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Abstract— Relay channels will play a central role in next-
generation multihop wireless systems. This paper considers the
MIMO relay channel where multiple antennas are employed by
each terminal. New lower bounds on the capacity of a Gaussian
MIMO relay channel are derived under the assumption that the
transmitter employs either superposition coding or dirty-paper
coding. The proposed lower bounds improve on a previously
proposed lower bound that arises from a simple transmit strategy.

I. INTRODUCTION

Next-generation wireless systems must be able to provide
improved coverage and throughput to an ever-increasing num-
ber of mobile users. Future network design will need to sup-
port communication in dense environments while minimizing
infrastructure deployment costs. Multihop communication [1]
has been developed to meet these objectives. A central fea-
ture of multihop communication is the use of intermediate
helper nodes to relay data from a sender to a destination.
An information-theoretic analysis of multihop communication,
then, should incorporate relay channels. In a relay channel,
the transmitter and a relay attempt to cooperate in some pre-
determined fashion to maximize the signaling rate to the re-
ceiver. The relay channel is an elementary component of a
multihop network, and is thus an important building block of
next-generation wireless systems.

Relay channels were first introduced in [2] and were further
studied in [3]. An information-theoretic analysis of full-duplex
relay channels was performed in [4], where upper and lower
capacity bounds were derived for a general relay channel. In
particular, it was found that the use of a relay, in many cases, is
a direct improvement over a point-to-point channel. The work
in [4] also introduced the concept of block-Markov encoding
to achieve the capacity for certain types of relay channels.

The achievable data rates from the relaying techniques in
[4] can be enhanced by applying concepts from multi-input
multi-output (MIMO) signaling [5]–[7]. It has been shown that

Caleb K. Lo was supported by a Microelectronics and Computer Devel-
opment (MCD) Fellowship, a Thrust 2000 Endowed Graduate Fellowship,
and a Texas Telecommunications Consortium (TxTEC) Graduate Fellowship
through The University of Texas at Austin. Sriram Vishwanath was supported
by a National Science Foundation CAREER Award. Robert Heath was
supported in part by the National Science Foundation under grant 322957
and by the Office of Naval Research under grant number N00014-05-1-0169.

utilizing multiple antennas at the transmitter and/or receiver in
a wireless system can result in sizable spectral efficiency gains
[8]. This encouraging result has spurred studies of the capacity
region for Gaussian MIMO multiple access (MAC) [9], [10]
and broadcast (BC) [11], [12] channels.

These studies of the MAC and BC channels form a good
basis for an information-theoretic analysis of a MIMO re-
lay channel. We note that MIMO relay channels, which offer
the simultaneous benefits of multihop signaling and high data
rates, have only recently been analyzed from an information-
theoretic perspective [13]. The seminal work in [13] considers
a Gaussian relay channel with multiple antennas at each ter-
minal. Upper and lower capacity bounds are shown for both
fixed channels and for channels undergoing Rayleigh fading.

We propose new lower capacity bounds for the Gaussian
MIMO relay channel by having the transmitter employ pre-
coding methods such as superposition coding and dirty-paper
coding [14]. We consider dirty-paper coding in our analysis
since it has been utilized in [11], [12] to derive the capacity
region of the Gaussian MIMO BC channel; we also consider
superposition coding as a simple example of dirty-paper cod-
ing. We find that our proposed lower bounds improve on the
lower bounds from [13].

The remainder of this paper is organized as follows. In
Section II we describe the system model. Section III con-
tains the upper and lower capacity bounds from [13] for the
Gaussian MIMO relay channel. In section IV, we first discuss
superposition coding and dirty-paper coding and then apply
them to a Gaussian MIMO relay channel. Numerical results
for our precoding methods are given in Section V. We conclude
the paper in Section VI.

II. SYSTEM MODEL

We use boldface notation for matrices and vectors. E rep-
resents mathematical expectation. Re(x) denotes the real part
of a complex number x. For a matrix A, A†, tr(A) and det(A)
denote the transpose conjugate, trace, and determinant, respec-
tively of A while A � 0 means that A is positive semi-definite.
SNR represents signal-to-noise ratio. IK denotes the K × K
identity matrix. We use CN (B, C) to represent the circularly
symmetric complex Gaussian distribution with mean B and
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covariance matrix C. I(X;Y) denotes the mutual information
between X and Y. All logarithms are base-2.

