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Abstract. This paper presents a study of the suitability for FPGA design of full custom based CORDIC imple-
mentations. Since all these methods are based on redundant arithmetic, the FPGA implementation of the required
operators to perform the different CORDIC methods has been evaluated. Efficient mappings on FPGA have been
performed leading to the fastest implementations. It is concluded that the redundant arithmetic operators require a
4 to 5 times larger area than the conventional architecture and the speed advantages of the full custom design has
been lost. That is due to the longer routing delays caused by the increase of the fan-out and the number of nets.
Therefore, the redundant arithmetic based CORDIC methods are not suitable for FPGA implementation, and the
conventional two’s complement architecture leads to the best performance.
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1. Introduction

The high capability and performance that FPGAs have
achieved in last years allow them to accelerate DSP
tasks. FPGA devices have been used for implementing
Custom DSPs from the beginning of the past decade
[1–4]. The FPGA devices have benefized from the im-
provements in VLSI deep sub-micron technology, lead-
ing to higher speed and capability as well as low power
consumption.

CORDIC (COordinate Rotation DIgital Computer)
[5, 6] is an iterative algorithm for the calculation of the
rotation of a two-dimensional vector, in linear, circular
and hyperbolic coordinate systems, using only add and
shift operations. Its current application are in the field
of digital signal processing, image processing, filtering,
matrix algebra, etc. [7].

Early FPGAs were not able to implement a parallel
CORDIC algorithm due to the limited chip-size and
the impossibility of routing the hard-wired shifters [8].

Consequently, it has been performed in several FPGA-
based DSP applications as an iterative structure [9–12].

The enhancement of CORDIC algorithm for VLSI
design has been an active research topic in last decades
[13–26]. However, all these techniques have not been
evaluated for FPGA design. This paper emphasizes
the realization of these VLSI algorithms on FPGA.
These methods have been evaluated and compared
with the conventional way to implement CORDIC
algorithm.

This paper is organized as follows. In Section 2 the
CORDIC algorithm is presented and the problems of its
implementation are commented. In Section 3 metrics
to compare the different FPGA implementations are
outlined. In Section 4 the CORDIC operators required
in the different methods are evaluated. The conven-
tional CORDIC implementation is studied in Section 5
and Section 6 is dedicated to the redundant arithmetic
based CORDIC methods. Finally, Section 7 concludes
the paper.
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Figure 1. The rotation and vectoring mode of the CORDIC
algorithm.

2. CORDIC Algorithm

CORDIC is an iterative algorithm for the calculation
of the rotation of a two-dimensional vector, in linear,
circular and hyperbolic coordinate systems, using only
add and shift operations. It consists of two operating
modes, the rotation mode (RM) and the vectoring mode
(VM). In the rotation mode a vector (X, Y ) is rotated
by an angle θ to obtain a new vector (X ′, Y ′). In every
micro-rotation i , fixed angles of the value arctan(2−i )
which are stored in a ROM are subtracted or added
from/to the remainder angle θi , so that the remain-
der angle approaches to zero (Fig. 1). In the vector-
ing mode, the length R and the angle α towards the
x-axis of a vector (X, Y ) are computed. For this pur-
pose, the vector is rotated towards the x-axis so that the
y-component approaches to zero. The sum of all angle
rotations is equal to the value of α, while the value of
the x-component corresponds to the length R of the
vector (X, Y ). Hence, the mathematical relations to be
iterated are shown in (1). By selecting the appropriated
value for the parameter m in (1) a different coordinate
system can be achieved (m = 0, 1, −1 corresponds to
linear, circular, and hyperbolic coordinate system, re-
spectively).

Xi+1 = Xi − σi · 2−i ·m · Yi

Yi+1 = Yi + σi · 2−i ·m · Xi (1)

Zi+1 = Zi − σi · θi

This paper is focused on circular coordinates systems.
However, considering FPGA implementations, linear
and hyperbolic coordinates can be treated similarly.

The difference among them is the shift factor 2−i ·m :
there is no shift operation in linear coordinates, there
is a right-shift operation in circular coordinates, and
there is a left-shift operation in hyperbolic coordinates.
Furthermore, in bit-parallel architectures, which are of
interest in this paper, a shift operation is performed by
a hard-wiring. Hence, the obtained conclusions may be
extended to linear and hyperbolic coordinate systems.

In the RM mode the direction of the micro-rotations
σi are determined by the sign of the Zi variable, if sign
of Zi is positive σi = 1 otherwise σi = −1. In VM the
decision criteria depends on the sign of the Y variable,
if it is positive then σi = −1 else σi = 1.

Each iteration in CORDIC is not a perfect rotation,
it is a rotation which modifies the length of the vec-
tor in a quantity of (1 + 2−2i )1/2. Therefore, after N
iterations its magnitude has changed by a factor KN

in (2). In order to maintain a constant vector length
the obtained result has to be scaled by 1/KN . How-
ever using consecutive rotations the scale factor can be
pre-computed.

KN =
N∏

i=0

√
1 + σ 2

i · 2−2i (2)

To satisfy an M-bit precision CORDIC operation,
M +1 iterations are needed. Furthermore the length of
the data-path to compute the X and Y variables has to
be N = M + 2 + log2(M) and for the computation of
Z only a precision of M +1 is needed in the operations
[17].

2.1. Redundant Arithmetic Based CORDIC

The drawbacks of conventional CORDIC implementa-
tions, based on ripple carry adders or subtractors, is the
internal carry propagation delay. To enhance the per-
formance of CORDIC redundant arithmetic has been
proposed. This arithmetic, due to its carry free prop-
erty, avoids the carry propagation from the LSB to the
MSB.

