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ows on a compact man-ifold have �nitely many singularities, with almost every orbit converging to someof the attracting ones (stable equilibria). And the same is true about any nearby
ow, with the same number of attractors. General systems can behave in muchmore complicated ways, though. Here I consider both discrete time systems {smooth transformations f : M ! M , possibly invertible { and continuous timesystems { smooth 
ows or semi-
ows Xt :M !M , t 2 R { on manifolds M .In the early sixties, Smale was proposing the notion of uniformly hyperbolicsystem, a broad class that includes the di�eomorphisms and 
ows named afterAnosov [4], most gradient-like systems, and the \horseshoe" map. See [101]. Ahyperbolic set , or generalized horseshoe, is an invariant subset � � M such thatthe tangent space over it splits into two invariant subbundles T�M = Es � Euso that Es is uniformly contracted by future iterates, and similarly for Eu inpast iterates. The system is uniformly hyperbolic, or Axiom A, if its limit set {the closure of all future and past accumulation sets of orbits { is hyperbolic. Aprototype is the di�eomorphism induced on the 2-torus by (x; y) 7! (2x+y; x+y),with Es and Eu corresponding to the eigenspaces of this linear map. This, justas many other uniformly hyperbolic systems, is also an example of \chaotic" (orsensitive) behaviour: orbits of typical nearby points move away from each otherexponentially fast, under forward and backward iterations.1Partially supported by PRONEX - Dynamical Systems, BrazilDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



2 Marcelo VianaNevertheless, uniformly hyperbolic systems admit a very precise description oftheir behaviour: there are compact invariant subsets �1; : : : ;�N that are transitive(dense orbits) and such that almost every forward orbit of the system accumulateson one of them [101]. And, though the dynamics near these attractors �j maybe quite \chaotic", it is strikingly well behaved from a statistical point of view:there exists a physical probability measure �j supported on �j , such that the timeaverage (�p stands for Dirac measure at p)limn!+1 1n n�1Xj=0 �fj(z) ; or limT!+1 1T Z T0 �Xt(z) dt;exists and coincides with �j for Lebesgue almost every point z whose orbit accu-mulates on �j . Cf. Sinai, Ruelle, Bowen [100], [95], [20], [19].Another major breakthrough was the proof that uniformly hyperbolic sys-tems are, essentially, the structurally stable ones. This was completed by Ma~n�e[63], and Hayashi [43] for 
ows, in the C1 setting, after crucial contributions fromseveral mathematicians, specially Anosov, Palis, Smale, Robbin, de Melo, Robin-son. See [84] for an extended list of references. The notion of structural stability ,introduced by Andronov-Pontryagin in the thirties, means that all nearby systemsare equivalent up to continuous global change of coordinates.On the other hand, striking examples like Newhouse's maps with in�nitelymany periodic attractors [74], or the \strange" attractors of Lorenz [56] andH�enon [44], showed that uniform hyperbolicity is too strong a condition for ageneral description of dynamics: systems can be persistently non-hyperbolic (per-sistently unstable). As the hope to describe generic dynamical systems in a uni-formly hyperbolic scope was gradually abandoned, still other important develop-ments were taking place concerning enlarged settings of dynamics.Starting from Oseledets [78], Pesin [87] developed a theory of non-uniformhyperbolicity , dealing with general systems endowed with an invariant probabilitymeasure with respect to which almost every point exhibits asymptotic contractionand expansion along complementary directions (non-zero Lyapunov exponents).Then almost every point has a stable and an unstable manifold, whose points areexponentially asymptotic to it, respectively, in the future and in the past. SeeKatok-Hasselblatt [48] for an account of the theory and references.There was also considerable progress in studying the modi�cations (bifurca-tions) through which a system may cease to be stable. Global bifurcations likehomoclinic tangencies and heteroclinic cycles , that a�ect the system's behaviouron large regions of the ambient M , are accompanied by such a wealth of dynam-ical changes that one must aim at describing the main phenomena occurring formost nearby systems, specially in terms of probability in parameter space. SeePalis-Takens [84] and Section 5 below.And one could attain substantial understanding of some \chaotic" systems,such as Lorenz-like 
ows, quadratic maps of the interval, period-doubling cascades,and H�enon-like attractors. Since orbits are sensitive to initial conditions, andso essentially unpredictable over long periods of time, one focus on statisticalproperties of large sets of trajectories, a point of view pioneerly advocated byDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 3Sinai and by Ruelle back in the seventies. See [106] and Sections 3, 4, 6 below.Building on this, we are again trying to develop a global picture of Dynamicsrecovering, in a new and more probabilistic formulation, much of the paradigm of�nitude and stability for most systems that inspired Smale's proposal about fourdecades ago. Palis conjectured that every dynamical system can be approximatedby another having only �nitely many attractors, supporting physical measuresthat describe the time averages of Lebesgue almost all points. This is at the coreof a program [81] that also predicts that statistical properties of such systems arestable, namely under small random perturbations.In this note I survey some of the recent, rather exciting progress in the generaldirection of such a program, as well as related open problems and conjectures,mostly in the context of general dissipative systems.2 Setting the scenarioIn what follows I refer mostly to transformations, since the de�nitions and resultsfor 
ows are often similar. Except where otherwise stated, manifolds are smooth,compact, without boundary, and measures are probabilities on the Borel �-algebra.Lebesgue measure means any measure generated by a smooth volume form.Time averages of continuous functions ' :M ! Rlimn!+1 1n n�1Xj=0 '(f j(z))are the most basic statistical data on the system's asymptotic behaviour. Aninvariant measure � is a physical measure if the time average of every ' coincideswith the spatial �-average R 'd�, for a positive Lebesgue measure subset of pointsz 2M . And the basin of � is the set B(�) of points z for which this happens.Physical measures are often called SRB measures , after Sinai, Ruelle, Bowen,who �rst constructed them for Anosov systems [100] and then for general uniformlyhyperbolic di�eomorphisms [95] and 
ows [20]. For these systems there are �nitelymany SRB measures �1; : : : ; �N , and their basins cover Lebesgue almost all ofthe phase space M . Each support �i = supp�i is an attractor , meaning thatit is an invariant transitive set whose basin of attraction has positive Lebesguemeasure. An invariant set � is transitive if there exists z 2 � whose forwardorbit ffn(z) : n � 0g is dense in �. The basin of attraction (or stable set) B(�)is the set of points whose forward orbits accumulate in �. In this hyperbolicsetting, as well as in all known cases that are relevant here, the basin contains afull neighbourhood of the attractor.For systems preserving a smooth measure, Birkho�'s ergodic theorem ensuresthat time averages are de�ned Lebesgue almost everywhere. It is widely believedthat the same should be true for most non-conservative systems, but this is notknown, and there are examples showing that it is not the case for all systems. Forinstance, Bowen exhibited a simple 
