
Deterministic approximation of the cover time(Preliminary version)Uriel Feige y Yuri Rabinovich zAbstractThe cover time is the expected time it takes a sim-ple random walk to cover all vertices of a graph. Itarises in numerous questions related to the behaviourof random walks on graphs. Despite the fact that it canbe approximated with arbitrary precision by a simplepolynomial time Monte-Carlo algorithm which simu-lates the random walk, it is not known whether thecover time of a graph can be computed in determin-istic PTIME . In the present paper we establish adeterministic polynomial time algorithm that for anygraph and any starting vertex approximates the covertime within polylogarithmic factors. More generally,our algorithm approximates the cover time for arbi-trary reversible Markov chains.1 IntroductionAn n state Markov chain is a discrete-time processde�ned by an n � n stochastic matrix P = fpijg ,called the transition matrix. Entry pij speci�es theprobability that the Markov chain at state i moves atthe next step to state j . For our purposes, it is con-venient to represent the Markov chain by a digraph,whose vertices represent the states of the chain, withthe weights of the edges f(vi; vj)g given by the tran-sition probabilities fpijg .A simple random walk on an undirected graph is aspecial case of a Markov chain. The associated tran-sition matrix P is derived from the adjacency matrixA of the graph by scaling each row of A so that theentries in the row sum up to 1. For such a randomwalk, the next vertex to be visited is chosen uniformlyyDepartment of Applied Math and Computer Science, TheWeizmann Institute, Rehovot, Israel. Incumbent of the Josephand Celia Reskin Career Development Chair. Supported by aYigal Alon fellowship. e-mail: feige@wisdom.weizmann.ac.il.zDepartment of Computer Science, Cornell University,Ithaca, NY, USA. e-mail: yuri@cs.cornell.edu.

at random from the set of neighbours of the currentvertex.A reversible (equivalently, time-reversible) Markovchain can be viewed as a random walk on an edge-weighted undirected graph. Its transition matrix isobtained by considering a nonnegative symmetric ma-trix W (specifying the edge weights), and scaling eachof its rows to sum up to 1.For a Markov chain M with a starting point s , letEs[M ] denote the cover time of the chain, i.e., the ex-pected number of steps it takes for a chain that startsat s to visit all the vertices. When M is a simplerandom walk on the graph G , we shall write simplyEs[G] . The cover is one of the most important param-eters of the chain M . It naturally arises in variousproblems related to the behaviour of random walks,as well as in a number of application.Other important quantities related to random walksare the hitting time H [u; v] from vertex u to ver-tex v , de�ned as the expected number of steps ittakes the chain to move from u to v , the commutetime C[u; v] = H [u; v] + H [v; u] , and the di�erencetime D[u; v] = H [u; v] � H [v; u] . The hitting times(and consequently the commute and the di�erencetimes) can be computed in polynomial time. In or-der to do this, one uses the fact that the hitting timesH [ui; v] , i = 1; ::; n , satisfy the following n linearequations: For ui = v , H [v; v] = 0, and for ui 6= v ,H [ui; v] = 1 + Pvj pij H [uj ; v] . The resulting sys-tem of equations always has a unique solution (namely,H [ui; v] -s), and therefore by solving it one obtains thevalues of the hitting times.The cover times are apparently much harder tocompute, and in particular, despite a considerableamount of work on the subject, it is not knownwhether they can be computed (or even approxi-mately computed) in deterministic PTIME . Forone thing, they are computable in EXPTIME : itsu�ces to solve a system of linear equations in ex-ponentially many variables, where the variable xui;Sspeci�es the expected time it takes to cover the setof vertices V (G) n S , starting at vertex ui . As



before, xui;V (G) = xui;V (G)nfuig = 0, and xui;S =1 +Puj pijxuj ;S[fuig .A simple (expected) polynomial time Monte Carloalgorithm can approximate the cover time with arbi-trary precision. Using a source of randomness, simu-late the Markov chain until it covers the entire graph,counting the steps to �nd out how long it takes. Re-peat this experiment several times (the actual numberof repetitions is depending on the desired precision),and output the average of the observed cover times.The expected running time of this algorithm is pro-portional to the actual cover time, while the accuracyof the approximation depends on the variance of thecover time. Since for random walks both the covertime and its variance are bounded by a polynomial inn = jV (G)j (see, e.g. [2]), the above algorithm doesachieve the goal. One negative feature of this algo-rithm (from a purely theoretical point of view) is thatit does not give much information about the relationsbetween the global structure of the graph and its covertime.All this does not apply to arbitrary reversibleMarkov chains, where in the case when the ratio be-tween the maximum and the minimum (nonzero) edgeweights is super-polynomial in the number of states,the cover time can be super-polynomial in the lengthof description. For non-reversible Markov chains thesituation is even worse, and the cover time can be ex-ponential even if the edge weights are restricted tovalues 0 and 12 .It is natural to ask whether there exists a polyno-mial time algorithm that approximates the cover timeof Markov chains in general, and of random walks inparticular. In this paper we focus on the latter ques-tion (in fact, our results extend to arbitrary reversibleMarkov chains).It is our hope that research in this direction willprovide new insight on the behaviour of random walks.The question also belongs to the more general contextof relating the performance of randomized algorithmsto that of the deterministic ones (in this case, for thetask of approximating the expected value of a randomvariable { the cover time).1.1 Related workRelated previous works usually provide upper orlower bounds on the cover time that hold for any size-n graph G belonging to some subclass of graphs, andany starting vertex. That is, the bounds typically de-pend only on the number of vertices of the graph, or onsome property of the subclass from which G has beendriven. These general bounds do not directly lead to