Nevertheless, its use involves several difficulties. It
is not possible to detect the sign of a redundant number
without inspecting all the digits which requires a prop-
agation from the MSB to the LSB. Hence, the decision
criteria is chosen according to several most significant
digits. Since not all digits are examined there is the pos-
sibility that the sign is not determined. In such a case
either the digit set {−1, 0, 1} can be chosen leading to a
non constant scale factor or an arbitrary rotation has to
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be performed. In the first case, the scale factor has to be
computed in parallel to the CORDIC iterations while
a wrong selected rotation requires a compensation to
ensure the convergence.

In Section 6 several of the redundant arithmetic
based algorithms which solve the previously described
problems are examined from the point of view of the
FPGA implementation.

3. Comparison of FPGA Implementations

Xilinx FPGA has a matrix structure in which each
element of the matrix is a Configurable Logic Block
(CLB). The CLBs are interconnected by the available
routing resources and surrounded by programmable
input-output blocks (IOBs). The routing resources can
be connected by means of programmable intercon-
nect to implement the desired routing. A CLB con-
tains two 4-input Look-Up Tables (LUTs), one 3-input
one and two registers, as shown in Fig. 2. It also
contains dedicated resources to perform a fast prop-
agation of arithmetic carries between adjacent CLBs.
This carry chain is independent of the normal routing
resources.

A comparison of full custom designs can be easily
performed by evaluating critical path delay (for exam-
ple, counting the number of full adders in between two
registers). However, in FPGA design the performance
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Figure 2. Configurable logic block.

can change depending on, for example, the degree of
area utilization. In FPGA it is not sufficient to count the
number of LUTs (Look-up Tables) or CLBs (Config-
urable Logic Blocks) because the routing are significant
component of the total delay. The long routing delays
are caused by the following items:

• A 100% connectivity among the resources in the
FPGA can not be obtained.

• It is not possible to find an optimum placement and
routing for all problems due to the limited resources
and the fixed structure of the devices.

• Placement and routing are automatic or semi-
automatics processes.

In this paper the throughput is characterized by the
propagation delay in the critical path. The equation
of this delay will be given and within it not only the
fixed delays will be included but also the routing de-
lays. To characterize the latter delays its fan-outs and
the number of nets that have the same fan-out will
be given. With these two parameters it is not possi-
ble to determine the magnitude of the delay, neverthe-
less they are useful to compare different implemen-
tations. Obviously a routing delay with higher fan-out
will be slower than other one with lower value. Further-
more, higher the number of nets with the same fan-out,
higher the probability of longer routing delays. Table 1
shows the values and descriptions of the symbols used
to denote the delays in the critical paths. They corre-
spond to a XC4000XL Xilinx chip with speed degree
of 1.

Table 1. Timing parameters.

Symbol Description ns

TILO F/G inputs to X/Y outputs 1.3

TIHO F/G inputs via H to X/Y outputs 2.2

TOPCY Operant inputs (F1, F2, G1, G4) to COUT 2.0

TSUM CIN through function generators to X/Y outputs 2.4

TBYP CIN to COUT, bypass function generators 0.20

TNET Carry Net Delay 0.25

TCKO Clock K to Flip-Flop output Q 1.6

TICK Setup time before clock K, F/G inputs 0.9

TIHCK Setup time before clock K, F/G inputs via H 1.7

T X f,Y
net Routing delay of a net with a fan-out of X , —

there are Y nets with the same fan-out
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4. Conventional vs. Redundant
Arithmetic on FPGA

The operations involved in CORDIC are addition and
subtraction. In this section the FPGA implementation
of these operators by using both conventional and
redundant arithmetic is studied. Other operators re-
quired in redundant arithmetic based CORDIC are also
studied.

4.1. Conventional Arithmetic on FPGA

Current FPGAs provide resources to efficiently im-
plement arithmetic operators. Xilinx XC4000 contains
dedicated logic for the fast generation of carry signals
(Fig. 2). Note that the propagation time between a carry
input and a carry output is TBYP = 0.20 ns and the de-
lay between the carry lines of two adjacent CLBs is
also fixed, TNET = 0.25 ns.

4.1.1. Adders and Subtractor. The basic cell of the
conventional adder and subtractor is the full adder (FA).
A full adder is composed by two 3-imput functions;
therefore it can be implemented with a single CLB.
Nevertheless, if the resources of the FPGA to generate
the carry signal are used, a reduction of area and an
increase in speed is achieved. In this case two FAs can
fit in one CLB. Hence, an N -bits adder or subtractor
requires N/2 CLBs.

The propagation delay of these circuits is given by:

Tp = TCKO + t1f,2N
net + TOPCY

+ (N − 4)/2 · (TBYP + TNET) + TSUM

= [
6 + t1f,2N

net + (N − 4)/2 · 0.45
]

ns. (3)

The critical path is determined by the propagation
time of the ripple carry and the routing delay of one of
the least significant inputs of the circuit (each of these
two paths have a fan-out 2). A 16-bit adder or subtractor
achieves a throughput of 87 MHz in a device with a
speed degree of 1 with an occupation lower than 5%.

4.1.2. Adder/Subtractor. An adder/subtractor per-
forms an addition or a subtraction depending on a selec-
tion input A/S. This input indicates whether an operand
is two’s complemented. The add/sub basic cell is de-
composed by 2 4-input functions, one to compute the
output and the other to transmit the carry. According
to this an N -bit adder/subtractor can fit in (N + 1)/2

CLBs. The additional half CLB is required for adding
the LSB 1 in case of the subtraction.

In this circuit the critical path is determined by the
ripple carry propagation and the routing delay of the
A/S wire. In this case that net has a fan-out of 2N ,
which automatically decreases the performance of the
circuit. That critical path is expressed as:

Tp = TCKO + tNf,1
net + TASCY

+ (N − 4)/2 · (TBYP + TNET) + TSUM

= [
6.5 + tNf,1

net + (N − 4)/2 · 0.45
]

ns. (4)

The throughput achieved by a 16-bit adder/
subtractor fitted in a device with a speed degree of 1
with an area utilization lower than 5% is 70 MHz.

