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In this paper an efficient feature extraction method named as locally linear discriminant embedding
(LLDE) is proposed for face recognition. It is well known that a point can be linearly reconstructed by
its neighbors and the reconstruction weights are under the sum-to-one constraint in the classical locally
linear embedding (LLE). So the constrained weights obey an important symmetry: for any particular data
point, they are invariant to rotations, rescalings and translations. The latter two are introduced to the
proposed method to strengthen the classification ability of the original LLE. The data with different class
labels are translated by the corresponding vectors and those belonging to the same class are translated
by the same vector. In order to cluster the data with the same label closer, they are also rescaled to some
extent. So after translation and rescaling, the discriminability of the data will be improved significantly.
The proposed method is compared with some related feature extraction methods such as maximum
margin criterion (MMC), as well as other supervised manifold learning-based approaches, for example
ensemble unified LLE and linear discriminant analysis (En-ULLELDA), locally linear discriminant analysis
(LLDA). Experimental results on Yale and CMU PIE face databases convince us that the proposed method
provides a better representation of the class information and obtains much higher recognition accuracies.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, face recognition has received a lot of
attention since the wide applications in many fields, such as video
coding, surveillance and human–computer interface, and many
face recognition techniques have been developed. Among them,
appearance-based methods are well studied. Two issues are central
to appearance-based face recognition: one is feature extraction for
face representation; the other is classification of a new face im-
age on the basis of the chosen features. When carrying out these
methods, a face image of size n × m is represented as a vector in
the image space Rn×m. However, the n × m-dimensional space is
too large to perform fast face recognition. A widely used way to
attempt to resolve the problem is feature extraction. Being the key
step in appearance-based face recognition, feature extraction aims
to project the input data into a feature space that reflects the inher-
ent structure of the original data and holds the useful information
as much as possible. Thus the low dimensional representations of
the faces can be obtained. Based on these representations, the new
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face images can be easily projected to the low dimensional space. At
last a suitable classifier is adopted to predict the labels of these new
face images. In this study, we shall focus on the topics of feature
extraction for face recognition.

Currently, researchers have developed many feature extraction
techniques for face recognition. These methods can be categorized
into two classes based on either or not taking the class information
into account: supervised or unsupervised. They are also broadly
partitioned into linear methods and nonlinear ones. Linear feature
extraction seeks a meaningful low dimensional subspace in a high
dimensional input space by linear transformation. The subspace can
provide a compact representation of the input data when the struc-
ture of data embedded in the input space is linear. Among all the
linear feature extraction methods, the most well known are prin-
cipal component analysis (PCA) [1] and linear discriminant analysis
(LDA) [2].

PCA projects the original data into a low dimensional space, which
is spanned by the eigenvectors associated with the largest eigenval-
ues of the covariance matrix of all the sample points, where PCA is
the optimal representation of the input data in the sense of mini-
mizing mean squared error (MSE) [1]. However, PCA is completely
unsupervised because of not taking the class information of the in-
put data into account, which may probably discard much useful in-
formation and weaken the recognition accuracy, especially when the
number of sample points is very large [3].
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However, by considering the labels of the input data, LDA can
produce an optimally discriminant projection by a linear trans-
formation. The transformation matrix consists of the eigenvectors
whose corresponding eigenvalues can maximize the ratio of the
trace of the between-class scatter to the trace of the within-class
scatter. Unlike PCA, LDA takes consideration of the labels of the
input data. It is generally believed that the class information can
improve the recognition ability. But there still exist some drawbacks
in LDA. When the sample number is smaller than the class number
of the input data, the optimal subspace cannot be found by carrying
out LDA because the corresponding within-class scatter matrix is
not inversed, which is named as the small sample size (SSS) prob-
lem. So far many effective and efficient methods [4–14] have been
explored to solve the problem.

