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ABSTRACT: Tissue engineering is a newly emerging biomedical technology,
which aids and increases the repair and regeneration of deficient and injured
tissues. It employs the principles from the fields of materials science, cell biology,
transplantation, and engineering in an effort to treat or replace damaged tissues.
Tissue engineering and development of complex tissues or organs, such as heart,
muscle, kidney, liver, and lung, are still a distant milestone in twenty-first
century. Generally, there are four main challenges in tissue engineering which
need optimization. These include biomaterials, cell sources, vascularization of
engineered tissues, and design of drug delivery systems. Biomaterials and cell
sources should be specific for the engineering of each tissue or organ. On the
other hand, angiogenesis is required not only for the treatment of a variety of
ischemic conditions, but it is also a critical component of virtually all tissue-
engineering strategies. Therefore, controlling the dose, location, and duration of
releasing angiogenic factors via polymeric delivery systems, in order to
ultimately better mimic the stem cell niche through scaffolds, will dictate the
utility of a variety of biomaterials in tissue regeneration. This review focuses on
the use of polymeric vehicles that are made of synthetic and/or natural
biomaterials as scaffolds for three-dimensional cell cultures and for locally
delivering the inductive growth factors in various formats to provide a method of
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controlled, localized delivery for the desired time frame and for vascularized
tissue-engineering therapies.

KEY WORDS: tissue engineering, scaffold, biomaterials, cell sources,
angiogenesis, drug delivery systems.

INTRODUCTION

There are serious limitations in using either autologous or
allogeneic grafts in traditional transplantation surgeries. These

include lack of appropriate donor tissues in autologous transplantation,
and risk of disease transmission and extended immune-rejection in
allogeneic transplantation. However, tissue engineering offers to cir-
cumvent these problems by replacing and restoring various tissues and
organs through the delivery of stem cells (SCs) and bioactive molecules
onto specific biomaterials in a three dimensional (3D) structure [1].

The cell microenvironment is known to play a remarkable role in
determining progenitor cell fate and function. The exact coordination of
spatial and temporal cues from the microenvironment is highly essential
for SCs to constitute complex functional tissues. Advanced and high
throughput assays, such as extracellular matrix (ECM) microarrays and
other technologies have unveiled specific cell interactions with ECM
components and polymers that can influence SC signaling and response
[2–6]. As long as biomaterial research moves forward, new materials and
innovations in their manipulation and usage will continue to emerge. By
utilizing high throughput arrays to recognize the function of biomate-
rials, the evaluation of these molecules for ultimate usage can take
place in short periods of time [5,7,8]. So, major advances in both the
understanding of the local cues required for lineage commitment and the
discovery of new biomaterials necessary to support SCs and drug
delivery can be advantageous. The promise of cell therapy lies in the
repair of damaged tissues and organs in vivo and also the production of
appropriate tissues in vitro for successful transplantation. In the recent
years, in order to mimic the SC niche, a variety of biomaterials have
been combined with SC cultures, to prepare a suitable microenviron-
ment for their growth and differentiation [2,9–11].

The reconstruction and direct replacement of diseased cells and
tissues are becoming a clinical possibility mainly because of correlated
advances in the modification of biomaterials and comprehension of SCs
behavior [12–14]. Creation of cell-compatible biomaterial microarrays
has allowed rapid, microscale testing of biomaterial interactions with
cells [2,6]. Several review articles have discussed how specific types of
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biomaterials are used as substances to mimic the physico-chemical
microenvironments of cells and tissues [14–16]. A number of studies
have specifically examined materials for the development of bone
[17,18], cartilage [19], skin [20], and blood vessels [21]. Others have
reported studies on various pre-differentiated SC populations and their
combination together using biomaterials to form hybrid constructs that
closely mimic native tissues [22–24].

However, the field of tissue engineering is restricted by the necessity
for angiogenesis in large tissues and organs for nutrient, waste, and
oxygen transport. Strategies to induce new blood vessel networks will be
essential in almost all engineered tissues [25,26]. There have been many
reports on the design and improvement of scaffold materials to help local
angiogenesis directly in vivo and promote gradual penetration of host
vessels into the scaffolds [27,28]. Even for ex vivo pre-vascularized
scaffolds, successful joining of the graft with the host tissues largely
relies on vessel and tissue integration. One major theme guiding this
approach is delivery of angiogenic factors from implanted scaffolds,
which will be discussed in this review. While systemic injection of
angiogenic molecules such as vascular endothelial growth factor (VEGF)
is counterpart with negative side effects in non-target tissues (hyper-
permeable vessels, hypotension, motivation of tumor growth, and
unhindered neovascularization), prolonged delivery of angiogenic factors
from scaffold materials can be localized to a microenvironment to
minimize the negative side effects in non-target regions. In addition,
natural processes of secretion and sequestration of angiogenic factors in
ECM beds can be imitated in this system by adjusting their release
kinetics from the scaffolds [29–31].

In spite of the good progress in bioengineering of tissues composed of
thin layers of cells, such as skin, a main dispute for future tissue
engineering is the creation of larger organs with more complex
structures, such as kidney, heart, and liver. Tissues with a huge mass
of cells require a vascular network of capillaries, arteries, and veins for
the transport of nutrients and oxygen to each cell. Development of
effective methods for angiogenesis of these tissues is critical for
obtaining a successful outcome [32]. In this review, we will strive to
describe major advances in the field of tissue engineering, including
biomaterials, cell sources, engineering of thick tissues or organs, drug
delivery systems (DDSs, Figure 1), and novel findings to better mimic
the native tissues for preclinical and clinical tissue engineering.

