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Integrating Machine Learning and Workflow Management to Support Acquisition

and Adaptation of Workflow Models!

Abstract

Current workflow management systems (WFMS) offer littlefaidthe acquisition of workflow mod-
els and their adaptation to changing requirements. To stimese activities we propose to apply tech-
nigues from machine learning, which enable an inductive@ggh to workflow acquisition and adapta-
tion. We present a machine learning component that combiveedifferent machine learning algorithms:
the first one induces the structure of sequential workflovestha second one is responsible for the induc-
tion of transition conditions. The second task can be sobyedpplying standard decision rule induction
algorithms. In this contribution we focus mainly on the altfons for the first task. For this purpose we
describe two algorithms based on the induction of hidderkovamodels. The first algorithm is a bottom-
up, specific-to-general algorithm and the other one appliep-down, general-to-specific strategy. Both
algorithms have been implemented in a research prototyp&x scenarios we evaluate and compare the
two algorithms experimentally. The induced workflow moded® be imported by the business process

management system ADONIS

Keywords: Workflow management systems, artificial intelligence, machineiifegr



Introduction

Workflow Management Systems

Efficient business processes are an important success factor in today’s ¢vepedirkets. Information
technology is playing a key role as an enabling technology in achieviagfficiency. Business process
management systems (see e.g. Karagiannis et al. (1996)) are increasingly netét, analyze, simulate,
enact and manage business processes. One subclass of business process mayagemeate workflow
management systems (WFMS). WMFS concentrate on supporting enactment aagkmant of business
processes. For workflow enactment a formal model of the business processespreted by a work-
flow engine. The WFMS interacts with the participants of the businessegs by informing them about
the tasks that need to be done and by providing them with the relevantdmts or information. Most
WFMS also include interfaces for monitoring the state of workflovidnses, which are representations of
concrete business cases, and they offer audit components, that trace all atgfesobf the executed work-
flow instances. WFMS usually provide graphical modeling editors. Mdifgrdnt formalisms have been
proposed for workflow modeling. Within this contribution we agng the ADONIS modeling language
BOC (1999). According to the ADONIS modeling language a workflowdeids a directed graph. There
are seven different node types representing activities, subprocesses as ¥wedl different control flow
constructs. A short explanation of these constructs and their grapbmasentation is given in figure 1.
The directed edges of the workflow model can be labeled either with simpledooonditions over a set of
workflow variables or with probabilities. This description of the @NIS modeling language concentrates
on the behavioral perspective (see Curtis et al. (1992)) on a workflodeimas our learning approach
considers only this aspect. A complete description should for examgdecalnsider which participants
are responsible for performing an activity (organizational perspectivédrich data or documents (in-

formational perspective) are required. Additionally the syntactical (&gch workflow model must have



one unique starting node.”) and semantical aspects (e.g. “Which workfléanoes can be generated by
the workflow model?”) of the modeling language should be explainedrefés to BOC (1999) for these
aspects. For this contribution the above definition should be srfticiAn example for a workflow model

is given in figure 2.

Graphical Node Explanation
Representation Type
Starting node of
START a workflow model.
A subprocess node is used for
SUBPROCESS  pjigrarchical decomposition of workflows.
An activity node.
ACTIVITY
An m of n split. (m of n
Q SPLIT successors may be activated)
Join nodes synchronize the concurrent paths
D JOIN of their corresponding split nodes
A decision node. (Exactly of n
Q DECISION successors may be activated)
END End node of
a workflow model.

Figure 1: ADONIS node types

Acquisition of Workflow Models

In many state of the art workflow projects the following approach is takena first step the business
process as it is performed is acquired and modeled. This initial modelihgnie at a rather high level of
abstraction, which Karagiannis et al. (1996) call a business graph. Aftgstamipation step the resulting

optimized process model is implemented as a workflow. The implementatiolves further refinement of
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Figure 2: Part of a simple ADONIS workflow model

the process model and thus further acquisition of workflow knowledbe.ré&fined process model is called
a workflow graph in Karagiannis et al. (1996).

The acquisition of workflow knowledge is typically done by intewvgeor questionnaires. The people
responsible for process acquisition and optimization we will call peegineers in the following. One of
the most time consuming activities for the process engineers witbiddhlcribed approach is the acquisition
of the workflow knowledge (compare e.g. Herbst and Bumiller (1998¢gditsch (1998), Leymann and
Roller (1999)). In several workflow-projects we have made the e&pee, that the relative times spent for
the different tasks are distributed approximately as shown in table 1.

The reason, why workflow acquisition is so time consuming, is thatdlguired workflow knowledge

is usually highly distributed within the organization. It is ®drin the heads of the human participants, who



typical tasks within | relative

a workflow project | time spent
acquisition of 60%
workflow knowledge
optimization 20%
implementation 20%

as workflow

Table 1: Relative times spent within selected workflow projects at Daimgslr

are actively involved in the execution of the business process. Partisipave in-depth knowledge about
the activities (functional perspective) they are involved in. They ktiosvrequired data, documents and
applications (informational perspective) and they know who is respin@rganizational perspective). It
is thus not to difficult to obtain a detailed picture of each activity withiworkflow model using traditional
means of knowledge acquisition. On the other hand participants often Ihée knowledge about the
control flow (behavioral perspective) of the process they participateompare e.g. Leymann and Roller
(1999)). Furthermore the participants usually belong to differegawizational units, they use different
words to describe the same semantic entities and they often have cogfiitérests. This makes control
flow acquisition an extremely difficult task.

As the control flow of a workflow model can be compared to a program, itdatidn by the participants
- who are generally not programmers - is also difficult. Although visaptesentations and simulations of
the workflow are employed, many deficiencies of the workflow model are disedwafter the WFMS has
been taken into operation. These deficiencies include e.g. modeling errord as médsing requirements.
Modeling errors are easily overseen during the validation of a workflamdehif the participants do not
have a deep understanding of the semantics of the modeling language. pEogée often develop their
own understanding and are disappointed when the WFMS behaves diffexerhey have expected (com-
pare Abbott and Sarin (1994)). On the other hand additional requirenaeatoften discovered once the

WEFMS is productive. As workflow environments are open systems (contpangt (1986)) there may be



situations, that have not been anticipated by the model. Some of theatosis could be rare or unim-
portant exceptions, that should be handled by the adaptation mechariitmsVBFMS (see below), but
for other more frequent or important situations it might make seadendle them within the workflow
model. Thus trying to meet all requirements of the human participantsamhexpected to work with the
workflow every day, leads to a highly iterative and time consuming fl@skacquisition and validation.
Therefore we decided to investigate the use of machine learning technifaeallow a semi-automatic

control flow acquisition.

