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Integrating Machine Learning and Workflow Management to Support Acquisition

and Adaptation of Workflow Models1
Abstract

Current workflow management systems (WFMS) offer little aidfor the acquisition of workflow mod-

els and their adaptation to changing requirements. To support these activities we propose to apply tech-

niques from machine learning, which enable an inductive approach to workflow acquisition and adapta-

tion. We present a machine learning component that combinestwo different machine learning algorithms:

the first one induces the structure of sequential workflows and the second one is responsible for the induc-

tion of transition conditions. The second task can be solvedby applying standard decision rule induction

algorithms. In this contribution we focus mainly on the algorithms for the first task. For this purpose we

describe two algorithms based on the induction of hidden markov models. The first algorithm is a bottom-

up, specific-to-general algorithm and the other one appliesa top-down, general-to-specific strategy. Both

algorithms have been implemented in a research prototype. In six scenarios we evaluate and compare the

two algorithms experimentally. The induced workflow modelscan be imported by the business process

management system ADONIS2.
Keywords: Workflow management systems, artificial intelligence, machine learning



Introduction

Workflow Management Systems

Efficient business processes are an important success factor in today’s competitive markets. Information

technology is playing a key role as an enabling technology in achieving this efficiency. Business process

management systems (see e.g. Karagiannis et al. (1996)) are increasingly used to model, analyze, simulate,

enact and manage business processes. One subclass of business process managementsystems are workflow

management systems (WFMS). WMFS concentrate on supporting enactment and management of business

processes. For workflow enactment a formal model of the business processes is interpreted by a work-

flow engine. The WFMS interacts with the participants of the business process by informing them about

the tasks that need to be done and by providing them with the relevant documents or information. Most

WFMS also include interfaces for monitoring the state of workflow instances, which are representations of

concrete business cases, and they offer audit components, that trace all state changes of the executed work-

flow instances. WFMS usually provide graphical modeling editors. Many different formalisms have been

proposed for workflow modeling. Within this contribution we are using the ADONIS modeling language

BOC (1999). According to the ADONIS modeling language a workflow model is a directed graph. There

are seven different node types representing activities, subprocesses as wellas five different control flow

constructs. A short explanation of these constructs and their graphical representation is given in figure 1.

The directed edges of the workflow model can be labeled either with simple boolean conditions over a set of

workflow variables or with probabilities. This description of the ADONIS modeling language concentrates

on the behavioral perspective (see Curtis et al. (1992)) on a workflow model, as our learning approach

considers only this aspect. A complete description should for example also consider which participants

are responsible for performing an activity (organizational perspective) and which data or documents (in-

formational perspective) are required. Additionally the syntactical (e.g.“Each workflow model must have



one unique starting node.”) and semantical aspects (e.g. “Which workflow instances can be generated by

the workflow model?”) of the modeling language should be explained. Werefer to BOC (1999) for these

aspects. For this contribution the above definition should be sufficient. An example for a workflow model

is given in figure 2.
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Figure 1: ADONIS node types

Acquisition of Workflow Models

In many state of the art workflow projects the following approach is taken. In a first step the business

process as it is performed is acquired and modeled. This initial modeling isdone at a rather high level of

abstraction, which Karagiannis et al. (1996) call a business graph. After an optimization step the resulting

optimized process model is implemented as a workflow. The implementation involves further refinement of
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Figure 2: Part of a simple ADONIS workflow model

the process model and thus further acquisition of workflow knowledge. The refined process model is called

a workflow graph in Karagiannis et al. (1996).

The acquisition of workflow knowledge is typically done by interviews or questionnaires. The people

responsible for process acquisition and optimization we will call process engineers in the following. One of

the most time consuming activities for the process engineers within the described approach is the acquisition

of the workflow knowledge (compare e.g. Herbst and Bumiller (1997), Wargitsch (1998), Leymann and

Roller (1999)). In several workflow-projects we have made the experience, that the relative times spent for

the different tasks are distributed approximately as shown in table 1.

The reason, why workflow acquisition is so time consuming, is that the required workflow knowledge

is usually highly distributed within the organization. It is stored in the heads of the human participants, who



typical tasks within relative
a workflow project time spent

acquisition of 60%
workflow knowledge
optimization 20%

implementation 20%
as workflow

Table 1: Relative times spent within selected workflow projects at DaimlerChrysler

are actively involved in the execution of the business process. Participants have in-depth knowledge about

the activities (functional perspective) they are involved in. They knowthe required data, documents and

applications (informational perspective) and they know who is responsible (organizational perspective). It

is thus not to difficult to obtain a detailed picture of each activity within a workflow model using traditional

means of knowledge acquisition. On the other hand participants often have little knowledge about the

control flow (behavioral perspective) of the process they participate in (compare e.g. Leymann and Roller

(1999)). Furthermore the participants usually belong to different organizational units, they use different

words to describe the same semantic entities and they often have conflicting interests. This makes control

flow acquisition an extremely difficult task.

As the control flow of a workflow model can be compared to a program, its validation by the participants

- who are generally not programmers - is also difficult. Although visualrepresentations and simulations of

the workflow are employed, many deficiencies of the workflow model are discovered after the WFMS has

been taken into operation. These deficiencies include e.g. modeling errors as well as missing requirements.

Modeling errors are easily overseen during the validation of a workflow model if the participants do not

have a deep understanding of the semantics of the modeling language. Thesepeople often develop their

own understanding and are disappointed when the WFMS behaves different than they have expected (com-

pare Abbott and Sarin (1994)). On the other hand additional requirements are often discovered once the

WFMS is productive. As workflow environments are open systems (compareHewitt (1986)) there may be



situations, that have not been anticipated by the model. Some of these situations could be rare or unim-

portant exceptions, that should be handled by the adaptation mechanisms of the WFMS (see below), but

for other more frequent or important situations it might make sense to handle them within the workflow

model. Thus trying to meet all requirements of the human participants, who are expected to work with the

workflow every day, leads to a highly iterative and time consuming workflow acquisition and validation.

Therefore we decided to investigate the use of machine learning techniques,that allow a semi-automatic

control flow acquisition.

Adaptation of Workflow Models

Many of the current WFMS products enforce the execution of a business process exactly according to the

defined workflow model. Although this may be desirable for some domains, experience has shown, that

many other domains require a much higher degree of flexibility to reflect the human aspects of cooperative

work. It is commonly accepted (see e.g. Ellis et al. (1995), Reichert and Dadam (1997) or Pareschi et al.