Although classical two dimensional (2D) cell cultures are widely used
and have provided many advances in cell biology, but due to the fact that
cells (including SCs) reside, proliferate, migrate, and differentiate inside
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the body within complicated 3D microenvironments, most of the current
research in biomaterial-directed SCs manipulation is focused on such 3D
environments [11]. This review will primarily focus on the concept of 3D
culture, biomaterials and their modifications, and later on we will
discuss other important issues in the engineering of thick tissues.

BIOMATERIALS

The term ‘biomaterials’ has many definitions; one traditional mean-
ing indicates that a biomaterial is a non-living substance used in a
medical device, like a joint prosthesis. However, the technology of
biomaterials has developed gradually, and the expanded definition
includes substances that are designed to control the biological environ-
ment of cells and tissues. More than being simply compatible with the
host and serving a structural role, biomaterials can now direct cells
through microenvironmental cues [33].

Biomaterial-based 3D systems have been the most influential tools in
rendering a scaffold to cells, both in culture or inside the body. These 3D
structures present an ideal substrate for cell–cell and cell–material
communications, and their properties can be modified to induce differ-
entiation of cells into specific lineages [34]. Scaffolds used for tissue
engineering perform many functions and their role during tissue
formation is dependent on the specific characteristics of the selected
biomaterials [35]. It has been proven that 3D scaffolds enhance osteogenic
[36], hematopoietic [37], neural [38,39], and chondrogenic [40] differen-
tiation. Thus, in addition to acting as delivery vehicles for biomolecules
during tissue development [9], biomaterials promote cell attachment,
proliferation, organization, and differentiation [41].

Properties of biocompatible scaffolds, synthetic or natural, can be
considered from different aspects including optimal nutrient and waste
transport, delivery of bioactive molecules, material degradation rate,
cell-recognizable surface chemistries, mechanical unity, and the ability
to promote signal transduction pathways. The considerable success of
tissue organization and development highly depends on these properties,
because they can eventually dictate cell adherence, nutrient/waste
transport, cell differentiation, cell viability, and matrix synthesis and
organization. Most of the materials in scaffolds can be chemically or
physically modified to control all these important parameters, and a
variety of synthetic and natural materials have been used for investi-
gating SCs behavior by specifically manipulating these properties.
Several articles have reviewed the application of scaffolds in tissue
engineering in general [42,43]. In an optimal form, a biomaterial must
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degrade without toxicity and with a controlled degradation rate.
Contrary to a constantly implanted structural prosthesis, scaffold
biomaterials should remain long enough to conduct joining of recruited
or applied cells, but not persist so long as to obstruct the final cell–cell
physiological coupling necessary for tissue engineering.

An important property of biomaterials is the degradation rate. A rapid
degradation can jeopardize the mechanical unity of biomaterials.
Therefore, it is desirable to control degradation and stiffness indepen-
dently. Diverse approaches can regulate biomaterials degradation. The
molecular weight and copolymerization ratio can be easily controlled to
optimize the degradation rate [44–46]. Kong et al. showed that
modifying alginates with various cross-linking strategies could keep
stiffness but increase degradation, improving bone formation by bone
marrow-derived mesenchymal stem cells [47]. Thus, degradation of
polymers can potentially be adjusted for the regenerative strategy as
long as transiently supporting mechanical integrity exists.

Another important feature of scaffolds is porosity. The pore size (both
length and cross-sectional area), pore numbers, and pore connectivity of
scaffolds are key factors in determining their function. Size of pores on a
length scale of micrometers to millimeters strongly affects trafficking of
cells; extremely large pores could spoil vascularization, since endothelial
cells (ECs) are not capable of bridging pores larger than a cell diameter
[48]. In contrast, pores smaller than 100 nm will influence diffusion of
nutrients, waste, and oxygen. Poor diffusion of factors and nutrients
may result in the failure of implant and reduced survival of implanted
cells. Porosity needs to be balanced with the integrity of the mate-
rials, their mechanical properties and cellular effects [49–51]. Some
hydrogels, like those formed by self-assembling peptides, have very
small pore sizes that encourage endothelial adhesion and capillary
formation, but still permit rapid cell migration because of the hydrogels
flexibility [52].

There are natural, synthetic, and composite materials that can be
injectable or non-injectable (Figure 1). Injectable polymers are impor-
tant biomaterials, because of their clinical applicability without
surgery, as DDSs for tissue engineering [28,53–56]. Several synthetic
and natural biodegradable polymers, including polyesters, poly(amino
acids), polysaccharides, and proteins have been studied well [53,57,58].
In addition, chemical and biological modifications of materials can result
in better mimicking the SCs niche and create specific microenviron-
ments to control cell responses [11]. Different types of biomaterials and
their modifications are discussed, in more details, in the following
sections.
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Natural biomaterials

Natural biomaterials used for scaffolds include components found in
the ECM such as collagen, fibrinogen, hyaluronic acid, glycosaminogly-
cans (GAGs), and hydroxyapatite (HA), and therefore have the benefit of
being bioactive, biocompatible, and having mechanical properties that
are common with native tissues [57]. Furthermore, other natural
materials including those derived from plants, insects, or animals (e.g.,
cellulose, chitosan, silk fibroin, etc.) can provide favorable microenvi-
ronments for the culture of SCs [59,60]. Drawbacks of using natural
materials rather than synthetic materials include restricted control
over their physico-chemical properties, inability to moderate their
degradation rates, challenges in sterilization and purification tech-
niques, and also pathogen/viral issues when extracting from different
sources [61].