ow on the plane where time averages fail toexist on a whole open region bounded by two saddle connections; see e.g. [106].Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



4 Marcelo VianaOn the other hand, existence results for SRB measures are now available for somelarge classes of systems, as we shall see.SRB measures are sometimes de�ned di�erently, by a property of absolutecontinuity of their conditional measures on unstable manifolds; see e.g. Eckmann-Ruelle [37]. The de�nition adopted above is a bit more general, but all the SRBmeasures we meet in the present paper also have this absolute continuity property.Palis proposed a few years ago that, for a dense subset of all systems statisticalproperties should be essentially as nice as in the Axiom A case. In more preciseterms, he conjectured that every system can be approximated by another havingonly �nitely many attractors (approximation in the Ck topology, any k � 1)supporting SRB measures whose basins cover a full Lebesgue measure subset of themanifold ; see [81]. He also conjectured that those properties should be very stableunder small perturbations of the system. Here one thinks of modi�cations of thesystem along generic parametrized families, i.e. �nite-dimensional submanifolds inthe space of systems. For Lebesgue almost all parameters there should be �nitelymany attractors, supporting SRB measures whose basins cover nearly all of M ,also in terms of Lebesgue measure. Moreover, time averages should not be mucha�ected if small random errors in parameter space are introduced at each iteration:stochastic stability.This last notion is most relevant when dealing with concrete situations mod-eled by mathematical systems (which are always only approximately correct): inmany cases, features of the actual system that are unaccounted for by the modelare well represented by random 
uctuations around it. For a de�nition, let us con-sider �rst the situation where the initial map f has some attractor � supportinga unique SRB measure �, and whose basin contains a trapping open region U :the closure of f(U) is contained in U . One considers sequences xj , j � 0, withx0 2 U and xj+1 = gj(xj) for j � 0, where the maps gj are chosen at random(independently) in the �-neighbourhood of f , according to some probability P�.Here � should not be too large, to ensure that these sequences xj do not escape U .Then f is stochastically stable on the basin of � if for each continuous function 'limn!+1 1n n�1Xj=0 '(xj) is close to Z 'd�;for almost every random orbit (xj)j (Lebesgue almost every x0 2 U and P� almostevery gj , j � 0) if � is small. More concretely, I propose to take these smallrandom perturbations along generic parametrized families through f : P� is givenby Lebesgue measure in the corresponding parameter space.There are other perturbation schemes, for instance, random orbits may beformed by choosing each xj+1 at random close to f(xj), following some probabilitymeasure P�(xj ; �). The random noise P�(x; �) is usually taken absolutely continuouswith respect to Lebesgue measure, and supported on the �-neighbourhood of f(x)or, more generally, converging to Dirac measure at f(x) as � ! 0. See Kifer [52],[53]. Stochastic stability with respect to this perturbation scheme is de�ned asbefore. Although it is not logically related to the notion in the previous paragraph,Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 5which corresponds to P�(x;A) = P�(fg : g(x) 2 Ag);the two de�nitions agree for the systems known to be stable, such as uniformlyhyperbolic attractors Kifer [53], Young [108], and other cases mentioned below.So far, I restricted to attractors with a unique SRB measure and whose basincontains some trapping region: this is true for essentially all known cases, althoughit is not yet clear in which generality it holds. If the basin of attraction is justa positive Lebesgue measure set (or if one considers random noise which is notsupported on small neighbourhoods), then random orbits may escape from it. Insuch cases, as well as for transitive attractors supporting several SRB measures,a more global notion of stochastic stability can be applied: denoting �i the SRBmeasures of f , time averages of each continuous ' along almost all random orbitsshould be close to the convex hull of the R 'd�i when � is small.The main random perturbation scheme for 
ows Xt is by di�usion. That is,letting X be the corresponding vector �eld, one considers the 
ow �t associated tothe stochastic equation (for simplicity, pretend M = Rd )d�t = X(�t) dt+ �A(�t) dwt (1)where A(�) is matrix-valued and dwt is the standard Brownian motion. See e. g.Friedman [38]. Then stochastic stability is de�ned essentially as before, if Xt hasa unique SRB measure �: the time averages of each continuous ' over almost allstochastic orbits �t should be close to R 'd� if � is small. More generally, sincesolutions of (1) usually spread over the whole ambient manifold M , one shoulduse a global notion of stability as in the previous paragraph.Before proceeding, let me recall another probabilistic notion, expressing sen-sitivity of the dynamics, that plays an important role in the characterization ofcomplex systems: decay of correlations. The de�nition applies to general maps f(or 
ows) endowed with some invariant measure �, though the most interestingcase is when � is a physical measure. Informally, this notion can be motivated asfollows. Sensitiveness means that orbits, in some sense, forget their initial stateas time increases to in�nity. So, given real functions ' and  on M , knowledge of'(z) should provide little information about  (fn(z)) for large n � 1. This maybe expressed in terms of their correlationsCn(';  ) = Z ' ( � fn) d�� Z 'd� Z  d�;that should converge rapidly to zero as time increases to in�nity. In general, onemust restrict to some subspace F of functions ';  with a minimum amount ofregularity. This is because the systems we deal with are actually deterministic(and, in many cases, reversible): loss of memory resulting from sensitiveness ap-pears only at a coarse level of observation of the system, through quantities ';  that do not distinguish nearby points well. One speaks of (exponential) decay ofcorrelations in the space F if Cn(';  ) goes to zero (exponentially fast) as n goesto in�nity, for all ';  2 F .Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