(1996)) that it is not possible to anticipate all situations that may occur throughout the execution of a

workflow instance in advance at the time the workflow model is defined. In exceptional situations it is

necessary, that the workflow participants are able to take partial control over the workflow and deviate from

the modeled control flow. WFMS offering these possibilities are oftencalled adaptive WFMS. Examples

for such adaptive WFMS are commercial products such as e.g. InConcert (Sarin (1996)) and Teamware

Flow (Teamware (1997)) and research prototypes such as ADEPTflex (Reichert and Dadam (1997)) and

DYNAMITE (Heimann et al. (1996)), addressing more advanced features of adaptive WFMS. There is one

serious drawback of these approaches. Changes at the workflow instance levelusually have no effects to the

model level. If over a longer period of time a certain kind of deviation from the workflow model becomes

common practice rather than rare exception it seems reasonable, to adapt also the workflow model. In a

way workflow management has to do with predicting the tasks that need to be done. If the probability of



a wrong prediction, requiring correction by the participants, is too high, the WFMS will be an impediment

to the participants rather than a support. In our opinion an adaptive WFMS should supply mechanisms

supporting the improvement of the workflow models based on feedback from the workflow instance level.

We are convinced that such feedback mechanisms could be based on machine learning techniques.

Integrating WFMS and Machine Learning

In the following we present a machine learning component, which we propose to integrate into a WFMS.

The machine learning component supports acquisition and adaptation of workflow models. It generalizes

a number of workflow instances described in a workflow trace to a single workflow model that is able to

generate all observed instances. An extract of the contents of a workflow tracethat could be generated from

the workflow model of figure 2 is shown in table 2.

Time Event Workflow Workflow Activity Activity
and Date Instance Instance
8:12 11/25 StartWF sellGoods sellGoods.34
8:14 11/25 BeginAct sellGoods sellGoods.34 receive order receive order.6
8:21 11/25 EndAct sellGoods sellGoods.34 receive order receive order.6
8:32 11/25 BeginAct sellGoods sellGoods.34 check availability check availability.7
8:32 11/25 StartWF sellGoods sellGoods.35
8:34 11/25 BeginAct sellGoods sellGoods.35 receive order receive order.8
8:34 11/25 EndAct sellGoods sellGoods.34 check availability check availability.7
8:50 11/25 BeginAct sellGoods sellGoods.34 shipping shipping.9
8:51 11/25 EndAct sellGoods sellGoods.35 receive order receive order.8
8:55 11/25 BeginAct sellGoods sellGoods.34 billing billing.10
9:03 11/25 EndAct sellGoods sellGoods.34 billing billing.10
9:10 11/25 EndAct sellGoods sellGoods.34 shipping shipping.9
7:55 12/12 BeginAct sellGoods sellGoods.34 check payment check payment.11
8:00 12/12 EndAct sellGoods sellGoods.34 check payment check payment.11

Table 2: A workflow trace

From such a workflow trace, individual workflow instances can be extracted. Workflow instances can

be described as a directed acyclic graph. The nodes represent the activities thatwere executed. The edges

of the directed graph describe a partial order, indicating the temporal order of execution. When talking



about workflow instances that are generated by sequential workflow models theedges of the workflow

instance graph define a linear order. A workflow trace often contains more information related to a workflow

instance. These are e.g. the participant who performed an activity, the documents used, or the values of the

workflow variables. But for our needs within this paper, the reduced definition of a workflow instance is

sufficient. Figure 3 shows the workflow instance “sellGoods.34”, thatcould be extracted from the workflow

trace of table 2.
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Figure 3: A workflow instance

There are some adaptive WFMS that realize deviations at runtime by allowing the users to change a

workflow model that is only valid for the instance under consideration.For these WFMS it would be possi-

ble to use these instance specific workflow models as input for the induction, as these may be enriched with

more information than workflow instances (like e.g. a transition condition specifying when a certain change

is valid). We decided to keep the requirements of the machine learning component as low as possible, to

make our approach more widely applicable. Relying on workflow instances as input also simplifies the

design of user interfaces, which are critical for the acceptance of the adaptive WFMS by the participants

(compare e.g. Abbott and Sarin (1994)). Such an interface could for example rely on the metaphor of

workflow folders, that are passed from participant to participant.

The integration of the machine learning component into a WFMS enables a new inductive approach to

the creation of a workflow application. We believe that this will significantly reduce the time needed to setup



a workflow application and at the same time it should lead to higher quality models, as requirements are

collected, while the system is productive. By helping to transform tacitknowledge into explicit knowledge

this approach contributes to supporting organizational learning (see Agyris and Schoen (1978)). It allows to

handle exceptions at the workflow instance level and yet it is able to trace these manually enacted workflows

and to adapt the corresponding workflow models.

Inductive Workflow Acquisition and Adaptation

We propose to apply an inductive approach to workflow management. This approach is divided into three

separate phases, which are arranged in a cycle. These three phases and their order are shown in figure 4.

Figure 4: Inductive workflow acquisition and adaptation

Instead of waiting until a complete and correct workflow model is available,we propose to model only

the elementary activities as the basic building blocks of an initial workflow model. An adaptive WFMS



allowing two modes of operation, a passive and an active mode, is then immediately taken into operation.

In the first phase - the workflow execution phase - this adaptive WFMS is started in passive mode, which

means that the workflow engine is switched off and the routing of tasks is done manually. It allows users

to start and complete process instances, create and execute tasks, route tasks to other participants manually.

At this point the WFMS only serves as a provider for traces of executed workflow instances, stored in trace

files.

In the second phase - the inductive learning phase - the extracted workflow instances are interpreted by

the machine learning component, which generalizes observed instances to a workflow model. Because the

machine learning component has no knowledge about the goals of activities,processes and the organization,

it can not reason about, what is a good and what is a bad workflow model. The induced workflow model is

thus a description of how the work was actually performed and not how thework should be done regarding

the goals of the organization. As a common practice is not necessarily a bestpractice, the induced workflow

model should be analyzed and possibly optimized by experts.

Therefore we have included a third phase - the workflow analysis and optimization phase. In this phase

the induced workflow model may be used as a basis for a decision whether to enactthe business process with

the workflow engine. If the induced workflow model contains little structure, automatic enaction makes no

sense. In this case it might be better to keep the manual enactment. Workflow optimization is performed

as in the standard approach described above. As requirements are collected while the WFMS is productive

and providing that enough workflow instances have been collected, we expect the quality of the induced

workflow model to be higher than that of a workflow model acquired offline,using only traditional means

of workflow acquisition such as interviews and questionnaires. Additionally the induced workflow model

may be enriched with quantitative parameters such as interarrival or executiontimes as well as transition

probabilities. This is an invaluable input for simulation improving the validity of the simulation model

(compare e.g. Herbst et al. (1997)).



If the decision is taken, to enact the business process using the workflowengine, we are back in the first

phase. The WFMS is activated in the active mode, to enact the business process according to the optimized

workflow model. In exceptional situations the actors may switch back to the passive mode thereby taking

control over the workflow as in the acquisition phase. All activities are traced and passed to the machine

learning component, which induces a workflow model for the second iteration. This induced workflow

model serves as input for the next optimization cycle. It shows the process engineers how well the designed

workflow model was able to guide the execution of real business cases. In this way the participants are

constantly involved in the design of the workflow model and continuous process improvement is supported.

