i]]
for any time step i and subset S C V(G). The in-
clusion exclusion formula can then be used in order
to compute the probability of the union F,[G|i] from
the probabilities of all the intersections (1, g Fs[v]i].
However, since there are 2™ intersections, this alone
does not yield an efficient algorithm.

Studies [15, 14] concerning how well the probabil-
ity of a union can be approximated by probabilities of
intersections up to size k, show that when k ~ /n,
the relative error becomes very small. The probabil-
ity of the union is then approximated by a weighted
sum of the probabilities of the intersection, where the
weights (explicitly given in [15]) depend only on k, n,
and the size of the actual intersection involved. Hence,
in our case, for a given set S, the same coefficient
aml is used for any 7 for the term Pr[(, . Fi[v|d]]
appearing in the approximation of Fi[G|i]. Thus,
to compute E,[G] = >, F,[G|i], we need to com-
pute the term a‘kS’T > PriN,es Fs[vli]]. Notice that
> Pr[N,cs Fs[v]i]] is equal to the expected time un-
til a vertex in S is hit, and this can be computed in
polynomial time. The coefficients a‘kéT are also effec-

tively computable. Since there are n®(V™) subsets of
size O(y/n), this gives an n?(V™) time algorithm for
approximating the cover time.

If we restrict attention to polynomial time compu-
tations, computing the probabilities of polynomially
many intersections give an O(n(loglogn)?/(logn)?)
approximation to the union (by approximating the

probability of O(n(loglogn)?/(logn)?) disjoint unions,

each of size (logn)?/(loglogn)?). We do not know if

there is an approach that can do better in the gen-
eral inclusion exclusion scenario, but suspect that in
our special case of probabilities derived from Markov
chains, approximate inclusion exclusion can lead to
much better approximations. This remains an area
for future research.

3 The algorithm

Let G be the input graph of size n. We start by
ordering the vertices of G by the difference order de-
fined above (see Section 2.3). in what follows, for the
sake of simplicity we shall call »; simply 2. Recall
that by definition of the difference order, 7 < j im-
plies DJ[i, j] < 0, or equivalently H[i,j|] < H][j,1].

The first observation is that in order to obtain an
approximation of any E,[G], it suffices to approximate
E | [G].

Lemma 8 Given an «-approzimation of E[G], i.e.,
a number E1[G] such that aFy[G] > E1[G] > Ei[G],
a 3a-approzimation of E;[G] can be obtained in de-
terministic PI'IME .

Proof: The following three inequalities hold in an
obvious fashion:

=
Q
A

H[i, 1] + E{[G] ;
< H[l,i] + E|G] < H[i,1]+ E[G] ;
H[;,1] < EG].

They imply that E;[G] < Ei[G] + H[i,1] < 3E;|G].
Hence, given an a-approximation of E;[G], we con-
clude that E,[G] + H[i,1] is a 3a-approximation of
E;|G]. This, combined with the fact that H][i,1]
is computable in PTIME, concludes the argument.
|

In what follows we concentrate on approximating
E[G].

Next, let P be a partition of the vertices of G into
consecutive (with respect to the difference order) in-
tervals, all having the following property. For an inter-
val I € P, let D[I] denote the maximum difference
time between two vertices in I (it is attained between
the right and the left ends of I'). Let also M[I] be the
maximum hitting time between two vertices i,7 € [
with ¢ < 7. The required property is:

For every interval I € P, it holds D[I] < MI[I].
Moreover, every I € P (with the possible exception of
the rightmost interval in P ) is mazimal in the follow-
ing sense: the interval I' obtained from I by adding



the vertex immediately following it (to the right), does
not satisfy this inequality anymore.

Such a partition can be obtained by scanning the
vertices according to the difference order, and closing
an interval every time it becomes unextendible. No-
tice that some intervals may consist of a single point,
in which case both M[I] and D[I] are 0. Since all
the quantities involved can be computed effectively
and deterministically, the partition is constructible in
PTIME.

Matthews’ Theorem (see [16]) claims that the cover
time of a reversible Markov chain of size n is always
bounded from above by Inn times the largest hitting
time. This implies in our case that for every I € P
and v € I,

E,1) < max Hlu,w] (1) < (M[1)+ D) n(l1)

IN

21u(|1]) M[1] .

