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Abstract - In the past decade, several rules for fusion of
pattern classifiers’ outputs have been proposed. Although
imbalanced classifiers, that is, classifiers exhibiting very
different accuracy, are wused in many practical
applications (e.g., multimodal biometrics for personal
identity verification), the conditions of classifiers’
imbalance under which a given rule can significantly
outperform another one are not completely clear. In this
paper, we experimentally compare various fixed and
trained rules for fusion of imbalanced classifiers. The
experiments are guided by the results of a previous
theoretical analysis of the authors. Linear, order
statistics-based, and trained combiners are compared by
experiments on remote-sensing image data and on the
X2M2VTS multimodal biometrics data base.
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1 Introduction

One of the problems that are to be faced in designing a
multiple classifier system is the choice of a suitable
fusion rule for the problem at hand [4]. So far few
theoretical works investigated the conditions under which
specific fusion rules can work well, and a unifying
framework for comparing rules of different complexity is
clearly beyond the state of the art [4]. In particular, in
many applications, one has to deal with classifiers
exhibiting very different accuracy, or different pair-wise
correlation (“unbalanced” classifiers [8]). As an example,
multi-modal biometrics systems for personal identity
verification are made up of classifiers processing different
information sources (e.g., speech and face data), whose
performance is usually very imbalanced. Since different
biometrics modalities measure complementary
information, their fusion can lead to a more robust and
better performing system [1,2,3]. Although imbalanced
classifiers are common in many other applications, the
conditions of classifiers” imbalance under which a given
rule can significantly outperform another one are not
completely clear [8]. Therefore, it is of great interest to
investigate the performance of different rules for fusion of
imbalanced classifiers.
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In the past decade, several rules for fusion of
classifiers outputs have been proposed in the literature [4].
For the purposes of our discussion, the different
combining rules can be subdivided into two main
categories: fixed and trained rules. Fixed rules, like the
majority voting and the simple averaging, do not require
any training. Trained rules, like the weighted averaging
and the Behaviour Knowledge Space rule [5,6], require a
learning phase. On the basis of experimental and
theoretical results, researchers agree that fixed rules
usually perform well for classifiers exhibiting similar
accuracy, and zero or similar negative correlation among
their outputs (balanced classifiers [8,10]). Trained rules are
instead claimed to outperform fixed rules for imbalanced
classifiers. However, the conditions of classifiers’
imbalance under which trained rules can significantly
outperform the fixed ones are not completely clear. This
problem is of great practical interest, since it is known
that the performance of trained rules strongly depends on
the quality and size of the training set. This means that it
is not guaranteed that the theoretical advantage of trained
rules can be achieved in practice. For example, the
theoretical advantages of asymptotically optimal trained
rules (e.g., the Behavior Knowledge Space rule) are
cancelled in the case of small data sets.

In this paper, we report an experimental comparison
between well-known fixed and trained rules (Section 2). In
particular, we focused on the majority voting rule, simple
average and order statistics combiners as fixed rules, and
weighted average and Behaviour Knowledge Space as
trained rules. On the basis of the theoretical results
reported in [7,8], our experiments were aimed to
investigate the behaviour of the above fusion rules for
imbalanced classifiers. To this end, we considered two
pattern recognition applications: classification of remote-
sensing images, and personal identity verification with
multimodal biometrics data. Results are reported in
Section 3. Conclusions are drawn in Section 4.

2 Fixed and trained combiners

In this Section, we describe the fusion rules which have
been used for our experimental comparison. In particular,
we focus on behaviour of each rule when imbalanced
classifiers are used.



In Sect. 2.1, we describe two rules based on linearly
combining the outputs of individual classifiers, namely,
simple and weighted average. In Sect. 2.2, we describe
fixed rules based on order statistics operators. In Sect.
2.3, a trained rule, the Behaviour Knowledge Space, is
briefly described. For our experimental comparison, we
also considered the majority voting rule. Despite its
simplicity, this rule proved to be effective in several
applications.

