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ABSTRACT. Amazons is a board game which combines elements of Chess

and Go. It has become popular in recent years, and has served as a useful

platform for both game-theoretic study and AI games research. Buro showed

that simple Amazons endgames are NP-equivalent, leaving the complexity of

the general case as an open problem.

Konane is an ancient Hawaiian game, with moves similar to peg solitaire.

Konane has received some attention in the combinatorial game theory commu-

nity, with game values determined for many small positions and one-dimen-

sional positions. However, its general complexity seems not to have been

previously addressed.

Cross Purposes was invented by Michael Albert, and named by Richard

Guy at the Games at Dalhousie III workshop, in 2004. It is played on a Go

board. Cross Purposes is a kind of two-player version of the popular puzzle

Tipover: it represents stacks of crates tipping over and blocking others from

tipping over.

We show that generalized versions of these games are PSPACE-complete.

We give similar reductions to each game from one of the PSPACE-complete

two-player formula games described by Schaefer. Our construction also pro-

vides an alternate proof that simple Amazons endgames are NP-equivalent.

1. Introduction

Combinatorial game theory is concerned with the attempt to find and analyze

winning strategies for combinatorial games, or for tractable families of game

positions. However, it is a curious fact that with few exceptions, any game or

puzzle that is interesting to humans, and whose worst-case complexity is known,

During the preparation of this paper, the author learned that a group including Buro et al. was simultaneously

preparing a paper showing Amazons to be PSPACE-complete [7].
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is computationally as hard as possible based on very general characteristics of

the game. By hardness here we mean computational complexity of determining

the existence of a winning strategy for a given player, from a given position. For

example, Minesweeper is a one-player game (puzzle), with a bounded number

of moves; it is NP-complete [11]. Sliding-block puzzles do not have a bound

on the number of moves; this raises the complexity to PSPACE-complete [10].

Two-player, bounded-move games, such as Hex, are also generally PSPACE-

complete [14]. Other games can be even harder: Chess, Checkers, and Go

(Japanese Rules), as two-player games with no bound on the number of moves,

are EXPTIME-complete [6; 16; 15]. There are harder games still.

Amazons, Konane, and Cross Purposes are all two-player games with a poly-

nomially bounded number of moves. We should therefore expect them to be

PSPACE-complete, merely on the grounds that they are interesting games to

play, and therefore presumably are as complex as possible given their general

characteristics.

In the terminology of combinatorial game theory, all three games also follow

the normal play convention: the first player who cannot move loses. Addition-

ally, all three games are played on a square grid, with pieces that move, or are

captured, or are transformed. These shared characteristics will enable us to use

the same proof technique to show all of them PSPACE-hard. Only the specific

gadgets differ among the three proofs. Our proof technique seems simpler than

that used for many game results, and may have wider applicability. In particular,

the generic crossover construction seems likely to simplify new hardness proofs.

As with most hardness results, the hardness of these games only applies di-

rectly to particular configurations explicitly constructed to have computational

properties. It does not say anything about the difficulty of determining the win-

ner from a standard initial game configuration, or even from reasonable positions

that might arise in actual play. Indeed, Hex is PSPACE-complete in general, but

a simple strategy-stealing argument shows that from an empty board, it is a first-

player win. Nonetheless, a hardness result for a game indicates that there are

limits to the degree to which it can be theoretically analyzed.

Conway, Berlekamp, and Guy argue against a tendency to dismiss hard prob-

lems as uninteresting [2, page 225]:

Some people consider a class of problems “finished” when it has been

shown to be NP-hard. Philosophically this is a viewpoint we strongly

oppose. Some games which are NP-hard are very interesting!

Our view is just the reverse of that argued against: interesting games are almost

of necessity hard. Showing a game to be hard is an indication that the game is

interesting! That is the spirit in which these results are presented.
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Outline. Section 2 describes the reduction to be used for each game. Sections 3,

4, and 5 detail the background, history, rules, and hardness proofs for Amazons,

Konane, and Cross Purposes, respectively. Section 6 summarizes our results.