Adaptation of Workflow Models

Many of the current WFMS products enforce the execution of a businesegs exactly according to the
defined workflow model. Although this may be desirable for some dosna&ixperience has shown, that
many other domains require a much higher degree of flexibility to rethechtiman aspects of cooperative
work. It is commonly accepted (see e.g. Ellis et al. (1995), Reichert and Dad#8i)(or Pareschi et al.
(1996)) that it is not possible to anticipate all situations that megup throughout the execution of a
workflow instance in advance at the time the workflow model is defined.xdepional situations it is
necessary, that the workflow participants are able to take partial congotloe workflow and deviate from
the modeled control flow. WFMS offering these possibilities are oftted adaptive WFMS. Examples
for such adaptive WFMS are commercial products such as e.g. InConcert (829i8)) and Teamware
Flow (Teamware (1997)) and research prototypes such as ARgP(Reichert and Dadam (1997)) and
DYNAMITE (Heimann et al. (1996)), addressing more advanced features ofieelspFMS. There is one
serious drawback of these approaches. Changes at the workflow instancesiealbl have no effects to the
model level. If over a longer period of time a certain kind of deviatimmf the workflow model becomes
common practice rather than rare exception it seems reasonable, to adapt alsokift@wmodel. In a

way workflow management has to do with predicting the tasks that need tonlee tfdhe probability of



a wrong prediction, requiring correction by the participants, is tighhithe WFMS will be an impediment
to the participants rather than a support. In our opinion an adaptivisl8/ghould supply mechanisms
supporting the improvement of the workflow models based on feedbacktfre workflow instance level.

We are convinced that such feedback mechanisms could be based on machine learniggdech

Integrating WFMS and Machine Learning

In the following we present a machine learning component, which wegseo integrate into a WFMS.
The machine learning component supports acquisition and adaptatiorrkffomomodels. It generalizes
a number of workflow instances described in a workflow trace to a singt&flsar model that is able to

generate all observed instances. An extract of the contents of a workflovitiet@®uld be generated from

the workflow model of figure 2 is shown in table 2.

Time Event Workflow | Workflow Activity Activity

and Date Instance Instance

8:12 11/25| StartWF | sellGoods| sellGoods.34

8:14 11/25| BeginAct | sellGoods| sellGoods.34| receive order receive order.6
8:21 11/25| EndAct sellGoods| sellGoods.34| receive order receive order.6

8:32 11/25| BeginAct | sellGoods| sellGoods.34| check availability| check availability.7
8:32 11/25| StartWF | sellGoods| sellGoods.35

8:34 11/25| BeginAct | sellGoods| sellGoods.35| receive order receive order.8
8:34 11/25| EndAct sellGoods| sellGoods.34| check availability| check availability.7
8:50 11/25| BeginAct | sellGoods| sellGoods.34| shipping shipping.9

8:51 11/25| EndAct sellGoods| sellGoods.35| receive order receive order.8
8:55 11/25| BeginAct | sellGoods| sellGoods.34| billing billing.10

9:03 11/25| EndAct sellGoods| sellGoods.34| billing billing.10

9:10 11/25| EndAct sellGoods| sellGoods.34| shipping shipping.9

7:5512/12| BeginAct | sellGoods| sellGoods.34| check payment | check payment.11
8:00 12/12| EndAct sellGoods| sellGoods.34| check payment | check payment.11

Table 2: A workflow trace

From such a workflow trace, individual workflow instances can be extracteatkfidv instances can
be described as a directed acyclic graph. The nodes represent the activitigsrihakecuted. The edges

of the directed graph describe a partial order, indicating the temporal @fdexecution. When talking



about workflow instances that are generated by sequential workflow modedsigies of the workflow
instance graph define a linear order. A workflow trace often contains miomriation related to a workflow
instance. These are e.g. the participant who performed an activity, the dataiosed, or the values of the
workflow variables. But for our needs within this paper, the reduced diefindf a workflow instance is
sufficient. Figure 3 shows the workflow instance “sellGoods.34”,¢batd be extracted from the workflow

trace of table 2.

/ ;hipping\
receive _,_ | check check
order|  ayailability payment
N billing /

Figure 3: A workflow instance

There are some adaptive WFMS that realize deviations at runtime by ajdive users to change a
workflow model that is only valid for the instance under consideratimn.these WFMS it would be possi-
ble to use these instance specific workflow models as input for thetiodi as these may be enriched with
more information than workflow instances (like e.g. a transition @@mdspecifying when a certain change
is valid). We decided to keep the requirements of the machine learning cemipas low as possible, to
make our approach more widely applicable. Relying on workflow instancespas afso simplifies the
design of user interfaces, which are critical for the acceptance of the adaptiMSViBlF the participants
(compare e.g. Abbott and Sarin (1994)). Such an interface could for egamelyl on the metaphor of
workflow folders, that are passed from participant to participant.

The integration of the machine learning component into a WFMS enablesw esnductive approach to

the creation of a workflow application. We believe that this will sfipaintly reduce the time needed to setup



a workflow application and at the same time it should lead to higher guatiidels, as requirements are
collected, while the system is productive. By helping to transform famitvledge into explicit knowledge

this approach contributes to supporting organizational learning (sgesfeand Schoen (1978)). It allows to
handle exceptions at the workflow instance level and yet it is able to tnase manually enacted workflows

and to adapt the corresponding workflow models.

Inductive Workflow Acquisition and Adaptation

We propose to apply an inductive approach to workflow management. Thisaagbpis divided into three

separate phases, which are arranged in a cycle. These three phases and the stawv@ain figure 4.
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Figure 4: Inductive workflow acquisition and adaptation

Instead of waiting until a complete and correct workflow model is availatdepropose to model only

the elementary activities as the basic building blocks of an initial warkfhodel. An adaptive WFMS



allowing two modes of operation, a passive and an active mode, is then iatgigdaken into operation.
In the first phase - the workflow execution phase - this adaptive WRMSarted in passive mode, which
means that the workflow engine is switched off and the routing of tasilerie manually. It allows users
to start and complete process instances, create and execute tasks, routedtieisarticipants manually.
At this point the WFMS only serves as a provider for traces of executekfflsarinstances, stored in trace
files.

In the second phase - the inductive learning phase - the extracted woik#itances are interpreted by
the machine learning component, which generalizes observed instances tdlawarkdel. Because the
machine learning component has no knowledge about the goals of actitbessses and the organization,
it can not reason about, what is a good and what is a bad workflow modelnd@tesd workflow model is
thus a description of how the work was actually performed and not howdinke should be done regarding
the goals of the organization. As a common practice is not necessarily praette, the induced workflow
model should be analyzed and possibly optimized by experts.

Therefore we have included a third phase - the workflow analysis almiaption phase. In this phase
the induced workflow model may be used as a basis for a decision whether ttheriausiness process with
the workflow engine. If the induced workflow model contains littleisture, automatic enaction makes no
sense. In this case it might be better to keep the manual enactment. Workfiavizagion is performed
as in the standard approach described above. As requirements are collecteth@WENS is productive
and providing that enough workflow instances have been collected, we ekpeguality of the induced
workflow model to be higher than that of a workflow model acquired offlirsing only traditional means
of workflow acquisition such as interviews and questionnaires. Aalthliy the induced workflow model
may be enriched with quantitative parameters such as interarrival or exetiutiesm as well as transition
probabilities. This is an invaluable input for simulation impmyithe validity of the simulation model

(compare e.g. Herbst et al. (1997)).



If the decision is taken, to enact the business process using the woekflpine, we are back in the first
phase. The WFMS is activated in the active mode, to enact the business procedimgdodhe optimized
workflow model. In exceptional situations the actors may switch backd@#ssive mode thereby taking
control over the workflow as in the acquisition phase. All activities emedd and passed to the machine
learning component, which induces a workflow model for the second iterafidis induced workflow
model serves as input for the next optimization cycle. It shows theggengineers how well the designed
workflow model was able to guide the execution of real business casesis lwdl the participants are

constantly involved in the design of the workflow model and contisymocess improvement is supported.