Both PCA and LDA have been successfully applied to some linear
data. However, they fail to explore the essential structure of the data
with nonlinear distribution. In order to overcome the problem, many
nonlinear feature extraction methods have to be developed. Kernel-
based approaches and manifold learning-based ones are promising
for nonlinear feature extraction. Kernel-based technique is implicitly
mapping the observed patterns into potentially much high dimen-
sional feature space by a kernel trick, such as Gaussian kernel. It is
made possible that the nonlinear structure data will be linearly sep-
arable in the kernel space. The widely used kernel techniques are
kernel principal component analysis (KPCA) [15] and kernel Fisher
discriminant analysis (KFDA) [16], which can be viewed as the ker-
nel versions of PCA and LDA. KPCA and KFDA have been proved to
be effective in some real world applications. However, the kernel-
based methods can improve the linear discriminability at the cost of
increasing dimensions and therefore high computational cost. Fur-
thermore, due to introducing the kernel trick, how to select different
kernels and how to assign the optimal parameters in them remain
unclear. In most of the cases, experience still plays an important role.

Unlike kernel-based methods, manifold learning-based methods
are straightforward in finding the inherent nonlinear structure hid-
den in the observe space. In the past few years many manifold
learning-based algorithms have been presented. Among them, iso-
metric feature mapping (ISOMAP) [17], locally linear embedding
(LLE) [18,19] and Laplacian eigenmap (LE) [20,21] are widely used.
They have yielded impressive results on artificial and real world data
sets.

LLE is a representative local linear manifold learning method.
Based on the assumption of the local linearity, LLE first constitutes
local coordinates with the least constructed cost and thenmaps them
to a global one. Experiments have proven that LLE is an effective
method for visualization. However, some limitations are exposed
when LLE is applied to pattern recognition.

One limitation is the out-of-sample problem. Because the
weighted matrix of LLE is constructed on the training data, when a
new data point is coming, how to generalize the results of training
samples to the coming data attracts a lot of attention. Saul et al.
[19] provided a non-parametric model and a parametric model to
solve the problem. In the non-parametric model, what should be
done first is to find the k nearest neighbors of the new data point,
and then compute the linear weights that can best reconstruct the
new data point with their k nearest neighbors under sum-to-one
constraint, and in the end obtain the output linearly reconstructed
by the corresponding k nearest neighbors and their corresponding
weights in a low dimensional space. The work of non-parametric
model amounts to a local linear representation. In the parametric
model, the probability distribution and a hidden variable parameter
are introduced. The output can be calculated based on some prior
information of the probability distribution. In addition, Bengio et al.
[22] and DeCoste [43] proposed a kernel method to embed the new
data points because of the generalization ability of Mercer kernel.
Recently, Kokiopoulou et al. [23] plugged a linear transformation to

the original LLE. The embedding results of the coming points can
be successfully attained with the linear transformation. Among the
approaches mentioned above, the method using linear transforma-
tion can surmount the out-of-sample problem with the cheapest
computational cost.

Another limitation lies in that the classical LLE neglects the class
information, which will impair the recognition accuracy. Recently,
many modified LLE algorithms have been put forward to make use
of the label information. Some supervised versions of LLE [24–27]
were introduced to deal with data sets labeled with class informa-
tion. The intuition of these algorithms is to obtain disjoint embedding
for the individual classes. The local neighbors of a sample point are
selected by the following steps: firstly, the k nearest neighbors are
found; secondly, the local neighborhoods of the sample point should
be composed of the points among the k nearest neighbors with the
same label. This can be achieved by artificially increasing the dis-
tances between samples belonging to different classes, but keeping
them unchanged if samples are from the same class [25]. Those su-
pervised LLE methods have achieved good classification results on
some data sets. At the same time, they divide all the sample points
into disconnected parts instead of an entire graph in original LLE. So
these supervised LLE algorithms also bring a problem about how to
apply the LLE to disconnected components. Saul et al. [19] suggested
calculating each disconnected component using the original LLE, re-
spectively. Similar to Saul et al., Polito et al. [28] also advanced a
group method to overcome the problem. However, both techniques
make the algorithms more complicated.