any reasonable approximation of the cover time of aninput graph with speci�ed starting vertex.We survey some of the known results.Aleliunas et al. [2] were the �rst to give an n3upper bound on the cover time for random walks.Their approach can be described as follows. Fromgraph G one can derive a digraph G0 , where everypair of vertices (u; v) is connected by a (directed)edge of weight H [u; v] . Let HPATHs(G0) be theweight of the minimum weight Hamiltonian path inG0 starting at s . Then Es[G] � HPATHs(G0). Inorder to bound HPATHs(G0), one replaces the di-graph G0 by a complete graph G00 with edge weightsC[u; v] = H [u; v] + H [v; u] , which satisfy the trian-gle inequality. Finally, bounding HPATHs[G00] isachieved using the standard techniques for approxi-mating metric TSP-s (Traveling Salesman Problem),e.g., the depth-�rst search order traversal of the min-imum weight spanning tree MST(G00 ). Aleliunas etal. [2] then show that the commute time C[u; v] be-tween any two adjacent vertices v; u 2 G is at most2m , where m is the number of edges in G . Let Tbe an arbitrary spanning tree of G00 which is at thesame time a spanning tree of G . By the above claim,it has weight � 2m(n� 1) � n3 . But the weight ofMST(G00 ) is at most that of T , implying Es[G] � n3 .In subsequent work, the existence of spanningtrees of weight less than n3 in G00 was investigated.Kahn et al. [13] showed that for any connected regulargraph G , MST [G00] = O(n2). Coppersmith et al. [6]generalized this result to any connected graph, show-ing that MST [G00] = �(n2dave( 1d )ave), where dave isthe average degree in G , and ( 1d)ave is the averageof the inverse of the degrees. Feige [9] showed thatMST [G00] � 4n3=27 up to low order terms, implyinga similar upper bound on the cover time. This upperbound matches (up to low order terms) the cover timefor the lollipop graph { a clique with 2n=3 verticesconnected to a path of length n=3.A di�erent approach, suitable also for generalMarkov chains, was taken by Matthews in [16]. Heshows that Es[G] � maxu;vH [u; v] lnn . Clearly, thisbound is o� by a factor of at most lnn if the Markovchain starts at such vertex u . The result impliesalso an easy O(logn)-approximation of E+s [G] , whereE+s [G] is the expected number of steps it takes thechain starting at s to cover G and then return to s .By a simple argument which uses the triangle inequal-ity for hitting times, maxu;vH [u; v]=2 < Es[G+] �maxu;vH [u; v] lnn , and thus maxu;vH [u; v] providesthe desired approximation.Matthews [16] establishes also a lower bound:



Es[G] � minu;vH [u; v] lnn . While sometimes thisbound is far from optimal (e.g., it may happen thatminu;v H [u; v] = 1), the method by which it wasobtained often proves useful. Re�nements of thismethod were employed by Zuckerman [21] in orderto show that the cover time of the pn�pn mesh is�(n(logn)2), and also by Feige [10], who has estab-lished a general lower bound Es[G] � n lnn (up tolow order terms) for arbitrary graphs.Much information on a Markov chain can be ob-tained also by considering the eigenvalues and eigen-vectors of its transition matrix. Broder and Karlin [4]use this approach to obtain tight bounds on the covertime. In particular, they have shown a �(n logn)bound for the cover time of regular expander graphs.1.2 Our resultsOur main result is a deterministic polynomial timealgorithm for upper bounding the cover time of ran-dom walks. We prove that the ratio between the com-puted upper bound and the actual cover time is atmost polylogarithmic in n . Our algorithm appliesalso to more general reversible Markov chains, withthe same performance guarantee.The most computationally intensive part of the al-gorithm is computing hitting times between all pairs ofvertices. As shown by Tetali [18], this can be accom-plished using a single matrix inversion (and thus inO(n3��) time). On these hitting times the algorithmperforms O(n2) simple operations such as additionsand comparisons to produce a decomposition of theinput graph. Based on the decomposition, the algo-rithm computes in a straightforward manner an upperbound on the cover time.We also show (in Section 2.6) that the cover time forarbitrary Markov chains can be approximated withinarbitrary small relative error in time nO(pn) .2 Possible approachesBefore presenting the main result, we would like todiscuss in this section a number of possible approachesfor approximating the cover time, and also some re-sults and counterexamples in this direction.2.1 DerandomizationAs noted earlier, there is a simple polynomial timerandomized algorithm for approximating the covertime for random walks. One may attempt to deran-domize this algorithm. Under complexity theoretic