Induction of Workflow Models

To provide the means enabling the described inductive approach to werkfimagement, we need to solve

the following induction task:
¢ given a multiset of workflow instances belonging to the same workfjype t

¢ find a good approximatiod/ of the workflow model}M,, that determined the generation of the

observed workflow instances

Of course the workflow model/, need not exist. Within the above definition it is simply a modeling
hypothesis, could e.g. be a semi-formal model of the business process describedioesphandbook
or it may just exist in the heads of the participants involved in thekflmw. We have decomposed this

induction task into two subtasks:

¢ Induction of structure - within this subtask the nodes, the edgelshatransition probabilities of the

workflow modelM are induced.



¢ Induction of conditions - where possible, local conditions for titaoss following a split or a decision

node are induced.

In the following sections we will describe algorithms for inducthe structure of sequential workflow

models in detail and give a short outline on the induction of cooiali

Inducing the Structure of Sequential Workflow Models

Within this contribution we restrict ourselves to the inductiothaf structure of sequential workflow models
(models without split and join constructs). Although this is chearlimitation, because many real world
applications require concurrent workflow models, it provided us witke#l established theoretical basis
for our work and allowed us to evaluate the basic idea of our approachebefitting effort in designing
advanced induction algorithms, that are able to deal with concurrency, whate of the main goals of

our current work (see Herbst and Karagiannis (1999)).

The Multiple Node Problem

Inducing the structure of a sequential workflow becomes trivial if osemes, that for each activity there
exists one unique activity node within the workflow model. Irstbase one could create a unique activity
node for each distinct activity name observed in the samples. Whenever dtyagtipreceds an activity
a; a transition froma; to a; is added to the model. The transition probabilities can be estimated usin
empirical counts. Finally decision nodes are added whenever a certain acéigitydre than one possible
SUCCeSsSOr.

To assure that this approach is applicable, one could of course disindifierent occurrences of a
certain activity (e.g. “receive order”) within a workflow model by unique ®@nte.g. “receive order-1”
and “receive order-2"). But being able to find unique names for each occurrenceofidty requires that

one knows about how many occurrences there are within the workflow matied.would mean, that to



some extent the structure of the workflow needs to be known in advaimuee Be would like to provide
mechanisms helping to find the structure of a workflow, this asswmgsi not realistic. So we need to

assume that within one workflow model there may be multiple activyas assigned to the same activity.

Reduction to Regular Grammar Inference

The structure of sequential workflow models can be - independently ahtiteling language used - rep-
resented by finite state automatons (FSA) and sequential workflow insteanté® represented by strings
over a finite alphabet. Each symbol in this alphabet corresponds to anyaofittie workflow instance.
Thus the problem of sequential workflow structure induction can becestito the problem of inducing
FSAs from a positive sample of strings which is a regular gramnfarémce problem. Regular grammar
inference has already been addressed in the grammatical inference community. (Beesklgand Honavar
(1999) for an overview). It has been shown by Gold (see Gold (196&))the regular grammar inference
problem is hard in the sense that regular languages cannot be correctifiedeinbm positive examples
alone. The task of identifying the minimum state deterministicdialitomaton, that is consistent with an
arbitrary set of positive and negative examples has been shown to be Ni#ete@old (1978). Despite
these negative theoretical results there exist a number of heuriktioss to different regular grammar in-
ference problems, which have been successfully applied in practical applgstion as speech recognition
or the discovery of patterns in biosequences.

Examples for such heuristic solutions are ALERGIA Carrasco and OntB24) and Bayesian Model
Merging Stolcke and Omohundro (1994). Both operate on a postingk of strings. We have selected
Bayesian Model Merging, which is based on hidden markov models (HMMs) apltes@m specific-to-
general approach, as a basis for our work. After a short introductiortHMMs, we present two different
workflow induction algorithms. The first one is based on Bayesian Mbtlrging, with some minor

modifications, and the second one applies a general-to-specific approach



Hidden Markov Models

A HMM (for a good introduction see Rabiner (1989)) can be described bbsasila finite state au-
tomaton whose transitions have transition probabilities and w/istetes are associated with a finite set
of output symbols having a certain output probability. FormallM can be defined as a tuphe =
(Q,V, A, B,7) where@ = {q1,¢2,...,qn} is a finite set of stated] = {vy,vs,...,vpn} is a finite set

of output symbolsA = (a;;) = P[Si+1 =¢; | St = ¢;) with 1 < 4,j < N are transition probabilities,
B = (B;(k)) = P [output ofv;, attimet | S; = ¢;] with1 < i < N andl < k < M are output probabili-
tiesm = {m;},m = P[S; = ¢;] with 1 < i < N are the start probabilities arf} denotes the statkis in

at timet. A HMM can be visualized as a directed graph, whose nodes describe stategudrsyatbols and
whose edges represent state or output symbol transitions. The betiasgpects of sequential workflow
models may be mapped to a HMM, whose output symbols represent actantieshose state transitions
describe the control flow. For this purpose we need slightly lesesemtative power than the HMM offers.
This is because in a workflow model the relationship between a node and atyastideterministic. So

in the corresponding HMM each state only has one output symbol withugoubprobability of 1. But to
take into account what we called the multiple node problem the same wactigiy occur more than once
within a workflow model. This means that the same output symbol maydmkiced by several states of the
corresponding HMM and one is thus not able to uniquely identify thghat generated this observed out-
put symbol. Therefore the hidden nature of the HMM remains. Somieeodther approaches to workflow
induction like Agrawal et al. (1998) or Bocionek and Mitchell (1993)age this problem.

The problem we want to solve, is to generate a workflow model from waskfiaces. This problem
corresponds to the problem of finding an appropriate HMM from a nurobebserved output symbol
sequences. For this problem there is a well known algorithm called the Beeloch expectation max-
imization (see for example Rabiner (1989)) also known as the forwacHvbard algorithm. Given one

sequence of output symbals= eje; ... with e; € V and an initial HMMXA, = (Q,V, Ao, Bo, 7o) the



Baum-Welch algorithm iteratively re-estimates the parameterd3; and=; until some limiting point is
reached. This basic algorithm can be easily extended to support mukiplesces of observations. The
formulas for the re-estimation of the parameters are given for examplabimer (1989). It was proven that
this procedure converges to a local maximum of the likelihood funclidel\]. But Baum-Welch is not
very well suited for the problem of finding an appropriate workflow rldeecause it only adapts parame-
ters of a given HMM, with a given number of states. In our case the steit@xactly what we would like

to discover.

Model Merging

Stolcke and Omohundro (1994) describe an algorithm which inducesrtiaise as well as the transition
and output probabilities of a HMM from observations. To achieve this algorithm searches the space of
HMMSs, beginning with a most specific HMM, which directly encodes thsartations. The most specific
HMM is iteratively generalized by merging states. The algorithm uses adtieunased on the bayesian
posterior probabilityP [\ | E] to determine which states to merge and when to stop merging states. The
input to this algorithmE = {ej1e12...€11,,...,en1€n2...€y, } IS @ multiset of sequences of output
symbols.