2. Reduction framework

Formula game. Schaefer [17] showed that deciding the winner of the following

two-person game is PSPACE-complete: Let A be a positive CNF formula (i.e., a

propositional formula in conjunctive normal form in which no negated variables

occur). Each player on his move chooses a variable occurring in A which has

not yet been chosen. After all variables have been chosen, player one wins if A

is true when all variables chosen by player one are set to true and those chosen

by player two are set to false.

We will refer to this game as the formula game. Our hardness reductions

consist of constructing game configurations which force the two players to ef-

fectively play a given formula game.

Given a positive CNF formula A, we build logic and wiring gadgets corre-

sponding to the variables and the formula, as shown schematically in Figure 1.

(We use standard digital logic symbols for AND and OR.) If player one plays

first in a variable, a signal is enabled to flow out from it; if player two plays first,

that signal is blocked. When a signal arrives at or leaves from a gadget, we will

speak of that input or output as activating. By splitting the signals, allowing

them to cross, and feeding them into a network of logic gates, we may construct

a particular signal line that player one may eventually activate only if A is true

under the selected variable assignment. For each game, we arrange for player

one to win just when he can activate that output signal.

x y z w

player one win

Figure 1. Reduction schematic. The circuit shown corresponds to the

positive CNF formula .x _ y/ ^ : : : ^ .x _ z _ w/.
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(a) Half crossover (b) Crossover

Figure 2. Crossover gadgets.

Generic crossover. Crossover gadgets are often among the most complicated

and difficult to construct in game hardness reductions. Rather than construct

three separate crossover gadgets, we give a generic construction for crossing

signals, given the existence of AND, OR, split, and choice gadgets. This means

that in addition to the basic wiring and logic gadgets, we merely need to con-

struct a choice gadget for each game. A choice gadget allows one, but not both,

outputs to activate if the input activates. (Note that while there are traditional

digital-logic methods for crossing signals in planar circuits, they require invert-

ers, which do not fit well into our problem formalism.)

We develop the ability to cross signals in two steps. The first step is the

half-crossover gadget, shown in Figure 2(a). Using half crossovers, we can

make a full crossover gadget, shown in Figure 2(b). Splits are shown with a

forking symbol, choice gadgets with a question mark, and half crossovers with

a plus symbol. These have the expected properties: e.g., if the left input of the

leftmost choice gadget in Figure 2(a) activates, then either, but not both, of its

right outputs may activate; similarly, if the left input of the leftmost split gadget

in Figure 2(b) activates, then both of its right outputs may activate. We note that

this crossover construction is essentially the same as that used in [10]; the only

difference is that in [10], the gates are reversible.

The half crossover has the property that if either input activates, either output

may activate; if both inputs activate, both outputs may activate. Suppose the left

input activates. Then the player propagating the signal may activate the left (i.e.,

upper) output of the left choice, then the top OR and the top output; or he may

choose to activate the right output of the left choice, then the bottom OR, then

the right output of the right choice, and the right output. Similarly, if the bottom



AMAZONS, KONANE, AND CROSS PURPOSES ARE PSPACE-COMPLETE 291

input is activated, the signal may be directed to either output. If both inputs are

activated, then by making the correct choices both outputs may be activated.

For the crossover gadget, we want the left input to be able to propagate

only to the right output, and likewise vertically. First, it is clear that if one

input activates, the corresponding output may also activate; simply choose the

straight-through path to activate for each half crossover. The splits and ANDs

then propagate the signal across the gadget. If both inputs activate, activating

both half-crossover outputs allows both crossover outputs to activate.

Suppose the left split’s input has not activated. Then at most one input to

the left AND may activate, because the bottom-left half crossover can have at

most one input, and thus output, activate. Therefore, the left AND’s output may

not activate. By the same reasoning, the right AND may not activate either. A

similar argument shows that if the bottom split’s input has not activated, the top

AND may not activate. Therefore, the gadget serves to cross signals, as needed.