Induction of Workflow Models

To provide the means enabling the described inductive approach to workflow management, we need to solve

the following induction task:� given a multiset of workflow instances belonging to the same workflow type� find a good approximationM of the workflow modelM0, that determined the generation of the

observed workflow instances

Of course the workflow modelM0 need not exist. Within the above definition it is simply a modeling

hypothesis.M0 could e.g. be a semi-formal model of the business process described in a process handbook

or it may just exist in the heads of the participants involved in the workflow. We have decomposed this

induction task into two subtasks:� Induction of structure - within this subtask the nodes, the edges, and the transition probabilities of the

workflow modelM are induced.



� Induction of conditions - where possible, local conditions for transitions following a split or a decision

node are induced.

In the following sections we will describe algorithms for inducingthe structure of sequential workflow

models in detail and give a short outline on the induction of conditions.

Inducing the Structure of Sequential Workflow Models

Within this contribution we restrict ourselves to the induction ofthe structure of sequential workflow models

(models without split and join constructs). Although this is clearly a limitation, because many real world

applications require concurrent workflow models, it provided us with awell established theoretical basis

for our work and allowed us to evaluate the basic idea of our approach before putting effort in designing

advanced induction algorithms, that are able to deal with concurrency, whichis one of the main goals of

our current work (see Herbst and Karagiannis (1999)).

The Multiple Node Problem

Inducing the structure of a sequential workflow becomes trivial if one assumes, that for each activity there

exists one unique activity node within the workflow model. In this case one could create a unique activity

node for each distinct activity name observed in the samples. Whenever an activity ai preceds an activityaj a transition fromai to aj is added to the model. The transition probabilities can be estimated using

empirical counts. Finally decision nodes are added whenever a certain activity has more than one possible

successor.

To assure that this approach is applicable, one could of course distinguish different occurrences of a

certain activity (e.g. “receive order”) within a workflow model by unique names (e.g. “receive order-1”

and “receive order-2”). But being able to find unique names for each occurrence of anactivity requires that

one knows about how many occurrences there are within the workflow model.This would mean, that to



some extent the structure of the workflow needs to be known in advance. Since we would like to provide

mechanisms helping to find the structure of a workflow, this assumption is not realistic. So we need to

assume that within one workflow model there may be multiple activity nodes assigned to the same activity.

Reduction to Regular Grammar Inference

The structure of sequential workflow models can be - independently of themodeling language used - rep-

resented by finite state automatons (FSA) and sequential workflow instancescan be represented by strings

over a finite alphabet. Each symbol in this alphabet corresponds to an activity of the workflow instance.

Thus the problem of sequential workflow structure induction can be reduced to the problem of inducing

FSAs from a positive sample of strings which is a regular grammar inference problem. Regular grammar

inference has already been addressed in the grammatical inference community (see e.g. Parekh and Honavar

(1999) for an overview). It has been shown by Gold (see Gold (1967)) that the regular grammar inference

problem is hard in the sense that regular languages cannot be correctly identified from positive examples

alone. The task of identifying the minimum state deterministic finite automaton, that is consistent with an

arbitrary set of positive and negative examples has been shown to be NP-complete Gold (1978). Despite

these negative theoretical results there exist a number of heuristic solutions to different regular grammar in-

ference problems, which have been successfully applied in practical applications such as speech recognition

or the discovery of patterns in biosequences.

Examples for such heuristic solutions are ALERGIA Carrasco and Oncina (1994) and Bayesian Model

Merging Stolcke and Omohundro (1994). Both operate on a positive sample of strings. We have selected

Bayesian Model Merging, which is based on hidden markov models (HMMs) and applies a specific-to-

general approach, as a basis for our work. After a short introduction into HMMs, we present two different

workflow induction algorithms. The first one is based on Bayesian ModelMerging, with some minor

modifications, and the second one applies a general-to-specific approach



Hidden Markov Models

A HMM (for a good introduction see Rabiner (1989)) can be described basically as a finite state au-

tomaton whose transitions have transition probabilities and whose states are associated with a finite set

of output symbols having a certain output probability. Formally aHMM can be defined as a tuple� =(Q; V;A;B; �) whereQ = fq1; q2; : : : ; qNg is a finite set of states,V = fv1; v2; : : : ; vMg is a finite set

of output symbols,A = (�ij) = P [St+1 = qj j St = qi] with 1 � i; j � N are transition probabilities,B = (�i(k)) = P [output ofvk at timet j St = qi] with 1 � i � N and1 � k �M are output probabili-

ties� = f�ig; �i = P [S1 = qi] with 1 � i � N are the start probabilities andSt denotes the state� is in

at timet. A HMM can be visualized as a directed graph, whose nodes describe states or output symbols and

whose edges represent state or output symbol transitions. The behavioral aspects of sequential workflow

models may be mapped to a HMM, whose output symbols represent activitiesand whose state transitions

describe the control flow. For this purpose we need slightly less representative power than the HMM offers.

This is because in a workflow model the relationship between a node and an activity is deterministic. So

in the corresponding HMM each state only has one output symbol with an output probability of 1. But to

take into account what we called the multiple node problem the same activity may occur more than once

within a workflow model. This means that the same output symbol may beproduced by several states of the

corresponding HMM and one is thus not able to uniquely identify the state that generated this observed out-

put symbol. Therefore the hidden nature of the HMM remains. Some of the other approaches to workflow

induction like Agrawal et al. (1998) or Bocionek and Mitchell (1993) ignore this problem.

The problem we want to solve, is to generate a workflow model from workflow traces. This problem

corresponds to the problem of finding an appropriate HMM from a numberof observed output symbol

sequences. For this problem there is a well known algorithm called the Baum-Welch expectation max-

imization (see for example Rabiner (1989)) also known as the forward-backward algorithm. Given one

sequence of output symbolse = e1e2 : : : el with ei 2 V and an initial HMM�0 = (Q; V;A0; B0; �0) the



Baum-Welch algorithm iteratively re-estimates the parametersAi; Bi and�i until some limiting point is

reached. This basic algorithm can be easily extended to support multiple sequences of observations. The

formulas for the re-estimation of the parameters are given for example inRabiner (1989). It was proven that

this procedure converges to a local maximum of the likelihood functionP [ej�]. But Baum-Welch is not

very well suited for the problem of finding an appropriate workflow model because it only adapts parame-

ters of a given HMM, with a given number of states. In our case the structure is exactly what we would like

to discover.

Model Merging

Stolcke and Omohundro (1994) describe an algorithm which induces the structure as well as the transition

and output probabilities of a HMM from observations. To achieve this, the algorithm searches the space of

HMMs, beginning with a most specific HMM, which directly encodes the observations. The most specific

HMM is iteratively generalized by merging states. The algorithm uses a heuristic based on the bayesian

posterior probabilityP [� j E] to determine which states to merge and when to stop merging states. The

input to this algorithmE = fe11e12 : : : e1l1 ; : : : ; en1en2 : : : enlng is a multiset of sequences of output

symbols.