In the following, we consider classifiers whose
outputs are approximations of the class posterior
probabilities. The a posteriori probability of the i-th class
provided by the k-th classifier for a given input pattern x
is denoted as P (x).

2.1 Linear combiners

One of the simplest rules for fusing classifiers with
continuous outputs is the linear combination. For an
ensemble of N classifiers, the a posteriori probabilities
computed by the linear combiner can be denoted as:
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where the w’s are the coefficients of the linear
combination. If all the coefficients are equal (i.e., wy =
1/N), we obtain a fixed combining rule (simple
averaging), otherwise we have a trained rule (weighted
averaging). Simple averaging is widely used for its
simplicity and effectiveness, demonstrated in several
experimental studies. However, it can suffer from
individual classifiers whose performance is significantly
different. Weighted averaging can handle imbalanced
classifiers more effectively, but it requires a training phase
(weights estimation).

A theoretical framework for the analysis of the
simple average combining rule was developed by Tumer
and Ghosh [9,10]. Roli and Fumera extended this
framework to weighted averaging, in order to provide an
analytical comparison between these two rules [7,8]. In
the following, we summarise the main results described in
[7.8].

For a one-dimensional feature vector x, the outputs
of an individual classifier can be denoted as:

PO =p(x)+&(x)

where pi(x) is the “true” posterior probability of the i-th
class, and &(x) is the estimation error. The analysis of
classifier performance can be focused around the class
boundaries, under the hypothesis that the boundaries
provided from the approximated a posteriori probabilities
are close to the optimal Bayesian boundaries [9,10].
Assuming that the estimation errors &(x) on different
classes are i.i.d. variables with zero mean and variance o?,

Tumer and Ghosh showed that the expected value of the

added error (i.e., the error above the Bayes one), Eadq, Can
be expressed as:
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where s is a constant term depending on the values of the
probability density functions in the optimal decision
boundary. Consider now the weighted average of the
outputs of an ensemble of N classifiers, with normalised
weights wi:

YW =1, W20 k=1..,N. )

The outputs of the weighted averaging combiner can
be expressed as [7,8]:

() = 3 LW () =R () + 3, Wl (X) =
=p () +&(x),

where £ (x) denotes the estimation error of the combiner.
We assume that, for any individual classifier, the
estimation errors £°(x) on different classes are i.i.d.

variables with zero mean and variance ajk. We also

assume that the errors &"(x) and &'(x) of different
classifiers are correlated on the same class, with
correlation coefficient p™, while they are uncorrelated on
different classes [7,8,10]. Under these assumptions, we
showed that the expected value, EZ, of the added error

of the weighted averaging combiner can be expressed as
[7,8]:
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Let us now first analyse the case of uncorrelated
estimation errors (i.e., o™ = 0 for any m # n). In this

case, Eq. (2) reduces to:
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Taking into account Eqg. (1), it turns out that the
weights that minimise EZ; are:
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Such optimal weights are inversely proportional to
the expected added errors of the individual classifiers. For
equal values of the expected added error, the optimal
weights are w,=1/N, that is, simple averaging is the
optimal combining rule in the case of classifiers with
equal performances (“balanced” classifiers). In such case, it
can be shown that E2¢ =EX,/N, that is, simple



averaging reduces the expected added error of individual
classifiers by a factor N [9,10].

Consider now the case of correlated estimation errors
(Eq. (2)). In this case, it is not easy to derive a general
analytical expression for the optimal weights. However, it
turns out from Eq. (2) that the optimal weights are
w=1/N if all the classifiers exhibit both equal
performances and equal correlation coefficients. Otherwise,
different weights are needed to minimise the expected
added error EZj; of the combiner. It is worth noting that

simple averaging is not the optimal rule if individual
classifiers have the same accuracy but different pair-wise
correlation. Weights are necessary also for compensating
differences in correlation [7,8].