4.2. Radix-2 Redundant Arithmetic on FPGA

Redundant arithmetic is useful to speed-up operations
characterized by long propagation delays. Besides that
feature, it allows processing the data with most signifi-
cant digit first (MSDF). This simplifies the implemen-
tation of the operators that inherently work in MSDF
fashion like division or square root or improved algo-
rithms such as Differential CORDIC [17].

In next sections the FPGA implementation of the
operators required to perform the different redundant
CORDIC structures are studied. The implementation
on FPGA of other operators like multipliers, scaling,
squaring and divider can be found in [27].

In radix-2 redundant arithmetic a number X is rep-
resented as:

X2 = x0.x1x2 · · · xN−1 =
N−1∑
i=0

xi 2
−i , (5)

where each digit, xi , is from the set {−1, 0, 1} accord-
ing to

xi = x+
i − x−

i , (6)

where x+
i , x−

i ∈ {0, 1}.

4.2.1. Hybrid Addition and Subtraction. Hybrid ad-
dition adds an unsigned number, Y , to a redundant one,
X2, resulting in another redundant number, S2, as in-
dicated in (7). To perform this operation a plus-plus-
minus (PPM) cell is needed (Fig. 3(a)), which computes
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the equation given in (8).

S2 = X2 + Y. (7)

x+
i − x−

i + yi = 2s+
i+1 − s−

i . (8)

The hybrid subtraction performs the subtraction
between a redundant number and an unsigned num-
ber as indicated in (9). The basic cell needed is
the minus-minus-plus (Fig. 3(b)) which computes the
Eq. (10).

S2 = X2 − Y. (9)

x+
i − x−

i − yi = −2s−
i+1 + s+

i . (10)

PPM and MMP cells require 1 CLB each to be imple-
mented. Therefore, the occupation of an N -bit hybrid
redundant adder or subtractor is N CLBs, twice larger
than the conventional ones.

The critical path in these circuits is composed by
a fixed delay, which does not depend on the size of
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Figure 5. Signed digit addition (a) and subtraction (b).

the operators, and a routing delay with a probability
of being longer than that in the conventional adder or
subtractor (11). An N -bit adder or subtractor has 3N
nets with a fan-out of 2 each.

Tp = TCKO + t2f,3N
net + TICK = [

2.5 + t2f,3N
net

]
ns (11)

4.2.2. Hybrid Adder/Subtractor. Hybrid adder/subt-
ractor performs the addition or the subtraction between
a redundant number and an unsigned one depending on
the selection signal A/S. This circuit is composed by a
PPM cell and a multiplexor to select between yi or its
one’s complement (Fig. 4). Furthermore, it is needed to
add a “1” in the least significant position (s+

0 ) to com-
plete the two’s complement of Y when a subtraction
is done. Each cell requires a CLB to be implemented
(2 4-input functions), then, an N -bits adder/subtractor
requires N + 1/2 CLBs.

The fixed delay in the critical path is the same as in
the previous operators. Nevertheless, the routing delay
is determined by the A/S net, which has a fan-out of
2N . Obviously, the routing delay in this case will be
longer than in the conventional adder/subtractor; it is
given by:

Tp = TCKO + t2Nf,1
net + TICK = [

2.5 + t2Nf,1
net

]
ns. (12)

4.2.3. Signed Digit Addition and Subtraction. The
addition of two radix-2 redundant numbers (13) can be
performed with a hybrid adder (S′

2 = X2 + Y +) and
a hybrid subtractor (S2 = S′

2 − Y −). In the same way,
the subtraction of two signed digit numbers (14) can
be achieved by a hybrid subtractor (S′

2 = X2 − Y +)
and a hybrid adder (S2 = S′

2 + Y −). Both operators are
shown in Fig. 5.

S2 = X2 + Y2 = X2 + Y + − Y −. (13)

S2 = X2 − Y2 = X2 − Y + + Y −. (14)
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There are two possibilities of dividing these cells
in LUTs. The first one is as 2 4-input functions and
the second is as 2 7-input functions (in the case of the
adder the PPM cells are F functions and the MMP cells
are H functions). Both possibilities needs 2 CLBs per
cell, therefore, an N -bit signed digit adder or subtractor
requires an area of 2N CLBs (4 times larger than the
conventional ones).

The difference of these two implementations is
found by analyzing the critical path. In the first method
two routing delays are involved, one of the 3N nets
with a fan-out of 2 determines the speed (15). In the
second method only a routing delay is involved. The
slowest delay is given by one of the 3N nets with a fan-
out of 4 each (16). This last one achieves the highest
frequency.

Tp = TCKO + 2t2f,3N
net + TILO + TICK

= [
3.8 + 2t2f,3N

net

]
ns. (15)

Tp = TCKO + t4f,3N
net + TIHCK = [

3.3 + t4f,3N
net

]
ns.

(16)

The previous operators can be easily pipelined by
including FF in the outputs of the first hybrid module
and in the input connected to the second module. By
doing so each cell requires 4 registered 3-inputs LUTs
and a FF, therefore the area increases by half a CLB. In
this case the delay in the critical path is given in (17).
As can it be seen the routing delay is determined by
one of the 6N nets with a fan-out of 2, and is given by:

Tp = TCKO + t2f,6N
net +TICK = [

2.5+ t2f,6N
net

]
ns. (17)

A 16-bit pipelined redundant adder or subtractor
achieves a throughput of 110 MHz in a device with
a speed degree of 1 with an area utilization lower than
5%.

Redundant arithmetic allows processing the data by
MSDF manner. To perform a parallel MSDF redundant
adder or subtractor it is necessary to latch the minus out-
put of the PPM block and the y−

i in the adder (Fig. 5(a))
or the plus output of the MMP cell and the y+

i in the
subtractor (Fig. 5(b)). In that case, the operator requires
3 CLBs to be implemented (two 5-input functions, one
3-inputs function and one FF). For an N -bit operation
the critical path is given by the slowest from 3N nets
with a fan-out of 4 each:

Tp = TCKO + t4f,3N
net +TIHCK = [

3.3+ t4f,3N
net

]
ns. (18)
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Figure 6. Signed adder/subtractor cell.