Consider the Gaussian MIMO relay channel illustrated in
Fig. 1. Let X1 and X2 be the Mt × 1 and Mr × 1 transmitted
signals from the transmitter and the relay. Let Y and Y1 be
the Nt × 1 and Nr × 1 received signals at the receiver and
the relay. Define H1, H2, and H3 as Nr × Mt, Nt × Mt and
Nt × Mr channel gain matrices. Also, Z and Z1 are inde-
pendent Nt × 1 and Nr × 1 circularly-symmetric complex
Gaussian noise vectors with distributions CN (0, INt

) and
CN (0, INr

).
We define parameters related to the SNR at the receiver and

at the relay as

γ1 =
SNR1

Mt
, γ2 =

SNR2

Mt
, γ3 =

SNR3

Mr
(1)

where SNR1 and SNR2 are the expected SNR values for
X1 at each receive antenna at the relay and the receiver, and
SNR3 is the expected SNR for X2 at each receive antenna at
the receiver.

With these definitions, we can write the received signals at
the relay and at the receiver as

Y1 =
√

γ1H1X1 + Z1

Y =
√

γ2H2X1 +
√

γ3H3X2 + Z.
(2)

We assume that E(X†
1X1) ≤ Mt and E(X†

2X2) ≤ Mr. We also
assume that the relay has two sets of antennas, with one set
for the receiver and one for the transmitter, so it operates in a
full-duplex mode. The relay also cancels out interference from
its transmitter array at its receiver array. We assume that all
channel matrices are fixed and known at all three terminals
and that Z and Z1 are uncorrelated with X1 and X2.

III. BACKGROUND

It was shown in [4] that

CG ≤ max
p(x1,x2)

min{I(X1; Y, Y1|X2), I(X1, X2; Y)} (3)
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Fig. 1. Gaussian MIMO Relay Channel.

where the first term is the rate from the transmitter to the
relay and the receiver, and the second term is the rate from
the transmitter and the relay to the receiver.

Now let X1 and X2 be random vectors with mean zero and
covariance matrices Σij = E(XiX

†
j). In [13], the authors es-

tablished the following capacity upper bound and lower bound
for the case where the channel gains are fixed and known at
each terminal.

Theorem 3.1: [13] An upper bound on the capacity of the
MIMO relay channel is given by

CG ≤ CG
upper = max

0≤ρ≤1,Σ11,Σ22

min(CG
1 , CG

2 ) (4)

where tr(Σ11) ≤ Mt, tr(Σ22) ≤ Mr and

CG
1 � log[det(IMt

+(
1 − ρ2

)[√
γ1H1√
γ2H2

]
Σ11

[√
γ1H1√
γ2H2

]† )]

CG
2 � infa>0 log[det(INt

+ (γ2 + ρ2

a

√
γ2γ3)H2Σ11H†

2

+(γ3 + a
√

γ2γ3)H3Σ22H†
3)].

(5)

Theorem 3.2: [13] A lower bound on the capacity of the
Gaussian MIMO relay channel is given by

CG ≥ CG
lower = max(CG

d ,min(CG
3 , CG

4 )), (6)

where

CG
d � maxΣ11

log[det(INt
+ γ2H2Σ11H†

2)]
CG

3 � maxΣ11
log[det(INr

+ γ1H1Σ11H†
1)]

CG
4 � maxΣ22

log[det(INt
+

γ3H3Σ22H†
3(INt

+ γ2H2Σ∗
11H†

2)
−1)]

(7)

with

Σ∗
11 � arg max

Σ11�0
log[det(INr

+ γ1H1Σ11H†
1)]. (8)

Our objective is to use superposition coding and dirty-paper
coding to improve upon the bound in Theorem 3.2. We outline
these techniques in the next section.

IV. PRECODING METHODOLOGY

Next we describe the precoding strategy employed in this
paper. We divide the transmit message into two components,
denoted by the random variables S and C. S is the message
that is decoded by the relay and is thus cooperatively sent by
the transmitter-relay to the receiver. C, however, is intended
to be decoded only by the receiver, and thus is a source of
“interference” at the relay that is known a-priori at the receiver.