There are many natural biomaterials used as 3D scaffolds for tissue
engineering. Several natural materials, e.g., chitosan, Matrigel, hyal-
uronic acid, and fibrin, which have become commercially available, are
well characterized, and have reproducible, controlled properties.
Chitosan, as an ideal scaffold, has been widely used in the tissue
engineering of skin, bone, cartilage, liver, nerve, blood vessels, and heart
in the past 25 years [55]. Chitosan has been approved by the US Food
and Drug Administration and is used in drug delivery and tissue
engineering. Derivatives of chitosan including porous structures,
chitosan-based nanofibrous structures, and injectable chitosan hydro-
gels have different applications in tissue engineering. Chitosan hydrogel
responds to a variety of external stimuli such as pH, light, and
temperature. The temperature-responsive chitosan in combination
with glycerol phosphate (GP) as injectable hydrogel is highly attractive
and has great applications, because bioactive factors (such as growth
factors, genes, and supportive cells relevant to the repair and regener-
ation of the tissues) can be easily incorporated into the polymer solution
[56]. Then, once exposed to body temperature (378C), the polymer
solution can polymerize rapidly in situ within a short time, trapping
these factors within the injected area. This ability for in situ
polymerization makes chitosan-GP a clinically useful scaffold [55,56,62].

Commercially available MatrigelTM is a complex protein mixture
including laminin, collagen IV, and heparan sulfate proteoglycans [63].
Laschke et al. demonstrated that the incorporation of Matrigel into
poly(lactide-co-glycolide) (PLGA) scaffolds can accelerate adequate
vascularization of tissue engineering constructs [64]. Other researchers
showed that when human endothelial progenitor cells (hEPCs) were
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incorporated into Matrigel, and implanted subcutaneously into immu-
nodeficient mice, vascular networks were created in vivo [65].

Hyaluronic acid is another attractive natural biomaterial, which is
involved in cell signaling and behavior. Although hyaluronic acid is
present in tissues as a gel-like substance, it can be chemically modified
for effective processing into fibers, membranes, or microspheres. An
altered type of hyaluronic acid is commercially available as Hyaff� [66].
Hyaff�-based scaffolds are biodegradable and combine the advantages of
being a natural material with allowing the cells to replace the scaffold
with their own ECM. Recently, Gerecht et al. [67] reported the use of
hyaluronic acid hydrogels for maintaining the pluripotency and
undifferentiated state of human embryonic stem cells (hESCs) and
showed that addition of soluble growth factors to these hydrogels could
successfully trigger lineage specific differentiation of ES cells.

Fibrin is another class of natural materials that can be applied to
make 3D scaffold materials [68]. This scaffold, in conjunction with
various growth factors, showed remarkable increase in neuron produc-
tion and neuronal viability [39] and also in clinical cartilage engineering
[69]. Fibrin glue is a synthetic substance used to create a fibrin clot. It is
made of fibrinogen and thrombin. Thrombin acts as an enzyme that
converts fibrinogen into fibrin in 10–60 s, so that fibrin can be used as
injectable in situ forming gel. Fibrin scaffolds have been used for
injection in a preclinical ischemic heart study [70].

Synthetic biomaterials

Poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and the copolymer
PLGA have been extensively used as synthetic 3D scaffold biomaterials
for assessing cell behavior [71–73]. Necessary criteria such as biocom-
patibility, processability, and controlled degradation are fulfilled with
these polyesters [74]. These biomaterials degrade hydrolytically via mass
erosion and the glycolic/lactic acid byproducts are physiologically
removed through metabolic pathways. The molecular weight, copoly-
merization ratio, and polydispersity of the polymers can be easily
tunable to control the degradation rate. These properties have made
synthetic materials highly attractive for tissue engineering. In addition,
standard processing methods (e.g., salt leaching, sintering, porogen
melting, and nanofiber electrospinning) have been well established to
prepare a wide variety of 3D scaffolds using synthetic biomaterials
[75,76].

Synthetic materials provide the versatility of creating 3D microenvi-
ronments with adjustable features including mechanical properties,
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degradation rates, and porosity. However, in spite of these benefits, they
have poor inherent bioactivity (e.g., polyethylene glycol, PEG), acidic
byproducts (e.g., PGA, PLA, or PLGA), etc. Therefore, it is critical to
modify synthetic materials with biological or chemical compounds to
obtain suitable cellular responses. The physical properties of these
polymers can also be easily controlled by changing the ratio of
lactide:glycolide, molecular weight, and their crystallinity [74,77].

Use of composite scaffolds is another approach to better mimic
physiological niche and improve the process of tissue engineering
[46,78]. Natural or synthetic hydrogels closely resemble the consistency
of soft, native tissues, making them attractive scaffold materials for soft
tissue engineering. On the other hand, sometimes composite materials
with higher mechanical strength are required to closely mimic the tissue
mechanical properties and optimize degradation rate. For example,
hydrogel-like materials can be modified to have increased elasticity,
making them more suitable for applications in connective tissue
engineering. Collagen gels can also be adjusted to have a higher
elasticity by adding HA. Calcium HA is the main component of teeth and
bones in vertebrates, thereby imitating the composition of bone, which is
mainly composed of collagen fibers and phosphate minerals [79].

Zawaneh et al. have reported the design of an injectable synthetic and
biodegradable polymeric biomaterial comprising polyethylene glycol and
a polycarbonate of dihydroxyacetone (MPEG–PDHA) that is easily
extruded through narrow-gage needles, biodegrades into inert products
and is well tolerated by soft tissues. This type of polymer holds
significant promise for clinical applications in patients going through
surgical procedures ranging from cosmetic surgery to cancer resection
and tissue engineering [53].

