On the Nonstationarity of Internet Traffic

Jin Cao, William S. Cleveland, Dong Lin, and Don X. Sun
{Statistics, Statistics, Networked Computing, StatigtResearch
Bell Labs, Murray, Hill, NJ

{cao, wsc, dong, dxsg@bell-labs.com

ABSTRACT one of the databases, from a link at Bell Labs; we present results
for this database in detail. We then studied other databases for con-
firmation; the confirmation results are briefly described.

Two types of traffic variables are studied, packet and connection.
The packet variables are the following: (1) size; (2) inter-arrival
time. Connection variables describe the characteristics of appli-

Traffic variables on an uncongested Internet wire exhibit a perva-
sive nonstationarity. As the rate of new TCP connections increases,
arrival processes (packet and connection) tend locally toward Pois-
son, and time series variables (packet sizes, transferred file sizes

and connection round-trip times) tend locally toward independent. . ; ;
b ) y P cation requests to TCP for transfers, as well as information about

The cause of the nonstationarity is superposition: the intermingling h . .
of sequences of connections between different source-destinationthe Internet emvironment at the time of the request. The time of

pls and e rminlng of sequences o ackars o ifere [T “MSCLOD [ 9er o e e fesant o e il SY0
connections. We show this empirically by extensive study of packet pe . o : )
traces for nine links coming from four packet header databases. WeWIth a specific connection and each connection has measurements

show it theoretically by invoking the mathematical theory of point ofa _coIIection of connection v_ariables all of Whpse timestamps are
processes and time series. If the connection rate on a link getsthe timestamp of the connection. The connection variables are the

sufficiently high, the variables can be quite close to Poisson and I\?Jg’:}'?ﬁé gll?esn?rgir"\lsgj: drgg?vde-:nsp\(tll\rlr;,igqlgeg)ﬂc(:alider?t)i;?deetlrr(])ql?nt:f-
independent; if major congestion occurs on the wire before the ratetri time measured by the time between thé server SYN/ACK and
gets sufficiently high, then the progression toward Poisson and in- cIiI:nt ACK: (3) cIientf)i/Ie size measured from se b P
dependent can be arrested for some variables. T S gquence numbers o
the connection; (4) server file size measured from sequence num-
bers of the connection; (5) connection inter-arrival time, that is, the

1. INTRODUCTION time until the next connection.

Long-range dependence and heavy-tailed marginal distributions ..
have been established as important, fundamental characteristics 011'2 IndIVqual_ Measurements vs. Counts
Internet traffic ([18; 23]). Here, we show that nonstationarity needs Here, we study individual measurements. In the past, much of the
to be added to this list of fundamentals because nonstationarity Understanding of Internet traffic has arisen from studying counts in
is pervasive and affects many traffic variables that are measuredfixed-length intervals. Such counts, an aggregation of individual
through time on an Internet link. The form of the nonstationarity Measurements, do not reveal our findings.

is important for Internet engineering. We show that as the pate, ~ Consider packet arrivals as an example. We study the individual
of new TCP connections on a link increases, traffic teiodally arrivals by studying inter-arrival times;, as a time sequence. A
toward Poisson and independent. standard practice has been to study packet counts, an aggregation
of the individual arrivals, in fixed-length time intervals such as 10
1.1 Traffic Variables ms. We study; because devices see packets, locally, arriving one

We study the traffic variables empirically and theoretically. The PY one, not all at once as an aggregate over 10 ms. We gudy
empirical study is based on analysis of packet headers from four because they are the individual measurements and characterize the
databases: measurements of the variables resulting from capturing?fva@! process, but packet counts are summaries that do not retain
all packet headers on links and adding a timestamp to each packet he |nformat|on in the arrival process. Consnd(_ar\_/vhat happens when
We study all traffic variables by application protocol because their te ratép increases. If we study the characteristics of 999 consecu-
behavior differs from one application to the next. Here we present Ve t; then we study the characteristics of 1000 arrivals no matter
results in detail just for HTTP, and we briefly describe results for What the value op. But for byte counts in 10 ms intervals, asn-

SMTP. We first established the traffic characteristics by study of Créases, each interval aggregates more and more arrivals, masking
the individual behavior more and more. Here, we show that the

tend to independent and exponentially distributed, the properties of
a Poisson process. But packet counts become normally distributed
and retain the same correlation structure. Thus the counts do not
reveal the local Poisson limit.

The Poisson limit appears to provide the relevant framework for
queuing behavior. Here, we investigate queuing by an open-loop
simulation in which we feed measured packet arrivals and sizes
from an Internet wire into an infinite-buffer queue. We find that
as p increases, the queuing tends toward that of Poisson arrivals



with constant service times. Elsewhere, we carry out a queuing inter-arrival time. The overall results cited here about HTTP inter-
analysis with a closed-loop simulation that takes TCP feedback into arrivals are from that source, and we confirm the results with new

account, and reach the same conclusion [4]. data. The inter-arrival statistical model presented there is altered
here to include a transformation that greatly simplifies the struc-
1.3 Contents of the Paper ture. The purpose of the work here is to study a large number of