The overall algorithm can be characterized as a heuristic hill climbing seaectire/space of HMM's,
starting with a most specific HMM, which is consistent with the obatons. The most specific HMM
originally proposed by Stolcke and Omohundro (1994) contains exacd separate path for each observed
sequence of symbols. To decrease the size of the search space, we are emphogsigpecific model
with less states, called a prefix HMM (compare Carrasco and Oncina (19949 prEfix HMM is obtained
from the most specific model proposed by Stolcke and Omohundro 9@mapping all states sharing a
common prefix to one single state. Thus a prefix HMM has the propedtyettery common prefix of any

two observation sequences is generated by the same unique generating lpatirefik HMM. Assume we



observe a set of observatiohs = {abcac, abce, abcabee, abcabeac} generated from the unknown HMM
shown in figure 5. The prefix HMM foE is the HMM M, shown on the top left of figure 7. We have

omitted the transition probabilities for those transitions hgwva probability of 1.

3
ONONONOHOROK®
> > > > > >
as a1 a2 a3 aa a5 ae

A0 ]
5

Figure 5: The unknown HMM that generatéd

To generalize a HMM, states are iteratively merged using a merge operatogvas ishfigure 6. For
our purpose we have modified the merge operator originally definetblnké and Omohundro (1994) to
allow only the merging of states having the same output symbol. gtgvo states;; andg; with the

same output symbol has the following effects on the HMM:
e ¢; andg; are removed and a new states inserted.
¢ all transitions to and from; andg; are redirected tq;.

¢ the transition probabilities are adjusted to their maximum likelthestimates. This is calculated as

@ij = —=~>— Wherec;; are the number of transitions frogn to ¢; needed when generatitg

ZN
¢
k=1 ik

i >» @ <0i
> @ <0j

MergeM’, E, q;, q;)

I; U Ij>@<:0i UO]'
a;

Figure 6: The merge operator



In the last step of the merge operator the transition probabilitiesdjiested. This requires that all
observations iry are parsed. Using two approximations this step can be simplified. Onegompprox-
imation is to consider only a most likely path - called a viterbi path -eathan all possible paths that may
generate a certain sequence. The second approximation deals with the way titwsgaths are deter-
mined. Although there is an efficient algorithm - known as the viterbo@tigm - for the determination of
a viterbi path to a given sequence, applying this algorithm requires thabsgrvations in£ are parsed.
This step can be approximated by determining viterbi paths only for th& specific model and assuming
that a merge operator does not change the viterbi paths. This allowsmeintain frequency counters at
each transition. These counters are added whenever two transitions are nidngepproximation seems
to work well in practice as shown in Stolcke and Omohundro (1994) aaltbitvs an incremental induction
because the approximated merge operator is independént of

For ourimplementation we decided to use a different heuristic tharritjieal bayesian model merging.
Stolcke and Omohundru report, that the choice of appropriate priorparameters, does not greatly affect
the course of the search except for deciding when to stop. Their evalwsitaws that the likelihood
P [E | A\] was the determining factor in guiding the search. This was the reasors ftoremploy a pure
log-likelihood heuristic for the search. This means that the parameteesrherge operation are selected
in such a way, that the decrease of the log-likelihood is minimized. Mepggations maintaining the
log-likelihood of a model are thus preferred over merge operationsdhagrithe log-likelihood. The log-

Cij
ij

likelihood per sample is calculated a$E, \) = In( il\;gl ]_[jN:] a;7). As a stopping criterion for the
hill-climbing search we have defined a parametenFact or , that determines the generalization factor,
which is the ratio between the log-likelihood of the model under camnaiibn and the most specific model.
As soon as this ratio is larger thgenFact or , the search terminates returning the current model.

To improve the performance of the merging approach, we allow incremearataiihg. The number

of examples, that are gathered before merging starts is determined beitlye St art parameter. This



parameter allows us to move anywhere in the spectrum from a pure incrernmeatalire non-incremental
learning algorithm. Settingrer geSt ar t =1 has the effect that each observed example is immediately
merged into the model. A pure non-incremental merging is realized by gettingeSt ar t to the total
number of examples observed. The degree of generalization in the firsingn@tgase, which is started
when a sufficient number of examples has been observed, is determined by ageceradization factor.

This is given by thepr eGenFact or parameter. So the output of a first merging phase with a small
generalization factom(r eGenFact or ) can be merged as soon as all examples have been observed in a

second phase with a higher generalization faai@nfFact or ).

The Model Merging Algorithm  Let \y be the empty HMM, lef := 0, let E := {}

1. read a sef; of | E; |= mer geSt art observations and insert them intg (considering common
prefixes) and leE := E U E;

2. letA;11 :=mergef;, E, preGenFact or),leti :==i+1

3. if there are unread observations repeat from step 1

4. let);11 = mergef;, E, genFact or)

5. return);,; as the induced HMM

Procedure merg@( E, gener al i zati onFact or)

1. determine the log-likelihookl(E, X), letj := 0 and leth; := A

2. determine the set of possible merdégor A;

3. for each mergé € K determine the merged mode();) and its log-likelihoodh(E, k(A;))
4. letk* be a merge that maximizés £, k(A;)) and leth; 1 := k*(\;)

5. if % < generalizationFact or thenletj := j + 1 and repeat from step 2

6. return);



Example Figure 7 shows the different HMMs on the search path when applyinghgpulementation of
model merging (with the parametarer geSt ar t =20, pr eGenFact or =0.5 andgenFact or =1.2) to
E. Figure 8 shows the decrease of the log-likelihood for these HMM& rierge operations are selected
in such a way, that the decrease of the log-likelihood is minimized. &tgrred HMM M identifies the

structure of the unknown HMM correctly.
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Figure 7: Model merging applied t&



: T
-4
-5

&
Z

Figure 8: Log-Likelihood of the models

Model Splitting

When applying the merging approach to repetitive business processes wmtaned a problem resulting
from the direction of the search strategy. In the merging approach arte stith the most specific model,
which has a high number of states being associated with the same symhbé workflow models we
have acquired manually for workflow projects over the last few years we bhgerved at most three or
four nodes associated with the same activity within one workflow motfelthe space of HMM’s, the
distance from the most specific model to a target model having only atfes associated with the same
symbol is usually very large. We measure distance in terms of the nurfilbeerge operations one has
to apply to transform the most specific model to the target model. Wedfthat due to the hill-climbing
search the chance of taking a suboptimal merge decision is pretty highe3xecially true when loops are
present in the target model. For this reason we decided to try the reesnsdh strategy, which means that
the induction algorithm performs specialization steps starting viighnhost general HMM. In our sense -
considering the restriction that each state is associated with exactly ¢m& symbol - the most general

HMM is the HMM that



e contains exactly one state for each observed output symbol and

e incorporates exactly the transitions observed in the examples.

The transition probabilities are assigned to their maximum likelihestimates as in the merging approach.
Consider again the examplds = {abcac, abce, abcabee, abeabeac}. The corresponding most general
HMM covering these samples is the HMM;' shown at the top of figure 10.