4.2.4. Signed Digit Adder/Subtractor. A signed digit
adder/subtractor can be implemented with a signed
digit adder by including logic to negate one of the digits
when it is controlled by the signal A/S (Fig. 6). This
negation can be performed in two ways. Either the pos-
itive and negative bit of the digit −Y2 = Y − −Y + have
to be exchanged [28], as shown in Fig. 7(a), or by com-
plementing to one both the positive and negative bits of
each digit (Fig. 7(b)). From the FPGA implementation
point of view the second option is better than the first
one, since a switching box is decomposed by two 3-
input functions while complementing the bits requires
two 2-input functions. Therefore, this second option
has been selected for the implementation.

Each cell of the adder/subtractor can be discomposed
in four 4-input functions, as a consequence 2 CLBs are
used. It is 4 times larger than the conventional one.

The critical path of an N -bit adder/subtractor con-
tains two routing delays (19). The first one is given by
the A/S net, which has a fan-out of 4N (it is present in
each of the four functions).

Tp = TCKO + t4Nf,1
net + TILO + t2f

net + TICK

= [
3.8 + t4Nf,1

net + t2f
net

]
ns. (19)

If this circuit is pipelined it can be divided into 2
4-input functions, 2 3-inputs functions and 1 2-input
function. In this way each cell requires 2.5 CLBs while
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Figure 7. (a) Switching box; (b) complementing box.
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Figure 8. MSDF signed adder/subtractor.

enhancing the performance. A routing delay is avoided
and less number of nets with a lower fan-out can pro-
duce the critical path (20).

Tp = TCKO + t3Nf,1
net + TICK = [

2.5 + t3Nf,1
net

]
ns. (20)

The throughput achieved by a FPGA implemented
16-bit redundant adder/subtractor is 50 MHz. The A/S
signal with a fan-out of 48 can be decomposed into two
nets with lower fan-out by passing through an extra
CLB.

The high fan-out of the A/S wire can be reduced if
the circuit work with MSDF. In that case the A/S signal
has to be latched before it is transmitted to the next cell
(Fig. 8). The fan-out of A/S is now 3 (21). Nevertheless,
its drawback is that the area of each cell increases to 4
CLBs.

Tp = TCKO + t3f,1
net + TILO + t2f,1

net + TICK

= [
3.8 + t3f,1

net + t2f,1
net

]
ns (21)

4.2.5. Most Significant Digit First Absolute Value.
One of the CORDIC methods shown below needs the
computation of the absolute value of a redundant num-
ber transmitted with MSDF.

The absolute value operation can be done in MSDF
fashion if redundant numbers are used. The sign of a
redundant number is given by the sign of the first non-
zero digit. Then, beginning from the MSD, all digits are
inspected until the first non-zero digit is found. The fi

signals are used to transmit the sign information from
a digit to other. They can take the values ND, N or P
(Non Decision, Negative or Positive) as shown in (22).
In each digit its absolute value is achieved according
to the information given by fi and computed by (23).
Initially f−1 = ND and at the end fN takes the sign of

fi-1

fi

iy
ix

Figure 9. MSDF absolute value basic cell.

the word.

fi =




fi−1 if fi−1 = P or N

P if fi−1 = ND and xi = +1

N if fi−1 = ND and xi = −1

ND if fi−1 = ND and xi = 0

(22)

yi =




xi if fi = P

−xi if fi−1 = N

xi if fi−1 = ND and xi ≥ 0

−xi if fi−1 = ND and xi = −1

(23)

The basic cell that performs this task is shown in
Fig. 9. Four 4-inputs functions are needed to implement
each cell. Therefore, an N -bit MSDF absolute value
operator requires 2N CLBs. The propagation delay is
similar to (11) but it changes the routing delay. It is
given by one of 4N nets with a fan-out of 4 each.

4.2.6. MSDF Absolute Value Hybrid Subtraction.
The RM Differential CORDIC method (6.2) requires
the computation of the absolute value of the hybrid sub-
traction working with MSDF. This operation is written
in (24), where Z2 and X2 are redundant numbers and
θ is a constant positive number.

Z2 = |X2 − θ | (24)

The basic cell required to perform this operation is
shown in Fig. 10. There are two ways of mapping this

-θ

Figure 10. MSDF absolute value hybrid subtraction cell.
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cell in Xilinx CLBs. The first one is performed by using
four 5-inputs functions and one 2-inputs function, lead-
ing to 4.5 CLBs in each cell. The propagation time for
an N -bit operation is shown in (25). The critical path is
given by the slowest routing delay from 2N nets with
a fan-out of 9 each.

Tp = TCKO + t9f,2N
net + TICHK

= [
3.3 + t9f,2N

net

]
ns. (25)

The second option is using four 4-inputs functions
and two 2-inputs functions. In this way each cell re-
quires 3 CLBs. Nevertheless, for an N -bit operation
two routing delays are involved, although each one with
lower fan-out, as indicated by:

Tp = TCKO + t2f,2N
net + TILO + t4f,1

net + TICK

= [
3.8 + t2f,2N

net + t4f,1
net

]
ns. (26)

4.2.7. MSDF Absolute Value Redundant Subtraction.
In VM Differential CORDIC (6.2) the absolute value
of the subtraction of two redundant numbers processed
in digit-parallel MSDF fashion is required (27).

Z2 = |X2 − Y2| (27)

The basic cell required to achieve this operation is
shown in Fig. 11. There are two mapping possibilities.
The first one uses four 4-inputs functions for the ab-
solute value operator and two 5-inputs functions and
a 3-inputs one for the subtractor. Therefore, the cell
needs 4.5 CLBs to be implemented. The propagation

Figure 11. SMDF absolute value redundant subtraction cell.

delay for an N -bit operation contains two routings
delays (28).