Observe also (for future use) that M][I] provides
a lower bound on E,[I]. Indeed, assume MI[I] =
HJi,j] for some ¢ < j in I. The expected time
for covering this pair of vertices alone is at least
min{H[i,j], H[j,il} = H[i,j).

Let P = (I, I,..,I;). By the above observation,
the following quantity provides an upper bound on
E1 [G]

max min Hlv,u] .
veEl; u€l;4q

s s—1
UB = Y 2In(|L|) M[L] +

i=1 i=1
Our algorithm for approximating E;[G] is:
Compute all the hitting times H][i, j].
Arrange the the vertices by the difference order.

Construct a partition P as described above.
Compute UB and output it.

W=

Theorem 9 For random walks on size-n graphs,
1

- < E|[G] < UB.

polylog(n) < Bl6 <

By the way of construction of UB it is clear that it
constitutes an upper bound on E;[G]. Proving that it
is also a lower bound (up to a polylogarithmic factor)
is the content of the following section.

4 Performance guarantee
Proof: Instead of working directly with UB, we shall

work will the following expression:

UB* = 2Mn(|L]) M[L] +

s—1

+ S {2W(L) ML) + Hiright(L), left(L1)]} |

i=1

where left(I) and right(I) mean, respectively, the
leftmost and the rightmost points in the interval I.
Since for every 7 = 1,..,5s — 1,

max min Hv,u] < M[L]+ H[right(L;),left(Ii+1)]
vEl; u€l;i41

clearly UB* > ¢UB for some constant ¢ > 1. Let

2
us define w;, i = 1,2,..,s, as the value of the i-th
term in UB™:

For i = s the second term disappears.

Next, let us extend every I; € P, 1 = 1,2,..,5 —
1, by adding to it the vertex immediately following
it (on the right). Call the new interval J;. Also,
let J, = I,. The intervals in {J;} are consecutive,
consist of at least two points, and may overlap only
at an endpoint per (adjacent) pair; thus the family
is naturally ordered in accordance with the difference
order.

Notice that for every i = 1,2, .., s,

1

min E,[J;]] > ———w;
1+2Inn

veJ;
Indeed, as we have pointed out previously, for any
v e Ji,

E,J[L;] > M[J] > MIL], Hlright(1;),left(li+1)] .

Similarly, for every ¢ = 1,2,..,s — 1,

D[J] > ———w;,
1+2Inn
since D[J;] > D[I;], and by definition of I;, D[J;] >
MI[J;].
In what follows we shall refer to w; as the weight
of J;, and write it as w(.J;).

In the following three steps we shall construct a
subfamily of {J;} with certain regularity properties.

Step 1: Classify the values w;, i = 1,..,s, ac-
cording to the largest integer power p; of 2 such that
w; > 2P¢. Since s < n, it follows that the class
with the largest sum of weights will weigh at least
Q(loén)ziwi = Q(loén)UB*. Let K C [1..s] be the
subset of indices corresponding to this class. Define a
new subfamily of intervals J' = {J;]i € K}. By the
fashion in which J! was constructed, all the intervals
in this subfamily have approximately (up to factor of




2) the same weight. Let the minimum weight of an
interval in J! be W.

Step 2: Let D = D|n,1]. For every J € J!, and
every h = 1,2,.., [log, D] + 1, define S; C V(G) as
a set of vertices v such that 2"~! < D[left(J),v] <
2" Tet S¢ contain the rest of the vertices. Clearly,
these sets constitute a partition of V(G).

Now define a random variable A so that Ay is
the minimal (integer) index d such that by the time
J was first hit by a random walk starting at 1, all S/
with h > d, were covered, while SdJ was not.

Since A; may assume only 2 + log, D = O(logn)
values, the most probable value d(J) of A; occurs
with probability Q(2).

Next, we classify the members of J' according to
their d(J). Since there are at most O(logn) such
values, the most numerous class must consist of at
least Q(j7)[J"| members. Let J? C J* be the set
of members of this class. If d is the (integer) value
corresponding to this class, define R = 2.