Recently, some other supervised LLE algorithms combined with
LDA are becoming popular. Zhang et al. presented a unified frame-
work of LLE and LDA [29,30]. This framework essentially equals to
LLE + LDA. There are still some weaknesses in this proposed algo-
rithm. Firstly, the original LLE is carried out and then the embedding
results can be obtained. Secondly, LDA is adopted to find the discrimi-
nant features from these embedding results. In the whole process the
dimensionality has been reduced two times. First of all, the dimen-
sions must be reduced to be smaller than the number of the classes
to avoid the SSS problem, thus some useful embedding information
may be probably thrown away. Pang et al. [31] also brought forward
a model that is linearly constructed by the objective function of LLE
and LDA with some constraints. The model can be either pure LLE or
pure LDA when the coefficient is one or zero, respectively. They have
proven that the model outperforms some linear and kernel-based
methods in face recognition [31]. But it remains unclear how to select
an optimal coefficient to obtain high recognition rate on other data
sets. A local Fisher embedding was put forward by de Ridder et al.
[32]. When applying LLE to the sample points, the class information
is contained in the matrixM, for which the embedding results can be
obtained by performing eigen-decomposition. However, how to find
the optimal weighted coefficients still needs further demonstration.

In this paper, following the intuition that the naturally occurring
face may be sampled from the data with a probability distribution
on a sub-manifold of ambient space, a supervised version of LLE,
namely locally linear discriminant embedding (LLDE), is proposed for
face recognition. In the proposed algorithm, we construct a vector
translation and distance rescaling model to enhance the recognition
ability of the original LLE from two aspects. One is the property that
the embedding cost function is invariant to translations and rescal-
ings [18,19], and the other is that the transformation to maximize
the modified maximizing margin criterion (MMMC) is introduced.
Based on the first property, the embeddings can be translated to any
places without changing the reconstruction error. And then the opti-
mal translated vectors for classification can be determined by max-
imizing MMMC, which is linearly composed of the between-class
scatter and the within-class scatter of the input points. Thus the
SSS problem can be successfully avoided because the inverse of the
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within-class scatter will be not taken into account in MMMC. At the
same time, the class information is not used to find the neighbors
with the same label but to explore the optimal translated vectors,
so it does not need to obtain disjoint embedding for the individual
classes. Furthermore, it is the translations and rescalings that make
the data with different class labels separated farther and data be-
longing to the same class clustered closer. So the proposed algorithm
will improve the discriminability of the data significantly.

This paper is organized as follows. Section 2 describes classical LLE
algorithm. Section 3 presents the proposed LLDE algorithm and the
corresponding theoretical analysis. Experimental results and simu-
lations on Yale and CMU PIE data sets are given in Section 4. Finally,
discussions and conclusions are presented in Section 5.

2. Locally linear embedding

Let X = [X1,X2, . . . ,Xn] ∈ RD×n denote n points in a high D di-
mensional space. The data points are well sampled from a nonlinear
manifold, of which the intrinsic dimensionality is d(d>D). The goal
of LLE is to map the high dimensional data into a low dimensional
manifold space. Let us denote the corresponding set of n points in
the embedding space as Y= [Y1,Y2, . . . ,Yn] ∈ Rd×n. The outline of LLE
can be summarized as follows:

Step 1: For each data point Xi, identify its k nearest neighbors by
kNN criterion or �-ball criterion.

Step 2: Compute the optimal reconstruction weights that can
minimize the error of linearly reconstructing Xi by its k nearest
neighbors.

Step 3: Compute the low dimensional embedding Y for X that
best preserves the local geometry represented by the reconstruction
weights.

Step 1 is typically done by using Euclidean distance to define
neighborhood, although more sophisticated criteria may also be
used, such as Euclidean distance in kernel space or cosine distance.

After identifying the k nearest neighbors of points Xi, Step 2 seeks
the best reconstruction weights. Optimality is achieved by minimiz-
ing the local reconstruction error of Xi:

�i(W) = arg min

∥∥∥∥∥∥Xi −
k∑

j=1

WijXj

∥∥∥∥∥∥
2

(1)

where the weights are subject to following constraints:⎧⎪⎪⎨
⎪⎪⎩

k∑
j=1

Wij = 1 if Xj ∈ Ni(Xi)

Wij = 0 if Xj /∈Ni(Xi)

(2)

where Ni(Xi) denotes the k nearest neighbors of point Xi.
Clearly, minimizing �i subject to the above constraints is a con-

strained least squares problem. After repeating Steps 1 and 2 for
all the n data points, the reconstruction weights consist of a weight
matrix W = [Wij]n×n.