assumptions (the existence of pseudorandom genera-tors for BPP) it follows that the cover time can beapproximated with arbitrary precision in time O(2n� )for any � > 0 (see [3, 20, 12]).Making an observation that the simulation of a ran-dom walk requires only logarithmic space, one may at-tempt to approximate the cover time using an e�cientpseudorandom generator for LOGSPACE computa-tions, such as Nisan's generator [17]. However, wedo not know whether the known pseudorandom gen-erators for space-bounded computations apply in thiscase. Also, keeping track of the vertices the walk vis-ited so far appears to require a linear space.Finding an e�cient pseudorandom generator suchthat the expected cover time for walks that use theoutput of this generator provably approximates thetrue cover time remains an open question.2.2 The starting vertex makes a big dif-ferenceAs noted earlier, for any graph G , maxu[Eu[G]] islnn-approximated by maxu;v [H [u; v]] . Hoping thatthe choice of the starting point s does not havemuch e�ect on the value of Es[G] , one could get agood approximation of Es[G] by always outputtingmaxu;v [H [u; v]] . The hope is, however, illusory, andthe resulting approximations can be very poor.Consider the following example. Let the graph bea clique on about n vertices, connected to a pathof length pn logn . Let t be a point in the clique,and let s be the far endpoint of the path. For thisgraph both H [t; s] and Et[G] are �(n5=2plogn).However, Es[G] is only �(n logn), establishing agap of 
(n3=2=plogn) between maxu[Eu[G]] andminu[Eu[G]] . This example gives the worst possiblegap, as shown by the following theorem:Theorem 1 For any connected graph G ,maxv [Ev [G]] = O� n3=2plogn�minu [Eu[G]] :Before proving Theorem 1, let us review someknown connections between random walks and theelectrical resistance [8]. A graph can be viewed as anelectrical network where edges represent resistancesof 1 ohm. The e�ective resistance between two ver-tices, R[u; v] , is the inverse value of the current be-tween u and v when a voltage of 1 volt is maintainedbetween these two points by an external source. Thefollowing identity (see [5] for a proof) relates the com-mute time and the e�ective resistance:



Lemma 2 For any connected graph with m edges,and any two vertices, C[u; v] = 2mR[u; v] .Another identity characterizes the e�ective resis-tance in terms of the number of returns to the origin(see [19] for a proof):Lemma 3 Let du denote the degree of vertex u . Forany connected graph and any two vertices, R[u; v]du isexactly the expected number of visits at u (includingthe start) in a random walk starting at u and stoppingupon hitting v .As a consequence of the two lemmas, we obtain thefollowing result:Lemma 4 For any connected graph and any two ver-tices, H [u; v] > R[u; v]2=2 .Proof: Let dist[u;w] be the length of the short-est path P � G between vertices u and w . Bymonotonicity of the e�ective resistance, the resistancebetween u and w in G is at most that in P , i.e.,R[u;w] � dist[u;w] . By the triangle inequality forthe e�ective resistance, R[w; v] � R[u; v]�R[u;w] �R[u; v]� dist[u;w] .Let l = dist[u; v] denote the distance between uand v . Consider a random walk starting at u andstopping upon hitting v . Let ui , i = 0; ::; l � 1, be,respectively, the �rst vertex at distance i from u vis-ited by the chain. Observe that u0 = u , and that thechain must encounter such vertices before hitting v .By Lemma 3, the expected number of visits to ui byour random walk is exactly R[ui; v]di , where di is thedegree of ui . By the previous argument, this numberis at least (R[u; v]� dist[u; ui])di � (l � i)di . By lin-earity of expectation, the length of the random walk isat least the sum of the number of visits to u0; ::; ul�1 ,which in turn is at least Pl�1i=0(l � i)di � �l+12 � . Butl � R[u; v] , and we conclude that H [u; v] is at leastR[u; v]2=2.We are now ready to prove Theorem 1.Proof: (of Theorem 1): Let G be an arbitraryconnected graph, and v; u 2 V (G). ThenEv[G] � H [v; u] +Eu[G] : (1)By Lemma 4, it holds H [u; v] � R[u; v]2=2. FromLemma 2, one has H [v; u] < 2mR[u; v] < n2R[u; v] .Therefore, H [v; u] < 2n2H [u; v]=R[u; v] : (2)Consider now two cases:

� R[u; v] � pn logn .Combining (1), (2) and the fact that Eu[G] �H [u; v] , we conclude in this case thatEv [G] � (2pn3= logn+ 1)Eu[G] :� R[u; v] � pn logn .Combining (1) and Lemma 2, we getEv [G] � pn5 logn + Eu[G] :But by [10], Eu[G] = 
(n logn), and the state-ment follows.2.3 Using a low weight Hamiltonian pathAs explained in Section 1.1, HPATHs[G0] is anupper bound to Es[G] . This bound is however farfrom optimal. For example, the cover times for theclique and for the star are O(n logn), but the shortestHamiltonian path for either graph has weight 
(n2).An e�ciently computable and particularly informa-tive Hamiltonian path in G0 is based on the di�er-ence time, D[u; v] = H [u; v]�H [v; u] . An importantproperty of the di�erence time is its additivity:Lemma 5 For any reversible Markov chain, and anythree vertices u; v; w , D[u;w] = D[u; v] +D[v; w] .The proof of the lemma appears in [1, 7]. Here wewould like but to comment that it is equivalent to thefollowing statement: For any three vertices u; v; w ,H [u; v] + H [v; w] + H [w; u] = H [u;w] + H [w; v] +H [v; u] .As pointed out in [7], Lemma 5 implies that the ver-tices of G can be arranged in a linear order v1; : : : ; vn ,where D[vi; vj ] � 0 whenever i < j . Indeed, con-sider a tournament on the vertices of G where theedge (vi; vj) is directed from vi to vj wheneverD[vi; vj ] � 0. By the additivity property of the dif-ference time, the tournament is transitive, and there-fore induces a linear order on V (G). We call this thedi�erence order. The usefulness of this order in prob-lems related to the cover time of graphs was alreadydemonstrated in [10], where it was used for provinglower bounds on Ev [G] .De�neHPATHvi [G] = H [vi; v1] + i�2Xj=1H [vj ; vj+1] ++ H [vi�1; vi+1] + n�1Xj=i+1H [vj ; vj+1] :



Proposition 6 For reversible Markov chains andHPATHvi [G] as de�ned above,1n� 1HPATHvi [G] � Evi [G] � HPATHvi [G] :Proof: The upper bound is trivial. To prove thelower bound, we show that each of the n� 1 terms ap-pearing in the de�nition of HPATHvi [G] , is at mostEvi [G] . Clearly, H [vi; v1] � Evi [G] . For other terms,whenever a term H [u; v] is included in HPATHvi [G] ,it holds (due to the di�erence ordering) H [v; u] �H [u; v] . But Es[G] � min[H [u; v]; H [v; u]] , since theMarkov chain must visit one of them before the other,and Es[G] � H [u; v] follows.The analysis is essentially tight, as for the paththe cover time is O(n2), but HPATHvi [path] =
(n3). The ordering imposed by the di�erence timeon the n-Path hu1; u2; ::; uni is easily seen to befu1; ung; fu2; un�1g , etc. Our main result can beviewed as a re�nement of this approach.2.4 Coupon collecting on treesFor random walks, one may order the vertices byperforming a depth �rst search on MST (G00) (see Sec-tion 1.1). An alternative way of using MST (G00) wasanalyzed in Feige [11], where no particular order isenforced for covering the vertices of the MST. Usingthis approach Feige obtains upper bounds on the covertime which are sensitive to the starting point of therandom walk (as we wish to do here). In particular, itis shown that for any graph, mins[Es[G]] � 2n3=27,up to low order terms.In order for this approach to give good approximat-ing algorithms for the cover time of general graphs,one should �rst be able to �nd good approximationsof the cover time for trees. But even this is an openproblem.2.5 Maximum hitting times, and the keygraphClearly, Es[G] � maxt[H [s; t]] . It is natural to askwhether maxt[H [s; t]] provides a good approximationfor Es[G] . Th answer is negative. In what follows,we describe an example in which the gap between thetwo numbers can be as big as 
 (n= logn).Consider the following graph, which we call the key.It consists of a path on n vertices p0; : : : pn�1 , whereto each pi , i = 0; ::; n=2 there is an attached \tooth"ti , and an n-vertex clique h1; : : : ; hn , where h1 isconnected to pn�1 .