6 Marcelo Viana3 One-dimensional mapsLet fa be the real quadratic map given by fa(x) = x2 + a. If a =2 [�1=4; 2] thenthe orbit fn(0) of the critical point goes to in�nity as n ! +1, and so doesthe orbit of Lebesgue almost every point x. Let us look at the more interestingcase a 2 [�1=4; 2]. Then there exists a maximal compact interval Ia containingx = 0 and invariant under fa, in the sense that fa(Ia) � Ia. Two main types ofbehaviour are known, depending on the value of the parameter a.A �rst type (periodic, uniformly hyperbolic, regular) corresponds to fa havinga periodic attractor, i.e. a point p such that fka (p) = p and j(fka )0(p)j < 1 for somek � 1. Then, the orbit of Lebesgue almost every x 2 Ia converges to the orbit ofp. It is easy to see that this behaviour corresponds to an open set of parameters,and it was conjectured for a long time that this set is also dense in [�1=4; 2].This statement, known as the hyperbolicity conjecture, was eventually settleda�rmatively by Swiatek with the aid of Graczyk [40], and by Lyubich [60].A second kind of behaviour (chaotic, non-uniformly hyperbolic, stochastic) isdisplayed by maps fa that admit an invariant measure �a absolutely continuouswith respect to Lebesgue measure. It is a theorem of Jakobson [46] that this occursfor a set of parameters with positive Lebesgue measure. When it exists, such ameasure �a is unique and ergodic, and it gives the time average of Lebesgue almostevery x 2 Ia, Blokh-Lyubich [13].Do these cases exhaust all the possibilities for a full Lebesgue measure set ofparameters? Remarkably, the answer is a�rmative, as shown by Lyubich:Theorem 1 ([59]). For Lebesgue almost every a 2 [�1=4; 2], the quadratic mapfa has either a periodic attractor or an absolutely continuous invariant measure.In particular, Palis' �nitude conjecture in Section 2 holds in this context:Lebesgue almost every quadratic map admits a unique SRB measure (either aDirac measure on a periodic orbit or an absolutely continuous measure), whosebasin contains Lebesgue almost every bounded orbit. It is interesting to point outthat quadratic maps without SRB measures do exist, cf. Hofbauer-Keller [45].Most of this holds for general unimodal or multimodal maps of the intervalor the circle, though the extension may be far from trivial. A proof of the hy-perbolicity conjecture in a general setting of unimodal maps was announced byKozlovski [54]. An analog of Theorem 1 is also conjectured for general families ofone-dimensional maps, but this has not yet been proved.Jakobson's theorem does extend beyond quadratic maps, and many generalcriteria for the existence of absolutely continuous invariant measures were ob-tained since then. This is the most interesting case from an ergodic point of view,and there are several works concerning statistical properties of non-uniformly hy-perbolic maps in dimension one, such as the results of Keller-Nowicki [51] andYoung [109] on exponential decay of correlations, and those of Collet [28], Katok-Kifer [49], Benedicks-Young [10], and Baladi-Viana [6] on stochastic stability.In�nite-modal maps { one-dimensional maps with in�nitely many maxima andminima { come up in many natural contexts of Dynamics, but they are mostlyunexplored. Recently, Paci�co-Rovella-Viana [80] proved that non-uniform hyper-Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 7bolicity is persistent { positive Lebesgue measure set of parameters { in a largeclass of parametrized families of in�nite-modal maps, thus setting a way to a morecomplete study of such maps and their statistical properties. It is an interestingproblem to carry out such a study.4 H�enon-like attractorsThis class of systems is modeled by the H�enon map [44](x; y) 7! f(x; y) = (1� ax2 + y; bx);where a; b are real parameters. A main feature is the coexistence of hyperbolic andfolding behaviour: at points away from the line x = 0 one may �nd complementarydirections that are geometrically contracted and expanded by the derivative of themap; but these directions do not extend across the critical region fx � 0g, wherethe phase space is \folded" by the map.For a large domain in parameter space, e.g. 1 < a < 2 and b not too large,one may �nd some rectangle R which is positively invariant { f maps R to itsinterior { and this is the most interesting case. Computer pictures of the \strangeattractor", where orbits of points inside R seem to accumulate, were produced byH�enon [44] for parameters a � 1:4; b � 0:3. But it was only some ten years ago thatBenedicks-Carleson could prove that there is indeed a non-trivial (non-periodic)attractor, with positive probability in parameter space:Theorem 2 ([7]). For every su�ciently small b > 0 there exists a positiveLebesgue measure subset E � R so that for all a 2 E there exists a compact invari-ant subset � � R such that B(�) has non-empty interior, and kDfn(z)k ! +1exponentially fast when n! +1, for some z with forward orbit dense in �.This was a major achievement, opening the way to a theory of H�enon-likemaps , which are the �rst class of genuinely non-uniformly hyperbolic systems indimension larger than 1 to be understood specially from an ergodic point of view(Lorenz-like 
ows can be reduced to hyperbolic maps, cf. Section 6).On the one hand, it was shown that attractors combining hyperbolic and crit-ical behaviour are a very general phenomenon occurring, with positive probabilityin parameter space, in many bifurcations of di�eomorphisms or 
ows: homoclinictangencies Mora-Viana [64], saddle-node cycles D��az-Rocha-Viana [35], Costa [31],saddle-focus connections Pumari~no-Rodriguez [92]. Colli [30] proved that in�nitelymany of these attractors may coexist, for many parameter values, in the unfoldingof homoclinic tangencies. Henceforth, I refer to all these attractors as H�enon-like.On the other hand, Benedicks-Young proved that these non-hyperbolic at-tractors have, nevertheless, well de�ned statistical properties:Theorem 3 ([11], [12]). Let � be a H�enon-like attractor of a surface di�eomor-phism f , as above. Then there exists a unique SRB measure � supported on �, and(f; �) is equivalent to a Bernoulli shift. Moreover, (f; �) has exponential decay ofcorrelations in the space of H�older continuous functions.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



8 Marcelo VianaTheir strategy in [11] was to �nd an ergodic invariant measure � supported on�, with absolutely continuous conditional measures along Pesin's unstable man-ifolds. Then, the basin of � must contain a positive Lebesgue measure set, cf.Pugh-Shub [90]. This construction of the SRB measure could not decide whetherLebesgue almost every point that is attracted to � is in B(�) or, on the contrary,there are sizable sets (\holes") of points in B(�) whose time average is not givenby �. This basin problem was raised by Sinai and by Ruelle back in the seventies,and is also related to the following question: is Lebesgue almost every orbit in thebasin of attraction asymptotic to some orbit inside the attractor? For uniformlyhyperbolic attractors the answers are well-known and a�rmative, see Bowen [19].Then, Benedicks and I solved both questions for H�enon-like attractors: thereare no \holes" in their basins. More recently, we also proved that these attractorsare stochastically stable, thus bringing the ergodic theory of these systems closeto completion.Theorem 4 ([9], [8]). Let � be a H�enon-like attractor of a surface di�eomor-phism f , as before, and � be the SRB measure. ThenB(�) = [�2�W s(�) = B(�); up to zero Lebesgue measure sets.Moreover, (f; �) is stochastically stable under small random perturbations.The proofs of these results depend on an assumption of strong area dissipative-ness, e.g. in Theorem 2 the Jacobian of f must be very small (much smaller thanH�enon's b � 0:3). In particular, we are still far from understanding non-uniformlyhyperbolic behaviour in area-preserving systems such as the conservative H�enonfamily (x; y) 7! (1� ax2 + y;�x), or the standard family of maps on the 2-torusfk(x; y) = (�y + 2x+ k sin(2�x); x)For the latter, Duarte [36] proved abundance of KAM islands for generic (Bairesecond category) large parameters k. But the standing conjecture is that, from ameasure-theoretical point of view, non-uniform hyperbolicity { non-zero Lyapunovexponents on a positive Lebesgue measure subset, possibly even non-existence ofelliptic islands { should prevail in parameter space. To settle this is a majorchallenge in Dynamics nowadays.5 Homoclinic tangencies - Fractal dimensionsA homoclinic tangency is a non-transverse intersection between the