The overall algorithm can be characterized as a heuristic hill climbing search over the space of HMM’s,

starting with a most specific HMM, which is consistent with the observations. The most specific HMM

originally proposed by Stolcke and Omohundro (1994) contains exactly one separate path for each observed

sequence of symbols. To decrease the size of the search space, we are employing amost specific model

with less states, called a prefix HMM (compare Carrasco and Oncina (1994)). This prefix HMM is obtained

from the most specific model proposed by Stolcke and Omohundro (1994), by mapping all states sharing a

common prefix to one single state. Thus a prefix HMM has the property, that every common prefix of any

two observation sequences is generated by the same unique generating path of the prefix HMM. Assume we



observe a set of observationsE = fabcac; abcc; abcabcc; abcabcacg generated from the unknown HMM

shown in figure 5. The prefix HMM forE is the HMMM 01 shown on the top left of figure 7. We have

omitted the transition probabilities for those transitions having a probability of 1.q4a- -.7 .5

.3

.5

cqs qeq5-6 ?- q2q1 q3a b c- -
Figure 5: The unknown HMM that generatedE

To generalize a HMM, states are iteratively merged using a merge operator, as shown in figure 6. For

our purpose we have modified the merge operator originally defined in Stolcke and Omohundro (1994) to

allow only the merging of states having the same output symbol. Merging two statesqi andqj with the

same output symbol has the following effects on the HMM:� qi andqj are removed and a new stateq0i is inserted.� all transitions to and fromqi andqj are redirected toq0i.� the transition probabilities are adjusted to their maximum likelihood estimates. This is calculated as�ij = cijPNk=1 cik wherecij are the number of transitions fromqi to qj needed when generatingE.IiIj OiOj 9>>>>=>>>>; j1Ii [ Ij 1jOi [Oj
Merge(M 0; E; qi; qj )

qi0vqivvj1j1 qj j1j1
Figure 6: The merge operator



In the last step of the merge operator the transition probabilities areadjusted. This requires that all

observations inE are parsed. Using two approximations this step can be simplified. One common approx-

imation is to consider only a most likely path - called a viterbi path - rather than all possible paths that may

generate a certain sequence. The second approximation deals with the way these viterbi paths are deter-

mined. Although there is an efficient algorithm - known as the viterbi algorithm - for the determination of

a viterbi path to a given sequence, applying this algorithm requires that all observations inE are parsed.

This step can be approximated by determining viterbi paths only for the most specific model and assuming

that a merge operator does not change the viterbi paths. This allows us tomaintain frequency counters at

each transition. These counters are added whenever two transitions are merged. This approximation seems

to work well in practice as shown in Stolcke and Omohundro (1994) and itallows an incremental induction

because the approximated merge operator is independent ofE.

For our implementation we decided to use a different heuristic than the original bayesian model merging.

Stolcke and Omohundru report, that the choice of appropriate priors and parameters, does not greatly affect

the course of the search except for deciding when to stop. Their evaluationshows that the likelihoodP [E j �] was the determining factor in guiding the search. This was the reason for us to employ a pure

log-likelihood heuristic for the search. This means that the parameters for a merge operation are selected

in such a way, that the decrease of the log-likelihood is minimized. Mergeoperations maintaining the

log-likelihood of a model are thus preferred over merge operations that lower the log-likelihood. The log-

likelihood per sample is calculated ash(E; �) = ln(QN�1i=0 QNj=1 �cijij ). As a stopping criterion for the

hill-climbing search we have defined a parametergenFactor, that determines the generalization factor,

which is the ratio between the log-likelihood of the model under consideration and the most specific model.

As soon as this ratio is larger thangenFactor, the search terminates returning the current model.

To improve the performance of the merging approach, we allow incremental learning. The number

of examples, that are gathered before merging starts is determined by themergeStart parameter. This



parameter allows us to move anywhere in the spectrum from a pure incrementalto a pure non-incremental

learning algorithm. SettingmergeStart=1 has the effect that each observed example is immediately

merged into the model. A pure non-incremental merging is realized by setting mergeStart to the total

number of examples observed. The degree of generalization in the first merging phase, which is started

when a sufficient number of examples has been observed, is determined by a secondgeneralization factor.

This is given by thepreGenFactor parameter. So the output of a first merging phase with a small

generalization factor (preGenFactor) can be merged as soon as all examples have been observed in a

second phase with a higher generalization factor (genFactor).

The Model Merging Algorithm Let �0 be the empty HMM, leti := 0, letE := ;
1. read a setEi of j Ei j= mergeStart observations and insert them into�i (considering common

prefixes) and letE := E [Ei
2. let�i+1 := merge(�i, E, preGenFactor), let i := i+ 1
3. if there are unread observations repeat from step 1

4. let�i+1 := merge(�i, E, genFactor)

5. return�i+1 as the induced HMM

Procedure merge(�,E, generalizationFactor)

1. determine the log-likelihoodh(E; �), let j := 0 and let�j := �
2. determine the set of possible mergesK for �j
3. for each mergek 2 K determine the merged modelk(�j) and its log-likelihoodh(E; k(�j))
4. letk� be a merge that maximizesh(E; k(�j)) and let�j+1 := k�(�j)
5. if h(E;�j+1)h(E;�) � generalizationFactor then letj := j + 1 and repeat from step 2

6. return�j



Example Figure 7 shows the different HMMs on the search path when applying our implementation of

model merging (with the parametersmergeStart=20,preGenFactor=0.5 andgenFactor=1.2) toE. Figure 8 shows the decrease of the log-likelihood for these HMMs. The merge operations are selected

in such a way, that the decrease of the log-likelihood is minimized. The returned HMMM 07 identifies the

structure of the unknown HMM correctly.
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Figure 7: Model merging applied toE



Figure 8: Log-Likelihood of the models

Model Splitting

When applying the merging approach to repetitive business processes we encountered a problem resulting

from the direction of the search strategy. In the merging approach one starts with the most specific model,

which has a high number of states being associated with the same symbol. Inthe workflow models we

have acquired manually for workflow projects over the last few years we have observed at most three or

four nodes associated with the same activity within one workflow model.In the space of HMM’s, the

distance from the most specific model to a target model having only a fewstates associated with the same

symbol is usually very large. We measure distance in terms of the number of merge operations one has

to apply to transform the most specific model to the target model. We found that due to the hill-climbing

search the chance of taking a suboptimal merge decision is pretty high. This especially true when loops are

present in the target model. For this reason we decided to try the reverse search strategy, which means that

the induction algorithm performs specialization steps starting with the most general HMM. In our sense -

considering the restriction that each state is associated with exactly one output symbol - the most general

HMM is the HMM that



� contains exactly one state for each observed output symbol and� incorporates exactly the transitions observed in the examples.

The transition probabilities are assigned to their maximum likelihood estimates as in the merging approach.

Consider again the examplesE = fabcac; abcc; abcabcc; abcabcacg. The corresponding most general

HMM covering these samples is the HMMM 001 shown at the top of figure 10.

As it can be easily verified for the given examples the most general HMMM 001 covers all observations.