Section 2 of this paper presents previous results. Section 3 de-traffic variables, build models for them, and demonstrate the ubig-
scribes the four databases used in our analysis. Section 4 discussedity of such nonstationarity in Internet traffic.
our tools for statistical modeling. In Section 5 we study the prop-
erties of the HTTP packet variables by a statistical modeling that 3, DATABASES
summaries statistical beha\{lor. In Section 6 we study the_ Proper- The primary database on which we draw for our empirical study
ties of the HTTP packet variables by an open-loop queueing anal-j his paper arises from packet header collection on a 100mb/s
ysis. Section 7 analyzes the HTTP connection variables; for €ach gihermet link at Bell Labs that connects a network of 3000 hosts to
variable, a model is built that is comprehensive in the sense that it ia rest of the Internet. For HTTP, all clients are on the inside of

can generate synthetic values that mimic the statistical characteris-yna network and all servers are on the outside. so incoming packets
tics of the measurements. Section 8 discusses confirmation of ourg.e from servers and outgoing are from cliehts. Data collection

results. Section 9 summarizes and discusses our results. began on 11/18/1998 and continues through the present. Altogether
there are 20 billion packets that have been organized in the database
2. PREVIOUS RESULTS into 1 billion TCP connection flows. The Bell Labs database was

used to establish the results presented here. We used three other
}abases to confirm the results; the confirmation is discussed in
ection 8.

The traffic variables characterized here have been studied widely
in the literature, and long-range dependence and heavy-tailed margig
distributions have been established as important characteristics [18;
27; 28]. These two characteristics are in fact closely related: the
heavy-tailed marginal distribution of file sizes [22; 1; 23; 9] are 4. STATISTICAL MODELING
a major factor in long-range dependence [9; 21]. Connection and We build statistical models for the traffic variables in which un-
packet inter-arrival times have been found to be long-range depen-known parameters of the models are estimated from the data. For
dent and have a distribution that is either exponential or has longer each variable, the measurements are divided into a collection of
tails than the exponential [22; 23; 11; 14]. Packet sizes have beentime blocks; the connection rat@, for the blocks ranges from
shown to be multi-modal, primarily due to the mix of control pack- smaller to larger. The model parameters are estimated for each
ets such as ACKs, and data packets with differing maximum seg- block separately, and then the estimates are studied as a function of
ment sizes [26]. Multifractral wavelet models have been developed p. We found that simple statistical models do an excellent job of
to generate traffic with possibly heavy-tailed marginals and long- accounting for the statistical variability in the measurements. For
range dependence [25; 24]. each variable, the marginal distribution is modeled by fitting the

Some authors have observed changes in the statistical propertieempirical distribution. Then, taking the marginal distribution as
of traffic. It is well known that traffic rates exhibit weekly and fixed and known, a model is developed for the long-range depen-
daily patterns because network usage has such patterns [23; 15¢ence.

26]. These changes, however, are a straightforward, simple in- . L .

stance of nonstationarity. The nonstationarity we address here is4-1 Marginal Distribution

far more profound and involves the form of the long-range de- The marginal distributions of the inter-arrival time variables are
pendence and marginal distributions. Several authors have madewell approximated by Weibull distributions, where the parameters
reference to changes in these, but without connecting the changeslepend on the connection rgieLet v; be one of the inter-arrival

to a changing rate. Feldman [15] used the Weibull distribution ~ variables, let\(p) be the shape parameter of the Weibull, and let
to model HTTP connection inter-arrival times over one-hour time «(p) be the scale parameter. Then

blocks and reported a substantial change of shape parameters from Ap)

one time period to the next. Crovella and Bestavros [9] noticed a (L) =y

change in the Hurst parameter as the network utilization changes. a(p)

There have been some theoretical treatments of the effect of ayhereu; is a unit exponential. For packet sizes, we simply use the
changing amount of superposition on queuing. Queue length changesnpirical distribution to model the marginal distribution because
with an increasing number of superpositions while holding the uti- the distribution has atoms, or discrete points with many observa-
lization fixed [5; 2; 13; 12]. However, in these treatments, the tions; approximately 2/3 of the values are 40 bytes or 1500 bytes.
probability of exceeding a level that grows wikh the number of  For round-trip times and file sizes we fit a semi-parametric model
superpositions, is studied for a fixed interval of time; but it seems g 4 log transformation or power transformation of the variable.
to us more appropriate to let the time interval get smaller with the The transformed scale for a variable is broken up into intervals;
rate since we would not expect buffers to get arbitrarily large with tne distribution has the same parametric form for all intervals but
an increase in traffic load but rather would expect devices to get the parameters change. The parametric form is a Weibull for the
faster. round-trip times and a Pareto for the file sizes.

Also, changes in the means and variances as a function of traf-
fic load are studied by Morris and Lin [19]. They show that the 4.2 Long-Range Dependence
relationship between changes in mean bandwidth and changes in The long-range dependence of many of the traffic variables is de-
variance for aggregated Web traffic are the same as those for Poisscribed by a simple two-parameter model: a fractional sum-difference
son traffic. (FSD) model with transformation. Again, let one of the vari-

The first extensive empirical and theoretical modeling of nonsta- ables. LetF'(v;; p) be the cumulative marginal distribution func-
tionarity was described in [7] for one HTTP connection variable: tion of v;. (Note that in the notation we allow the possibility that



the marginal distribution depends on the raje Let G(z) be

the cumulative distribution function of a Gaussian, or normal, ran-
dom variable with mean 0 and variance 1; that is, the distribution
of the variable isN(0,1). Letz; = H(v;) be a transformation

of v; such that the marginal distribution ef is V(0,1). Then
H(v;) = G™*(F(vi;p)). Lets; be aN(0, 1) long-range depen-
dent time series generated by a fractional ARIMA model:

d
(I — B) Si =€ + €1
whereg; is Gaussian white noise with mean zero and variance

(1 —d)r*(1 —d)

al(p) = Ao

B is the backward shift operator
Bs; = si—1,
and

0<d<0.5.