3. Amazons

Amazons was invented by Walter Zamkauskas in 1988. Both human and

computer opponents are available for Internet play, and there have been several

tournaments, both for humans and for computers.

Amazons has several properties which make it interesting for theoretical

study. Like Go, its endgames naturally separate into independent subgames;

these have been studied using combinatorial game theory [1; 18]. Amazons has

a very large number of moves available from a typical position, even more than

in Go. This makes straightforward search algorithms impractical for computer

play. As a result, computer programs tend to incorporate explicit high-level

knowledge of Amazons strategy [13; 12]. By showing that generalized Amazons

is PSPACE-complete, we provide strong evidence that there is a practical limit

to the degree of analysis possible from an arbitrary position.

As mentioned in the footnote on the first page, Furtak, Kiyomi, Uno, and

Buro independently showed Amazons to be PSPACE-complete at the same time

as the author [7]. (The original version of the present paper, containing only

the Amazons proof, is available at [8].) Curiously, [7] already contains two

different PSPACE-completeness proofs: one reduces from Hex, and the other

from Generalized Geography. The paper is the result of the collaboration of two

groups which had also solved the problem independently, then discovered each

other. Thus, after remaining an open problem for many years, the complexity

of Amazons was solved independently and virtually simultaneously by three

different groups, using three completely different approaches, each of which

leverages different aspects of the game to construct gadgets. This is a remarkable

fact. The reduction from Generalized Geography provides the strongest result:



292 ROBERT A. HEARN

it shows that Amazons is PSPACE-complete even when each player only has a

single Amazon. In contrast, the Hex reduction and the present formula game

reduction each require a large number of Amazons.

Amazons rules. Amazons is normally played on a 10�10 board. The standard

starting position, and a typical endgame position, are shown in Figure 3. (We

indicate burned squares by removing them from the figures, rather than marking

them with tokens.) Each player has four amazons, which are immortal chess

queens. White plays first, and play alternates. On each turn a player must first

move an amazon, like a chess queen, and then fire an arrow from that amazon.

The arrow also moves like a chess queen. The square that the arrow lands on

is burned off the board; no amazon or arrow may move onto or across a burned

square. There is no capturing. The first player who cannot move loses.

Amazons is a game of mobility and control, like Chess, and of territory, like

Go. The strategy involves constraining the mobility of the opponent’s amazons,

and attempting to secure large isolated areas for one’s own amazons. In the

endgame shown in Figure 3, Black has access to 23 spaces, and with proper play

can make 23 moves; White can also make 23 moves. Thus from this position,

the player to move will lose.

Figure 3. Amazons start position and typical endgame position.

3.1. PSPACE-completeness. We follow the reduction framework outlined in

Section 2. The game consists of a variable selection phase, during which all

play occurs in variable gadgets, followed by a phase in which White attempts to

activate a signal pathway leading to a large supply of extra moves, enabling him

to win. Black is supplied with enough extra moves of his own to win otherwise.
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Basic wiring. Signals propagate along wires. Figure 4(a) shows the construc-

tion of a wire. Suppose that amazon A is able to move down one square and

shoot down. This enables amazon B to likewise move down one and shoot down;

C may now do the same. This is the basic method of signal propagation. When

an amazon moves backward (in the direction of input, away from the direction

of output) and shoots backward, we will say that it has retreated.

Figure 4(a) illustrates two additional useful features. After C retreats, D may

retreat, freeing up E. The result is that the position of the wire has been shifted

by one in the horizontal direction. Also, no matter how much space is freed up

feeding into the wire, D and E may still only retreat one square, because D is

forced to shoot into the space vacated by C.

Figure 4(b) shows how to turn corners. Suppose A, then B may retreat. Then

C may retreat, shooting up and left; D may then retreat. This gadget also has

another useful property: signals may only flow through it in one direction. Sup-

pose D has moved and shot right. C may then move down and right, and shoot

right. B may then move up and right, but it can only shoot into the square it just

vacated. Thus, A is not able to move up and shoot up.