Tp = TCKO + t2f,5N
net + TIHO + t4f

net + TICK

= [
4.7 + t2f,5N

net + t4f
net

]
ns. (28)

The second possibility requires four CLBs (four 4-
input functions and four 3-input functions). In this case
three routing delays are involved in the propagation
time (29).

Tp = TCKO + t2f,3N
net + TILO + t2f

net + TILO + t4f
net + TICK

= [
5.1 + 2t2f

net + t4f
net

]
ns. (29)

4.2.8. Converters. The conversion from conventional
two’s complement into redundant radix-2 arithmetic is
a trivial operation which does not require any logic.
All bits of the two’s complement number except the
sign bit are connected to x+

i inputs and the sign bit is
connected to x−

0 . The others x−
i and x+

0 are zero.
The conversion from redundant into two’s comple-

ment is an easy operation if all digits are being pro-
cessed at a time. It consists in a conventional subtrac-
tor that computes X2 = X+ − X−. Nevertheless, the
realization of this operation decreases the performance
because of its implicit carry propagation. The subtrac-
tor has to be pipelined to match its throughput with that
in the rest of the circuit.

If the redundant digits are transmitted with the
MSDF the conversion into two’s complement is not
a trivial operation. The problem consists in that it
is not possible to know the value of any digit until
the least significant one is available. The circuit to
convert the digits in MSDF fashion is called On-the-
Fly Converter [29], which can be seen in Fig. 12. It
consists of two basic cells, the COPY and the AP-
PEND cell [28]. The value of the current digit di is
obtained by the sign of the next digit di+1. If di+1 is
zero the decision is postponed to iteration i + 2. A
more detailed explanation of this circuit can be found in
[28].

If this circuit is implemented on FPGA each
APPEND cell requires four 2-inputs LUTs and each
COPY cell requires two 4-inputs LUTs. The total area
for an N -bit converter is given by (N +5) · N/2 CLBs.
The propagation time for a fully pipelined circuit in-
volves two routing delays (30). The second one is due
to the signal that are broadcast from an APPEND to all
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Figure 12. On-the-fly converter.

the COPY cells in the same row.

Tp = TCKO + t4f,2
net + TILO + t (N−1)f,2

net + TICK

= [
3.8 + t4f,2

net + t (N−1)f,2
net

]
ns. (30)

A more efficient FPGA implementation of the pre-
vious circuit is obtained as shown in Fig. 13. By repli-
cating the logic that selects the correct digit and by
including it in each COPY cell the new cells called
P and M are obtained. Each of these new cells re-
quires one 4-input function. Therefore, the total area
of the converter is given by (N + 3) · N/2 CLBs, i.e.,
N CLBs smaller than the previous one. Furthermore,
in the propagation time of (31) one routing delay is
avoided.

Tp = TCKO + t (N+1)f,2
net + TICK = [

3.8 + t (N+1)f,2
net

]
ns

(31)
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Figure 13. FPGA-based on-the-fly converter.
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Figure 14. Pipelined bit-parallel CORDIC for rotation mode.

5. Conventional CORDIC on FPGA

The bit-parallel fully pipelined circuit to compute the
equations in (1) for the Rotation Mode is shown in
Fig. 14. It is based on ripple carry adders/subtractors
(4.1.2). In each iteration the operation 2−i is a hard-
wired shift. The sign bit of Zi is the line A/S, which
indicates whether the next operation is an addition or a
subtraction.

The whole processor requires (2·(M +1) · (N +1)+
(M + 1)2)/2 CLBs. The critical path is fixed by one of
the M +1 A/S nets. Each one of these nets has a fan-out
of 2N + M + 3. The equation of the propagation time
in the critical path is given by:

Tp = TCKO + t (2N+M+1)f,M+1
net

+ TASCY + (N − 4)/2 · (TBYP + TNET) + TSUM

= [
6.5 + t (2N+M+1)f,M+1

net + (N − 4)/2 · 0.45
]

ns.

(32)

The latency of the processor is M + 1 clock cycles.
In the case of a CORDIC implementation that com-

putes either RM or VM with a precision of M = 16
bits, the area occupied in the FPGA is 535.5 CLBs. The
worst routing delay is given by one of the 17 nets with
a fan-out of 61. The maximum operating frequency is
about 25 MHz when it fits in a single chip with a speed
degree of 1 and with an occupation less than 25%.

For a structure that computes both RM and VM the
resources are 100% shared. In such a case it is only re-
quired to include a multiplexor to select the A/S signal
between the sign bit of Zi in RM or Yi in VM. It only
requires an extra of (M + 1)/2 CLBs. Nevertheless,
it slightly degrades the performance because an extra
routing delay is added. The resulting critical path is
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given in (33).

Tp = TCKO + t1,17
net + TILO + t (2N+M+1)f,M+1

net

+ TASCY + (N − 4)/2 · (TBYP + TNET) + TSUM

= [
7.8 + t1,17

net + t (2N+M+1)f,M+1
net

+ (N − 4)/2 · 0.45
]

ns. (33)

6. Redundant CORDIC Methods

In order to solve the problems of the redundant arith-
metic based CORDIC (commented in Section 2.1) sev-
eral methods have been proposed. All of them maintain
the scale factor constant. They have been classified in
three groups: (i) those which are based on an estimation
of the sign, (ii) the differential CORDIC algorithm and
(iii) those based on the pre-computation of the direc-
tions of the micro-rotations.

6.1. Based on an Estimation of the Sign

Several methods perform an estimation of the sign by
only exploring some digits of the word in each. These
are the following:

• Double Rotation CORDIC [13].
• Correcting Rotation CORDIC ([13] for RM and [14]

for VM).
• Householder [22–24].

Among these, the simplest implementation is the Cor-
recting Rotation algorithm. The set of equations in this
method is not the same for all iterations. If D +1 digits
are inspected, in the iteration i , being (i mod D) = 0,
the equations given in (34) are computed.