We consider two classes of transmission strategies with this
setup. The first is superposition coding, where codebooks for
S and C are determined separately and then simply superposed
at the transmitter. The second strategy is to utilize dirty-paper
coding at the transmit end, where the transmitter attempts to
mitigate the interference caused by C to the desirable signal
corresponding to S at the relay.

Note that the receiver must determine both S and C to detect
its message. Thus, if Rs denotes the rate for the codebook
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corresponding to S and Rc that for C, the net achievable
rate for all of our schemes is R = Rs + Rc. Assuming the
receiver successively determines S and C, the order in which
they are determined impacts their rates. In this paper, we use
both decoding orders and choose the order that maximizes the
overall rate.

Let U and V be auxiliary variables representing the con-
tribution of S and C, respectively to X1. Define Σs, Σc and
ΣX2 to be the covariance matrices of S, C and X2 respectively.
Also, define

A =
[

Σs E(UX†
2)

E(X2U†) ΣX2

]

and B = [ H2 H3 ]. In this case, E(UU†) = Σs. In addition,
define X1, X2, U and V as the finite alphabets for X1, X2, U
and V, respectively.

A. Superposition Coding

Consider the system illustrated in Fig. 2. Assume that S is
decoded first at the receiver. Let Rsup,1 be the achievable rate
for this case. It is proven in [15] that

Rsup,1 = sup
p(x1,x2,u,v)

Rsup,1s + Rsup,1c (9)

where

Rsup,1s = min(I(U; Y1|X2), I(U, X2; Y))
Rsup,1c = I(V; Y|U, X2)

(10)

and the supremum is taken over all joint distributions

p(x1, x2, u, v) = p(x2)p(u|x2)p(v|x2)p(x1|u, v)

on X1 × X2 × U × V . For the Gaussian MIMO relay channel,
Gaussian input optimality can be shown. Thus

I(U; Y1|X2) = log


det

(
I + H1 (Σs + Σc) H†

1

)

det
(

I + H1ΣcH†
1

)

 , (11)

which is the maximum signaling rate for S over the transmitter-
to-relay link,

I(U, X2; Y) = log


det

(
I + H2ΣcH†

2 + BAB†
)

det
(

I + H2ΣcH†
2

)

 , (12)

representing the maximum signaling rate for S over the effec-
tive multiple-access channel from the transmitter and relay to
the receiver, and

I(V; Y|U, X2) = log(det(I + H2ΣcH†
2)), (13)

which is the maximum signaling rate for C over the transmitter-
to-receiver link.

Now assume that C is decoded first at the receiver. Let
Rsup,2 be the achievable rate for this case. It is proven in [15]
that

Rsup,2 = sup
p(x1,x2,u,v)

Rsup,2s + Rsup,2c (14)

X2 = X2(S)Relay

Node MrNr

H1 H3

X1 = S + C

Mt

H2

Tx

Node

Rx

NodeNt

Fig. 2. Gaussian MIMO relay channel with superposition coding.

where

Rsup,2c = I(V; Y)
Rsup,2s = min(I(U; Y1|X2), I(U, X2; Y|V)) (15)

and the supremum is also taken over all joint distributions

p(x1, x2, u, v) = p(x2)p(u|x2)p(v|x2)p(x1|u, v)

on X1 × X2 × U × V . In this case Gaussian input optimality
yields

I(V; Y) = log


det

(
I + H2ΣcH†

2 + BAB†
)

det
(
I + BAB†)


 , (16)

which is analogous to the rate in (13) and

I(U, X2; Y|V) = log(det(I + BAB†)), (17)

which is analogous to the rate in (12) while I(U; Y1|X2) is the
same as in (11).

The objective is to choose the decoding order that yields a
higher overall rate. We now state the following result.

Proposition 4.1: Let Rsup be the maximum signaling rate
for the Gaussian MIMO relay channel employing superposi-
tion coding at the transmitter. Then

Rsup = max(Rsup,1, Rsup,2) ≥ CG
lower (18)

where CG
lower is given in Theorem 3.2.

Proof: See [15] for a detailed proof.