Letn; be aN (0, 1) white noise time series independentpfThen
the model is

zi = /1 —6(p) si + \/O(p) n;.
where
0<6(p) <1.

The term “sum-difference” is used because the fractionally differ-
encedz; is the sum of the output from applying a summation oper-

ator to a white noise series and the output of applying a difference
operator to a white noise series independent of the first:

(I —B)%zi =+/1—0(p)(I + B)ei + \/6(p)(I — B)"n;.
The autocorrelation function af, from [17], is

(2K*(1 —d) — (1 — d)>)T(1 — d)I'(k + d)

a-(k) = (1—0(p)) (k2 — (1 —d)2)L(d)T(k+ 1 — d) ’

fork =1,2,.... The power spectrum is

(1 —d)T2(1 — d)|1 4 >/ ?

(f):(l_e(p)) 2F(1_2d)|1_62ﬂ-if|2d

p: +0(p).

The variance of the componegtl — 6(p) s; is1 — 6(p) and the
variance of the componeRry6(p) n; is 6(p). We have allowed

to depend orp but notd because, as we shall see, for the traffic
variables studied her#, changes withp but notd. As 6(p) tends

to 1, thez; tends to white noise.

To fit the FSD model with transformation to a set of measurements
we takeF (v;; p) to be the empirical marginal distribution function
of the data. Then we fit the FSD models using ATS technology [8;

7]: the periodogram is averaged in blocks of size 5 and then the log

of the FSD spectrum in the above equation is fitted to the log of the
averaged periodogram using nonlinear least squares.

One of the connection variables, HTTP server file size, present
opportunities to take aspects of the transfer into account to model
the long-range dependence. The details of the tailored models will
be given in Sections 7.

5. HTTP PACKET VARIABLES
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Figure 1: Empirical marginal distribution of 50000 packet sizes.
Thekth largest size is graphed agai(st— 0.5)/50000.

5.1 Data

We studied packet header data from the Bell Labs database to
build statistical models for the HTTP packet variables and to carry
out the queuing analysis in Section 6. The data cover the period
1/1/00 through 2/16/00.

The HTTP packets were taken to be those for which the server
port is 80. We broke the time span of 46 days into 5 minute blocks;
this block length is small enough to insure the requisite intra-block
stationarity for most cases, but large enough to provide enough
packets for fitting statistical models. For the analysis presented
here, we selected a random sample of 500 blocks constrained so
that the log rates were within a certain tolerance of being uniformly
spaced from the minimum to the maximum log rate. The TCP con-
nection ratep, for each blockb = 1 to 500 is the number of con-
nections that started up in the block divided by the block length
in seconds (300 sec). Thg vary from 0.18 connections/sec (c/s)
to 34 c/s. On the wire, packets travel in two directions: inbound
(packets from the servers) and outbound (packets from the clients).
We studied both, but present just inbound results here; outbound
results are similar. The inbound packet rate for the 500 intervals
varies from 1.7 packets/sec (p/s) to 452 p/s.

For each block we analyzed the packet size process and packet
inter-arrivals. Each packet in a block is ordered from earliest to
latest according to the timestamp. Suppose therergargpackets
in block b. The packet size variable for the block is the sequence
of packet sizespy,, for & = 1 to my; pp1 IS the size of the first
arriving packetpy» is the size of the second arriving packet, and
so forth. The inter-arrival variable is the time between successive
packetsayy, for k =1 tom,—1; ap: is the timestamp for the second
packet minus the timestamp for first packes; is the timestamp
for the third packet minus the timestamp for the second packet, and
so forth.

5.2 Empirical Study: Marginal Distributions

We analyzed the inbound packet size marginal distribution for
each block by a quantile plot [6]. Let,x) for k£ = 1 to m; be
the sizes ordered from smallest to largest for blackhenp, ;) is
plotted againstk — 0.5)/m,. The study revealed a small change
in the packet size marginal distribution; Asincreases, the mean
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Figure 2: Quantiles of log inter-arrival times are graphed against
log Weibull quantiles. The vertical lines show the 1% and 5% quan-
tiles. The oblique line is drawn through the two quartile points.

Log Rate (log base 2 HTTP connections/sec)

Figure 3: The maximum likelihood estimate of the Weibull shape
parameter is graphed against the log connection rate for 500 blocks.
size increases but the increase is small compared with the range ofl he smooth curve is a loess fit with robust local linear fitting and a
the marginal distribution. Figure 1 shows the empirical marginal span of 0.75.
distribution using data from all of the blocks. In all of the 500
blocks there are 13.6 million packets which is far more than we
need to characterize the marginal distribution so we randomly sam-1.21 x 10~ sec. But the departure from the Weibull involves only
pled 50000 sizes from each block to form the data used in the plot. @ small fraction of the data, and overall the fit is quite good.
30% of the data have a size of 40 bytes, and 35% have a size of The maximum likelihood estimate of the shape for the lower rate
1500 bytes. The remaining percentage is spread out between thesénterval is\, = 0.378, and for the higher iS, = 0.655. We can
two values although there are actually a few points of accumula- see this in Figure 2 because the slope on the left is greater than on
tion corresponding to infrequently used maximum segment sizes, the right. This reflects the general trend. Figure 3 is a plot,of

but the usage is a very small percentage. _ againstog, (p5). The smooth curve is the fit from a nonparametric
We study the inter-arrival ime marginal distribution by a Weibull - regression procedure, loess, with robust local linear fitting with a
quantile plot. Leta, ) for k = 1tom, — 1 be the inter-arrivals or-  span of 0.75 [6]. The marginal distributions are tending toward the

dered from smallest to largest for blotkLetlog, denot_e logbase  exponential, a Weibull with shape 1.