But in contrast to the most specific HMM it also covers many unseen sequences. Examples for sequences

which are covered but not contained in the set of observations areacacacac; abcccccc andabc. In order

to receive a more appropriate HMM we must specialize. Specialization is done using a split operator, that

splits one state into two states with different incoming transitions as shown in figure 9. This introduces two

states producing the same output symbol in two different contexts. Splitting may be applied to any stateqi
with more than one incoming transition. The split operator requiresa set of parameters. LetI be the set of

statesqj ; j 6= i with outgoing transitions toqi and letfI1; I2g be a partition ofI . Let O be the set of statesqj ; j 6= i which have an incoming transition fromqi. Let � 2 f1; 2; 3; 4g. Split(�;E; qi; I1; I2; �) has the

following effects on�� stateqi and all it’s incoming and outgoing transitions are removed and new statesq0i and q00i are

inserted� q0i obtains incoming transitions from all states inI1 andq00i receives incoming transitions from all

states inI2� bothq0i andq00i receive outgoing edges to all states inO� if qi originally had a transition to itself then

– if � = 1 then bothq0i andq00i receive transitions to themselves

– if � = 2 thenq0i receives a transition to itself andq00i obtains a transition toq0i



– if � = 3 thenq00i receives a transition to itself andq0i obtains a transition toq00i
– if � = 4 then bothq0i andq00i receive a transition to the other� the transition probabilities are adjusted to their maximum likelihood estimates� transitions having a probability of zero are removed vvqi0 ?

vv
� = 1I I1O O1v8>>>><>>>>: j1 qi00j1

Split(M 0; E; qi; I1; I2; �)

I2 O2qiv vj1 j1 j1j1 6 6� = 2
vv?6
?� = 3 � = 4

qi0 qi0
qi0 qi0qi00 qi00
qi00 qi00vv6?I = I1 [ I2 ^ I1 \ I2 = ;O1 � O ^ O2 � O

Figure 9: The split operator

The specialization actually occurs in the last step when unnecessary transitions are removed. A HMM

resulting from a split operation has some important properties. If the HMM covers all the observations

before the split it covers all observations after the split. Depending on the choice of the parameters the

HMM is specialized, which means that some sequences (not in the set of observations) it covered before

the split are no longer covered. If the path that generates an arbitrary output sequence is unique before the

split there will be a unique path generating the same output sequence after the split. This last property is

important for the computation of the likelihood. Instead of the pure log-likelihood based search presented

in (Herbst and Karagiannis (1998)), we have implemented a variant of thesplitting algorithm, which uses a

minimum improvement parameterminImprove as a stopping criterion and the log-likelihood per sample



h(E;�)jEj as the heuristic to guide the search. The split operator resulting in the highest value ofh(E;�)jEj is

chosen for specialization. The parameterminImprove defines how much a split operator must improve

the log-likelihood per sample in order to be accepted. If in a given situation no split operation may improve

the log-likelihood per sample of the current model by at leastminImprove, the search terminates and

the current model is returned as the result. As the log-likelihood of amodel depends very much on the

number of examples, we are using the log-likelihood per sample as the heuristic. This does not make any

difference for the search, but it makes theminImprove parameter less sensitive to changes in the number

of examples read. The overall algorithm can be outlined as follows.

The Model Splitting Algorithm Let �0 be the most general HMM for the setE, let i = 0
1. read the complete set of observationsE
2. determine the set of possible splitsK for �i
3. for each splitk 2 K determine the resulting modelk(�i) and its log-likelihood per sampleh(E;k(�i))jEj
4. letk� be a split maximizingh(E;k�(�i))jEj and let�i+1 = k�(�i)
5. if h(E;�i+1)jEj � h(E;�i)jEj � minImprove then leti := i+1 and repeat from step 2 else terminate and

return�i as the induced HMM

At a first glance model splitting has some disadvantages compared to the merging approach. First of all

the number of possible splits for each state is exponential in the number of incoming edges. Another draw-

back is the fact that the approximation concerning the detection of viterbi paths explained in the previous

section is not applicable here. So incremental learning is not possible. Butas our experiences in applying

both algorithms to workflow traces show, the splitting approach also has many advantages (see below).

Example The result of applying model splitting (with parameterminImprove=0.01) toE is shown in

figure 10. The log-likelihood of the HMMs visited during the searchis shown in figure 8. Model splitting



stops after just two search steps and returns the HMMM 003 , which describes the structure of the unknown

model correctly. Any further split operations do not increase the log-likelihood significantly.
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Figure 10: Model splitting applied toE

Induction of Conditions

The first induction phase returns a compact model for the structure of the observed workflow instances.

In this structure all non-deterministic transitions are described byprobabilities. These probabilistic pro-

cess models may be used for simulation (compare e.g. Herbst et al. (1997)).In this case the distribution

described by the transition probabilities would be modeled by random generators. This of course is no ad-

equate model for a WFMS. For the selection of the next transition mostcurrent WFMS allow the modeler

to state simple boolean conditions based on decision relevant attributesof the workflow instance. These

attributes may be for example the attributes of the documents which are passed between the actors of the

activities. Many systems also offer manual decisions. These allow the actorsdecide which path to follow.

This is useful when complex human reasoning processes are necessary for the decision. In case conditions

are applicable, methods from machine learning may help finding these conditions. A method which - where

possible - induces transition conditions from the observed manuallyenacted workflows is outlined in the



following.

The learning task for this second induction phase is to find rules, statedin terms of conditions on a given

set of attributes, replacing the transition probabilities. This task canbe solved efficiently by using standard

decision rule induction algorithms such as for example C4.5 (see Quinlan (1993)). These algorithms, which

have also been successfully applied in many data mining applications, are given a set of examples, each

consisting of the values of a fixed set of attributes and a classification. Consider for example the structure

given on the left side of figure 11. Let’s assume we are given values for three attributes customer, price and

review result and we observe two workflow instances. The first one has atransition fromq1 to q2 and the

values of the attributes are (Jones, 20, ok) and the second has a transition from q1 to q3 and the value tuple

(Smith, 300, no). This yields two examples for each transition shownin table 3.

Figure 11: Induction of conditions

Transitionq1 ! q2 Transitionq1 ! q3
(Jones, 20, ok, TRUE) (Jones, 20, ok, FALSE)
(Smith, 300, no, FALSE) (Smith, 300, no, TRUE)

Table 3: Two sets of examples

Examples like the ones in table 3 can be directly processed by a decision ruleinduction algorithm to

produce conditions as the ones shown on the right side of figure 11.This of course requires a much greater

number of examples than shown here and the quality of the induced condition depends on the provided

attributes. If these are not relevant for the decision, either no condition or a useless condition with a low



predictive accuracy will be found.

As the values of the decision relevant attributes are subject to change during the observation sequence,

it is important to remember the values at those points in time a certain decision is taken. A method for

dealing with this problem is outlined in Herbst and Karagiannis (1998).