As it can be easily verified for the given examples the most general H¥{Mcovers all observations.
But in contrast to the most specific HMM it also covers many unseen sequenaaples for sequences
which are covered but not contained in the set of observationscar@cac, abcceccce andabe. In order
to receive a more appropriate HMM we must specialize. Specialization is dimg & split operator, that
splits one state into two states with different incoming transgtias shown in figure 9. This introduces two
states producing the same output symbol in two different contepltti®g may be applied to any state
with more than one incoming transition. The split operator requrest of parameters. Létbe the set of
statesy;, j # i with outgoing transitions tg; and let{I, I, } be a partition off. Let O be the set of states
g;,J # ¢ which have an incoming transition frogy. Leto € {1,2,3,4}. Split(\, E, g;, I, I>, 0) has the

following effects on\

stateg; and all it's incoming and outgoing transitions are removed and new sjatasd ¢} are

inserted

¢} obtains incoming transitions from all statesinandg;’ receives incoming transitions from all

states inl,

bothg; andg;' receive outgoing edges to all stateg’in

if ¢; originally had a transition to itself then

— if o = 1then bothy] andg;' receive transitions to themselves

— if o = 2theng] receives a transition to itself ad obtains a transition tg;



— if o = 3 theng)' receives a transition to itself argl obtains a transition tg;’

— if o = 4 then bothy} andg}’ receive a transition to the other

e the transition probabilities are adjusted to their maximum likelthestimates

i »
r>@<o < ) 091 o=2 :

qi q;1
oL IONOL

I=01LUIs2 AN I1NIy=10 .
01CO A 0,CO ‘“” q"”
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¢ transitions having a probability of zero are removed

Split(M’, E, qi, I, I2, o) 4 @
11/
20

Figure 9: The split operator

The specialization actually occurs in the last step when unnecessary tranaitioremoved. A HMM
resulting from a split operation has some important propertieshdfHMM covers all the observations
before the split it covers all observations after the split. Dependmthe choice of the parameters the
HMM is specialized, which means that some sequences (not in the set of ols®syétcovered before
the split are no longer covered. If the path that generates an arbitraryt@etpuence is unique before the
split there will be a unique path generating the same output sequercéhaftsplit. This last property is
important for the computation of the likelihood. Instead of theegdog-likelihood based search presented
in (Herbst and Karagiannis (1998)), we have implemented a variant gptiteéng algorithm, which uses a

minimum improvement parametet nl npr ove as a stopping criterion and the log-likelihood per sample



h(E.\)

wT as the heuristic to guide the search. The split operator resultingeimighest value of% is

chosen for specialization. The parameten| npr ove defines how much a split operator must improve
the log-likelihood per sample in order to be accepted. If in a given siuab split operation may improve
the log-likelihood per sample of the current model by at leastl npr ove, the search terminates and
the current model is returned as the result. As the log-likelihood miodel depends very much on the
number of examples, we are using the log-likelihood per sample astivéstic. This does not make any
difference for the search, but it makes thienl npr ove parameter less sensitive to changes in the number

of examples read. The overall algorithm can be outlined as follows.

The Model Splitting Algorithm  Let Ay be the most general HMM for the s&t leti = 0

1. read the complete set of observatidhs

2. determine the set of possible splitsfor A;

3. foreach split € K determine the resulting mode();) and its log-likelihood persampl@%
4. letk* be a split maximizindw and leth; 11 = k*(\;)

5. if h(ﬁ’gf‘) - h(@z‘*“) > ni nl npr ove then leti := i + 1 and repeat from step 2 else terminate and

return)\; as the induced HMM

At a first glance model splitting has some disadvantages compared to thmgwapproach. First of all
the number of possible splits for each state is exponential in thdauaf incoming edges. Another draw-
back is the fact that the approximation concerning the detection of vitathsgexplained in the previous
section is not applicable here. So incremental learning is not possibleasBuir experiences in applying

both algorithms to workflow traces show, the splitting approach adsonmany advantages (see below).

Example The result of applying model splitting (with parametgrnl npr ove=0.01) toF is shown in

figure 10. The log-likelihood of the HMMs visited during the seaiskhown in figure 8. Model splitting



stops after just two search steps and returns the HM¥| which describes the structure of the unknown

model correctly. Any further split operations do not increase theiloglthood significantly.
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Figure 10: Model splitting applied t&

Induction of Conditions

The first induction phase returns a compact model for the structureeoblbserved workflow instances.
In this structure all non-deterministic transitions are describegrofpabilities. These probabilistic pro-
cess models may be used for simulation (compare e.g. Herbst et al. (189%))s case the distribution
described by the transition probabilities would be modeled by randamemtors. This of course is no ad-
equate model for a WFMS. For the selection of the next transition mostnt WFMS allow the modeler
to state simple boolean conditions based on decision relevant attritfuties workflow instance. These
attributes may be for example the attributes of the documents whichaaseg between the actors of the
activities. Many systems also offer manual decisions. These allow the dettide which path to follow.
This is useful when complex human reasoning processes are necessary fegitliend In case conditions
are applicable, methods from machine learning may help finding these corsdifi method which - where

possible - induces transition conditions from the observed mananHgted workflows is outlined in the



following.

The learning task for this second induction phase is to find rules, statedns of conditions on a given
set of attributes, replacing the transition probabilities. This taskoeasolved efficiently by using standard
decision rule induction algorithms such as for example C4.5 (sed&uih993)). These algorithms, which
have also been successfully applied in many data mining applications vareaiset of examples, each
consisting of the values of a fixed set of attributes and a classificatiomsid@ for example the structure
given on the left side of figure 11. Let's assume we are given valuebrfee attributes customer, price and
review result and we observe two workflow instances. The first one lassition fromg; to ¢> and the
values of the attributes are (Jones, 20, ok) and the second has a traftsitiay; to g3 and the value tuple

(Smith, 300, no). This yields two examples for each transition showable 3.

a a
TN TN
Ao A
2/ - -
0" :> /,,'/;‘evicw result = ok
e /e e /e
4 ‘*’\/% / ql‘*’*\%/)

review result = no

Figure 11: Induction of conditions

Transitiong; — g2

Transitiong: — g3

(Jones, 20, ok, TRUE)
(Smith, 300, no, FALSE)

(Jones, 20, ok, FALSE)
(Smith, 300, no, TRUE)

Table 3: Two sets of examples

Examples like the ones in table 3 can be directly processed by a decisiandutgion algorithm to
produce conditions as the ones shown on the right side of figur€Hi& of course requires a much greater
number of examples than shown here and the quality of the induced @ondgpends on the provided

attributes. If these are not relevant for the decision, either no condiii a useless condition with a low



predictive accuracy will be found.
As the values of the decision relevant attributes are subject to change doei observation sequence,
it is important to remember the values at those points in time a certaisideds taken. A method for

dealing with this problem is outlined in Herbst and Karagiannis (1998)

Implementation and Evaluation

Prototype

To evaluate the described concepts, we have developed a research protatypteBnodel merging and
the model splitting algorithms are included in this prototype. Trftiction of transition conditions has
not yet been implemented. The prototype is able to read either a text fitaicioig sample strings as
well as workflow traces. For the evaluation we are currently using artifietakflow traces produced by
a simulation rather than real world workflow traces produced by a WFMS dllows us to evaluate our
prototype much more easily than applying a WFMS. By using simulatie can generate a wide variety
of workflow traces from workflow models of different sizes and structurahplextities. The simulation
component(see Herbst et al. (1997)) of the business process managerneentsy©ONIS (see Karagiannis
et al. (1996)) is employed for this purpose. It could easily be replacedyg@nmercial adaptive WFMS
such as InConcert (Sarin (1996)) or Teamware Flow (Teamware (1997))sthable to collect workflow
traces. For the integration into our prototype an interface for tranghg the trace to our description
language needs to be provided.
The workflow models induced by the machine learning algorithms areftramed to an ADL (ADO-

NIS Definition Language) file, which can be directly imported by ADONIS ufdtion for the generation
of the graphical layout, which is provided by ADONIS, allows us to camepthe input workflow model

given to the simulation with the workflow model that was induced fromworkflow trace. The analysis



and optimization of the induced model can be done using different anadysilsiation or simulation func-
tionalities of ADONIS. ADONIS already provides a customizable expgrtomponent that may generate
workflow descriptions for different commercial WFMS.