Consider a random walk that starts at p0 . It isreadily checked that H [p0; pi] < H [p0; h1] = O(n2),H [pi; ti] = O(n2), and H(h1; hi] = O(n2). Hence, bythe triangle inequality for the hitting times, H [p0; v] =O(n2) for any vertex v .In order to estimate Ep0 [key], de�ne q as the prob-ability that h1 is hit before all teeth are covered. SinceH [h1; ti] = 
(n3), we have Ep0 [key] = 
(qn3).Claim 7 q = 
(1= logn) .Proof: (Sketch): Let Xi be a random variabletaking value 0 if the random walk starting at p0 hitsti before h1 , and 1 otherwise. Let also X = Pn=2i=0Xithe random variable counting the number of uncovered\teeth" upon hitting h1 . Recall also the de�nitionof the k -th moment of X , mk(X) = E[Xk] . Weclaim that m0 = q (which is obvious), m1 = �(1),m2 = �(logn).The standard method for computing the probabil-ities r(v) that a random walk starting at v will hita speci�ed vertex v0 before hitting the set S , is tosolve the system of \harmonicity" equations satis�edby r(v)-s: r(u) = 0 for all u 2 S , r(v0) = 1, andr(u) = Pv puvr(v) for all the rest (see [8] for a de-tailed discussion).Using this method, one obtainsE[Xi] = 1n� i+ 1 :A similar analysis shows that for i 6= j , E[XiXj ] ,which can be interpreted as the probability that therandom walk hits h1 before hitting fti; tjg , isE[XiXj ] = �� 1n ji� jj� :Therefore,m1(X) = E[X ] = n=2Xi=0 E[Xi] = n=2Xi=0 1n� i = �(1) ;m2(X) = E[X2] = n=2Xi=0 E[X2i ] +Xi6=j E[XiXj ] == n=2Xi=0 E[X ] + �0@Xi6=j 1n ji� jj1A = �(logn) :The statement now follows from the log-concavity ofthe sequence of moments, i.e., m21 � m0m2 .



By the above claim, Ep0 [key] = 
(n3= logn), whilemaxvH [p0; v] = O(n2). This establishes a 
(n= logn)gap between the maximum hitting time and the covertime from the same vertex.On the other hand, this gap is never larger thann� 1. Since Es[G] = Es[Sv2V (G)fcovering vg] ,Es[G] � Xv2V (G)Es[covering v] == Xv2V (G)H [s; v] � (n� 1)maxv H [s; v] :2.6 Approximate inclusion exclusionLet Fs[vji] denote the event that a Markov chainstarting at s fails to visit the vertex v by step i , andlet Fs[Gji] = [vFs[vji] be the event that the Markovchain fails to cover the graph by step i . In orderto approximate Es[G] in terms of the probabilities ofFs[vji] -s, assume that we are given Pr[Tv2S Fs[vji]]for any time step i and subset S � V (G). The in-clusion exclusion formula can then be used in orderto compute the probability of the union Fs[Gji] fromthe probabilities of all the intersections Tv2S Fs[vji] .However, since there are 2n intersections, this alonedoes not yield an e�cient algorithm.Studies [15, 14] concerning how well the probabil-ity of a union can be approximated by probabilities ofintersections up to size k , show that when k ' pn ,the relative error becomes very small. The probabil-ity of the union is then approximated by a weightedsum of the probabilities of the intersection, where theweights (explicitly given in [15]) depend only on k , n ,and the size of the actual intersection involved. Hence,in our case, for a given set S , the same coe�cient�k;njSj is used for any i for the term Pr[Tv2S Fs[vji]]appearing in the approximation of Fs[Gji] . Thus,to compute Es[G] = Pi Fs[Gji] , we need to com-pute the term �k;njSj Pi Pr[Tv2S Fs[vji]] . Notice thatPi Pr[Tv2S Fs[vji]] is equal to the expected time un-til a vertex in S is hit, and this can be computed inpolynomial time. The coe�cients �k;njSj are also e�ec-tively computable. Since there are nO(pn) subsets ofsize O(pn), this gives an nO(pn) time algorithm forapproximating the cover time.If we restrict attention to polynomial time compu-tations, computing the probabilities of polynomiallymany intersections give an O(n(log logn)2=(logn)2)approximation to the union (by approximating theprobability of O(n(log logn)2=(logn)2) disjoint unions,each of size (logn)2=(log logn)2 ). We do not know if

there is an approach that can do better in the gen-eral inclusion exclusion scenario, but suspect that inour special case of probabilities derived from Markovchains, approximate inclusion exclusion can lead tomuch better approximations. This remains an areafor future research.3 The algorithmLet G be the input graph of size n . We start byordering the vertices of G by the di�erence order de-�ned above (see Section 2.3). in what follows, for thesake of simplicity we shall call vi simply i . Recallthat by de�nition of the di�erence order, i � j im-plies D[i; j] � 0, or equivalently H [i; j] � H [j; i] .The �rst observation is that in order to obtain anapproximation of any Ei[G] , it su�ces to approximateE1[G] .Lemma 8 Given an �-approximation of E1[G] , i.e.,a number ~E1[G] such that �E1[G] � ~E1[G] � E1[G] ,a 3�-approximation of Ei[G] can be obtained in de-terministic PTIME .Proof: The following three inequalities hold in anobvious fashion:Ei[G] � H [i; 1] + E1[G] ;E1[G] � H [1; i] + Ei[G] � H [i; 1] +Ei[G] ;H [i; 1] � Ei[G] :They imply that Ei[G] � E1[G] + H [i; 1] � 3Ei[G] .Hence, given an � -approximation of E1[G] , we con-clude that ~E1[G] + H [i; 1] is a 3� -approximation ofEi[G] . This, combined with the fact that H [i; 1]is computable in PTIME, concludes the argument.In what follows we concentrate on approximatingE1[G] .Next, let P be a partition of the vertices of G intoconsecutive (with respect to the di�erence order) in-tervals, all having the following property. For an inter-val I 2 P , let D[I ] denote the maximum di�erencetime between two vertices in I (it is attained betweenthe right and the left ends of I ). Let also M [I ] be themaximum hitting time between two vertices i; j 2 Iwith i < j . The required property is:For every interval I 2 P , it holds D[I ] � M [I ] .Moreover, every I 2 P (with the possible exception ofthe rightmost interval in P ) is maximal in the follow-ing sense: the interval I 0 obtained from I by adding