stable mani-fold and the unstable manifold of some periodic point p. In this section I want toexplain why this phenomenon is a main ingredient for non-hyperbolic dynamics:homoclinic tangencies are always an obstruction to hyperbolicity and, for low di-mensional systems such as surface di�eomorphisms, this is likely to be the essentialobstruction.Palis conjectured that every surface di�eomorphism can be Ck approximatedby another which either is uniformly hyperbolic or has a homoclinic tangency.This was recently established by Pujals-Sambarino, for k = 1:Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 9Theorem 5 ([91]). The set of di�eomorphisms on a surface M which are eitheruniformly hyperbolic or have a homoclinic tangency is dense in Di�1(M).Their arguments, inspired by Ma~n�e's proof of the C1 stability conjecture [61],[62], [63], have other important consequences, including the following corollary ofTheorem 5 that gives a partial converse to Newhouse's theorem [75]: C1 opensets where coexistence of in�nitely many periodic attractors occurs densely mustcontain di�eomorphisms with homoclinic tangencies.There are other results showing that speci�c phenomena of complicated dy-namics, such as saddle-node cycles, cascades of bifurcations, or H�enon-like attrac-tors, can be approximated by maps with homoclinic tangencies; see Newhouse-Palis-Takens [77], Catsigeras [25], Ures [103]. Conversely, surface di�eomorphismswith homoclinic tangencies are approximated by others exhibiting any of thesephenomena; see Newhouse [75], Yorke-Alligood [107], Mora-Viana [64], Colli [30].In these situations one gets approximation in the Ck sense, any k � 1, and sothese results indicate that the space of non-hyperbolic Ck surface di�eomorphismsshould be rather homogeneous, even if there is little hope to settle the general casek � 2 of the conjecture above in a near future.Let f�, � 2 R, be a generic parametrized families of di�eomorphisms on asurface M , such that f = f0 has a homoclinic tangency. What can one say aboutthe dynamics of f�, for the majority of parameters � close to zero? In somecases f� turns out to be uniformly hyperbolic for a set of parameters H with fullLebesgue density at � = 0: lim"!0 Leb(H \ [�"; "])2" = 1:This is due to Palis-Takens [82], [83], extending Newhouse-Palis [76], where a mainassumption is that the periodic point p is in a hyperbolic set � whose Hausdor�dimension HD(�) is less than 1. On the other hand, Palis-Yoccoz [86] showedthat this is generically not true if the Hausdor� dimension is larger than 1.These works, as well as Newhouse [74], displayed a crucial role played byfractal dimensions and related geometric invariants in the theory of bifurcations,and inspired some general problems about Cantor subsets of the real line withimportant consequences in the dynamical setting. Another conjecture of Palisclaimed that for generic regular Cantor sets K1;K2 � R, the arithmetic di�erenceK2 � K1 = fa2 � a1 : a1 2 K1; a2 2 K2g either has zero Lebesgue measure orcontains an interval. A regular Cantor set is one which is generated by a smoothexpanding map de�ned on a �nite union of intervals. The space of regular Cantorsets inherits a topology from the space of such expanding maps, and the wordgeneric refers to a residual (Baire second category) subset in this topology. Thearithmetic di�erence always has measure zero if HD(K1) +HD(K2) < 1, so theinteresting case of the conjecture corresponds to the sum being larger than 1.This was achieved a couple of years ago by Moreira-Yoccoz who, in fact, proved astronger statement:Theorem 6 ([73]). There exists an open and dense subset of the space of pairs ofregular Cantor sets (K1;K2) with HD(K1)+HD(K2) > 1, such that K1 intersectsstably some translate K2 + t.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



10 Marcelo VianaPartial results had been obtained by Moreira [71], who introduced the notionof stable intersection: given any ~K1 close toK1 and ~K2 close toK2+t, then ~K1\ ~K2is non-empty. In particular, K2 �K1 contains an interval around t. Theorem 6has the following important translation in the dynamical setting [72]: for a genericfamily of di�eomorphisms f� unfolding a homoclinic tangency the set of parametersfor which f� is either uniformly hyperbolic or has persistent homoclinic tangencieshas full density at � = 0. This second possibility corresponds to intervals inparameter space where densely one observes homoclinic tangencies, cf. [75].Of course, one also wants to describe the structure of the limit set L(f�), formost small values of �, specially when it is not uniformly hyperbolic. Palis-Yoccozannounced recently that L(f�) does have a property of weak hyperbolicity for a setof parameters with full density at zero, if the Hausdor� dimension of the horseshoe� involved in the tangency is not too large, e.g. HD(�) < 3=2. Roughly, the partof the limit set that is related to the unfolding of the tangency looks like a saddle-type version of the H�enon attractor: in particular, its stable and unstable setshave zero Lebesgue measure.Several of these results hold in any dimension, or have been subsequentlyextended to that generality, see Viana [104], Palis-Viana [85], Romero [93],Gonchenko-Shil'nikov-Turaev [39], and references therein. As a rule, results in-volving fractal dimensions are much harder in higher dimensions, and this is asubject of current research. On the other hand, for high dimensional di�eomor-phisms and 
ows, new key phenomena enter the scene, besides homoclinic tangen-cies, and problems and conjectures must be restated accordingly. This I discussin the next sections.6 Singular flowsIn the early sixties, Lorenz [56] observed that the solutions of a simple di�erentialequation in dimension 3,_x = �10x+ 10y; _y = 28x� y � xz; _z = �83z + xy (2)related to a model of atmospheric convection, seemed to depend sensitively on theinitial point. Thus, in practice, their behaviour over long periods of time can notbe e�ectively predicted (and so neither can the weather, according to Lorenz): onewould need to know the initial point with in�nite precision.Geometric models were proposed by Afraimovich-Bykov-Shil'nikov [1] andGuckenheimer-Williams [42], to interpret the behaviour observed by Lorenz in theequation (2). These are smooth 
owsXt in three dimensions, admitting a trappingregion U { the closure of Xt(U) is contained in U for every t > 0 { such that themaximal invariant set � = \t>0Xt(U) contains both a singularity (equilibriumpoint) and regular orbits dense in �. The 
ow leaves invariant a foliation of U , akey property that permits to reduce the dynamics to that of an expanding map ofthe interval. Moreover, these attractors are robust: the maximal invariant set inU of any nearby 
ow Y t also has all these properties.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 11These Lorenz models attracted a lot of attention, and their geometric, dynam-ical, and ergodic properties are now well understood: in particular, they support aunique SRB measure and they are stochastically stable. See e.g. Bunimovich [22],Collet-Tresser [29], Kifer [52], Pesin [88], Sataev [97], and references therein. Onthe other hand, Lorenz' original conjecture that a sensitive attractor � exists inthe speci�c system (2) remained an open problem for more than three decades.Remarkably, a positive solution has just been announced by Tucker [102].With these examples in mind, let us call a compact invariant set � of a 