Modification of biomaterials

Physical, chemical, and biological modifications of biomaterials can
directly influence SCs behavior by altering scaffold properties, surface
interactions, scaffold degradation rate, microenvironmental architec-
ture, and manipulating the signal transduction pathways in SCs.
Biomaterials can be designed to precisely control their degradation
kinetics, present specific ligand-based signals, and/or control the release
of biomolecules in response to the microenvironment [77]. These can
influence cell–matrix interactions and may lead to altered gene expres-
sion and lineage specificity. Many studies have demonstrated how
modified biomaterials and scaffold surface properties introduce specific
biological responses in SCs [34,77,80–83]. Therefore, the goal of
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biomaterial-directed SC culture is to mimic physical and biochemical
properties of the physiological SC niche [77,84].

When anchorage-dependent cells are cultured on various biomaterials,
ECM proteins including collagen, fibronectin, hyaluronic acid, GAGs,
fibrin, and gelatin are generally used to cover surfaces of various
biomaterials to enhance their interactions with cells. Cellular interactions
with ECM proteins are very complicated because these proteins contain
multiple cell- and growth factor-binding domains. To avoid these
problems, short peptides only several amino acids in length, have been
derived from ECM proteins as the most primitive subunits needed for
normal cell attachment and proliferation. Employment of synthetic
peptides in cell cultures and engineered tissues can overcome the need for
bulk production and purification of ECM proteins from tissue extracts.
Holtorf et al. evaluated titanium fiber mesh scaffolds coated with Arg-Gly-
Asp (RGD) sequence, a cell adhesive, integrin-binding peptide found in
fibronectin and laminin, and showed that mesenchymal stem cells (MSCs)
could attach more strongly to these RGD-coated scaffolds [85]. Cell–
matrix interactions were enhanced in RGD functionalized hydrogels,
resulting in increased MSCs viability. Nuttelman et al. [86] showed that
the viability of the encapsulated hMSCs augmented from 15% to 75%
when RGD was added into PEG-diacrylate hydrogels. Also, hESCs
cultured on this completely synthetic ECM substitute were shown to be
morphologically similar to hESCs cultured on an embryonic fibroblast
feeder layer and generated markers typical of undifferentiated ES cells
[87]. Many studies have reported that RGD sequence helps in the
attachment of various cell types including fibroblasts [88], smooth muscle
cells (SMCs) [89], preosteoblasts [90], preadipocytes [91], and MSCs [92].
Specially, ECs have been favorably cultured on RGD-containing polymers
including hyaluronic acid hydrogels [93], derivatives of isopropylacryla-
mides [94], and PEG hydrogels [95].

Tyr-Iso-Gly-Ser-Arg (YIGSR), a laminin-derived short peptide
sequence, combined with polyurethanes, could selectively enhance ECs
adhesion and proliferation but decreased platelet adhesion [96]. Glass
[97] and PEG hydrogels [98] coated with YIGSR also increased EC
attachment and migration. Arg-Glu-Asp-Val (REDV) sequence origi-
nated from fibronectin, binds to integrins found on ECs, supporting
specific adhesion of these cells [99]. Recombinant ECM proteins with
REDV sequence were constructed and applied as vascular graft
biomaterials to encourage trapping of ECs [100]. These studies have
shown that short peptides can replace massive ECM proteins as coating
materials and enhance cellular adhesion and functions on biomaterials.
Furthermore, these short peptides with adhesive properties could be
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micropatterned into specific regions to control spatial arrangement of
ECs, and other tissue-specific cell types [95,101,102].

SCs differentiation can be directly mediated by exposure to proper
biological or chemical signals in their microenvironment. It is well
established that specific growth factors, hormones, and cytokines can
increase proliferation and lineage-specific differentiation of SCs. For
example, fibroblast growth factor-2 (FGF-2) has been shown to increase
self-renewal of MSCs and maintain their multi-lineage differentiation
capability [103]. Moreover, bone morphogenetic proteins (BMPs) have
been shown to play a significant role in the regeneration of specific cell
types including skeletal tissues, especially bone [104].

Growth factors, hormones, and chemicals have classically been
directly added into the culture medium. On the other hand, these
biomolecules can be directly incorporated within the scaffold structure
or encapsulated into the scaffold biomaterials in a variety of ways during
the scaffold manufacturing process [105,106]. A highly used method for
the delivery of growth/chemotactic factors in tissue engineering is simple
physical adsorption of biomolecules on biomaterials or scaffolds surface
[35]. The chemotactic factors such as stromal cell-derived factor 1
(SDF1) incorporated in PLGA scaffolds can attract MSCs to the site of
implant. Enhanced homing of autologous MSCs improved the tissue
responses to biomaterial implants through modifying/bypassing inflam-
matory responses and jumpstarting SCs participation in healing at the
implant interface [71].

