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LOCAL COHOMOLOGY MODULES WITH INFINITE

DIMENSIONAL SOCLES

THOMAS MARLEY AND JANET C. VASSILEV

Abstract. In this paper we prove the following generalization of a result of
Hartshorne: Let T be a commutative Noetherian local ring of dimension at
least two, R = T [x1, . . . , xn], and I = (x1, . . . , xn). Let f be a homogeneous
element of R such that the coefficients of f form a system of parameters for T .
Then the socle of Hn

I
(R/fR) is infinite dimensional.

1. Introduction

The third of Huneke’s four problems in local cohomology [Hu] is to determine
when H i

I(M) is Artinian for a given ideal I of a commutative Noetherian local
ring R and finitely generated R-module M . An R-module N is Artinian if and
only SuppR N ⊆ {m} and HomR(R/m, N) is finitely generated, where m is the
maximal ideal of R. Thus, Huneke’s problem may be separated into two subprob-
lems:

• When is SuppR H i
I(M) ⊆ {m}?

• When is HomR(R/m, H i
I(M)) finitely generated?

This article is concerned with the second question. For an R-module N , one
may identify HomR(R/m, N) with the submodule {x ∈ N | mx = 0}, which is
an R/m-vector space called the socle of N (denoted socR N). It is known that if
R is an unramified regular local ring then the local cohomology modules H i

I(R)
have finite dimensional socles for all i ≥ 0 and all ideals I of R ([HS], [L1], [L2]).
The first example of a local cohomology module with an infinite dimensional so-
cle was given in 1970 by Hartshorne [Ha]: Let k be a field, R = k[[u, v]][x, y],
P = (u, v, x, y)R, I = (x, y)R, and f = ux + vy. Then socRP

H2
IRP

(RP /fRP ) is
infinite dimensional. Of course, since I and f are homogeneous, this is equivalent
to saying that HomR(R/P, H2

I (R/fR)) (the ∗socle of H2
I (R/fR)) is infinite dimen-

sional. Hartshorne proved this by exhibiting an infinite set of linearly independent
elements in the ∗socle of H2

I (R).
In the last 30 years there have been few results in the literature which explain

or generalize Harthshorne’s example. For affine semigroup rings, a remarkable
result proved by Helm and Miller [HM] gives necessary and sufficient conditions
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(on the semigroup) for the ring to possess a local cohomology module (of a finitely
generated module) having infinite dimensional socle. Beyond that work, however,
little has been done.

In this paper we prove the following:

Theorem 1.1. Let (T, m) be a Noetherian local of dimension at least two. Let
R = T [x1, . . . , xn] be a polynomial ring in n variables over T , I = (x1, . . . , xn), and
f ∈ R a homogeneous polynomial whose coefficients form a system of parameters
for T . Then the ∗socle of Hn

I (R/fR) is infinite dimensional.

Hartshorne’s example is obtained by letting T = k[[u, v]], n = 2, and f = ux+vy
(homogeneous of degree 1). Note, however, that we do not require the coefficient
ring to be regular, or even Cohen-Macaulay. As a further illustration, consider
the following:

Example 1.2. Let R = k[[u4, u3v, uv3, v4]][x, y, z], I = (x, y, z)R, and f = u4x2 +
v8yz. Then the ∗socle of H3

I (R/fR) is infinite dimensional.

Part of the proof of Theorem 1.1 was inspired by the recent work of Katzman
[Ka] where information on the graded pieces of Hn

I (R/fR) is obtained by examin-
ing matrices of a particular form. We apply this technique in the proof of Lemma
2.8.

Throughout all rings are assumed to be commutative with identity. The reader
should consult [Mat] or [BH] for any unexplained terms or notation and [BS] for
the basic properties of local cohomology.

2. The Main Result

Let R = ⊕Rℓ be a Noetherian ring graded by the nonnegative integers. Assume
R0 is local and let P be the homogeneous maximal ideal of R. Given a finitely
generated graded R-module M we define the ∗socle of M by

∗ socR M = {x ∈ M | Px = 0}
∼= HomR(R/P, M).

Clearly, ∗ socR M ∼= socRP
MP . An interesting special case of Huneke’s third

problem is the following:

Question 2.1. Let n := µR(R+/PR+), the minimal number of generators of R+.
When is ∗ soc Hn

R+
(R) finitely generated?