owXt a singular transitive set if it is the maximal invariant set � = Tt2RXt(U) insome open neighbourhood U , and contains both singularities and dense regularorbits. We also call � a singular (or Lorenz-like) attractor if U can be takenpositively invariant (trapping), and a singular repeller if it is a singular attractorfor the 
ow X�t obtained from Xt by reversing the direction of time. In general,we say that the singular transitive set � is C1 robust if �Y = \t2RY t(U) is also asingular transitive set for any 
ow Y t in a C1 neighbourhood of Xt.Robust singular transitive sets are a main novelty in the dynamics of 
ows,relative to discrete time systems. In the last few years, Morales-Paci�co-Pujalshave been developing a general theory of such sets, specially in the 3-dimensionalcase. A related goal is to characterize the 
ows whose singularities and periodicorbits are robustly hyperbolic, meaning that they remain so for every C1 nearby
ow, see [66]. Morales-Paci�co-Pujals construct new types of 
ows with singularattractors, some of which can be obtained from hyperbolic 
ows through a singlebifurcation [65], [70], [67]. Most specially, they prove that a C1 robust singulartransitive set � must have the following hyperbolicity property [68]. A compactinvariant set � is singular hyperbolic for the 
ow Xt if there exists a decompositionof the tangent space T�M = E1 �E2invariant under everyDXt, whereE1 is 1-dimensional and (norm) contracting, andE2 is 2-dimensional and volume expanding. The latter may contain directions thatare contracted, but the decomposition must be dominated : possible contractionalong E2 is weaker than the contraction along E1. We also say that � is singularhyperbolic for Xt if it is singular hyperbolic for the dual 
ow X�t.Theorem 7 ([68]). Let � be a C1 robust singular transitive set of a 
ow on a3-dimensional manifold M . Then all the singularities in � have the same stabledimension, either 1 or 2. In the �rst case � is a singular repeller, in the secondone it is a singular attractor. In either case, � is a singular hyperbolic set.A key tool in Theorem 7, and in other important results in this area, isHayashi's connecting lemma [43]: a system exhibiting some unstable manifoldaccumulating on a stable manifold may be C1 perturbed to have the two invariantmanifolds intersect.A next step is to understand the structure of singular hyperbolic sets. In thisdirection, Morales-Paci�co-Pujals can give a pseudo Markov description reminis-cent of [20], and they also have made progress towards a converse to Theorem 7,characterizing when a singular hyperbolic set is C1 robustly transitive. In theDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



12 Marcelo Vianaproof of the theorem they also get that in the attractor case the eigenvalues at thesingularities �1 < �2 < 0 < �3 must satisfy �2 + �3 > 0, just as in the classicalLorenz models. A dual fact holds in the repeller case.Rovella [94] had given the �rst examples of singular transitive attractors that,although not robust, are persistent in a probabilistic sense: positive probabilityin parameter space, in generic parametrized families of 
ows through the initialone. For this he considered a modi�cation of the geometric Lorenz 
ows wherethe eigenvalues at the singularity satisfy �2 + �3 < 0 instead. New examples areprovided by the extended model for the behaviour of the Lorenz equations over alarge parameter range proposed by Luzzatto-Viana [58], [57]: a main novelty withrespect to the usual geometric models and Rovella's 
ows is that these systemsadmit no invariant foliation. Moreover, Paci�co-Rovella-Viana [80], [79] provedthat global spiral attractors exist, as conjectured by Sinai, in fact they occurpersistently in many families of 
ows. These are attractors containing a saddle-focus singularity (two contracting complex and one real expanding eigenvalue),which forces an extremely complicated spiraling geometry.The theory of singular 
ows in dimension larger than 3 is mostly open. Untilvery recently it was not even known whether robust transitive attractors can con-tain singularities with unstable dimension larger than 1, an old problem posed bythe introduction of the geometric Lorenz models in the seventies. This was solvedby Bonatti-Pumari~no-Viana [17] who proved that such multidimensional Lorenz-like attractors do exist, with arbitrary unstable dimension k � 1. Moreover, theysupport a unique SRB measure. Examples persisting in codimension 2 subsets of
ows were found by Morales-Pujals [69].Let me also brie
y comment on piecewise smooth maps, an important class ofsystems including e.g. Poincar�e maps of 
ows with singularities, some Markov ornon-Markov extensions of smooth maps, and billiards. See [50]. Liverani [55]proved exponential decay of correlations for area-preserving uniformly hyper-bolic piecewise smooth maps. Young [110] extended this to the dissipative case,and also proved exponential decay of correlations for planar Sinai billiards [99].Chernov [26], [27] extended these results to arbitrary dimension. Alves [2] con-structed absolutely continuous invariant measures for piecewise expanding mapswith countably many domains of smoothness, in any dimension.7 Cycles - partial hyperbolicityFor high dimensional maps and 
ows, more generally than homoclinic tangenciesone must take into account heteroclinic cycles : periodic points with variable stabledimensions cyclic related through intersections between their invariant manifolds.A general version of the conjecture at the beginning of Section 5 was also proposedby Palis: every di�eomorphism can be Ck approximated by another which eitheris uniformly hyperbolic or has a homoclinic tangency or a heteroclinic cycle.A key fact about uniformly hyperbolic di�eomorphisms (or 
ows), is that thelimit set L(f) can be partitioned into �nitely many basic pieces �1; : : : ;�K (amongwhich are the attractors of f) that are invariant, transitive, and isolated : each �iis the maximal invariant set in a neighbourhood Ui. In fact, �i is C1 robustlyDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 13transitive: the continuation �i(g) = \n2Zgn(Ui) of �i is also transitive, for anydi�eomorphism g C1 close to f . See [101]. Can one �nd something on the wayof such a decomposition for general di�eomorphisms? Recently, there has beensome remarkable progress towards understanding how the building blocks couldlook like. Let � be an isolated C1 robustly transitive set of a di�eomorphism f .What can be said about �?For surface di�eomorphisms, Ma~n�e [61] proved that � must be a hyperbolicset. He also observed that this can not be true in higher dimensions: there existopen sets of C1 di�eomorphisms of the 3-torus which are transitive in the wholeambient, and yet have periodic saddles with di�erent stable dimensions (so theycan not be Anosov di�eomorphisms). Notice that C1 robustly transitive di�eomor-phisms that are not uniformly hyperbolic had been exhibited before by Shub [98],in dimension 4 or higher. In both constructions, the di�eomorphisms admit acontinuous invariant splitting TM = Es � Ec � Eu such that Es is contracting,Eu is expanding, and they dominate Ec. Bonatti-D��az [14], building on D��az[32],gave the �rst examples of robustly transitive di�eomorphism with central bundleEc having dimension larger than 1.Next, D��az-Pujals-Ures [33] proved that C1 robustly transitive sets of di�eo-morphisms in dimension 3 must be partially hyperbolic. A compact set � invariantunder a di�eomorphism f is partially hyperbolic if there are C > 0; � < 1, and aninvariant splitting of the tangent space T�M = E1 �E2 which is dominatedkDfnjE1zk k(DfnjE2z )�1k � C�n