2, and letlog denote the natural log. Theng,(a;)) is plotted

against the!og2 of_thg qu_antlle of probabilityk —0.5) /(m, —1) of 5.3 Empirical Study: Dependence

an exponential distributioripg,, (— log(1 — (k —0.5)/(my — 1))). _ _ ) _ )

If the marginal distribution of the inter-arrival times is well approx- ~ We fitted the FSD model with normality transformation (Section 4)
imated by a Weibull distribution with shapeand scaley, then the to the measurements of the inbound inter-arrival variable of each
pattern of points on the p|0t is approximate|y linear with S|Q§é b|OCk b, but we fltted the FSD model without t_ransformation for
and interceptog, (). For each block we estimate the shape and the inbound packet size variable. Transformation makes sense for
scale by maximum likelihood estimates, andds. the continuous distribution of the inter-arrivals, but not for the sizes

Figure 2 shows Weibull quantile plots for two blocks. In the left which have atoms in their distribution. We estimated the two FSD
panel the connection rate is among the lowgst= 0.29 c/s, and in parameters] andé(p), for each block. For both the size and inter-

the right panel the connection rate is among the highigst 33.87 arrival variables, the estimateséfemain nearly constant with the
c/s. On both plots the oblique line has Sla&?l and in,tercept rate, and the median value for both is about 0.45. Thus we take the

log,(&s). The leftmost vertical line is drawn at the 0.01 quantile estimate for all blocks to bé = 0.'45 in both cases ar_1d re-estimate
of the log, exponential distribution, which means that 1% of the 6(p). Let6, denote the new estimate (for either variable) for block
points on the plot lie to the left of the line; the other vertical is
drawn at the 0.05 quantile. For the two blocks used in Section 5.2, the dots in Figure 4 show
Figure 2 shows that the marginal distribution of the inter-arrivals the10log,, of the averaged inter-arrival periodogram, and the curve
for each block is well approximated by the Weibull. For the top Shows thel0log,, power spectrum of the fitted FSD model (with
95% of the distribution the fit is excellent. For the bottom 5%, d = 0.45). The fits are quite good, so the FSD model appears to
the data are larger than expected for the Weibull approximation. do @ good job of fitting the second order dependence. This was
Part of the reason for the increase is the lower bound on the inter-the case for most of the 500 intervals. For the lower rate block
arrival times of packets. The line speed on the Bell Labs wire is (v = 0.29 c/s), 6, = 0.58, and for the higher rate blocj,(=
100 mb/s. The inter-arrival time between packletandk — 1 in 33.87 c/s).0, = 0.84, so the dependence decreases at the higher
a block is no less than the transmission time of paékathich is rate. The change is evident in the behavior of the power spectra.
8psr 108 seconds. For a 64 byte packet, the minimum size (40 For the higher rate, the flat part of the spectrum at the higher fre-
bytes of TCP/IP header plus 14 bytes of Ethernet encapsulation),quencies extends far further down into tpe lower frequencies. This
the transmission time i5.12 x 10~° sec, and for 1514 bytes itis  reflects the general trend. Figure 5 pléisagainstlog, (ps) for
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Figure 6: 0, is graphed againdbg, (/) for the packet size vari-
able. The smooth curve is a loess fit with robust local linear fitting

Figure 4: The log averaged periodogram is graphed against fre- and a span of 0.75.

quency for two blocks of packet sizes with low and high connec-
tion rates. The solid curve is the ATS estimate of the log power

spectrum for the FSD model.
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Figure 5:0, is graphed againsbg, (/) for the packet inter-arrival
variable. The smooth curve is a loess fit with robust local linear

fitting and a span of 0.75.

the inter-arrival variable. The smooth curve is a loess fit with local
linear robust fitting with a span of 1 [6].

The results of fitting the FSD model to the measurements of the
packet size variables are similar. Figure 6 shows the resulting plot
of 6, againstog, (ps). Thus, for both packet size and packet inter-
arrivals, the long-range dependence of the variables decreases with
p and tends toward independence. There is more dependence and a
greater change in dependence in the size variable.

5.4 Discussion of Results

Overall, the empirical results reveal a major change in the sta-
tistical properties of the inbound size and inter-arrival variables, a
significant nonstationarity. The marginal distribution of size does
not change much, but for the inter-arrivals, the Weibull distribution
changes substantially, tending toward exponential. There is a major
change in the long-range dependence of both variables. And as we
will see in Section 6, these changes result in a major change in the
gueuing characteristics.

Increased superposition of HTTP flows provides a convincing the-
oretical explanation for the nonstationarity of both the size and
the inter-arrival variables although the mathematical mechanism is
somewhat different for the two.