By combining the horizontal parity-shifting in Figure 4(a) with turns, we may

direct a signal anywhere we wish. Using the unidirectional and flow-limiting

properties of these gadgets, we can ensure that signals may never back up into

outputs, and that inputs may never retreat more than a single space.

Splitting a signal is a bit trickier. The split gadget shown in Figure 4(c)

accomplishes this. A is the input; G and H are the outputs. First, observe that

A

C

D

E

B

(a) Wire, parity, flow limiter

A

B

C

D

(b) Turn, one way

A

B

C

D

E F

G

H

(c) Split

Figure 4. Amazons wiring gadgets.
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until A retreats, there are no useful moves to be made. C, D, and F may not

move without shooting back into the square they left. A, B, and E may move

one unit and shoot two, but nothing is accomplished by this. But if A retreats,

then the following sequence is enabled: B down and right, shoot down; C down

and left two, shoot down and left; D up and left, shoot down and right three; E

down two, shoot down and left; F down and left, shoot left. This frees up space

for G and H to retreat, as required.

Logic. The variable gadget is shown in Figure 5(a). If White moves first in

a variable, he can move A down, and shoot down, allowing B to later retreat.

If Black moves first, he can move up and shoot up, preventing B from ever

retreating.

The AND and OR gadgets are shown in Figures 5(b) and 5(c). In each, A and

B are the inputs, and D is the output. Note that, because the inputs are protected

with flow limiters — Figure 4(a) — no input may retreat more than one square;

otherwise the AND might incorrectly activate.

A

B

(a) Variable

C

D

B

A

(b) AND

C

D

B

A

(c) OR, choice

Figure 5. Amazons logic gadgets.

In an AND gadget, no amazon may usefully move until at least one input

retreats. If B retreats, then a space is opened up, but C is unable to retreat there;

similarly if just A retreats. But if both inputs retreat, then C may move down

and left, and shoot down and right, allowing D to retreat.

Similarly, in an OR gadget, amazon D may retreat if and only if either A or

B first retreats.
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Choice. For the generic crossover construction to work, we need a choice

gadget. The existing OR gadget suffices, if we reinterpret the bottom input as

an output: if if B retreats, then either C or A, but not both, may retreat.

Winning. We will have an AND gadget whose output may be activated only

if the formula is true under the chosen assignment. We feed this signal into a

victory gadget, shown in Figure 6. There are two large rooms available. The

sizes are equal, and such that if White can claim both of them, he will win, but

if he can claim only one of them, then Black will win.

A

B

roomroom

Figure 6. Amazons victory gadget.

If B moves before A has retreated, then it must shoot so as to block access

to one room or the other; it may then enter and claim the accessible room. If

A first retreats, then B may move up and left, and shoot down and right two,

leaving the way clear to enter and claim the left room, then back out and enter

and claim the right room.

THEOREM 1. Amazons is PSPACE-complete.

PROOF. Given a positive CNF formula A, we construct a corresponding Ama-

zons position, as described above. The reduction may be done in polynomial

time: if there are k variables and l clauses, then there need be no more than

.kl/2 crossover gadgets to connect each variable to each clause it occurs in; all

other aspects of the reduction are equally obviously polynomial.

If the players alternate choosing variables, then when all variables have been

chosen, White will be able to activate wires leading from only those variables

he has chosen; these are just the variables assigned to true in the formula game.

Since A contains no negated variables, White will thus be able eventually to

reach both rooms of the victory gadget just if A is true under the variable as-

signment corresponding to the players’ choices. White will then have more

moves available than Black, and win; otherwise, Black’s extra room will give

him more moves than White, and Black will win.

Suppose a player makes a move which does not choose a variable, before

all variables have been chosen. This can have no effect on the other player,

apart from allowing him to choose two variables in a row, because the Black
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and White amazons may only interact within variable gadgets. A player who

chooses two variables in a row may finish with at least the same set of variables

chosen as he would otherwise. Therefore, not playing in accordance with the

formula game does not allow a player to win if he could not otherwise win.