For i ∈ N it is well known that H i
R+(R) is a graded R- module, each graded piece

H i
R+

(R)ℓ is a finitely generated R0-module, and H i
R+

(R)ℓ = 0 for all sufficiently
large integers ℓ ([BS, 15.1.5]). If we know a priori that Hn

R+(R)ℓ has finite length
for all ℓ (e.g., if SuppR Hn

R+
(R) ⊆ {P}), then Question 2.1 is equivalent to:

Question 2.2. When is HomR(R/R+, Hn
R+

(R)) finitely generated?
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We give a partial answer to these questions for hypersurfaces. For the remainder
of this section we adopt the following notation: Let (T, m) be a local ring of
dimension d and R = T [x1, . . . , xn] a polynomial ring in n variables over T . We
endow R with an N-grading by setting deg T = 0 and deg xi = 1 for all i. Let
I = R+ = (x1, . . . , xn)R and P = m + I the homogeneous maximal ideal of R.
Let f ∈ R be a homogeneous element of degree p and Cf the ideal of T generated
by the nonzero coefficients of f .

Our main result is the following:

Theorem 2.3. Assume d ≥ 2 and the (nonzero) coefficients of f form a system
of parameters for T . Then ∗ socR Hn

I (R/fR) is not finitely generated.

The proof of this theorem will be given in a series of lemmas below. Before
proceeding with the proof we make a couple of remarks:

Remark 2.4. (a) If d ≤ 1 in Theorem 2.3 then ∗ soc Hn
I (R/fR) is finitely gener-

ated. This follows from [DM, Corollary 2] since dim R/I = dim T ≤ 1.
(b) The hypothesis that the nonzero coefficients of f form a system of parameters

for T is stronger than our proof requires. One only needs that Cf be m-
primary and that there exists a dimension 2 ideal containing all but two of
the coefficients of f . (See the proof of Lemma 2.8.)

The following lemma identifies the support of Hn
I (R/fR) for a homogeneous

element f ∈ R. This lemma also follows from a much more general result recently
proved by Katzman and Sharp [KS, Theorem 1.5].

Lemma 2.5. Let f ∈ R be a homogeneous element. Then

SuppR Hn
I (R/fR) = {Q ∈ Spec R | Q ⊇ I + Cf}.

Proof: It is enough to prove that Hn
I (R/fR) = 0 if and only if Cf = T . As

Hn
I (R/fR)k is a finitely generated T -module for all k, we have by Nakayama that

Hn
I (R/fR) = 0 if and only if Hn

I (R/fR) ⊗T T/m = 0. Now

Hn
I (R/fR) ⊗T T/m ∼= Hn

I (R/fR ⊗T T/m)
∼= Hn

N(S/fS)

where S = (T/m)[x1, . . . , xn] is a polynomial ring in n variables over a field and
N = (x1, . . . , xn)S. As dim S = n, we see that Hn

N(S/fS) = 0 if and only if the
image of f modulo m is nonzero. Hence, Hn

I (R/fR) = 0 if and only if at least
one coefficient of f is a unit, i.e., Cf = T . �

We are mainly interested in the case the coefficients of f generate an m-primary
ideal:

Corollary 2.6. Let f ∈ R be homogeneous and suppose Cf is m-primary. Then

SuppR Hn
I (R/fR) = {P}.

Our next lemma is the key technical result in the proof of Theorem 2.3.
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Lemma 2.7. Suppose u, v ∈ T such that ht(u, v)T = 2. For each integer n ≥ 1
let Mn be the cokernel of φn : T n+1 → T n where φn is represented by the matrix

An =













u v 0 0 · · · 0 0
0 u v 0 · · · 0 0
0 0 u v · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · u v













n×(n+1)

.

Let J = ∩n≥1 annT Mn. Then dim T/J = dim T .

Proof: Let T̂ denote the m-adic completion of T . Then ht(u, v)T̂ = 2, annT Mn =

annT̂ (Mn ⊗T T̂ ) ∩ T , and dim T/(I ∩ T ) ≥ dim T̂ /I for all ideals I of T̂ . Thus,
we may assume T is complete. Now let p be a prime ideal of T such that
dim T/p = dim T . Since T is catenary, ht(u, v)T/p = 2. Assume the lemma
is true for complete domains. Then ∩n≥1 annT/p(Mn ⊗T T/p) = p/p. Hence

J = ∩n≥1 annT Mn

⊆ ∩n≥1 annT (Mn ⊗T T/p)

= p,

which implies that dim T/J ≥ dim T/p = dim T . Thus, it suffices to prove the
lemma for complete domains.