Step 3 in the LLE algorithm computes the optimal low dimen-
sional embedding Y based on the weight matrix W obtained from
Step 2. Thismeans solving Eq. (3) under the constraints of Yd×nen=0d
and Yd×nY

T
d×n = nId×d. These constraints are appended to remove

the translational degree of freedom and the rotational degree of free-
dom, respectively.

�(Y) = arg min
∑
i

∥∥∥∥∥∥Yi −
k∑

j=1

WijYj

∥∥∥∥∥∥
2

= arg min tr

⎧⎨
⎩

∑
ij

Yj(�ij − Wij)(�ij − Wij)
TYTi

⎫⎬
⎭ (3)

So based on the weighted matrixW, a sparse, symmetric and positive
semi-definite matrix M can be defined as follows:

M = (I − W)T(I − W) (4)

Thus, Eq. (3) can be expressed in a quadratic form �(Y) =
tr{∑ijMijY

T
i Yj}= tr{YMYT}, where M= [Mij]n×n. By the Rayleigh–Ritz

theorem, minimizing Eq. (3) can be performed by finding the
eigenvectors with the smallest (nonzero) eigenvalues of the sparse
matrix M.

3. Locally linear discriminant embedding

3.1. The goal of LLDE

For visualization, the goal of dimensionality reduction methods is
to map the original data set into a (2-D or 3-D) space that preserves
the intrinsic structure as well as possible. But for classification, it
aims to project the data into a feature space in which the members
from different classes could be clearly separated. LLE is an effective
dimensionality reduction approach to visualize the high dimensional
data in a 2-D space. However, little classification ability can be dis-
played by implementing the original LLE. Fig. 1 shows the 2-D visu-
alization results by carrying out the classical LLE to a synthetic data.
Each point is clearly located but the features extracted by LLE cannot
be automatically distinguished from their class information.

Based on the fact mentioned above, in this paper, we propose a
supervised LLE algorithm named as LLDE. The goal of LLDE is to take
full advantage of the class information to improve the classification
ability of the original LLE. It is well known that the reconstructing
weights are invariant to translation under sum-to-one constraint in
the original LLE, which can be confirmed by

�(Y) =
∑
i

∥∥∥∥∥∥Yi −
∑
j

WijYj

∥∥∥∥∥∥
2

=
∑
i

∥∥∥∥∥∥(Yi − Ti) −
∑
j

Wij(Yj − Ti)

∥∥∥∥∥∥
2

(5)

where Ti is a translation vector corresponding to class i. Thus each
point with the same class can be translated by the same vector Ti
and so does the points belonging to different labels with the corre-
sponding vectors.

Fig. 2 shows the visualization results after translation, where it
can be seen that the discriminability is improved evidently. More-
over, a rescaling coefficient is introduced to the proposed algorithm
and the discriminability is also improved, which can be found in Fig.
3.
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Fig. 1. Data visualization in 2-D space.



Author's personal copy

3816 B. Li et al. / Pattern Recognition 41 (2008) 3813 -- 3821

5 6 7 8 9 10 11 12 13 14 15
-4

-2

0

2

4

6

8

10

1st coordinates

2n
d 

co
or

di
na

te
s

class1
class2
class3

Fig. 2. Data visualization in 2-D space after translation.
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Fig. 3. Data visualization in 2-D space after translation and rescaling.

It should be noted that translations and rescalings can improve
the recognition accuracy of the classical LLE significantly. However,
when applying the proposed algorithm to real world data, how to
explore the optimal translated vectors and rescaling coefficient is
still an open problem. So an MMMC is proposed to find the optimal
translated vectors and rescaling coefficient, which will be explored
by transformation. Furthermore, we define the transformation to be
a linear one. Thus the out-of-sample problem can be successfully
avoided and the computational cost will be reduced. In the following
subsection, a theoretical analysis will be made to the proposed LLDE.

3.2. Analysis to LLDE

3.2.1. A linear approximation to the original LLE
In order to overcome the out-of-sample problem, a linear trans-

formation, i.e. Y =ATX, is plugged. Thus the objective function of the
original LLE can be changed into the following form:

J1(A) = min tr{YMYT} = min tr{ATXMXTA} (6)

Some studies have found that a linear version of LLE shows better
recognition ability than the original LLE [23,33]. However, the linear

transformation is not always the optimal one that the proposed LLDE
pursues. That is to say, LLDE needs a criterion that can be used to
automatically find an optimal linear transformation for classification.