Consider first the size variable. There are possibly two contribut-
ing factors here. First, within a connection, packet sizes are more
similar than between connections. This is because two hosts es-
tablish a maximum packet size for each connection and different
servers have different policies in terms of filling packets with data.
Second, the TCP connection start up and tear down will create con-
trol packets in the two ends and data packets in the middle, and
the sizes of control packets and data packets are markedly differ-
ent. Because file sizes are heavy tailed, this will possibly generate
long stretches of data packets of similar sizes within a connection.
When g, is low, sequences of packet arrivals tend to be from the
same connection, so there tend to be bursts of packets of similar
sizes. Asp, gets larger, packets from the individual connections
tend to maintain similar inter-packet spacing, but for any particular
connection, there are now many more packets to be interspersed
among those of the connection. As the rate increases, the increased



intermingling of packets breaks up the bursts of similar packets, Run | Marginal | Order | Size | Combination
and the dependence decreases 1 | org ong_ | orlg | orig.org.orig
. ) o ) 2 orig rand | orig | orig.rand.orig
Now consider the inter-arrival variable. For lqf, the bursti- 3 orig orig | const | orig.orig.const
ness of HTTP connections ([14]; [7]), the heavy-tailed file sizes, 4 orig rand | const| orig.rand.const
the behavior of TCP, and the queuing of packets along the path to 5 exp orig orig | exp.orig.orig
the link create bursts of packet arrivals. This results in a marginal 6 exp rapd orig exp.ra_nd.orig
distribution of the inter-arrivals that is skewed with respect to the 7 exp orig | const| exp.orig.const
exponential, and results in long-range dependence among the inter- 8 exp rand | const| exp.rand.const

arrivals. For a higheg,, the arrival process can be thought of as the
superposition of arrival processes at a Ipyy for example, if the
high rate is 30 c/s, then the process can be seen as the superposition
of 6 processes with rate 5 c/s. The theory of point processes shows
that such superposition leads, locally, to a Poisson process. For ex-
ample, Proposition 9.2.VI of [10] states that a process obtained byi
superposing: independent identically distributed stationary point
processes and then dilating the time scale by a factby will con-
verge weakly to a Poisson process. This applies to a point proces
even if the inter-arrival times have a heavy-tailed distribution.

Table 1: Experimental Design

We suppose that when a packet arrives, space is allocated for it
nstantaneously, so the queue size is increased instantaneously at
the time of arrival by the number of bytes in the packet. We also
suppose that the queue buffer size is infinite, so packets are never
sdropped.

Let d, be the output line speed (in mb/s), that is, the speed at
which the queue drains. The utilization of the output linkjgd.

6. HTTP: QUEUING ANALYSIS For each run in each block we carry out a simulation for each of 4
utilizations: 0.1, 0.3, 0.5, and 0.7. That is, for each run we simulate
6.1 Experimental Design four times, changing), to achieve each utilization. Altogether we

We will explore further nonstationarity in the HTTP packet data run 16000 simulations: 500 blocks8 runsx 4 utilizations.

described in Section 5 by carrying out 500 queuing simulation ex- _FOF €ach simulation we compute the queue length in bytes at the
periments, one experiment per block. Each experimengfsfac- time of arrival of each packet, but do not include the arriving pacl_<et
torial: three factors each at 2 levels, and 8 runs consisting of all @ Part of the queue, so we measure what each packet sees in the
possible combinations of the levels of the three factors. In Run 1, dU€ue when it arrives. To summarize the queue length marginal
the packets are fed into the queue according to the observed interdistribution of the S|mula_t|_on for a given block, run, and utilization,
arrivals and sizes. In each of the other 7 runs, the sizes and inter-W& cOmpute the probability that the queue length exceeds each of
arrivals of the block are altered according to the factors. 18 values: 0 bytes aref’ bytes fork =0 to 16.

The first factor is the form of the inter-arrival marginal distribu- _Run 8, exp.rand.const, serves as a benchmark for all other runs.
tion; we use either the original observed values or the values of an The inter-arrival tl_mes are independent and ex_ponentlally distributed,
exponential distribution. The exponential case is as follows. As in SO they form a Poisson process. The packet sizes are constant. Thus
Section 5, let, 4 be them, — 1 packet inter-arrivals of block, we have a queue with Ponsso_n arr!val_s and constant service time.
ordered from smallest to largest. L&t be the mean inter-arrival lfor eac_h utlllzatlon_, the_qu_eumg dlstrlbutloq does not depend on
time. Letg,, be the quantile of probabilityi — 0.5)/(m;, — 1) of po; that is, the queuing d_|_str|put|on for Run 8 is the same across the
an exponential distribution with mean. Then in the exponential 500 blocks for a_flxed utilization. Furthermorg_, we expect t'he least
case, thekth inter-arrival time isz,,. Changing from the original ~ @mount of queuing for Run 8. So for each utilization we will com-
inter-arrivals to exponential inter-arrivals decreases the two tails of Pare the queue length distribution for Runs 1-7 with that of Run
the distribution, which as we saw in Section 5 were Weibull and
thus more skewed or stretched out than the exponential. We expect6 2 Previous Results and Goals
this change to shift the queuing distribution to smaller values. The '+
second factor is the order of the inter-arrival times in the block; we  This queuing analysis is carried out in the same general mode as
use either the original order or a randomized order. For the randomthat of [13] — input observed packet traces into an infinite-buffer
order, the expected correlation is zero. Because the randomiza-queue with fixed utilizations — but with an expansion of several
tion removes the long-range dependence in the packet inter-arrivalaspects. Their experiment fed arrival times to the queue, but not
variable, we expect it to shift the queuing distribution to smaller packet sizes. Their experiment had one factor, inter-arrival order,
values. The third factor is the packet size. We take the sizes toand had one block, 30 minutes long. They use a single summary
be either the original ones or to be constant and equal to the meanstatistic of queue length, the mean.
size of the packets in the block. Because moving to a constant re- The previous queuing analysis shows a substantial decrease in the
moves the long-range dependence in the sizes we expect it to shiftmean queue length at higher utilizations for the randomized or-
the queuing distribution to smaller values. Table 1 shows the eight der. They then use this result as an argument for the importance
combinations of the factors for the 8 runs. of long-range dependence for network engineering. While we be-