for all z 2M and n � 1and such that either E1 is contracting or E2 is expanding: eitherkDfnjE1k � C�n for all n � 1; or k(DfnjE2)�1k � C�n for all n � 1.It is common to write the splitting E1 � E2 as Es � Ec in the �rst case, andas Ec � Eu in the second one, and I shall keep this convention in what follows.Still in dimension 3, Bonatti observed that C1 robustly transitive sets need notbe strongly partially hyperbolic (three invariant subbundles), see [18] for otherexamples. Also related to this, D��az-Rocha [34] prove that near a di�eomorphismwith a heteroclinic cycle there are others with either homoclinic tangencies orrobustly transitive sets that are strongly partially hyperbolic.In [18], Bonatti and I also constructed the �rst examples of robustly transi-tive di�eomorphisms having neither contracting nor expanding subbundles. Ourexamples, e.g. in the 4-torus, do admit a dominated splitting, though, with E1volume contracting and E2 volume expanding. Then, Bonatti-D��az-Pujals [16]rounded o� this series of results, by proving that a dominated splitting is indeeda necessary condition for robust transitivity, in any dimension. Summarizing:Theorem 8. Let � be a C1 robustly transitive set of f :M !M .1. ([61]) If dimM = 2 then � is a hyperbolic set.2. ([33]) If dimM = 3 then � is a partially hyperbolic set.3. ([16]) If dimM � 4 then � admits a dominated splitting.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



14 Marcelo VianaActually, Ma~n�e [61] had proved a stronger fact than 1 above, implying thata transitive isolated set of a surface di�eomorphism either is hyperbolic or itscontinuation for some C1 near map contains in�nitely many periodic attractorsor repellers. This is also extended to any dimension in [16], with hyperbolicityreplaced by existence of a dominated splitting.Di�eomorphisms with in�nitely many periodic attractors or repellers are stilla mystery: little is known apart from the fact that they are generic in some opensets of Di�2(M), cf. [74], [75], [85], and of Di�1(M) if dimM � 3, cf. [15].Pujals-Sambarino report some progress in the direction of proving that such dif-feomorphisms can be approximated by others having (codimension 1) homoclinictangencies, in the C1 topology. This would be an important step towards incor-porating this phenomenon into the theory. Another point of view is to try toshow that it is negligible from a probabilistic point of view. It is not yet known ifcoexistence of in�nitely many attractors or repellers corresponds to zero Lebesgueprobability sets in parameter space, for generic families of maps. But Ara�ujo [5]proves that some general maps with random noise have only �nitely many at-tractors, including one-parameter families of di�eomorphisms through homoclinictangencies (as originally considered in [74]) with small random errors in parameterspace.8 Ergodic properties of partially hyperbolic systemsThen, a central problem is to understand the structure and properties of partiallyhyperbolic transitive sets or, more generally, invariant transitive sets supportinga dominated splitting. Here is a couple of my favourite questions: Do these setshave some shadowing property (approximation of pseudo-orbits by actual orbits)?Can one give some description of the dynamics in symbolic terms (semi-conjugacyto a shift map)?In general, these questions are wide open, but for C2 di�eomorphisms on asurface Pujals-Sambarino [91] provide a rather precise description of sets � witha dominated splitting: if all the periodic points in � are hyperbolic saddles, thenit is the union of a hyperbolic set and �nitely many invariant closed curves whichare normally hyperbolic and support an irrational rotation.On the other hand, there is substantial progress in the ergodic theory of par-tially hyperbolic systems. Much of the foundations concerning invariant foliationswere set by Brin-Pesin [21], and they investigated the relations between topologicalproperties of these foliations and ergodic properties of the system, specially whenit preserves volume. This was pursued more recently by Grayson-Pugh-Shub [41],leading to several other results providing conditions for a di�eomorphism to bestably ergodic: every volume preserving di�eomorphism in a C1 neighbourhood isergodic with respect to Lebesgue measure.For general partially hyperbolic attractors �, Pesin-Sinai [89] constructedGibbs u-states : invariant measures with absolutely continuous conditional mea-sures along strong-unstable leaves (leaves of the unique integral foliation of Eu).Then Carvalho [23] proved that in some cases, e.g. di�eomorphisms derived fromAnosov ones, these Gibbs u-states are SRB measures. Kan [47] gave examples ofDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 15transitive partially hyperbolic di�eomorphisms having more than one SRB mea-sure, with the basin of each of these measures dense in the ambient.In [105], I introduced a class of maps exhibiting non-hyperbolic attractorswith a multidimensional character: there are several expanding directions (positiveLyapunov exponents) at Lebesgue almost every point in the basin of attraction.The simplest case corresponds to cylinder maps like' : S1 � R ! S1 � R; '(�; x) = (g(�); a(�) � x2)where g is strongly expanding, and a(�) is a convenient Morse function (di�eo-morphisms in compact manifolds and/or higher dimensions may be constructedalong similar lines). They present some notable di�erences with respect to lowdimensional non-hyperbolic systems such as unimodal or H�enon maps, in partic-ular they are robust (not just metrically persistent): chaotic behaviour { severalpositive Lyapunov exponents { occurs for a full open set of perturbations. Inthis context, Alves obtained the �rst examples of SRB measures with non-uniformmultidimensional expansion:Theorem 9 ([2]). Every map in a neighbourhood of ' in the space of C3 selfmaps of S1 � R admits an absolutely continuous invariant measure �. Moreover,this measure is unique and ergodic.These last results inspired two general statements of existence and �nitude ofSRB measures for partially hyperbolic attractors that I condense in the followingtheorem. They concern partially hyperbolic di�eomorphisms whose central direc-tion is either mostly contracting { negative Lyapunov exponents along Ec { ormostly expanding { positive Lyapunov exponents along Ec. Without going intotechnicalities (nor maximum generality) let me say that, given a di�eomorphismf partially hyperbolic over the whole M with invariant splitting TM = Ec �Eu,then Ec is mostly contracting if kDfn(z)vk ! 0 exponentially fast as n ! +1,for every v 2 Ecz and Lebesgue almost every z 2 M . And, given f with invariantsplitting TM = Es �Ec, we say that Ec is mostly expanding if kDfn(z)vk ! 1exponentially fast as n! +1, for every v 2 Ecz and Lebesgue almost every z 2M ,like in (3) below.Theorem 10. Let f be a partially hyperbolic C2 di�eomorphism on a manifoldM . We have1. ([18]) If the central direction is mostly contracting, then the Gibbs u-statesof f are SRB measures, there are �nitely many of them, and their basinscover a full Lebesgue measure subset of M .2. ([3]) If the central direction is mostly expanding, then Lebesgue almost everypoint is in the basin of some SRB measure. If the central Lyapunov exponentsare bounded away from zero then there are �nitely many SRB measures.Pushing part 1 of the theorem further on, Castro [24] has just proved expo-nential decay of correlations for a large class of partially hyperbolic attractors.Related to the examples of Kan [47] I mentioned before, which also �t in thisDocumenta Mathematica � Extra Volume ICM 1998 � 1{1000