3.2.2. Modified maximizing margin criterion
Recently, an MMCwas proposed to determine the optimized sub-

space, which can also successfully conquer the SSS problem [34,8].
The objective function of MMC is listed below:

J2 = max

⎧⎨
⎩

∑
ij

pipj(d(mi,mj) − s(mi) − s(mj))

⎫⎬
⎭ (7)

where pi and pj are the prior probability of class i and class j, mi and
mj are the centroids of class i and class j. d(mi,mj), s(mi) and s(mj)
have the following definitions:

d(mi,mj) = ‖mi − mj‖ (8)

s(mi) = tr(Si) (9)

s(mj) = tr(Sj) (10)

Thus the optimized function can be derived as follows:

J2 = 2 max tr(Sb − Sw) (11)

In order to take advantage of the property of the weighted ma-
trix's invariance to rescaling, the rescaling parameter � is introduced.
Here, we first translated the data to suitable places, and then rescaled
the data with the same label to their centroids and all the centroids
were kept unchanged. So Sb was still preserved and Sw was rescaled.
The derivations are stated below:

S′
b =

c∑
i=1

ni(m′
i − m′)(m′

i − m′)T =
c∑

i=1

ni(mi − m)(mi − m)T = Sb (12)

S′
w =

ni∑
i=1

(X′
i − m′

i)(X
′
i − m′

i)
T =

c∑
i=1

�(Xi − mi)(Xi − mi)T = �Sw (13)

where � denotes the rescaling coefficient and � >0.
Then the MMMC can be obtained and rewritten in the following

form:

J3 = max tr(Sb − �Sw) (14)

If a linear transformation Y = UTX can maximize Eq. (14), an opti-
mal subspace for classification will be explored. This is because the
linear transformation aims to project a pattern closer to those with
the same class but farther from patterns in different labels, which
is just the goal for classification. Under such circumstance, the dis-
tance between different centroids will be larger and the within-class
scatters will be smaller. In other words, d(mi,mj) will be maximized
and s(mi) will be minimized simultaneously in this subspace. Thus∑

ijpipj(d(mi,mj)− s(mi)− s(mj)) and tr(Sb −�Sw) will be maximized
accordingly. That is to say, to find an optimal linear subspace for
classification means to maximize the following optimized function:

J2 = tr{UT(Sb − �Sw)U} (15)

3.2.3. Discriminant feature extraction
Let Td×n denote the translation matrix; thus the discriminant

component after performing LLDE can be represented as [Y − T]d×n,
which can be also represented by a linear transformation, i.e. Y−T=
VTX.

Based on the analysis mentioned above, it can be found that the
linear approximation to the original LLE explores a linear subspace
with the least reconstructed error. Moreover, under the sum-to-one
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constraint, this linear transformation can translate the points to ran-
domplaces, which impacts on the recognition rate of the data greatly.
In other words, the linear approximation to LLE can improve the
discriminability of the data. However, the projection cannot be en-
sured to be optimal. At the same time, the MMMC presented above
can map the data into an optimal subspace for classification. That
is to say, if the linear transformation obtained by linearized LLE can
satisfy Eq. (15) simultaneously, the discriminability of the data will
be improved greatly. Thus the problem can be represented as the
following multi-object optimized problem:{
min tr{VTXMXTV}
max tr{VT(Sb − �Sw)V} (16)

Moreover, there are two constraints in LLE, that is

VTXXTV = nI (17)

Yd×nen = 0d (18)

In the proposed algorithm, we delete the last constraint, which
will remove translational degree of freedom. The reason lies in that in
the proposed algorithm, the translations are adopted to improve the
classification ability of the original LLE. So Eq. (16) can be deduced
to solve the following constrained optimized problem:{
min tr{VTXMXTV}
max tr{VT(Sb − �Sw)V}
s. t. VTXXTV = nI (19)

The constrained multi-object optimized function is intent on mini-
mizing the reconstructed error and maximizing the margin between
difference classes simultaneously. So it can be changed into the fol-
lowing constrained problem:

min tr{VT(XMXT − (Sb − �Sw))V}
s. t. VTXXTV = nI (20)

To solve the above optimization problem, we use the Lagrangian
multiplier:

�
�V

tr{VT(XMXT − (Sb − �Sw))V − �(VTXXTV − nI)} = 0 (21)

Thus we can get

(XMXT − (Sb − �Sw))V = �XXTV (22)

where �i is the generalized eigenvalue of (XMXT − (Sb − �Sw)) and
XXT, Vi is the corresponding eigenvector. Therefore, the objective
function is minimized when V is composed of the first d smallest
eigenvectors of the above generalized eigen-decomposition.