Therefore, a player may win the Amazons game if and only if he may win

the corresponding formula game, and Amazons is PSPACE-hard.

Since the game must end after a polynomial number of moves, it is possible

to perform a search of all possible move sequences using polynomial space,

thus determining the winner. Therefore, Amazons is also in PSPACE, and thus

PSPACE-complete. ˜

3.2. Simple Amazons endgames. A simple Amazons endgame is an Amazons

position in which the Black and White amazons are completely separated by

burned squares. There can thus be no interaction between the amazons, and

the winner is determined by which player can make the most moves in his own

territory. Buro [3] showed that it is NP-complete to decide whether a player may

make a given number of moves from an individual territory containing only his

amazons. Buro first proved NP-completeness of the Hamilton circuit problem

for cubic subgraphs of the integer grid, and then reduced from that problem. As

a result, deciding the outcome of a simple Amazons endgame is NP-equivalent

(that is, it can be decided with a polynomial number of calls to an algorithm

for an NP-complete problem, and vice versa). Our gadgets provide a simple

alternate proof.

THEOREM 2. Deciding the outcome of a simple Amazons endgame is NP-

equivalent.

PROOF. We reduce SAT to a single-color Amazons position. Given a propo-

sitional formula A, we construct the same position as in Theorem 1, with the

following modifications. We remove the Black amazons, then connect each vari-

able output to the input of a choice gadget. We connect one choice output path

to the non-negated occurrences of the corresponding variable in the formula,

and the other output path to the negated occurrences.

Then, White may reach both rooms of the victory gadget if and only if A

is satisfiable, by choosing the correct set of choice output paths. Therefore,

it is NP-hard to decide whether a player may make a given number of moves

from a position containing only his amazons. We may nondeterministically

guess a satisfying move sequence and verify it in polynomial time; therefore,

the problem is NP-complete. As in [3], it follows automatically that deciding

the winner of a simple Amazons endgame is NP-equivalent. ˜
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4. Konane

Konane is an ancient Hawaiian game, with a long history. Captain Cook

documented the game in 1778, noting that at the time it was played on a 14�17

board. Other sizes were also used, ranging from 8�8 to 13�20. The game was

usually played with pieces of basalt and coral, on stone boards with indentations

to hold the pieces. King Kamehameha the Great was said to be an expert player;

the game was also popular among all classes of Hawaiians.

More recently, Konane has been the subject of combinatorial game-theoretic

analysis [5; 4]. Like Amazons, its endgames break into independent games

whose values may be computed and summed. However, as of this writing, even

1�n Konane has not been completely solved, so it is no surprise that complicated

positions can arise.

Konane rules. Konane is played on a rectangular board, which is initially filled

with black and white stones in a checkerboard pattern. To begin the game, two

adjacent stones in the middle of the board or in a corner are removed. Then, the

players take turns making moves. Moves are made as in peg solitaire – indeed,

Konane may be thought of as a kind of two-player peg solitaire. A player moves

a stone of his color by jumping it over a horizontally or vertically adjacent stone

of the opposite color, into an empty space. Stones so jumped are captured, and

removed from play. A stone may make multiple successive jumps in a single

move, as long as they are in a straight line; no turns are allowed within a single

move. The first player unable to move wins.

4.1. PSPACE-completeness. The Konane reduction is similar to the Ama-

zons reduction; the Konane gadgets are somewhat simpler. As before, the game

consists of a variable selection phase, during which all play occurs in variable

gadgets, followed by a phase in which White attempts to activate a signal path-

way leading to a large supply of extra moves, enabling him to win. Black is

supplied with enough extra moves of his own to win otherwise.

Basic wiring. A Konane wire is simply a string

of alternating black stones and empty spaces. By

capturing the black stones, a white stone traverses

the wire. Note that in Konane, in contrast with the

Amazons reduction, signals propagate by stones

moving forwards, capturing opposing stones.