16 Marcelo Vianasetting, it is interesting to mention that if all the leaves of the strong-unstablefoliation are dense in M then there is a unique SRB measure [18]. Is this genericamong the transitive di�eomorphisms satisfying the assumptions of part 1?The proof of part 2 includes a generalization of Ruelle's theorem [96] onthe existence of absolutely continuous invariant measures for uniformly expandingmaps. Let f :M !M be any C2 covering map which is non-uniformly expandingin the sense that (m(L) = 1=kL�1k is the minimum expansion of a linear map L)lim infn!+1 1n log n�1Yj=0m(Df(f j(z))) > 0 (3)Lebesgue almost everywhere. Then f has some ergodic invariant measure abso-lutely continuous with respect to Lebesgue measure and, indeed, the basins of suchmeasures cover almost all of M . There is a version of this last result for piecewisesmooth maps, assuming that most points do not visit the singular set (where themap fails to be smooth, or the derivative fails to be surjective) too close too often;see [3].Such results suggest that non-uniform hyperbolicity may su�ce for a systemto have good statistical properties. In this spirit, I state the followingConjecture: If a smooth map has only non-zero Lyapunov exponents at Lebesguealmost every point, then it admits some SRB measure.References[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shil'nikov. On the appearenceand structure of the Lorenz attractor. Dokl. Acad. Sci. USSR, 234:336{339,1977.[2] J. Alves. SRB measures for nonhyperbolic systems with multidimensionalexpansion. PhD thesis, IMPA, 1997.[3] J. Alves, C. Bonatti, and M. Viana. SRB measures for partially hyperbolicsystems whose central direction is mostly expanding. In preparation.[4] D. V. Anosov. Geodesic 
ows on closed Riemannian manifolds of negativecurvature. Proc. Steklov Math. Inst., 90:1{235, 1967.[5] V. Ara�ujo. Random perturbations of maps with in�nitely many attractors.PhD thesis, IMPA, 1998.[6] V. Baladi and M. Viana. Strong stochastic stability and rate of mixing forunimodal maps. Ann. Sci. �Ecole Norm. Sup., 29:483{517, 1996.[7] M. Benedicks and L. Carleson. The dynamics of the H�enon map. Ann. ofMath., 133:73{169, 1991.[8] M. Benedicks and M. Viana. Random perturbations and statistical proper-ties of some H�enon-like maps. In preparation.[9] M. Benedicks and M. Viana. Solution of the basin problem for certain non-uniformly hyperbolic attractors. In preparation.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 17[10] M. Benedicks and L.-S. Young. Absolutely continuous invariant measuresand random perturbations for certain one-dimensional maps. Ergod. Th. &Dynam. Sys., 12:13{37, 1992.[11] M. Benedicks and L.-S. Young. SBR-measures for certain H�enon maps.Invent. Math., 112:541{576, 1993.[12] M. Benedicks and L.-S. Young. Markov extensions and decay of correlationsfor certain H�enon maps. Preprint, 1996.[13] A. M. Blokh and M. Yu. Lyubich. Ergodicity of transitive maps of theinterval. Ukrainian Math. J., 41:985{988, 1989.[14] C. Bonatti and L. J. D��az. Nonhyperbolic transitive di�eomorphisms. Ann.of Math., 143:357{396, 1996.[15] C. Bonatti and L. J. D��az. Connexions heterocliniques et genericit�e d'unein�nit�e de puits ou de sources. Preprint PUC-Rio, 1998.[16] C. Bonatti, L. J. D��az, and E. Pujals. Genericity of Newhouse's phenomenonvs. dominated splitting. In preparation.[17] C. Bonatti, A. Pumari~no, and M. Viana. Lorenz attractors with arbitraryexpanding dimension. C. R. Acad. Sci. Paris, 325, S�erie I:883{888, 1997.[18] C. Bonatti and M. Viana. SRB measures for partially hyperbolic systemswhose central direction is mostly contracting. Preprint IMPA, 1997.[19] R. Bowen. Equilibrium states and the ergodic theory of Anosov di�eomor-phisms, volume 470 of Lect. Notes in Math. Springer Verlag, Berlin, 1975.[20] R. Bowen and D. Ruelle. The ergodic theory of Axiom A 
ows. Invent.Math., 29:181{202, 1975.[21] M. Brin and Ya. Pesin. Partially hyperbolic dynamical systems. Izv. Acad.Nauk. SSSR, 1:170{212, 1974.[22] L. A. Bunimovich. Statistical properties of Lorenz attractors. In Nonlineardynamics and turbulence, pages 71{92. Pitman, Boston, 1983.[23] M. Carvalho. Sinai-Ruelle-Bowen measures for n-dimensional derived fromAnosov di�eomorphisms. Ergod. Th. & Dynam. Sys., 13:21{44, 1993.[24] A. A. Castro. Backwards inducing and statistical properties for some partiallyhyperbolic attractors. PhD thesis, IMPA, 1998.[25] E. Catsigeras. Cascades of period doubling bifurcations in n dimensions.Nonlinearity, 9:1061{1070, 1996.[26] N. I. Chernov. Statistical properties of piecewise smooth hyperbolic systemsin high dimensions. Preprint, 1997.[27] N. I. Chernov. Decay of correlations and dispersing billiards. Preprint, 1998.[28] P. Collet. Ergodic properties of some unimodal mappings of the interval.Technical report, Institute Mittag-Le�er, 1984.[29] P. Collet and C. Tresser. Ergodic theory and continuity of the Bowen-Ruellemeasure for geometrical Lorenz 
ows. Fyzika, 20:33{48, 1988.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



18 Marcelo Viana[30] E. Colli. In�nitely many coexisting strange attractors. Ann. Inst. H.Poincar�e Anal. Non Lin�eaire. To appear.[31] M. J. Costa. Global strange attractors after collision of horseshoes withperiodic sinks. PhD thesis, IMPA, 1998.[32] L. J. D��az. Robust nonhyperbolic dynamics and heterodimensional cycles.Ergod. Th. & Dynam. Sys., 15:291{315, 1995.[33] L. J. D��az, E. Pujals, and R. Ures. Normal hyperbolicity and robust transi-tivity. Preprint PUC-Rio, 1997.[34] L. J. D��az and J. Rocha. Partial hyperbolicity and transitive dynamicsgenerated by heteroclinic cycles. In preparation.[35] L. J. D��az, J. Rocha, and M. Viana. Strange attractors in saddle-node cycles:prevalence and globality. Invent. Math., 125:37{74, 1996.[36] P. Duarte. Plenty of elliptic islands for the standard family of area preservingmaps. Ann. Inst. H. Poincar�e Anal. Non. Lin�eaire, 11:359{409, 1994.[37] J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors.Rev. Mod. Phys., 57:617{656, 1985.[38] A. Friedman. Stochastic di�erential equations and applications. AcademicPress, New York, 1975.[39] S. V. Gonchenko, L. P. Shil'nikov, and D. V. Turaev. Dynamical phenomenain systems with structurally unstable Poincar�e homoclinic orbits. Chaos,6:15{31, 1996.[40] J. Graczyk and G. Swiatek. Generic hyperbolicity in the logistic family.Annals of Math., 146:1{52, 1997.[41] M. Grayson, C. Pugh, and M. Shub. Stably ergodic di�eomorphisms. Annalsof Math., 140:295{329, 1994.[42] J. Guckenheimer and R. F. Williams. Structural stability of Lorenz attrac-tors. Publ. Math. IHES, 50:59{72, 1979.[43] S. Hayashi. Connecting invariant manifolds and the solution of the C1 sta-bility and 
-stability conjectures for 
ows. Annals of Math., 145:81{137,1997.[44] M. H�enon. A two dimensional mapping with a strange attractor. Comm.Math. Phys., 50:69{77, 1976.[45] F. Hofbauer and G. Keller. Quadratic maps without asymptotic measure.Comm. Math. Phys., 127:319{337, 1990.[46] M. Jakobson. Absolutely continuous invariant measures for one-parameterfamilies of one-dimensional maps. Comm. Math. Phys., 81:39{88, 1981.[47] I. Kan. Open sets of di�eomorphisms having two attractors, each with aneverywhere dense basin. Bull. Amer. Math. Soc., 31:68{74, 1994.[48] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamicalsystems. Cambridge University Press, Cambridge, 1995.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 19[49] A. Katok and Yu. Kifer. Random perturbations of transformations of aninterval. J. Analyse Math., 47:193{237, 1986.[50] A. Katok and J. M. Strelcyn. Invariant manifolds, entropy and billiards.Smooth maps with singularities, volume 1222 of Lect. Notes in Math.Springer Verlag, 1986.[51] G. Keller and T. Nowicki. Spectral theory, zeta functions and the distributionof periodic points for Collet-Eckmann maps. Comm. Math. Phys., 149:31{69,1992.[52] Yu. Kifer. Ergodic theory of random perturbations. Birkh�auser, Basel, 1986.[53] Yu. Kifer. Random perturbations of dynamical systems. Birkh�auser, Basel,1988.[54] O. Kozlovski. Structural stability in one-dimensional dynamics. PhD thesis,Univ. Amsterdam, 1998.[55] C. Liverani. Decay of correlations. Ann. of Math., 142:239{301, 1995.[56] E. N. Lorenz. Deterministic nonperiodic 