Using the above theoretical model, we quantitatively
evaluated the theoretical performance improvement
achievable by weighted averaging over simple averaging
for imbalanced classifiers [7,8]. The main result of this
analysis was that weighted averaging can significantly
outperform simple averaging only for ensembles
exhibiting high values of the range of classifiers error rates
(i.e., the difference between the error rate of the worst and
the best individual classifier). However, our analysis also
pointed out that the performance improvement is not
related only to the range of classifier error rates, but also
to the “scattering” of the error rates. Moreover, the
differences in correlation also play an important role in
determining the performance improvement achievable by
weighted averaging.

2.2 Order Statisics combiners

Several fixed combining rules can be defined by using
order statistics (OS) operators. Consider the outputs of the
N individual classifiers, for any class i, ordered as
follows:
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The well-known max, med and min combiners are
defined as:
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Even if combining rules based on OS operators are
fixed rules, Tumer and Ghosh pointed out that they
provide more flexibility than simple averaging [10].
Moreover, Tumer and Ghosh argued that OS combiners
could be an effective alternative to weighted averaging for
imbalanced classifiers, especially for cases in which it can
be difficult to obtain good estimates of the optimal
weights.

2.3 Behaviour Knowledge Space combiner

The Behaviour Knowledge Space is a trained fusion rule.
The final decision is based on the amount of support
received for each class jointly from all the individual
classifiers [5,6]. Let us denote the decision of the k-th
classifier for the input pattern x as A(x). For a c-class
problem, J(x) can take on values 1, ..., c. The
combination of the decision outputs of the N classifiers,
&(X), k=1, ..., N, defines a point in a c-dimensional
discrete space, which is called Behaviour Knowledge
Space (BKS). Each point of the BKS can be considered as
indexing an entry of a look-up table. Therefore, the whole
BKS can be regarded as a look-up table. For a given entry
(&u(x), ..., &(X)), the BKS rule assigns the input pattern x
to the class exhibiting the highest number of patterns for
that entry. In other words, for each entry (i.e., for each
pattern of classifiers’ decisions), the class with the greatest
number of votes is chosen by the BKS rule. The values of
the look-up table entries are computed by a validation set.

3 Experimental results

In this section, we report experiments aimed at comparing
the fusion rules described in Sect. 2. We focus on the
behaviour of these rules for ensembles of classifiers
exhibiting different accuracy. In particular, for linear
combiners (simple and weighted average), our experiments
are guided by the theoretical results presented in [7,8], and
summarised in Sect. 2.1.

In Sect. 3.1, we report experiments on a data set of
remote-sensing images. We focused on the comparison
between simple and weighted average rules. In Sect. 3.2,
we present a comparison among all the fusion rules
described in Sect. 2. To this end, the XM2VTS data base,
containing multi-modal biometrics data, was used.

3.1 Results with the Feltwell data set

The experiments described in this section were carried out
on a data set of remote-sensing images related to an
agricultural area near the village of Feltwell (U.K.) [11].
This data set consists of 10,944 pixels belonging to five
agricultural classes. It was randomly subdivided into a
training set of 5,820 pixels, and a test set of 5,124 pixels.
Each pixel is characterised by fifteen features,
corresponding to the brightness values in the six optical
bands, and over the nine radar channels considered.

For our experiments, we used ensembles made up of
a k-nearest neighbours classifier (k-NN), with a k value of
15, and two multi-layer perceptron (MLP) neural networks
with one hidden layer. In order to obtain imbalanced
classifiers, we trained several MLPs with two different
architectures, characterised by five and two hidden units.
The number of input and output units was equal to the
number of features and data classes, respectively. We then
selected five ensembles characterized by various degrees of
classifiers’ imbalance. The percentage error rates of the
individual classifiers on the test set are shown in Table 1.



The range of the error rates is shown in the last column,
denoted as A. All the values were averaged over ten runs
corresponding to ten training set / validation set pairs,
obtained by a bootstrap procedure from the original
training set. The validation set contained the 20% of
patterns of the original training set. The training of MLPs
was stopped as it reached the minimum error probability
on the validation set.