An important observation is

> ) 2 17w 2 0 (o)1 -
logn

JeJ?
1 *
Q( 5 )UB .
log”n

=0 (10;n) 2, vl

JeJgt

To summarize:
We have constructed a family J2 C {J;} of consecu-
tive intervals, such that:

1. The weight of every J € J? is between W and
2W

2. Forevery J € J2, min,e s E,[J] > Q) w(J);

logn

3. For every J € J?, D[J] > Q(loén)w(J);

4 Y cpwld) > Q) UB;

5. Finally, for every J € J2, the random walk
starting from v, will with probability Q(@) be-
have as follows. It will first cover all the vertices
to the left of J whose (difference) distance from J
is more than R, then first touch .J, then at some
time before the interval [1..right(J)] is covered,
perform an R/2-digression, i.e., reach a vertex z
to the left of J such that D[left(J),z] > R/2.
The expected number of steps such a digression
will take is at least R/2, as min,es H[u,z] >
Dlu,z] > Dlleft(J),z].

We need one more step of sparsification.

Step 3: Perform the following procedure. While
not all the intervals in 7?2 are eliminated, choose the
rightmost surviving J, mark it, and remove all the
members of 72 whose minimal difference distance
from J is < R.

After the procedure terminates, define the new sub-
family 73 = (Jy, J5,.., J;), as the set of all marked
intervals in 72. In addition to the above listed prop-
erties of intervals in 72, J° satisfies also

6. For every k < t, and every pair of vertices v €
Ji s w € Ji ., the (difference) distance D[u,v]
is > R.

In particular, note that the intervals forming J° are
disjoint.

How many intervals of J2 survived to be included
in J37 Each round of the elimination procedure pro-
duces one member of 72, and removes all the remain-
ing intervals in 72 which intersect a certain inter-
val of the difference length R. Since the difference
length D[J] of any interval in J € J? is at least
TIommn one round of the procedure can remove at
most 2 + (1 + 2Inn)R/W intervals. Hence the size
of J?, being equal to the number of rounds performed,
is at least

sl
= 24 (1+2lnn)R/W

Let C(k) = Ci([1..right(J})]) be the random vari-
able corresponding to the number of steps it takes a
random walk starting at v; to cover all vertices in this
interval. Define for convenience J; = 0, C(0) = 0.

In the concluding argument we shall proceed in
a slightly differently fashion depending on whether
(14 2lnun)R > W or not. Since E;[G] > E[C(t)]
it suffices to show that E[C(t)] is large.

Nl

3

Case 1: (1+2lnn)R > W and |73 > 1.
By Properties 5 and 6, for every k = 2,..,t, the
random walk will with probability Q(@) perform
an R/2-digression after covering [1..right(J;_;)] and
prior to covering [1..right(J})]. Consequently,

E[C(k)—C(k-1)] > Q(lO;n>R,

and therefore

E[C(t)] > Y E[C(k) - C(k—1)]
k=1
> 0 (o) RO D).



R(T) -1 2
0 ( ! )W|j2|. Combining this with Properties 1

logn

By our assumptions for Case 1,

and 4 we conclude that

1 1
. >W|j2|zﬂ< 4>UB.
log™n 1

og n

ElC(t)] > 0 (

Case 2: (1+2lnn)R < W or |73 = 1.

By Properties 5 and 6, for every &k = 1,2, .., ¢, the ran-
dom walk will with probability Q(@) reach J; only
after all the vertices up to right(J;_,) were already
covered. This implies

E[C(k) —C(k—-1)] > Q ( ) min B, [J}] .

logn ) vel;

By Property 2, min,e: E,[J;] > Q(@)W Thus

E[C®)] > Et:E[C(k)*C(kfl)] >
k=1

1
> Q( § >W|j3|.
log®n

Since by our assumptions for Case 2, the sizes of J3
and J? differ by at most a constant factor,

12 )Wj2 > Q(L) UB .

log”n log* n

ElC@)] > 0 (

|

4.1 Arbitrary reversible Markov chains

A closer look on the algorithm presented in Sec-
tion 3 reveals that it works in a more general setting:

Theorem 10 For arbitrary reversible Markov chain
with n states, the upper bound UB obtained in the
same fashion as before, satisfies

1
polylog(n)