ow. J. Atmosph. Sci., 20:130{141,1963.[57] S. Luzzatto and M. Viana. Lorenz-like attractors without invariant foliations.In preparation.[58] S. Luzzatto and M. Viana. Positive Lyapunov exponents for Lorenz-likemaps with criticalities. Ast�erisque, 1998.[59] M. Lyubich. Almost every real quadratic map is either regular or stochastic.Preprint Stony Brook, 1997.[60] M. Lyubich. Dynamics of quadratic maps I-II. Acta Math., 178:185{297,1997.[61] R. Ma~n�e. Contributions to the stability conjecture. Topology, 17:383{396,1978.[62] R. Ma~n�e. Hyperbolicity, sinks and measure in one-dimensional dynamics.Comm. Math. Phys., 100:495{524, 1985.[63] R. Ma~n�e. A proof of the C1 stability conjecture. Publ. Math. I.H.E.S.,66:161{210, 1988.[64] L. Mora and M. Viana. Abundance of strange attractors. Acta Math., 171:1{71, 1993.[65] C. Morales and M. J. Paci�co. New singular strange attractors arising fromhyperbolic 
ows. Submitted for publication.[66] C. Morales, M. J. Paci�co, and E. Pujals. Singular hyperbolic systems. Proc.Amer. Math. Soc. To appear.[67] C. Morales, M. J. Paci�co, and E. Pujals. Global attractors from the ex-plosion of singular cycles. C. R. Acad. Sci. Paris, 325, S�erie I:1217{1322,1997.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



20 Marcelo Viana[68] C. Morales, M. J. Paci�co, and E. Pujals. On C1 robust singular transitivesets for three-dimensional 
ows. C. R. Acad. Sci. Paris, 1997.[69] C. Morales and E. Pujals. Strange attractors containing a singularity withtwo positive multipliers. Comm. Math. Phys. To appear.[70] C. Morales and E. Pujals. Singular strange attractors on the boundary ofMorse-Smale systems. Ann. Sci. �Ecole Norm. Sup., 30:693{717, 1997.[71] C. G. Moreira. Stable intersections of Cantor sets and homoclinic bifurca-tions. Ann. Inst. H. Poincar�e Anal. Non. Lin�eaire, 13:741{781, 1996.[72] C. G. Moreira and J.-C. Yoccoz. Tangences homocliniques stables pour lesensembles hyperboliques de grande dimension fractale. In preparation.[73] C. G. Moreira and J.-C. Yoccoz. Stable intersections of regular Cantor setswith large Hausdor� dimension. Preprint IMPA, 1998.[74] S. Newhouse. Di�eomorphisms with in�nitely many sinks. Topology, 13:9{18,1974.[75] S. Newhouse. The abundance of wild hyperbolic sets and nonsmooth stablesets for di�eomorphisms. Publ. Math. I.H.E.S., 50:101{151, 1979.[76] S. Newhouse and J. Palis. Cycles and bifurcation theory. Ast�erisque, 31:44{140, 1976.[77] S. Newhouse, J. Palis, and F. Takens. Bifurcations and stability of familiesof di�eomorphisms. Publ. Math. I.H.E.S., 57:5{71, 1983.[78] V. I. Oseledets. A multiplicative ergodic theorem: Lyapunov characteristicnumbers for dynamical systems. Trans. Moscow Math. Soc., 19:197{231,1968.[79] M. J. Paci�co, A. Rovella, and M. Viana. Persistence of global spiralingattractors. In preparation.[80] M. J. Paci�co, A. Rovella, and M. Viana. In�nite-modal maps with globalchaotic behaviour. Annals of Math, 1998.[81] J. Palis. A global view of Dynamics and a conjecture on the denseness of�nitude of attractors. Ast�erisque, 1998.[82] J. Palis and F. Takens. Cycles and measure of bifurcation sets for two-dimensional di�eomorphisms. Invent. Math., 82:397{422, 1985.[83] J. Palis and F. Takens. Hyperbolicity and the creation of homoclinic orbits.Annals of Math., 125:337{374, 1987.[84] J. Palis and F. Takens. Hyperbolicity and sensitive-chaotic dynamics athomoclinic bifurcations. Cambridge University Press, 1993.[85] J. Palis and M. Viana. High dimension di�eomorphisms displaying in�nitelymany periodic attractors. Annals of Math., 140:207{250, 1994.[86] J. Palis and J.-C. Yoccoz. Homoclinic tangencies for hyperbolic sets of largeHausdor� dimension. Acta Math., 172:91{136, 1994.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



Dynamics: A Probabilistic and Geometric Perspective 21[87] Ya. Pesin. Families of invariant manifolds corresponding to non-zero char-acteristic exponents. Math. USSR. Izv., 10:1261{1302, 1976.[88] Ya. Pesin. Dynamical systems with generalized hyperbolic attractors: hy-perbolic, ergodic and topological properties. Ergod. Th. & Dynam. Sys.,12:123{151, 1992.[89] Ya. Pesin and Ya. Sinai. Gibbs measures for partially hyperbolic attractors.Ergod. Th. & Dynam. Sys., 2:417{438, 1982.[90] C. Pugh and M. Shub. Ergodic attractors. Trans. Amer. Math. Soc., 312:1{54, 1989.[91] E. Pujals and M. Sambarino. Homoclinic tangencies and hyperbolicity forsurface di�eomorphisms: a conjecture of Palis. Preprint IMPA, 1998.[92] A. Pumari~no and A. Rodriguez. Persistence and coexistence of strange at-tractors in homoclinic saddle-focus connections, volume 1658 of Lect. Notesin Math. Springer Verlag, Berlin, 1997.[93] N. Romero. Persistence of homoclinic tangencies in higher dimensions. Er-god. Th. & Dynam. Sys., 15, 1995.[94] A. Rovella. The dynamics of perturbations of the contracting Lorenz attrac-tor. Bull. Braz. Math. Soc., 24:233{259, 1993.[95] D. Ruelle. A measure associated with axiom a attractors. Amer. J. Math.,98:619{654, 1976.[96] D. Ruelle. The thermodynamical formalism for expanding maps. Comm.Math. Phys., 125:239{262, 1989.[97] E. A. Sataev. Invariant measures for hyperbolic maps with singularities.Russ. Math. Surveys, 471:191{251, 1992.[98] M. Shub. Topologically transitive di�eomorphisms on T 4, volume 206 of Lect.Notes in Math., page 39. Springer Verlag, Berlin, 1971.[99] Ya. Sinai. Dynamical systems with elastic re
ections: ergodic properties ofscattering billiards. Russian Math. Surveys, 25:137{189, 1970.[100] Ya. Sinai. Gibbs measure in ergodic theory. Russian Math. Surveys, 27:21{69, 1972.[101] S. Smale. Di�erentiable dynamical systems. Bull. Am. Math. Soc., 73:747{817, 1967.[102] W. Tucker. PhD thesis, Univ. Uppsala.[103] R. Ures. On the approximation of H�enon-like attractors by homoclinic tan-gencies. Ergod. Th. & Dynam. Sys., 15, 1995.[104] M. Viana. Strange attractors in higher dimensions. Bull. Braz. Math. Soc.,24:13{62, 1993.[105] M. Viana. Multidimensional nonhyperbolic attractors. Publ. Math. IHES,85:69{96, 1997.Documenta Mathematica � Extra Volume ICM 1998 � 1{1000



22 Marcelo Viana[106] M. Viana. Stochastic dynamics of deterministic systems. Lecture Notes XXIBraz. Math. Colloq. IMPA, Rio de Janeiro, 1997.[107] J. A. Yorke and K. T. Alligood. Cascades of period doubling bifurcations aprerequisite for horseshoes. Bull. A.M.S., 9:319{322, 1983.[108] L.-S. Young. Stochastic stability of hyperbolic attractors. Ergod. Th. &Dynam. Sys., 6:311{319, 1986.[109] L.-S. Young. Decay of correlations for certain quadratic maps. Comm. Math.Phys., 146:123{138, 1992.[110] L.-S. Young. Statistical properties of dynamical systems with some hyper-bolicity. Preprint, 1996.

Marcelo VianaIMPA, Est. D. Castorina 11022460-320 Rio de Janeiro, Brazile-mail: viana@impa.br

Documenta Mathematica � Extra Volume ICM 1998 � 1{1000