Implementation and Evaluation

Prototype

To evaluate the described concepts, we have developed a research prototype. Both the model merging and

the model splitting algorithms are included in this prototype. Theinduction of transition conditions has

not yet been implemented. The prototype is able to read either a text file containing sample strings as

well as workflow traces. For the evaluation we are currently using artificialworkflow traces produced by

a simulation rather than real world workflow traces produced by a WFMS. This allows us to evaluate our

prototype much more easily than applying a WFMS. By using simulation we can generate a wide variety

of workflow traces from workflow models of different sizes and structural complextities. The simulation

component (see Herbst et al. (1997)) of the business process management system ADONIS (see Karagiannis

et al. (1996)) is employed for this purpose. It could easily be replaced by any commercial adaptive WFMS

such as InConcert (Sarin (1996)) or Teamware Flow (Teamware (1997)), thatis able to collect workflow

traces. For the integration into our prototype an interface for transforming the trace to our description

language needs to be provided.

The workflow models induced by the machine learning algorithms are transformed to an ADL (ADO-

NIS Definition Language) file, which can be directly imported by ADONIS. A function for the generation

of the graphical layout, which is provided by ADONIS, allows us to compare the input workflow model

given to the simulation with the workflow model that was induced from the workflow trace. The analysis



and optimization of the induced model can be done using different analysis, evaluation or simulation func-

tionalities of ADONIS. ADONIS already provides a customizable exporting component that may generate

workflow descriptions for different commercial WFMS.

Figure 12 provides an overview of the architecture our prototype. We are using the standard ADONIS

application library for a visualization of the workflow models. Alternatively a workflow model can be

visualized as a hidden markov model, using a special application library, which we have developed for this

purpose. We are making use of this feature, when applying the prototype to regular languages.
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ADONIS Business Process Management System
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Figure 12: The prototype architecture



Experiments

We have evaluated model merging and model splitting experimentally in aseries of applications. Such an

evaluation is essential for a number of reasons:� to determine the quality of the results, to prove the viability of the developed concepts� to learn about the performance of the learning algorithms in different settings� to compare the split and the merge approaches in terms of results and performance� to compare our likelihood-based approach with bayesian model merging

Some of the main results of our evaluation are presented in the following two subsections. We proceed

in two stages. First of all example sets containing a very small number ofexamples from simple regular

languages are used for a first basic evaluation of the concept, this allows the reader to validate the results in-

duced by the prototype. In the second stage we apply the learning algorithms to workflow traces, generated

using simulation on a provided input workflow model.

For an application of our prototype to a real existing process we refer toHerbst (1999), where we apply

our approach to a simplified release process of the Mercedes Benz passenger car development division.

Regular Languages

First of all we evaluate the prototype in three scenarios using three example sets from simple regular lan-

guages. These three example sets are given in table 4. The first example setis identical to the set that was

used throughout this paper to explain model merging and splitting. The second and third example set are

taken from Stolcke and Omohundro (1994). This allows us to compare our algorithms directly with the

bayesian model merging approach.



Example Example Example
set 1 set 2 set 3

abcac aa abab
abcc bb aabab
abcabcc aca abbab
abcabcac bcb abaab

acca ababb
bccb aaabab
accca abbbab
bcccb abaaab

ababbb

Table 4: Examples for three regular languages

To each of these example sets we applied the model merging and the model splitting approach. We

tested each approach using three different parameter settings. The results of these experiments are docu-

mented in table 5. Due to space limitations, we can not show every HMM induced within the experiments.

For each scenario we show the HMM, that should have been found - and that was indeed found for at least

one parameter setting in every scenario. Additionally we show the resulting HMMs for some selected ex-

periments, where learning revealed interesting results or failed completely. The result table further contains

the number of nodes and edges of the correct HMM and of the resulting HMM for each testcase. You can

use these numbers for a quick evaluation of the testcases. This is especially important, for those experi-

ments for which we do not provide a visualization of the resulting HMM. If the number of nodes and edges

are printed in bold font, this indicates that the result HMM of the experiment is equivalent to the correct

HMM. Here “equivalence” refers to structural equivalence, as the probabilities,which are approximated by

empirical counts, may differ depending on the example sets.

Results for example set 1

In five of six testcases of the first scenario the learning algorithms terminated returning the correct HMM

given in figure 5. In the last testcase, theminImprove parameter for the model splitting algorithm was

obviously to high, so model splitting failed. It terminated with an overly general HMM, which could have



Merge Merge Merge Split Split Split

mergeStart/minImprove 20 20 20 0.01 0.08 0.32
preGenFactor 1.1 1.1 1.2
genFactor 1.2 1.3 1.4

Example set 1
Result model nodes/edges 7/8 7/8 7/8 7/8 7/8 6/7
(target model: 7/8)
Search
steps/Time 6/<1s 6/<1s 6/<1s 2/<1s 2/<1s 1/<1s
spent
Result Figure Figure Figure Figure Figure
shown in 7 7 7 10 10 -
Figure

Example set 2
Result model nodes/edges 8/12 8/12 7/11 12/18 8/12 5/11
(target model: 8/12)
Search
steps/Time 10/<1s 10/<1s 11/<1s 7/2s 3/1s 0/<1s
spent
Result Figure Figure Figure
shown in 13 13 - - 13 -
Figure

Example set 3
Result model nodes/edges 10/16 9/15 6/9 8/12 4/6 4/6
(target model: 6/9)
Search
steps/Time 15/1s 16/1s 19/2s 4/1s 0/<1s 0/<1s
spent
Result Figure Figure Figure Figure
shown in - - 14 15 - -
Figure

Table 5: Results for the regular languages

been transformed into the correct model by applying one further split operation.

Results for example set 2

The results for the second scenario show, that in one half of the testcases the correct resulting HMM as

shown in figure 13 was found. The experiments on the model splitting indicate, that this success depends

on the correct parameter setting. In the first testcase (minImprove=0.01) for the model splitting we

received a too specific HMM, in the second case (minImprove=0.08) we got the correct result and in



the last case (minImprove=0.32) an overly general HMM was returned. These results are comparable to

the results published in Stolcke and Omohundro (1994) for bayesian model merging, which were also very

strongly dependent on the selection of the right prior probability.

Figure 13: Correct HMM for example set 2

Results for example set 3

In the third scenario only the merging approach succeeded for one parameter setting. Model splitting failed

completely in all three test cases. We analyzed multiple search traces and discovered,that the first splitting

step is the cause for the failure. The problem is, that after generating themost general HMM, the algorithm

decides to split the node associated to theb before the node associated to thea is split. To find the correct

result, thea node should be split first, to provide the context for correctly splitting theb. So in this case the

heuristic is misleading the search into a suboptimal split decision, which leads to an overly specific model

as shown in figure 15. Splitting can only be prevented by selecting a highminImprove parameter, which

causes the learner to terminate with the most general HMM. The model mergingalgorithm does not run



into these problems. Selecting the right parameters allows it to find thecorrect result as shown in figure 14.

After selecting the right parameters the same results are returned by bayesianmodel merging as reported in

Stolcke and Omohundro (1994).