Covalent immobilization of soluble signaling proteins on biomaterials
enables prolonged signaling by intervening with their endocytosis. By
immobilization technique, bioactivity of the proteins can be retained on
biomaterials. An important angiogenic factor, VEGF, was covalently
incorporated into collagen gels. When this scaffold was implanted on
chicken chorioallantoic membrane, the results indicated improved capil-
lary formation and tissue ingrowth [107,108]. It was also shown that
genetically modified VEGF, in which N-terminal cysteine was conjugated
to fibrin matrix via thiol-directed bifunctional cross-linking reagent, could
retain bioactivity, and improved angiogenic performance [109]. Another
powerful angiogenic growth factor is basic fibroblast growth factor
(bFGF) that has been immobilized into PEG hydrogels with concentra-
tion gradient. The resulting materials could direct cell alignment and
migration of SMCs [110]. Cell–cell interaction proteins including ephrin-
B2 [111] and ephrin-A1 [112], which were incorporated into fibrin
matrices and PEG hydrogels, respectively, showed significant roles in the
induction of angiogenesis. Therefore, the use of special signaling proteins
presents opportunities in the design of angiogenic biomaterials.
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CELL SOURCES

Various sources of SCs and differentiated cells are used for tissue
engineering as for different target tissues (Figure 1). SCs represent an
important building block for regenerative medicine and tissue engineer-
ing. These cells are broadly classified into embryonic stem cells (ESCs)
and adult SCs. ESCs have a higher regenerative capacity than adult SCs
and can be manipulated to differentiate into other cell types [113,114].
Use of hESCs is restricted by ethical problems and the potential to form
teratomas [115,116] and the request for autologous grafts has made
adult progenitor cells more appropriate for tissue engineering [117]. It
has also been shown that hESCs can acquire chromosomal abnormal-
ities [118,119] and therefore are more potent to tumorogenesis. Adult
SCs are multipotent cells with high plasticity. They have been isolated
from many tissues including bone marrow, blood, brain, liver, muscle,
and skin. [120–122] Although adult SCs have a lower plasticity
compared with ESCs, they have been demonstrated to differentiate
into a variety of cell types and have been used for treatment of various
diseases including ischemia, neural degeneration, and diabetes in animal
models [123–127].

Here, we do not aim to present an inclusive review to explain the
characterization of SCs since several outstanding previous reviews are
available [117,128–132]. We further intend to emphasize how SC
technology can be made applicable and beneficial in angiogenesis for
engineering thick tissues and whole organs.

One emerging issue in the area of SC therapy is homing and
engraftment of injected or resident cells to the site of damaged tissue
[133]. We investigated the expression of chemokine receptors (such as
CXCR4), which are involved in homing, on the surface of human MSCs.
[134] For the construction of vascularized tissue, it might be helpful to
implant a chemokine (SDF1)-containing scaffold in the site of injury in
order to recruit SCs to the site [71,135]. This method may prevent
formation of a necrotic core, which results from cell death in the center
of scaffolds due to lack of nutrients and oxygen. While the chemokine is
released from the scaffold, cells gradually penetrate into the scaffold and
full tissue, along with angiogenesis, is formed.

Application of SC technology in engineering
of thick tissues

The ECs, which cover the inside of arteries, veins, and capillaries, are
one of the major players of angiogenesis process in physiological and
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pathological conditions. ECs are involved in thrombo-withstanding
effects, regulation of leukocyte interactions, adjustment of blood flow
and vessel tone, and selective permeability to various materials.
Vasculogenesis is a process that results from the differentiation of
endothelial progenitor cells (EPCs) to form new blood vessels. On the
other hand, angiogenesis applies to the development of new capillary
blood vessels by a process of budding from pre-existing vessels [136,137].
Therefore, whereas vasculogenesis is restricted to embryogenesis,
angiogenesis may develop from ECs and EPCs, which take part in the
formation of new vessels in normal and pathological situations after
birth as well as embryogenesis [137,138].

Since the discovery of EPCs, there has been an interest in their use in
tissue engineering [139]. The relative ease of extracting these cells and
their capability to be expanded in culture for up to 1000 doublings, while
holding their capacity to differentiate, has resulted in their extended use
in this field [140]. EPCs can be isolated from bone marrow or peripheral
blood. EPCs have the capacity to differentiate into ECs in vitro and also
integrate into positions of neovascularization in vivo. The differentiation
of EPCs to ECs was revealed for the first time in vasculogenesis event
[139]. Although EPCs exhibit less plasticity and less capacity for self-
renewal than their parent SCs, they still have the capacity to differen-
tiate into several cell types. EPCs differentiation, in vitro, depends on
culture conditions. VEGF and fibronectin can induce the differentiation
of EPCs into ECs [141].

Outgrowth endothelial cells (OECs) are EPCs variants that can
produce high cell numbers typically required in vascular tissue
engineering applications. OECs collected from human peripheral blood
can be proliferated more than 20 passages, proposing a very good supply
of autologous ECs [142,143]. Blood- or bone marrow-derived EPCs (OEC
type) have been examined for the formation of blood vessels [144,145].
The mechanisms by which these different EPC variants give rise to new
vessel formation may differ. OECs are classified into early and late
outgrowth EPCs isolated from the mononuclear fraction [146]. These
show different proliferation capacities, differential secretion of angio-
genic cytokines, and have different morphologies [146]. Hence, cells with
different functions are present within the mononuclear fraction. Early
outgrowth EPCs can enhance neovascularization, mainly by the secre-
tion of angiogenic cytokines (interleukin-8 and VEGF), while on the
contrary, late outgrowth EPCs, which have a high proliferative capacity,
serve as a source of ECs. Therefore, early outgrowth EPCs may function
as sources of angiogenic cytokines with minimal incorporation into the
vasculature; [146–148] this paracrine effect has also been described for
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MSCs [149,150]. While both early and late outgrowth EPCs are equally
efficient in promoting neovascularization [146], the use of two cell types
is better than a single type [151]. Interestingly, early outgrowth ones
were shown to be cells with spindle shape morphology at first week of
culture, while late outgrowth ones were shown to be cells with
cobblestone morphology after 2–3 weeks of culture [143,146,151]. In
fact, while many independent investigators have shown bone marrow
cells to incorporate into the vasculature, there are a few reports showing
that bone marrow cells do not incorporate into growing vessels and
instead form periadventitial accumulations, where they express angio-
genic/arteriogenic cytokines such as VEGF, monocyte chemoattractant
protein-1, and FGF [145,152–154]. This may represent various cell
populations within the mononuclear fraction, which have different
cellular and molecular mechanisms in affecting neovacularization, and
can be used in tissue engineering alone or in combination.