3.2.4. The outline of LLDE
The LLDE algorithm can be summarized as follows:
Step 1: For each data point Xi, identify its knearest neighbors by

kNN algorithm or �-ball algorithm.
Step 2: Compute the reconstruction weights of each point Xi to

minimize the error of linearly reconstructing Xi with its k nearest
neighbors based on �i(W) = arg min ‖Xi − ∑k

j=1WijXj‖2.

Fig. 4. Sample images of one person in Yale database.

Step 3: Repeat Step 3 for all the points and obtain the weighted
matrix W = [Wij]n×n.

Step 4: Construct matrix M based on Eq. (4).
Step 5: Construct matrix XMXT.
Step 6: Compute the between-class scatter Sb and within-class

scatter Sw and their weighted difference Sb − �Sw, respectively.
Step 7: Compute the d bottom generalized eigenvalues and the

corresponding eigenvectors matrix V of (XMXT−(Sb−�Sw),XXT), and
obtain d dimensional embedding Y = VTX.

Step 8: Adopt a suitable classifier to classify the embedding
results.

4. Experiments

In this section, the performance of LLDE is evaluated on two
different data sets and compared with the performances of MMC,
En-ULLELDA and LLDA. LLDA is a newly proposed local linear mani-
fold learning method [35]. Firstly, it clusters the points by k-means
method. Secondly, local LDA is applied to each cluster and the cor-
responding local between-class scatter and within-class scatter are
achieved. At last, a linear transformation is attained based on some
optimized function constructed by those local between-class scat-
ters and within-class scatters. In the experiments, the first data set
is the Yale face database and the second one is CMU PIE face data. In
all the experiments, preprocessing is performed to crop the original
images. For face data, the original images were normalized such that
the two eyes were aligned at the same position, then the facial areas
were cropped into the final images for matching. The size of each
cropped image in the first experiment is 64× 64 pixels and 32× 32
pixels in the second experiment with 256 gray levels per pixel. The
number of nearest neighbors for constructing the nearest neighbor
graph in the proposed algorithm was set from 3 to 7 according to the
size of the training set. After MMC, En-ULLELDA, LLDA and the pro-
posed algorithm have been applied to extract features, different pat-
tern classifiers can be adopted for recognition, including k-NN [36],
Bayesian [37], support vector machine (SVM) [38], etc. In this study,
we apply the 1-NN classifier for its simplicity. The Euclidean met-
ric is used as our distance measure. However, there might be some
more sophisticated and better distance metric, e.g. variance normal-
ized distance and cosine distance, which may be used to improve
the recognition performance. Then the experiments can be carried
out to test the effectiveness of the proposed algorithm.

4.1. Experiment using the Yale face database

The Yale face database [39] was constructed at the Yale Center
for Computation Vision and Control. There are 165 images of about
15 individuals in Yale face data sets, where each person has 11 im-
ages. The images demonstrate variations in lighting condition (left-
light, center-light, right-light), facial expression (normal, happy, sad,
sleepy, surprised and wink), and with or without glasses. Shown in
Fig. 4 is one cropped object from Yale database.

Firstly, we randomly select the six images as training sets and
the rest five images as test sets for each class. Fig. 5 shows the
best mean recognition rates for 20 times. It can be found that our
proposed method outperforms the other techniques. The recogni-
tion rate approaches the maximal average results at 96. 82(±1. 82)%,
89. 33(±2. 12)%, 90. 74(±2. 38)% and 92. 46(±2. 53)% for the proposed
algorithm, MMC, En-ULLELDA and LLDA, respectively.