Figure 12 provides an overview of the architecture our prototype. Weising the standard ADONIS
application library for a visualization of the workflow models. Altatively a workflow model can be
visualized as a hidden markov model, using a special application librarghwie have developed for this

purpose. We are making use of this feature, when applying the prettdyegular languages.

ADONIS Business Process Management System
Workfiow (only for evaluation)
Sample String Trace
; Simulation
File e Component — Input Model
) )
Machine Learning Componerjt
Model Model
Merging Splitting
Induction of
Conditions
i ADONIS Business Process Management System
ADL-Generator
’ I rt
ADL Process mpo Induced Model
- Layout Generation
Description

Figure 12: The prototype architecture



Experiments

We have evaluated model merging and model splitting experimentallg@rias of applications. Such an

evaluation is essential for a number of reasons:
¢ to determine the quality of the results, to prove the viabilitytaf teveloped concepts
¢ to learn about the performance of the learning algorithms in differetibget
¢ to compare the split and the merge approaches in terms of results andpsarter
¢ to compare our likelihood-based approach with bayesian model merging

Some of the main results of our evaluation are presented in the folipmio subsections. We proceed
in two stages. First of all example sets containing a very small numbexarhples from simple regular
languages are used for a first basic evaluation of the concept, this dllewsader to validate the results in-
duced by the prototype. In the second stage we apply the learning hfgerib workflow traces, generated
using simulation on a provided input workflow model.

For an application of our prototype to a real existing process we refdetbst (1999), where we apply

our approach to a simplified release process of the Mercedes Benz passenger ocandewedlivision.

Regular Languages

First of all we evaluate the prototype in three scenarios using thxamgle sets from simple regular lan-
guages. These three example sets are given in table 4. The first examnipligleatical to the set that was
used throughout this paper to explain model merging and splittitng. SEcond and third example set are
taken from Stolcke and Omohundro (1994). This allows us to comparalgarithms directly with the

bayesian model merging approach.



Exanpl e Exanpl e | Exanpl e
set 1 set 2 set 3
abcac aa abab
abcc bb aabab
abcabcc aca abbab
abcabcac | bcb abaab
acca ababb
bcch aaabab
accca abbbab
bccch abaaab
ababbb

Table 4: Examples for three regular languages

To each of these example sets we applied the model merging and the motielgspfiproach. We
tested each approach using three different parameter settings. The reshéiseoEkperiments are docu-
mented in table 5. Due to space limitations, we can not show every HMMtettlwithin the experiments.
For each scenario we show the HMM, that should have been found - and thatdeasl ifound for at least
one parameter setting in every scenario. Additionally we show the mgttMMs for some selected ex-
periments, where learning revealed interesting results or failed compl&tedyresult table further contains
the number of nodes and edges of the correct HMM and of the resulting HMBhfth testcase. You can
use these numbers for a quick evaluation of the testcases. This is espiegmittant, for those experi-
ments for which we do not provide a visualization of the resultingMINf the number of nodes and edges
are printed in bold font, this indicates that the result HMM of theeskpent is equivalent to the correct
HMM. Here “equivalence” refers to structural equivalence, as the probabilittesh are approximated by

empirical counts, may differ depending on the example sets.

Results for example set 1

In five of six testcases of the first scenario the learning algorithms texex returning the correct HMM
given in figure 5. In the last testcase, tienl npr ove parameter for the model splitting algorithm was

obviously to high, so model splitting failed. It terminated with aredy general HMM, which could have



Mer ge Mer ge Mer ge Split Split Split
nmergeStart/ m nl nprove 20 20 20 0.01 0.08 0.32
preCenFact or 1.1 1.1 1.2
genFact or 1.2 1.3 1.4
Example set 1
Resul t nodel nodes/ edges 718 718 718 718 718 6/7
(target nodel: 7/8)
Sear ch
steps/ Ti ne 6/ <1s 6/ <1s 6/ <1s 2/ <1s 2/ <1s 1/ <1s
spent
Resul t Figure | Figure | Figure | Figure | Figure
shown in 7 7 7 10 10 -
Fi gure
Example set 2
Resul t nodel nodes/edges 8/12 8/12 7/11 12/ 18 8/12 5/ 11
(target nodel: 8/12)
Sear ch
steps/ Ti ne 10/ <1s | 10/<1s | 11/<l1s 7/ 2s 3/ 1s 0/ <1s
spent
Resul t Figure | Figure Fi gure
shown in 13 13 - - 13 -
Fi gure
Example set 3
Resul t nodel nodes/edges | 10/16 9/ 15 6/9 8/12 4/ 6 4/ 6
(target nodel: 6/9)
Sear ch
steps/ Tinme 15/ 1s 16/ 1s 19/ 2s 4/ 1s 0/ <1s 0/ <1s
spent
Resul t Figure | Figure | Figure | Figure
shown in - - 14 15 - -
Fi gure

Table 5: Results for the regular languages

been transformed into the correct model by applying one further spitadion.

Results for example set 2

The results for the second scenario show, that in one half of the testbasesrtect resulting HMM as
shown in figure 13 was found. The experiments on the model splittidicate, that this success depends
on the correct parameter setting. In the first testcasen( npr ove=0.01) for the model splitting we

received a too specific HMM, in the second caser{l npr ove=0.08) we got the correct result and in



the last casenf nl npr ove=0.32) an overly general HMM was returned. These results are comparable to
the results published in Stolcke and Omohundro (1994) for bayesialeimerging, which were also very

strongly dependent on the selection of the right prior probability.
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Figure 13: Correct HMM for example set 2

Results for example set 3

In the third scenario only the merging approach succeeded for one paraméter. $étidel splitting failed
completely in all three test cases. We analyzed multiple search traces and disctinariba first splitting
step is the cause for the failure. The problem is, that after generatimgdkegeneral HMM, the algorithm
decides to split the node associated toltHeefore the node associated to thés split. To find the correct
result, thea node should be split first, to provide the context for correctlittspg the b. So in this case the
heuristic is misleading the search into a suboptimal split decisibigiwieads to an overly specific model
as shown in figure 15. Splitting can only be prevented by selectinghenfiigl npr ove parameter, which

causes the learner to terminate with the most general HMM. The model meigiogthm does not run



into these problems. Selecting the right parameters allows it to finddtrect result as shown in figure 14.
After selecting the right parameters the same results are returned by bayeslahmerging as reported in

Stolcke and Omohundro (1994).

sqav 0727273 g4 %:3 Q5 0111111
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Figure 14: Correct HMM for example set 3
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Figure 15: Specialization failed, because of a suboptimal split operation



Workflow Traces

The scenarios described in this section are based on workflow traces generdtedibyuiation of an input
workflow model in ADONIS. Each of the three workflow traces contains agprately 300 examples. To
each of these traces we applied model merging and model splitting usingltfieeent parameter settings.
To determine the quality of the induced model we compared it with thetimmdel. As the input model
was discovered in at least one experiment for each scenario, we do not prepmate figures showing
the input workflow models. The input models differ from the correstult models only in their transition
probabilities, which of course may differ due to the approximationgiempirical counts. So if in the
following we talk about an input model shown in a certain figure, thily ogfers to the structure of the
model not it's probabilities.