Let 7, be the throughput of the packets in blokkthat is, the lieve this type of queuing analysis might suggest characteristics of
sum of the packet sizes (in megabits) divided by 300 sec. This, of live queues on the Internet, itis open-loop and suffers from missing
course, is the throughput for Run 1 of the experiment for black  TCP feedback which has a large impact on queuing. Our purpose in
The throughput is the same for all 8 runs of each block experiment. carrying out the queuing analysis is not to make definitive conclu-
The sum of the packet sizes remains the same in the 8 runs, andsions about live queues. Rather, the primary purpose of the queuing
all arrivals in each run are contained within the 300 sec period. analysis is to provide another method for studying the nonstation-
Because the packets were collected on a 100mb/sdintan never arity of the packet traffic variables. In the previous section we saw
be more than 100mb/s, and is always much less. The valugs of a substantial nonstationarity: parameters of statistical models fitted
depends of course on the the connection rate of the glpck to the data change with increasipgin such a way that the packet
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Figure 7: On each panel, the probability of exceeding a particular queue length for 500 blocks is graphed against the block HTTP connection
rates. Each row of panels has the same queue length and each column has the same run type. The smooth curve on each panel is a loess fi
with normal local linear fitting and a span of 0.75.

variables tend toward Poisson and independence. We seek to corfactor has the next largest, and the size factor has the least. How-
roborate this result with another method of analysis. For example, ever, for the longest queue length, the order factor has a slightly
we wish to see if the queue-length distributions of each of Runs 1-7 bigger effect than marginal-distribution factor.

tends to that of Run 8 g%, increases. However, the most important aspects of these results is that the
probabilities for Run 1, those for the original data, tend toward the
6.3 Results nearly constant probability for Run 8. In other words, as the rate

Figure 7 shows the experimental results for the 500 simulations increases, the queuing distribution of the live packet process tends
for which the utilization is equal to 0.5. There are 24 panels. Each toward th_at for Poisson arrlvgls and constant service time. This
panel conveys results for one queue length and one run type. For29"€es with th_e result of Section 5 tha_t the packet a_lrrlvals are t_end-
each row, the panels have the same queue length; from bottom ton9 toward Poisson and the packet sizes are tending toward inde-
top the lengths are 2!°, and2'“ bytes. For each column, the run ~ Pendence.
type is the same; from left to right we go from Run 1 to Run 8.

On each panel, the 500 block probabilities of exceeding the panel7. HTTP CONNECTION VARIABLES
queue length for the panel run type are graphed against the 500
block connection rates. 7.1 Data

The results in Figure 7 are representative of results at other utiliza- For HTTP we studied the five connection variables — inter-arrival,
tions. For each queue length, Run 8, the benchmark, has the lowestlient file, server file, client round-trip time, and server round-trip
probabilities, and they are nearly constant as functiop,of For time — with data from the time period 1/1/00 through 2/16/00. We
some other combinations of queue length and run, the probabilities used HTTP connections for which the transferred numbers of data
are nearly constant and close to those for Run 8. In the remaining bytes from client to server and server to client are both greater than
panels, the probabilities have an overall downward tread, tending zero. We broke the data into 5-minute blocks and removed blocks
toward the level for Run 8 g4, increases. Of the three factors, the for which there was gross nonstationarity. For the analysis pre-
marginal-distribution factor has the largest effect, the dependencesented here, we use the same 500 blocks as described in Section 5.
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7.2 Inter-arrival Times if paths to them from the Bell Labs network experience very differ-
p . . . . p y

We fitted a Weibull marginal distribution to the inter-arrival times ~ €nt amounts of congestion. This variation between the servers can
of each of the 500 blocks following the method set out in [7]. be much larger than the variation of the measurements for either
The results agree with this previous analysis, which used different one of the servers separately. When the connection rate is low, the
data. Figure 8 graphs the estimates of the Weibull shape parametefeguence of server round-trip times will tend to have runs from a
against the log base 2 connection rate. As the rate increases, th&ingle server, so we might get a run from one server of values that
Shape Changes from 0.46 to 0.80, an appreciab|e Change. Since thare very small and about the same, and then a run of values from
exponential distribution is a Weibull with shape 1, this means the another server that are vary large and about the same. The result
marginal distribution tends toward the exponential. is a large amount of time dependence. As the connection rate goes

We fitted a FSD model to the inter-arrival times. In [7] an earlier UP, the run lengths of round-trip times from the same server are
version of the FSD model that had a much more complex trans- reduced because the connections of different servers intermingle
formation and back-transformation procedure was fitted; our new more, and eventually, the server sequence tends toward random, so
results are in general agreement with those of the previous onesthe server round-trip times tend toward random as well. The same
The estimated value of in the new analysis did not change with ~ consideration applies to the client round-trip times.

the connection rate and was set equal to 8,4p) was estimated . . .

for this fixed value. Figure 9 plot,(p) againstp,; the smooth 7.4 Sewer and C_:hent File SIZGS o
curve was fitted by loess with local linear fitting and a smoothing ~ The marginal distributions of the client and server file sizes do.
parameter of 0.75. Overall; (p) changes substantially, from 0.61  Not change much with the rate and were flt_ted_usmg the same semi-
to 0.77, so the long-range dependence is markedly reduced. [7]Parametric method used_for_the round-trip times except that we
also provide an explanation of the dependence in the inter-arrival Used the log transformation instead of the power transformation.