the vertex immediately following it (to the right), doesnot satisfy this inequality anymore.Such a partition can be obtained by scanning thevertices according to the di�erence order, and closingan interval every time it becomes unextendible. No-tice that some intervals may consist of a single point,in which case both M [I ] and D[I ] are 0. Since allthe quantities involved can be computed e�ectivelyand deterministically, the partition is constructible inPTIME .Matthews' Theorem (see [16]) claims that the covertime of a reversible Markov chain of size n is alwaysbounded from above by lnn times the largest hittingtime. This implies in our case that for every I 2 Pand v 2 I ,Ev [I ] � maxu;w2IH [u;w] ln(jI j) � (M [I ] +D[I ]) ln(jI j)� 2 ln(jI j)M [I ] :Observe also (for future use) that M [I ] providesa lower bound on Ev [I ] . Indeed, assume M [I ] =H [i; j] for some i < j in I . The expected timefor covering this pair of vertices alone is at leastminfH [i; j]; H [j; i]g = H [i; j] .Let P = hI1; I2; ::; Isi . By the above observation,the following quantity provides an upper bound onE1[G] :UB = sXi=1 2 ln(jIij)M [Ii] + s�1Xi=1 maxv2Ii minu2Ii+1H [v; u] :Our algorithm for approximating E1[G] is:1. Compute all the hitting times H [i; j] .2. Arrange the the vertices by the di�erence order.3. Construct a partition P as described above.4. Compute UB and output it.Theorem 9 For random walks on size-n graphs,1polylog(n) UB � E1[G] � UB :By the way of construction of UB it is clear that itconstitutes an upper bound on E1[G] . Proving that itis also a lower bound (up to a polylogarithmic factor)is the content of the following section.4 Performance guaranteeProof: Instead of working directly with UB, we shallwork will the following expression:UB� = 2 ln(jIsj)M [Is] +

+ s�1Xi=1 f2 ln(jIij)M [Ii] + H [right(Ii); left(Ii+1)]g ;where left(I) and right(I) mean, respectively, theleftmost and the rightmost points in the interval I .Since for every i = 1; ::; s� 1,maxv2Ii minu2Ii+1H [v; u] � M [Ii] +H [right(Ii); left(Ii+1)] ;clearly UB� � c UB for some constant c > 12 . Letus de�ne wi , i = 1; 2; ::; s , as the value of the i-thterm in UB� :wi = f2 ln(jIij)M [Ii] + H [right(Ii); left(Ii+1)]g :For i = s the second term disappears.Next, let us extend every Ii 2 P , i = 1; 2; ::; s �1, by adding to it the vertex immediately followingit (on the right). Call the new interval Ji . Also,let Js = Is . The intervals in fJig are consecutive,consist of at least two points, and may overlap onlyat an endpoint per (adjacent) pair; thus the familyis naturally ordered in accordance with the di�erenceorder.Notice that for every i = 1; 2; ::; s ,minv2JiEv [Ji] � 11 + 2 lnnwi :Indeed, as we have pointed out previously, for anyv 2 Ji ,Ev[Ji] � M [Ji] � M [Ii]; H [right(Ii); left(Ii+1)] :Similarly, for every i = 1; 2; ::; s� 1,D[Ji] � 11 + 2 lnnwi ;since D[Ji] � D[Ii] , and by de�nition of Ii , D[Ji] >M [Ji] .In what follows we shall refer to wi as the weightof Ji , and write it as w(Ji).In the following three steps we shall construct asubfamily of fJig with certain regularity properties.Step 1: Classify the values wi , i = 1; ::; s , ac-cording to the largest integer power pi of 2 such thatwi � 2pi . Since s � n , it follows that the classwith the largest sum of weights will weigh at least
( 1logn )Pi wi = 
( 1logn )UB� . Let K � [1::s] be thesubset of indices corresponding to this class. De�ne anew subfamily of intervals J 1 = fJiji 2 Kg . By thefashion in which J 1 was constructed, all the intervalsin this subfamily have approximately (up to factor of