Table 6 summarizes the results for the experiments using workflow tr&@esan explanation of the
rows and columns we refer to the regular languages section. It must beneshthough, that the number
of nodes and edges mentioned in table 6 do not reflect the number of nodes asdoétlge workflow
model, but of it's equivalent HMM representation. These numbers difeabse HMM’s do not contain
separate decision and activity nodes. You can verify these numbers if yoideoaa activity node of a

workflow model and it's associated outgoing decision node as one node.

Results for Workflow Trace 1

In the first scenario we generated the trace from the workflow model givéigure 16. This workflow
model contains exactly one node for each distinct activity. This is thplsist possible task for the learning
component. Given good parameters neither the merging nor the spfitagdail. Any sequence of merge
operations applied to the most specific model will sometime lead to theatsesult. Success can only be
prevented by choosing too small values for the generalization factors.obhiously occurred in the first

testcase. For splitting the situation is similar. Because we are usiggasmall example set of an infinite



Mer ge Mer ge Mer ge Split Split Split
mer geSt art/ m nl nprove 20 20 20 0.01 0.08 0.32
preCGenFact or 1.02 1.1 1.3
genFact or 1.05 1.2 1.6
Workflow trace 1
Result nodel nodes/edges | 10/ 14 719 719 719 719 719
(target nodel: 7/9)
Sear ch
steps/ Tine 60/ 7s 44/ 4s 40/ 3s 0/ <1s 0/ <1s 0/ <1s
spent
Resul t Fi gure Figure | Figure | Figure | Figure
shown in - 16 16 16 16 16
Fi gure
Workflow trace 2
Resul t nmodel nodes/ edges 719 7/ 11 6/ 10 719 7/9 719
(target nodel: 7/9)
Sear ch
steps/ Tine 56/ 10s 46/ 6s 43/ 4s 2/ 1s 2/ 1s 2/ 1s
spent
Resul t Fi gure Fi gure Figure | Figure | Figure
shown in 17 18 - 17 17 17
Fi gure
Workflow trace 3
Resul t nmodel nodes/ edges -/ - 9/ 22 7117 11/17 11/17 10/ 17
(target nodel: 11/17)
Sear ch
steps/ Time -/>8h | 154/ 217s | 103/ 48s 4/ 2s 4/ 2s 3/ 2s
spent
Resul t Figure | Figure
shown in - - - 19 19 -
Fi gure

Table 6: Results for workflow traces

set of possible examples, splitting states may improve the likeditas the model. The correct result can
only be found, if the value of thei nl npr ove parameter is big enough to prevent specialization. In all

three testcases of the splitting approach this parameter was obviousgnaigtst.

Results for Workflow Trace 2

The workflow model (see figure 17) used to generate the second work#ow i slightly more compli-

cated. At a first glance it looks the same as the first workflow, but fapat the activities reveals that the
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Figure 16: Correct result and input model for workflow trace 1

and theb activity are referenced by two activity nodes.
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Figure 17: Correct result and input model for workflow trace 2

While splitting is successful for all three parameter settings, memhgreturns the correct result for
one testcase. Figure 18 shows an interesting case. While the correct nifrabtvity nodes for each of
the activities has been identified, the model contains some links whicloapesent in the input model
of figure 17. These links, which can easily be identified by their low abilities, are due to suboptimal
merging decisions.

What also becomes obvious, when looking at the result table for this scemarthe differences in the

performance of merging and splitting. Splitting requires less seaegs sind less time than merging.
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Figure 18: Suboptimal generalization containing unnecessary edges

Results for Workflow Trace 3

The last workflow trace is even more complicated. It is generated by a warkfiodel (see figure 19)

containing many loops and many nodes referring to identical activities.
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Figure 19: Correct result and input model for workflow trace 3

This scenario reveals the deficits of the merging approach. If the parametdtseffirst merging
phase frer geSt art andpr eGenFact or) do not allow enough merging, the search space explodes
and performance becomes unacceptable. We aborted the first testcase after 8 hslight ¢hange of

parameters allowing more merging in the first phase, leads to a drastioverment of the performance but



also to suboptimal merge decisions, which prevent the algorithm fimaing the correct result. We have
tried over 100 parameter settings for model merging and in none of thessiments the correct model
was found within 8 hours, after which we aborted each trial.

Even in this scenario the splitting approach performs very well and giveghaiparameter it will find

the correct result. It is by far less sensitive to parameter variations tloaelrmerging.

Evaluation and Discussion

In all testcases the machine learning component found the right resulis Iast one parameter setting.
The results of our merging algorithm using a pure likelihood teigrivere as good as those of the bayesian
model merging algorithm presented in Stolcke and Omohundro (1989#)désmall example sets from the
regular languages. Due to a suboptimal split decision the moddimsplitpproach failed for one testcase.

When applied to workflow traces with many examples, model splittingyored superior results at a
better performance than the model merging algorithm. It was also lessigemsichanges in the parame-
ters. Although generally there is no reason to favor a general-to-splecifiger. In the domain of workflow
models having only a few nodes associated to the same activity it seamsablesio start with a most gen-
eral model. Because fewer search operations (split/merge) lead to the targdt thedchance of getting
stuck in a local optimum of the heuristic function is less than in tleegimg approach and the performance
is better.

Due to the use of hill-climbing search, the success of both algorithrof course dependent on the
structural complexity of the target model. For some target models itbeayecessary to perform a series of
merge or split operations, that do not improve the heuristic fonctio provide the context for performing
some other really important merge or split operations, which imptiegédneuristic function.

The current performance of the splitting algorithm was fine, even fgel@axample sets. We have

even tried example sets with more than 20000 examples and still receivedaaramithin 10 seconds.



The underlying structure of the target model plays a much greater rokbdégoerformance as it directly
determines the size of the search space. The experiments show, that inrkflewdomain the current
performance of the model splitting approach leaves enough time to erageiter search algorithm, that
will prevent getting stuck in a local optimum of the heuristic funotfor most practically relevant cases.

When a good model is already provided as prior knowledge, it may make semsfer model merging.
It should be more efficient, since it may apply an incremental approach. dgtit ve a good solution to
apply model merging in the adaptation phase, when a good model is avasdidekground knowledge and
model splitting in the acquisition phase, when there is little kealgle about the structure of the workflow
at hand.