As T is complete, the integral closure S of T is a finite R-module. Since
ht(u, v)S = 2 ([Mat, Theorem 15.6]) and S is normal, {u, v} is a regular se-
quence on S. It is easily seen that In(An), the ideal of n × n minors of An, is
(u, v)nT . By the main result of [BE] we obtain annS(Mn ⊗T S) = (u, v)nS. Hence
annT Mn ⊆ (u, v)nS ∩ T . As S is a finite T -module there exists an integer k such
that annT Mn ⊆ (u, v)n−kT for all n ≥ k. Therefore, ∩n≥1 annT Mn = (0), which
completes the proof. �

Lemma 2.8. Assume d ≥ 2 and let f ∈ R be a homogeneous element of de-
gree p such that the coefficients of f form a system of parameters for T . Then
dim T/ annT Hn

I (R/fR) ≥ 2.

Proof: Let c1, . . . , cd be the nonzero coefficients of f . Let T ′ = T/(c3, . . . , cd)T
and R′ = T ′[x1, . . . , xn] ∼= R/(c3, . . . , cd)R ∼= R ⊗T T ′. Since

dim T/ annT Hn
I (R/fR) ≥ dim T/ annT (Hn

I (R/fR) ⊗T T ′)

= dim T ′/ annT ′ Hn
IR′(R′/fR′),

we may assume that dim T = 2 and f has exactly two nonzero terms.
For any w ∈ R there is a surjective map Hn

I (R/wfR) → Hn
I (R/fR). Hence,

annT Hn
I (R/wfR) ⊆ annT Hn

I (R/fR). Thus, we may assume that the terms of
f have no (nonunit) common factor. Without loss of generality, we may write

R = T [x1, . . . , xk, y1, . . . yr] and f = uxd1

1 · · ·xdk

k + vye1

1 · · · yer

r = uxd + vye, where
{u, v} is a system of parameters for T . As f is homogeneous, p =

∑

i di =
∑

i ei.
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Applying the right exact functor Hn
I (·) to R(−p)

f
−→ R → R/fR → 0 we obtain

the exact sequence

Hn
I (R)−ℓ−p

f
−→ Hn

I (R)−ℓ → Hn
I (R/fR)−ℓ → 0

for each ℓ ∈ Z. For each ℓ, Hn
I (R)−ℓ is a free T -module with basis

{x−αy−β |
∑

i,j

αi + βj = ℓ, αi > 0, βj > 0 ∀ i, j}

(e.g., [BS, Example 12.4.1]). Let q be an arbitrary positive integer and let ℓ(q) =
qp + k + r. Define L−ℓ(q) to be the free T -summand of Hn

I (R)−ℓ(q) spanned by the
set

{x−sd−1y−te−1 | s + t = q, s, t ≥ 0}.

Then the cokernel of δq : L−ℓ(q+1)
f
−→ L−ℓ(q) is a direct summand (as a T -module)

of Hn
I (R/fR)−ℓ(q). For a given q we order the basis elements for L−ℓ(q) as follows:

x−sd−1y−te−1 > x−s′d−1y−t′e−1

if and only if s > s′. With respect to these ordered bases, the matrix representing
δq is













u v 0 0 · · · 0 0
0 u v 0 · · · 0 0
0 0 u v · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · u v













(q+1)×(q+2)

.

By Lemma 2.7, if J = ∩q≥1 annT coker δq then dim T/J = dim T = 2. As coker δq is
a direct T -summand of Hn

I (R/fR), we have annT Hn
I (R/fR) ⊆ J . This completes

the proof. �

Lemma 2.9. Under the assumptions of Lemma 2.8, HomR(R/I, Hn
I (R/fR)) is

not finitely generated as an R-module. Consequently, HomR(R/I, Hn
I (R/fR))k 6=

0 for infinitely many k.

Proof: Suppose HomR(R/I, Hn
I (R/fR)) is finitely generated. By Lemma 3.5 of

[MV] we have that I + annR Hn
I (R/fR) is P -primary. (One should note that the

hypothesis in [MV, Lemma 3.5] that the ring be complete is not necessary.) This
implies that annR Hn

I (R/fR) ∩ T = annT Hn
I (R/fR) is m-primary, contradicting

Lemma 2.8. �

We now give the proof of our main result:

Proof of Theorem 2.3: By Corollary 2.6, SuppR Hn
I (R/fR) = {P}. Thus,

HomR(R/I, Hn
I (R/fR))k has finite length as a T -module for all k and is nonzero

for infinitely many k by Lemma 2.9. Consequently,

HomR(R/P, Hn
I (R/fR))k = HomT (T/m, HomR(R/I, Hn

I (R/fR))k)
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is nonzero for infinitely many k. Hence
∗ socR(Hn

I (R/fR)) = HomR(R/P, Hn
I (R/fR))

is not finitely generated. �
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