Figure 14: Correct HMM for example set 3

Figure 15: Specialization failed, because of a suboptimal split operation



Workflow Traces

The scenarios described in this section are based on workflow traces generated by the simulation of an input

workflow model in ADONIS. Each of the three workflow traces contains approximately 300 examples. To

each of these traces we applied model merging and model splitting using threedifferent parameter settings.

To determine the quality of the induced model we compared it with the input model. As the input model

was discovered in at least one experiment for each scenario, we do not provide separate figures showing

the input workflow models. The input models differ from the correct result models only in their transition

probabilities, which of course may differ due to the approximation using empirical counts. So if in the

following we talk about an input model shown in a certain figure, this only refers to the structure of the

model not it’s probabilities.

Table 6 summarizes the results for the experiments using workflow traces. For an explanation of the

rows and columns we refer to the regular languages section. It must be mentioned though, that the number

of nodes and edges mentioned in table 6 do not reflect the number of nodes and edges of the workflow

model, but of it’s equivalent HMM representation. These numbers differ because HMM’s do not contain

separate decision and activity nodes. You can verify these numbers if you consider an activity node of a

workflow model and it’s associated outgoing decision node as one node.

Results for Workflow Trace 1

In the first scenario we generated the trace from the workflow model given infigure 16. This workflow

model contains exactly one node for each distinct activity. This is the simplest possible task for the learning

component. Given good parameters neither the merging nor the splittingmay fail. Any sequence of merge

operations applied to the most specific model will sometime lead to the correct result. Success can only be

prevented by choosing too small values for the generalization factors. This obviously occurred in the first

testcase. For splitting the situation is similar. Because we are using only a small example set of an infinite



Merge Merge Merge Split Split Split

mergeStart/minImprove 20 20 20 0.01 0.08 0.32
preGenFactor 1.02 1.1 1.3
genFactor 1.05 1.2 1.6

Workflow trace 1
Result model nodes/edges 10/14 7/9 7/9 7/9 7/9 7/9
(target model: 7/9)
Search
steps/Time 60/7s 44/4s 40/3s 0/<1s 0/<1s 0/<1s
spent
Result Figure Figure Figure Figure Figure
shown in - 16 16 16 16 16
Figure

Workflow trace 2
Result model nodes/edges 7/9 7/11 6/10 7/9 7/9 7/9
(target model: 7/9)
Search
steps/Time 56/10s 46/6s 43/4s 2/1s 2/1s 2/1s
spent
Result Figure Figure Figure Figure Figure
shown in 17 18 - 17 17 17
Figure

Workflow trace 3
Result model nodes/edges -/- 9/22 7/17 11/17 11/17 10/17
(target model: 11/17)
Search
steps/Time -/>8h 154/217s 103/48s 4/2s 4/2s 3/2s
spent
Result Figure Figure
shown in - - - 19 19 -
Figure

Table 6: Results for workflow traces

set of possible examples, splitting states may improve the likelihood of the model. The correct result can

only be found, if the value of theminImprove parameter is big enough to prevent specialization. In all

three testcases of the splitting approach this parameter was obviously chosen right.

Results for Workflow Trace 2

The workflow model (see figure 17) used to generate the second workflow trace is slightly more compli-

cated. At a first glance it looks the same as the first workflow, but looking at the activities reveals that thea



Figure 16: Correct result and input model for workflow trace 1

and theb activity are referenced by two activity nodes.

Figure 17: Correct result and input model for workflow trace 2

While splitting is successful for all three parameter settings, mergingonly returns the correct result for

one testcase. Figure 18 shows an interesting case. While the correct number of activity nodes for each of

the activities has been identified, the model contains some links which are not present in the input model

of figure 17. These links, which can easily be identified by their low probabilities, are due to suboptimal

merging decisions.

What also becomes obvious, when looking at the result table for this scenario are the differences in the

performance of merging and splitting. Splitting requires less search steps and less time than merging.



Figure 18: Suboptimal generalization containing unnecessary edges

Results for Workflow Trace 3

The last workflow trace is even more complicated. It is generated by a workflow model (see figure 19)

containing many loops and many nodes referring to identical activities.

Figure 19: Correct result and input model for workflow trace 3

This scenario reveals the deficits of the merging approach. If the parameters for the first merging

phase (mergeStart andpreGenFactor) do not allow enough merging, the search space explodes

and performance becomes unacceptable. We aborted the first testcase after 8 hours. Aslight change of

parameters allowing more merging in the first phase, leads to a drastic improvement of the performance but



also to suboptimal merge decisions, which prevent the algorithm fromfinding the correct result. We have

tried over 100 parameter settings for model merging and in none of these experiments the correct model

was found within 8 hours, after which we aborted each trial.

Even in this scenario the splitting approach performs very well and given aright parameter it will find

the correct result. It is by far less sensitive to parameter variations than model merging.

Evaluation and Discussion

In all testcases the machine learning component found the right results for at least one parameter setting.

The results of our merging algorithm using a pure likelihood heuristic were as good as those of the bayesian

model merging algorithm presented in Stolcke and Omohundro (1994) for the small example sets from the

regular languages. Due to a suboptimal split decision the model splitting approach failed for one testcase.

When applied to workflow traces with many examples, model splitting produced superior results at a

better performance than the model merging algorithm. It was also less sensitive to changes in the parame-

ters. Although generally there is no reason to favor a general-to-specificlearner. In the domain of workflow

models having only a few nodes associated to the same activity it seams reasonable to start with a most gen-

eral model. Because fewer search operations (split/merge) lead to the target model, the chance of getting

stuck in a local optimum of the heuristic function is less than in the merging approach and the performance

is better.

Due to the use of hill-climbing search, the success of both algorithmsis of course dependent on the

structural complexity of the target model. For some target models it maybe necessary to perform a series of

merge or split operations, that do not improve the heuristic function, to provide the context for performing

some other really important merge or split operations, which improvethe heuristic function.

The current performance of the splitting algorithm was fine, even for large example sets. We have

even tried example sets with more than 20000 examples and still received an answer within 10 seconds.



The underlying structure of the target model plays a much greater role for the performance as it directly

determines the size of the search space. The experiments show, that in the workflow domain the current

performance of the model splitting approach leaves enough time to employa better search algorithm, that

will prevent getting stuck in a local optimum of the heuristic function for most practically relevant cases.

When a good model is already provided as prior knowledge, it may make sense to prefer model merging.

It should be more efficient, since it may apply an incremental approach. So it might be a good solution to

apply model merging in the adaptation phase, when a good model is availableas background knowledge and

model splitting in the acquisition phase, when there is little knowledge about the structure of the workflow

at hand.