Some experiments have suggested that blood- and bone marrow-
derived primary EPCs possess extended plasticity. Melero-Martin et al.
[65] showed that hEPCs isolated from human umbilical cord blood or
from adult peripheral blood, which were combined with Matrigel and
implanted subcutaneously into immunodeficient mice, showed vasculo-
genic activity and created vascular networks in vivo. EPCs were also
able to differentiate into cardiomyocytes when co-cultured with newborn
rat cardiomyocytes [155] and could exhibit a mesenchymal phenotype in
response to transforming growth factor b-1 (TGFb-1) [156]. In addition,
expression of TGFb-1 in SMCs regulates EPCs migration and
differentiation [157]. Thus, transdifferentiation of EPCs might be
possible via signaling molecules. As a result, one can build biomaterial
scaffolds engineered with inductive cues to induce cardiomyocyte
formation from EPCs, increasing low-efficiency transdifferentiation
event to a clinically relevant level [158].

Many studies have demonstrated that co-culture of vascular cell types
(ECs, EPCs, or OECs) with secondary supporting cells is very effective in
the production of vascularized tissue constructs [159–164]. Several
reports have suggested the use of MSCs for recruitment of EPCs/ECs
and promotion of angiogenesis due to their paracrine effects [149,150].
However, MSCs are also able to differentiate into multiple lineages
including cardiomyocytes and vascular ECs [149].

Clinical application of tissue engineering is still limited, due to
demands for highly specialized cell culture, isolation, and enrichment
techniques required for this purpose. More understanding of the
proliferation and differentiation processes that occur in transplanted
SCs populations within the scaffolds will increase our success in tissue
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engineering. An inceptive area of bioengineering investigations is the
development of natural or/and synthetic biopolymer matrices as specific
environments for EPCs recruitment, growth, and differentiation by
providing sites of attachment together with signals that control EPCs
migration, survival, and propagation with synchronized differentiation
[156]. The combination of phenotypic shifts and further comprehension
of progenitor cell behaviors will provide influential tools in advancing
thick tissue engineering. It is also important to know that various
sources of SCs may have different responses in the same scaffold
[117,120,165] and sometimes various scaffolds have diverse effects on
the same type of SCs [10,11,166].

Generally, there are three approaches commonly used for vascular-
ization of tissue constructs, as illustrated in Figure 2 [162,167,168]. The
second and third approaches are described below.

Induction of angiogenesis by the use of cells
and/or angiogenic factors

In spite of considerable attempts in making functional tissues and
organs, most applications of tissue engineering have been restricted to

Variouas approches in
construction of

vascularized thick tissues

1-Seeding of MSCs
or/and EPCs + other

differentiated cell
types or stem cells into

scaffold, then
transplantation into

damaged site of tissue.

2-First, in vitro
prevascularization of
scaffolds with ECs,

EPCs, or OECs, then
implantation of

scaffold into damaged
site of tissue followed
by subsequent in vivo
assembly of other cell

types.

3. Incorporating of the homing 
inducing factors (i.e. chemokines 

such as SDF1) or angiogenic 
factors (such as VEGF, PDGF, 

bFGF) into scaffold, then
transplantation of this scaffod 

into the site of injury, leading to 
angiogenesis along with tissue 
repair due to homing of EPCs
and MSCs, and recruitment of 
differentiated tissue resident-

cells from vicinity of injured site.

Figure 2. Various strategies that can be used to construct vascularized thick tissues.
Notes: EC, endothelial cell; OEC, outgrowth endothelial cell; SDF1, stromal cell-derived

factor 1. For the meaning of other abbreviations, see Figure 1.
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avascular or thin tissues such as cartilage, skin, or bladder [169,170]. In
these tissues, nutrients and oxygen can diffuse into the implants and
retain cellular viability. However, as the tissue becomes thicker, cells
existing more than a few hundred microns away from nearest capillaries
would undergo hypoxia and apoptosis [9]. So, the main obstacle in the
creation of more complex tissues is the formation of vascular networks
able to deliver nutrients and oxygen through the engineered tissues.
Enough neovascularization can be attained by the proper use of
angiogenic factors with appropriate cell types in scaffold biomaterials
(Figure 1). There have been many efforts to promote and regulate
vascularization of engineered tissues and also in pathological situations
such as chronic wounds in diabetic ulcers that are resulting from
insufficient blood supply, contributing to inflammation and infection
at the deficient sites [21], and myocardial ischemia, which is a
weakening defect associated with hypoxia and tissue necrosis because
of occluded vessels [171]. Therefore, induction of neovascularization in
engineered tissues, chronic wounds, and ischemic areas is the main
therapeutic goal.

First of all, we should understand angiogenesis process. The process of
angiogenesis follows from a complex cascade of events including ECs
activation, migration, and proliferation, their arrangement into imma-
ture vessels, addition of mural cells (pericytes and SMCs), and matrix
deposition as the vessels mature [21,137,172]. The molecular mecha-
nisms regulating each of these stages are being described, and it is
obvious that different growth factors act at distinct steps of neovascu-
larization. For instance, bFGF and VEGF, which are heparin binding
growth factors, contribute to the initiation of angiogenesis, and induce
endothelial cell proliferation and migration. Platelet-derived growth
factor (PDGF) is a mitogen and chemotactic agent that recruits
pericytes and SMCs. Finally, TGF-b causes ECM deposition for stabi-
lization of new vessels [137,173,174]. However, VEGF and its receptors
constitute the key signaling system for angiogenic activity in tissue
formation [175]. ECM proteins that participate in neovascularization
are laminin, collagen type I, and collagen type IV [167]. So, it is
important to properly deliver these signaling molecules locally and
temporally to obtain the desired biological outcomes, while avoiding
unfavorable side-effects.