The proof of this theorem is only slightly more elab-
orate than that of Theorem 9. The main point that re-
quires change is a more careful limitation of the range
of values for the parameter h in Step 2. Whereas for
random walks, having h = 0,1,2,..,[log, D] + 1 al-
lows for at most O(logn) values (since D = O(n?)),
this might not hold for arbitrary reversible Markov
chains. In order to restrict A to O(logn) values, we
classify all h > log(UB) in one “top” set, and all
h < log(UB) — 2logn in one “bottom” set. If the

top set turns out to be most probable, the analysis
then proceeds as in Case 1. If the bottom set turns
out to be most probable, the analysis then proceeds
as in Case 2. Otherwise, proceed as before. Details
are omitted from this preliminary version.

4.2 Examples

Our algorithm approximates the cover time based
on the matrix of all pairs hitting times. Even if this
matrix is given only approximately, in the sense that
each entry deviates from its true value by a constant
multiplicative factor, the algorithm and its analysis
are robust enough to produce a polylogarithmic ap-
proximation of the cover time. In many cases hitting
times can be approximated fairly well using general
principles, such as symmetry arguments, and the fol-
lowing well known proposition:

Proposition 11 Let (u,v) be a cut edge of a graph,
and let m,,, denote the number of edges that remain
in u’s connected component if the edge (u,v) is cut.
Then H(u,v) = 2my, + 1.

We use such estimates on the hitting times, and the
robustness of our algorithm, to estimate its output UB
(and hence the cover time) in several toy examples.

Clique: Here, by symmetry, all hitting times are
the same (n — 1), and hence all difference times are
0. All vertices will belong to the same interval, and
the algorithm will output UB = (n — 1)Inn, which
is correct (see also remark that follows).

Path: The order imposed by the difference time on
the n-path (uy,ua,..,u,) is {ug, un}, {us,un_1}, ete.
All vertices will belong to the same interval, for the
reason that Hlui,u,| > max,, Dlu,v]. The algo-
rithm will output UB = (n — 1)?Inn, which is off
by a factor of Inn.

However, rather than naively applying the algo-
rithm, we observe that in order to cover a tree it suf-
fices to cover all leaves. Our algorithm works without
change if we want to estimate FE,[S] where S is s
subset of vertices of graph G. Since the path has only
two leaves, the algorithm would in fact give the correct
answer.

Remark: The attentive reader may wonder why
In2 = 1. The reason for this strange equality is
that throughout, in order to simplify notation, we
use Inn really as an estimate for the Harmonic sum
on n — 1 terms (which is what Matthews’ argument
gives). This remark applies whenever we use the term
Inn. O



Lollipop: A lollipop has a path (stick) of length
n/3 connected to a clique (candy) of size 2n/3. The
difference order for the lollipop arranges the vertices
starting at the end of the path, following the path,
then all vertices of the clique in one group, except
for the connection point to the stick, which is the
last vertex. This will be partitioned into intervals,
where each vertex of the path is a distinct interval, and
all vertices of the clique are one interval. We obtain
UB ~ (n/3)? + (2n/3)In(2n/3), which is essentially
correct.

Lollipop+: If we add one more vertex v to the
lollipop extending out of the clique, then in the dif-
ference order v enters just before the vertex p, /3 of
the path closest to the clique. This has the effect
of having v and p,/3 join the clique as one inter-
val (since H[v,p, /3] is larger than any of the dif-
ference times that remain), and we obtain UB ~
(n/3)? + (2n/3)?1n(2n/3), which is off by a logarith-
mic factor.

Key: Recall that the key graph (Section 2.5) is
composed of a path pg,p1,...,pn_1, respective teeth
t1,...,ty2, and a clique hi,..., h,, where h; is con-
nected to p,,_1. The difference order on the key is

{po,t1} ta, p1,t3,p2, . .

{ha,...;hn}, by

When we partition this order into intervals, every
tooth t; is in the same interval with p, ;, but not in
the same interval as t; o. Since H[t;,p; 1] = O(n?),
we obtain that UB = ©(n®). This provides an
alternative proof to our claim in Section 2.5 that

E,, [key] = Q(n?/polylog(n)).

7tn/27pn/2717pn/27 - Pn—1,
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