Xi+1 = Xi − σi · 2−i · Yi

Yi+1 = Yi + σi · 2−i · Xi (34)

Zi+1 = Zi − σi · 2 · θi

Nevertheless, if (i mod D) = 0 the set of equations
to be computed is in (35)

X ′
i = Xi − σi · 2−i · Yi

Y ′
i = Yi + σi · 2−i · Xi

Z ′
i = Zi − σi · 2 · θi (35)

Xi+1 = X ′
i − σi · 2−i · Y ′

i

Yi+1 = Y ′
i + σi · 2−i · X ′

i

Zi+1 = Z ′
i − σi · 2 · θi

In the latter equations, σi = −1 for a negative sign
otherwise σi = 1. To perform the operations for the X
and Y data-path, the pipelined signed adder/subtractors
are required (4.2.4). Although it is a little larger than
the non-pipelined architecture it exhibits less rout-
ing delay. To compute the Zi variable the hybrid
adders/subtractors are needed (4.2.2), it also has to be
pipelined in order to work synchronously with the X
and Y operations. The 2−i operations are also hard-
wired shifters.

The worst case is given when D = 1, only 2 dig-
its are inspected. In that case all iterations compute
the Eq. (35), hence, all iterations must be corrected.
The occupied area corresponds to 5 · N · (M + 1) + 2 ·
(M + 1)2 + (M + 1)/2 CLBs. Since only two digits
have to be inspected to estimate the sign, one 4-input
function is required. The delay of the critical path is
given in (36). It contains two routing delays and one of
them consists of a very high fan-out (6N + 2(M + 1)).
Furthermore, there are 2(M +1) nets with that fan-out.
The latency of the processor is 4(M + 1) clock cycles.

In the case of a CORDIC with a precision of M = 16
bits (N = 22 bits) the area is 2448 CLBs (4.5 times
larger than the conventional architecture) and there are
34 nets with a fan-out of 166. The latency is 64 clock
cycles.

Tp = TCKO + t1f,4
net + TILO

+ t (6N+2(M+1))f,2(M+1)
net + TICK

= [
3.8 + t1f,4

net + t (6N+2(M+1))f,2(M+1)
net

]
ns. (36)

If only RM is required, the first routing delay in
(36) can be avoided. It can be included in the pipelined
hybrid adder/subtractor, and additionally it does not
increase the required area. This is not true for the VM.

If a RM and VM CORDIC is desired the hardware
is 100% shared. A multiplexor is required in each iter-
ation to select the working mode; furthermore an extra
routing delay and one TILO appear in (36).

Usually this method is used by inspecting at least 3
digits (D = 2). Although it reduces area in respect to
the previous structure the throughout is deteriorated,
an extra routing delay and one TIHO appear in (36). It
is caused by the sign estimation operation (a 6-input
function), which is accomplished by 2.5 CLBs.

The other methods enumerated in this section
have the same problems as the Correcting Rotation
CORDIC. Furthermore, they have more complicated
equations which lead to more area and less throughput.
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6.2. Differential CORDIC

Differential CORDIC (DCORDIC) [17] is a redun-
dant arithmetic based method that keeps a constant
scale factor without including additional rotations. In
DCORDIC, the directions of the micro-rotation are
chosen such that the remaining rotation angles in RM
(37) and Yi variable in VM (38) always decreases. The
goal of this method is the MSDF computation of all
involved operations. The sign in one iteration is not
necessary to begin to process the next operation.

|Zi+1| = ‖Zi | − θi | (37)

|Yi+1| = ‖Yi | − 2−i · Xi | (38)

In RM DCORDIC the iteration variable is called Ẑ i

with |Ẑ i | = |Zi |. The directions of the micro-rotations
are obtained by computing (39).

|Ẑ i+1| = ‖Ẑ i | − θi |
σi = sign(Zi+1) = sign(Zi ) · sign(Ẑ i+1) (39)

Then, one N -bit MSDF absolute value hybrid sub-
tractor (4.2.6) is required to compute the Zi variable
in each iteration. Such structure also needs a skew de-
lay at the input to arrive the data in MSDF fashion. To
obtain each σi , an XOR gate is utilized.

Similar to the Correcting method, the Xi and Yi are
computed (1), (34). This can be achieved by using
the pipelined signed adder/subtractor or Carry Save
ones. In this case, these variables are not processed
with MSDF, which allows the 2−i operation to be per-
formed with hard-wired shifters. Two delay matrixes
are needed to synchronize the X and Y computation
with the σi ’s.

The occupied area by an M-bits precision processor
is:

• Skew matrix: M · (M − 1)/4 CLBs
• MSDF absolute value hybrid subtractor data-path:

3 · (M + 1)2 CLBs
• Computation of σi : 3 · M + 1 CLBs
• Delay Matrixes: N · (M + 1) CLBs
• Computation of X and Y variables: 5 · N · (M + 1)

CLBs

The latency achieved will be 3 · (M + 1) + 1 clock
cycles. The propagation delay in the computation of
Zi is given by (26); however, in this case there are
2 · N · (M +1) nets with that equation. The critical path

is determined by one of the M + 1 nets which drives
the A/S signal in the X and Y data-path. Each of those
nets has a fan-out of 6N (40).

Tp = TCKO + t6N f,M+1
net + TICK (40)

In case of a RM DCORDIC with M = 16 bits preci-
sion the occupied area is 2883 CLBs. Its latency corre-
sponds to 52 clock cycles. It achieves a throughput of
11 MHz in a device with speed degree of 1 and a 91%
of area utilization. This is due to one of the 17 nets with
a fan-out of 132.

The high fan-out that causes the throughput decre-
ment can be avoided if the X and Y are computed with
MSDF. Nevertheless if this is realized the operator
2−i can no longer be implemented using hard-wired
shifters, but with barrel shifters which require larger
area.