times and, and verify the results with several theoretical tools. This means tails of the file size distributions are fitted by the Pareto
] ] distribution, which is consistent with the previous observations that
7.3 Round-Trip Times file sizes are heavy tailed ([21]; [22]; [1]; [23]; [9]). We observe

Both the client and server round-trip times have marginal distri- @ time dependence in both the client and server file size time se-
butions that do not change much through time. We built statistical fi€s that was fitted by FSD models. The estimates of the variance
models for these marginals that is nonparametric below a cut-off, ratios ¢, tend to 1 withp,, which means the size variables tend
and is Weibull above the cutoff. We again use a quantile plot. Let toward independence. The server size time series however has far
71 for k from 1 to m be samples of round-trip times from small ~ less dependence than the client series.
to largest. We plot the power transform qf,) of somea, rg,), We discovered that a specialized model fitted the server size vari-
against the quantile of probabilifs — 0.5) /m of an exponential able even better than the FSD model. Servers respond to cache
distribution, —log,,(1 — (k — 0.5)/m). Figure 10 shows such  validation requests either by sending a file if there is a new version
an guantile plot of the cubic root of server round-trip times against or sending an “unmodified” message. For the 500 blocks reported
guantiles of the exponential distribution. The power transform is here, about 30% of the HTTP connections are in the latter cate-
used here to give a reasonable scale to model the distribution. Thengory. The distribution of the file sizes, excluding the unmodified
we break up the exponential quantiles imtdntervals using points messages, do not differ markedly across servers. The unmodified
0 =g < @ < ... < @qn < @ny1 = o00. In each interval messages are mostly less than 300 bytes, and, in fact, make up the
[¢i,qi+1), we fit the quantiles-;, of the same probability by a ~ majority of the messages less than 300 bytes. However, the format
straight line, and require these lines to be continuous at pgints  of the messages is the same for each server, and thus the file sizes
Since quantiles on last intervigl, , oo) represent the tail of the dis-  are the same, but vary from server to server, which creates different
tribution, this means we use the Weibull to approximate the tail of server HTTP file distributions at the bottom end of the distribution.
the round-trip time distribution. Such a piecewise linear fit for the Because there are so many “unmodified” messages dependence is
server round-trip time is shown as the gray line in Figure 10, where created.

we usedn = 13 equally spaced points froa to 3. A similar Because of the special form of the dependence for the server file
semi-parametric fit is done for the client side round-trip time using sizes, we developed a specialized model for this special case. First
a power transform oft = 1/5. we generate a categorical time series each of whose values is either

Although the round-trip times do not show much change through “modified” or “not-modified”. We get the categorical series by gen-
time, the dependence is nonstationary and changes with the connecerating alternating run lengths randomly generated from a distribu-
tion rate. We fitted FSD models to both variables for each of the tion on the positive integers for “modified” and from a distribution
500 intervals. For both variables, the estimated db not depend on the positive integers for “not-modified”. For example, the run
on the connection rate, and are set to 0.4, which is close to the me-series might be one “modified”, four “not-modified”, three “mod-
dian estimate for each. The estimates of the variance réiés ified”, one “not-modified”,. ... For a “modified” run we generate
this fixed value are plotted againstin Figure 11 for server round-  one value randomly from the portion of the file size distribution be-
trip time. The ratios tend toward 1, which means the round-trip low 300 and then repeat it for the run. For a “not-modified” run we
time variables tend toward independence. Client round-trip time generate independent values, one for each element of the run, from
shows similar results. the the portion of the file size distribution above 300.

Why does dependence occur in these round-trip times, and why The run-length distributions are from a family we call the dis-
does it decrease with the connection rate? For HTTP 1.0, the dom-cretized Weibull or dW distribution. A discretized Weibull with
inant version of HTTP now in use, each click by a user on a link shape and scale parametgrq, is the round up of a Weibull with
will likely to create a sequence of TCP connections for the same the same shape and scale parameter. If the shape parameter is 1,
client and the same server, and continued clicks by the user for thethen the run length distribution is geometric; when this occurs the
same site creates a continuation of this sequence. Consider first thehe categorical series is a Bernoulli series: the values of the series
server round-trip time. The measurements for two separate serversare independent. This makes the file size variables independent.
can be quite different if the propagation delay is quite different, or We fitted the parameters for the “not-modified” run lengths and



“modified” run lengths for the 500 blocks and graphs the shape 8.3 Packet Variables
parametersi,j (p) againstp, for “not-modified” distribution. The We carried out a confirmation study for the packet variables from
graphs show that shape parameter for the “modified” run-length two packet-header databases. The first results from measurements
distribution is constant with a median value in the vicinity of 0.8, from a 100 mbps Ethernet link connecting Harvard University to
and the shape parameter for the “not-modified” run-length distribu- the rest of the Internet. We studied just incoming HTTP packets.
tion increases with the rate and interestingly, converges on 0.8. TheThe second database draws on a database of traces available at the
problem is a minor lack of fit of the discretized and not a conver- National Laboratory for Applied Network Research (www.nlanr.net)
gence to a dependent file size time series. Actually, 0.8 producesand developed under the auspices of the National Science Founda-
results that are quite close to independent. tion NLANR/MOAT Cooperative Agreement (No. ANI-9807479).