Table 1. Average percentage errors on the test set of the
individual classifiers forming the five ensembles. For each
ensemble, the parameter A indicates the range of the error
rate, that is, the difference between the best and the worst
classifier.

kNN MLP1 MLP2 A

Ensemble1 | 10.01 11.68 12.05 2.04
Ensemble2 | 10.01 18.20 18.00 8.19
Ensemble 3 | 10.01 13.27 17.78| 7.77
Ensemble 4 | 10.01 25.97 26.23| 16.22
Ensemble5 | 10.01 17.78 26.23| 16.22

According to the value of the parameter A, the above
ensembles exhibit different degrees of classifiers’
imbalance. Ensemble 1 is the most balanced set, since it
exhibits the smallest value of the parameter A. All the
other ensembles are more imbalanced. In particular,
ensembles 4 and 5 exhibit the highest degree of imbalance
(A = 16.22). However, it should be noted that ensemble
4 and 5 differ for the error rate exhibited by MLP1. The
same observation holds for ensembles 2 and 3. For linear
combiners, we proved that such difference strongly
influences the degree of classifiers imbalance, and,
consequently, the performance difference between simple
and weighted averaging [7,8].

Since in these experiments we were interested in the
ideal performance of weighted averaging, the optimal
weights of the linear combination were computed on the
test set by “exhaustive” search. The average performance
of simple and weighted averaging on the test set are
reported in Table 2, together with the values of the
optimal weights.

Table 2. Average percentage error rates on the test set of
simple average (E®) and weighted average (E"®). For the
weighted average rule, the optimal values of the weights
assigned to the individual classifiers are shown.

combiner error rates optimal weights

E® E"™ E*E™[ kNN MLP1 MLP2
Ens.1 ] 10.00 9.37 0.63| 0.576 0.200 0.224
Ens.2 | 12.09 9.69 240 0.689 0.080 0.231
Ens.3 | 1069 9.63 1.06( 0.681 0.231 0.088
Ens. 4| 16.81 9.79 7.02( 0.838 0.006 0.156
Ens.5 | 1244 9.7v3 2.71] 0.752 0.103 0.143

Table 2 shows that weighted average always
outperforms the best individual classifier. Simple average
achieves this result only for the balanced Ensemble 1, but
with a negligible performance improvement. Moreover,
the performance of simple and weighted average is very
similar for the balanced Ensemble 1, while weighted
average outperforms simple average for the imbalanced
ensembles. In particular, the higher is the value of the
range A, the higher is the performance improvement
achieved by weighted averaging. However, it is worth
noting that the difference between the performance of
simple and weighted averaging, E* - E", does not depend
on the range A of classifiers error rates only, but also on
the error rate exhbited by MLP1. Ensembles 2 and 5
exhibit very different values of A, respectively 8.19% and
16.22%, but similar values of E*® - E"™. On the other
hand, the performance difference E* - E"® can widely vary
even for equal values of A, as happens for Ensembles 4
and 5. In [7,8], we provided a theoretical explanation of
these results. It is also worth noting that, for imbalanced
ensembles, the minimum of the optimal weights is
always very low. This seems to mean that weighted
averaging can significantly outperform simple averaging
only by discarding one of the worst classifiers.

3.2 Results with the XM2VTS data base

The experiments on the fusion of different biometrics
modalities for personal identity verification were carried
out using the XM2VTS data base. XM2VTS is a
multimodal data base consisting of face images, video
sequences, and speech recordings of 295 subjects, taken in
four sessions. During each session two head rotation and
speaking shots were taken. The subjects were randomly
subdivided into 200 clients, 25 evaluation impostors and
70 test impostors [12]. In particular, the first shot of the
first three sessions were taken as training data, and the
second shots for evaluation. Therefore the evaluation set
contains 600 client shots and 40,000 impostor cases,
while the test set contains 400 client shots and 112,000
impostor cases.