In VM DCORDIC the iteration variable is named Ŷ i

with |Ŷ i | = |Yi |. The direction of the micro-rotations
is achieved by computing Yi as indicated in (41).

|Ŷ i+1| = ‖Ŷ i | − 2−i · X̂ i |
X̂ i+1 = X̂ i + 2−i · |Ŷ i |

σi = sign(Yi+1) = sign(Yi ) · sign(Ŷ i+1) (41)

To compute the Yi variable an MSDF absolute value
redundant subtractor (4.2.7) is required. The Xi vari-
able is processed by using redundant adders in MSDF.
These adders require an extra level of pipelining in or-
der to have the same latency as the circuit that computes
the Yi variable. It is also necessary to include one skew
delay in each one of these two data-paths to allow the
computation with MSDF manner. The resulting X data
has to be converted into two’s complement represen-
tation by an On-the-Fly Converter (4.2.8). One signifi-
cant difference compared to all the previous structures
is that the 2−i operations can not be done by hard-wired
shifters but with larger area consuming barrel shifter.

The computation of the angle is performed accord-
ing to (1), and by processing all digits at a time. There-
fore, in each iteration a hybrid adder/subtractor (4.2.2)
is required. Furthermore, each operator needs two ex-
tras stages of pipelining to be synchronized with the
decision path.

The area occupied by this processor corresponds to:

• Skew delays: M · (M − 1)/2 CLBs
• Y data-path: 4 · N · (M + 1) CLBs
• X data-path: 4 · N · (M + 1) CLBs
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• Barrel shifters: (M · (M + 1) · (3 · N − 2 · M − 1))/6
CLBs

• Z data-path: 3 · N · (M + 1) CLBs
• On-the-Fly Converter: (M + 3) · M/2 CLBs

This processor has a latency of 3 · (M +1)+ N clock
cycles. The critical path in the decision circuit is given
by one of the 3 · N · (M + 1) nets with a propagation
delay as indicated in (29). In the Zi computation path
it is determined by the slowest of M + 1 nets with a
fan-out of 2 · (M + 1), as written in (42).

Tp = TCKO + t2(M+1)f,M+1
net + TICK (42)

For a precision of M = 16 bits, the VM DCORDIC
requires 5803 CLBs. Its latency is 73 clock cycles. The
achieved throughput is 18 MHz when it is implemented
in a chip with speed degree of 0.9 and with an occupa-
tion degree of 82%. The critical path is given by one of
the 17 nets with a fan-out of 34.

In a shared RM and VM DCORDIC structure the
resources can not be shared. The only way to share
resources in this structure is by not using MSDF pro-
cessing. However, in that case a carry propagation is
required to obtain the sign. Therefore, there is no ad-
vantage in its utilization.

6.3. Pre-Computed CORDIC (P-CORDIC)

Another method to perform CORDIC algorithm is by
directly computing the direction of the micro-rotation
without iterations. In [25, 26] the correlation between
the direction of the micro-rotation and the input angle
is obtained for the RM. If the directions are coded in
Offset Binary Codec (OBC):

d = a0 · a1a2 · · · aN−1 (43)

with ai ∈ {−1, 1}. If ai takes the value 1 the iteration
i performs a positive micro-rotation and if ai is −1, a
negative one is performed.

The correlation between the input angle Z and the
direction of all micro-rotation is given by (44).

d = 0.5 · Z + sign(Z ) · b + sign(Z ) · εi (44)

Consequently, a RM CORDIC processor is com-
posed by a block that computes (44) and another block,
which executes the micro-rotations of the X and Y
variables. This last one is performed in the same way

bp

sign(θ-bp)ε i εi+1

0.5·θ+sign(θ)·b

b
Z

ADDER

Figure 15. Block diagram of the correlation computation.

that in the previous methods, that is with a redundant
adder/subtractor or a Carry Save one. Therefore, that
block has the same occupation than it has in the RM
DCORDIC and its critical path is given by (40).

The computation of the micro-rotations directions
for an FPGA implementation is presented as a block
diagram in Fig. 15. According to the input Z a break
point (bp) is chosen and subtracted from Z . Depending
on its sign either the discontinuity either εi or εi−1 is
selected and added to the result of Z + b, where b is a
constant.

For a precision of M-bit the occupation of this block
is 6.5 · M CLBs. Furthermore, a skew delay is needed
to distribute the directions of the micro-rotations into
the X and Y computation block. Therefore, other (M +
1) · M/4 CLBs are included. In the case of a high speed
FPGA implementation having all the direction of the
micro-rotations at a time has no advantage.

If only the area of the decision block is considered it
is 1.6 times larger than the conventional CORDIC im-
plementation. This method can be faster and less area
consuming than the other redundant ones but slower
and larger when compared with the conventional arith-
metic.

If area is the most important issue this block can
be implemented without pipelining. In such a case its
occupation is 5·M CLBs (1.7 times lower than the con-
ventional case). Therefore, the X and Y computation
could be performed with conventional arithmetic based
on a non-pipelined structure which requires (M +1)·N
CLBs.

The correlation between the directions and the X and
Y input in VM is obtained in [25]. This method has been
ruled out for FPGA design because its implementation
involves two MSDF multiplications and one MSDF
addition. But as it was already seen the implementation
of MSDF components require more area.
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Table 2. FPGA implementation of CORDIC algorithms.