Angiogenesis of engineered constructs is encouraged ex vivo by
biomaterial design, cell seeding, and culture conditions. In vitro pre-
vascularized scaffolds would then be transplanted in vivo and promoted
to unite with the host vascular network. This approach requires various
biochemical signals inserted in the scaffolds to imitate normal
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microenvironment and would lead to elevated angiogenic potential of
the seeded cells. Sometimes, the compatible scaffolds are manipulated
with ECM proteins, ECM-derived peptides, and signaling proteins
arranged in special micropatterns to direct angiogenesis [95,176,177].
Angiogenic factors are incorporated into scaffold biomaterials and then
transplanted in vivo for the recruitment of EPCs followed by subsequent
assembly of other cell types [178–180]. In another approach, instead of
angiogenic factors, one can incorporate chemokines (such as SDF1) into
the scaffolds to induce homing of MSCs or/and EPCs from peripheral
blood to the site of implant and ultimately augment angiogenesis
[71,133,145].

Taken together, in terms of cell sources and angiogenic factors, for
successful engineering of vascularized thick tissues, some fundamental
guidelines must be considered, which are summarized here.

(1) The scaffold must be compatible with ECs growth, formation of
capillaries, and construction of the target tissue [181]. The matrix
can be coated with a substance such as collagen, laminin or
fibronectin that allows attachment and growth of ECs and tissue-
specific cells.

(2) Angiogenic growth factors are required for proliferation of ECs and
better formation of blood vessels. Therefore, one can incorporate the
source of an angiogenic factor, with slow and sustained-release
kinetics, into the bioengineered tissue before implantation, so that
enhanced new capillary ingrowth from the host’s vascular plexus is
achieved after in vivo transplantation [25,182]. As an alternative,
cells within the engineered tissue can be genetically modified to
secrete angiogenic factors [183,184]. Release of these factors and
chemokines (such as SDF1) from the implanted site can recruit
circulating EPCs or MSCs into the scaffold and induce the angio-
genesis of the tissue [71,145,185].

(3) For the augmentation of tissue vascularization, ECs, EPCs, or OECs
can be inserted into the bioengineered tissue. These cells can
constitute capillaries within the tissues in vitro and link to the host’s
vasculature systems in vivo [58]. The combination of these cells with
the incorporation of a prolonged reservoir for angiogenic factor
secretion from the scaffold would be more effective [186]. It is also
possible to use MSCs for induction of angiogenesis in the scaffold
through their paracrine effects [150].

(4) The normal angiogenic process in the engineered tissue must be
developed so that a functional vascular network will be achieved.
Excessive production of angiogenic factors may give rise to
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deformed, non-functional vessels. On the other hand, low concen-
tration of these factors may result in non-effective capillary density.
Therefore, the creation of new blood vessels should follow the
kinetics of normal development in the vasculature [174,187]. A
combination of concentrations and various periods of exposure to
different angiogenic factors should be tested to find the best
conditions for high-efficiency angiogenesis. For this end, it is
necessary to design excellent DDSs for engineering of thick tissues,
and these systems are discussed in the following section.

DRUG DELIVERY SYSTEMS

Despite the fact that many biomaterials can supply essential
mechanical support and attachment sites, they cannot direct changes
in cellular phenotype as efficiently as growth factors. Binding of growth
factors to various biomaterials appears to be a relatively simple task
[188]. For example, biotinylated polymeric biomaterials can be easily
coupled to growth factors by streptavidin [189]. This technique has been
used to conjugate RGD to PLA–PEG copolymers [190].

Growth factors are released by cells for immediate signaling or are
embedded in the ECM and released in a controlled manner.
Sequestering of growth factors in the ECM allows their stabilization
and provides physical cues for cells through spatial presentation.
Controlled release of factors from the ECM is coordinated by extracel-
lular degradation. Generally, these processes contribute to growth factor
delivery that is responsive and dynamic, changing in accordance with
specific cellular requirements and processes [191].

Although systemic delivery of single proteins is technically simple, the
succeeding distribution of them to every place in the body and
consequently their rapid degradation result in unfavorable side effects
and toxicity, and also an inadequate local concentration for the desired
time frame [29]. Polymeric systems can be successfully tricked to deliver
small doses of factors at distinct release rates directly to target cells
(Figure 1). Polymeric delivery systems made up of various natural and
synthetic biomaterials can grant controlled growth factor delivery by
diverse mechanisms. Various types of these materials have been applied
for regulated release of bFGF and VEGF, including alginate hydrogels,
PLG microspheres, and porous PLGA scaffolds [72,192,193]. The release
profiles of biomolecules from these carriers can be controlled by
diffusion, polymer degradation, the dose of the factors loaded in the
system, and the composition of the scaffold. Biodegradable polymer
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systems are used to deliver proteins [30,31,194,195] or plasmid DNAs
encoding the desired factors [196,197]. However, there is necessity for
growth factor delivery systems that are able to deliver multiple factors
with distinct release kinetics, which is required for driving normal tissue
development [54,198].