Author's personal copy

3818 B. Li et al. / Pattern Recognition 41 (2008) 3813 -- 3821

Secondly, we selected different dimensions after performing
MMC, En-ULLELDA, LLDA and LLDE. Fig. 6 shows the recognition
rate curves corresponding to different feature extraction methods.
At the beginning, with the increase in dimensions, the recognition
rates also improved. However, the trend is not maintained for all
the dimensions. When they attain theirs tops at 22, 24, 16 and 14
dimensions for MMC, En-ULLELDA, LLDA and LLDE, respectively, all
recognition rate curves begin to decrease with the increase in the
dimensions.

Thirdly, the experiments are conducted to examine the effect
of the training number on the performance. For each feature
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Fig. 5. Performance comparison of recognition rates using MMC, En-ULLELDA, LLDA
and LLDE.
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Fig. 6. Performance comparison of recognition rates using MMC, En-ULLELDA, LLDA
and LLDE by varying the dimensions.

Table 1
The maximal average recognition rate and the corresponding standard deviations (percent) with the reduced dimensions for MMC, En-ULLELDA, LLDA and LLDE on Yale
database

Method 3 Train 4 Train 5 Train 6 Train

MMC 72. 23 ± 1. 93 (18) 76. 19 ± 2. 43 (20) 81. 13 ± 1. 75 (22) 89. 33 ± 2. 12 (22)
En-ULLELDA 75. 64 ± 2. 17 (24) 79. 59 ± 1. 94 (22) 83. 33 ± 2. 05 (24) 90. 74 ± 2. 38 (24)
LLDA 74. 34 ± 1. 69 (16) 81. 24 ± 2. 56 (16) 85. 56 ± 1. 86 (16) 92. 46 ± 2. 53 (16)
LLDE 76. 67 ± 2. 36 (16) 83. 76 ± 2. 17 (14) 88. 89 ± 1. 52 (14) 96. 82 ± 1. 82 (14)

extraction method, the training sample number is set to 3, 4, 5 and 6,
respectively. Accordingly, the rest is test samples. Moreover, all
the experimental results are obtained across 20 runs on the Yale
database. Table 1 shows the maximal average recognition accu-
racy and the corresponding standard deviations and the reduced
dimensions for MMC, En-ULLELDA, LLDA and LLDE.

At last, we test the impact of rescaling coefficient on the recog-
nition rate. The coefficient, i.e. �, is set to 0.01, 0.1, 1, 10 and 100,
respectively. The maximal average recognition rates for different co-
efficient are stated in Table 2. The optimal recognition rates can be
obtained with different coefficients and the corresponding dimen-
sions, for example, when coefficient is 0.01, the recognition rate
is 96.82% at 14 dimensions. However, the recognition rate reaches
96.82% at 12 dimensions with � equaling 100. It can be found that
the rescaling coefficient shows few effects on the recognition rate
on Yale face database.

4.2. Experiment using the CMU PIE face database

The CMU PIE face database includes 68 subjects with 41,368 face
images as a whole. The face images were captured by 13 synchro-
nized cameras and 21 flashes, under varying pose, illumination, and
expression. We used 170 face images for each individual in our
experiment, random 90 images for training and the left 80 face im-
ages as the test samples for each person. Fig. 7 displays some sam-
ples of one person from CMU PIE database.

The recognition results are shown in Table 3. It is also found
that the recognition rate by performing our proposed algorithm
outperforms those by applying MMC, En-ULLELDA and LLDA. We
investigate the maximal average recognition accuracy at 64, 80,
100 and 84 dimensions for MMC, En-ULLELDA, LLDA and our pro-
posed algorithm, respectively. The best mean recognition rates of
MMC, En-ULLELDA, LLDA and the proposed algorithm are 92.66%,
94.63%, 94.98% and 97.13%, and the standard deviations are 1.49%,
1.87%, 2.11% and 1.24%, respectively. The corresponding face sub-
spaces obtained by carrying out the methods mentioned above are
called optimal face subspace for each method. In addition, it was
also found that there is no significant improvement if more dimen-
sions are used. Fig. 8 shows the plots of recognition rate versus
dimensions.