Number Occupation Fan-out in Number Routing Propagation Maximum Latency
Algorithm of CLBs degree (%) critical path of nets delay (ns) delay (ns) frequency (MHz) (clock cycles) (µs)

CORDIC (RM , VM) 535.5 22 61 17 24.4 40 25 17 0.68

RM Double Rotation (D = 1) 2448 77.2 166 34 96,2 100 10 68 6.8

DCORDIC (RM) 2883 91 132 17 86.2 90.9 11 52 4.7

DCORDIC (VM) 5803 82 34 17 54.2 55.5 18 73 4.05

7. Discussion of the FPGA Implementisation

Conventional arithmetic-based CORDIC, double rota-
tion and DCORDIC algorithm, have been modeled on
VHDL for a precision of 16 bits and have been imple-
mented on Xilinx XC4000 FPGAs. The same die area
has been used to implement Conventional CORDIC,
Double Rotation CORDIC and DCORDIC RM, how-
ever, DCORDIC VM does not fit in the device used
in previous designs. The results of the implementation
are summarized in Table 2. In this table the number of
used CLBs, the occupation degree of the chip, the fan-
out of the critical path to determine its routing delay
and the number of nets that have the maximum number
of fan-outs are shown. The routing delay and the total
propagation delay of the critical path is obtained from
the simulation after placement and routing process and
are also mentioned in the table. Taking into account
the number of clock cycles and the propagation delay
of the critical path, the maximum frequency and the
latency of the different CORDIC implementation can
be obtained.

As it can be seen in Table 2, the routing delay al-
ways dominates the total propagation delay and fol-
lows closely the relationship established in Section 3,
in which was indicated that nets with a higher fan-
out have a longer propagation delay. Nevertheless, the
implementation of the DCORDIC in vectoring mode
shows the smallest number of fan-outs in the critical
path (almost 50% of the conventional implementation)
while the propagation delay is more than twice as large.
This is due to the four times higher degree of occu-
pation which makes if difficult for XILINX to route all
the interconnects of the chip. Our simulations support
the conclusion that the conventional CORDIC archite-
cture achieves the shortest propagation delay and hence
the fastest implementation. The CORDIC architectures
based on redundant arithmetic require at least five times
the amount of CLB resulting in a denser FPGA which
makes the routing more difficult. The simulation results

also support the conclusion that for implementations
with the same degree of occupation the FPGA with the
larger number of nets of a higher fan-out results in a
longer propagation delay (see row 2–4 in Table 2).

Generally, the routing delay cannot be determined
until an architecture is placed and routed. Simulation
can be performed to obtain the critical path of the de-
sign. The propagation delay of the critical path is highly
dependent on the placement of the cells. The process of
synthesis, placement and routing normally takes quite
a long time. Hence, an easier decision criteria can be
used by taking the number of fan-outs, the number of
nets with this fan-out and the numbers of CLBs into
consideration. With this information, a quicker deci-
sion can be made which implementation will result in
the most efficient FPGA implementation.

8. Performance Enhancement
of FPGA-Based CORDIC

From the data in previous sections it can be said that
the fastest FPGA-based CORDIC can be achieved by
using conventional arithmetic. All the FPGA-based re-
dundant arithmetic CORDIC processors require at least
5 times larger area and are slower because of mainly
the very high fan-out of the A/S signals. Therefore,
to enhance the throughput of FPGA-based CORDIC
more efforts need to directed towards improving the
performance of the conventional arithmetic structure.

To enhance performance in conventional CORDIC
several strategies can be considered: to reduce the fan-
out of A/S wires, to reduce the carry propagation of the
adder/subtractor by mean of pipelining and optimizing
for the application.

8.1. Fan-Out Reduction

One way to reduce the fan-out in conventional
CORDIC implementation is to increase the length of
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the adder/subtractors, that process Z in RM or Y in VM,
by two bits. Then, the extra two output-bits will contain
an extension of the sign bit. Each one of these three sign
bits can be used to drive a different adder/subtractor
of the previous stage. Therefore, the fan-out of each
A/S net is divided by three with respect to the case in
Section 5.

The area costs of this method in an M-bit preci-
sion CORDIC is 3 · (M + 1)/2 extra CLBs. A RM
conventional CORDIC with 16-bits of precision imple-
mented in a FPGA with speed degree of 1 can achieve a
throughput of 29 MHz with an occupation of 552 CLBs.

8.2. Pipelining

In each adder/subtractor the carry propagation can be
decreased by pipelining. In this case the pipelining does
not only reduce the carry propagation but also the fan-
out of the A/S signals (twice A/S nets have half the fan-
out). However, the drawback of the pipelining stages is
an increase in area by a factor of 2.5.

A pipelined conventional RM CORDIC imple-
mented in an FPGA with speed degree of 1 with a 50%
of area utilization achieves a frequency of 55 MHz with
an area of 1340 CLBs.

8.3. Tailoring for the Application

The reconfiguration feature of FPGAs allows adapting
the processor structure to the requirement of the target
application.

If only RM or VM is required a method to reduce
the area is achieved by taking profit of some CORDIC
algorithm characteristics. For example it is known that
all variables converge to specific values and hence, in
each iteration the word-length of the data-paths can be
reduced (triangle shape) [30, 31].

Another example is found if a fixed angle RM
CORDIC is required. The algorithm can be directly
mapped without using adder/subtractor but using an
adder or a subtractor in each stage. In such a case not
only the area is reduced but the throughput is also in-
creased (the high fan-out of the adder/subtractors is
avoided).

9. Conclusions

In this paper FPGA implementations of the fastest full
custom methods for the CORDIC algorithm have been

evaluated. Since all these methods are based on re-
dundant arithmetic, the FPGA implementation of the
required operators to perform the different CORDIC
methods has been studied. It can be concluded that the
redundant arithmetic operators have a 4 to 5 times larger
occupation than the conventional architecture. Further-
more, in FPGA implementation the speed advantages
of the full custom design has been lost due to the longer
routing delays caused by the increase of the fan-out and
the number of nets. Therefore, the redundant arithmetic
based CORDIC methods are not suitable for FPGA im-
plementation. All these methods have at least a 4 times
larger occupation and obtain a lower throughput com-
pared to the conventional one. As a consequence, the
fastest and most area-efficient FPGA implementation
of CORDIC is achieved by using the conventional arith-
metic. Additionally, if a higher throughput is required,
it can be achieved either by pipelining the previous
structure or limiting the fan-out by extending the sign
bit to use different wires to drive the A/S signal in each
adder/subtractor. These conclusions have been proof
for circular CORDIC implementations, however, they
can be extended to linear and hyperbolic CORDICs.
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