2) the same weight. Let the minimum weight of aninterval in J 1 be W .Step 2: Let D = D[n; 1]. For every J 2 J 1 , andevery h = 1; 2; ::; dlog2De+ 1, de�ne SJh � V (G) asa set of vertices v such that 2h�1 � D[left(J); v] <2h . Let SJ0 contain the rest of the vertices. Clearly,these sets constitute a partition of V (G).Now de�ne a random variable �J so that �J isthe minimal (integer) index d such that by the timeJ was �rst hit by a random walk starting at 1, all SJhwith h > d , were covered, while SJd was not.Since �J may assume only 2 + log2D = O(logn)values, the most probable value d(J) of �J occurswith probability 
( 1logn ).Next, we classify the members of J 1 according totheir d(J). Since there are at most O(logn) suchvalues, the most numerous class must consist of atleast 
( 1logn )jJ 1j members. Let J 2 � J 1 be the setof members of this class. If d is the (integer) valuecorresponding to this class, de�ne R = 2d .An important observation isXJ2J 2 w(J) � jJ 2jW � 
� 1logn� jJ 1jW == 
� 1logn� XJ2J 1 w(J) � 
� 1log2 n�UB� :To summarize:We have constructed a family J 2 � fJig of consecu-tive intervals, such that:1. The weight of every J 2 J 2 is between W and2W ;2. For every J 2 J 2 , minv2J Ev[J ] � 
( 1logn )w(J);3. For every J 2 J 2 , D[J ] � 
( 1logn )w(J);4. PJ2J 2 w(J) � 
( 1log2 n )UB ;5. Finally, for every J 2 J 2 , the random walkstarting from v1 will with probability 
( 1logn ) be-have as follows. It will �rst cover all the verticesto the left of J whose (di�erence) distance from Jis more than R , then �rst touch J , then at sometime before the interval [1::right(J)] is covered,perform an R=2-digression, i.e., reach a vertex xto the left of J such that D[left(J); x] > R=2.The expected number of steps such a digressionwill take is at least R=2, as minu2J H [u; x] �D[u; x] � D[left(J); x] .

We need one more step of sparsi�cation.Step 3: Perform the following procedure. Whilenot all the intervals in J 2 are eliminated, choose therightmost surviving J , mark it, and remove all themembers of J 2 whose minimal di�erence distancefrom J is � R .After the procedure terminates, de�ne the new sub-family J 3 = hJ�1 ; J�2 ; ::; J�t i , as the set of all markedintervals in J 2 . In addition to the above listed prop-erties of intervals in J 2 , J 3 satis�es also6. For every k < t , and every pair of vertices v 2J�k , u 2 J�k+1 , the (di�erence) distance D[u; v]is > R .In particular, note that the intervals forming J 3 aredisjoint.How many intervals of J 2 survived to be includedin J 3 ? Each round of the elimination procedure pro-duces one member of J 3 , and removes all the remain-ing intervals in J 2 which intersect a certain inter-val of the di�erence length R . Since the di�erencelength D[J ] of any interval in J 2 J 2 is at leastW1+2 lnn , one round of the procedure can remove atmost 2 + (1 + 2 lnn)R=W intervals. Hence the sizeof J 3 , being equal to the number of rounds performed,is at least jJ 3j � jJ 2j2 + (1 + 2 lnn)R=W :Let C(k) = C1([1::right(J�k )]) be the random vari-able corresponding to the number of steps it takes arandom walk starting at v1 to cover all vertices in thisinterval. De�ne for convenience J�0 = ; , C(0) = 0.In the concluding argument we shall proceed ina slightly di�erently fashion depending on whether(1 + 2 lnn)R � W or not. Since E1[G] � E[C(t)] ,it su�ces to show that E[C(t)] is large.Case 1: (1 + 2 lnn)R � W and jJ 3j > 1.By Properties 5 and 6, for every k = 2; ::; t , therandom walk will with probability 
( 1log n ) performan R=2-digression after covering [1::right(J�k�1)] andprior to covering [1::right(J�k )] . Consequently,E[C(k)� C(k � 1)] � 
� 1logn�R ;and thereforeE[C(t)] � tXk=1E[C(k) � C(k � 1)]� 
� 1logn�R (jJ 3)j � 1) :