Moreover, the effect of the training sample number is also tested
in the following experiment. We randomly selected 60, 70, 80 and
90 training samples and then the rest 110, 100, 90 and 80 samples as
test ones. The bestmean recognition rates are computed by repeating
the experiments 20 times for the corresponding training and test
samples, which are shown in Fig. 9.

Table 2
Dimensions versus recognition rate by varying rescaling coefficient in the proposed
algorithm

Rescaling coefficient 0.01 0.1 1 10 100
The best average recognitionrate (%) 96.82 96.82 96.82 96.82 96.82
Dimensions 14 14 14 14 12
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Fig. 7. The cropped sample face images of one person from CMU PIE database.

Table 3
Performance comparison and the corresponding standard deviations with the re-
duced dimensions for MMC, En-ULLELDA, LLDA and LLDE on CMU PIE face

Approach Dimensions Recognition rate (%)

MMC 64 92. 66 ± 1. 49
En-ULLELDA 80 94. 63 ± 1. 87
LLDA 100 94. 98 ± 2. 11
LLDE 84 97. 13 ± 1. 24
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Fig. 8. Performance comparison of recognition rates with different dimensions using
MMC, En-ULLELDA, LLDA and LLDE on CMU PIE face.
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Fig. 9. Performance comparison of recognition rates with different training sample
number using MMC, En-ULLELDA, LLDA and LLDE on CMU PIE face.

5. Discussions and conclusions

5.1. Discussions

From the experimental results mentioned above, we can find
some interesting points as follows:

(1) Compared to some feature extraction methods, the proposed
one can gain better recognition rate. LLDE is a local linear man-
ifold learning-based method. When applied to the data lying
on a manifold, the proposed method can extract features effi-
ciently. However, when using the linear methods to extract fea-
tures, the global nonlinear structure of nonlinear data will be
destroyed so that the recognition rate is reduced. The data sets
used in this study are Yale and CMU PIE face; the images for each
person are varied from pose, illumination to facial expression.
Some research efforts have also shown that various conditions
such as lighting, pose, expression and so on are essential fea-
tures for a sub-manifold [17–19,40–42]. That is to say, manifold
learning-based methods can successfully explore these essential
features in a high dimensional face space. Thusmanifold learning
methods are superior to some linear feature extraction meth-
ods. Moreover, compared to other supervised manifold learning
techniques, on the one hand, the proposed LLDE takes full advan-
tages of the property that the original LLE is invariant to transla-
tions and rescalings; on the other hand, the translations and re-
scalings can be automatically determined by an MMMC instead
of being randomly set. The proposed MMMC aims to separate
data with different labels farther and cluster data with the same
label closer. Thus the proposed algorithm can gain better recog-
nition rate.

(2) Rescaling and translation are contained in the proposed algo-
rithm. The between-scatter matrix S′

b has been changed although
the within-scatter matrix S′

w has still been kept after translation,
which can be found from the following derivations:

S′
b =

c∑
i=1

ni((mi − Ti) − (m − t))((mi − Ti) − (m − t))T

S′
w =

ni∑
i=1

((Xi − Ti) − (mi − Ti))((Xi − Ti) − (mi − Ti))T

=
ni∑
i=1

(Xi − mi)(Xi − mi)T = Sw

where

t = 1
n

c∑
i=1

niTi.

If we rescale the data set, the within-scatter matrix will be
changed, which can be found from Eq. (14). Compared to changing
the within-scatter matrix, the contribution for improving the dis-
criminability will be bigger by changing the between-class scatter
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matrix. This is because rescaling cannot change the distances be-
tween centroids of different classes, i.e. Sb. In order to map the data
belonging to different labels farther, the translations are taken into
the proposed algorithm, which is a key to enhancing the discrim-
inability of the data. Moreover, the rescalings are also adopted to
cluster the data closer, which helps the data to be recognized.

6. Conclusions

In appearance-based face recognition, feature extraction tech-
niques are widely employed to reduce the dimensions and to
enhance the discriminability of the original data. In this paper, a
discriminant method based on the classical LLE is presented. The
proposed approach can effectively extract the most discriminant
features. Compared to other feature extraction algorithms, the new
technique does not suffer from the SSS problem, the problem of di-
mensionality reduction two times and the disconnected component
problems. The experimental results show that the new method is
effective.
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