The experiments show, that finding the correct model depends on chdlsipgrameters of the induc-
tion algorithms correctly. In practical applications the correct model ofs®is unknown, which makes
it difficult to decide on the parameters. Especially the parameters that deteting degree of specializa-
tion/generalization (liken nl npr ove andgenFact or) are critical. Our experiences also show that a
process engineer should be able to select good parameters by looking aj-tikelibood curve (like the
one shown in figure 8). Providing that enough examples have been eldsstructurally significant oper-
ations that have major effects on the set of workflow instances covered byaitiel usually result in large
changes of the log-likelihood, while less significant operationsikelling a loop of a model result in
only minor (some orders of magnitude lower) changes of the logHiked. With this observation it should
be possible to provide the process engineer with additional assisteficding good parameters.

At the same time for practical applications it makes sense to relax the eeggrit that the correct model
is found. First of all it is questionable whether such a correct modst®zat all, as workflows may change
as business evolves over time. Furthermore, even if we assume thatrikfeowanodel is constant over a
certain period of time, there are often several alternative ways for modetingain business process. Some

process engineers may want to make certain dependencies explicit withinubeisgrof the model and



other process engineers may prefer a structurally overly general model ané hadional dependencies
within transition conditions. In any case the models induced by aludtion algorithms are more useful
for a process engineer than a large collection of unrelated workflow instaAtélse same time a slight

overgeneralization that can be compensated by appropriate transition eoaditimanual user decisions
seems to be more useful than an overspecialization. For example a workéided tmaving a loop that

iterates over a certain sequence of activities seems to be more useful than ehenodglthree separate
paths with one, two or three repetitions of this sequence. In the firsiacmaasition condition or a manual
decision can stop any further iteration after each completion of the sequence.elsepsate paths are
used, one would have to decide on the number of iterations in advanagh ishisually not possible. As

workflow splitting has some tendency to overgeneralization this ishenaeason to prefer the splitting

approach over the merging approach.

Related Work

In Agrawal et al. (1998) an approach for mining process models from vewkibgs is presented. This
approach is based on the induction of directed graphs. In contrast to owaappt is able to deal with
concurrency. One major restriction of this approach, which is not presemdrs, is that each distinct
activity must be associated to one unique node within the workflodehdn terms of markov models this
means that there are no hidden states. Applying this method to the eesaogpisidered here would thus
generate overly general models having only one node for each activity.

In Cook and Wolf (1996) three different methods for the inductiorfiooial process models are pre-
sented and evaluated. The first one called RNET is based on a recurrent neutaknétwhows some
limitations concerning accuracy, performance and usability. The authossdey RNET as inferior to the

other two methods they present. The second method is a purely algrithethod called KTAIL. It is



based on a merging method similar to ours. In contrast to our logHiketl based heuristic, this method
merges states whenever they have the followirsymbols in common, whereis a parameter to the algo-
rithm. As this basic method tends to produce overly complex autoraatoe to the fixed length context,
Cook and Wolf describe additional mechanisms that reduce the compléxhe anodel by further state
merging, based on the predecessor state and the output behavior af¢iseeshsidered for merging. Never-
theless Cook and Wolf observed that this method leads to overly complgelswhen a largé is selected
and the accuracy suffersifis too small. Both our merging and our splitting approach do noesdifom
this problem, because they selectively consider a large context of a ceetgrosly where necessary for
improving the log-likelihood. The third method presented in Caokl Wolf (1996) is called MARKOV. It
is similar to our splitting approach. To split states this method toancurrences of two and three sym-
bol length sequences and splits states that enable the generation of ceerisytimbol length sequences,
which were not observed in the samples. While this approach does a corsgdetd in a very limited
search space (a state that is result of a split is never split again) ouwraeghpdoes an incomplete search in
an infinite search space. Itis not clear how the limited search space of MARKQWlm®extended because
are there exponentially many possiliidength sequences and keeping a table of these seems intractable.
In contrast the fairly simple search method of our approach can be very eagliiced by an enhanced
search method like e.g. beam-search or simulated annealing. Some of theosrewvork Cook and Wolf
(1998) by the same authors also deals with concurrent process modedes lttmee different metrics for
the number, frequency and regularity of event sequences to estimate aohtigetoncurrent process. But
this approach is restricted to process models having unique activitysraad would thus overgeneralize
the examples we have considered here.

Another approach called RAP is presented in Bocionek and Mitchell (1993). iRARystem which
supports the users in reserving meeting and lecture rooms. It uses &jtexhalled dialog-based learning

to acquire a workflow model represented as a finite state machine by olgs#reitransfer of structured



e-mails. RAP has some limitations concerning inconsistent user beljeenpare Bocionek and Mitchell
(1993)), which are not present in our approach.

The idea of merging technologies for organizational learning and workfi@vagement is presented
in Wargitsch (1997). The developed system uses completed business casdsirstan organizational
memory to configure new workflows. The selection of an appropriaterigsi case is supported by a case-
based reasoning component. While we focus on repetitive processes ttoa@ppas designed for more
unstructured, project-like processes.

Similar approaches have also been considered in the area of design process reaha§eme early
work reported in Casotto et al. (1990) describes a design process managgstemt salled VOV, which
is based on design traces. This system records activities and the data depenbetveéen these activities
in a so-called design trace. This design trace is used for the coordindtieara design, consistency
maintenance and documentation. While the basic idea of defining procestsrhg@xecutions is the same
as ours, the methods used in VOV are rather limited. VOV simply recanddsmstance without applying

any generalization.

Summary, Conclusions and Future Work

We described a machine learning component, which is able to induce a sefjuemkflow model from
traces of manually enacted workflow instances. This component is realized byrtiposition of two
machine learning algorithms, one for the induction of the strucamakone for the induction of transition
conditions. While we have presented two different alternative soiatfor the induction of the structure
in detail, we have outlined only the basic idea for the inductionhef ¢onditions. The two alternative
algorithms for the induction of the structure - model merging andehsplitting - have been implemented

in a research prototype. Our experimental evaluation shows that botfitialge provide useful results. In



the workflow domain, model splitting produced superior results ateebperformance.

The are convinced that the integration of machine learning algoriththprevide a number of signifi-
cant improvements to WFMS. We are thus doing further research in this dreandin goal of our ongoing
work is extending the learning algorithms towards being able to deghlagincurrent workflow models. If
we applied the presented approach to workflow traces generated by a concurrehtanayerly complex
representation of the workflow, containing all possible orderingsaah concurrent set of activities would
be induced. This of course is not optimal, but it nevertheless is ailisglut for a process engineer.

We are currently working on an extension of our induction algoritkrhich in contrast to the other
learning algorithms presented in (Agrawal et al. (1998)) and (Cook anid (4898)), is not restricted
to workflow models with unique activity nodes. The main challenge @uaing concurrent workflow
models lies in the detection of dependencies between activities. Once dependaweibedn discovered
an enhanced version of the model splitting algorithm described here can bedapphis basic idea is
outlined in Herbst and Karagiannis (1999). Further work must alsobe ébr dealing with noise, caused
for example by erroneous workflow instances. Finally we need to integratprototype into an adaptive

WFMS for an evaluation using real world workflow instances.
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Notes

This is a revised and extended version of Herbst and Karagiannis (11998)yvas presented at the

Ninth International Workshop on Database and Expert Systems Applicali@98
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