By our assumptions for Case 1, R (jJ 3)j � 1) �
� 1log n�W jJ 2j . Combining this with Properties 1and 4 we conclude thatE[C(t)] � 
� 1log2 n�W jJ 2j � 
� 1log4 n�UB :Case 2: (1 + 2 lnn)R < W or jJ 3j = 1.By Properties 5 and 6, for every k = 1; 2; ::; t , the ran-dom walk will with probability 
( 1logn ) reach J�k onlyafter all the vertices up to right(J�k�1) were alreadycovered. This impliesE[C(k) � C(k � 1)] � 
� 1logn� minv2J�k Ev [J�k ] :By Property 2, minv2J�k Ev [J�k ] � 
( 1logn )W . ThusE[C(t)] � tXk=1E[C(k) � C(k � 1)] �� 
� 1log2 n�W jJ 3j :Since by our assumptions for Case 2, the sizes of J 3and J 2 di�er by at most a constant factor,E[C(t)] � 
� 1log2 n�W jJ 2j � 
� 1log4 n�UB :
4.1 Arbitrary reversible Markov chainsA closer look on the algorithm presented in Sec-tion 3 reveals that it works in a more general setting:Theorem 10 For arbitrary reversible Markov chainwith n states, the upper bound UB obtained in thesame fashion as before, satis�es1polylog(n) UB � E1[G] � UB :The proof of this theorem is only slightly more elab-orate than that of Theorem 9. The main point that re-quires change is a more careful limitation of the rangeof values for the parameter h in Step 2. Whereas forrandom walks, having h = 0; 1; 2; ::; dlog2De + 1 al-lows for at most O(logn) values (since D = O(n3)),this might not hold for arbitrary reversible Markovchains. In order to restrict h to O(logn) values, weclassify all h > log(UB) in one \top" set, and allh < log(UB) � 2 logn in one \bottom" set. If the

top set turns out to be most probable, the analysisthen proceeds as in Case 1. If the bottom set turnsout to be most probable, the analysis then proceedsas in Case 2. Otherwise, proceed as before. Detailsare omitted from this preliminary version.4.2 ExamplesOur algorithm approximates the cover time basedon the matrix of all pairs hitting times. Even if thismatrix is given only approximately, in the sense thateach entry deviates from its true value by a constantmultiplicative factor, the algorithm and its analysisare robust enough to produce a polylogarithmic ap-proximation of the cover time. In many cases hittingtimes can be approximated fairly well using generalprinciples, such as symmetry arguments, and the fol-lowing well known proposition:Proposition 11 Let (u; v) be a cut edge of a graph,and let mujv denote the number of edges that remainin u 's connected component if the edge (u; v) is cut.Then H(u; v) = 2mujv + 1 .We use such estimates on the hitting times, and therobustness of our algorithm, to estimate its output UB(and hence the cover time) in several toy examples.Clique: Here, by symmetry, all hitting times arethe same (n � 1), and hence all di�erence times are0. All vertices will belong to the same interval, andthe algorithm will output UB = (n � 1) lnn , whichis correct (see also remark that follows).Path: The order imposed by the di�erence time onthe n-path hu1; u2; ::; uni is fu1; ung; fu2; un�1g; etc .All vertices will belong to the same interval, for thereason that H [u1; un] � maxu;vD[u; v] . The algo-rithm will output UB = (n � 1)2 lnn , which is o�by a factor of lnn .However, rather than naively applying the algo-rithm, we observe that in order to cover a tree it suf-�ces to cover all leaves. Our algorithm works withoutchange if we want to estimate Ev [S] where S is ssubset of vertices of graph G . Since the path has onlytwo leaves, the algorithm would in fact give the correctanswer.Remark: The attentive reader may wonder whyln 2 = 1. The reason for this strange equality isthat throughout, in order to simplify notation, weuse lnn really as an estimate for the Harmonic sumon n � 1 terms (which is what Matthews' argumentgives). This remark applies whenever we use the termlnn .



Lollipop: A lollipop has a path (stick) of lengthn=3 connected to a clique (candy) of size 2n=3. Thedi�erence order for the lollipop arranges the verticesstarting at the end of the path, following the path,then all vertices of the clique in one group, exceptfor the connection point to the stick, which is thelast vertex. This will be partitioned into intervals,where each vertex of the path is a distinct interval, andall vertices of the clique are one interval. We obtainUB ' (n=3)2 + (2n=3) ln(2n=3), which is essentiallycorrect.Lollipop+: If we add one more vertex v to thelollipop extending out of the clique, then in the dif-ference order v enters just before the vertex pn=3 ofthe path closest to the clique. This has the e�ectof having v and pn=3 join the clique as one inter-val (since H [v; pn=3] is larger than any of the dif-ference times that remain), and we obtain UB '(n=3)2 + (2n=3)2 ln(2n=3), which is o� by a logarith-mic factor.Key: Recall that the key graph (Section 2.5) iscomposed of a path p0; p1; : : : ; pn�1 , respective teetht1; : : : ; tn=2 , and a clique h1; : : : ; hn , where h1 is con-nected to pn�1 . The di�erence order on the key isfp0; t1g; t2; p1; t3; p2; : : : ; tn=2; pn=2�1; pn=2; : : : pn�1;fh2; : : : ; hng; h1When we partition this order into intervals, everytooth ti is in the same interval with pi�1 , but not inthe same interval as ti�2 . Since H [ti; pi�1] = �(n2),we obtain that UB = �(n3). This provides analternative proof to our claim in Section 2.5 thatEp0 [key] = 
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