Growth factors can be incorporated into the scaffolds by two
approaches. The first approach involves adding a lyophilized factor
like VEGF to the polymer particles prior to processing the polymer into a
porous scaffold, which results in the factor being largely associated with
the surface of the polymer. In this method, VEGF is subjected to rapid
release (e.g., days to weeks in duration). The second approach involves
pre-encapsulating of a factor like PDGF in PLG microspheres.
Therefore, fabricating scaffolds from these particles results in a more
even distribution of factors throughout the polymer, with release
kinetics controlled by degradation rate of the polymer used to construct
microspheres. The two approaches may be combined by mixing partic-
ulate polymers containing the first factor with microspheres containing
a pre-encapsulated second factor to deliver two growth factors with
different release rates. The particulate and microsphere PLGAs are then
fused to form a homogeneous combined scaffold with an open-pore
structure [106].

In a few circumstances, we need to deliver several factors with distinct
release kinetics in desired time frames. Therefore, the future of bioactive
materials is the design of ‘smart biomaterials’ that respond to their
environment with predetermined responses in which release is initiated
by microenvironmental cues. Although the design of smart biomaterials
is in its early stages of development, the potential for engineering these
biomaterials has been presented by many studies [4,199,200]. Various
pathologic conditions can lead to the increase of local temperature or
acidity, or to the activation of matrix metalloproteinases (MMPs), and
these microenvironmental conditions can be exploited by smart bioma-
terials [200,201]. MMPs, which cleave specific amino acid sequences, act
locally in ECM, and are normally expressed at low levels in restful
tissues. Thus, MMP-sensitive linkers could be used to couple factors to
biomaterials. Lutolf et al., developed hydrogels with MMP-sensitive
linkages between polyethylene glycol chains entrapping BMP2. This
strategy allowed rapid bone formation in rats due to proteolytic
invasiveness of the gels and subsequent release of BMP2 [202].

Successful repair and regeneration strategies will require quantitative
insight of tissue microenvironment and can be engineered via designing
biomaterials, which provide quantitative adhesion, growth, or migration
signals to direct cellular differentiation pathways including angiogenesis
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and vascular maturation. Angiogenesis with biomaterial-based drug-
and cell-delivery systems have been reviewed by several papers
[25,203,204]. Mimicking biological patterning may be especially useful
to control tissue development processes such as neovascularization,
where unguided or uncontrolled growth can lead to pathological effects
including tumor growth, metastasis, and deformed vessels. Techniques
developed for microarray patterning and microcontact printing, micro-
molding, laser photolithography, and micro-electro-mechanical systems
(microfluidic devices) may be useful to form gradients of growth factors
within the scaffolds. In addition to biomaterial-based DDSs, these
technical micropatterning approaches might be valuable in the gener-
ation of complex networks of temporally and spatially controlled growth
factor delivery to mimic the micro- and nano-topographies of natural
ECM, creating complex tissue architectures in scaffold materials and to
regulate angiogenesis [4,7,95,167].

CONCLUSION

Advances in bioactive biomaterials and DDSs allow not only controlled
release, but also protection of factors from degradation. Design of these
advanced biomaterials will require substantial basic biological insight,
since dose, timing, spatial range of growth factors delivery, and also the
conditions for environmentally controlled release will be highly specific
for each target tissue and disease. Materials can be designed to be
multifunctional and smart, in order to provide sequential signals with
different release kinetics for individual factors. Thus, new rationally
designed biomaterials provide exact control of multiple growth factors
release with distinct gradient in response to a specific niche.
Identification and manipulation of biomaterials that support appropri-
ate cellular attachment and proliferation and induce optimal angiogenic
signaling pathways are critical for engineering of thick tissues.

Organized neovascularization in engineered tissues may allow devel-
opment of thick tissues with large mass and complexity. To reach this
goal, several key issues must be considered; first, since normal tissue
regeneration and development follow a specific series of spatially and
temporally coordinated signaling events, biocompatible scaffolding bio-
materials must be designed in a way to yield tissue constructions in a
precisely controlled manner. On the other hand, properties of each
scaffold should be specific for full tissue engineering and regeneration
including its angiogenesis. For example, the matrix should have a high
degree of porosity to allow the penetration of blood vessels into the
implant. There are many biomaterials in use today, in clinical settings,
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with reasonable biocompatibility; however, performance of these bioma-
terials in conjunction with incorporated bioactive factors needs to be
addressed. Second, the use of better sources of vascular cell progenitors
(OEC-type EPCs, for example) in combination with other tissue-specific
cell types may alleviate cell sourcing problem that can hinder industrial
scale-up of engineered thick tissues. The third issue is the need for better
comprehension of the biology behind neovascularization. Understanding
the normal route of angiogenesis provides basic data on which we can
build and optimize normal growth and development of vessels within
scaffolds. The fourth important factor is finding a way to optimize
fabrication of scaffold–biomolecule hybrids. For example, organization of
biomolecules and cells in biomaterials needs to be optimized to mimic
tissue complexity, and micro- and nano-patterning. The fifth issue
involves drug loading and delivery methods, release profiles, and
gradients, which need to be examined to achieve maximum efficacy of
growth factor release, similar to that of normal tissue development.
Finally, we need to integrate vascularized tissue constructs with
functional cells of interest and also with host’s vasculature networks.
To create functional heart, muscle, lung, etc., the native cell types or their
precursors have to be either included or recruited into the scaffolds along
with vascular cell types. The resulting interactions among multiple cell
types have to be carefully examined so that functional tissues are regen-
erated with complete network of blood vessels. Further investigations are
required to address these critical issues for improvement and engineering
of clinically large tissues, which is an important goal in tissue engineering.
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