Our experiments were focused on two biometrics
modalities: speaker voice and frontal face image. Among
the different classifiers designed for each modality, we
considered two speech classifiers (denoted in the
following as Classifiers 3 and 4) and six face classifiers
(denoted as Classifiers 1, 2, 5, 6, 7 and 8). Further details
about these classifiers can be found in [13]. Their decision
thresholds were selected on the evaluation set using the
Receiver Operating Curve (ROC), so that the false
acceptance and false rejection error rates are equal. The
client and impostor error rates on the test set, achieved
using these thresholds, are reported in Table 3, together
with the average error rates.

Table 3 shows that the performance of the individual
classifiers is very different. This happens even for
classifiers based on the same sensing modality. For
example, the average error rates of the two speech
Classifiers 3 and 4 differ by a factor 6. Similarly, a



difference by a factor 4 can be observed between the best
and worst face classifiers (Classifier 2 and 8).

Table 3. Test set error rates for the eight individual
classifiers.

Error rate |Classif. 1 Classif. 2 Classif. 3 Classif. 4
Average 7.185 3.105 4.205 0.740
Client 6.750 2.750 7.000 0.000
Impostor 7.620 3.460 1.410 1.480

Error rate |Classif. 5 Classif. 6 Classif. 7 Classif. 8

Average 7.055 7.510 7.310 12.940
Client 6.000 7.250 6.500 12.250
Impostor 8.110 7.770 8.120 13.630

Using the above eight classifiers, we designed four
ensembles with different degrees of classifiers’ imbalance.
The classifiers of each ensemble and the corresponding
test set average error rates are reported in Table 4.
According to the values of the parameter A, Ensemble 1 is
balanced, while the other ensembles are more imbalanced.
In particular, Ensembles 2 and 3 are characterized by the
same value of A, but different error rates of the *“mid-
range” classifier. Ensemble 4 exhibits the highest value of
the parameter A.

Table 4. Average error rates of the four ensembles on the
test set. For each ensemble, the parameter A indicates the
range of the error rate, that is, the difference between the
best and the worst classifier. Such parameter is used for
characterizing the degree of classifiers’ imbalance.

Classifiers
Ens. 1 51,7
Ens. 2 2,7,6
Ens. 3 2,3,6
Ens. 4 2,6,8

Average Error Rates A
7.055 7.185 7.310 0.255
3.105 7.310 7.510 4.405
3.105 4.205 7.510 4.405
3.105 7.510 12.940 9.835

The average test set error rates obtained using the
five fixed rules are reported in Table 5, while Table 6
shows the results of the two trained rules. We remark that
the optimal weights of the weighted averaging rule were
computed by exhaustive search on the test set.
Analogously, the BKS rule was trained on the test set.
Therefore, the related results represent the ideal
performance of these rules.

Table 5 shows that simple average outperforms the
best individual classifier only for the balanced Ensemble
1. The performances of the majority voting rule are
significantly good. In particular, majority voting
exhibited an excellent performance for Ensemble 3. The
performance of the three combining rules based on order
statistics operators is often significantly worse than
simple average and majority vote. The only exception is
the med combiner for Ensemble 3. However, the med
combiner exhibited an error rate very similar to that of the
worst classifier for Ensemble 4. The max rule performed

worse than all individual classifiers for the balanced
Ensemble 1.

Table 5. Average test set error rates for the five fixed rules
described in Sect. 2. S.A. denotes the simple average rule.

S.A. Majority OSmin OSmed OS max
Ens.1 6.014 5696 6.465 6.725  9.049
Ens.2 5739 5836 7475 6.465 5.325
Ens.3 4420 1.035 7.470 1587 5.325
Ens.4 5509 3895 7.474 11980 5.325

Table 6. Average test set error rates for the two trained
rules. W.A. denotes the weighted average rule. BKS
indicates the Behavior Knowledge Space method.