. . .

. . .

Figure 7. Konane wire, turn.

Turns are enabled by adjoining wires as shown

in Figure 7; at the end of one wire, the white

stone comes to rest at the beginning of another,

protected from capture by being interposed be-
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tween two black stones. If the white stone tried to traverse the turn in the other

direction, it would not be so protected, and Black could capture it. Thus, as in

the Amazons reduction, the turn is also a one-way device, and we assume that

gadget entrances and exits are protected by turns to ensure that signals can only

flow in the proper directions.

Conditional gadget. A single gadget serves the purpose of AND, split, and po-

sitional parity adjustment. It has two input / output pathways, with the property

that the second one may only be used if the first one has already been used. This

conditional gadget is shown in Figure 8; the individual uses are outlined below.

input 2

input 1

output 1

output 2

. . .

. . .

. . .

. . .

Figure 8. Konane wiring: conditional.

Observe that a white stone arriving at input 1 may only leave via output 1, and

likewise for input 2 and output 2. However, if White attempts to use pathway

2 before pathway 1 has been used, Black can capture him in the middle of the

turn. But if pathway 1 has been used, the stone Black needs to make this capture

is no longer there, and pathway 2 opens up.

Split, parity. If we place a white stone within the wire feeding input 2 of a

conditional gadget, then both outputs may activate if input 1 activates. This

splits the signal arriving at input 1.

If we don’t use output 1, then this split configuration also serves to propagate

a signal from input 1 to output 2, with altered positional parity. This enables us

to match signal parities as needed at the gadget inputs and outputs.

Logic. The variable gadget consists of a white stone at the end of a wire,

as in Figure 9(a). If White moves first in a variable, he can traverse the wire,

landing safely at an adjoining turn. If Black moves first, he can capture the white



AMAZONS, KONANE, AND CROSS PURPOSES ARE PSPACE-COMPLETE 299

stone and prevent White from ever

traversing the wire.

The AND gadget is a conditional

gadget with output 1 unused. By

the properties of a conditional gad-

get, a white stone may exit output 2

only if white stones have arrived

at both inputs. The OR gadget is

shown in Figure 9(b). The inputs

are on the bottom and left; the out-

put is on the top. Clearly, a white

stone arriving via either input may

leave via the output.
. . .

(a) Variable

. . .
. . .

. . .

(b) OR, choice

Figure 9. Konane logic gadgets.
Choice. For the generic crossover

to work, we need a choice gadget.

As was the case with Amazons, the OR gadget suffices, if we relabel the bottom

input as an output: a white stone arriving along the left input may exit via either

the top or the bottom. (For Konane, it turns out that crossover is a trivial gadget

to make in any case.)

Winning. We will have an AND gadget whose output may be activated only if

the formula is true under the chosen assignment. We feed this signal into a long

series of turns, providing White with enough extra moves to win if he can reach

them. Black is provided with his own series of turns, made of white wires, with

a single black stone protected at the end of one of them, enabling Black to win

if White cannot activate the final AND.

THEOREM 3. Konane is PSPACE-complete.

PROOF. Given a positive CNF formula A, we construct a corresponding Konane

position, as described above. As in the Amazons construction, the reduction is

clearly polynomial. Also as in Amazons, White may reach his supply of extra

moves just when he can win the formula game on A.

Therefore, a player may win the Konane game if and only if he may win the

corresponding formula game, and Konane is PSPACE-hard. As before, Konane

is clearly also in PSPACE, and therefore PSPACE-complete. ˜

5. Cross Purposes

Cross Purposes was invented by Michael Albert, and named by Richard Guy,

at the Games at Dalhousie III workshop, in 2004. It was introduced to the author

by Michael Albert at the 2005 BIRS Combinatorial Game Theory Workshop.
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Figure 10. An initial Cross Purposes configuration, and two moves.