We obtained 5 traces measured on an OC3 ATM link at Colorado

State University in Ft. Collins, Colorado, and 5 traces measured
8. CONFIRMATION on an ATM link at Columbia University in New York City, from

the period 09/01/2000 through 11/05/2000. The results strongly

We believe it is reasonable to hypothesize that our results will hold 4 nfirmed our results and are reported in [3].

for other application protocols other than HTTP, for links other than
the Bell Labs link, and for connection rates higher than those ob-
served on the Bell Labs link. The reason is the cause, superposition,g' RESULTS

which is a universal Internet phenomenon. The characteristics of We study the traffic variables described in Section 1 by analyzing
the nonstationarity are governed by the mathematics of superposi-measurements from many time blocks of packet traces from nine
tion which is invariant across links and applications. However, the Internetlinks, and then relating the statistical properties to the new
validity of the mathematics is dependent on our underlying assump- connection ratep of the blocks.

tions. There are two critical ones: (1) the sources are homogeneous .
and (2) the sources are independent. Assumption (1) is reasonableg'l Cc_)_nclu_su_)ns_ ] )

because different implementations and usages of individual Inter- The empirical distribution of packet inter-arrivals are well approx-
net applications are not too disparate. Assumption (2) is reasonableiMated by a Weibull distribution with a shape parametehat is
for a link with connection rates below that where major congestion '€ss than 1 for low values gf. This means that the inter-arrival

begins on the link. distribution has a longer upper tail than the exponential. But as
p increasesA tends to 1, so the distribution tends to an exponen-
8.1 SMTP tial. The inter-arrivals, as a time sequence, are long-range depen-

dent. The packet sizes have a marginal distribution that does not
We carried out a study of SMTP for the same traffic variables Change withp. The size time sequence, like the inter-arrivals, is
as for HTTP using data from the Bell Labs database. We found l0ng-range dependent. Asincreases, the dependence in both time
very mild nonstationarity because even at very low rates, the SMTP Séquences decreases, and the sequences tend toward independence.

variables are close to Poisson and independent. This means that the arrivals tend toward a Poisson process. A open-
loop queuing study supports these results; the queuing distribu-
82 C ; ; tion of the live packet traces tends toward that for Poisson arrivals
. onnection Variables

and constant service times. The very simple statistical FSD model

We carried out a confirmation study for HTTP connection vari- 9iven in Section 4 does an excellent job of modeling the long-range
ables using data from the Helios Next-Generation-Internet traffic dependence of the inter-arrivals and sizes.
ana|ysis project [16] Packet header collection is being carried out Similar results hold for the five HTTP connection variables. HTTP
on the 1 gb/s Ethernet link connecting the Chapel Hill campus of inter-arrivals are long-range dependent and have a Weibull distribu-
the University of North Carolina to an OC48 fiber ring that carries tion but tend toward a Poisson procesgpaiscreases. The two file
UNC traffic to other local campuses and to the rest of the Internet. Size variables and the two round-trip time variables are long-range
The ring is part of the NCNI gigapop [20]. The collection, man- dependent and tend toward independence @sreases, but their
agement, and analysis of the 1gb/s Ethernet data is supported bynarginal distributions stay the same wjthAgain, the FSD model
DARPA under Federal Contract No. F30602-00-C-0034. Slightly does an excellent job of modeling the long-range dependence.
less then 1 hour of data was collected to test the measurement opg.2 Discussion: The FSD Model

eration. Since the test data appeared reliable we have used them t

assess our results. One important feature of the FSD model is that it is simple, with
W ied h Ivsis of the Helios HTTP . only two parameterd and#. Another is that it shows that the use
e carried out the same analysis of the Helios CONNECUON f the Hyrst parametell = d + 0.5 by itself to characterize long-

;/r?rlables :}I‘:’l_lt_gval.s c?rrledbo;ﬁ mdSectlo?h?. For :\I;Ie ;‘.el'of‘ W"?' range dependence is quite inadequate. For each variable wedound
erﬁ are rc |en_stc))|n 'Ob St ZS‘ S%Ngre are two Zec |(Lns o(;did not vary appreciably witl, buté increased withp, sometimes
each connection variable, inbound to servers and outboun dramatically. In other words, the long-range dependence decreased

”0”.‘ UN.C clients. W.e presgnt here the resuits for the ou_tbou_nd dramatically butl stayed constant. For our variables then we need
traffic, since the monitored link is close to the the clients in this ) v 40't0 characterize the long-range dependence

case, similar to the Bell Labs link. We divided the 54 minutes of

data into 54 1-minute blocks; thus there are 54 fittings of our sta- 9.3 Discussion: Counts vs. Inter-Arrivals

tistical models for each connection variable. The values @inge The packet arrivals on a link can be thought of as the superposi-

from 136.5 c/s to 172.7 c/s. tion of independent point processes. Amcreases, the amount of
We found our extrapolation hypothesis to be true for the Helios superposition increases. If we look at 1000 consecutive arrivals for

data. In general, long-range dependence was reduced even furtheany block of measurements no matter what the valye, tiien we

beyond that for our Bell Labs database, and inter-arrival distribu- study the arrival process locally; asincreases, the 1000 arrivals

tions were closer to exponential. tend to cover a smaller range of time. If we study counts of arrivals



in fixed-length intervals, the standard for studies of long-range de- [15] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger. Dy-

pendence of Internet traffic, then the measure becomes less and less
local because more and more arrivals occur. Itis easy to see that the
correlation structure of the counts of the superposed processes stays

the same with the amount of superposition, so the fixed-interval
counts retain their long-range dependence awxreases. But the

theory of point processes shows that the fixed-number arrivals tend
to Poisson. Thus studies of packet counts do not reveal the results

shown here.
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