B. Dirty-Paper Coding

Assume that S is decoded first at the receiver. Let Rdpc,1

be the achievable rate for this case. It is proven in [15] that

Rdpc,1 = sup
p(x1,x2,u,v)

Rdpc,1s + Rdpc,1c (19)

where

Rdpc,1s = min(I(U; Y1|X2) − I(U; V|X2),
I(U, X2; Y))

Rdpc,1c = I(V; Y|U, X2)
(20)
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and the supremum is taken over all joint distributions

p(x1, x2, u, v) = p(x2)p(u, v|x2)p(x1|u, v)

on X1 × X2 × U × V . For the Gaussian MIMO relay channel,
Gaussian input optimality can be shown and thus we have

I(U; Y1|X2) − I(U; V|X2) = log(det(I + H1ΣsH†
1)), (21)

which is analogous to the rate in (11); I(U, X2; Y) and
I(V; Y|U, X2) are the same as in (12) and (13) respectively.

Now assume that C is decoded first at the receiver. Let
Rdpc,2 be the achievable rate for this case. It is proven in [15]
that

Rdpc,2 = sup
p(x1,x2,u,v)

Rdpc,2s + Rdpc,2c (22)

where

Rdpc,2c = I(V; Y)
Rdpc,2s = min(I(U; Y1|X2) − I(U; V|X2),

I(U, X2; Y|V))
(23)

and the supremum is taken over all joint distributions

p(x1, x2, u, v) = p(x2)p(u, v|x2)p(x1|u, v)

on X1 × X2 × U × V . In this case Gaussian input optimality
results in I(V; Y), I(U; Y1|X2) − I(U; V|X2) and I(U, X2; Y|V)
being the same as in (16), (21), and (17) respectively.

The objective is to choose the decoding order that yields a
higher overall rate. We now state the following result.

Proposition 4.2: Let Rdpc be the maximum signaling rate
for the Gaussian MIMO relay channel employing dirty-paper
coding at the transmitter. Then

Rdpc = max(Rdpc,1, Rdpc,2) ≥ Rsup (24)
where Rsup is given in Proposition 4.1.

Proof: See [15] for a detailed proof.

C. Example Calculation

We investigate the performance of our precoding methods
for a particular channel configuration. Consider a MIMO relay
channel where the transmitter has two antennas, while the relay
and receiver each have one antenna and

H1 = [0 10], H2 = [1 0], H3 = 1.

1) Upper Bound: We substitute these values for the chan-
nels into the expressions in Theorem 3.1. The γj parameters
must be accounted for here since the transmitter has more than
one antenna. We can implicitly ignore the γj parameters by
defining all of the covariance matrices, especially Σ11, to have
a trace constraint of one.

Here, we find that the upper bound

CG
upper ≈ 2.17878 bits/s/Hz.

2) Lower Bound: We again substitute these values for the
channels into the expressions in Theorem 3.2. Again, we can
implicitly ignore the γj parameters.

We find that the lower bound

CG
lower = log(2) = 1 bits/s/Hz.

3) Our Achievable Rate: We define

Σs =
[

a b
b∗ d

]
and Σc =

[
g q
q∗ r

]
.

For superposition coding, if we decode S first,

I(U; Y1|X2) = log
(

1 +
100d

1 + r

)
, (25)

I(U, X2; Y) = log
(

1 +
a + 2Re(x) + k

1 + g

)
, (26)

and
I(V; Y|U, X2) = log(1 + g). (27)

We choose Σc, Σs, and ΣX2 to maximize Rsup,1s and Rsup,1c

subject to tr(Σc + Σs) ≤ 1 and tr(ΣX2) ≤ 1 due to the SNR-
normalizing γj variables. We find that the optimal values are

Σs =
[

0.754 0
0 0.184

]
,Σc =

[
0.0197 0.0287
0.0287 0.0419

]
,

ΣX2 = [1], and E(UX†
2) = [ 0.869 0 ] .

Thus

Rsup,1 = Rsup,1s + Rsup,1c ≈ 2.17363 bits/s/Hz.

We can also decode C first for superposition coding, so
I(U;Y1|X2) is the same as in (25),

I(U, X2; Y|V) = log(1 + a + 2Re(x) + k), (28)

and

I(V; Y) = log
(

1 +
g

1 + a + 2Re(x) + k

)
. (29)

We find that the optimal values are

Σs =
[

0.73 0
0 0.215

]
,Σc =

[
0.0033 0.0131
0.0131 0.0522

]
,

ΣX2 = [1], and E(UX†
2) = [ 0.854 0 ] .