W.A. BKS
Ensemble 1 3.205 4,909
Ensemble 2 2.184  4.246
Ensemble 3 0.351 0.474
Ensemble 4 2.150 3.487

Let us now consider the performance of the trained
rules (Table 6). Note that the weighted average rule always
outperformed both the best individual classifier and all the
other combining rules. In particular, the error rate
improvements over the simple average rule are reported in
Table 7. We point out that the weighted average rule
significantly outperforms simple average even for the
balanced Ensemble 1. However, the corresponding
improvement is comparable to that achieved on the
imbalanced ensembles, in particular for Ensemble 4.
Concerning the optimal weights, which are reported in
Table 8, it is possible to note that a very low weight is
assigned to one of the worst classifiers. This seems to
confirm that weighted average can significantly
outperform simple average only by discarding one or more
of the worst classifiers. Consider now the BKS rule. It
outperforms the best individual classifiers only for
Ensembles 1 and 3. Moreover, it is worth noting that its
performance is quite similar to those of the majority
voting rule. The difference between the error rates is
greater than 1% only for Ensemble 2. The BKS rule
achieves very good performance for Ensemble 3, like
weighted average, majority vote and med.

To analyze further the above performance, we
computed the correlation coefficients among the outputs
of the classifiers of each ensemble. They are reported in
Table 9. For Ensemble 3, the outputs of each pair of
classifiers exhibit very low correlations, except for the
outputs of classifiers 2 and 6 corresponding to clients.
The correlation of the other ensembles are instead
significantly greater, at least for some pairs of classifiers.
This can explain the good performance achieved by the
most of the rules for Ensemble 3. However, it is
interesting to note that the simple average rule failed to



take advantage of low correlated classifiers, as can be seen
from Table 5.

Table 7. Difference between the test set error rates
achieved by the simple and weighted average rules for the
four ensembles.

Ensembles 1 2 3 4
EX-E™ 2.809 3.555 4.069 3.359

Table 8. Optimal weights of the weighted average rule for
the four ensembles.

Ensemble 1 5 1 7
Optimal weights  0.010  0.780  0.210
Ensemble 2 2 7 6
Optimal weights  0.850 0.000 0.150
Ensemble 3 2 3 6
Optimal weights  0.140  0.830  0.030
Ensemble 4 2 6 8

Optimal weights  0.870  0.080 _ 0.050

Table 9. Correlation coefficients among the outputs of the
classifiers of the four ensembles on the test set. The
correlations have been computed separately for the two
classes of clients and impostors. For each ensemble, the
correlation coefficients were computed for all the possible
couples of classifiers. (x,y) indicates the pair of classifiers
considered.

Ensemble 1  (1,5) 1,7 (7
Clients 0.440 0.424 0.975
Impostors 0.091 0.026 0.960
Ensemble 2 (2,6) 2,7) (6,7
Clients 0.421 0.452 0.977
Impostors -0.050 0.041 0.964
Ensemble 3 (2,3) (2,6) (3,6)
Clients 0.036 0.421 0.067
Impostors 0.013 -0.050 0.057
Ensemble 4  (2,6) (28 (6,8
Clients 0.421 0.363 0.548
Impostors -0.050 0.068 0.505

4 Conclusions

In this paper, we reported an experimental comparison
between fixed and trained combining rules for fusion of
classifiers. The experiments were carried out using a data
set of remote-sensing images, and a personal identity
verification problem based on a multimodal biometrics
data base. In particular, we focused on the behaviour of
the considered combining rules for ensembles of
imbalanced classifiers.

The results showed that the performance
improvements of the two trained rules (weighted average
and BKS) over fixed rules are lower than one can think of.
In particular, the weighted average rule significantly
outperformed simple average only for ensembles of
classifiers exhibiting very different error rates. Moreover,
such improvement was achieved only by discarding at
least one classifier. This result is in agreement with the
theoretical results presented in [7,8]. Concerning the BKS
rule, its performance was not significantly better than the
ones of majority voting, and it was always slightly worse
than the one of weighted average.

These results point out that, even for ensembles of
classifiers exhibiting very different performances, trained
rules could not provide significant advantages over fixed
rules. It should be also noted that we considered the ideal
performance of trained rules. In practical applications,
their performance can be affected by small or low
representative training sets, reducing further the achievable
improvement over fixed rules. Further work is therefore
required to clearly identify the conditions under which
trained rules can significantly outperform fixed rules.
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