Cross Purposes is a kind of two-player version of the popular puzzle Tipover,

which is NP-complete [9]. It is easy to construct many interesting combinatorial

game values from Cross Purposes positions.

Cross Purposes rules. Cross Purposes is played on the intersections of a Go

board, with black and white stones. In the initial configuration, there are some

black stones already on the board. A move consists of replacing a black stone

with a pair of white stones, placed in a row either directly above, below, to the

left, or to the right of the black stone; the spaces so occupied must be vacant

for the move to be made. See Figure 10. The idea is that a stack of crates,

represented by a black stone, has been tipped over to lie flat. Using this idea,

we describe a move as tipping a black stone in a given direction.

The players are called Vertical and Horizontal. Vertical moves first, and play

alternates. Vertical may only move vertically, up or down; Horizontal may only

move horizontally, left or right. All the black stones are available to each player

to be tipped, subject to the availability of empty space. The first player unable

to move loses.

5.1. PSPACE-completeness. The Cross Purposes construction largely follows

those used for Amazons and Konane; we build the necessary gadgets to force

the two players to effectively play a formula game.

One new challenge in constructing the gadgets is that each player may only

directly move either horizontally or vertically, but not both. Yet, for formula

game gadgets to work, one player must be able to direct signals two dimension-

ally. We solve this problem by restricting the moves of Horizontal so that, after

the variable selection phase, his possible moves are constrained so as to force

him to cooperate in Vertical’s signal propagation. (We assume that the number

of variables is even, so that it will be Vertical’s move after the variable selection

phase.) An additional challenge is that a single move can only empty a single

square, enabling at most one more move to be made, so it is not obviously

possible to split a signal. Again, we use the interaction of the two players to

solve this problem.
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We do not need a supply of extra moves at the end, as used for Amazons

and Konane; instead, if Vertical can win the formula game, and correspondingly

activate the final AND gadget, then Horizontal will have no move available, and

lose. Otherwise, Vertical will run out of moves first, and lose.

Basic wiring. Signals flow diagonally, within surrounding corridors of white

stones. A wire is shown in Figure 11(a). Suppose that Vertical tips stone A

down, and suppose that Horizontal has no other moves available on the board.

Then his only move is to tip B left. This then enables Vertical to tip C down.

The result of this sequence is shown in Figure 11(b).

The turn gadget is shown in Figure 11(c); its operation is self-evident. Also

. . .

. . .

A B

C

(a) Wire

. . .

. . .

(b) Wire, after three moves

. . .

(c) Turn, free input

Figure 11. Cross Purposes wiring.
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. . .

. . .
. . 

.

. . 
.

A B

C

D

input 2 input 1

output 1output 2

Figure 12. Cross Purposes conditional gadget.

shown in Figure 11(c) is a free input for Vertical: he may begin to activate this

wire at any time. We will need free inputs in a couple of later gadgets.

Conditional gadget. As with Konane, a single conditional gadget, shown in

Figure 12, serves the role of split, parity adjustment, and AND. A signal arriving

along input 1 may only leave via output 1, and likewise for input 2 and output 2;

these pathways are ordinary turns embedded in the larger gadget. However, if

Vertical attempts to use pathway 2 before pathway 1 has been used, then after

he tips stone A down, Horizontal can tip stone B left, and Vertical will then have

no local move. But if pathway 1 has already been used, stone B is blocked from

this move by the white stones left behind by tipping C down, and Horizontal has

no choice but to tip stone D right, allowing Vertical to continue propagating the

signal along pathway 2.

Split, parity. As with Konane, if we give Vertical a free input to the wire

feeding input 2 of a conditional gadget, then both outputs may activate if input 1

activates. This splits the signal arriving at input 1.

If we don’t use output 1, then this split configuration also serves to propagate

a signal from input 1 to output 2, with altered positional parity. This enables us

to match signal parities as needed at the gadget inputs and outputs. We must be

careful with not using outputs, since we need to ensure that Vertical has no free

moves anywhere in the construction; unlike in the previous two constructions,

in Cross Purposes, there is no extra pool of moves at the end, and every available

move within the layout counts. However, blocking an output is easy to arrange;
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. . .