Thus

Rsup,2 = Rsup,2s + Rsup,2c ≈ 2.15087 bits/s/Hz.

Comparing the achievable rate for both cases, we choose to
decode S first and so

Rsup ≈ 2.17363 bits/s/Hz.

Thus, we see that by using superposition coding, we have
outperformed the lower bound from [13].

For dirty-paper coding, if we decode S first,

I(U; Y1|X2) − I(U; V|X2) = log(1 + 100d), (30)

and I(U,X2;Y) and I(V;Y|U,X2) are the same as in (26) and
(27), respectively. We find that the optimal values are

Σs =
[

0.609 0
0 0.0326

]
,Σc =

[
0.348 −0.042
−0.042 0.0104

]
,

ΣX2 = [1], and E(UX†
2) = [ 0.78 0 ] .
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Thus

Rdpc,1 = Rdpc,1s + Rdpc,1c ≈ 2.17563 bits/s/Hz.

We can also decode C first for dirty-paper coding. Therefore
I(U;Y1|X2) − I(U;V|X2), I(U,X2;Y|V) and I(V;Y) are the
same as in (30), (28) and (29) respectively. We find that the
optimal choices are the same as for the case where S is de-
coded first for dirty-paper coding and thus

Rdpc,2 = Rdpc,2s + Rdpc,2c = 2.17563 bits/s/Hz.

Therefore, we can decode either C or S first and so

Rdpc ≈ 2.17563 bits/s/Hz.

By using dirty-paper coding, we have also outperformed the
lower bound from [13].

V. NUMERICAL RESULTS

We employ a simple example to demonstrate how precoding
at the transmitter outperforms the bounds in [13].

We choose H2 = [1 0] and H3 = 1. We also choose
H1 = [x y], where x, y ∈ R, and constrain ‖H1‖ = 10. By
considering H1 and H2 as two-dimensional vectors, we can de-
fine an “angle” Θ(H1, H2) between them. We vary Θ(H1, H2)
over the range [0, π], where Θ(H1, H2) is expressed in radians.
As Θ(H1, H2) → π/2, the gain between the second transmit
antenna and the relay’s antenna, or y, increases. Note that
the norm constraint on H1 causes the gain between the first
transmit antenna and the relay’s antenna, or x, to decrease.

We observed that the lower bound from [13] is 1 bits/s/Hz
for all values of Θ(H1, H2); this results from our fixing H2 at
[1 0]. Thus we did not plot the lower bound in Fig. 3 to better
illustrate the comparison between our precoding approaches
and the upper bound from [13].

Fig. 3 shows that the upper bound decreases as
Θ(H1, H2) → π/2 radians. Note that as Θ(H1, H2) → π/2,
the transmitter would want to put more power on its second
transmit antenna to exploit the rate benefits on the transmitter-
to-relay link. This strategy, though, results in a loss of rate
on the direct link since H2 is fixed at [1 0]. This leads to a
monotonic decrease in the upper bound as Θ(H1, H2) → π/2.

We see that the achievable rates via superposition coding
and dirty-paper coding always outperform the lower bound of
1 bits/s/Hz. Also, we see that the achievable rate from dirty-
paper coding is never less than the achievable rate from super-
position coding. In addition, note that our precoding methods
yield rates that are close to capacity; the upper bound from
[13] and the achievable rate from superposition coding differ
by at most 0.01 bits/s/Hz in Fig. 3.

VI. CONCLUSION

We derived new lower capacity bounds for a Gaussian
MIMO relay channel by employing precoding techniques such
as superposition coding and dirty-paper coding at the trans-
mitter. Our proposed bounds improve upon the lower bounds
that were introduced in [13]. In particular, our results show
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Fig. 3. Comparison of achievable rate via superposition coding and dirty-
paper coding with upper bound from [13].

the benefits of employing the relay’s assistance via precod-
ing at the transmitter, especially when the transmitter-to-relay
channel is strong relative to the transmitter-to-receiver and/or
relay-to-receiver channels. Our results suggest that transmit
precoding should be an integral part of communication over
MIMO relay channels.
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