The experiments show, that finding the correct model depends on choosingthe parameters of the induc-

tion algorithms correctly. In practical applications the correct model of course is unknown, which makes

it difficult to decide on the parameters. Especially the parameters that determine the degree of specializa-

tion/generalization (likeminImprove andgenFactor) are critical. Our experiences also show that a

process engineer should be able to select good parameters by looking at the log-likelihood curve (like the

one shown in figure 8). Providing that enough examples have been observed, structurally significant oper-

ations that have major effects on the set of workflow instances covered by themodel usually result in large

changes of the log-likelihood, while less significant operations likeunrolling a loop of a model result in

only minor (some orders of magnitude lower) changes of the log-likelihood. With this observation it should

be possible to provide the process engineer with additional assistencein finding good parameters.

At the same time for practical applications it makes sense to relax the requirement that the correct model

is found. First of all it is questionable whether such a correct model exists at all, as workflows may change

as business evolves over time. Furthermore, even if we assume that the workflow model is constant over a

certain period of time, there are often several alternative ways for modelinga certain business process. Some

process engineers may want to make certain dependencies explicit within the structure of the model and



other process engineers may prefer a structurally overly general model and handle additional dependencies

within transition conditions. In any case the models induced by our induction algorithms are more useful

for a process engineer than a large collection of unrelated workflow instances.At the same time a slight

overgeneralization that can be compensated by appropriate transition conditions or manual user decisions

seems to be more useful than an overspecialization. For example a workflow model having a loop that

iterates over a certain sequence of activities seems to be more useful than a modelhaving three separate

paths with one, two or three repetitions of this sequence. In the first casea transition condition or a manual

decision can stop any further iteration after each completion of the sequence. In case separate paths are

used, one would have to decide on the number of iterations in advance, which is usually not possible. As

workflow splitting has some tendency to overgeneralization this is another reason to prefer the splitting

approach over the merging approach.

Related Work

In Agrawal et al. (1998) an approach for mining process models from workflow logs is presented. This

approach is based on the induction of directed graphs. In contrast to our approach it is able to deal with

concurrency. One major restriction of this approach, which is not presentin ours, is that each distinct

activity must be associated to one unique node within the workflow model. In terms of markov models this

means that there are no hidden states. Applying this method to the examples considered here would thus

generate overly general models having only one node for each activity.

In Cook and Wolf (1996) three different methods for the induction offormal process models are pre-

sented and evaluated. The first one called RNET is based on a recurrent neural network. It shows some

limitations concerning accuracy, performance and usability. The authors consider RNET as inferior to the

other two methods they present. The second method is a purely algorithmic method called KTAIL. It is



based on a merging method similar to ours. In contrast to our log-likelihood based heuristic, this method

merges states whenever they have the followingk symbols in common, wherek is a parameter to the algo-

rithm. As this basic method tends to produce overly complex automatons due to the fixed length context,

Cook and Wolf describe additional mechanisms that reduce the complexity of the model by further state

merging, based on the predecessor state and the output behavior of the states considered for merging. Never-

theless Cook and Wolf observed that this method leads to overly complex models when a largek is selected

and the accuracy suffers ifk is too small. Both our merging and our splitting approach do not suffer from

this problem, because they selectively consider a large context of a certain state only where necessary for

improving the log-likelihood. The third method presented in Cookand Wolf (1996) is called MARKOV. It

is similar to our splitting approach. To split states this method counts occurrences of two and three sym-

bol length sequences and splits states that enable the generation of certain three symbol length sequences,

which were not observed in the samples. While this approach does a completesearch in a very limited

search space (a state that is result of a split is never split again) our approach does an incomplete search in

an infinite search space. It is not clear how the limited search space of MARKOV could be extended because

are there exponentially many possiblek-length sequences and keeping a table of these seems intractable.

In contrast the fairly simple search method of our approach can be very easily replaced by an enhanced

search method like e.g. beam-search or simulated annealing. Some of the more recent work Cook and Wolf

(1998) by the same authors also deals with concurrent process models. It uses three different metrics for

the number, frequency and regularity of event sequences to estimate a modelof the concurrent process. But

this approach is restricted to process models having unique activity nodes and would thus overgeneralize

the examples we have considered here.

Another approach called RAP is presented in Bocionek and Mitchell (1993). RAPis a system which

supports the users in reserving meeting and lecture rooms. It uses a technique called dialog-based learning

to acquire a workflow model represented as a finite state machine by observing the transfer of structured



e-mails. RAP has some limitations concerning inconsistent user behavior (compare Bocionek and Mitchell

(1993)), which are not present in our approach.

The idea of merging technologies for organizational learning and workflowmanagement is presented

in Wargitsch (1997). The developed system uses completed business cases stored in an organizational

memory to configure new workflows. The selection of an appropriate historical case is supported by a case-

based reasoning component. While we focus on repetitive processes this approach was designed for more

unstructured, project-like processes.

Similar approaches have also been considered in the area of design process management. Some early

work reported in Casotto et al. (1990) describes a design process management system called VOV, which

is based on design traces. This system records activities and the data dependencies between these activities

in a so-called design trace. This design trace is used for the coordination of team design, consistency

maintenance and documentation. While the basic idea of defining process models by executions is the same

as ours, the methods used in VOV are rather limited. VOV simply records one instance without applying

any generalization.

Summary, Conclusions and Future Work

We described a machine learning component, which is able to induce a sequential workflow model from

traces of manually enacted workflow instances. This component is realized by the composition of two

machine learning algorithms, one for the induction of the structureand one for the induction of transition

conditions. While we have presented two different alternative solutions for the induction of the structure

in detail, we have outlined only the basic idea for the induction of the conditions. The two alternative

algorithms for the induction of the structure - model merging and model splitting - have been implemented

in a research prototype. Our experimental evaluation shows that both algorithms provide useful results. In



the workflow domain, model splitting produced superior results at a better performance.

The are convinced that the integration of machine learning algorithms will provide a number of signifi-

cant improvements to WFMS. We are thus doing further research in this area. The main goal of our ongoing

work is extending the learning algorithms towards being able to deal with concurrent workflow models. If

we applied the presented approach to workflow traces generated by a concurrent model, an overly complex

representation of the workflow, containing all possible orderings ofeach concurrent set of activities would

be induced. This of course is not optimal, but it nevertheless is a useful input for a process engineer.

We are currently working on an extension of our induction algorithm,which in contrast to the other

learning algorithms presented in (Agrawal et al. (1998)) and (Cook and Wolf (1998)), is not restricted

to workflow models with unique activity nodes. The main challenge in inducing concurrent workflow

models lies in the detection of dependencies between activities. Once dependencies have been discovered

an enhanced version of the model splitting algorithm described here can be applied. This basic idea is

outlined in Herbst and Karagiannis (1999). Further work must also be done for dealing with noise, caused

for example by erroneous workflow instances. Finally we need to integrate our prototype into an adaptive

WFMS for an evaluation using real world workflow instances.
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Berücksichtigung komplexer Geschäftsprozesse. PhD thesis, Universit”at Erlangen-Nürnberg, Novem-

ber 1998.



Notes1This is a revised and extended version of Herbst and Karagiannis (1998),that was presented at the

Ninth International Workshop on Database and Expert Systems Applications 19982ADONIS is a registered trademark by BOC GmbH