(a) Variable

. . . . . 
.

. . 
.

A B

(b) OR

. . .

. . .

. . .

A B

(c) Choice

Figure 13. Cross Purposes logic gadgets.

we just terminate the wire so that Horizontal has the last move in it. Then

Vertical gains nothing by using that output.

Logic. The variable gadget is shown in Figure 13(a). If Vertical moves first in a

variable, he can begin to propagate a signal along the output wire. If Horizontal

moves first, he will tip the bottom stone to block Vertical from activating the

signal.

The AND gadget is a conditional gadget with output 1 unused. By the prop-

erties of the conditional gadget, output 2 may activate only if both inputs have

activated.

The OR gadget is shown in Figure 13(b). The inputs are on the bottom;

the output is on the top. Whether Vertical activates the left or the right input,

Horizontal will be forced to tip stone A either left or right, allowing Vertical
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?free input

OR input

OR input

Figure 14. Protected Or.

to activate the output. Here we must again be careful with available moves.

Suppose Vertical has activated the left input, and the output, of an OR. Now

what happens if he later activates the right input? After he tips stone B down,

Horizontal will have no move; he will already have tipped stone A left. This

would give Vertical the last move even if he were unable to activate the final

AND gadget; therefore, we must prevent this from happening. We will show

how to do so after describing the choice gadget.

Choice. For the generic crossover to work, we need a choice gadget. As with

Amazons and Konane, the existing OR gadget suffices, if we reinterpret it. This

time the gadget must be rotated. The rotated version is shown in Figure 13(c).

The input is on the left, and the outputs are on the right. When Vertical activates

the input, and tips stone A down, Horizontal must tip stone B left. Vertical may

then choose to propagate the signal to either the top or the bottom output; either

choice blocks the other.

Protecting the OR Inputs. As mentioned above, we must ensure that only one

input of an OR is ever able to activate, to prevent giving Vertical extra moves.

We do so with the circuit shown in Figure 14. Vertical is given a free input to

a choice gadget, whose output combines with one of the two OR input signals

in an AND gadget. Since only one choice output can activate, only one AND

output, and thus one OR input, can activate. Inspection of the relevant gadgets

shows that Vertical has no extra moves in this construction; for every move he

can make, Horizontal has a response.

Winning. We will have an AND gadget whose output may be activated only if

the formula is true under the chosen assignment. We terminate its output wire

with Vertical having the final move. If he can reach this output, Horizontal will

have no moves left, and lose. If he cannot, then since Horizontal has a move in

reply to every Vertical move within all of the gadgets, Vertical will eventually

run out of moves, and lose.

THEOREM 4. Cross Purposes is PSPACE-complete.
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PROOF. Given a positive CNF formula A, we construct a corresponding Cross

Purposes position, as described above. As before, the reduction is clearly poly-

nomial. Also as before, Vertical may activate a particular AND output, and thus

gain the last move, just when he can win the formula game on A.

Therefore, a player may win the Cross Purposes game if and only if he may

win the corresponding formula game, and Cross Purposes is PSPACE-hard.

As before, Cross Purposes is clearly also in PSPACE, and therefore PSPACE-

complete. ˜

6. Conclusion

We have shown that generalized versions of Amazons, Konane, and Cross

Purposes are PSPACE-complete, indicating that it is highly unlikely that an

efficient algorithm for optimal play exists for any of them. Their hardness is

also additional evidence, if any were needed, that the games are interesting –

they are sufficiently rich games to represent abstract computations.

Additionally, we have demonstrated a simple proof technique for showing

planar, two-player, bounded move games hard. The generic crossover, in par-

ticular, seems likely to make further proofs along these lines easier. It would

be interesting to revisit some classic game hardness results, to see whether the

proofs can be simplified with these techniques.
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